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Some Electrical and Material 

Characteristics of Fluorine Implanted 

Metal-Oxide-Semiconductor Capacitors 

by 

Charles L.A. Cerny 

l 

Abstract 

A fundamental experiment pertaining to the effects of implanted fluorine 

on MOS capacitors. Background information concerning the fundamental theory 

and application of MOS capacitors related to fluorine implantation is 

duscussed. All phases of the experiment are described and the results are 

presented. Experimental conclusions and comments are included. Some future 

directions of this experiment are discussed1 
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Chapter 1 
Introduction 

\. 

) 

J 

In this chapter, a basic understanding behind metal-oxide-semiconductor 

(MOS) capacitor research is presented in combination with the use of the element 

flu~rine as an implanted species. S.ome of the how's and why's as to the nature of 

the fluorine within the MOS devices are given and are tied to some of the· curre1t-t"'. 

research being carried~on here at Lehigh University. An explanation of the thesis 

experiment and its relationship to the above mentioned t'opics is covered in an 
f ,, 

attempt to clearly define the problem(s) to be attacked. 

1.1 Importance of MOS Capacitor Research 

Many of today's microelectronic circuits and components utilize the MOS 

capacitor as their building block. For example, charged-coupled array devices 

( CC D's), and metal-oxide-semiconductor field-effect-transistors (MOSFET's ), rely 

essentially on the response of an MOS capacitor to a variety of applied gate 

bi~ses, ( commonly considered to be a gated structure, discussed in detail in 

Chapter 2) and act primarily in the controlling of charge and current flow within 
~-- I 

a particular device. With such a powerful capability at its fingertips by structural 

design, it becomes necessary to more fully understand the MOS capacitor by 

imposing slight alterations within the device and researching the changes that 

occurred during the experimentation. 
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For this reason, much effort within the area of applied solid state research 

is concentrated on the MOS capacitor as a test element. Although the structure 

may appear quite simple, unlocking all of its secrets is a true challenge for the 

device engineer. In addition, the proper utilization of the MOS capacitor takes on 

a vital role in fundamental research and circuit design. 

1.2 Fluorine Implantation Measurements and Studies 

As stated previously, the alteration of the MOS structure from its norm is 

a basic experimental practise used for procurring fundamental knowledge in order 

to improve upon existing device designs. With the advent of specialty implants, 
' \ 

many different elements and various compounds have been tried in hopes of 

gaining information about the Si/Si02 layers, or tq achieve a special effect. Alot 

of emphasis has been directed towards halogen implantation studies( 1 ,2 ), and 

although chlorine was the frontrunning halogen earlier on, recently fluorine seem.~ 

to be the Group VIIA element receiving more attention with regards to 

implantation into silicon and silicon-based devices. 

Studies of implanted fluorine have occurred on various levels for different 

reasons in order to gain pertainent knowledge of this element's capabilities. 

Fluorine has been implanted into the insulator-substrate structure(i,3 ), and then 
I 
\ 

turned into a device, as well as being implanted through the entire MOS capacitor 

to observe the gate dielectric effect( 4 ). Both Si-bulk(s,6 ) and Si/Si02 

interface(7-lO) studies with fluorine have been successfully carried out and provide 

useful information about this element and its potential use in microelectronic 

fabrication. It has been shown(io-12>, that during the growth of oxides on Si-

3 
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wafers, diffused and implanted fluorine can alter the oxidation rate and also 

reduce oxidation-induced stacking faults< 2 ,9> (OISF's). Fluorine is slowly earning 

a place among one of the unique atoms to be considered for novel device design, 

and the processing of silicon-bas~cl.· technology. This will be described in greater 

detail in Chapter 2. 

1.3 Fluorine-Ion Studies 

Of course, once implanted in the silicon structure, the question arises 

about electrical activation of fluorine, and the possibility of mobile F- ions within 

an MOS device. Once again, many bulk(s,G) and device-based(i,3 ,4 ,7 ,a) studies 

have been carried out in order to answer this question concerning fluorine after it 

enters the Si/Si02 system. Some investigate the trapped interface charge, while 

others compare fluorine with alkali mobile ions such as sodium (Na+) and 

potassium (K+), . but obviously with a different charge nature state its ionic 

character is negative, representative of the halogen group elements. 

Hydrofluoric acid (HF) is ~ widely used etchant in silicon processing. 

Fluorine residue could be left behind if it dissociates from hydrogen and thus 

leaving F-. If this occurs( 7 ), then the studies of implanted fluorine important. 

Moreover, the ionic radius of fluorine is less than silicon's and this is not the case 

with ionic chlorine. This suggests that the mobility of fluorine within silicon-based 

lattice structures is significant and well worth investigation because ionic 

elements, mobile or fixed, have always played a major role in the fundamental 

research of MOS systems. 
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1.4 Purpose of the Experiment 
G 

/ 

This experiment ·has been designed to provide information concerning · 

implanted fluorine within the simple test structure of an MOS capacitor by way of 

fundamental capacitance versus voltage ( C-V) measurements. The study of 

fluorine in sitcon has been of some interest to the researchers at The Sherman 

Fairchild Solid s-QLaboratory at Lehigh University, and the element's effect on 

the MOS structure by means of ion-implantation, may produce some results not 

yet determined ),y this lab's previous work. It can be stated that this· thesis 

project has been constructed to challenge a current topic of MOS device research, 

while providing the student with complete hands-on processing from start to 

finish. The comparison of unimplanted samples to implanted ones is used for this 

work and is an effective technique to draw conclusions as to the effect fluorine has 

when it exists in the midst of the Metal/Si02 /Si structure. 

• 
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Chapter 2 
Theory .and Background ; , I 

This chapter is broken into three areas of information in order to more 

fully understand the experiment itself as described within Chapter 3. First the 

general low frequency and high frequency MOS capacitor theory is explained by 

way of energy band diagrams, ideal C-V curves, and equivalent circuit models. 

Second a fundament~l definition of ion implantation and ion implantation systems 

is presented as a means to expose Ce';~ader to the central experim;ntal tool used 

in this thesis project. Third a discussion of fluorine as both an element and an ion 

and its relative importance to ion implanted MOS devices. The background 

material is essentially focused towards a specific problem tackled in MOS 

capacitive research, and should more clearly define the direction of the experiment 

which was carried out in this thesis. 

2.1 Frequency Response of MOS Capacitors 

The basic configuration of an MOS capacitor is shown in Figure 1 and by 

design is just a sandwich of different materials between two metal plates. This 

fabrication process is carried out in general, by thermally growing an oxide on top 

of an n or p-type silicon substrate, which is then metallized front and back, 

usually with aluminum, to form both gate and substrate contacts on the device 

structure. The details of this procedure in conjunction with the remainder of the 

I 
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thesis experiment are clearly laid out in Chapter 3, and will be taken up again at 

that time. Now that the device is completed, it becomes important to understand 

its behavior as a test element. 

\ 

PAetal ---------~ 

Insulator ----1•~ 
(oxide) 

Semiconductor ----·~ (silicon) 

Ohmic 

Contact 
.... 

., 

X 

Figure 1. MOS Capacitor's Fundamental Structure(l3) 

The most fundamental means in which one can determine both the charge 

storage capabilities and the charge response or activity within the MOS capacitor 

is by the use of an AC/DC coupled system. A ramped DC voltage is applied to 

the gate of the device while a small amplitude AC signal of constant frequency 

superimposed. The ramp voltage is needed to create a varying electi;ic field within 
' 

the MOS system and the AC signal is an indicator of the response Ji the electrical 

carriers under the applied b-field. The capacitance of the test structure can then 

7 

.. 

! (, 



r ·, 

I 

I 

be determined for a given AC frequency. 

It becomes obvious that the capacitive response is mostly dependent upon 

the AC frequency and complete testing must occur at both high and low AC 

frequencies. Two levels of frequency measurement have been set by industrial 
I 

research as a way to fully comprehend the capacitor's performance capabilities. 

Low frequency ( ~ 10 Hz), allows the observer to determine whether or not the 

surface can be inverted to a capacitance level of the oxide, while at high frequency 

(::::: 1 MHz), the minority carriers cannot respond to the rapid AC signal and 

therefore do not contribute to the measured capacitance. Each one of these 

particular cases will now be explained by the use of device Physics applied to 

MOS capacitors. 

Finally before formally addressing the frequency analysis, two capacitances 

should be defined for the MOS system. The first is known as the static 

capacitance given as 

C STAT ( 2 - 1 ) 

where QT is the total charge density on the capacit-or, all that con1es between the 

two metal plates as viewed in Figure 1, and VG is the gate bias applied to it. The 

second type is named the differential capacitance defined as 

C 
d QT 
d V . 

G 

• 

( 2 - 2) 

It should be noted that these two capacitances will not be alike since the charge 

8 
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on the MOS capacitive structure can vary nonlinearly with voltage. For this 

reason, the differential capacitance plays a more important role in MOS capacitor 

measurements because the small-signal data truly determines the rate of charge 

change with respect to the gate voltage. On this premise, both the ideal C-V 

curves and the expressions for the small-signal differential capacitance of the MOS 

structure can be derived. 

2.1.1 Ideal Small-Signal Equivalent Circuit 

In deriving an accurate small-signal equivalent circuit for an MOS 

capacitor, it becomes important to separate those terms which are time-dependent 

\, 

with regards to the AC signal and those which are not time-independent. 

Therefore, two simple analyses are required in order to determine all the 

components needed for complete modeling is the ideal case. It essentially stems 

from the differential capacitance and can be calculated from the non-equilibrium 

and equilibrium conditions of Gauss' law applied to the charge in the silicon and 

the field within the oxide. The result is the total capacitance inside the MOS 

'r., 

structure consisting of both a bias dependent component element and a non-bias 

dependent component element. 

First begin with a definition of the differential capacitance relating the 

silicon surface charge density, Q5 , to the small-signal AC gate bias, VG' or 

C ( 2 - 3) 

. As·· one will notice, ~ 's are used to indicate the affectation brought about by 
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small amplitude time-varying voltage. This formula can be further subdivided 

into the product of two Ll-expressions as follows, 

C ( 2 - 4 ) 

where w5 is the silicon band bending surface potential established by VG· Of 

( these expressions, it should be clear that - ~ Q5 / Ll '115 is time-dependent since 

the change in the surface potential is directly affected by variations in the gate 

voltage which in turn affects the rate of change of charge. This indirect 

relationship possesses the common link of time which is suppplied by the AC 

signal. On the other hand, d w5 / d VG are in direct relation to each other 

because it is one voltage creating another and the need for time dependence is not 

necessary. 

Bearing this in mind, consider a time-dependent equation of Gauss' law 

which now relates the charge per unit area in the silicon to the field in the oxide 

such that, 

( 2 - 5a) 

.. 

and Cox is known as the oxide capacitance which will be defined explicitly in a 

later section, and the voltage difference betweeri V G(t) and w5 (t) is the voltage 

across the oxide. By employing a d-variation to each time dependent term, that 

is to say for example, the Ll corresponds to a small AC voltage on the gate bias, 

10 
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VG (t) =VG+aVG{t) • ( 2 - 6a) 

The same can be applied to both the band-bending, '1i5{t), and the surface charge 

density, Q5 ( t ), in the silicon. It can be shown (l4 ) that in the small-signal regime 

a first term Taylor series expansion may be utilized . to equilibrate the silicon 

surface charge density to the capacitance per unit area in the silicon, C5 ('1i5 ), as 

the following ~-expression, 

( 2 - 7) 

The result is a bias dependent capacitance affected by a time varying input signal. 

