
Lehigh University
Lehigh Preserve

Theses and Dissertations

1988

A parallel microprocessor architecture for a task
flow programming enviornment [sic] /
John C. Pagano
Lehigh University

Follow this and additional works at: https://preserve.lehigh.edu/etd

Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Pagano, John C., "A parallel microprocessor architecture for a task flow programming enviornment [sic] /" (1988). Theses and
Dissertations. 4849.
https://preserve.lehigh.edu/etd/4849

https://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F4849&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F4849&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F4849&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=preserve.lehigh.edu%2Fetd%2F4849&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd/4849?utm_source=preserve.lehigh.edu%2Fetd%2F4849&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

)

..

..

. ~-

. ?'

•

A PARALLEL MICROPROCESSOR ARCHITECTURE

FOR A TASK FLOW PROGRAMMING ENVIORNMENT

by

JOHN C. PAGANO

Thesis

Presented to the Graduate Committee

of Lehigh University

in candidacy for the degree of

Master of Science in Electrical Engineering

Lehigh University

1987

•

•

----------···-·-· ---------------------------~----------------!!!!!!!!!!!!I!!
:., .. ; .···. =· '3~.. . ._ ____ . - ._..,. ---~"',":.c~- . -·-·

---. ~_--..:;.. ' ~ ,,... -- '<'-~-~-••.

~···---- -> ··- --·-·---·- ,--·--··---~.-,----· ·------~-·-~------~·---. .

·----·-··-·---•,

- ------- -- -~-- --~ --- ·r.____ -

' .•

---···--·~-------·-- -- ------------.-~. -----·---

- -----+-

f

. " . ;~-· . -

r

r

) --~.

·,

This thesis is accepted . and approved in partial. fulfilinient of the

requirements for the degree of Master of Science in Electrical Engineering.

date: bee 15) 19 87

.
in

/i

/,;/-ztaU >! ~~
EE Division Chairperson

•

CSEE Depar m.ent Chairperson

, .

. .
11

-~ . . --· , .. ~ ·-

'

--, .. ---

~ ~ -·- : .

._1·

. .

·-- ----·--- .

I
· ~

·•

' -

. - . - --·-------

' ., >

..
•

Q •

- __ - -.-_ .-.,P- -··-··---··----------- -- ---·-··----, -----··-· --

'.

'

,,-

. ..

I

•

ACKNOWLEDGMENT
I would like to acknowledge, the advice and support of Professor

M. D. Wagh. This work was possible because of his great knowleclge and open

- mind, and his constant desire to teach. He has taught me to always be

constructive, and that curiosity is a gif~.

111

. .

.. '
0

r

•

'

-··----------- .. ----·---- -~ ... - - ·-- --~- - -------. --·-- ---- ---·-- -------- ... :. - ________ : ___ .::., _ ____,_.,._____ ~,:::_ ,, ___ ..._:_ ______ · __________ .:: _____ ~_ ·····-··------- -- ·-- -- - - ~ -- - - -- --~----_ ~ · -,. ·· --- .. _.,,,_, .••. _.....:,, · ;:·_-.,.j,,liir-· ----- · ·------ -- ·-··---. ---·-·-- - --- ... ·-·-·--· -- . -- ------ .

- .-... ------··--. --- -. ----- .. ~--- - ',. -- -- -· - -- . ' ---=~~~--~--~---- -·-·=...c.___.., __ ... _.,_. ____ • - , .••• -·---

er----

/

•

•
;,

J

..

' -·· - ------+ ··--- --- ··- ---·

'

(

.,

' . ·- - , - - - - " - - - -- -- ----- -- - - - - - - ·- ,_i.._ . - -·

\

.,

(, .

