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Abstract 

Three series of replicated creep rupture tests were 

performed on identical copper bicrystal • specimens. The 

failure times were recorded and analyzed. Also a 

detailed error analysis was performed. 

From our error analysis we concluded that the 

experimental error could only account for a smal 1 

-fraction of the. observed scatter in the fai 1 ure times 

when creep cavitation was the dominant -failure mode. The 

two parameter Weibull distribution was found to fit the 

-f ai 1 ure time data for al 1 three test series· well. 

Finall:y the statistical distribution of the cavity areas 

on the fracture surfaces was also found to have a Weibull 

fit. 

1 
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Chapter 1 Introduction 

The process of creep rupture deserves extensive 

study because it is an important -failure mode at high 

temperatures. Energy • conversion devices, for examp,e, 

operate at elevated temperatures for long periods of time 

and are there-fore susceptible to creep rupture. 

Currently there is no accurate method of predicting the , 

creep rupture lifetime. This situation leads to overly 

conservative designs and considerable anxiety about the 

safety of older components. In order to make reliable 

' J 

predict ions of creep f ai 1 ure times, the creep rupture 

process must be better understood. 

The -formation and growth of .cavities along the grain 

boundaries is thought to be the major factor responsible 

for the creep rupture process. Cavities nucleate along 

the • grain boundary, grow, link up to -form cracks and 

eventually lead to fai 1 ure. Researchers studying this 

process have found considerable scatter in the time to 

failure data of uniaxial test specimens tested under 

nominally identical conditions. For instance, the 

results of Lister et al [1] and Rutman, Krause, and 

Kremer [2] has shown an order of magnitude scatter • 1n 

this data. 

Some researchers believe that th is scatter • 
lS 
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entirely due to experimental error. Hayhurst [3] 

performed an error analysis on the experiments carried 

out by Rutman, Kraus, and Kremer [2] and cone 1 uded that 

the scatter in the failure time data could be accounted 

for by the variations in the test parameters. Moreover 

Hayhurst [3] -found that most of the scatter in the 

fai 1 ure time data was could be attributed to loading 

eccentricity. Another body of thought, however, holds 

that · the 

process. 

series o-f 

rupture • intrinsically probabilistic creep lS an 

Garofalo et al [ 4] , for example, conducted a 

well-controlled replicated tests which still 

indicated considerable variations in the time to failure 

data. 

The goal of this research is to experimentally 

quant i-fy the scatter in the creep rupture times. To 

achieve this goal, three groups of eight identical 

specimens were tested at three different stress levels. 

The replication of tests at the same stress level allows 

us to to quantify the scatter in the failure time data . 

Copper bi crystal specimens were used as test • specimens 

because of their extremely simple • grain boundary 

structure. More importantly, the times-to-failure of 

bicrystals are known to be much less sensitive to the 

applied stress than are polycrystal 1 ine • specimens, whose 

failure times depend upon the applied stress according to 

3 
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a Monkman-Grant law. Hence experimental deviations from 

the nominal stress may be expected to have much less 

influence in becrystals than in polycrystals. A detailed 

error analysis was performed to determine how much of the 

scatter in the failure time data was due to experimental 

error. 

4 
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ChapteJr 2 Experimental Design 

2.1 Experimental Apparatus 

The experimental apparatus was designed to provide a 

wel 1 controlled system • 1n which to conduct creep 

experiments. The apparatus consists of four subsystems: 

high temperature furnaces and retorts, temperature 

controllers, load trains and an argon gas delivery system. 

The four Series 3210 split furnaces were built by Applied 

Test Systems (ATS) of Butler, PA .. Two ovens are shown in 

figure 2.1.1. Each oven encloses a stainless steel retort 

and contains nichrome heating elements. The retorts are 

equipped with water cooled seals, and are capable of 

maintaining a controlled gaseous environment. The 

temperature of the ovens is control led by an ATS Series 

3823 proportional controller. A chromel/alumel 

thermocouple positioned in the retort a few millimeters 

from the gauge section of test specimen provides the input 

temperature to the controller. 

oven temperature to within l°C. 

This system controls the 

The load train is designed to apply a dead weight 

uniaxial load to the specimen. The specimen is gripped at 

both ends by miniature commercial tubing fittings. The 

fittings are attached to flexible stainless steel cables. 

