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Abstract 

Computational architectures must be reevalu1!,ted in the light of VLSI. In 

the past, processors and even arithmetic units were constructed from many 

microelectronic components, interconnected on some substrate. Today, 

arithmetic units and even whole processors are integrated into a single silicon 

die, whether in CMOS or bipolar technology. A fundamental problem as VLSI 

scales to smaller features and higher densities is that the delay associated with 

wires is becoming a larger and larger portion of the total delay, and threatens 

continued advances in system speed. At least for a certain class of problems, 

the answer is to switch to bit-sequential architectures. In these architectures, 

wire lengths are kept very short, and there is almost no global communications, 

aside from the clock. For many problems in this class, floating point number 

representation is necessary, bt1t most of the published work in bit-sequential 

arithmetic uses the fixed point format. This thesis describes the novel design of 

.. 

a floating point bit-sequential multiplier and adder. 0.33 Mflops addition, and 

0.9 Mflops 1nultiplication are acheived with 12,192 and 9,024 transistors, 

·respectively, using a 1.25µ CMOS technology. 
,_ 
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Chapter 1 

Introduction 

1.1 Parallel Processing and VLSI 

Recent advances in integrated circuit manufacturing have made custom Very 

. ........__. 

Large Scale Integrated (VLSI) circuits relatively inexpensive and widely 

' 

available. Computational architectures must be reevaluated in the light of VLSI 

advances. In the past, processors and arithmetic units used many discrete 

components placed on a substrate. The current VLSI technology allows 

arithmetic units and even whole processors to be integrated into a single silicon 

die, both in CMOS and bipolar circuits. There is even the possibility of 

integrating multiple processors, at least simple ones, onto a single die. Certainly 

many processors can be integrated onto a common substrate, and. into a 

common system. However, the design decisions made in that previous era are 

not necessarily the correct ones in the present era of VLSI. 

A fundamental problem as VLSI scales to smaller features and higher 

densities is that the delay associated with wires is becoming a larger and larger 

portion of the total delay, and threatens continued advances in system speed. 

Barring any breakthrough in interconnection technology, such as 

2 
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,. 

superconducting interconnects o·n VLSI chips, it is necessary to find a way to 
/, 

exploit millions of transistors on a single silicon die, while shrinking the lengths 

~ of the wires being used. At least for a certain class of problems, the answer is to 

switch to bit-sequential architectures. In these arc~itectures, wire lengths are 
i ' 

kept very short, and there are almost no global communications, aside from the 

clock. Another problem in VLSI is the limitation of package pin counts. The 

advantage of bit-sequential architecture can be more than an order of 

magnitude reduction in pin counts. -,~ 

1. 2 Fixed Point and Floating Point 

There are many times in signal proc~~sing when fixed point arithmetic is 

inadequate, due to limited dynamic range. In these cases, floating point 

arithmetic is necessary. To date there has been a plethora of papers published . 

about fixed point bit-sequential arithmetic units[l] [2] [31, and a dearth of papers 

about floating point bit-sequential arithmetic units. This thesis attempts to 

redress that lack by reporting the design of two fundamental floating point bit

sequential arithmetic units, a multiplier and an adder . 
. ' 

1.3 Thesi·s Outline 

Chapter 2 explores the argument for bit-sequential arithmetic in more detail, 

and reviews some examples of fixed point bit-sequential arithmetic units. In 

chapter 3, the design of a novel floating point bit-sequential multiplier is 

3 
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reported in detail. Qhapter 4 reveals the design of a novel floating point bit-
'· 

sequential add~r. · Both these processors accept two floating point operands in 

VAX format bi.t~sequentially, and produce their results in the same format. In 

chapter 5, two applications are described for the arithmetic units. developed in ·. r .. 
.. 

this thesis. Chapter 6 states the conclusions . 
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On the Suitability of Bit-Sequential 

Architectures for VLSI 

2.1 Introduction 
) 

/ 

• 

., 

In programming a 
1

function _on a di,gital computer, it is always possible to make ~ 

tradeoffs between the time to run the program, and the space, or amount of 

memory, which the program uses. A similar, but more complicated situation 

exists with regard to desigI,1ing digital hardware, especially with regard to VLSI. 

Again, a tradeoff can be._ made between time and space, or in this case amount 
' 

of hardware. However, :in the case of the hardware implementation of a 

function, there is a cost of communications which is not appa.rent in the case of 

software. In the case .of' hardware, afly
1 

information which must be passed 
.· ',, 

between two or more separate physical entities must pass over some physical 

medium. Let.,us limit ouridiscussion to the case of conducting wires.* 

... '. 

'. 

* The advent of optical communication may change the constraints in the near future, but for 
now, optics is not available· to the VLSI designer. 
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2. 2 Wire Delays in .VLSI 
,. 

' 

Wires take up both area and time. VLSI is essentially a planar technology, 

therefore we discuss the area of wires embedded in a plane. It is a simple 

matter to extend the argume;nt to. the 21h dimensional case of multiple planes 

which can communicate only by orthogonal contacts. The cost of a wire is its 

area in the plane, which is proportional to its length and widthJ41 There is 

another cost, which is more subtle. Since wires are embedded in a plane or 

f ' .. 

planes, and have finite width, then the perimeter of a module which must \ 
~ I 

connect to n wires is proportional to n. If the module is square, then the 

2 

minimum area it can possibly have is proportional to 
nP 
4 

. It can be seen, 

.. 

then, that it is very important to balance the area of wires and the area of the 

modules which they connect, lest the VLSI device be overwhelmed by the area 
' 

of wires. In fact, many VLSI devices today have about half of their area 

devoted exclusively to wiring. 

I f~ 

The other cost of wires is in their delay. As VLSI technology continues to 

scale to smaller and smaller dimensions, the capacitance of the wirin&. per unit 

length does not decrease. This is due to the fact the t·he capacitance per unit 

length is proportional to the ratio of width to height above the substrate. As 

,_.,. 
the technology scales in both directions, this ratio remains aproximately fixed. 

Also, the resistance, which is inversely proportional to the width and to the 

. ' 

j· 

6 

' '· 



-
,, 

I 

•• 

L•-' 

... 

... 

thickness of the wire, goes up as the square of the scaling. Therefore, the RC 

time constant of the wire goes up quadratically with the scaling. Now, it is 

possible to ignore the wire delay, and regard it as ~ lumped capacitor, if the RC 

delay of the wire is significantly shorter than the gate delayJ51 Otherwise, the 

wire delay becomes a significant part of the total delay. The delay of the gates 

themselves, however, does scale down. ,The ref ore, we see that the RC time 

constant is going up ·approximately quadratically, while the gate delay is going 

down as the channel lengths. 

The result of this analysis is that the length of a "delayless" wire is 

decreasing. Note, however, that the size of the chips does not decrease. As the 
1:~ 

technology continues to scale down, designers keep the chip sizes the same, and 

put in more devices. This is the point: if the architecture of the device is such 

that there are wires which are in the path which determines the cycle time of 

the device, then we will soon reach the point where further scaling, while it may 

increase the density of the device, cannot improve its speed. What can we learn 

. 

from this argument? In order to gain increases in throughput which are 

commensurate with the gains in the transistors themselves, it is necessary to 

reduce the lengths of the wires in the critical paths of the architecture. 

2. 3 Bit-sequential architectures 

The logical conclusion of the above discussion is to use a bit-sequential 

architecture. In a bit-sequential architecture, data is processed word-parallel-

7 
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bit-serial, rather than word-serial-bit-parallel, as in a microprocessor.~ A bit

sequential architecture is also - the ultimate conclusion of a pipelined 

architecture. In systolic architectures, multiple processing units operate in 

lockstep with each other, and only communicate with nearest neighbors. In a 

semi-systolic architectur~, this constraint is relaxed somewhat to allow some 

globally broadcast signals. By processing data one bit at a time, in systolic or 

semi-systolic architectures;· a VLSI device can be expected to run at a speed 

which more closely tracks the fundamental limits of the technology than a 

parallel architecture can . 

