Lehigh University Lehigh Preserve

Theses and Dissertations

1989

A study of water flow in non-wetted teflon tubes /

Sami I. Atallah *Lehigh University*

Follow this and additional works at: https://preserve.lehigh.edu/etd

Recommended Citation

Atallah, Sami I., "A study of water flow in non-wetted teflon tubes /" (1989). *Theses and Dissertations*. 4942. https://preserve.lehigh.edu/etd/4942

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

A STUDY OF WATER FLOW IN NON-WETTED TEFLON TUBES

By

SAMI I. ATALLAH

٢

ſ

This thesis is accepted and approved in partial fulfiliment of the requirements for the degree of Master of Science in Chemical Engineering.

June 1, 1954 (Date)

Folie Maus Professor in Charge

Hand Houst ilead of the Department

ACKNOWLEDGMENTS

1

4 × V.

¥ %,

This project was proposed and carried out at Lehigh University under the supervision of Dr. Louis Maus Jr., to whom the author expresses his appreciation for his helpful criticism and frequent suggestions. The author also wishes to express his gratitude to the Institute of Research of Lehigh University for undertaking the cost of equipment.

Finally, the author wishes to thank the staff members of the Chemical Engineering Department of Lehigh University for the inspiration and help they have provided as teachers over a period of several years.

Sami I. Atallah Sami I. Atallah

TAFLE OF CONTENTS

-----;

Abstract	1
Introduction	2
Theoretical Leckground	3
Description of Apparatus	8
Fig. 1, Flow Diagram of Apparatus	9
Fig. 2, Photograph of Bleeding Sctup	10
Table I, Dimensions of Tubes	11
Calibration of Instruments	12
Experimental Proced re	13
Calculated Results, Table II - V, Figs. 3 - 5	14
Discussion of Results	27
Fig. C, Pypothetical Flow in non-wetted tubes.	30
Conclusions	31
Appendix	
Fig. 7, Calibration of Rotameter	33
Experimental Data, Tables VI - IX	34
Sample Calculations	44
References	46
Vita	48

PAGE

ABSTRACT

1

This report presents the results of an investigation on the flow of mater in non-retted teflon tubes. Three tefion tubes of nominal diameters 3/2", 3/4" and 1 1/4" were used. The pressure drop across a certain length of each was found and the friction factor calculated at different flow rates. Upon comparing the friction factors obtained in this investigation with published data for smooth wetted tubes at the same Reynolds numbers, it was found that the friction factors in the case of non-wetted tubes were higher than those of wetted tubes. The values approached those of wetted tubes as the diameter became larger. The high values of friction factors under nonwetted conditions were attributed to the entrainment of sir bubbles in the liquid stream which tend to increase the roughness of the type and reduce its effective diameter. An effort was made to explain some of the anomalies found in heat transfer from molten metals under wetting and non-wetting conditions using some of the observations noted above.

INTRODUCTION

2

Development and Purpose of Investigation

During the past decade, chemical engineering research workers found a comparatively new line of interest. Nonwetted surfaces have attracted their attentions primarily in the field of drop-wise condensation and more recently in the field of heat transfer to molten metals. This project was originally concerned with drop-wise condensation. It was thought that an exploratory study of fluid flow might reveal a difference between the characteristics of flow in wetted and non-wetted tubes. Water-teilon system was chosen for this investigation because of the following reasons : 1. The expense of materials required for the construction of such a system is much less than a system for molten metals or mercury. 2. Easiness of construction and handling. 3. Water hardly wets teflon since the contact angle between the two is 108°. (Ref. 3) It was desired to compare the Fanning friction factors obtained by pressure drop measurements across the nonwetted teflon tube with the published data on friction factors at the same Reynolds numbers for wetted metallic

and glass tubes.

THEORETICAL BACKGROUND

3

A great deal of theoretical and experimental work has been devoted to the flow of fluids in pipes. Yet, it seems that most of this work has been confined to the flow of fluids which wet the walls of the carrying pipe. The equations governing the flow of wetting liquids in circular pipes have been well established. A fluid moving at a sufficiently small Reynolds number such that it flows in paths parallel to the walls of the tube is said to be in laminar motion. Hagen and Poiseuille developed the following equation for laminar flow:

> $f = \frac{16}{Re}$ $f = \frac{\pi^2 \rho_{F_c} p^5 \Delta P}{32 L w^2}$ (Fanning friction factor) (Reynolds dimension- $Re = \frac{V D P}{H}$ less number) ρ = density of fluid. g = conversion factor. D = diameter of the pipe. AP = pressure drom across the pipe. L = pipe length. w = weight flow rate. V = linear velocity. μ = the viscosity of the fluid.

vhere At higher Reynolds numbers, where the fluid flows in an irregular manner in the tube, the Hagen - Poiseuille

equation was found not to apply. Several authors collected all published experimental data for the turbulent region and thus developed equations relating f and Re. Koo (Ref. 6)

4

$$f = \cdot \frac{30140}{1} + \frac{\cdot 1^{n} 5}{\text{Re}^{32}} \cdots$$
$$\frac{1}{\sqrt{f}} = 4 \cdot 0 \log_{10} \frac{1}{\text{Re}\sqrt{f}} - \frac{1}{\sqrt{f}}$$

The early work done on fluids non-wetting the sides of the tube was conducted primarily to study the theory of slip and for viscosity determinations. Poiseuille (Ref. 3) studied the flow of mercury in capillary tubes. He found that the rate of flow of mercury depended on the diameter of the tube, while for water and ether the flow varied as the square of the diameter. He also noticed that the date for mercury was scattered and irregular and he attributed that to non-wetting and to the possible separation between the mercury and glass tube by a layer of entrained air or foreign liquid. Warburg (Kef. 13) and Whetham (Ref. 14) could not detect any slip of water on silvered glass or mercury on

glass respectively.