The top cable terminates in a threaded rod which screws 

into the top of the oven. The bottom cable is pinned to a 

5 
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Figure 2.1.1 Two ATS ovens 
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pull rod which extends through the bottom of the oven and 

holds the weight pan. 

shown in figure 2.1.2. 

A disassembled weight train • 
lS 

Since the stainless steel cable 

cannot transmit a bending moment to the specimen, the only 

possible source of specimen bending is eccentric loading. 

A toggle switch is positioned below the weight pan. When 

the specimen breaks, the load pan falls on the switch, ., 

breaking a timing circuit and stopping a timing clock. 

To prevent the copper specimen from oxidizing and to 

maintain a chemically inert environment, the retort • 
lS 

filled with argon gas and kept under 0.5 psig of pressure 

during the experiment. 

industrial cylinder. 

The argon gas is supplied from an 

A high pressure regulator reduces 

the pressure of the gas from the cylinders to 40 pounds 

per square inch. Then the argon flows through a molecular 

sieve where water vapor is removed from the gas. Next a 

,, 

low pressure regulator steps the pressure down to a half 

pound per square inch. Finally the flow is split into 

four different paths and routed to each oven. The 

regulators and control valves are mounted on a control 

panel as pictured in figure 2.1.3. 

2.2 Descript"on of the Test Specimens 

The tested were bicrystals made from 99.99% 

pure copper, grown from a melt using the Bridgeman 

technique. Three large bicrystals were fabricated in this 

7 
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Figure 2.1.2 Disassembled weight train 
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Figure 2.1.3 Control panel 
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manner. From each bicrystal, approximately 10 to 13 

tensile specimens were cut using electrical discharge 

machining (EDM) techniques. The specimens had a gauge 

length of 1.5 inches and a gauge diameter of .25 inches . 

The grain boundary was orientated normal to the • specimen 

/,. 
• axis and lay at the mid-section of the • specimen. Three 

groups o-f eight • specimens, each machined -from a separate 

bicrystal, were designated as groups A, Band C and tested 

at different stress levels. The stress levels -for groups 

A, B and C were 6.06 MPa, 2.13 MPa and 3.82 MPa, 

respectively. 

To -further characterize the • specimens, the relative 

orientation of th.e two adjoining crystals • 
1n each 

bicrystal was determined. The amount of misorientation 

between two crystals can be described by a misorieQtation 

matrix [R] . The elements o-f [R] are the direction cosines 

of a coordinate axes aligned along. the [100] axes of one 

crystal (bottom) with respect to a coordinate system 

aligned along the [100] axes of the other crystal (top). 

From the misorientation matrix we may derive the axis and 

angle of a rotation which would bring the two crystals in 

the bicrystal into alignment. 

The back-reflection Laue method [5] was employed to 

determine the orientation of each crystal relative to a 

reference coordinate system. The stereographic 

10 
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projections for each crystal are shown in figures 2.2.1 

through 2.2.6. Following the procedure outlined by Lange 

[6], the misorientation matrix for the bicrystal was 

obtained using the relationship 

[R] [R ] [R ·opJ -1 bottom &"t 

where and are the misorientation 

matrices 

11 
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Figure 2.2.1 Stereographic projection of the top crystal 

in bicrystal A 
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Figure 2.2.2 Stereographic projection or the bottom 

crystal in bicrystal A 
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Figure 2.2.3 Stereographic projection of the top crystal 

in bi'crystal B 

\ 

I 

14 

., 
.. 

. ~ 

t 

\ 
\ 

• 



• 

, . 
.. 

' 

........ 

.. 

.. 
, 

, 

\\ 

Figure 2.2.4 Stere~graphic projection of the bottom 
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Figure 2.2.5 Stereographic projection of the top crystal 

in bicrystal C 
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Figure 2.2.6 Stereographic projection of the bottom 

crystal in bicrystal C 
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between····the top and bottom crystals in the bicrystal and 

a reference set of axes consisting of the beam • axis, and 

axes perpendicular and parallel to the • grain boundary . 

The axis of rotation, defined in the coordinate system of 

the top crystal by the unit vector u, was obtained by 

solving the eigenvector equation, [6] 

( [R] - [I] ) u = 0 . 