Now consider the other case in which formula (2-5a) is modified slightly to 

what can be called an equilibrium or a no AC excitation condition is then written 

as, 

( 2 - 5b ) 

If the ~ substitutions are employed again into {2-5a), but in an equilibrium state 

(time-independent), that is to say, that equation (2-6a) would be altered to look 

like 

( 2 - 6b ) 

11 
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which contains no time dependence for its approximation as prescribed. A new ~-
,. 

expression can now be derived(l4) by making all the necessary changes in (2-5a) 

to follow su~t as in (2-6b) and along with the remainder of the analysis previously 

described. By subtracting (2-5b) from the new-found version of (2-5a) one can 

· arrive at 

( 2 - 8) 

· which is the equilibrium ~ relation needed to complete the model. 

Realizing that formula (2-4) can now be redefined in terms of two 

capacitances, it is rewritten as 

C 
C5('1i5) Cox 

Cox + C5 (w5) . 
( 2 - 4) 

This however, is just the formula for two capacitors in series and the inverse of 

the total capacitance is just the sum of the its individual inverses or, 

1 
C 

( 2 - 9 ) 

This simple circuit makes up the ideal MOS capacitor model and is depicted in 

Figure 2. Due to its bias dependent nature, C5 (w5 ), is shown as a variable 

capacitor. The ideal MOS capacitor circuit is now investigated at both low and 

high AC frequencies and its capacitive response is plotted against. a DC ramped 

voltage applied at the gate for a greater understanding of the charge nature 

12 
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associated with the device. 

'I·, 

Gate 

c, 
SIiicon 

Figure 2. MOS Capacitor's Small-Signal Equivalent Circuit{lS) 

2.1.2 MOS Capacitors at Low Frequencies 

As stated earlier, previous workers have used 10 Hz for the low frequency 

electrical characterization. There are three conditions associated with the low 

frequency C-V in response to the gate voltage sweep. They are: 1) accumulation, 

2) depletion, and 3) inversion. They can be understood as a function of gate bias, 

formulas related to the theory for the device, and MOS energy band diagrams 

which depicts the electrical carrier distributions at selected points during the 

sweep. The theory is compared to the experiment for the case of a p-type silicon 

in Chapter 3. 

First consider the MOS capacitor having a negative DC voltage applied to 

its gate. The negative bias implies that the semi~onductor surface potential, w5 , 

is also negative. This tends to attract holes ( majority carriers) within the silicon 

• 

f 
I) 
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substrate (p-type) to its surfac.e. If the hole population is great enough at the 

Si/Si02 interface; that is, if the hole density at the Si-surface exceeds the Si-bulk 

hole density by a sizeable amount, one can then say that the MOS capacitor is in 

an accumulated state. Considering the limiting case of the total capacitance 

formula (2-4), the gross density of holes at the substrate surface produces a large 

.. 
differential capacitance; thus Cs can be thought of as being much greater than 

.. ~v 

Cox (Cs :>Cox) and the capacitance per unit area in accumulation is just that of 

the oxide capacitance or, 

Caecum. Cox 
fox 
Xox · ( 2 - 10 ) 

In this formula, fox is known as the permittivity of the oxide so for Si02 , fox is 

3.9 times that of the permittivity of free space f0 • The remaining term, Xox, is 

simply the oxide thickness of the sample which sits beneath the metal gate. 

Figure 3 is a drawing of the MOS capacitor's energy band structure during 

accumulation. As one can see, the higher concentration of holes near the 

semiconductor surface bends the valence band (Ev) upward toward the Fermi 

level (EFs) and causes a similar bending in both t,he intrinsic band (Ei) and 

conduction band (Ee) energy levels. This is an obvious response to the initially 

applied negative gate voltage whose electron energies are now at a higher level in 

the metal than in the semiconductor. Therefore, the Fermi level within the metal 

(EFm) is displaced from its equilibrium position by the applied potential of qV. 

The offset that now exists between EFm and the Fermi energy level in the 

semiconductor (EF5 ) has created as oxide conduction band tilting, which increases 

14 
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as one moves closer to the interface of the metal gate and the silicon dioxide. The 

name applies to the resulting electric field within the oxide whose directional 

arrow points to the rise in electron potential. 

EFm 

qV 

M 0 

Accumulation 

- - - -

" ......._,-----E, 
---------- Et=a 

=··· E . . . . '.. . t::::::::;:: ,; :,:, ;, :• .. :. ;. , . : ... ; .. ,;,: .. ,;,: V 
:;:: :&;~ :~ ;:~: :s:;: :s:: :l:.: ~=ii::=: :,:,:J:-~·~ •. :,:.~.-~ . .-,;:~-. ·•••• .... ' ..... . ·=~·•· ::~:!!!: 
::::::::::: 

s 

Figure 3. MOS Capacitor in Accumulation(lG,l7) 

As one decreases the magnitude of the gate bias, the surface hole density 

decreases, corresponding to a smaller C5 and a ,,total C which is below Cox· At 

the same time, the degree of band tilting in the oxide and band bending in the 

semiconductor becomes less and less pronounced until an applied gate voltage 

exists which flattens out the set of bands completely. This particular bias is 

known as the flat-band voltage, or V FB. In an ideal situation thjs value should be 

zero (VG = V FB = 0 ) in addition to a semiconductor surface potential of the 

same value ('115 = 0 ). 

15 
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Due to the dependence of C5 on w5 a flat-band condition capacitance can 

be defined generally as, 

( 2 - 11 ) 

where C5 ('11s= 0) is known as the semiconductor flat-bnd capcitance (CFss) more 

specifically defined in the following way, 

( 2 - 12 ) 

where c5 is the permittivity of the semiconductor (in silicon, c5 is 11. 7 times that 

value of €0 ) and Ap is the extrinsic Debye length in a p-type semiconductor. This 

term can be further defined, 

1/2 ( 2 - 13 ) 
' 

and is determined by semiconductor parameters ( Es, Na ) and the temperature of 

operation. Although the flat-band condition occurs at only one particular gate 

bias, it will become more apparent how important it is in analyzing the 

experimental MOS capacitor's deviation from the ideal as the results are presented 

in Chapter 4. 

Next the condition of depletion occurs when the gate voltage is more 

positive than the flat-band voltage and begins to repel holes away from the 

surface of the silicon. The total capacitance is once again the series combination 

.r , 

16 
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of Cox and C5 (w5 ) but now the semiconductor surface potential is greater than 

zero, or 

1 
cdep 

where C5 ('115 > 0) is explicitly defined as, 

fs 
X • 

d 

( 2 - 14 ) 

( 2 - 15 ) 

So the capacitance being measured within the silicon is just the capacitance across 

the region, xd, which is si~ilar to a n + _ p abrupt junction for which the depletion 

region extends almost entirely into the p region (similar to the p-type substrate), 

1/2 
• ( 2 - 16 ) 

It should be understood that the case of depletion in an MOS capacitor 

only occurs within the boundary of w5 being greater than zero or less than Wp 

('11p > '115 > 0). Note that Wp, the built-in bulk potential of a p-type substrate is 

given by, 

( 2 - 17 ) 

,' 
and is essentially determined by temperature and doping density. This range of 

potentials will correspond to a small range of VG 's which appear on a standard 
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C-V plot and can be siglfJed as the region of depletion capacitance . 
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Figure 4. MOS Capacitor in Depletion(lG,l7) 

Depletion is depicted with an MOS energy band structure in Figure 4. It 

describes the condition stated above, the positive applied voltage depletes the 

surface of the positive charge in the valence band. With the advent of the 

positive gate bias, the Fermi level EFm is below EFs which results in a situation 

opposite to that of accumulation. The band bending in the silicon is now 

downward, an~, indication of depleted positive surface charge within the 

semiconductor ~-field in the oxide is in the opposing direction causing the 

conduction band in the oxide to be tilted upward towards the silicon. 

Finally, inversion of the semiconductor surface arises for larger positive 

values of gate voltage. The minimum voltage required is Wp, which is known as 

18 
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the onset of inversion. However, in a practical sense, in order to have a true n-

" type conducting channel existing at the surface, it is recommended that '115 be 

equal to twice the value of 'tp. This is considered to be strong inversion and this 

will be used as the threshold for our calculations. 

As stated previously as is evident from formula (2-16), xd will in~ase as 

w5 increases. By the time '115 (inv.) = 2 'tp, the maximum depletion region width 

for steady-state conditions has been achieved, 

2t5 '115 (inv.) 
q Na 

4 ts kT In (Na/ ni) 

q2Na 

1/2 

1/2 

( 2 - 18 ) 

' 

the second equation is derived by using the above expression for '11 5 (inv.) and 

equation (2-17). The corresponding relations for the capacitance in the 

semiconductor and the total capacitance under the condition of inversion are 

easily stated, 

C5 ( ')5 (inv.)) 

and 1 + 
Cox 

' 
( 2 - 19 ) 

1 { 2 - 20 ) 

The pictorial view of inversion is given in Figure 5 and clearly shows m 

greater upward oxide conduction band tilting toward the semiconductor, and 

extreme downward band bending within the silicon due to the much higher 
~ 
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applied gate voltage. 
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Figure 5. MOS Capacitor in Inversion <16• 17 ) 

In fact, the diagram indicates that Ei is below EFs which results in a large 

electron population in the conduction band of the silicon. This surface layer of 

electrons is similar to n-type semiconductor. Note that these electrons are 

\ 

minority carriers within the p-type semiconductor, which as a result of the gate 

bias form the inverted layer of n-type charge at the p-type substrate surface. 

This concludes the basic low frequency analysis of MOS capacitors in 

generating C-V curves. The topic will be brought up again at the end of the next 

section in order to compare the high frequency response to the low frequency 

response. This will reveal the unique and characteristic properties of each test 
\ 
I 

frequency and why both are necessary in understanding the capacitive-voltage 
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behavior of this device test structure. 

2.1.3 MOS Capacitors at High Frequencies 

High frequency operation, that is as AC smaJl signal of 1 MHz, has both 
\ 

) 

similar and different C-V responses in comparison to the low frequency C-V. 

There exists no discrepency for the first two conditions described in subsection 

2.1.2, which states that at high frequencies an MOS capacitor will accumulate and . 

deplete, as one recalls, these cases describe the actions of majority carriers (holes) 

at a p-type silicon substrate surface in response to an applied gate voltage. 

However, for inversion, minority carriers, and in this case electrons are the active 

element at the semiconductor surface. 