Jul Hartmann (Ref. 5) conducted experiments in order to compare the flow of water and mercury flowing in steel and glass tubes. He obtained higher friction factors for mercury at high Reynolds numbers (>30000). His data was more scattered for mercury than water, and

U

0.40 von Karman (Ref.12)

these effects were more pronounced in tubes of smaller diameters. He found also that the mercury values became less scattered and approached the normal values when the tubes were cleaned, polished and smoothed. He gave the following explanation for these irregularities:

"I hold the opinion that this is due to the mercury not wetting the wall of the tube. On account of this property the flow in the neighbourhood of the wall will, undoubtedly, largely depend on the adhesion to the wall, and said adhesion is certainly a poorly defined quality, unless particular and well-nigh impracticable precautions are taken. The want of definiteness of the flow with mercury is well known to me from numerous experiments with jet-holes of verious shapes."

The most recent work on slip was conducted by Tolstoi (Ref.10,) who did some theoretical and experimental (Ref. 11) studies on the flow of mercury in very thin gless capillaries. He found that slip could be considerable in very thin tubes however, for practicel purposes, slip could be neglected, which is in agreement with Goldstein's conclusions. (Ref. 4). During the past few years, considerable work has been done on heat transfer to molten metals. Studies under wetting and non-wetting conditions revealed great irregularities between the results of different workers. A non-wetted surface was found to offer a greater resistance to heat transfer (and a greater electrical resistance) than a wetted surface. The three theories offered to explain these facts were presented and discussed by Mesers. Macdonald

and Quittenton (Ref. 7) however they will be summerized

"The presence of small amounts of gas bubbles in the common heat transfer liquids such as water does not ordinarily affect their heat transfer properties in turbulent flow to any great extent, since such liquids depend wholly on convective or eddy transfer of heat. In metallic liquids however, a significant portion of the heat transferred by both electron and molecular conduction, which would be inhibited by intervening gas bubbles."

3. The local detachment theory: In their recent work at the University of Tennessee, Stromquist and his associates (Refs. 9 & 1) found that the erratic heat transfer data sometimes observed in non-wetted systems was due to random local detachments of the liquid from the tube wall.

very thin layer of chemiserbed and adsorbed gas layers are formed on the surface as well as a possible metal oxide layer, all of which contribute towards increasing heat transfer resistance. Macdonald and Quittenton discarded this theory because the required thickness of such layers was beyond general expectation. 2. The mas entrainment theory: It was found by several investigators that the presence of small quantities of entrained gas in the liquid metal increased the resistance to heat transfer. Macdonald and Quittenton adopted this theory as the best possible explanation

of the pressure head within the fluid. In a more recent entraining large amounts of air especially when splashing The last two theories are of particular importance in

easily seen that if such bubbles are present in the fluid, the bubbles will try to float by the force of buoyancy. If bubbles will tend to float towards the upper surface of the

only will hinder the flow because of increased roughness,

DESCRIPTION OF APPARATUS

A diagram of the flow system is shown in Figure 1. The apparatus used in this ivestigation consisted of an elevated reservoir which received water from a ground reservoir by means of a pump. The over-head tank was allowed to maintain a constant head of about 15 ft. by means of an overflow pipe. Water was allowed to flow down from the over-head reservoir through the tested tube. This consisted of two parts: a calming section of 50 diameters length and the test section. A gate walve placed at the outlet of the test section was used to regulate the flow, which in turn was measured by a Fisher and Porter rotameter. The arrangement as shown in Figure (1) insured that the water filled the tested tube.

A water-over-carbon tetrachloride manometer was shown with the bleeding setup in Figure (2). In drilling pressure tap holes through the tested tubes, care was taken to remove drill shavings and dents

attached to the pressure taps. The pressure taps are inside the tube to prevent any undue turbulence.

TABLE L DIMENSIONS OF TUBES

(All lengths in inches)

I

Material Teflon Teflon Teflon Copper Total length 71 72 Calming length 20 34 Tested length 48 32 Actual I.D. 0.372 0.721 1.228 0.522 Nominal I.D. 3/8 3/4 11/4 *** Nominal O.D. 1/2 1 1 11/16 **

Note: Teflon tubes were obtained from Ethylene Corp.

CALIBRATION OF INSTRUMENTS

9

Tother a serie and and a series

A calibration chart is shown in Figure 7 . The temperature of water was measured from time to time and was found to be about 25°C and was practically constant during the rims.

The rotameter used in this experiment to measure the flow rate was calibrated with two home-made floats.

EXPERIMENTAL PROCEDURE

The overhead reservoir was first filled with water and allowed to overflow in order to maintain a constant head of about 15 ft. of water. Water was then allowed to flow through the tested tube by opening the gate valve to the desired flow rate. After bleeding the manometer taps the manometer and rotameter readings were recorded. This procedure was used for tubes I, II and .V. However in the case of the large tube, the flow was not high enough to obtain any readings on the manometer. The tube was then connected directly to the main city water line and the flow was regulated with a valve at the inlet because the pressure wes very high and in some instants broke the teflon-iron pipe connections. The city line was also used to obtain high flow rates on tube II.

At certain points of the experiments, the gate valve in the apparatus was transferred to the inlet of the tested tube, thus reducing the head to about 3 ft. which is the height of the attached rotameter and its connections. In all cases, readings were taken at random. The _ experimental data is listed in the appendix in the same order it was taken and the calculated results are listed correspondingly.

The tubes were cleaned from time to time.

TABLE II

CALCULATED RESULTS

The following are the calculated values for the Reynolds number and the friction factor with the corresponding values of flow rate and pressure drop in inches of carbon tetrachloride under water, for the teflon tube of 3/8" nominal I.D.