Fin~lly the equation 

Tr [R] = 1 + 2cosx 

may be solved for the total rotation angle X, [6]. 

The misorientation of two crystals in a bicrystal can 

also be described by a twist and a tilt angle. Twist and 

tilt angles are derived by splitting the single rotation X 

about the axis u into two rotations about an axis parallel 

and an axis perpendicular to to the grain boundary. The 

angles o-f rotation about these axes are cal led the twist 

and tilt angles respectively. 

and 

Sin 
¢ 
2 

Sin 

~1 

w 
2 

It can be shown that, [6] 

Sin X 
2 

Sino Sin~ 

whe.re ¢ is the twist angle, w is the ti 1 t angle, X is the 

18 
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total rotation angle and o is the angle between u and the 

grain boundary normal. 

Un-fortunately the total rotation angle, as we 11 as 

the twist and tilt angles are not unique. This ambiguity 

• arises because there are 24 different misorientation 

matrices that can describe the same bicrystal. Each 

misorientation matrix has its own value of total rotation 

angle x, rotation vector u, twist angk! ¢, and tilt angle 

w. The. other 23 rotation matrices, can be 

calculated from the equation 

[R . ] ' = [P . ] [R] 
1 1 

where [P.J is a symmetry operation in matrix form and [RJ· 
1 

is the original misorientation matrix. In the case of a 

cubic crystal there are three axes with four-fold 

symmetry, four axes with three-fold symmetry and • six axes 

with two-fold symmetry, [7] . The four-fold axes are 

coincident with the crystal coordinate axes. Since there 

are three symmetry operations about each • axis 

corresponding to a rotation angles of 90 degrees, 180 

degrees and 270 degrees, the four-fa ld axes contribute 

nine rotation matrices. Similarly the three-fold axes, 

which are coincident with the body diagnals of a cubic 

crystal, each contribute two [RJ' matrices corresponding 

to rotation angles o-f 120 degrees and 240 degrees about 

each • axis. Finally the two-fold axes( located about the 

19 ... ' 
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six face diagnals of the cubic crystal contribute one new 

matrix each corresponding to a rotation of 180 degrees. 

Thus we have the original rotation matrix plus 23 

degenerate martices calculated • using the symmetry 

operations described above. Tables 2.2.1 through 2.2.6 

show the 24 values of the total rotation angle and axis 

and the twist and tilt angle for each crystal. 

(. 

20 
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X 

"' 75.52 3.92 5.95 

119.14 1.39 13.50 

91.38 158.11 90.05 

104.60 113.54 71.25 

68.19 50.14 17.40 

110.36 -156.55 0.00 

180.00 80.95 107.81 

118.95 2.54 24.71 

155.92 5.67 66.04 

180.00 30.19 124.69 

101. 71 29.65 61.18 

158.10 -13. 77 -57.14 

143.13 73.46 32.75 

180.00 34.00 124.11 

75.74 6.69 18.29 

152.99 10.69 125.63 

180.00 3.59 126. 72 

127.21 4.73 88.70 

139.05 11.07 46.01 

95.80 -14.75 -87. 77 

113.08 -0.17 -1.04 

150.34 -12.91 -22.60 

115.94 103.73 152.52 

119.97 -20.50 -26. 77 

Table 2.2.1 Total rotation angle X, twist angle <P and tilt angle w in degrees for 

specimen A 

21 



Ux Uy Uz 

0.987 0.161 0.019 

-0.674 -0.166 0.720 

-0.415 0.872 0.261 

0.703 0.202 0.682 

0.365 0.526 0.768 

0.381 0.853 0.357 
• 

0.200 -0.093 0.975 

0.335 -0.458 0.824 
~~i 

-0.034 -0.507 0.861 

-0.161 -0.508 0.846 

0.531 -0.819 0.219 

0.318 -0.34 7 0.882 

0.681 0.409 0.607 
' 