In order to properly form as inversion layer it becomes clear that a certain , 

amount of time is required for the minority carriers to populate the surface 

creating an n-type region. It has been shown ( ia) that a characteristic inversion 

layer formation time for an MOS capacitor biased in inversion is on the order of 

2 Na r 0 

Il· ' I 
( 2 - 21 ) 

where r O is the minority carrier lifetime at the surface. Since this is inversely 

proportional to ·frequency there exists an obvious correlation between the 

formation time and the AC small-signal frequency applied to the metal. Using a 

typical(lB) lifetime value of lµs and the doping concentration of experimental 

wafers (2 X 1015 /cm3 ), the time is calculated roughly to be 0.28 s. This indicates 

that a very slowly changing (low frequency) small--signal measuring voltage is 

i.: 
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needed to achieve an inversion condition. Otherwise, the surface does not invert 

and the result is the high frequency C-V curve depicted in Figure ~.· The 

capacitance levels out at the minimum g!ven by formula (2-20), the series 

combination of the oxide capacitance and the substrate capacitance with its 

depletion width at its maximum {xd max)• 

C..J 
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CJ 
C: 
ro 
+-' 

0 
ro 
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I 
I 
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......_ •-.._ .1 Deep depletion • ..., 0 

( i) 

Gate Voltage Ve 

Figure 6. Ideal C-V Curves of an MOS Capacitor(l9) 

It is now seen from the figure that three conditions stem from the cases of 

inversion based upon their response to the gate bias. First, when the frequency is 

approximated by the inverse of formula (2-21), th~ inversion-layer population can 

follow both the AC small-signal voltage and the DC gate bias, producing a level of 

capacitance ideally equal to Cox. This is because the signal sampling in the 

semiconductor only occurs at the surface and not through the depletion region and 

the result is similarto that of a parallel plate capacitor of value Cox just as in 

accumulation. Second, as the AC frequency is pushed to a high enough level so as 
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not to form a minority carrier inversion but still reponds to the DC gate voltage, 

then the high frequency minimum capacitance level is achieved. This is set by the 

positive metal bias needed to maximize the depletion width within the substrate. 

Third, if the MOS capacitor reaches a point where both the gate bias and the 

small-signal voltage vary at a faster rate than can be accommodated by the 

device, deep depletion will occur and the capacitance never reaches a minimum. 

The reason is that the depletion width is now wider in distance than even xd max , 

which exceeds the conditions of inversion. 

As one shall see, these characteristics are not uncommon to experimental 

data and will be discussed again in Chapter 4. It should '"be noted that at very 

high biases, the deep depletion curve may relax to the constant minimum 

capacitance ( as shown in the figure by (i)) set by the high frequency inversion 

case. This completes all of the ideal conditions of an MOS capacitor at high and 

low frequencies and should provide enough of a background to comprehend the 

device analysis of the results in a later chapter. 

l 

2.2 Oxide and Interface Charge 

Up until now, the information concerning MOS capacitors and C-V curves 

has been strictly ideal is its analysis. That is to say, both the oxide grown and 

t 

the semiconductor surface and bulk have been void of any defects or 

nonuniformities. This is not the case with regards to the processing world and 

can become quite a problem in device testing and electrical characterization since 

any kind of abnormality will cause a stray from the ideal. This section is devoted 

to defining some of the variations occuring within the Si02 layer, at the Si/Si02 
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interface, and inside the Si-bulk. Their effects will be explained by the use of an 

MOS structured diagram, a ·c-V curve, and a circuit model more advanced than 

that of Figure 2, employing an R-C network for its design. 

It is best to begin by defining the types of defects existing within the MOS 

capacitive structure and the effects they have in altering C-V measurements. 

Figure 7 depicts all the major charge catagories of an MOS device and their 

corresponding numerical densities (for example, Nm = Qm/ q) and listed here as 

follows with a brief explanation. They are: 

a) Mobile ionic charges (Qm, Nm) such a sodium (Na+), or other alkali 

elements which are absorbed into the silicon dioxide during the application of the 

metallizing process. Their ability to drift is cadsed by both ~-field and 

temperature dependent and influences the flat band voltage change (Ll V FB). It 

should be noted the fluorine (F-) is pictured on this diagram because this thesis 

suggests the presence of a mobile fluorine ion. 

b) Oxide-trapped charges ( Q0 t, N0 t) are positive (holes) or negative 

(electrons) charges which have been literally trapped within the bulk of the oxide. 

This results from irradiation wJ1ich injects electrons or photons in to the insulator 

layer. 

c) Fixed oxide charges ( Qf, N f) are the positive charges lying within the 

native oxide layer (SiOx) which is about 25 i thick and sits on top of the 

semiconductor-oxide interface. These are due to structural defects correlated to 

the oxidation process where interfacial dangling or uncompleted silicon-to-silicon 

bonds may exist. 
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d) Interface trapped-charges (Qit' Nit' Dit) appear directly at the Si/Si02 

interface and have energy levels distributed within the forbidden-gap region 

(between Ev and Ee)· These positive and negative charges ~are due to silicon 

surface defects and wafer processing steps which results in the formation of extra 

allowed energy levels not normally present within the bulk of the crystal. 

However, a trapped interface charges in contact with the semiconductor substrate 

can have their charge state altered by charging the surface potential ('115 ). 

Oxide trapped 

Mobile Ionic charge 
(9m, Nm) 

charge (Q ot , N ot) Fixed oxide charge 

ca, , N , > 
"' + + + 

- - -
I I I I • • I • e • I I I I I I I I I I I I I I I I I W e I I e I a I I I I I I I I I I I I I I I I I I I e I I I I I I I I a I I I I , 

/ 
Interface trapped charge 

(Q It' N Ir D It) 

_J_ 
Metal 

SIO 
X 

SI 

a •• \ 

·,, Figure 7. Charge Definition in an MOS Capacitor(2 0) 

\ 

The capacitance-voltage (C-V) dependence upon trapped and mobile 

charges within the MOS structure branches into two cases, both of which affect ·.· 

the flat- band voltage. One case refers to stable charges resulting in a direct 

translation of the C-V curve along the gate voltage (VG) axis. The other case 
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speaks of unstable charges causing distortions in the C-V curves and the 

dependency of these charges to the applied VG· 

With reference to stable charge analysis, one includes th·e effect of fixed 

interface charge density (Qf ), oxide trapped-charge density (Q0 t), and mobile 

ionic charge density. This makes for two terms, one assoc'a~~d with the Si/Si02 

interfacial layer, and the other a lumped oxide charge term which is generalized 

for an arbitrary distribution of charge (p(x)). Both effects superimpose and 

change the flat-band voltage. This is expressed as follows; 

1 j Xo\ xx p(x) dx ' 
Cox ox 

0 
( 2 - 22 ) 

where <l>Ms is the ideal definition of. the flat-band voltage and results from the 

difference of two material work functions ( ~M - ~ 5 ), Qf / Cox is the fixed 

interface charge . term of the native oxide, and the integral term is the 

centroid weighted effect of the distributed charge. Since the discussion deals with 

stable charges, the result is a rigid shift in the C-V curve along the VG-axis as 

depicted by the dashed curve of Figure 8. Thus the shift in the flat-band 

determines the new range of voltage values at which the MOS capacitor's regions 

of operation are defined. 

On the other hand, when the analysis includes interface trapped-charge 

density (Qit), the introduction of unstable charges comes into play and distortive 

effects within the C-V curve arise (the dotted curve of Figure 8). This is because 

of the voltage dependence associated with this interface charge. A change in gate 

bias produces variations in w5 and can charge or discharge these energy levels at 
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the surface. 
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Figure 8. Alterations of the Ideal C-V Curve Due to Charge Formation <21> 

This introduces the term Qitl Cox which when included into equation (2-21) 

results in a V FB being dependent upon VG or, 

Qf 
'l>MS - Cox 

1 
Cox 

/OXox Qit xx p(x) dx - . ( 2 - 23) 
ox Cox 

Note that the reduction of the density of interface-trapping states (Dit) is carried 

out by a process known as annealing and will be defined and related to this thesis 

later. 

Now that non-idealities of the MOS structure have been defined and their 

effects on the C-V curve viewed, it becomes clear that this ideal capacitive circuit 
.. 

model of Figure 2 is not complete. Figure 9 offers a suitable R-C network and 

includes most of the conditions described previously and a few more which shall be 

addressed at this time. 

27 



Metal ------4.-

Insulator ------~ 
(oxide) 

Semiconductor 
(silicon) 

Ohmic 

Contact 

----t-~ 
.. 

Cox 

C(V) • 
c,(V> 

RIM 

Oxide (Insulator) 

capacitance 

Substrate capacitance 

(voltage dependent) 

Lumped Inversion and 

trap capacitance and 

resistance (voltage 

dependent) 

R parallel 

Rox 
Oxide (insulator) 
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R parallel Device parallel leakage 
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. . . (22) Figure 9. Modified R-C Network of an MOS Capacitor 

The lumped series branch of Ri(V) and C;(V) represents a more 

complicated distributed RC system related to minority carrier generation 

(inversion) and recombination (interface-trapping) for various voltages. Rox and 

Rparallel can be t;he results of poor device processing, wafer contamination and 

moisture problems. Rsubstrate becomes large if the semiconductor resistivity is 

high and can cause measurement nonlinearities. By placing all of these elements 

together, a more exact circuit model of a physical MOS capacitor is possible and 

\ ,., 
'"" 
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most of the non-idealities can be accounted for when comparing the actual to the ,, 

ideal. 
·.~j 

' \ 

2.3 Ion Implantation 

The technique of ion implantation is the introduction of ionized projectile 

atoms into semiconductor targets with a high enough energy to penetrate beyond 

the surface regions. Acting as an alternative processing technique to the diffusion 

of dopants, ion implantation offers a highly controlled means by which impurities 

can be placed into substrates to alter their electronic properties. This section is 

devoted to the general understanding of ion implantation in both theory and 

practice. The fundamental equations of implantation are presented and explained 

with regard to the actions and results caused by employing this unique device 

fabrication system. Next the ion implantation machine itself is described and the 

specific design of the ion implanter system at the Sherman Fairchild Laboratory 

on the Lehigh University campus is discussed. This background material will 

assist the reader in comprehending the reasons behind the experiment's design 

(Chapter 3) as well as interpretation of any results or effects from the tested MOS 

capacitors ( Chapter 4 ). 

2.3.1 Ion Implantation Fundamentals 

' 

The methodology associated with ion implantation is to take an energized 

gaseous source, select from it a particular element or compound known as an ion 

species, finely focus the species into a beam for high voltage acceleration, and 

deflect this beam in both the x- and y-directions so that 'it systematically scans a 
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defined target area where the Si-wafer is seated. Obviously there is a great deal of 

equipment involved with this proc~ss, all of which together makes up an ion 

implanter system. This will be handled with both schematics and detailed 

explanations in the next subsection, but having a basic grasp of the theory is 

required for a complete understanding. 

It had been mentioned that the accelerated ion beam scans a defined area 

within the silicon substrate. A controlled amount of ions forms a beam which is 

uniformly deposited onto the surface of the wafer. This controlled amount of 

surface depostion is known as the dosage, ¢, , defined as 

Q ( 2 - 24 ) 
m q A ' 

and is in terms of atoms/cm3 • The integrated charge, Q, is related to the current 

(I) generated by the ion beam as it scans for a particular time (t), or 

Q J I dt . ( 2 - 25 ) 

The term mq is associated directly with the selected ion species, m, dealing with 

the ion's charge state (to be discussed again in Chapter 3) and q being the charge 
' 

on an electron. The term A is simply the defined area- over which the beam 

sweeps. This means an accurate control of the dosage can be obtained and when 

coupled with a variable high energy acceleration unit, tailor-made device junctions 

and custom concentration profiles of impurity atoms can be achieved since there 

exists a direct correlation of ion beam energy and the penetration distance into 

/ 
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the silicon. 

' As mentioned previously, energy is required not only to ionize the gas 

// source, but also to accelerate the ion beam so that it implants the impurity ions 

,, 

at the proper incident energy. These energetic ions come to rest inside the 

semiconductor by way of two basic stopping mechanisms. The first stopping 

mechanism occurs as an energy transfer to the target nuclei, deflecting the 

projectile ions and dislodging of the target nuclei from their original sites. 