There are other reasons for wishing to use a bit-sequential, architecture. 

Chief among these is the high degree of regularity in designing a larger function 

as a collection of identical cells. This has the effect of reducing design time, 

which is critical for VLSI. The problem with having a million transistors on a 

single die is defining what to do with them, and designing them. Reusing a 

small collection of modules in large regular arrays is one way of addressing these 

issues. Another point is that not having to drive large loads means that most of 

the transistors in a serial architecture · will be small. This increases the 

transistor density of the device. Also, since there are almost no global wires, the 

density goes up again. Further, there are many fewer transistors, because data 

is being processed only one ,bit at a time, rather than all at once. Therefore the 

area of a bit-serial implementation is much reduced from a parallel 

8 
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implementation. In ·the domain of delay, the critical paths are limited to very 

few ·gates and very short wires, so the clock rate goes up. Balanced against this 
. 

• 

higher clock rate and lower area is a much lower throughput. 
,.,:. 

An important figure of merit for VLSI is the ratio of throughput to area. If 

the reduction of. area counterbalances the decrease in throughput in equal or 

I\ 

greater proportion, then it is advantageous to use a bit-seqential architecture . 
.. , . 
'. ' ~' ; 

This is especially, true in building parallel arrays of computational units to 
) -

' ... ': 

perform computat{qnally intensive calculations, i.e., systolic arrays. 
. . 

' . -~' ~· 
.. 
~ 

In all fairness .a:·nd honesty, one must look at when it is not a good idea to 
I " 

use bit-sequential architecture. These seem to be the two extreme cases: when 

,c 

the required throughput is so low that a general purpose processor is more than 
. . 

a match, and whe1n the data rate approaches the maximum clock rate of the 

technology. Whe.n·: the data rate approaches the maximum clock rate, bit-seri_~l 

computational units must be interleaved to keep up. At that point, it may 

become simpler to use a pipelined parallel implementation. 

2.4 Fixed Point Bit-Sequential Arithmetic Units 

At this point, it is useful to survey some "existing bit-sequential implementations. ,, 

Since this thesis · is limited to a floating point multiplier and adder, the 

d~scussion will be limited to fixed point multipliers and add~_rs. A bit-sequential 

full adder is simplicity itself (see Figure 2.1 ). 

g 



B 

i 

' 

. " ' ' 

~ 

. . .. . . 

J 
.... 

A 
.. 

. 
'-~C 

f- -- - -- - - - - -- -- - - - -·- - - - - - -- - -·- , . 
. I I ., I 
I . ·, 
I 

' , • I 
. I I 

I I 
.. I I 

_) I I 
I - - lD Q • . - - . 
a: I 

' Full > Cl I 
I 

. I Adder . . 
I ,. 

I . 
.. 

I 
Carry ' ' . I - - lD Q J' . ·' 1 - -

· 1 I 

. . .. I ~ Cl .. 
· ... , -. 

I .. 
. ,-

' .. r & . 
.,.: 

·:\ -.I -
J: I 
·t I 
' I () I 
:a I .. j 
:,I 

I 

I 
. ·, I 
J I 
J.,. -- - - - - - - - - - . . - - - - - - - - _. - - - - - - - .J .. 

- . .. 
'.' 

, 

' . . .. 
,, 

' 
-. . . Reset 

· Figure 2.1. Bit-Sequential Full Adder 
C ; 

i 

' . . 

-- Sum 

It consists of a full adder, two D flip-flops and an AND gate. Both operands are 

11· .. • ,, 

input one bit at·: a. time, least significant bit first. The output also appears one 
' 

bit at a time, least significant bit first, delayed from the input by one clock 

cycle. 

j 

There 
. ' 

many bit-sequential multipliers • 
Ill the 1 it er at u r~e. Two are 

fundamentally aiff erent approaches are described here. One is purely systolic, 
[_,, 

and accepts both operands in bit-sequential form. The other is semi-systolic, 

10 
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and is actuilly a parallel-serial multiplier. The semi-systolic multipliers receives 
' ' 

one of its operands in parallel, and one in serial formf6l (see Figure 2.2). 
' . .o ,. 

. · .. ,Coef n-l I Coef n-2 . 
'· . 

.... 
~ , , , , '· . '' 

, , 
•• . 

' ·, 
• • • FF FF FF 

.. ~ 

. . ' '. 

/,. 
, 

'•' 

,. Data • • • .!· ,. 
} 

' ,. : 

.. 1 I 1 , 
' 

, I 1 I , , , , 
' & & • • • & 

' 
·, . ' \'', 

; 

' 

-·· . ). 
·. , 

,' ~-- , ' , I ' ' ... 
. · . 

.' 

;: 

B-S B-S 1, 
,: . 
. - - -- FA - FA -'' • • • 

B-S - -- FA - Product 
. 

-
: 

•, 

, .. " . 
,, 

· ;1~ -·... Figure 2.2. Semi-Systolic Bit-Sequential Multiplier . ,; . ~ 

f..t 

The multipller multiplies two n-bit numbers, producing a 2n-bit result every 2n 
• . I 

' 

• ~ ' • 
'I 

clock cycles. The delay is 1 clock cycle. It is semi-systolic because the serial 
' . 

input is brqadcast to every cell. 
., \ 

The original bit-serial multiplier seems to have been described by Jackson, 

Kaiser .and· McD0nald[7] (see Figure 2.3). n of these sections may be 

concatenated to form an n bit multiplier. In this case', both operands are input 

serially, and there ar,e no broadcast signals. Two n-bit numbers are multiplied 

11 
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Figure 2.3. Kaiser:, Jackson and McDonald Bit-Sequential Multiplier Section 
,. 

to produce a truncated, n-bit product every n clock cycles. The truncate input 

" is the same .sjgnal as the reset to the bit-sequential full adder. The delay of 

each section is two clock cycles. The truncation has the effect of right shifting 
' 

the partial product produced in each cell to align it with the partial product in 

the next cell, much as is done in manual multiplication. 

12 
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The fixed point multiplier which is used in this thesis is a variation of the 
I 

Kaiser, Jackson, McDonald multiplier, which was described by Scanlon and 

Fuchsl81 at the 1986 IEEE International CorJ,ference on Computer Design (see 

Figure 2.4 ). 
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I I 1 I 

~ ~ & 

I I 

Full 
-

Adder -
·- ,.... ·- ""' 

--
. --

--

--

FF 

FF 

& 

& 

>1 -

FF 

--

--

--

--

--

X out 

y 
out 

pp t 
OU 

SP t OU 

R out 

Figure 2.4. High Performance Bit-Sequential Multiplier Section 
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This multiplier, which differs from that of Jackson, et al, only in the addition of 

one D flip-flop and one 3-input complex gate per bit, produces the 2n-bit 

product of two n-bit twos complement numbers every 2n clock cycles. The Y 

input corresponds to the coefficient input in the previous multiplier, which has 

been serialized.( The PP signals are the partial products corresponding exactly 

to the PP signals in the previous multiplier. The SP signals are the least 

significant n bits of the partial product, which were lost in the previous 

multiplier. Having the complete 2n bit product will be important in the next 

chapter on floating point multiplication. 

----

14 
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Chapter 3 

Floating Point Bit-sequential Multiplier . 

,· 

3.1 Introduction 

There are cases where the dynamic range and precision of fixed-point 

11 representation are inadequate. Examples are large matrix operations, large 

FFT's, etc. Also, many algorithms are initially designed and simulated in 

software, using floating point arithmetic, on large general-purpose computers. 

However, parallel floating point arithmetic unit~ are large and very expensive . 