-0.352 -0.431 0.831 

0.648 -0. 754 0.110 

0.270 -0.491 0.828 

-0.618 -0.121 0.777 

0.011 -0.494 0.870 

-0.658 0.197 0.727 

-0.853 0.516 0.076 

-0. 799 0.294 0.525 

0.608 -0.117 0.785 

-0.191 -0.180 0.965 

0.320 -0.931 0.176 

Table 2.2.2 Components of rotation axis vector u for specimen A 

22 
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X 

"' 
w 

91.72 140.52 53.37 

94.79 -10.90 -29.13 

84.20 -82.58 -132.11 

144.14 20.79 3.71 

76.88 17.87 83.32 

104.60 94.15 98.30 

180.00 124.14 33.80 

123.30 -122.53 -76.11 

148.65 -13.14 -122.60 

180.00 54.06 119.59 

69.86 -2.06 -42.89 

161.30 -59.16 -107.65 

147.08 -147.08 -7.41 

180.00 9.75 126.54 

77.49 94.07 85.69 

141.40 171.00 158.68 

180.00 91.68 99.93 

141.95 60.94 141.07 

136.54 -77.95 -62.35 

113.20 3.71 4.83 

102.86 100.52 103.20 

152.07 38.65 62.98 

121.13 -8.55 -100.05 

103.65 174.95 151.16 

Table 2.2.3 Total rotation angle X, twist angle <f, and tilt angle w in degrees for 

specimen B 

• 
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Ux Uy Uz 

0.847 0.423 0.322 

-0.122 -0.613 0.780 
r-"{, ., 

-0.057 0.993 0.106 

0.525 0.395 0.754 

0.221 -0.913 0.343 
' "' 0.142 0.945 0.294 

0.497 -0.032 0.867 

0.205 -0.288 0.936 

-0.621 -0.480 0.620 

-0.357 -0.456 0.815 
~ -0.442 -0.701 0.559 

-0.265 -0.458 0.849 

0.585 0.328 0.742 

-0.542 -0.4 76 0.693 

0.835 -0.478 0.271 

-0.255 -0.669 0.698 

-0.275 -0.039 0.961 

-0.262 -0.670 0.694 

0.434 -0.4 79 0.763 

0.612 -0.614 · 0.498 

-0.962 0.269 0.045 

0.044 -0.589 0.807 

-0.695 -0.059 0.716 

-0.181 -0.973 0.141 

Table 2.2.4 Components of rotation axis vector u for specimen B 

24 
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X <I> w 

90.14 41.84 120.56 

137.94 -11.39 -11. 73 

87.45 -14.86 -25.56 

100.40 -4.02 -6.42 

157.74 -17.59 -33.89 

175.95 0.56 0.91 

180.00 99.59 92.07 

180.00 117.65 60.08 

94.56 -6.48 -16.69 

64.25 76.90 27.87 

107.54 -23.27 -34.72 

117.21 89.16 98.28 

99.64 -16.00 -48. 76 

91.68 144.95 39.30 

180.00 90.05 101.30 

100.97 17.07 18.66 

144.87 -15.99 -12. 77 

83.09 -32.12 -75.23 

136.17 -101.14 -71.90 

117.42 104.65 · .. 48.79 

126.41 22.89 36.09 

118.91 17.14 20.56 

106. 71 1.49 5.87 

75.37 -0.56 -1.23 

Table 2.25 Total rotation angle x, twist angle ¢ and tilt angle w in degrees for 

specimen C ·· 

25. 



Ux Uy Uz 

0.004 0.975 0.222 

0.095 0.675 0.731 

0.942 0.327 0.076 

-0.297 -0.596 0.746 

-0.428 -0.545 0.721 

-0.454 -0.356 0.817 

-0.413 0.249 0.876 

-0.079 0.230 0.970 

-0.941 0.329 0.076 

0.738 -0.105 0.666 

0.371 0.828 0.419 

0.987 -0.138 0.079 
., 

-0. 713 · 0.113 0.692 

0.361 0.343 0.867 

-0.074 -0. 796 0.601 

0.466 0.719 0.515 
,I 

-0.175 0.201 0.964 

-0.685 0.002 0.728 

-0.115 0.466 0.877 

-0.001 -0.226 0.974 

0.116 -0.843 0.525 

-0.248 0.485 0.839 

-0.805 0.579 0.134 

0.540 0.820 0.190 

Table 2.2.6 Components of rotation axis vector u for specimen C 
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Since each degenerat_e rotation matrix has its own 

value -for u, x, </J and w, there is some ambiguity about 

which rotation matrix should be chosen to represent the 

bi crystal. Lange [6] proposes that the rotation mart ix 

that produces the lowest total rotation angle x be 

chosen. Following this convention the resultant angles 

for each bicrystal are presented in tables 2.2.7 and 

2.2.8. Table 2.2.7 shows the rotation, twist and tilt 

angles for each bicrystal, while Table 2.2.8 shows the 

components of rotation • ax1 s vector u in the 

coordinate system -for each bicrystal. 