Allowing E to be the energy of the projectile ion at any distance x within the 

silicon, one can define what is known as the nuclear stopping power, 

NS(E)nuc. dE 
dx nuc. · ( 2 - 26 ) 

The term N is the number of target atoms/cm3 • The term T is known as the 

transferred energy and is a function of the incident energy E, the masses of both 

the incoming ion (M 1 ) and the target atom (M2 ), and the scattering angle, (8). 

The function T is maximum for a head-on collision (8 = 180°) and is denoted by 
., 

Tm within the integral. Finally du is the differential cross section, the effective 

area presented by the nucleus as a target for the bombarding particles. 

The second stopping process concerns the interaction of the ion with both 

bound and free electrons within the target. As energy is lost by the moving ion 

.the generation of electron-hole pairs is possible. This process, similar to stopping 

in a viscous medium, can be characterized by the electronic stopp~ng power, 

NS(E)elec. dEI 
d x elec. ' 

( 2- 27 ) 
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where ke is a relatively weak function of elemental prameters such as the atomic ,. 
numbers and masses for both the incident and target atoms. For example, with 

an amorphous target such as silicon, the value of k becomes relatively independent 

of the projectile (ksi ~ 0.2 X 10 -ls ( e V) 112 cm3 ) and the approximate value is 

used. 

The two energy loss mechanisms can now be used together to determine 

what is known as the range of an ion and result in the Lindhard, Scharff, and 

Schiott (LSS) theory. <23
) Their theory states that the two energy functions are 

recognized as independent of each other and are additive. Thus the total energy 

loss per unit length is, 

d E I 
d X tot 

d E I d E I d x elec. + . d x nuc. 

NS(E)tot • 

·,, 
This t~!Il is then integrated over the intial incident ion energy to yield, 

R(E) dE 
( d E/d x)tot 

1 
N 

dE 
S(E)tot ' 

( 2 - 28 ) 

·o 

( 2 - 29 ) 

which the total distance travelled by an ion before coming to rest, or more 

commonly known as R, the range of ions. Figure 10 gives a two-dimensional view 

of the ion range (R) along with some of the statistical values which aid in 

determining the actual depth profile of the implanted impurities mathematically in 
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a single and multiple dimensions. Using the projected range Rp, and the 

uncertainty in Rp, better known as the projected straggle LlRp, the one-
~ 

dimensional concentration profile (n(x)), can be calculated. The term LlRl., the 

transverse (lateral) straggle, is employed in two- and three-dimensional (lateral) 

depth distribution functions and in particular the analysis of ion implantation 

through a gate mask ( device fabrication technique). 

Incident 

Ion 

Beam 

Surface 

Figure 10. Pictorial Range and Straggle Terms of Ion lmplantation<24> 

R-1_ 

For the time being, a one-dimensional analysis is sufficient. This analysis 

describes the implanted concentration using a one-dimensional Gaussian . 

distribution function of position x, 
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n (x) -- n(Rp)exp 
-( x - Rp )2 

2 .6. R 2 p 

., 

,, 

( 

• ( 2 - 30 ) 

The leading term, n(Rp), is the maximum concentration occuring at ~ = Rp and 

Ll Rp is the projected straggle for the distribution. It is more accurately defined 

in terms of the dosage, ¢ , a:nd d R p as, 

Ion Beam .. 

n ( Rp) 

Ion Concentration 

(log scale) 

-y 

• ( 2 - 31 ) 

n 

n (R p) 

J----L-------+-----....a.-----1~ X 

Figure 11. 'Two-Dimensional Gaussian Concentration Profile<25> 

A Gaussian profile is shown in Figure 11 and one should notice how the function 

is symmetric with respect to Rp along the x-axis. A physical concentration profile 

of an implant is in most cases asymmetric and therefore the Gaussian becomes 

inadequate for modeling purposes. 
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To date, the best simulation uses a Pearson distribution, which is based on 

the following differential equation, 

where h 

/_00 
+oo 

differential 

d h{x) 
dx 

( x 1 - a ) h{ x1) 

• the normalized distribution IS 

h(x) d X = 1 , and x' ---

equation ( a, b0 , b 1 , b2 ) are 

' ( 2 - 32) 

function . The term h(x) satisfies 

X - Rp. The four constants of this 

defined in terms of four moments and 

thus the distribution function receives the name Pearson-IV. These four moments 

are: 

1) Rp, the mean range 

2) dRp, tJ}e projected straggle 

; 

3) , 1 , the normalized skewness, and 

4) /3, the normalized kurtosis. 

As from before, Rp and dRp define the Gaussian function while , 1 

accounts for the asymmetry of the profile and /3 handles the tail of the profile. 

Thus the Pearson-IV is a Gaussian modified to fit an implanted distribution by 

way of these four moments. As one will see in Chapter 4, the simulated depth 

distribution compared to the actual concentration profile provides an excellent fit. 
'-A,..,. 

-----

2.3.2 Light Ion Implantation Damage and Annealing 

Energetic ions will have many coll1sons with silicon lattice atoms before 

coming to rest. The amount of energy transferred to the lattice may cause many 
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atoms to be displaced, resulting in a cascade of atomic collisions often imparting 

considerable energy. This bombardment/disorder-forming process is better known 

as implantation damage, which appears to be deleterious. However the 

understanding of the lattice damage as related to ion implantation allows for the 

practical exploitation of this technology. 

The nature of the damage created by an incident ion is dependent upon 

whether it is lighter or heavier than the lattice atoms. Since the thesis revolves 

around implanting fluorine, an element lighter than silicon, the explanation of 

damage will only cover light ion implantation. Fluorine implantation into Si- .. 

substrates and MOS devices will be addressed specifically in the next section and 

some of its experimental effects presented later on in this manuscript. 

Incident 

light ion 

Figure 12. Branching Dislocation from Light Ion Implantation <25> 

A light • 
IOn transfers a small amount of energy during each target 
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encounter and is deflected through a large scattering angle. Those target atoms 

which are displaced generally do not have enough energy to create more 

displacements by themselves. Figure 12 depicts the damage of a light incident ion 
'/ 

in the form of what is known as a branching dislocation track and ~reates 

disorders called point defects. Much of the energy that the light ion transmits to 

the lattice is through the electronic stopping processes. Thus there is little 

damage to the crystal, with a comparatively large range ( energy and mass 

dependent) and the damage becomes spread out. 

It is clear that the introduction of impurities by ion implantion brings a 

considerable amount of disorder to the silicon. However, a technique was devised 

which not only corrects most of the damage, but can allow the ions to become 

. electrically active in substitutional sites throughout the substrate lattice. This 

process, known as annealing, is a temperature/time treatment step commonly 

practiced after implantation. Much information(27 •28) has been compiled in order 

to determine both the minimum temperature and the time required to heal as 

much of the crystal as possible with minimal impurity diffusion ( temperature 

activated) in order to preserve the original implanted profile. 

Temperature and time parameters are dependent upon the dosage, the 

character of the_ ion species, and in the case of microelectronics, device 

performance capabilities. Most anneal cycles last between 15 - 30 minutes and 
"' 

can have a temperature range from 400° C ( metallized devices) to 1200° C (bare 

silicon). This procedure is usually performed in an inert gas (H2 , N2 ) to limit 

more reactions from occuring when the substrate is heated. The details regarding 

the annealing of the F- implanted MOS capacitors are described in the 
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experimental portion of this thesis (Chapter 3). This process removes the damage 

caused by the fluorine implant and can produce additional unique device 

characteristics. 

2.3.3 
. \ . 

Ion '\~plantation Systems 

,, 

An ion impfanter is a uniquely complex integrated 
• 
circuit/semiconductor 

(._ __ 
device processing tool containing many intricate subsystems which uses both 

machinery and electronics in its design. This versatile piece of equipment utilizes 

an ion source, an atomic mass accelerator, and the means by which the implanting 

beam can be purified and controlled. A schematic diagram of a commercial ion 

implanter system with its major components enumerated and labeled is given in 

Figure 13. A brief explanation and/or description for each of the essential parts 

accompanies the drawing below. Here are an ion implanter's main subsections: 

1. A gaseous source feeds an appropriate impurity material ( BF 3 , AsH3 , 

qr SiC14 ) to the ion source by way of controlled amounts (valving system). 

2. A power supply of a high potential V energizes the ion source. 

3. The ion source, utilizing its own power supply and pump, produces a 

plasma (containing a particular ionized species + As 75 , + B 11 , - F 19 ) at relatively 

low pressures ( ~ 10-3 torr) for reduced ion-gas scattering. 

r 

4. An analyzer magnet extracts ion species of in tere~t by its mass and 

forms the ions into a beam as it passes through the resolving slits (aperture) en 

route to the acceleration table. 

5. The acceleration tube which applies very high voltages to the ion beam, 
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further raising its energy level to the desired amount. Additional beam focusing is 

. 
used before transport to the target. 

( 5) ACCELERATION 
TUBE ( 4) ANALYZER 

MAGNET 
RESOLVING 
APERTURE 

(6) Y SCAN 
PLATES (7) WAFER 

(TARGET 
POSITION) ION 

BEAM 

SOURCE 
DIFF 
PUMP 

( 3) ION 
SOURCE 

( 2) ION SOURCE 
POWER 
SUPPLY ( 1) GAS 

SOURCE 

{6) X SCAN 
PLATES 

(7) FARADAY 
CAGE (?)W F 

BEAM LINE a A ER 
ENO STATION FEEDER 
DIFFUSION PUMPS 

Figure 13. Commercial Ion Implanter System <29> 

6. An electrical raster scan ( sawtooth voltages applied to x and y 
) 

deflection plates) provides ion beam uniformity throughout implantation. Two 

additional diffusion pumps ( one beam line and one end station) produce a very 

high vacuum ( < io- 6 torr) in order to keep the beam free of residual gas atoms 

(neutrals). 

7. A target chamber consisting of an area-defining aperture, Faraday cage 

and current integrator (for a direct measurement of the dosage), and wafer feeder 

mechanism. In general, a large negative bias is placed on the Faraday cage for 

.. 
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accurate dose calculation. Now that an overview of an ion implantation system in 

general has been presented, specifics regarding the Sherman Fairchild Laboratory's 

ion implanter used in this thesis work are now mentioned. 

·The Varian-Extrion 200-20A ion implanter is shown in block diagram form 

in Figure 14. The voltage range of this machine ( extraction and accelerating) is 

from 25 keV to 200 keV allowing for a wide range of implantation energies. The 

90° analyzing magnet is double-focused insuring high transmission of ion current 

coupled with high resolution of the desired ion species. The analyzer by design 

has a 1.5 inch gap between its magnets and its radius through the 90° turn is 9 

inches which can minimize beam aberrations. Since mass analysis occurs prior to 

acceleration both the magnet current and the ion beam current remain constant 

while varying the beam energy over its entire range. The magnet operation is 

considered to be very stable, thus reducing drift and hysteresis effects during 

energy variation. The multi-section accelerator tube utilizes a resistor network for 

precision voltage gradient control in order to prevent high voltage arcing. Once 

accelerated, the beam is focused by an Einzel lens system and is then ready to be 

' 

raster scanned for uniform implantation over the entire wafer. This explains, to 

some detail, the exact means by which an ion beam is made ready for 

implantation. As· the ion beam reaches the wafer station, further system design' 

allows for the removal of neutral particles, which can form during beam 

acceleratian and cause excessive wafer heating. Th us the beam is deflected by 7° 

from the main beam line axis. The residual neutral beam, unaffected by the 

electrostatic deflection field, remains on its original path and is. trapped on the 

electron suppressor, located behind the final defining aperture for the impinging 
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ion beam. 
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Figure 14. Block Diagram of a Varian-Extrion 200-20A Ion Implanter 

It should be noted that the target wafer is rotated by 7° off the final beam 
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direction to minimize channeling effects. In addition, the current integrator unit 

measures the uniformity of dosage implanted and is connected to the beam 

current control slits by way of a feedback loop. If there are variations in the 

beam current as indicated by the current integrator, the beam current control slits 

will be adjusted to provide a constant beam current reflective of a uniform dosage. 