Flow rate	Pressure drop	Reynolds No.	Friction
1b./min.	in inches		factor
9.8	22.35	11180	•0114
9.2	20.10	10500	.0116
8.5	17.45	9700	•0118
7.55	14.40	8600	.0123
7 5	13.92	8550	.0121
₽.9 ¶9	13.22	8200	.0123
6.5	11.02	7400	0127
5.9	9.55	6720	•0134
5.25	7.65	6000	•0135
A. 5	5,92	5130	•0142
2.95	4.47	4500	•0139
9.5	21.00	10800	.0114
8 8	15.58	10000	.0117
0 • 0 9 9	16.05	9350	.0116
0.e.a 7 55	14.15	8600	.0121
6.85	12.08	7800	.0125
6.25	10.23	7120	.0128
55	8.25	6260	.0133
J•J	6.71	5520	.0139
4.00 A 95	5.35	4850	.0145
29	3.23	3550	.0154
5.07	2.77	3380	.0153
3.85	4.10	4380	.0145
5.60 A.6	5.98	5250	.0138
5.95	9.28	6780	.0128
7 25	13.11	8250	.0122
8.5	17.19	9700	•0116
0.9	22.25	11180	.0113
900 0.85	22.35	11230	.0112
10.45	24.36	11800	.0108
10€ <u>1</u> 0	1.50	2642	.0136
400A 19.62	2.22	3000	.0157
2.02	2.76	3450	.0146
3003		;	

TABLE II (Contd.)

	Flow rate	Pressure drop
	<u>_lhe/mine</u>	in inches
11 () () () () () () () () () (3.6	3.75
	4.2	5.09
	4.85	6.53
	5.6	8.29
	6.25	10,15
	6.85	12.10
	7.55	14.19
	8.20	16.46
	8.85	19.03
	9.5	21.33
	10.2	23.90
	10.4	24.56
	1.25	.61
	1.63	.82
	2.0	1.00
	2.43	1.60
	2.63	2.20
	3.2	3.20
	4.6	6.05
	4.6	5.93
	3.85	4.50
	3.25	3.33
	2.63	2.18
	1.98	1.02
	1.25	•60
	1.77	-88
	1.55	•76
	2.2	1.10
	2.55	1.95
	8.55	17.48
	1.25	• 54
	1.91	1.05
	2.63	2.20
	3.9	4.58
	5.2	7.65
	5.25	7.75
	6.65	11.65
	8.0	15.89
	9.25	20.62
	9.8	23.21
	9,95	23.58

and contract responsible and a long to the

\

T

and before an an and a sing the second

Revnolds	Friction
number	factor
4100	.0141
4790	.0140
5530	.0137
6380	.0129
7120	.0125
7800	.0125
8600	.0121
9350	.0119
10100	.0119
10800	.0115
11600	.0113
11850	.0110
1425	.019 0
1850	.0152
22 8 0	0122
2760	.0132
3000	.0156
3650	.0152
5250	.0139
5250	.0137
43 9 0	.0148
3700	•0154
3000	.0155
2260	.0127
1425	•0188
2020	.0137
1770	.0151
2510	.0120
2910	.0147
9 750	.0116
1425	.0168
2180	.0140
3000	.0156
44 50	.0146
5930	.0138
5990	.0137
7580	•0128
9100	.0121
10550	.0118
11180	.0118
11350	•0116

......

the state of the second second

TABLE II A

16

CALCULATED RESULTS

-1

The following are the calculated values for the Reynolds Friction <u>factor</u> .0145 number 2920 .0152 .0150 .0137 .0133 3650 4410 5150 6150 .0127 .0118 .0115 7280 8650 10500 11200 .0114 .0152 1950 1510 .0191 .0127 2660 3100 2870 .0158 .0149 .0119 10100 .0137 6080 10**90**0 .0119 0158 3550

Reynolds number and the friction factor for the teflon tube of 3/8" nominal I.D. with the gate valve at the inlet.

Flow rate	Pressure drop
1b./min.	in inches
2.54	1.91
3.18	3.15
3.85	4.55
4.50	5.69
5.35	7.81
6.35	10.51
7.55	13.76
9.20	19.85
9.80	22.45
1.70	•90
1.32	•6 8
2.32	1.40
2.70	2.26
2.50	1.90
8.85	19.04
5.30	7.90
9.55	22.28
3.10	3.10

1

And the second

17

.030

.020

Friction factor

.010 .009 .008

.007

.006

.005

.004

.003

ī

2

Figure 3. Friction factor Vs. Reynolds number for the teflon tube of nominal 3/8" I.D.

Legend: • with valve at outlet.

o with walve at inlet.

,	18		
	TABLE III		
	ALTONIA MID DOCI	11 /190	
	CALCULATED RESU	1010	
	lowing are the cal	loulsted value	s of the
	TOATUR WE AND AND OW		
Revnolds num	ber and the frict:	ion factor for	r the teflor
tube of 3/4"	nominal I.D. with	h the gate va	lve at the
outlet of th	e tube.		
	D	Rounalde	Friction
Flow rate	rressure aroy	numper	factor
	.18	3600	.0130
	.89	7500	.0110
Q_1	.51	5320	.0125
7.3	•32	4275	.0122
13.5	.99	7900	.0111
17 3	1.36	10100	.0092
15 75	1.18	9200	•0097
10.75	.78	66 50	.0123
0 25	.43	4900	.0125
	. 91	7670	.0108
13•1 A Q	.19	2820	.0167
940 19.75	.88	7470	.0110
12+13	.50	5270	.0125
7.0	1.30	9500	.0100
10+4J	1.33	9700	.0099
10-55	. 24	3520	.0135
	0A.1	10100	.0102
17.40		6550	.0121
11•2	19	2290	.0160
3.7	• • • •	6350	.0104
10.85	1.22	8920	.0106
10.20	. 42	4800	.0127
8 • <i>G</i>	1,11	8650	.0104
14.75	.71	6620	.0113
11.03	. 42	4850	.0125
8.40 	.16	273C	.0151
4.00	.59	5970	.0115
10.2	• J J 9 2	3310	.0146
5.00	יגט 1 <i>י</i> קר	10500	.0111
18.	1.58	10200	.0107
17.4	1.AO	9800	.0102
16.75	1 20	9360	.0104
16.0	1 94	9080	.0105
15.5	<u>ፈቀራቱ</u> ነ ነዩ	8850	.0105
15.1	1.10	8380	.0109
14.3	TetA		