• 
Putting together many of them would be prohibitively costly in area, power and 

dollars. For these reasons, a floating point bit-sequential multiplier, and a 

floating point bit-sequential adder have been designed. This cha·pter describes 

the multiplier, and the next chapter describes the adder. 

I, 

The floating point number representation chosen for this multiplier is in 

VAX F format. The mantissa is a 24 bit binary string. The exponent is an 8 bit 

binary string in two's-complement format, biased by + 128. The sign is a si11gle 

bit which is asserted for negative values. The value of the number is 

(-S) X (2E- 128) X (Mx2- 23 ). For example, ---32 would be represented by 

S= 1, E= 10000101, M= 100000000000000000000000. 1 would be represented by 

15 
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· S==O, E== 10000000, M= 1 • -63/64 would 

represented by S= 1, E=Olllllll, M= 111111 • The 

multiplier performs fair rounding according to the IEEE754-1gs5 standard:l91 If 

a result lies exactly halfway between two representable results, then the even 

result is chosen. 

3. 2 Multiplication Strategy 

Floating point multiplication is not terribly more complicated than fixed point 

multiplication. The algorithm for floating point multiplication is:l 101 

PAR DO 
1. multiply the two mantissas, and obtain a full

precision result 
2. add the two exponents 

END DO 
3. normalize the mantissa, and adjust the exponent if 

necessary (given normalized operands, only 1 bit of 
adjustment at most) 

4. round the full-precision mantissa to the original 
precision, and adjust the exponent if necessary 

5. if the result exponent is outside the representable 
range, then signal an underflow or overflow, 
respectively, and adjust the output 

Refer to Appendix A, figure A.I, for a block diagram of the floating point 

multiplier. The implementation receives each of the data words on two wires: a 

mantissa wire, and an exponent wire. Every 24 clock cycles, a complete 24-bit 

mantissa, including the hidden bit, can be entered into the multiplier, least 

significant bit first, on the mantissa wires (MCDMAN and 1'1PYMAN). Every 
.r 
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24 clock cycles, the corresponding exponent and sign are received on the 

exponent wires (MCDEXP and :MPYEXP). The eight bits of the exponent are 

entered least significant bit first, fallowed by the sign bit, followed by 15 bits 

which are undefined and ignored. There is also a reset input, which must be 

entered coincident with the lsb's of the mantissa and the exponent. A block 

diagram of the multiplier can be found in Figure 3.1. 

3. 3 Detailed Implementation. 

The multiplier is broken into two parts: a mantissa multiplier, and an 

exponent/reformatter. The mantissa multiplier . is a completely systolic 

implementation, as described in the previous chapter. The delay from the 

appearan'Ce of the lsb of the input to the lsb of the output is 25 clock cycles. A 

full 48 bit result can be produced every 24 clock cycles. The mantissa multiplier 

is fully pipelined, so that a multiplication can be performed every 24 clock 

cycles. 

The exponent/reformatter (EXPFMT) section takes the full-precision 

mantissa product, and the two exponent and sign inputs, and formats the 

outputs. Within the EXPFMT, there are two basic operations: finding the sign 

and exponent of the result, and rounding and adjusting the output mantissa 

and exponent. The exponent of the result is found with a simple bit-sequential 

adder. However, since each of the two operands exponents are biased by plus 

128, one of the biases must be subtracted before the result exponent {XP) is 

17 
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correct. The sign is found by just XO Ring together the signs of the two input 

operands to obtain the sign of the result (NEG). Once the result exponent is 

found, it is necessary to detect certain conditions. 

The first condition is overflow. If the resulting unbiased exponent is greater 

than + 127, then it is outside the domain of the representation, and a flag 'is set 

to indicate overflow (OVF). Since the multiplier pipelines three operations, the 

flag is pipelined. A related condition is maximum exponent (1,1XP). If the 

unbiased exponent is exactly + 127, then an overflow results if either the 

mantissa product is >= 21 , or rounding the mantissa forces a carry out of the 

most significant bit. This flag is also pipelined. 

The next condition is und~rflow. If the resulting unbiased exponent is less 

than -128, the_n it is outside the domain of the representation in the other 

direction, and the underflow flag (UNF) is set. However, an underflow only 
~; 

' 

occurs if the res_ult is finite and too small to be represented in the dynamic 

range of the representation, but not if the result is exactly zero. If either of the 

two input exponents is exactly O (biase.d representation), then that input is O, 

and the result is exactly zero, and not an underflow. Therefore, if that case is 

detected the zero flag (ZERO) is set, and the UNF flag is not set. A related 

condition is minimum expone11t minus one (MNP). Notice that although the 

representable range of unbiased exponents is (-127,+127], that UNF is not 

asserted unless the resulting unbiased exponent is less than -128. If the 
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resulting unbiased exponent equals -128, then an underflow might or might not 

occur, depending on the mantissa product. If the mantissa product overflows 

either before or after rounding, then the exponent will be incremented by 1 to 

-127, and no underflow will occur. If, however, no mantissa overflow occurs, 

then an underflo~. will be signaled. 

In summary, the result of the first stage of the EXPFMT is the sign bit 

(NEG), the eight bit ·biased exponent (XP), and five flags: overflow (OVF), 

maximum exponent (:MXP), underflow (UNF), minimum exponent minus one 

(MNP), and zero (ZERO). Since the most significant bit of the mantissa 

product does not occur for 72 clock cycles, or tl\fee words, each of these 

fourteen bits is pipelined three times, 24 clock cycles apart. 

The last stage of the EXPFMT, and of the bit-sequential floating point 

multiplier, is rounding the product of the mantissas, and formatting the,)result. 

Recall that the mantissa format is: 

0 -1 -23 2 . 2 . . . 2 

and that the mantissa is a positive magnitude. Also, except for zero, the 

mantissa must be normalized, i.e. the mantissa must lie in the range 

2° ~ mantissa <21 - 2- 23 . Multiplying two 24 bit numbers results in a 48 bit 

number, whose format is: 

19 
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and the range of the result is 2° ~ mantissa product ~ 22 - 2- 21 + 2- 46 • If 

the most significant bit of the result is set, then the mantissa overflows, the 

mantissa is right shifted one bit, and the exponent is incremented by 1. If the 

:MXP flag has been set for this operation, then OVF is asserted, and the 

mantissa and exponent are set to all ones. The sign of the result is unaff e·cted. 
0 

The mantissa must be rounded to a 24 bit result. Since it is impossible to 

know which will be the least significant bi,t until the most significant bit is 

output by the mantissa multiplier, the 24 most significant bits of the result, a 

guard bit (GRD), and two different rounding bits are saved:_round if the most 

significant product bit is asserted (RNDMSPT), and round if the µiost 
,/ 

significant product bit is negated (RNDMSPC). The fair rounding scheme 

requires always rounding to an even result if the full-precision result is exactly 

halfway between ·two results, i.e., the round bit is set, and all lower order bits 

are zero. In that case, only round (increment the mantissa), if the mantissa is 

odd. In the case that the mantissa product is ~21 , then the least significant bit 

of the product will be 2- 22 , and the result will be rounded up only it the 2- 23 

bit is set, and if either the least significant bit is set or any bit at all to the right 

of the 2- 23 bit is set. In other words, only if the round bit is set, and the result 
j 
/, 
I 

is odd, so round -to even in any case or the rtjund bit is set and the bits to be 
1 
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truncated are > 1 /2 the least significant bit. Similarly, in the case that the 

mantissa product is <21 , then the least significant bit of the product will be 

2- 23 , and the result will be rounded up only if the 2- 24 bit is set, and if either 

the least significant bit is set, or if any bit at all to the right of the 2- 24 bit is 1 

set. 