It should be clear that this system is very self-contained and, once prepared for 

implantation of a chosen ion impurity, could operate as an automated process. 

All in all, the ion implanter is quite· an intricate and delicate piece of 

equipment to maintain and operate. However, its ability to selectively control the 

amount of injected imp~rity into the target wafer proves without a doubt how 

unique and vital this system is to semiconductor research and development. 

2.4 Fluorine 

This section is strictly dedicated to the basic understanding of fluorif\e and 
·~ 

. 
' 

how it became an interesting topic fof study in MOS electronics research. /rhe 
/; 

fundamental properties of fluorine in both its elemental and ionic stftes is 

discussed for background. The results of two papers from the 1970's are 

presented indicating that fluorine could have a pronounced effect within the, 

Si/Si02 structure. Primary fluorine-implantation studies reveal its unique 

behavior in silicon and its effect on the oxide growth rate. Finally, the electrical 

character of implanted fluorine in MOS capacitors is discussed for the purpose of 

experimental guidelines and as an indication of the possible effects to be observed 

in the results of this thesis. 

- , 
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2.4.1 Elemental and Ionic Fluorine 

As previously stated in Chapter 1, fluorine is a member of the Group VIIA 

elements, better known as halogens. It is classified as a nonmetal and has been 

considered as somewhat of an exception when compared to the other halogens. 

Fluorine possesses low values of electron affinity and bond energy associated with 

the diatomic molecule F 2 • Its 2p orbitals are very small in size ( rF = 0.64 %) 

resulting in large electron repulsions. Therefore, the existence of a weak bond 

within the F 2 structure is evident. The reference(30) to fluorine and its halogen 

counterparts provides a more detailed description with regard to both its 

elemental and ionic properties. 

Because of its high reactivity, fluorine is not found as a free element in 

nature. It more readily exists as a halide ion (F-), or commonly called an anion, 

· due to its negatively charge state. Possessing a high electronegativity value ( 4.0), 

fluorine is very willing to form ionic bonds with metals and polar covalent bonds 

with semimetals (B, Si). The electrochemical nature and the bonding versatility 

of F- iolns between both metals and semimetals is discussed thoroughly in the next 

section pertaining to an experiment dealing with fluorine contamination of the 

Si/Si02 structure .. 
~ 

2.4.2 Early Fluorine Experiments 
~.:i 

As mentioned in Chapter 1, experimentalists stumbled onto the use of 

fluorine in silicon and silicon-based structures when they wondered if fluorine was 

contaminating their samples during processing. Fluorine-based compounds such 

as HF and KF could very well dissociate leaving traces of fluorine on the surface 

43 

. J 



{I 

of the Si-substrate. If a significant amount is left behind, it could result in a 

pronounced effect on the oxidation growth rate, the character of the Si/Si02 

interface, and possibly the quality of the produced devices. 

This notion was considered by Croset and Dieumegard(7) who considered 

intentional fluorine contaminated of organic baths during anodic oxidation. The 

incorporated fluorine, introduced into the bath in a salt form (KF), was shown to 

have a square root dependence on oxide thickness and was found to be existing at 

both the Si/Si02 interface and within the oxide structure. This was explained by 

the relatively high chemical affinity F- ions have for silicon and silicon-oxygen 

structures. 

• 
The electrical measurements, gathered from annealed MOS structure C-V 

testing, revealed a consistent interface charge density of 1011 /cm2 . It was 

proposed that since this value was much lower than the surface concentration of 

the fluorine atoms at the interface (10 15 F- atoms/cm2 ), the fluorine was somehow 

linking itself to the Si atoms. Finally, a hysteresis in the C-V curves confirmed 

the existence of a disturbed interface whose compostion and structure differed 

from that in the bulk oxide. 

About one year later, Williams and Woods(a) suggested the existence of 

mobile fluorine ions in Si02 as a way to trap and neutralize mobile positive ions 

such as Na+ or Li+ and thus provide stability to MOS devices. Their 

assumptions were based on the fact that ions of radii less than 1.69 i (the 

Pauling radius of Cs+, which was found not to be mobile in-. silicon) should be 

mobile. Since 1.36 i is the radius of an F- ion, an experiment was conducted to 

inject ionized fluorine into the oxide layer by negative corona discharge of the 
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fluoride salt coated surface. MOS capacitors were fabricated and subsequent C-V 

measurements were made. 

The results show that with negative corona char~ing and air annealing a 

significant shift in the C-V curve to the right occurs which is characteristic of the 

presence of negative charge, most notably the fluorine anions. Furthermore, upon 

application of a bias-temperature stress (BTS) test ( to be explicitly defined in 

· Chapter 3) only one of the seven fluorine-treated MOS capacitors tested possessed 

a flat-band voltage due to positive charge. Although the flat-band voltage shift in 

the fluorinated samples was not as large as the shifts due to Na+ contamination 

(untreated samples), they further concluded that around 1 X 1012 mobile Na+ 

atoms/cm2 were successfully neutralized by the F- ions on a one positive charge 

to a one negative charge basis. On this premise, and with the expanding 

technology of semiconductor research throughout the remainder of the 1970's into 

the 1980's fluorin~ related experiments based on silicon would continue to provide 

unique information about this halide. 

2.4.3 Fluorine Implantation Studies 

With the advent of ion implantation systems as a means of introducing 

impurities into wafer substrates, F- implantation was soon attempted. At first, as 

a means to dope silicon p-type, the ion species of BF2 + was implanted which then 

would dissociate into its component elements and with an anneal step, boron 

would become electrically active and th us dope the semiconductor. Questions 

concerning the activity of the fluorine molecule and its potential effects sparked an 

experiment concerning the migration and electrical character of fluorine after 
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implantation. 

Tsai, et al. (S, 6 ,31>, after implanting with BF 2 + into silicon and" performing 

subsequent annealing treatments at various temperatures, began to take note of 

some of fluorine's unique propei;;ties. They found that 'tluorine migrates 

anomalously during annealing and produced a double peak distribution (one in the 

amorphous layer and one in the silicon layer), after the temperature was raised 

above 500° C. By the time the annealing was complete (1100° C) most of the 

fluorine had outdiffused and the peaks diminished. Their reasons for anomalous 

fluorine migration are associated with the apparent sweeping out of fluorine 

during recrystalization and its impurity-gettering effects. The results actually 

showed that the depth at which boron stopped being electrically active is at the 

exact point where the fluorine gettered peak exists. Thus fluorine can be used to 

decorate damaged regions in silicon. 

By the 1980's, fluorine implantation became widely used in experimental 

semiconductor research and development. In particular with regard to oxidation 

growth and interfacial conditions in silicon and silicon dioxide. As Croset and 

Dieumegard found out almost a decade ago, fluorine seemed to aid the oxidation 

process as well as have a surface concentration present at the Si/Si02 interface. 

Similar interface conclusions were drawn by Williams and Woods. 

Fluorine ions have been implanted into silica structures and oxides have 

been grown o:ri"top of the amorphous fluorinated layer. The fluorine seems to 

reduce a majority of the oxidation-induced atacking faults (OISF), a defect related 

~ 

to the oxide process resulting in nonuniform in Si02 layers. This was the work of 

both Isomae, et a1.<9) and Van Hasselt, et al. <2> who also claimed the important 

/ 
;<_ I ,.,,. _____ / 
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role fluorine plays at the Si/Si02 • Kuper, et al.(ll) studied the kinetics of dry 

oxidation of silicon after fluorine implantation. Their study proposed an enhanced 

Deal and Grove model to include the effects of fluorine implantation. They 

seemed to believe that the action of the F- ions at the interface to alter the 

" reaction rate constant and/ possibly form a silicon-fluoride complex. This type of 

evidence would suggest the study of fluorine implantation on a device level. 

2.4.4 Fluorine Implantation in MOS Capacitors 

As stated in the earlier portions of this manuscript, an MOS capacitor acts 

as a fundamental .test structure for uncovering many of the electronic, interfacial, 

and material properties of silicon-based devices. It therefore seems obvious to 

study the effects of implanted fluorine in MOS capacitors since its structural 

~changes can provide much information about fluorine behavior in semiconductor 

devices. This specific topic of research has been looked at by different groups in 

various ways and their experiments and results are presented here for the reader's 

information and as a guideline for this thesis. 

Halogen implantation (CI- , F-) into silicon for MOS capacitor testing was 

attempted by Greeuw and VefJ~~,(l) in 1982. Their dosages were quite high 

(1014 and 1015 /cm2 of halide ions) in order to study the doping profile changes 

toward the Si-surface as the devices were tested. Specifically the C-V 

measurements with fluorine showed a decrease in the accumulation capacitance 

and noticeable changes in the shape ( stretch-out effects) of the C-V curves. They 

-did find a change in the average doping level (N 0 ) whose origin was explained to 

be caused by a complex consisting of a halogen atom and an implantation induced 
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defect. The enhancement of the oxidation rate in silicon was also noted. 

Others such as Wright, et a1.<4) considered the effect of F- implants on 

gate dielectric properties by implantation through the entire device 

(polysilicon/Si02 /silicon). Their C-V studies found low levels of Nit and Nf 

approximately equal to 2 X 1010 /cm2 across all the samples which contained 

fluorr and higher implant doses (1015 /cm2 of F- ions) showed large flat-band 

shi6s explained as a result of implantation damage. Still others like Zaima, et 

al. (S) explored the electrical characteristics of F- implantation in MOS devices and 

proposed that a generation of deep acceptor levels due to the presence of fluorine. 

Device testing proved that a strong suppression of the device leakage was a diect 

result of fluorine implantation and did not degrade the MOS device 

characteristics. 

By and large, fluorine implantation has and is producing a predominant 

effect on the world of semiconductor research and technology. Its unique 

elemental and ionic characteristics play a role in device modeling and theory of ion 

implanted MOS structures. The properties of ·'fluorine in silicon are not 

completely understood, thus active experimentation in this particular area 

provided a challenging thesis problem. 
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Chapter 3 

Experiment 

This chapter is expressly concerned with the thesis experiment as a whole. 

A complete experimental overview is presented which includes both the purpose 

and goals associated with thi~ problem. A detailed description of the wafer 

cleaning, processing and device fabrication is listed for the reader's knowledge. 

Two subsequent post-processing methods are 

structures in order to enhance characteristics. 

applied to the-ilfl,Rlanted silicon 
'·\ 

All of the various c~pacitance-

voltage testing techniques used are briefly defined and explained with regards to 

what information may be obtained by their usage. 