t

• •

on

·

		•			
			19		
			TABLE III	(Contd.)	
Fl	low rate	Pres	sure drop	Reynolds	Fricti
	13.25		- <u>98</u>	7760	.0113
	11.85		.80	7000	.0114
	10.0		• 58	5850	.0120
	8.6		.42	5050	.0116
	7.5		•32	4400	•0115
	6.5		.24	3800	.011(
	5.25		.18	3080	.013
	4.85		.20	2840	.017
	5.8		.24	3400	.014
	7.3		• 34	4275	.01
	7.95		.40	4650	• <u>01</u>
	9.25		.50	5410	.01 01
	10.45		•60	6110	-01 01
	12.15		.80	7110	10.
	13.6		1.00	7950	01
	15.5		1.20	9050	00
	17.3		1.42	TOTO	0.
	16.3		1.32	9550	••
	15.6		1.22	9130	•0
	13.4		•93	(0 9 0	.0
	11.8		• / 5 6 D	6160	.0
	10.55		• 0 2 E 6	5550	.01
	9.5		•00	4970	.01
	800 7775		• 4 0 34	4540	.01
	1010 K QK		. 22	3430	.01
	10.2		.62	5980	.0]
	11.45		.79	6700	.0
	12.5		.91	7350	•0]
	14.0		1.09	8200	•0
	15.25		1.29	9200	•0
	16.75		1.41	9800	0. .
	17.15		1.49	10000	.0
	17.85		1.74	10450	.0]
	16.0		1.28	9350	• U.
	13.95		1.06	8120	•0
	12.75		•97	7400	•U •
	10.75		•73	0200	<u>،</u> 0
	9.5		•59	2200	• •
	7.8		•42	4570	.u.
	6.25		.30	3000	•0
	5.2		•22	3040	•0
	11.5		.80	0720	• U. ^'
	17.05		1.44	7010 720	•U. 0
	7 ₀Z		• 30	7610	

i

..)

1

10.64.00

-; s e

TABLE III (Contd.) Pressure drop <u>in inches</u> .52 .75 1.14 Flow rate <u>lb./min.</u> 9.25 11.5 14.8 1.56 2.00 2.34 .30 1.90 17.55 20.25 22.1 6.75 19.8 9.25 .52 1.82 .69 .91 1.98 1.44 1.11 19.5 10.75 12.9 19.4 17.1 14.8 2.66 23.6 8.3 •40 •78 2•52 11.8 23.5 7.2 •32 1•10 1•70 14.5 18.55 13.2 .99 1.24 15.5 12.0 .82 1.75 19.2 1.28 15.9 10.2 21.75 .66 2.20 2.60 1.7P

23.8 19.3

23.7

4

Reynolds	Friction factor
5410	.0124
6720	.0115
8650	.0106
10300	.0103
11900	.0099
12950	.0097
3960	.0134
11600	.0098
5410	.0130
11420	.0097
6300	.0121
7540	.0111
11400	.0101
10000	.0100
8650	.0103
13880	.0101
4850	.0118
6890	.0114
13750	.0093
4230	.0125
8550	-0105
10880	.0101
7620	.0110
9050	.0105
7000	.0116
11200	.0097
9300	-CT03
5960	.0129
12720	- UU94 0002
13940	0093
11310	0097
13400	.0093

2.58

TABLE III A

CALCULATED RESULTS

21

The following are the calculated values of the Roynolds number and friction factor for the teflon tube of 3/4" nominal I.D. at high flow rates using city water line with a gate valve at the inlet.

Flow rate	Pressure drop
16./min.	in inches
65.0	17.02
81.0	23.37
73.0	19.95
61.0	14.48
56.0	12.15
51.0	10.26
44.0	8.10
39.2	6.13
36.5	6.09
32.0	4.50
46.0	8.78

;

Reynolds	Friction
number	factor
38100	.00816
47500	.00724
42800	.00760
35700	.00790
32800	.00785
29900	.00800
25800	.00850
23000	.00810
21400	.00927
18750	.00890
27000	.00842

TABLE III B

CALCULATED RESULTS

The following are the calculated values of the Reynolds number and friction factor for the teflon tube of 3/4" nominal I.D. when the gate valve was moved to the inlet of the tube thus reducing the head to app.3 ft. It should be noted that the manometer was unsteady.

Flow rate	Pressure drop
1b./min.	in inches
14.75	1.31
15.6	1.44
11.9	•99
13.6	1.40
7.75	• 52
8.9	•64
10.8	•84
12.1	1.02
7.9	.55
7.1	•38
5.25	.26
20.2	2.76
17.4	2.36
16.2	1.57
15.25	1.71
14.75	1.36
13.85	1.46
12.85	1.38
12.8	1.13
12.45	1.22
11.5	•96
10.0	•79
9.85	.75
8.4	. 52
6.8	.41

;

Bornos	Friction
mumber	factor
9650	.0122
0150	.0120
9T20	0142
6970	0154
7950	0134
4550	01/0
5210	• U104
6330	0146
7100	.0141
4630	.0179
4150	•0153
3080	.0192
11800	.0137
10200	0158
9500	.0121
8940	.0149
8640	.0127
8110	.0154
7540	.0170
7500	.0140
7300	.0160
6750	.0147
5860	.0160
5760	.0157
4930	.0150
3980	0180

TABLE IV CALCULATED RESTLETS .