'

I

Table of Conte11ts

1. INTRODUCTION
1.1 Parallel Architectures
1.2 Motivations •

2. THEORY of PARALLEL ARCHITECTURES
2 .1 Description of Parallelism
2.2 Programmability of Parallel Architectures
2.3 Data and Task Flow
2.4 Overhead pf a Parallel System
2.5 Task Execution Schemes
2.6 Bus Structure And Connectivity
2. 7 Memory Structures
2.8 Supervising and Control
2.9 Bus Arbitration
2.10 Fault Tolerance
2.11 VLSI Compatibility

3. IMPLEMENTATION of FAULT TOLERANT
ARCHITECTURE
3 .1 Processor Considerations
3.2 Floating-Point Unit
3 .3 Memory Structt1re and Bandwidth
3.4 Fault Detection and Tolerance
3.5 Host Interface
3. 6 Arbitration Logic
3. 7 System Initialization
3 .8 Task Management
3.9 Dynamic Task Spawning
3.10 Data Management
3 .11 System Overhead and Bottlenecks

4. CONCLUSION
4.1 discussion
4.2 Future Directions

Appendix A. SCHEMATICS

.
. IV

. ... -· __ ,;i_

•-'•" • _. ·a.a•·•.•.,~'- •-••-·,, ---~·••,·1 ·'''.,•,=a·,.,- • •• ·••••, __
•• J _________ ,,, - ----"-·-··- .------- - ••• ----- - ---- ----· ··-·-- --

, -.

,,
') /

PARALLEL

' . .;... ..

2
2
4

7
7
8

10
. 14

15
16
17
21
23
25
26

27

27
30
31
33
35
35
36
37
40
42
42

45
45
46

50

(

•

I

~;
(
;

- -------· - - --..------,-·· - __ ------- ·,,_ ______ - __ ·-~- ___ ..

'

•

l .

(

Figure 1-1:

\ Figure 2-1:
Figure 2-2:

" Figure 2-3:
Figure 2-4:

, Figure 2-5:
Figure 3-1:
Figure 3-2:
Figure 3-3:

-

(

., •

---··--· - -----··· --- ·-------·-···-----''--------------- - .. ~ .. ---·-'-" - -____ ,..__•· ··-~- - --~-·- . -· .. . - -·---- ---... -- .-..-=

,,

List of Figures

Three ways of dividing serial code into parallel code.
Horizontally by instructions, or vertically by data.
Data flow execution of the quadratic formula.
Data flow execution with data reused. .
Shared local memory architecture.
Shared main memory architecture.
Architecture for task flow machine.
Block diagram of system.
DMA circuit for direct memory to memory transfers.

Typical execution of a program in a task flow
architecture.

V

' ,,

'

. .- .• ...t-· -·

'

5

11
13

, 19
20
22
2~
34
41

•

·,

r

-- - - --· - - - - , __

•

••

.,

-·----··
. -· - -·---- ---.,- -.. --, - ··-- . -

,
.,

,.

' ' .

List of Tables

Table 3-1:
' ~

Defining task structure

/\

•
VI

-------------- . -- - -- -· ------------

'
' .

/,

.,--'.-- -- . ' .,

··---"~---·--.,- --· •• ,n- •

•
•

\

' ' .. '

' ., .,

38

"'.t ,
,"a{4 •

I
I
' j;

' '
!

I
l
'

J
l

I ,,

l
I
I
'

I
~

I

• ,-

'
\

I) •,·;,.·~.
-~- • . -?

,·'
; .

. ' . •i:': . .

0

·----- --·-- ----------- ----·----·--·

---- .. ~--- ---- .-------- --· ··-··=--=-:..:__ ----

.,n

'

Abstract

This thesis describe.s the design and construction of a parallel computer

•
with four nodes. The system architecture is robust enough to withstand a

complete loss of all but one processor nodes at any time during execution. To

achiev.e this, the architecture departs · from the conventional parallel

architecture ideas in that there .is no master and slave relation between
•

processors. Each processor is independent and can perform the system control

through software. This machine uses coarse grained parallelism and a shared
.