It is important to know whether rounding the mantissa will overflow the 

mantissa, because that forces the exponent to be incremented, and may cause 
Q.I ~ 

an overflow if true, or an underflow if false. If it were necessary to wait to 

'· detect this condition until after the complete result were obtained, then the 

multiplier would have to add another pipeline stage. Fortunately, it is possible 

to detect an overflow from rounding even before the rounding is done. It is only 

necessary to detect that the 24 bits of the mantissa, assuming that the mantissa 

product will not have the most significant bit asserted, and the round bit are all 

equal to one. This is the only case which can force an overflow from rounding . 
../ 

This case is detected, and if true, forces the mantissa to be right shifted and the 

exponent to be incremented by one, with the possible consequences previously 

described. 

It then remains only to perform the actual C(_9unding with a simple bit-... 

sequential half adder, and to increment the exponent with another bit

sequential half adder. If an overflow occurs, the mantissa and exponent .are set 

to all ones, without affecting the sign bit. If an underflow occurs, or the result 

' . r 
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is exactly zero, the mantissa, 1exponent and sign are all set to zero. If the result 

does not exactly match the full-precision result, either because of truncating the 

full-precision mantissa product, or because of an overflow or underflow, an 

inexact flag (INX) is asserted. A· new result appears on two wires (PRDMAN 

and PRDEXP) every 24 clock cycles or less frequently. There is an output flag 

(R,T7 4), which indicates the least significant bit of a new .result, and negative 

(NEG), zero (ZRO), overflow {OVF), underflow (UNF) and inexact (INX) flags 
-~~-, A•F,,· 

which are also output. 

3.,4 Conclusion 

The bit-sequential floating point multiplier is designed with 1.25µ CMOS 

standard cells from the AT&T libraryJ 11
J That library has two sets of cells: an 

• 

area optimized set which uses 5µ transistors, and a performance optimized set 

which uses 20µ transistors. This design used the area optimized set. It uses 381 

flip-flops and 556 gates, or 9,024 transistors. The deepest path between two 

flip-flops is 5 gates deep. Its maximum clock rate at 5.0V, 25 ° C and nominal 

processing is 21.8MHz With a latency of 24 clock cycles, that is equivalent to 0.9 

:rvIFLOP. The delay from the least significant bit of the input to the least 

significant bit of the output is 74 clock cycles. Since the multiplier only has 14 

I/O's, it could be packaged in a 16-pin plastic dip; that is a very cheap MFLOP. 

The complete schematics of the multiplier are in-cluded as Appendix A, Figures 

A.l-A.16 
J 
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Chapter 4 
Floating Point Bit-sequential Adder 

4.1 Introduction 
1: 
"· ,, 

The floating point bit-serial adder uses the same format as the multiplier. It 

has two additional inputs: a subtract augend input (SUBTRG), and a subtract 

addend input (SUBTRD). When these signals are asserted, their respective 

operands are negated by inverting their sign bits. The adder can therefore 

implement a+ b, a- b, - a+ b and - a- b. The adder does, however, have a 
' 

slightly longer delay than the multiplier: 76 clock cycles instead of 7 4. The 

adder is also not purely systolic. The exponent difference, mantissa 

denormalization, arithmetic and renormalization are bit-serial, but the exponent 

adjustment is done by a parallel counter, as the mantissa result is being 

generated. For this reason, the floating point adder is the speed limiting 

! 

component in a bit-sequential system, rather than the multiplier. 

4. 2 Addition Strategy 

' 
Tlie adder is not as e~ily broken into mantissa and exponent parts as th~ 

multiplier. The algorithm for floating point addition is somewhat more 

convoluted than for multiplication:[IO] 
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1. find the difference in the exponents, select the larger 
2. denormalize the smaller exponent mantissa (right shift) 
3. add or subtract the mantissas 
4. mantissa normalization and rounding, adjust the exponent 
5.rdetect overflow or underflow 

4. 3 Detailed Implementation 

The first step is to find the difference in the e~ponents, and to select the larger 

. . 

number. The difference is found with one's complement arithmetic, 

impelmented with a bit-serial adder, a shift register, and a bit serial half adder 

and XOR. This implementation augments the algorithm by also finding the 

larger number even when the exponents are equal. The smaller number, or the 

AUGEND input if the numbers are exactly equal, is the one chosen to be 

denormalized. This means that if a subtraction is performed, the result is 

guaranteed to be non-negative. This will be important later. If the unbiased 

result exponent (EXP) is +127, then the maximum exponent flag (MXP) is 

asserted. If the rounded sum of the mantissas overflows, then the exponent will 

be incremented by 1, and an overflow will occur. 

rhe signs of the operands, after negating if the respective subtract inp·uts 

are asserted, are XORed together. If they are different, the mantissa of the 

smaller number is subtracted from the mantissa of the larger number after the 

smaller number is denormalized. The sign of the result {NEG) is the sign of the 

larger number. 
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The next step is to denormalize the mantissa of the smaller number. This is 

easily accomplished in the bit-serial format . by loading the mantissa into a 

parallel-in-serial-out register which also has a clock enable. The exponent 

difference is loaded into a down counter (DNRMCTR), and counts down. As 

., 

long as the count is ~O, the shift register does a logical right shift. The serial 

output of the register goes into a three bit register, which consists of the guard 

(GRD), round (RND) and sticky (STK) bits. The sticky bit is formed by ORing 

together all the bits which are shifted into it. The purpose of the GRD bit is to 

become the least significant bit if the mantissa is left shifted when the result is 

normalized, and to be the round bit otherwise. The purpose of the RND bit is 

" 

to round the. result if the mantissa is left shifted. The purpose of the STK bit is 

more subtle. No matter how many bits are shifted past the RND bit, it is only 

necessary to OR them together into the STK bit to get the correct result. If the 

' 
denormalized number is subtracted, then all the bits, including the STK bit, are 

inverted, and one is added to the STK bit. The resulting STK bit will be the 

OR of the result even if the subtraction were performed with full-precision. 

The resulting STK bit is also necessary to decide if the portion of the mantissa 

to be truncated is exactly equal to one half the least significant bit. However, 

since the adder is pipelined to accept a new operand every 24 clock cycles, only 

shifts of O to 23 places can be made bit-serially. It is necessary to add a small 

parallel shifter. which shifts the least si.gnificant bit of the denormalized . 
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operand, the guard bit the round bit and the sticky bit, between the output of 

the denormalizing shift register and the next register in the pipeline. 

The third step is to perform the actual addition .or subtr~ction. There are 

. only 24 clock cycles, but the denormalized mantissa is 27 bits long, inclllding ~ 

the guard, round and~ sticky bits. Again, it is necessary to include a small 
-~· ,. 

parallel adder to obtain the result for the least significant result bit, and the 

guard, round and sticky results. The result of the summation is stored in a 

shift register. It is possible for the result of the summation to overflow one bit,· 
/ '\ 

or for there to be any number of leading zeroes from O to 24. In a parallel 

floating point adder, the number of leading zeroes in the result is encoded, the 

mantissa is renormalized and the exponent is decremented by that amount. In 
) ·, 

the bit-serial case, it is possible to do these operations on-line, as the result is 

being calculated. 

As the result appears, one bit at a time, an exponent counter (EXPCTR) 

decrements the exponent every time a zero appears in the result, and reloads 

the original exponent every time a one appears, or if there is an overflow out of 

the most significant bit. This is why it was necessa~y to select the numbers so 

that the result could be guaranteed to be non-negative, else this simple scheme 

wouldn't work. At the same time a renormalization counter (RNRMCTR), 

counts the leading zeroes. Every time a one is encountered, or if there is an 

overflow out of the most significant bit, RNRMCTR is cleared to zero. At the 
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same time, it is necessary to know if the result will overflow after rounding, so 

. ' . 
that the exponent can be adjusted, and any overflow or underflow can be 

detected. This condition is harder to detect in the adder than in the multiplier. 