The following are the calculated values of the Reynolds number and friction factor for the teflom tube of 1 1/4" nominal I.J. using city water line with a gate valve at the entrence to the tube. At higher flow rates the teflon-iron nine connections come apart.

Flow rate	Pressure aron
16./min.	in inches
43.3	• 4.9
53.5	•71
67.0	1.0.
72.0	1.13
75.0	1. 3
64.0	•93
48.0	• 5.3
48.5	·55)
58.0	.75
72 · Ŭ	1.11
64 .5	1.43

٣

1.

keynolds	Friction
number	fector
140(h)	.00805
18400	.00760
23.).10	.0058)
24800	.00566
25800	.00695
22000	.00731
16500	.00705
16700	.00723
20000	.00590
24800	.00562
29100	.00534

TABLE V

25

CALCULATED RESULTS

Flow rate	Pressure drop
1b./min.	in inches
7.55	2.00
16.75	7.80
3.35	0.52
4.6	0.90
5.85	1.38
9.75	3.24
14.0	5.84
15.12	ô.55
16.55	7.72
12.25	4.72
9.1	2.83
7.12	1.82
5.2	1.09
3.25	0.42
2.0	0.21
17.3	8.62

TT.

1

The following are the calculated values of the Reynolds number and the friction factor for the copper tube of 0.522" I.D. with the gate valve at the outlet. Friction Reynolds <u>factor</u> .0094 number 6150 13650 .0074 .0124 .0114 2730 **3**750 .0107 .0091 **4**760 7950 .0080 11400 .0077 .0075 12350 **13500** 10000 • 0084 • 0092 • 0096 7400 5800 4250 2650 .0108 .0141 1630 .0077 11100

FIGURE (5)

26

.020

.010 .009

.008

.007

.006

.005

.004

Friction factor

٥

2

0

3

Ö

deynolds number x 10^{-3}

- Figure 5. Friction factor vs. Reynolds number for the copper tube and for the teflon tube of nominal 1 1/4" I.D. compared with published data. Legend: O Copper tube using apparatus.
 - Teflon tube using main city water line with valve at inlet.

DISCUSSION OF RESULTS

The calculated results of this investigation are presented in Tables II to V. They are also presented graphically in Figs. 3, 4 and 5, where the Fanning friction factor was plotted against the Reynolds number for each tube and compared with the established relationships for the flow of fluids in smooth wetted metallic and glass tubes.

It could be easily seen that the friction factors for the water-teflon system were considerably higher than the accepted normal values which were approached by the results of the copper tube. The copper tube was used to check the accuracy of the apparatus. It could also be seen that the ratio of the experimental friction factors to the normal friction factors decreased with the increase in diameter of the teflon tube.

Diamater		Ratio	of frigtion	factors
0.372	(laminar f	low)	1.70	
0.372	(turbulent	flow)	1.45	
0.721	n	H	1.31	
1.228	*	11	1.06	

for larger diameters.

Another important observation is that when the valve was moved to the inlet, thus reducing the pressure within the liquid from 15 to 3 ft. the friction factor was

The ratio of the friction factors seems to approach 1

increased in the case of 3/4" nominal I.D. teflon tube but not in the case of 3/8" tube. It should also be noted that the results were more scattered at low pressure head. Earlier in this report, the factors affecting the flow of a non-wetting fluid were discussed. Slip could be immediately discarded as a reason for the anomalies displayed in the results of this investigation. Slip should increase the velocity of flow and not decrease it, as was the case in this investigation, Furthermore, the magnitude of slip velocity is so small that it could not be possibly detected.

The presence of a chemisorbed or an adsorbed gas layer or an oxide film could also be disregarded in the case of teflon. The inertness of teflon and its hydrophobic properties do not allow any oxide formation, dirt accumulation or any gas adsorption (which in any case, is too small to have any effect on friction factors). The entrainment of air seems to be the most plausible explanation for the results in this experiment. The arrangement of the upper reservoir was such that splashing definitely occurred and a vortex could have been formed. When the pressure head was reduced by moving the valve to the inlet, the flow became unsteady and at high flow rates, surges of air bubbles were seen carried by the water stream in the rotameter. As it was mentioned earlier, these bubbles

tend to float by the force of buoyancy. When they reach the upper surface of the tube they may remain attached to the wall, unless the velocity of the liquid is high enough to overcome the friction between the bubble and the wall and thus sweep it with its current. The presence of these bubblos could be easily demonstrated in the laboratory by attaching a Tygon tube to the water tap and allowing the water to flow horizontally in the tube. By loosening the connection between the tube and the tap, air will leak in the water stream. If the flow rate is sufficiently small, the air bubbles will be seen clinging to the upper surface of the tube. Upon increasing the rate of flow the bubbles are swept with the flowing water.

Another factor of equal importance is the possible presence of extrusion cavities in the wall of the tube. A non-wetting liquid will possibly form a free surface which may seal the air in the cavity. This could also be of prime importance in heat transfer, coupled with the fact that this free surface layer of liquid may have different properties i.e. viscosity, from the rest of the liquid.

A hypothetical sketch of the flow of a non-wetting liquid in a tube is shown in Fig. 6.

Figure 6. A hypothetical sketch for the flow of a non-wetting liquid in a tube.