Bicryst.al 

A 

B 

C 

Total Rotation 
Angle x 

in Degrees 

68.2 

69.9 

64.25 

Twist 
Angle <jJ 

in Degrees 

50.1. 

-2.1 

76.9 

re-ference 

Ti 1 t 
Angle w 

in Degrees 

7.4 

-42.9 

27'. 9 

Table 2.2.7 Final total rotation,twist and tilt angles 
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Bi crystal 
X 

Rotation axis vector u 
t y t z nt componen componen compone 

A .99 .16 .02 

B -.44 -.70 .56 

C .74 -.17 .67 

Table 2.2.8 Final rotation axis vectors 

I~ 
V 



Chapter 3 Error Estimates 

Three sources of experimental uncertainty which 

could lead to scatter in the fai 1 ure time data were 

considered. They were the uncertainty in the applied 

stress, the uncertainty in the temperature, and the 

effects o-f eccentric loading. In this chapter the error 

in the -fai 1 ure time data caused by these three sources 

will be estimated. 

3.1 Uncertainty in -failure time due to uncertainty in the 

applied stress 

The principal contributors to the total load are_the 

applied load, the load due to the pressure o-f t~e argon 

gas in the bellows and the load due to the weight o-f the 

cooling water in the cooling fixture on the lower pull 

rod. Each of these loads has a nomin"al value and an 

uncertainty associated with it. The uncertainty in the 

applied load was estimated to be 0.5 newtons. The 

uncertainty in the argon pressure load was estimated at 

.32 newtons and the uncertainty in the cooling water load 

was estimated at .04 newtons. Assuming that the 

uncertainties have a normal (Gaussian) distribution, they 

may be added in quadrature, [8], to obtain 

n 
E 

i=l 

29 
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where 

6t = total uncertainty 

6i - contributions to the total uncertainty 

This yields a total uncertainty of .60 newtons. 

a nominal cross-sectional area o-f 7.94 

Assuming 

mm 2 

' 
the 

uncertainty in the applied load causes an uncertainty • in 

the applied stress of .075 MPa. 

Variations in the diameter of the specimen also 

contribute to the uncertainty in the applied stress. 

From ·direct measurement, the variation of the • specimen 

diameter was determined to be 2.54 X mm . This 

caused an uncertainty in the area of . 127 mm 2 • The 

resulting uncertainty in the applied stress • • is given 

by, [8] 

6u 6A 

where 

6u = unc~rtainty in the stress 

P the nominal total applied load 

A nominal area of the specimen 

6A = uncertainty in the area 

. ., 

The total uncertainty in the applied stress was found by 

combining in quadrature the uncertainty in the stress due 
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to the uncertainty • 
1n the applied load and the 

uncertainty in the stress due to variation in the 

specimen's diameter. 

To evaluate the uncertainty in the failure times due 

to the uncertainty in the stress, the following empirical 

relati·onship was employed 

where 

u = the applied stress 

tf = failure time 

K,n = constants 

For the high stress experiment, group A, the constants K 

and n were determined by writing the the above equation 

in the form 

nLn(u)+Ln(K) 

where 

mean failure time of the • specimens 

tested at each stress level 

and then performing a least squares fit utilizing the 

data from all three specimen groups. The results of this 

analysis were n=l.70 and K=6.97x10 3 (MPa)n Hrs. The 

constants for the two lower stress experiments, groups B 

and C, were found using only the stress and mean failure 
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time data for these two groups. This analysis yielded 

the values n=l.56 and K=5.94 x 103 (MPa)n Hrs. The 

uncertainty in the failure times can then be calculated 

from 

where 

-n K 
(n+l) 

(T 

6u 

8tf = uncertainty in the failure time 

8u = uncertainty in the applied stress 

Table 3.1.1 displays the total uncertainty in the 

applied stress and the resultini uncertainty in the 

failure time for each specimen group. 