The mantissa in the multiplier could only overflow, not underflow. However, it 

is possible to detect those results which will overflow after rounding, even before 

performing the rounding. • 

If the two input exponents differed by more than one, then the largest 
;? 

possible left shift to renormalize the result is one. If, however, thE;)wo input 
/ 

-

exponents were equal, or differed only by one,-! then the largest possible left shift 

is 24. In this case, only the GRD bit will be set; the RND and STK bits must 

be zero, because the denormalization shift was =::; 1. Therefore, the mantissa can 

only overflow after rounding if the 24 most significant bits are all one, and the 

GRD bit is one, or if the most significant bit is zero, the next 23 bits are one, 

and the GRD and RND bits are one. It is impossible for the two leading bits to · 

be zero if both the RND and STK bits are set. The ref ore, there are no more 

· than these two ways for the 25 consecutive most significant bits of the 

1· 

normalized result to be all ones. 

Again, there is the problem that there are only 24 clock cycles to renormalize 

and output the result, but there are 26 different possible realignments of the 

result: right shift one (mantissa overflow), or left shift O to 24 places. This 

problem was solved by combining a shift register with three pointers. If the 
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mantissa overflowed, ··or if the most significant bit would overflow after 

rounding, then a shift right must be performed, and a pointer (SHR) is set 

which points to the bit to the left of the lsb. This bit becomes the least 

significant bit of the output of the result register. If the mantissa didn't 

overflow, and the most significant· bit is asserted, and the 24 most significant 

bits and the GRD bit are not all ones, then no shifts are_ performed, and a 

pointer (SHO) points to the least significant bit of the result, which becomes the 

least significant bit of the output. If neither of these pointers is asserted, then 

the least significant bit of the output is taken from the bit to the right of the 

least significant bit of the result. At the same time that the pointers are 

formed, the round flag (RND) is calculated based on which flag is asserted. 

It now remains to renormalize the result, round it, and output the result. 

This is all done simultaneously,/~only 2 clock cycles delayed from producing the 

most significant bit of the result. As in the multiplier, if overflow or underflow 

occurs, the output is reformatted. The adder has a sum mantissa output 

(SUMMAN), sum exponent and sign output (SUMEXP), negative flag (NEG), 

zero flag (ZRO ), overflow flag (OVF), underflow flag (UNF), and inexact flag 

(INX). It also outputs a signal indicating the least significant bit of the output 

(RST76). 
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4.4 Conclusion 

The adder is also designed with area optimized standard cells from the AT&T 

library. It uses 432 flip-flops and 965 gates, or 12,192 transistors. The deepest 
' ' 

path between two flip-flops is 10 gates deep. Its maximum clock rate at 5.0V, 

25 ° C and nominal processing is 8.0l\1Hz. With a latency of 24 clock cycles per 

operation, the resulting throughput is 0.33 ivIFLOPS. The delay from the least 

significant bit of the inputs to the least significant bit of the output is 76 clock 

cycles; that is two more than for the multiplier. The deepest path in the adder 

i~ twice as long as in the multiplier, and the adder frequency is less than half. 

That is reasonable, since the adder is not a purely systolic ~ystem like the 
'· ' 

multiplier. Further, no attempt was made to optimize the timing of the unit. 

It is reasonable to expect a large improvement with more work, m~ybe as large 
. \ . 

as a factor of two, simply by adding registers in the appropriate places, and 

buffering heavily loaded wires, especially the RST wires, which control the 

operation·" of the adder. Experience shows that often a very small number of 

long paths can slow down an otherwise much faster circuit. The complete 

schematics of the adder are included as Appendix B, Figures B.l-B.17. 
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Chapter 5 

Applications for Bit-Sequential 

Floating-Point Arithmetic Units 
·• 

5.1 lntroduc tion 

,, t) 
. 

The arithmetic units described in the two previous chapters are most useful 

when applied to a heavily pipelined, functionally parallel architecture. This is 

because the large delays of the units ( > 3 words), and the large n um her of clock 

cycles per input (24), would make using them unreasonable otherwise. On the 

other hand, they are very cheap in absolute terms, so that if a very low 

performance, cost-sensitive application existed that required floating-point 

arithmetic and a higher performance than possible • 
Ill a software 

implementation, they would be applicable. Applications such as those described 

occur frequently in digital signal processing. This chapter describe two 

particular uses for these units: in a generic matrix-vector multiplier, and in a 

parallel-pip~lined FFT calculator. 

·5. 2 Matrix- Vector Multiplication 

In matrix-vector multiplication, an nX n matrix multiplies a length n input 

column vector to produce a length n output column vector. Each row of the 
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output vector is the inner-product of a row of the matrix with the input vector. 

Hence the total computation requires n 2 multiplica\ions ·and n( n-1) additions. 

By providing n multipliers and (n-1) adders in a systolic array as shown in 

Figure 5.1, it is possible to do matrix-vector multiplication in 0( n) time. 

' t 

X/+ 
-X - -

- -

0 

0 

' 

X/+ 
--
-

0 

0 

0 

X/+ 

Figure 5.1. Matrix-Vector Multiplier 

-

If the multiplier and adder modules described in the previous chapters are used 

in this application, then a new data point can start every 24 clock cycles. 

Therefore the latency is 24P, where P is the clock period. The throughput is 

I/24P. The multiplications occur in parallel, so that only the multiplication in 

the first cell adds to the delay. Since the multiplier delay is 7 4 clock cycles, and 

the adder delay is 76 clock cycles, the total delay is (7 4+ 76( n-1 ))P. The 

floating point bit-sequential multiplier and adder described in the previous 
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chapters are particularly well-suited to· such an application. They have very 

limited pincounts, compared with a parallel implementation, so that many more 

(' 

units can be included on one chip without being limited by packages. Also, 

since they are so small, it is easy to imagine putting redundant units on a chip, 

with switches to bypass a faulty unit. 

5. 3 F FT Calculation 

The Fourier transform is an example of matrix-vector multiplication. However, 

Cooley-Tukey and others have shown how to do this special case in 0( nlogn) 

time. One could use four multipliers and six adders developed in chapters 3 and 

4 to form a butterfly processor (see Figure 5.2). ( n /2)logn of these butterfly 

processors can be combined to form a parallel transform processor (see Figure 

5.3). Again, the latency of the FFT calculator would be 24P, and the 

throughput would be 1/24P. In this case, however, the delay of the array ·is 

(7 4+ 2X 76)logn. Since there are 3 words input to the butterfly and 2 words 

'· 

output from the butterfly, there are only 10 data wires, 1 clock wire, 1 reset in 

wire, 1 reset out wire, and 109,248 transistors per butterfly. Again, it should be 

possible to package a 32-bit floa,ting point butterfly processor in an inexpensive 
,, 

I \ 

16-pin package. A special memory chip can be designed which cycles through __ /···7 

the appropriate coefficients every 24 clock cycles. Its pincount would also be 

.•. 

extremely low, since all the coefficients are only two wires wide. 
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Figure 5.2. Butterfly Processor 
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Figure 5.3. FFT Calculator 
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Chapter 6 

Conclusion . 

., 

6.1 Discussion 

This thesis makes an argu:qient for the utility of bit-sequential architectures in 

pipelined-parallel functions. Most of the work reported in the literature deals 
. 

,, 

only with fixed point number representation. The major contribution of this 

thesis is the design of two completely sequential floating point processors for the 

first time. The design of a floating point bit-sequential multiplier reported here 

runs at 0.9 Mflops. The adder, the slower of the two, runs at least at 0.33 

Mflops. An array of these units will have a throughput which is .an integer 

multiple of 0.33 11:Flops. One should note that this performance is not 

optimized, and can be improved with more careful implementation. The 

applicability of these processors is demonstrated by single-chip implementations 

of a matrix-vector multiplier, and an FFT butterfly operator. 