3.1 Experimental Overview 

f\.s stated in Section 1.4 of Chapter 1, this thesis project is designed to 

provide information by way of C-V device testing concerning fluorine implanted 

into an MOS capacitor. It had already been mentioned how current and 

important the topic of fluorine is in the realm of comtemporary semiconductor 

research. There is much to be learned about fluorine's behavior in silicon-based 

structures, and fluorine effects in silicon are of interest here at the Sherman 

Fairchild Laboratory. However, previous experiments have been concerned with 

the diffusion of fluorine and because ion implantation is a unique process in itself, 

it is a reasonable progression to attempt a fluorine ion implantation device study. 
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The specifics regarding the experimental design revolve around a few 

principles concerning ion implantation through an oxide and MOS capacitor 

theory. The use of oxides in implantation is a way to provide protection to the 

bare silicon surface during the process. Any region of the oxide affected by the 

implantation will develop charge states which would most likely change the 

material's electrical characteristics. At this point, MOS theory can be applied to 

explain the deviations from the ideal capacitor's response and provide insight into 

the effect the implanted species has on the metal-oxide-semiconductor system. 

Furthermore, if the oxide thickness is relatively small, then it is very likely 

to have a low energy implanted impurity profile partially residing inside the silicon 

substrate and the remainder of it is in the silicon oxide film. This raises the 

question of placing a controlled amount of ion species at the Si/Si02 interface 

resulting in the formation of a sheet charge at the borderline of these two 

materials. Once again, a unique result produced by ion implantation is of interest 

to MOS device theory since interface charge density (Qit' Qf) will have a 

pronounced effect on a capacitor's electrical performance, comparable to a 

threshold implant widely used in MOS channel devices. It was on this premise 

that the thesis experiment was designed. 

To begin with, Si-wafers are cleaned and prepared for dry 0 2 oxidation 

and three relatively thin oxide thicknesses were chosen· to be studied ( 600 i, 800 

i; 1000 i). After growing the oxides, the exact thickness of each wafer is 
'·. 

determined by ellipsometry and an overall average oxide thickness is determined 

statistically. By knowing with some degree of accuracy the Si02 film thickness, 

the Projected Range Statistics tables by Gibbons, Johnson, and Mylroi<32), which 
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contain energy /range relationships for fluorine implanted in both silicon and 

silicon dioxide are employed. Using this and an iterative routine, an implantation 

energy to be used determined by · using the average oxide film thickness as a 

guideline for placing the peak of the implanted fluorine profile at the Si/Si02 

interface. This would hopefully guarantee a maximum amount of sheet interface 

charge and impose the greatest amount of change in the device's performance 

capabilities. 

The F-ion implantation process itself could now be carried out at the 

estimated energies corresponding to the specific oxide thickness. Metallization of 

the circular gate using a shadow mask and the substrate contact by aluminum 

evaporation is carried out to complete the device as a test structure. The C-V 

measurements are made and as a means of comparison of the implanted set of 

MOS capacitors is compared to clearly note the effects due to fluorine 

implantation. The specifics of the entire experiment are now briefly presented in a 

step- by-step manner. 

3.2 Sample Preparation and Device Fabrication 

The step- by-step process of fabricating the MOS capcitors used in this 

thesis are explained with some detail. These are four phases involved in making 

the fluorine implanted MOS capacitors. They are wafer cleaning for oxidation, 

oxidation of the wafers, F-implantation, and metallization. All processes are the 

standard practices of the Sherman Fairchild Laboratory. 
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3.2 .. 1 Wafe0 r Cleaning Techniques 

Beginning with wafers of low sensitivity, p = 6 - 7 0-cm (n substrate ~ 2 

x 1015 atms/cm3 ), with p-type substrates (B doped), and oriented in the <1-00> 

plane, the following cleaning procedure is adopted for funace oxidation: 

1. 4 : 1 

Immerse the wafers in this solution for 5-7 minutes at room temperature. 

Thoroughly rinse for 5 minutes with deionized (DI) water. 
(: 

j 

2. 50 : 1 

Immerse the wafers in this solution for 5-10 minutes at room temperature. 

Thoroughly rinse with DI water and check for a hydrophobic condition on the 

surface of the wafer. 

3. 5 : 1 : 1 

Place the wafers in solution on a hot plate and allow them to boil for 10-15 

minutes. Allow wafers to cool on hot plate for another 5 minutes. Rinse the 

wafers thoroughly in DI water. 

' 
4. 5 : 1 : 1 

Place the w,afers in solution on a hot plate and allow them to boil for 10-15 

minutes. Allow wafers to cool on the hot plate for another 5 minutes. Rinse the 

52 

/ 

I 



\ 

contain energy /ra#nge relationships for fluorine implanted in both silicon and 

silicon dioxide are employed. Using this and an iterative routine, an implantation 

energy to be used determined by using the average oxide film t.hi~kness as a 

guideline for placing the peak of the implanted fluorine profile at the Si/Si02 

interface. This would hopefully guarantee a maximum amount of sheet interface 

charge and impose the greatest amount of change in the device's performance 

capabilities. 

The F-ion implantation process Itself could now be carried out at the 

estimated energies corresponding to the specific oxide thickness. Metallization of 

the circular gate using a shadow mask and the substrate contact by aluminum 

evaporation is carried out to complete the device as a test structure. The C-V 

measurements are made and as a means of comparison of the implanted set of 

MOS capacitors is com_pared to clearly note the effects due to fluorine 

implantation. The specifics of the entire experiment ti.re now briefly presented in a 

step-by-step manner. 

3.2 Sample Preparation and Device Fabrication 

,\ 

rl,he step-by-step process of fabricating the MOS capcitors used in this 

thesis are explained with so1nc detail. 1,hese arc four phases involved in making 

the fluoriue i111 plan tf~d M ()S capacitors. 1'hcy are wafer cleaning for oxidation, 

oxidatiou (1f the waJ('l's, l•'-i111pla11tati(>ll, and 1netallizati(lll. All processes are the 
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3.2.1 Wafer Cleaning Techniques 

Beginning with wafers of low sensitivity, p = 6 - 7 0-cm ( n substrate· ~ 2 

x 1015 atms/cm3 ), with p-type substrates (B doped),. and oriented in the· <100> 

plane, the following cleaning procedure is adopted for fun ace oxidation: 

1. 4 : 1 

Immerse the wafers in this solution for 5-7 minutes at room temperature. 

Thoroughly rinse for 5 minutes with deionized (DI) water. 

2. 50 : 1 

Immerse the wafers in this solution for 5-10 minutes at room temperature. 

Thoroughly rinse with DI water and check for a hydrophobic condition on the 

surface of the wafer. 

3. 5 : 1 : 1 

Place the wafers in solution on a hot plate and allow them to boil for 10-15 

minutes. Allow wafers to cool on hot plate for another 5 minutes. Rinse the 

wafers thoroughly in DI water. 

4. 5 : 1 : 1 

D 1-11 2 C) : \;!t~ l : 11 2 0 2 

}llace the wafer8 in solution on a hot plate and allow thern to boil for 10-15 

rninutes. Allow wafers to co<,l on the hot plate for another 5 rr1inutes. Rinse the 
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wafers thoroughly in DI water. Once the wafers have been cleaned they are dried 

completely with compressed N2 gas. 

3.2.2 Oxidation Schedule 

The wafers are then placed into grooves on a wafer boat and inserted into 

a Minibrute furnace for dry 0 2 oxidation. The double-walled quartz furnace had 

a flat zone temperature of Tflat zone = 1000° C and three separate runs were 

performed to achieve three different oxide thicknesses. Table 1 summarizes the 

oxidation schedule and also lists the actual average mean values (statistically 

• 
known as the "best" values) and the average standard deviation from the 

ellipsometer data. Their differences are tolerable and the oxidation process itself 

will be addressed again in the next chapter. 

Ideal 

Oxide 

Thickness 

c X) 

600 

800 

1000 

Table 1 

Oxidation Step· Results 

Average Average 

Mean Value Standard 

Deviation 

x " best " ( i ) (1 ( j) 

593 · ± 22.6 

755 ± 30.6 

898 ± 32.6 
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Oxidation 

Process 

Time 

t ( min. ) 

70 

100 

120 

_,. ) 
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It should be noted that surface films were present on all wafers after cleaning and 

that high purity nitrogen (N2 ) was pumped through the system as the wafers 

t· 
were loaded and unloaded from the furnace tube to deter any further oxidation 

after the wafer boat left the flat zone. 

3~2.3 Implantation Preparation and Operation 

As stated in section 3.1, once the average oxide thickness is known, 

energy /range statistics tables<32> can be employed to find the proper energy 

setting for the ion implanter. The results of the iterative process using the "best" 

values of each oxide thickness enable the energy, range and straggle estimations 

for fluorine implanted in silicon dioxide and is shown jn Table 2. This method as 

explained is an attempt to place the F- ions _peak concentration at the Si/Si02 

interface. 

Estimated 

Implant 

Energy 

E ( K eV) 

36 

45 

52.5 

Table 2 

Implantation Statistics 

Average Projected Projected 

Mean Value Range Staggle 

x" best" ( i ) 
0 

Rp (A) ~Rp ( i) 

593 599 230 

755 759 277 

898 894 313 
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Transverse 

Straggle 

~R1- ( i) 

293 

358 

410 
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With the energy settings determined, the next task is to determine a 

source gas which, when analyzed, reveals a distinct -F19 peak. SiF 4 is chosen as 

the source gas and Figure 15 is the actual gas spectrum of the source which plots 

arbitrary analyzer magnet settings against the ioni\.~~ element masses. All ionized 

masses are determined though a simple ratio of masses (M) to arbitrary magnetic 

settings ( B) 

M 
ID 

1/2 
KB ( 2 - 33 ) 

where m is a number indicating the ionized charge state (for example, a singly 

ionized state would have m = 1 ), and K is a proportionality constant. All masses 

are essentially determined by first finding K for a given inert gas (Ar) which is 
\. 

mixed in with the source gas and is the predominant peak in the spectrum. For 

this SiF 4 gas source K == 0.016 and a magnetic setting of B == 271 produced a 

mass M == 19 corresponding to ionized fluorine. This peak is noted in the figure. 

The implanter is now readied for the ion implantation process. A high 

dosage is chosen ( ¢ == 3 x 1014 F- ions/ cm2 ), to provide a distinguishable effect 

of fluorine in the MOS capacitors. As a note, for the implantation runs the beam 

current remained relatively constant at I b&am line ~ 0.5 µA and yielded an 

average process time ( dosage and current dependent) oft pro~ess ~ 118 min./ run. 
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3.2.4 Gate and Substrate Metallization 

In order to complete the MOS capacitor as a device, a metallization step 

must be performed on the front and backside of the wafers producing the MOS 

(., 

structure. This process is carried out with a vacuum bell jar evaporator which 

heats a tungsten filament and deposits vaporized aluminum onto the wafer 

surfaces. In order to form the circular gates on top of the oxide layer a metal 

contact mask is laid over the wafer prior to evaporation. The su(strate side then 

has its oxide stripped off with a 10% HF solution which is confirmed when the 

surface of the substrate is hydrophobic. The wafer is blown dry with compressed 

N2 and the substrate contact evaporation can occur. 

There is one precaution which must be taken to ensure minimal Na+ 

contamination during· metallization. That is to clean the aluminum strips to be 

used evaporation along with their teflon handt:fn.g tweezers as follows: 

1. 5 : 1 : 1 

Allow this solution to boil for 5-10 minutes and thoroughly rinse in DI water. 