Legend

- roughness and by decreasing the effective diameter.
- wet the tube, it would have displaced the air in the. cavity and in the form of bubbles.
- within the liquid. This layer is of unknown properties.

1. Air bubbles attached to the upper surface of the tube which hinder the flow of the liquid by increasing the

2. Sealed air within an extrusion cavity. Had the liquid

3. A multimolecular layer formed due to surface tension

- 1. This investigation showed that it uss possible to obtain higher friction factors during non-wetted flow in smooth pipes than would normally be expected from smooth wetted pipes.
- the expected values for wetted flow as the diameter of the tube was increased.
- offective diameter of the tube.
- not wetted by the flowing liquid could explain the large under wetting and non-wetting conditions.
- - orifices under non-wetting conditions.

2. Under non-wetted conditions, friction factors approached

3. The high values obtained for friction factors under nonwetted conditions were attributed to the entrainment of air bubbles in the liquid stream. These bubbles tended to attach themselves to the upper surface of the tube thus increasing the roughness factor and reducing the

4. Entrained gas hubbles and the possible sealing of gas (or air) in cavities in the wall of the tubes which are

anomalies found in heat transfer from molten metals 5. It is recommended that further work be done in order to verify the results of this invostigation. A study of flow at small Reynolds numbers is necessary. It is recommended that further work be done on the flow in

APPENDIX

f

CALIBRATION OF ROTAMATER

1

33

The following is the experimental data taken for the teflon tube of nominal 3/8" I.D. with gate valve at outlet. <u>Dete</u> March 9 March 10 · {; Harch 12

34

TABLE VI

EXPERIMENTAL DATA

Rotameter Rdg. 13.0 12.0 11.0 9.6 9.45 8.9 8.0 7.0 6.0 4.9 4.9 4.0 12.5 11.5 10.5 9.5 8.5 7.5 6.4 5.45 4.5 2.9 2.5 3.9 5.0 7.0 3.05 11.0 13.0 13.1 13.9 1.4 2.0 2.6 3.5 4.4 5.5 6.5 7.5 8.5 9.5 10.5

•	Manometer	Rdgs.
	11.15	11.20
	10.00	10.10
	8.70	8.75
	7.20	7.20
	6.92	7.00
	6 .6 0	6.62
	5.50	5.52
	4.75	4.80
	3.80	3.85
	2.92	3.00
	2.22	2.25
	10.40	10.60
	9.20	9.38
	7.96	8.09
	7.00	7.15
	5.98	5.10
	5.09	2.13
	4.04	4.•21 2.46
	3.25	3+40
	2.57	2010 192
	1.50	1.50
	1.27	2 25
	2.10	2.09
	2.90	4.70
	4.50	6.61
	8,50	8.69
	11.00	11.25
	11.05	11.30
	12.02	12.34
	0.70	0.80
	1.02	1.20
	1.38	1.38
	1.81	1.94
	2.49	2.60
	3.23	3.40
	4.09	4.20
	5.02	5.13
	6.00	6.10
	7.02	7.17
	8.12	8.32

		TABLE VI (Cont	d.)	
	Date	Rotameter Rdg.	Manometer 8 30	<u>Rdgs</u>
	Warch 12	11.0	9.62	9.41
		10 E	10.80	10.53
		10 5	11.80	12.10
		13.8	12.44	12.12
	lines 15	0.0	.30	.31
	Laren 15	0.5	.41	.41
		1.0	• 50	• 50
		1.58	. 80	-80
		2.0	1.10	1.10
		2.9	1.60	1.60
		5.0	3.03	3.02
	March 16	5.0	3.01	2.92
		3.9	2.30	2.20
		3.0	1.70	1.03
		2.0	1.04	.45
		0.98	• UT	.35
		0.0	•2J -40	.48
		0.4	.43	.31
· · ·		V•4 1.95	•63	• 56
		1.85	1.02	•93
		100	8.70	8.78
			.27	.27
	Maron 24	0.9	1.03	1.02
		280	1.10	1.10
		4.0	2.29	2.29
		5.95	3.83	3.82
		6.0	3.88	3.87
		8.15	5.83	5.82
		10.2	7.95	7.94
		12.1	10.31	10.31
		13.0	11.01	11 70
		13.2	11.19	77819
		**********	+	

64

EXPERIMENTAL DATA

teflon tube of 3/8" nominal I.D. with value at the inlet.

Date		Rotameter Rdg.	
March	16	1.80	
		2.87	
		3.90	
		4.87	
		6.20	
		7.70	
		9.50	
		12.00	
		13.00	
		•60	
		.10	
		1.40	
		2.10	
March	17	1.70	
		11.70	
		6.20	
		12.70	
		2.70	

TABLE VI A

The following is the experimental data taken for the

77

I	lanomet	er Rdgs.
	1.00	.91
	1.60	1.55
	2.30	2.25
	2.85	2.84
	3.91	3.90
	5.26	5.25
	6.90	6.86
	10.00	9 .85
	11.30	11.15
	• 50	.40
	,39	.29
	.75	•65
	1.17	1.09
	1.00	.90
	9.54	9.50
	4.00	3.90
	11.16	11.12
	1.60	1.50

The			
teflon			
outlet.			
Dete			
Feb. 10			
	7		

11.9 9.2 18.6 23.9 21.4 15.4 10.8 17.9 5.4 17.3 11.8 22.0 22.6 7.1 Feb. 11 23.7 15.1 4.0 14.5 20.7 10.5 20.1 14.8 Feb. 12 10.6 5.1 13.5 6.6 25.1

Feb. 15

24.0 22.8 21.7 21.0 20.5 19.5

13.3 11.2

TABLE VII

LXPERTISINTAL DATA

following is the experimental data taken for the

.