.

bus architecture and relies on task flow ideas developed here. The system is

expandable and is easily adaptable to future processor technology. This parallel

computer could be used in any application requiring high throughput coupled

with high reliability.

'

1

- -- ----
~ --- --- ,,__ -- - - - -- -·-,- - -- - ,-----,- - --- ---

' ..
- ~-- - -- · ·-~--- -·-- -~·- - -- ·-- -----~ -----

·-

;

.~

..

I

I
I

---···~

•

•

''

.·> .,

• •

Chapter 1
INTRODUCTION·

The computer industry has long relied on rapid advance~ in technology to

produce faster and more powerful computers. To take advantage of technological

breakthroughs such as cheaper memory and large scale integration the

architectures of computers must constantly pe modified. These modifications

are sometipies severe, but none has had the ramifications of the one currently

threatening to take place -- Parallel architectures .
. ,

1.1 Parallel Architectures

· There are currently three approaches to making computers faster and yet

cost effective. The first approach concentrates on improving the instructions

executed by the processor and there are two divergent idiorp.s, one which says

instructions should be made simpler, the other ·saying they should be made

more complex. Interestingly, most practical success has come from taking

aspects of both idioms. Reduced instruction set computers (RISC) are an

attempt to make the processor execute each instruction as quickly as possible

reducing bus idle time and increasing system efficiency. The goal is to have all

instructions execute in one clock cycle, and this is accomplished by eliminating

complex instructions and streamlining the instruction set. RISC techniques will

. have a definite impact ori computers, but it is a one time gain, so it does not

eliminate the need for oth~:r i,I??:provements. Complex instruction set computers

(CISC) are an attempt at having high level instructions directly executed by the

processor instead of being interpreted by compilers and assembly language

macros. The gain in speed comes because the processor can execute the

instruction via firmware without having to do consecutive instruction fetches

·~ -., ..
.. ----~. - .~ - ~-.. .. - ·, -

2

-
I<

'

'

---~ . ___ ,___: __________ -!!!!!!!!!!!!!!!l!!l!!!!l!!ll!l!II ___________ _

····---- .. ------··--··- -· ... ·-- --- ·------- . ---·---.--.- ... - -- ------ ---·--- ·- ---

----~ ------ ---- ·-------

,...

-
(

't... .

JI

' . '""'(- ' ·---~·

[" ..

' .

_.... ,

~- I .

which would be the case if the compiler replaced the high level command with
' . ~

many simple instructions. The problem that CISC architectures face is that

they lose flexibility and must spend a great amount of time decoding the· many

instructions they support. I

Most success with instruction sets has been a combination of what may
' . '

appear to be the contradictory goals of RISC·· and CISC. Instruction sets are

designed as streamlined as possible but include some of tl1e more common high

level commands.

Another approach to improving computers is to simply take what exists

and make it bigger and faster. Bigger means more data bits on the bus. and

bigger memory. Faster means increased clock speed of the processor and faster

memory. Bigger has proved very effective in all computers and is currently

making its final inroads in microcomputers with the introductjon of 32 bit

machines. This success, however, has limit. Since the largest data primitive

operated on by a single instruction is the floating point number, and since few

applications require precision greater than 10 places with an ex:ponent of+/- 512

there is little gained in going beyond 64 bits. And even with 64 bits, most of the

precision is wasted in all but iterative finite element analysis and other

scientific applications. Faster has also bee:o. very effective in making machines

more powerful but faster processors only come with much effort, time and

money. Since faster circuits can be taken advantage ofby any architecture, they

have not reduced interest in developing other methods of improving computers.

The third approach takes advantqge ·Of the decreasing relative cost of the
' '

processing power in a system. Of the three components, only the cost of the

3

.Ji< ..

-- -- --·------ ----~·

"r--t. - ,_ ,._ ..
''

I ' :-~ - --.

-
•, ... -

r • •

. _..de,,-- ,--~.-

l

'

0

(

I

'·

' k

. '

• .. ,.. __

' .
. . ., -- - --- -

'
- ··- ... ~- .. ---· -·----··· . -

'

. .