2. · 100 : 1 

Heat this solution for 30 minutes, thoroughly rinse in DI water and blow dry all 

\ 
tli.e pieces with compressed N 2 • In addition, the contact mask is organically 

cleaned by boiling it in methylene chloride and by drying. it with acetone and 

compressed N2 • Some of the effects of the metallization process are discussed with 
I' ·- ' 

the results in Chapter 4. 
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3.3 Subsequent Testing and Experimentation 

This section briefly describes two techniques applied- one after 

implantaiton and two after metallization as a means to procure more experimental 

information about the nature of fluorine in the Si/Si02 structure. Secondary Ion 

Mass Spectroscopy {SIMS), a way of determining the profile of the implanted 

species, is performed on the samples after F- implantation. A postmetal furnace 

anneal is carried out on the completed devices in an attempt to reduce the 

implantation damage and possibly change the electrical character of the devices 

from the as-implanted MOS capacitors. 

) 
I 

3.3.1 SIMS Analysis 

Secondary Ion Mass Spectroscopy or SIMS(JJ), uses an energetic beam of 

focused ions directed towards a sample and impinges the surface. The momentum 

transferred from the incoming ions (primary beam) to the sample surface sputters 

off surface species ( atoms and molecules) some of which possess positive or 

negative charges. These charged species are termed as secondary ions and are 

collected as they sputter off in a double focusing mass spectrometer for 

analyzation are measured on the basis of intensity versus depth. By applying 

SIMS to the samples in this thesis, the result is an implanted depth profile of the 

F- ions. 

For such an analysis to occur, implanted and unimplanted sample portions 

with an approximate surface area of 1 cm2 , are sent to Bell Labs of Allentown, 

Pennsylvania for SIMS testing. All of the profile data is collected from a Camera 

IMS-3F with an 0 2+ primary beam and checked against a library F- calibration 
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implant for quantitaion in Si. These compiled results are compared with 

computer profiles and are presented in the next chapter. 

3.3.2 Furnace Annealing 

As stated in the theory and background section of the previous chapter, 

annealing is the procedure by which i~plantation damage is removed and the 
\ . 

electrical activation of implanted species onto substitutional sites takes place. 

Since the annealing step occurs after metallization, some considerations are 

addresse1 concerning the annealing procedure to be used. It is clear that the 
) 

temperature of the furnace should be on the low end of the scale, in the range of 

\ 
400'~500° C which implies that very little recrystallization will occur and only a 

small fraction of the implanted species (20 - 30%) will become activated. At this 

low temperature, the risk of any aluminum-silicon complex framing is nearly nil, 

as well as diffusion effects in Si, thus preserving the as-implanted profile. The 

other concern stems from the furnace operating temperature and the risk of 

additional oxide growth and outside device contamination. Therefore a neutral 

ambient gas is flowed over the MOS capacitors during the annealing step 
' 

minimizing the possibility of these problems arising. 

For the postmetal anneal experiment, a furnace temperature of T = ,400° 

C is chosen and an anneal time of 30 minutes. High purity nitrogen (N 2 ) is 

passed over the devices at a regulated rate of 1.5 liters per minute. This will 

provide some additional data and gives a third class of devices to be used for 

testing (as-grown ryae~~implanted; F- implanted and annealed). 

~ . . 

/ 
J 

I 
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3.4 ·Device Characterization 

Once all~ of the processing of the devices is completed, electrical 

characterization studies of the MOS capacitors can now take place. Four 

classifications of capacitance versus voltage ( C-V) testing techniques are applied 

{ 

on the three different device types for obtaining information and for comparative 

analysis. These testing techniques are: 

1) general high frequency C-V 

2) Quasi-Static C-V 

3) bias temperature stressi'ng (BTS) and 

4) Terman 's analysis 
'q 
\ 

Each of the above is now briefly defined with respect to their particular results. 

This provides the reader with the necessary background needed to understand 

what information is to be obtained during the testing phase. 

3.4.1 High Frequency C-V 

High frequency capacitance-voltage (HFCV) • 
lS an electrical 

characterization of an MOS capacitor at an AC frequency of 1 MHz. The device's 

response primarily provides information concerning the experimental C-V curve's 

' I 

deviation from the ideal. As one might recall, Figure 8 in Chapter 2 showed how 

non uniformities ( various types of oxide and interface charges) within the metal 

Si02 /Si str11cture resulted in serious distortions of an ideal C-V curve. The" flat

band voltage shift from the ideal is a very 'useful measurable quantity as well as 

the overall shape of the experimental C-V curves when compared to an ideally 

generated one. In addition, the deliberate alteration of the substrate by ion 

• 
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implantation can cause a change in the doping density of the silicon near the 

surface and will in turn affect the measurement of the depletion capacitance. The 

introduction of impurities into the depletion layer is noted on a C-V curve whose 

cdep does not m1ch the cdep of an unimplanted sample. 

discussed as the data is presented in the next chapte_r. 

\ 

3.4.2 Quasi-Static C-V 

All of these will be 

The Quasi-Static(34) C-V technique allows for the measurement of the low 

frequency C-V curve. Essentially a time varying gate bias is applied across ah 

MOS capacitor by a voltage-ramp generator, and the resulting displacement 

current flowing through the capacitor is measured with an electrometer. This 

current is directly proportional to the differential capacitance and can be related 

to the capacitance using the known ramp rate. 

The low frequency C-V curve yields the true value of Cox, which by 

comparison to the Cox measured at high frequency, can be used to determine the 

series resistance which affects the HFCV curve. The resistance value can then be 

used to correct the high frequency oxide capacitance. 

3.4.3· Bias Temperature Stressing 

Bias temperature stress(35) or BTS, is a testing mode which can be defined 

literally by its title. An MOS capacitor is first biased with a voltage to create a 

positive electric field of about 1 MV /cm while the wafer is heated to 200°C. The 

wafer is allowed to cool to room temperature and a C-V measurement is made . 

. . 

This process is reflected again for the same temperature but this time a bias is 

61 

/ 



applied which results in an electric field of equal magnitude but opposite 

orientation (-1 MV /cm). 

The result is a C-V plot containing three curves: one at room 

temperature, one at 200° C with a positive b-field applied, and one at 200° C with 

a negatively applied b-field. Of interest is the shift of the C-V curve after positive 

bias temperature stressing in comparison to the room temperature curve. The 

shift is mainly the result of mobile ionic charge ( Qm) as defined in section 2.2. If 

the curve shifts to the left, there is a presence of positive mobile ions (Na+), if the 

curve shifts to the right then negative mobile ions (F-) are present. Observation 

of the negative BTS should find a C-V curve which nearly overlaps the room 

temperature curve since the opposite b-field application should return the MOS 

capacitor's electrical characteristics back to its original condition. If this is not 

the case, then something else in the MOS structure has affected the mobile ionic 

charge as it moves between the interface of the metal gate and the silicon dioxide 

interface under both bias and temperature stress. Some of these effects are noted 

· with the experimental results in Chapter 4. 

3. 4. 4 Terman' s A,ri'<ilysis 

The Terman (36) method of analysis is an application of high frequency C

V curves which are used to generate interface state density (Dit(E)) profiles. 

These profiles come about from distortive and stretchout effects in HFCV curves 

that deviate from the ideal. In essence, the Terman technique involves first the 

· calculation of the ideal high frequency C-V curve as a function of the gate voltage 

(CHF(V G)), which is to be compared with an experimental CHF(V G) curve. Due 

"· 
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to the relationship between VG an~ the silicon bond bending 'Ifs, every 
~ 

experimentally measured CHF(V G) data point can be correlated to the single ideal 

VG and w5 values are then paired and can produce a Ws vers~s VG curve 

containing all the informa;ion about interface trap level density for HFCV 

measurements. A Dit(E) versus w5 (the energy above the valence bond Ev) 

characteristic curve is very easily constructed by taking the derivati~f of W 5 with 

respect to VG (dw5 (V G)/ dV G). Since stretc o t · a common occurence with ion 

implanted MOS capacitors, the Dit(E) versus '115 d ta curves will prove to be of 

some importance when analyzing the fluorine implanted devices to those which are 

not. 

This concludes the chapter concerning the experimental methods used to 

{// learn more about the nature of implanted F- ions in metal/Si02 /Si devices. As 

the results are presented in the next chapter, one will see how each particular 

mode of C-V testing contributed some useful information concerning fluorine in 

MOS capacitors. This element will prove to become an interesting aspect of 

semiconductor research . 

. , 

( 
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Chapter 4 

Experimental Analysis and Results 

In this chapter the experimental results are presented an analyzed to 

determine the effect of fluorine implantation on MOS capacitors. First a 

computer generated fluorine concentration profile ( an ideal implant) is compared 

to the SIMS data for accuracy of the energy /range predictions. Second, the high 

frequency C-V's of the three types of MOS capacitors are compared to ideal 

HFCV's for flat-band voltage shift data and general high frequency 

characteristics. 

) 

Third, the Quasi-Static curves are used to determine the true oxide 

capacitance and to .study the low frequency behavior. Fourth, extensive BTS 

measurements are shown for all the device cases in order to provide an indication 

about the mobile fluoride ion concentration in these MOS structures. Fifth, 

Dit (E) profiles offer some unique information linked to the F- implants as all the 

device types are presented for comparison purposes. Last, a brief experimental 

summary is given concluding that some visible effects of the fluorine have been 

detected. 

4.1 SIMS Data/Computer Profile Simulation 

As a means of comparing the actual implanted fluorine profile to an ideally 

generated one, a software program entitled, "PROFILE"(34), from the company 

Implant Sciences Corporation is used because of their extensive elemental library 
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and m ultila.yer calculation capabilities. The fluorine implants described in 

subsection 3.3.3 are computer-simulated and should be considered as ideal profiles. 
·,., 

For each case, the computer generated profile is presented first followed by its 

accompanying SIMS profiles for fluorine implants into 800 A of oxide. 

In both cases, it is clear that the peak F- concentration appears in the 
~,. 

silicon below the Si/Si02 boundary. This provides a certain amount of 

consistency between the actual profiles and the computer generated profiles. One 

will note from the SIMS plots (Figures 17 and 19) that a discontinuity exists 

within the F- concentration profiles which is a mark~~foi/ the Si/Si02 interface. 

~~ ---
This is explained by the obvious change in materials and from the SIMS analysis 

report, which states that the secondary ion yield enhancement for F- in Si02 

compared to Si is about a factor of 2. This is not present in the computer 

generated profiles (Figures 16 and 18) since the software is not available to 

produce the fluorine concentrations data in silicon dioxide. , 

It should be noted that some consideration should be given to the 
' -

energy /range calculations for placing the peak closer to the interface even though 

for the present estimations the projected straggle ( ~ Rp) does allow the projected 

range (Rp) of the peak to sit very close to the Si/Si02 boundary. It would be 

better now that the software is available, to perform a series of F- implantation 

simulations to optimize the implant energy for the given oxide thickness. This 

energy value can be used for the ion implanter when the experiment is repeated to 

place the fluorine ion peak at the Si/Si02 boundary. 

As an aside, Figure 20 is the computer simulated F- ion concentration 

profile for 1000 A of oxide. Unfortunately, the sample sent to Bell Labs for SIMS 

testing showed no trace of fluorine unlike the other two. 
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Although there is no direct way of comparing this generated plot with an actual 

one, one can see by observation that the result is the same, the fluorine peak lies 

within the silicon and optimization of the implant energy could enhance the 

experiment. 