tube of nominal 3/4" I.D. with the gate value at the

Rotancter Rdg. I	Nanometer	Rdgs.
6.1	• 06	.12
17.7	•40	•49
11.9	.20	•31
9.2	.11	.21
18.6	•48	•51
23.9	•6]	.75
21.4	. 5?	•64
15.4	•38	•40
10.8	.18	.25
17.9	.40	• 51
5.4	.07	.12
17.3	•40	•48
11.8	.20	•30
22.0	•62	•68
22.6	•63	.70
7.1	.11	.13
23.7	.71	.78
15.1	.35	•40
4.0	.02	.10
14.5	.29	.31
20.7	.60	. 02
10.5	.20	.22
20.1	. 52	• 59
14.8	• 32	. 39
10.6	.19	.23
5.1	.05	.11
13.5	.28	.31
6.6	.10	.13
25.1	.89	.88
24.0	•79	•79
22.8	•70	.70
21.7	•65	•65
21.0	.62	. 62
20.5	.59	.59
19,5	.55	•55
18-2	.49	.49
16.1	-40	.40
12'5 T0+¥	_29	.29
11 0	. 21	.21

		••
		38
		TABLE VILO
	Date	Rotameter Rdg.
	Feb. 15	9.5
		8.0
		6.0
	Feb. 16	5.5
		6.8
		9.1
		10.15
		12.01
		13.5
		10.5
		21.0
		23.9
		22.1
		21.1
		18.4
	1	16.C
		14.1
		12.5
		11.0
		9.3
		6.9
	Feb. 23	13.0
		10.4
		11.0
		21.4
·		22.3
		23.5
		24.9
		21.5
		12.1
		17.4
		14.1
		12.5
		10.0
		γ? ⊂ α
		0.7
		23.1 23.1
		Rotameter 103
	Feb. 24	3.5
	(Float II	in 5.6
	rotameter) 7.9
		11.2
		13.9
		16.5
		18.3
		•

LINE REAL OF

VII(Contd.)

- 7

I	Manometer	Rdgs.
	.16	•16
	.12	.12
	• 09	•09
	.10	.10
	•12	.12
	.17	• 17
	.20	•20
	.25	•25
	.30	.30
	-40	• 4 0
	• 50	• <u>50</u>
	•00 71	.71
	• 1 ± 66	. 66
	•00 -61	.61
	. 49	. 49
	• प्र २ ् २ २	.39
	.3]	.31
	.28	.28
	.20	•20
	.18	.18
	.11	.11
	•31	• 31
	•40	•39
	•45	•46
	•55	• 54
	•65	• 03
	•70	.71
	•75	•74
	88	•30
	.05	•03 52
	● 5 J	•00 50
	•4/	- 38
	€ <u></u> 39. 90	ູາ0
	• <i>c</i> 20	.22
	.12	.18
	.10	.12
	29	.41
	72	.72
t.II		
	•18	.18
	.26	.26
	•37	• 38
	• 57	• 57
	•78	•78
	1.00	1.00
	1.17	1.17

ł			
<u>6</u>			
di si Citti			
ren El-tic			
[静間 偏弱			
			ź
- 19.4 			

· ·

39

TABLE VII (Contd.)

II	Manomete	r Rdgs.
	.11	.19
	1.00	.90
	• 22	.30
	.87	.95
	• 38	.31
	•49	.42
	.90	•98
	• 69	• 75
	.51	.60
	1.33	1.33
	.20	.20
	.39	• 39
	1.26	1.26
	.18	.16
	• 55	•55
	•85	. 85
	•49	• 50
	• 52	• 5?
	•41	•41
	• 88	-63
	.64	• 64
	.33	•33
	1.10	1.10
	1.30	1.30
	.89	• ⁸⁹
	1.29	1.29

1

.

TABLE VIIA

EXPERIMENTAL DATA

The following is the experimental data taken for the teflon tube of 3/4" nominal I.D. at high flow rates

using city water line with gate valve at inlet.

Date	Flow rate (1b./min.)	Manome	ter hdgs.
New 17	65.0	8.40	8.60
May 1	81.0	11.70	11.67
	73.0	10.00	9.95
	61.0	7.33	7.15
	56.0	6.10	6.15
	51.0	4.98	5.28
	44.0	4.20	3 .9 0
	39-2	3.00	3.13
	36.5	2.87	3.22
	32.0	2.07	2.43
	46.0	4.21	4.57

 γ'

TABLE VIIB

41

EXPERIMENTAL DATA

The following is the experimental data taken for

the teflon tube of 3/4" nominal I.D. with the gate valve

at the inlet. Manometer readings were unsteady.

Date	Rotameter Kdg.
Feb. 12	20.1
	21.2
	16.2
	18.7
	9.8
	11.7
	14.5
	16.3
	10.1
	7.8
	6.0
	20.2 lb./min.
Feb. 15	24.0
	21.9
	20.6
	20.0
	19.0
	17.6
	17.5
	16.9
	15.5
	13.3
	13.1
	10.8
	8.4

• /

<u>I</u>	Manometer	Rdgs.
	.80	.51
	. 88	• 56
	•49	•50
	•70	. 70
	•23	•29
	•30	• 34
	•40	•44
	.50	• 52
	.25	•30
	•18	•30
	.10	.16
	1.38	1.38
	1.16	1.20
	•76	.81
	.81	.90
	•66	.70
	•70	•76
	•6 8	•70
	• 52	•61
	• 5 8	•64
	• 45	•51
	•35	•44
	• 34	•41
	•22	.30
	.16	.25

TABLE VIII

EXPERIMENTAL DATA

48

The following is the experimental data taken for the teflon tube of 1 1/4" nominal I.D. using city water line with a gate valve at the entrance to the tube. Flow ras

measured directly.