.

'

\

processing power ·has been decreasing at an ·accelerating ra~. I/0 cost has been

relatively constanJ, and the cost of storage has only kept pace with _the increased

needs caused by the _increased· processing· power. Because of these economic

facts, designers are attempting to use multiple processing units in one system

by exploiting parallelism in the applications. Simply defined, parallelism is a

situation where more than one part of the program (a single instruction or a

group of instructions) can be. executed simultaneously. In general, there are

four levels of parallelism shown in Fig. 1-1 which can be e:x;ploited.

1. Data level. Executing an instruction on more than one piece of
data simultaneously. This can be applied only to Jiroblems which
are by their very nature, parallel.

2. Instruction level. Executing multiple instructions simultaneously
on the same data. This is difficult to. achieve since all the
instructions must be synchronized to guarantee the proper order }of
execution.

3. Task level. Executing groups of instructions simultaneously on
related data. The efficiency of this type is dependent upon the
architecture, and the programmer must define parallel tasks.

e .

4. Job lev~l. S~multaneous ~xecutio.n of unr~lated ~obs. This type of
parallelism 1s employed in multiuser mainframes. Unfortunately
turn around time of each job is not improved by this technique.

1.2 Motivations

Research in parallel architectures has concentrated on three types of

machines, with some success in two areas. The first, and most popular

motivation is to build a supercomputer. Current architectures suffer from the

Von Neumann bottleneck which defines a ceiling on their performance. Parallel

architectures are pursued to eliminate the bottleneck and improve the overall

performance The second motivation is that some applications are inherently

" very parallel. This has met with the most success and is common in DSP and .
' '

graphics applications, but hasn't helped advance the field of general purpose

computing. The third and least successful motivation is to decrease the cost of

4

' ·. - . ·-o.. . -

. . ,...'- . - ·-- --
~

• --· ···-- , ~-----~ ~c_:,____.
-----D- ---- - -- " - -- -

- . ' - .. ·--- __ , __ , , .. ~ ·~---· ·---,._ . ~-

\,
,

J

"

I

' l
' ..

/

I ..
. l

\
i •·

~·

-
•

. ..

•

;: \
\

,,... 1 ;

(
,- '

•
·-

I

. ~ lNSTl CATAl DATA2 DATA3 DATA4

····-·-········ ·--······-· ···········-··· ... ·-·······-······· -···-
lNST2 DATAl DATA2 DATA3 DATA4

····-·-········ ····-········-· ······--······ ······-···-·····- ~--·-·············
F"DE CRAn£D

JNST3 CATAl DATA2 DATA3 DATA4 Oat a W!'V'I!' l \

.................. -···-········-· ·······--·····- ······-··········-
lNST4 DATAl DATA2 CX.::.TA3 DATA4 :trn. t ruc:t ion Leval

·-··-·····---···· ····-··········- ······-········ -···-······ ~--··············· ····-----···-···-··· -----
lNSTG DATAl DATA2 DATA3 DATA4

lNSTe DATAl DATA2 CX.::.TA3 DATA4

---· -··········· -·-·-·········-· ·····--- -·-········-····-- ~--·-·······-····
lNST7 CATAl DATA2 DATA3 DATA4

····-·-·····-· ····-··········· ······-········ ~----·············

lNST8 CATAl DATA2 DATA3 DATA4
.

Figure 1-1: .

Three ways of dividing se;rial code into parallel code.

Horizontally by instructions, or vertically by data ..

,

.Q-'
- ;
-- "·'

t

•

I
,:iY

-·---···-·--

•
. ·- ___ _______',.__ _ _____:__,.-.~.~~· -~~·

-·,_ .. - ~- .· -
. •,. 111,. ·".

- ------------· ------------~-- ---:~~-------~ -------- ____;__

--"~-.:

L.

l

-

L •
/

I

•

computing power. This has been pursued with little success because the

. decreased cost of the computing power is offset by the increased cost. of software

development.