6. 2 Future Directions 

I 

The floating point bit-sequential multiplier and adder described in the 

preceeding chapters are useful by themselves. A number of directions suggest 

themselves for expanding on what has been described here. One area of study 
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would be to implement these units, optimizing their area-throughput, to see 

what results might be obtained compared with the estimates made here. 

Another area of study would be to make a more complete set of operators, 

including divide, square root, fixed<->floating convert, etc. Yet another .area 

of study would be to improve the units described here by making them 

completely IEEE754-1985 compatible, including denormalized numbers, NaN's 

and infinity. Of course, there is the whole subject of various applications, 

particularly those which take advantage of the small size of each individual unit 

to incorporate fa ult tolerance into an array of operators. 

. .. 

. :.- t 
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Appendix A 

Floating Point Bit-Sequential 

Multiplier Schematics 

" 

This appendix includes the complete schematics for the floating point 

bit-sequential multiplier described in chapter 3. 

<J. 

38 

/ 

'' 'I I 

.. 



I, 

t-rj -· oq MCOMAN ..... MCOMAN MSP , 
~ MPYMAN ..., 
(D RSTO 

....._ MPYMAN LSP , 

..... RSTO R5T48 , 
> CLK · ..... - CLK , 
• 

c.v ~ 
co • 
~ 
1-,j 

~ MCDEXP 
MPYEXP 

),-
..... , . 

~ 
• 
~ 

. 

MANMPY 

MSP 
LSP 
RST48 

0 

•' 

,MANMPY 

MCDEXP PRDMAN 
MPYEXP PRDEXP 

.. RSTO NEG 
MSP .ZRO 
LSP OVF 
RST48 UNF 
CLK INX 

RST74 

EXPFMT 

--,.. 
..... ---...... -..... ------,.. 
.... -

EXPFMT 

! 

PROMAN 
PROEXP 
NEG 
ZRO 
OVF 
UNF 
INX 
RST74 

·., 

' .. I. 

I 
. I 

•. r 
I 



~ -· ()Q 

~ 
'"'1 
ro 

> • 
~ 
• 

~ 

~ 
0 

MCOMAN 

MMPYO 

> NCOMAN HCOOUT ·MCDO MC0[0:211 
z MPYMAN 

~ RSTO 
> NP'r'MAN MPYOUT MPYO MPY[0:211 
II,.. RSTO PPBOUT PPBO PPB(0:211 ,, 

LSPOUT LSPO LSP (0:21 J 

... \ ~ 
• 
ti--

x:·RSTOUT RST2 RST 12:44,21 
_J 

u 
. 

MMPYO 

CLK II,.. ,, 

MMPY [ 1 :221 

MCOIN MCOOUT flCD l 1 :22J MCD22 
MPYIN MPYOUT MPY [1:221- MPY22 
PPBIN PPBOUT PPB l 1:221 PPB22 
LSPIN LSPOUT LSP(i:221 LSP22 
RST IN ~ RS TOUT RST (4:46;21 RST46 

_J 

LI 

MMPY 

. 

. ' 

HCOIN HSP 
MP'r'IN LSP 
PPBIN RSTtfB 
LSPIN 
RSTIN x: 

_J 

u 

\ 

MMPY23 

.... ,.. 

..... ,,,... 

...... 

--

MMPY23 

MSP 
LSP 
RST48 

.. 



• 

MCOMAN "'" ,, 
MCD 

. D Q . . 

SP 
1 

~CK ON . 

FD1P3AX 
RST 

HSTO >----- . D 0 

. 

~ -· 1 t >CK ON 
(JQ 

~ FD153AX ...., 
~ 

> 
~ • w ti-' • MPY p 

~ MPYMAN > D 0 

~ 
' 0 

• 
~ 

)CK ON 

FD153AX 

CLK > 

·, 

MCDOUT 
"" 'D 0 

UC_ 
[>CK ON 

FD1S3AX 
MCOB 

. 

.RS TOUT 
RST 

~ D 0 

>CK ON 
' 

FD1S3AX 

MPYOUT 
MPY 

D 0 

MPYB 
[>CK ON 

i-.-· FD153AX 

. 

' 

pp 
. " ('\ I 

n. l 
)u 

NR2 

.... 
~ 

..... 
~ 

.... 

.,,..-

MCDOUT 

UC 

RSTOUT 

UC 

MPYOUT 

UC~ 

CLK 
RST 
RSTB 

pp 

• 



•. 

PPB PPBOUT 
RSTB 
pp 

.. . A b PPB z 
B 

D 0 -,,. 
. 

PPBOUT 

N02 
~ -· (Jq >CK ON u C 
~ 
""'1 
(1) 

~~ 
~ ..s;.. 

• RST 

LSPB 
F01S3AX 

A 
LSPOUT 

. 

. LSPB z 
B 

D Q u C 

~ N02 

~ CLK DCK ON -
" 

,, LSPOUT 
• . 

~ FD1S3AX 
' 

7. 

.-. 



..s . 

MCOIN > 
MCD 

r- MCD 
0 Q 

cp ·.J 

[)CK ON UC -
FD1P3AX 
RST 

R5TIN >- RST . 

D 0 ---

1-rj -· I ,- >CK QN 
(JG -
~ FD1S3AX 
"'"1 . 
ro 

~ > • 
~ CJl 

• MPY 

~ MPYIN ),, D Q 
MPY 

~ 
• 
lo-' 

4~---~CK ON UC -

I FD1S3AX 

CLK >-
. 

. 

MCOOUT 
0 a 

:,.. 

C>CK ON 

FD153AX 

RSTOUT 
-
D a 

' 

' )CK ON 

FD1S3AX 

MPYOUT 
D Q 

: 

)CK ON I 

' . 

' 

FD1S3AX 
. 

PPB 
A z p 
B 

ND2 

.... -

--_. 

... -

MCDOUT 

\ ,. 

UC 

RSTOUT 

UC 

MPYOUT 

UC 

CLK 
RST 
RSTB_ 

PPB 

I. 



~ -· c,q 
C ., 
(t) 

~~ (. 

~ ~ 
• 

~ 
~ 
• 
~ 

.. 

PPB 

PPBIN 

RSTB 

RST 

lo.. , 

LSP IN >-

CLK 

' 

I 

. . . -

A 

-B 
CIB ClB 

C A ----
B 

z 
..___ 

N02 

.. 

I 

Al 
~ 

A2 
I I 

B I 
. 

.. 

. 
} 

SUM 
ZCN 

co 
0 

ZSN 
SUM 

FA >CK 

. 

01 
DO 
so 

)CK 
. . 

LSPB 

\ LSPB I l D 
I 

. 

AOI21 
[)CK 

. 

CI 
0 

Cl 

ON 

FD1S3AX 
PPBOUT 

0 

ON 

FL1S3AX 
LSPOUT 

0 

ON 

F0153AX 

UC 

u C 

~ - PPBOUT 

u C 

-.. - LSPOUT 

. '•t ' 

,1 

,n. , 



MCDIN ..... D , 
SP 

t>CK 

·Rs TIN ), . - .. D 

~ -· (JQ I~- l>CK 
~ .., 
(0 

> • 
~ ---1 
c,-. • 

~ MPYIN ...... D , 
~ 
t-.:) 
w 
• 

'- ~ 
' l>CK 

CLK ...... , 

I 
\ 

MCD 
0 

MCD 

ON UC -
F01P3AX 
RST 
a "RST -

ON . . . 

FD1S3AX 

MPY 
a MPY 

ON UC_ 

FD1S3AX 

I 

. 

RST48 

0 o 

[) CK ON 

FD1S3AX 

. 

. 

PPB 
A p z . 