• stress fai 1 ure specimen 
group uncertainty time 

(MPa) error (hrs) 

A .123 11.3 
I 

B .087 116.7 

C .097 29.2 
. 

Table 3.1.1 Error • 
1n fai 1 ure time err""or due to 

uncertainty in the applied stress 

3.2 Uncertainty in failure time due to variations • 
lil 

temperature 

The uncertainty in the temperature was estimated to 
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be +1°C. - This figure is based on the claims of the 

manufacturer and measurements made during operation. The 

uncertainty in the failure times due to the variation in 

temperature was calculated assuming an Arhenius-type 

dependance of failure time upon temperature • 
1 • e . , 

where 

t f f(u) exp 

tf = failure time 

CJ 
RT 

f(u) = function of the applied stress 

Q activation energy 

R universal gas constant 

T temperature 

Differentiating to find the uncertainty in the failure 

times yields the equation, 

and rearranging 

where 

f(u)Q 

RT2 
exp CJ 

RT 

Q 6T 
RT T 

6T 

6T the uncertainty in the temperature 
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Substituting in the values, 

Q 47.12 Kcal/mol 

R .001987 Kcal/mol K 

T 875. 15° K 

6T = 1 ° K 

reduces the equation to, 

Therefore the uncertainty in the failure times for groups 

A, 8 and C due to the uncertainty in the temperature are 

10.4 hrs, 56.7 hrs and 22.7 hrs respectively. 

3.3 Uncertainty in failure times due to eccentric loading 

Eccentric load'ing occurs when the resultant of the 

·._, 

load P is not applied along the axis of the cylindrical 

• -spec 1men. The distance between the point of application 

of the resultant load and the center o-f the • spe~.1men • 
lS 

called 8. Eccentric loading produces a bending moment o-f 

magnitude Pb and hence produces a non-uniform stress 

distribution over the specimen cross-section. In order 

to estimate the effect of the eccentric loading on the 

failure times, a non-linear analysis was performed to 

calculate the resulting stress distribution. 

The non-linear analysis begins by assuming power law 

behavior • • 1n creep 1.e., 

• 
f = (1) 
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where 
I; ~ 

i = strain rate 

C = constant 

u stress 

u stress rate 

n constant 

E ·- Young's modulus 

We assume that the total axial strain rate is the sum of 

a uniform axial component plus a linearly varying bending 

strain. 

( ca + K(t)y (2) 

where 

f = total axial strain 

fa= uniform axial strain 

K(t) = time varying curvature 

qP 

y = distance from the centerline 

Differentiating with respect to time, we obtain 

• 
f (3) 

We now assume steady-state conditions which imply that 

• 
u=O and fa and K are constants. Then, equating equation 

(1) with equation (3) and solving for u with the 
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assumption u> O, yields 

u -
ia + Ky A 

C 
(4) 

From simple considerations o-f mechanical equilibrium, 

and 

Substituting yields 

and 

p 

-P6 

p JA udA 

fa + K(t)y ~ dA 
C 

(5) 

(6) 

(8) 

To calculate these integrals over a circular cross­

section of radius ·a ,dA is replaced by 

dA = 2 ~ a 2 - y 2 dy (9) 

.. Substituting equation (9) into equations (7) and (8) and 

. rearranging yields 
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(10) 

and 

J_: (11) 

Non-dimensionalizing (10) and (11) by letting p r leads 

to the equations 

J 
1 . . . 1 

-l (ea+ Kap)n p ~1 - p2 dp 

and 

J 
1 . 1 

-1 (la + Kap )n ~ 1 - p2 dp 
1 

P en c12) 
2a2 

Equations (11) and (12) constitute two non-linear 

equations of the form 

F(ta ,K) 0 (13) 

and 

G(ia ,K) = 0 (14) 

Values -for • 
ta 

. . 
and K are, obtained by applying Newton's 

method to equations (13) and (14) and using six-point 

Gaussian integration to evaluate the required integrals . 