.•

In this thesis a parallel architecture will be examined which attempts to
'"' satisfy three criteria.

• Take advantage of advancing VLSI technology.

• Easy to program for general purpose applications.

• Fault tolerant.

• Flexible enough in design and implementation to eliminate
obsolescence with each advance in VLSI technology.

Chapter two of this thesis is an examination of the problems and major

decisions that affect parallel processing. It presents a methodic study of the

ba~ics with the purpose of showing what is necessary for a successful parallel

architecture. Chapter three describes our implementation of the architecture.

Chapter four is a summary of current and future work.

.,.., '

i

•

6

.. '' ·:;,. ,.·

' . _,-,.

••

.,

'·

,

•

·- - - -,--' . - -, -- - -· -
D

. .

(

'
•

Chapter 2
THEORY of PARALLEL

ARCHITECTURES __ _

SOFTWARE~

2.1 Description of Parallelism

,.

The most difficult aspect of software design of a parallel processor is the

description of the parallelism in the algorithm. As mentioned in Chapter 1,

there are four levels of parallelism, three of which, data, instruction, and task

level, are well suited for execution on a parallel architecture; and the forth, job

level, requiring interprocess communication is suited for loosely coupled

conventional computers such as the VAX 8900 [1].

Several approaches have been tried to describe parallelism. One approach

is to leave the high level language software development unchanged and to use

a compiler which finds and defines parallelism. This method is most desirable

because of the easy transition from serial to parallel programming but has

several limitations. The success of this approach for scientific applications is

illustrated by Allient computer's Fortran compiler which parallelizes DO loops.

Unfortunately, this is unlikely to affect general purpose programming great deal

since the compilation becomes expensive for more sophisticated automatic

parallel translation, -and designing an efficient compiler is very difficult. The

fundamental drawback of this approach is that it relies on software (the

compiler) to replace the programmer's intelligence to in recognize parallelism.

The coarse grained parallelism may be best defined by the programmer

,, .. ·-

7

•

•
'<

-. .

\

. ..
------- --

,

l

)

. -
- - -- _., __ _

(,.

'

I

through special constructs in the programming language. This complicates the

programming, but significantly reduces the compilation time an'd run time

,overhead [2].

2.2 Programmability of Parallel Architectures

Parallel architectures have been intensely researched with very little ·

success in the area of general purpose computing. This is primarily because of

the incompatibility of current architectures with Gurrent serial programming

techniques. As a result, there are are a lot of parallel architectures available,
"

without appropriate software support. Thus, the primary objective in.developing

a new architecture should be programmability, rather than merely the most

efficient use of the largest number of processing units. Efficiency improvements

are traditionally an evolutionary process, and therefore can be sacrificed

initially for an easier transition to parallel programming.

Software for a parallel architecture must conform to new constraints. The

job must be partitioned into instructions that can execute in parallel (as already

di&cussed); the instructions m.ust be scheduled for execution on a processing

unit; and the data flow must be aGcounted for. Scheduling implies keeping track

of the progress of a· task (instruction or chunk of instructions) with respect to

time. Thus it is responsible for ensuring that th~ various portions of a program

begin execution at the appropriate times so that the data requirements of each

portion are correctly satisfied [3] [4]. To solve the problem of scheduling, most

often special parallel languages are used. This increases the efficiency of the

·program, but requires the programmer to abandon the languages and

techniques he is comfortable with.

8

•

'

;

..

...
' .

"

• •

• i

-

-· t

. :,.,

• " 'G-.,

..... -.
··;-~! ,;.

= .:., ..

Ill ·,

In parallel architectures having more th~n one memory (which is required

to solve the Von Neuman~ bottleneck as explained below), one has to deal with

the problem of keeping all the data residing in different memories consistent.