B 

.N02 

-,. RST48 

UC 

CLK 
RST 
RSTB 

PPB 

;_4-, I '•.~t~ 
.•, 

• 

., 



~ -· (Jq 

i::: ....., 
~ 

[, 

> • 
~ 00 ~. 
~ 
~ 
~ 
w 
• 
~ 

• 

•• 1· 

·.., .. PPB 
PPBIN 

RSTB 

RST 

.... ,,, 

LSP IN~ 

CLK 

f/ A 

B 
CIB CIB C A --

B 
z 

ND2 

- -

Al 
l A2 I 

-, 

l 

B J 

. 
- . 

SUM CI -

ZCR t_ 
co 

D o CI 

ZSN 
SUM 

UC_ -~CK ON FA ..s.. 

FD1S3AX 
PPBOUT 

' 
-·. 01 0 .» Mc-

l . DO -

- so 

pCK ON -UC 
I 

LSPB FL1S3AX 
LSPOUT 

LSPB u o 
_j 

D ' z [_ 
L 

AOI21 
~ pCK ON - LSP 

FD1S3AX 



MCD CI 
MCDEXP 

D 

..... 
D a MCD 

0 0 
CI , . 

SUM 
A ZCN co . 

MCOB B )CK ON >CK ON UC 
_.:__· 

SUM -
' CIB - C ZSN . 

FD1S3AX FD1S3AX 

MPYEXP 
MPY ....,._ A· CIB FA XP2 -- I, 

MPY z 
B --

~ >--~--- D 0 01 Q -- XP2 
ND2 DO 

~ so 

~ -· (Jq 

e 
~ 
('t, 

> • 

>CK ON MPYB 
~CK ON UC -

FD153AX MCDZB FL 1S3AX 
.; 

Al MCDZ 
\ 

A2 I I MCDZB . 
'\ MCDZ z D 0 UC I -~~-

-
B I l 

co 
~ • 
'--1 tt'j 

~ 
~ 

~ RSTBl 
~ 

AOl21 ZER09 
)CK ON 

. A ZER0.9 . 
z 

MPYZ MPYZB F0153AX IB 
Al N02 ZEROlO I MPYZB ---- ~. A2 '\ . 

MPYZ ' " . 

0 0 UC D 0 I z ~ 

- ZfROlO 
• 
~ B r ) SP . 

AOI21 

\ 
RST9 

t>CK ON t>CK ON l1· I 

---

FD1S3AX FD1P3AX 

UC 

NEG9 NEGlO 
NEG9 

A z 0 Q . NEGlO 
SP . 

B qll UC . -. 

XOR 
CLK ""' CK ON UC , -

• FD1P3AX 



~ -· oq 
~ 
1-1 
(t) 

> • 
~ 

~o 
00 ~ 

~ 
~ 

~ 
1-3 
• 
~ 

RSTO > 
RS T 10 :23 l 

XP2 

RST9 

RSfB8 

RSTl 

ZEROlO 

RSTB2 

RSTll 

RSl2 

CLK 

0 

XP2X 
A z 

- B Zl 

XOR 

.. 

r XP2X 

UC -
XPEN 

- Al 
A2 

B 

.. 

MNXPJl 

- Al 
A2 

., B . 

-

MXXPll 

I 

. '~1 

L~2 

B 

. 

• 

... 

'"' 

XPEB 
I 
I I \ XPEB z 

I ) 

ADl21 

MNB 
l 
I . 

l ' MNB 
) z . 

J ) 

AOI21 
C 

. 

. 

MXB 

l MXB 
l p 

J 
OAI21 

-

RS Tl 1:24 J 

0 a . 

vCK ON 

FD1S3AX 
XP2X ,XP l 3:9 J 

XPEN 
·- 0 a UC_ 

' 

. 

)CK QN 
MNXPB11 FD153AX ,~ MNXPBl 1 . z 

D 

Iu 

MNXPl 1 NR2 

D Q UC_ 

[>CK ON 

FD1S3AX 
~ 

MXXPll 
0 a UC -

' 

~CK ON . 

FD1S3AX 

. 
. 

D 
SP 

l>CK 
. . 

. 

. .. D 
SP 

>CK 

D 
' SP 

~CK 
~ 

. 

XPl3:101 
a 

ON 

FD1P3RX 

MNXP12 
0 

ON 

FD1P3AX ( 

MXXP12 
Q 

ON 

FD1P3AX 

,./ . 

RST 11 :24 J 

RS T LI l 1 :2 ~ l · 

XP[3:10J 

UC 

MNXP12 

UC 

MXXP12 

UC 

• 



··~· 

• 
Cl,j 

XP2 

ZEROlO 

RS T 10 

RST72 
RST48 > 
XP [3:10 
RST2Lt 

ZEROB73 

NEGlO 

ZEROlO 

CLK 

X 

) 

.. 

-

. ~ 

. 

- D 

I 
)CK 

D 
SP 

>CK 

D 
SP 

)CK 

D 
SP 

l)CK 

.. 

XP3A 
XP3A a . 

. 

ON UC -
' FD153AX \A 

B 
',... 

I ~ 

. . 

XPl25:321 
a XP(25:32J 

D 
SP 

' 

ON UC pCK -

FD1P3AX 
NEG25 
a NEG25 

D 
SP 

ON UC DCK -
FD1P3AX 
ZER025 

0 
ZER025 

D 
SP 

ON UC ~CK 
•· 

-

FD1P3AX 

OVFB10 . 
. OVF 11 

A OVFB10 
l ·o .0 UC B -SP 

ND2 

' ~CK ON OVFll 

UNFlO FD1P3AX 
UNFll 

UNFlO z D o UNf 11 . 

. SP 
NR3 

,, .. . 
.. 1,--·- [>CK ON UC -

FD1P3AX RST48 -

XP (49:561 
o XP (49:561 

' 
I 

I 

ON UC - ... 

FD1P3AX NEGB73 . 

NEG73 LA NEG49 NEGB73 NEG 
o NEG49 

D 0 NEG73 B .Zr-t___D a UC -
SP ND2 

-

ON UC C>CK ON UC l)CK ON " r-- -- - NEG 
FD1P3AX FD1P3AX FD1S3AX 
ZER049 ZER073 
o ZER049 

D a UC 
' -

SP 

UC ~CK ON 
ZEROB73. ON -

F01P3AX . FD1P3AX 
' 



~ -· (Jq 

~ 
~ 
~ 

> • ..... 
C)l~ 

0 trj 

~ 
~ 

~ 
~ 
• 
~ 

RST72 
RST48 

MNXP12 
RST24 

MXXP12 

OVFll 

UNFll 

CLK 

{,..· : ./ 

0 
SP 

r>CK 

-- 0 
' .._ __ SP 

t>CK 

D 
SP 

f>CK 

D 
SP 

[)[K 
-

.... 

MNXP25 
0 

MNXP25 
D 
SP 

ON UC I) CK -

FD1P3AX 
MXXP25 
a MXXP25 

D 
SP 

ON UC ~CK -

FD1P3AX 
OVF25 
a OVF25 

D 
SP 

ON UC - t>CK 

FD1P3AX 
UNF25 
a UNF25 

D 
SP 

ON UC ~CK -

FD1P3AX 

RST48 

~ 

· .. , 

' 

MNXP49 MNXP73 
Q 

MNXP49 
D Q MNXP73 

. SP 

ON UC C>CK ON - UC 
FD1P3AX FD1P3AX 
MXXP49 MXXP73 
a MXXP49 

D a MXXP73 
I .__ SP 

ON UC >CK ON - UC 
F01P3AX FDlP3AX 
OVF49 OVF73 
a OVF49 

D o OVF73 
SP 

. 

ON UC t>CK ON - UC 
FD1P3AX FD1P3AX ' • J 

! 