4.2 High Frequency Characterization 

\ 

,1 The as-grown oxlde MOS capacitors for each thickness are first compared 

to their respective high frequency C-V curves and some comments regarding the 

control group are made. Then the HFCV's for the as-grown, as-implanted, and 

implanted and annealed sam pies are all plotted together according to oxide 

thickness, and general observations concerning changes in electrical characteristics 

are made. "7abulation of the flat-band voltage shifts and the total variation in 

trapped charge (~Q) for each case is presented for easy reference. 

4.2.1 As-Grown Oxides To General Ideal Files 

rhe initial observations of the as-grown oxide high frequency C-V curves 

plotted against the ideally generated HFCV curves (Figures 21, 22, and 23), 

suggest a strong deviation from the ideal. Visible stretchout is present in all these 

samples as well as a pronounced dip in the experimental C-V curve between the 

level of 0.5 and 0.6 of C/ Cox· The dips are definite indicators of leaky oxides and 

at this point one could speculate upon whether it is the oxidation process or the 

substrate wafers themselves which have caused the nonuniformities present. 

Regardless of whatever defects. are present, these curves are used as the stand<;1,rd 

curves for each oxide thickness and are now aligned on top of the as-implanted 

./ 
and implanted and annealed MOS capacitor samples. 
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4.2.2 HFCV Flatband Shifts 

' 
As one would· expect, the introduction of an ionic species by implantation 

) should create a C-V stretchout effect, an obvious increase in the total amount of 

trapped charge present within the Si/Si02 structure. In addition, upon annealing 

the samples, a. noticable reduction in the stretchout should be seen restoring the 

shape of the C-V curve to be similar to the as-grown oxide C-V curves, which 

were presented in the last suqsection. This is partly the case with the 600 A and 

800 A samples (Figures 24 and 25) which show a sizable reduction in stretchout 

after annealing (plotted as open·· squares) when compared to the as-impla-nted 

devices (plotted as dia.monds). However, as one progessses with the experiment, 
<) 

an increase in C~in is also quite visible for these diagrams. This effect was 

noticed by Greeuw and Verwey(l) as they performed high dosage F- implants and 
. 

speculated on changes of average doping density near the surface of the silicon 

which would certainly affect the depletion region capacitance and Cmin. 

Note that this is not the condition with the 1000 A sample shown in ., 

Figure 26. Stretchout effects are not reduced upon annealing and Cmin of the 

annealed sample is lower than the minimum capacitance of the as-implanted 

sample. The only speculation which can be proposed at this time is that the 

annealing process is not as effective as the oxide thickness increases and that after 

a certain thickness for a given dosage, annealing does not occur. Upon observing 

this series of plots, .the flat-band shifts ( d ¥ FB) f~r each oxide thickness can be 
. ~ 

.. 
estimated, and the room temperature number of fixed charge (dNq) calculated. 

"' 
Note that the 1000 A implanted· and annealed sample was calculated as having its 

dN Q increase after annealing as suggested above . 
. , 
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4.3 Quasi-State C-V Measurements 

· It has previously been mentioned that one of the important features of a 

Quasi-Static C-V measurement is to find out whether or not a true Cox can be 

achieved at low frequencies. As an illustration, a 600 A as-grown oxide sample at 

low frequency is compared to an ideally generated low frequency C-V curve in 

Fugure 27. The; oxide capacitive agreement is relatively good and the slight 

distortion and shift to the left of the ideal is consistent with the high frequency C

V results. The fall off of the experimental Quasi-Static C-V curve from the ideal 

at increasing positive voltages may be an indication of a leaky oxide problem. 

Nevertheless, by making the low freuency C-V measurements, it becomes apparent 

that a series resistance is present at high frequencies and should be calculated. It 

is noted that in performing 1 MHz conductance versus voltage (G-V) 

measurements and utilizing the series resistance method described by Nicollian 

(35) '• 
and Brews , an ayerage value of RsERIES 220 0 is calculated for the three 

different oxide thickness examples. 

Other Quasi-Static figures include a plot of all three as-grown oxide MOS 

capacitors normalized (Figure 28) which shows good low frequency curves for each 

oxide thickness, anp once again the increasing shift to the left as the oxide 

thickness increases is consistent with the HFCV curves. As an aside, one may 

have noticed a downward tilting of Cox in Figures 24 and 25 as the gate voltage 

becomes increasingly more negative. It is assumed that this is a high E-field effect 

and this hunch is confirmed by some Quasi-Static measurements of similar nature. 

However, due to the noise and leakage surrounding these low frequency C-V 

measurements, none are presented at this time for review. 
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4.4 Bias Temperature Stress Measurements 

The bias temperature stress {BTS) experiment is performed for every type 

of sample (as-grown, F- implanted, and F- implanted and annealed) in the same 

manner with the hope of seeing some consistency. All MOS capacitors are heated 

to a temperature of T = 200° C and are then stressed with a positive and negative 

bias proportional to their oxide thickness in order to produce an electric field 

.. 
across the oxide on the order of ± 1 MV /cm. As had been mentioned before, if 

/ 

the fluorine is in a mobile state af~er implantation, the BTS high frequency curves 

should detect the presence of a negative mobile ion. Note that in the legend listed 

on Figure 30, solid line for initial or as-grown oxide, solid suare for positive bias at 

200° C, and open square for negative bias at 200° C, is consistent for all BTS 

plots. 

Figures ·29, 30, and 31, the 600, 800, and . 1000 A as-grown oxide BTS 

curves, respectively, show a relatively normal response to a bias temperature 

stress test. The higl1 frequency curve's shift to the left under a positive ~-field 

indicates the presence of a positive mobile ion, most likely Na+ contamination 

from the metallization step. Under negative applied bias each of the C-V curves 

returns to a position very close to the original room temperature C-V curve, 

concluding that only mobile charge is present in these samples. 

For the fluorine implanted samples of each oxide thickness, that is, Figures 

32, 33, and 34, the B_TS behavior is much different. Positive biasing depicts a 

shift to the right of the room temperature implanted curve, an indication of a 

negative mobile ion within the MOS capacitor. It is safe to conclude that this is 

fluorine and, although the shift is not as pronounced as with sodium, it is still 

visible and measurable in all these cases. One should note that under the negative 
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bias stress,· the C-V shift continues to the right and is less noticable with an 

increase in thickness. A possible answer for this is that the mobile F- ions become 

fixed within the damaged Si/Si02 layer and have changed the electrical character 
u 

of the devic~·q'o prove if this is the case, a more in-depth experiment would have 

to be performed. 

Finally, for the annealed MOS capacitors, Figures 35, 36, and 37, there are 

various effects present, but in all three samples there is a decrease in the shift of 

the C-V curve for both positive and negative bias temperature stressing. The 

biased curves tend to hover around the room temperature curve possibly 

indicating that fluorine as an ion has becom'e less mobile after annealing. The 

variation of the Cmin from sample to sample can only be explained by the unique 
J ,., 

/ 

way in which the device may have reacted under BTS testing. It may be stated 

that the annealing process 9id not completely remove the implantation damage or 

electrically activate the fluorine species. 

From the figures listed, an estimated flat-band voltage shift (~ V Fs), is 

used to calculate both the mobile positive ions (Na+) and the mobile negative ions 

,;/ 

(F-) for the conditions when they are applicable. The values calculated do possess 

a sizable negative surface concentration (N Q-), corresponding to the implanted 

fluorine, which was expected. The information provided does give some initial 

proof of the mobility of a fluorine ion, but additional experiments need to be 

made. 
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4.5 Interface State Trap Density Measurements 

fl 

The last measurements made are the high frequency ideal to experimental 

Dit(E) profiles for each case of oxide thickness with all three types of MOS 

capacitors represented. The midgap Dit(E) is initially 200 for each of the as

grown oxide samples (Figures 38, 39, and 40). After the samples are implanted 

and annealed, the midgap Dit(E) is down by an order of magnitude ( < 50). This 

must be an indicator of the effect the nJ)orine is having on the interface after it is 

both implanted and annealed. The implanted curves show that this results in 

most of th~ reduction of the interface state density, while the implanted and 

annealed curves are just a bit lower and tend to be flatter for a longer span of 

energy. 

One should be made aware of the spike-type peaks visible in the 800 and 

1000 A samples, Figures 40 and 41 respectively, that are at a level of energy 0.25 

eV above the valence band Ev. In both situations, implantation and annealing 

,greatly reduces this peak t.o a much more tolerable level. Figure 39 shows the 

im.planted Dit-(E) curve with a spike at 0.2 eV which disapppears upon annealing. 

The position in energy ·suggests that it is an acceptor level which has been 

eradicated by the implantation of fluorine with annealing . 
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4. 6 Experimental Summary· 
, 

Overall, this thesis experiment produced some rather unique results, which 

were to be expected from the literature readings concerning fluorine in MOS 

structures. Specifically, the results of a positive voltage shift from the BTS 

testing indicates a negative ion mobility, as was the case with Williams and 

Woods(B), and the changes in the HFCV curve after fluotine implantation with 

regard to stretchout. Changes in Cmin were noted and this corresponds to some 

of the results of Greeuw and Verwey< 1>. There is much to be learned about the 

properties of elemental<ii~·d ionic fluorine in the MOS capacitive structure as well 
·--. 

as its effects at the Si/Si02 interface which are very important with regard to .. 

discreet device research. This experiment shows much promise and with some 

proper planning and considering some of the suggestions recommended in 'the next 

chapter for experimental redesign, some of the speculations here could turn into 

positive conclusions. 

. ·1 
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Chapter 5 

Conclusion 

,,,, ·, .. ·-~~,- .,, •;,,,. ' .,. ~··.' -. 

t: 

In the final·· chapter, some suggestions are made for future work. 

Guidelines are presented as a means to how the experiment may be improved 

upon, or how a wider testing base may be developed in order to draw more 

accurate conclusions from the1 analysis. Finally, some personal comments are 
' 

addressed to the reader for his or her own personal information and understanding 

as the experiment reflects on the work accomplished. 

5.1 Redesign or Experiment 

If this experiment were to be redone or modified, I see five experimental 

parameters which, if performed more carefully, would vastly improve the outcome 

of the results. They are: 

1) Quality oxide growth which will produce a control group of MOS 

capacitors with little deviance from the ideal; 

2) Dosage varaition during the implantation runs ( one high, one medium, 

and one low) certainly should vary the electrical behavior in the resulting devices; 

3) Various annealing treatments before (such as RTA) and after 

metallization to optimize this process step and achieve better results; the 

postmetal anneal could have its temperature increased to T = 450° C, for 

example; 
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4) Ensuring a clean ( 01r as clean as possible) metallization step in order to 
0 

limit the sodium contamination; 

, , 

5) Modeling of the MOS capacitors with the equivalent circuit model and 

attmepting some SPICE simulations as a comparison to experimental curves 

which are non-ideal. 

These are obviously, as I had mentioned, only suggestions for improvement 

and will require a large investment of time in preparation for such an intricate 

experiment, but this must be done to have more significant results. 

5.2 Final Comments 

This is the first time such an experiment has been done at Lehigh 

University with the entire device processing sequence contained within the 

Sherman Fairchild Laboratory. It is obvious that very rough results have been 

obtained. However, detectable effects were observed, which indicate that 

improvement or refinement of the experiment should be made in the future. This 

is without a doubt a challenging and important problem because the results to be 

obtained are on the leading edge of implanted MOS device research and can 

enhance the knowledge of a very new field in silicon device technology. 

..... 
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