This is referred to as the problem of data coherency [21. One way of
•

understanding the problem is to lo.ok at the structure of memory at two

architectural extremes. One extreme is only one memory and more than one
. '

processor. This configuration creates a bottleneck because most of a processors

time is spent awaiting for the bus. The other extreme is to have .a separate

memory for each processor, with each data element in one and only one memory .

.
This configurations suffers from wastage of. processing time spent in

transferring data so that it is in the correct memory to execute. The only

solution to this dilemma is to allow multiple copies of data elements to reside in

more than one memory or cache simultaneously. In this case, there has to o·e a

way to ensure that data in a memory is correct when it is used. If all the data is
'

corrected continuously, it would be no different than a single memory albeit

multi-ported. Thus the improvement in th-e execution performance forces one to

deal with the problem of data coherency.

<>

These last two problems are often grouped together as the synchronization

problem, and are tesponsible for holding back the realization of parallel

processing in all but special purpose machines. There are several approaches to

handling the synchronization problem. One is to use special constructs within a

conventional language such as TEST AND SET [5] [6]. This instruction allows

one process to access shared memory and check for other processes, using a data

elements it is interested in. It also allows the processor to set a semaphore
~

saying that it is using the data [data mov. prim. article]. Another approach is

to use special language structures such as Guarded Horn Clauses which have

\
9

,. --$!~, ·- ... ··''~
f<,· ..•. ---~.

- •'

,1,c'

•

. --·· '
- -

•

-

(..

•

..

.,

. . -- -(.,
. - - . ---- - -

\, . u
•

-

•

Test and Set functions Implicitly built in [7] . Both t!Jese approaches require

the programmer to specify the parallelism and coordinate the execution of

Jnstructions. A third approach is to use a whole new model for computing such

as data flow where the programmer implicitly describes the parallelism and the
0

operating system coordinates the execution dynamically .

•

2.3 Data and Task Flow

Because of the limitations on the Von Neumann architecture, a new

architecture has to be developed, and many researchers believe that first a

whole new paradigm for computation has to be developed [8]. Several models

have been proposed and one of the more promising ones is· the data flow

paradigm.· As oppoped to a Von Neumann algorithm, where instructions are

defined sequentially and executed in order, data flow programs define a group of

instructions with no explicit order of execution. Instead, each instruction

specifies data elements arid is executed as soon as the data becomes available (a

more sophisticated and potentially more efficient variation is demand-driven

data flow, where execution starts at the final data specifying or tagging

instructions which need to be executed and once all necessary data is at the

input level, actual execution begins.) An example of the data flow execution of

the quadratic formula is shown in Fig .. 2-1 because each instruction is available

to execute as soon as it's data is ready, data flow algorithms are ideally suited

for parallel execution [9] [10].

In numerical computations, where the data is structured in arrays data

flow is very attractive, but in general purpose computing the fine grain of the

algorithms is impractical. The advantages to data flow are that it can extract

all possible parallelism from any problem and can execute independent of the

10

- ''"'"

' ·'""'~· . : ' -· . . , . ~F~<...... • -- •• ,. '·~' - ·' - - ~ ·- .•• r '"'
·:··, ~-- .~:'~.: ~--.. , -~·

•

' ,....~-

..

- - . - - - ----

(·
I

- .

'

'

, .

[;15 '
r

'\ ..

I

.f
i>"'- ..

• , .

. .
\ 2 • b b • C < = :rnpu1: Data

• • ,

•

,.,.

•

I

•

'

. .

' .

Xl X2

. "

Figure 2-1:
Data flow execution of the quadratic formula.

11

_, •

• 1 ..
' it-_· -

"-'" .. -'"
• p I!

.. -~-:--
___,. ____________________________ ...,._--.... .,.. ... _""""'"" ___ _...._~~----=--~---~--·--------- ' ·;,-fr . -----------

'

'
. ' ·-"'""'; ·. ' ~--~:-- ·-·· .

•

'

I

.. '

/

.. ., '
•· /

'· ..
~ .