• 
The starting values o-f and K -for this iterative 
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• 
process were taken to be the values of • fa and K with no 

eccentric loading; • 
1 • e • , 

• 
K 0 

and 

C n 

For the load train used in the labratory the loading 

eccentricity was estimated to be 2.5% o-f the • specimen 

radius with an uncertainty of another 2.5% of the 

• specimen 0radius. Hence a maximum eccentricity of 5.0% 

was used for this analysis. The values for n and C were 

taken to be 4.8 and 5.83x1o-41sec- 1 (Pa)-n respectively 

[9] . 
( 

\, 
Once'-- values 

substituted into 

• 
for K and 

equation 

are found, they may be 

(4) to find the stress 

distribution. The additional stress due to the 

ec(cyntric loading can then be conservatively estimated by 
\.... . . 

subtracting the maximum stress at the outer edge of the 

specimen from the nominal stress. This additional stress 

is then treated as 

and the uncertainty 

an 

• 
1n 

uncertainty in the applied stress, 

the failure times due to eccentric 

loading may be calculated the same way as the uncertainty 

in the failure times due to the other uncertainties • 
1n 

applied stress were calculated. 

results of the Newton's method, 
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additional stress in the specimen -for each stress level 

and the resulting uncertainty in the time to -failure 

data. 

Specimen Stress Kx10-5 . 10-8 
faX Add. Stress 6tf 

Group (MPa) (s-1m-1) (s-1) (MPa) (Hrs.) 

A 6.06 -1.18 2.25 0.92 84.1 

B 2.13 -7.90 0.015 0.33 442.8 

C 3.82 -1.28 0.245 0.58 174.5 

I . 

Table 3.3.1 Results of eccentric loading analysis 

Since the uncertainty in the eccentricity is only 2.5% 

o-f the • specimen radius, the uncertainty in the failure 

times due to eccentric loading is only half the value 

that appears in table 3.3.1. Summing in quadrature the 

fai 1 ure time error con tr i but ions from the three sources 

of experimental uncertainty considered yields the final 

results, which are summarized in table 3.3.2. 
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• stress -fai 1 ure specimen 
group level time 

(MPa) error (hrs) 
,·' 

A 6.06 44.8 

B 2 .13 229.1 

C 3.82 94.8 

I 
I 

Table 3.3.2 Error analysis results 
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Chapter 4 Results 

Failure time data, Weibull plots of the failure time 

data, represenat i ve mi crographs of the -fracture surface 

and a Weibull plot o-f the area o-f the creep cavities will 

be presented in this chapter. 

4.1 Failure times 

'•· -•' 

Tables 4.1.1 through 4.1.3 show the applied stress 

and the -fai 1 ure time o-f each specimen tested to date. As 

no·ted previously al 1 specimens were tested at 600 °C. 

Specimen Stress Failure 
(MPa) Time (hrs) 

Al 6.06 300.2 

A2 6.06-~ 313.0 

A3 6.06 357.1 

A4 6.06 359.8 

A5 6.06 194.6 

A6 6.06 326.4 

A7 6.06 331.4 

AS 6.06 358.1 

Table 4.1.1 Failure times for specimen group A 
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Specimen Stress Failure 
(MPa) Time (hrs) 

Bl 2.13 2230.5 

B2 2.13 836.2 

B3 2.13 2058.0 

B4 2.13 2013.5 

B5 2.13 1195.6 

B6 2.13 1235.6 

B7 2.13 3241.5 

Table 4.1.2 Failure times for specimen group B 

Specimen Stress Failure 
(MPa) Time (hrs) 

Cl 3.82 586.9 

C2 3.82 172.6 

C3 3.82 1203.3 

C4 3.82 258.8 

C5 3.82 630.6 

C6 3.82 1078. 7 

C7 3.82 1157.9 

cs 3.82 770.7 

Table 4.1.3 Failure times for specimen group C 

42 



.. - - l 

4.2 Weibull analysis 

Figure 4.2.1 shows failure time for each test • series 

plotted on Weibull paper. It can be seen that the two 

paramater Weibull distribution offers a reasonably good 

-fit to the distribution of failure times. Also shown • 
lS 

the • maximum likelyhood estimation (MLE) fit to each test 

series, [10]. 

the -form 

The two-parameter Weibull distribution has 

F(x) 1 - exp -Ct)P 

The Wei bu 11 parameters obtained from the MLE -fit to each 

series are presented in table 4.4.1. 