Diata	Flow rate 10. min.	Manomet	er Rdgs.
May 18	43.3	• 38	•11
ady co	53.5	.4 8	• 23
	67.0	.60	•40
	72.0	.61	•54
	75.0	•68	.60
	64.0	-48	.50
	4 ° • G	.30	. 23
Nev 20	41.5	.17	.35
Mary , os	58.0	• 30	· 4 · j
	72.0	.63	•48
	84.5	.69	•79

EXPERIMENTAL DATA

A CLASSING STATES

The following is the experimental data taken for a copper tube of 0.522" I.D. with the valve at the outlet.
 Manometer idge.

 1.00
 1.00

 3.90
 3.90
 • I

Date		Rotameter	Rdg
April	12	9.5	
		22.8	
		3.2	
		5.0	
		6.85	
		13.0	
		19.2	
April	20	20. 5	
•		22.6	
		16 .0	
		11.9	
		8.8	
		5.9	
		3.0	
		1.0	
		23.95	

• -	
.26	.26
•45	•45
.69	•69
1.62	1.62
2.92	2.92
3.35	3.20
3.98	3.74
2.45	2.27
1.50	1.33
1.00	.82
.60	.49
.31	.11
.20	.01
4.40	4.22

- É

SAMPLE CALCULATIONS

item in Table II.

Calculation of the Revnolds number:

$$\operatorname{Re} = \frac{D \ V /^{\circ}}{/ 4}$$

V = velocity in ft./sec.

D = diameter of tube in ft.

 ρ = density of water in lbs./cu.ft.

 μ = viscosity of water in British units.

Also the pressure drop is 22.35 inches of carbon tetrachloride under water. The diameter is .372 inches. The viscosity of water at 25°C is 0.896 centipoises. The density of water is 62.25 lbs./cu.ft.

$$V = \frac{9.8}{60 \text{ x } 62.25} \text{ x } \frac{4}{(0.03)}$$

$$D = \frac{0.372}{12} = 0.031 \text{ ft.}$$

$$\mu = 0.396 \text{ centipoises}$$

$$Re = \frac{0.031 \text{ x } 3.48 \text{ x } 62.4}{0.896 \text{ x } 6.72 \text{ x } 10^{-4}}$$

Calculation of the friction factor:

$$f = \frac{\prod^{2} p_{\rm E} D^{5} \Delta P}{32 \ L w^{2}}$$
$$\Delta P = \frac{32 \cdot 35}{12} (1.595 - 1.00)$$
$$g_{\rm c} = 32 \cdot 174$$
$$w = 9 \cdot 8/60 = 0 \cdot 167 \ 10 \cdot 7$$

The following is a sample calculation for the first

Experimental data gives the flow rate as 9.8 lb./min.

 $\frac{4}{(031)^2\pi} = 3.48$ ft./sec/

 $= 0.896 \times 6.72 \times 10^{-4}$ lb./ft.sec.

<u>25</u> _11180

00) x 62.25 ± 69 lb. force/sq.ft.

/800.

í

j,

 $f = \frac{(3.14)^2 \times 62.25 \times 32.174 \times (0.031)^5 \times 69}{32 \times 4 \times 0.167}$ = 0.0114

L=4 ft.

45

inger y

REFERENCES

- of Wetting on Heat Transfer Characteristics of Liquid Hetals", Progress Report, Atomic Energy Commission, Research Contract lio. AT-(40-1)-1310 with the Dept. of Chem. Eng., University of Tennessee, July 31, 1953.
- above, Progress Report, February 1, 1954.
- Science, vol. 5, pp. 514 531,(1950).
- Dynazics," vol. II, p. 676, Oxford University Press, London; 1238.
- Selskabs Skrifter, Kopenhagen (8), 10, pp. 383 413, (1926) Hr. 5.
- of Chomical Engineers, vol. 28, pp. 56 72.
- St. Louis, No., Dec. 1953, Preprint No. 8.
- und Chemie, vol. 58, pr. 424 448, (1843).
- Energy Commission, Oak Ridge, Tennessee.
- vol. 85, pp. 1089 1092, (1952).
- Akad. Nauk S.S.J.R., vol. 85, pp. 1329 32, (1952).

1. Boarts, H.H., Chelemer, H., and Hoffman, B., "Effect

2. Boarts, R.H., Chelomer, H., and Hoffman, P., same as

3. Fox, H.V., and Zisman, W.A., Journal of Colloidal

4. Goldstein, S., (Editor), "Modern Developments in Fluid

5. Hartmann, Jul, "Compartson between the Flow of Water and Mercury in Tipes", D. Kgl. Danske Videnskabernes.

6. Koo, L.C., D.Sc. Thesis, M.I.T. (1932) also published partially in the Transactions of the American Institute

7. Macdonald, W.C., and Quittenton, M.C., "A Critical Analysis of Notal Wetting and Gas Entrainment in Heat Transfer to Lolten Metals", Presented at the Hest Transfer Symposium of A.I. Ch. H. meeting in

8. Poiseuille, J.L., Foggendorff Annalen der Physik

9. Stronquist, W.F., "Effect of Wetting on Heat Transfer Characteristics of Liquid Letals", Ph.D. Thesis, University of Tennessee, March 1953. Also published as ORO - 93, Technical Information Service, U.S. Atomic

10. Tolstoi, D.M., "Molecular Theory of the Slip of Liquids on Solid Surfeces", Doklady Akad. Nauk S.S.S.R.,

11. Tolstoi, D.M., "Slip of Mercury on Glass", Doklady

Y,

1942 - '46 1946 - '48 Lehigh University - Bethlehem, Pa. 1950 - '54 London Matriculation certificate of London University Science Intermediate Lehigh University, B.S. in Chemical