UNF49 UNF73 
Q 

UNF49 
D Q UNF73 . 
SP 

ON UC )CK ON - UC 
FD1P3AX F01P3AX 

RST [49:80 J 

RST [48:79 J D Q RST [49:80 J o--» RST74 

.- RSTBl ~CK ON 
49:801 

FD153AX 



• 
01 

MSP 

LSP 

CLK 

RST48 
RSTJ2 

RST49 

• 

>------'-----;:R~ND~----'-· -~----'--· I 
J _ _!R~N~D~----~·~~---i 

~~-Q-----,0 a ·RSTB48 - ~--r--.A2 

-~ RSTB48 ·-A3 

I t "1 

~RB ----+~-+--+--,aSl 

AN~B 

I ', 
z 

j 

,,. 

ANDMSf 
r----, 

..----,o a---,--U( 

ANOMSPB 

~.-~~-.~B2 . 
IB3 AOI33 F01S3AX at---.~--~~-t---,r-t--1 -tj-_'1-==11==~;'==-====================~~~-t~~~INICXP~ MSP 

-r -·~--,~CK ON UC_ ON..--ANOMSP 

FD1S3AX 
&..- INCXP73 
' GRO 

INCXPB72 INCXPB72 
'in 

' 

C9----1----- - 0 
~-SP 

I t-~---1p(K ·ON---- UC_ 
I L'------,--,--· ~ 

NR2 

D 
r---+---,SP 

o INCXPH 

at------,,,> CK ON --. . -- - . I N l X t--' 
,.___ ___ _ 

----·- _1 ___ ~F-=-D~1P~3~Ax ___ 4 +---r-HT--==· =·=· ===-----------. 
.. RNDMSPCB 

--- ---·-r----

L...i-'---~--'-·---F_O-=---lP-::3:--=A:-::-X~ CkU 
RNOMSPC 

'\q1 

.---t---,J A2 

--· r--. __ .. ~---

I STKY i 

-·---L_.:S~T~K0_Y___:__:_·1 ·----~--t--H-e--,-'-rq1 ~~o a n2 

. 

a;-+--i)CK ONt----uc_ 

' . 

"q1 
L-+---+-m(\2 

) ' 

FD1S3AX 

STKB 

I 
z 

)" 

STK 
,-Q Qt-----r-- UC_ 

STKB 

B 

B 

OAI21 

.-------, 

----+---,o 
- .. >'----+-'~_ --, SP 

RNDMSPCB Z·):>)-c-.-.f-~~~ 

Qi----LJ( 

L--------

FD1P3AX 
RNOMSPT 

RNOMSPTB 
r------, 

...--+---10 o UC--
L--+--+---,SP 

I RNDMSPTB z 
I 

OAI2l 

INX49 

m-----.~CK ON-- RNOMSP I 

FD1P3AX 

.-----~ · INxqg ~o . aL--:-------'----'-----'-------'--,--~--'---'--~ 
-__,sp 

B I 
.-)CK ON~-STK c-)(K ON1---

UC_ R$TB2q -·-
OAI21 

FD1S3AX ~-.____----=======-------6---~~:...::::.....:.....:__ ___ -:-. FD1P3AX 

' 



. 
INCXPB A'l UNFB73 

' ' MNXP73 A2 I I ' 
I z 

UNF73 B I ) 
.... 

' 
A0121 

\ 

:r 

INCXP Al OVFB73 
MXXP73 · A2 I ' . 

z 
OVF73 B I ) 

AOI21 

MSP Al INXB72 
I 

GRO · A2 I l INXB73 ' INXB72 I INXB73 l D a 
INX49 B J ) SP ~ 

I AOI21 
. 

. 

RSl72 UC - t>CK ON 

F01P3AX 

ZEROB73 

MSP ,MSPO l 1 =23) 

CLK ~; 

' ' 

• 

• 
UNFB73 . 

0 

t>CK 

-~F73X 

INRB 

OVFB73 
D 

DCK 

J 

INX73 
r, 
I I p INX73 
B z D 
I" 

L 

ND3 
' 

)[K 

ZEROB73X 
A 

z 0 
B 

AND2 I 

. 

' ~CK 

MSPO ll :24 J 

D 0 MSPO(l:241 

., CK ON UC -
F01S3AX 

UNF 
a 

ON 

FD153AX 

OVF 
0 

ON 

FD1S3AX 
INX 
a 

ON 

F0153AX 
' 

ZRO 
o 

ON 

F01S3AX 

... -

.... -

.... -

UC 

UNF 

OVF73X 

UC 

OVF 

INX 

z 

u 

UC 

EROB73X 

C 

';,. z RO 



-· 

• 
'-l 

RNOMSPT 
MSP 

RNOMSPC 
RST72 

GRO 

RSTB72 
MSPD24 

CLK 

ZEROB73 X 

OVF73 X 

INCX PB 

lNCX p 

3 RST7 

RST 873 

. 

. . 

. 

~PBMSPB -
INRB 

. Al 
. ,--- A2 

B 

'· 

~ 

MNB73 - Al 
A2 ' . 

I l 
Bl I 
B2 AOI22 

Al 
I 

MNCOB 
A2 I 

~ 
z 

Bl I 

..-- 82 AOl22 

Al 
' A2 I 

-~ 

Bl J 
82 

I 

. . 
. . 

Al 
\ . 

A2 I I .. 
' 

Bl I I. 

82 I 

PMNB73 

I J 
I z 

j_ 

AOI21 

MNB73 

MNCOB 

, 

• 
RNDB72 

RND73 \ RNDB72 
0 RNO· D z 873 

I. - SP 

AOI22 

~CK ON RND73 

MNB72 FD1P3AX 
MN73 

~- MNB72 
0 u 0 z C 

) 
-

AOI22 
MN73 . 

~CK ON 

f01S3AX 
. 

PRDMAN 
PMNB73 

D 0 u (_ 

PMNS 
........ pCK ON -. . PRDMAN 

PMN FD1S.3AX 

MNCO 
A z ~ ' ' 

MNCO PMNC 
0 0 D 21 ~ 

XOR 

pCK ON UC_ 

FD153AX 
.. 



~ -· (Jq 

~ ..., 
(l) 

> • 
~ 

C/1 
0) 
• 

~ 
trj 

~ 
~ 

~ 
t-3 
• 
00 

ZEROB73X 

OVF73X 

INCXP 
RS.T73 

RSTB73 

RSTB80 

XP (56 :49 J 

RST72 

CLK 

NEG73 

RST73 

. 

-

. 

. 
. . 

Al 
l 

A2 I I 

Bl 
' 

I . 
I 

~ 82 

\ 
\ 

' 

. 

., 

XPB1 
A 

z. 
B 

AN02 

Al PXPS OVF73Y A2 

A 
z 

I 

B 
OVF73Y 

XPCOB AND2 
PXP \ XPCOB 

l A z I -,..-

) XPB73 PXPC B Zl 
AOI22 XOR 

.. 

Al 
- A2 

' 

XP81 

I 

. "" 

PXPB73 
' I I PROEXP ' PXPB73 CZ . 

D a UC . . 
B I ) 

. 

AOI21 

\ ~CK ON ~ PRDEXP 
FD1S3AX 

COB73 XPCO 
A ZP COB73 0 a B ~ UC 
. 

ND2 

>CK ON . 

FD1S3AX , 
. 

XP l7.3:80 J 

01 0 XPl73:HOJ 
XP 174 :811. DO 

so 

~CK ON XPB 173:80 J 
.· 

FLlS3AX XPENB 
I 

I I XPEN73 
" XPENB 

2 0 O' . UC 
B I ) 

·. 

AOI21 
. 

XPEN ~ . 

>CK ON 73 

FD1S3AX 



i 

1 .. 

. I 

I, 

Appendix B 

Floating Point Bit-Sequential 
\ 

Adder Schernati s 

This appendix i d~th~nrpfel~hemati 
- ' 

~

bit-sequential adder described in chapter 4. 
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