Specimen 

Group 

A 

B ~ 

C 

f3 

(units) 

336.3 

2249.3 

855.5 

p 

(units) 

9.67 

2.87 

2.21 

Table 4.4.1 Weibull Parameters for each test series 
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4.3 Fracture surfaces 

After failure, the fractured surface of each specimen 

was examined • using an ETEC Autoscan scanning electron 

• microscope. Micrographs with • scanning produced the 

electron • microscope insights yield interesting into the 

failure mechanisms. Figure 4.3.1 shows the -fracture 

surface of specimen of A3. Here we observed a fairly 

large ductle fai.lure region extending over about one half 

of the specimen, with the remainder of the surface covered 

with creep cavities. This pattern is common to the 

specimens tested at the highest stress level. In sharp 

contrast, the specimen tested at the 1 owe st stress leve 1 

were found to have large cavitated areas and a r~latively 

smal 1 The fracture surface ductle failure • regions. • in 

figure 4.3.2 illustrates this point. 

The creep cavities on the fracture sru-face c,f each 

• specimen differed and shape from • specimen to • In • size 

specimen and from area to area on a fracture surface. 

Figures 4.3.3 through 4.3.5 show some represenative creep 

cavities. 
\., 

'·-
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Figure 4.3.1 Fracture surface of specimen A3 
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Figure 4.3.2 surface of 87 • specimen Fracture 
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Figure 4.3.3 creep cavities from specimen B1 
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Figure 4.3.4 Creep cavities from specimen Bl 
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Figure 4.3.5 Creep cavities from specimen Cl 
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4.4 Image analysis 

A number of micrographs similar to figures 4.3.3 

through 4. 3. 5 were analyzed at the National Bereau of 

Standards in Washington D.C .. An image an~lysis was 

performed using a Bausch and Lomb Omnicon. Since the 

Omnicon could not distinguish the cavity edges on the 

original micrographs, acetate tracings of the micrographs 

were analyzed. The area of each cavity was determined and 

a Weibull plot of the area was produced for each 

micrograph analyzed. Figure 4.4.1 shows a typical Weibull 

plot. 
\ .• ! 

"'·· ., 
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Chapter 5 Conclusions 

. 
The most important conclusion that can be drawn from 

these experiments • 
lS that creep rupture, caused by 

intergranular cavitation, contains a substantial 

stochastic component. This is easily seen in the large 

scatter in the fai 1 ure time data for groups B and C. 

Group B had a meah failure time of 1,830 hrs. with a high 

an~)low failure times of 3,241 hrs. and 836 hrs. Group C 

had a mean -failure time of 732 hrs. with high and low 

failure times o-f 1203 hrs. and 173 hrs. The experimental 

error, as calculated in chapter 3, for specimen groups B 

and C is ±229 hrs and ±95 hrs., respectively. By 

c.ompar i ng the high and low -f ai 1 ure times with the 

estimated experimental error it is obvious that the 

experimental error accounts for only a small -fraction of 

the observed scatter in the failure times -for groups Band 

" 
C. Therefore almost all of the scatter in the data must 

be vattr i buted to the stochastic component of the 

intergranular creep rupture process. 
i 
\ ' 

Specimen group A, on the other hand, showed much less 

scatter. Its mean failure time was 335 hrs. with a high 

and low times of 195 hrs. and 360 hrs. The experimental 

error, in this case ±45 hrs., covers almost all o-f the 

scatter in the failure time data. The absence of 

stochastic behavior in the failure times in this test 
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series can be attributed to the predominantly ductle-

rupture fai 1 ure mode observed • • 1 n spec 1mens in group A. 

The dominance of the ductle-rupture failure mode, an 

essentially deterministic failure mode, is illustrated • 1n 

the micrographs of the fracture surfaces of group A 

• specimens. From these results we conclude that the 

probabilistic feature of the creep rupture process will 

only be seen in experiments in wich creep cavitation • is 

the dominant failure mode. 

This research has also shown that the two parameter 

Weibull distribution fits the failure ·~. time data for al 1 

three tes-t series well. It is also very interesting to 

note that the scatter in the two test series at the lower 

stress levels, as measured by the slope of the Weibull fit 

are appro~imately the same. 

Finally the statistical distribution of the cavity 

areas on the fracture surface was al so -found to have a 

Weibull -fit. This result is in qualitative agreement with 

analytic results obtained by Fariborz, Harlow and Delph 

[11] . 
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