•

number of processing units in a system. The disadvantage, .however, is that it
"

develops a fine grained parallel .algorithm which is not suited for general , ·/

purpose computing. As yan be seen in the above example, if a problem is
J

subdivided with each instruction executing in a different processing unit tl\ere

will be a large amount of inter-processor communication to transfer data ,,
. .

elements. Even with a very sophisticated operating system which has

. instructions execute in the proces'sing unit where their data altea:dy resides,

their will be more than one data or instruction tran·sfer for each instruction

executed (see.Fig. 2-2)

In the Von Neumann model of computing control is specified by the

location of the instruction with ~espect to other instructions. This is called a

control flow paradigm because each instruction executes when control is passed
0

to it from the previous instruction. In the Data"'flow model of computing, control

is specified by the data elements required by the instruction to execute. This

.has the disadva11tage of being difficult for humans to visualize because of its

complexity. By its very nature, there are many branches of executing code anq

altho.ugh the parallelism does not have to be explicitly specified by the

programmer, it is very difficult to program and debug.

A golden mean between sequential computing and data flow is what is

referred to as the task flow. Task flow is a_model where a program is broken into

tasks containing tens of instructions. within a task the program executes with a

normal flow of control by location. Each task however, specifies what data is

necessary for it's execution and the tasks are heaped and execute when the data

becomes available. This makes the tasks easy to develop and at the same time

decreases the communication between executing tasks.

12

..... ___________ .._ _______________ .•• ---- - ,

•

.,

•

/j

Cl_~·,_

\

' '

'

• , I ,
.,

• I .t·
I

'1

.)

2 • b , b • C: <= ::C,,put Data

' I
\

•

/

.,
X1 X2

Figure 2--2:
Data flow exec·ution with data reused.

,13

: . .P ...
f. ._,.,.._

. ,·

----------·~·--------"'.:"""""'------ ~-- -- - - -

~ : /
·, -~~--.... -. '

'

-
(

'

" '

' .

'

I

.)

,, .•
2~4 Overhead of a Parallel System

'

• Overhead is defined as any time during the execution of a job that a
'

'>

processor is not executing instructions specifically defined by the programmer.
,., ."',

~ 'it . '

In a conventional computer, this includes performing op~rating system

functions, I/0, and even the instruction fetch cycle if the processor is not
. I simultaneously executing an instruction. In a parallel system there are several

" ' additional operations which add to the overhead burden, these include [11]:
• transferring data between processors or from main memory to local

memory.

• Transferring instructions to the processor in which they are to
execute.

• communication between processors including sy,nchronization.

• Other operating system functions such as heap management and
I/0 which are complicated by the parallel environment.

Conventional microcomputers have reduced the overhead by using

pipelining and cache memories and in developing a parallel system, overhead

reduction must be considered at the outset. In a data flow architecture,

techniques such as pipelining can be used on the local level since each task will

execute as a serial program. There will be three major causes of overhead,

specifically:
1. Data transferring. Data will need to be transferred from the main

heap to local memory at the beginning of each task, likewi~e, data
will have to be transferred back to the main heap at the end of the
task taking care not to overwrite any new data with an older
version. Tb.is portion of overhead can be reduced by reusing the
data in local memory in some instances.

2. Instruction transferring. Instructions will have to be transferred to
the local memory at the beginning of each task. A way of reducing
this portion is to have a task execute in a processing unit where its
instructions already reside if possible,or having local memories
large enough to contain the entire program.

3. Heap. man_ •agem_ ent. Befc\e a local_ processor can start executing a
task it must update t¥problem heap, search for a new task to

14 ·'

--~----------- ----

: .. -.-:-- ~ . ·.

•

,/

.,.._

r
t,,

~ ~·- -·-- ---

_:;.-... ~·

.

'· -.

•

•

• i ,,

I

("

-

·-

~, ,.,_,,
\

•
f

'

execute, and spawn new tasks to add to the heap. This requires · some searching which can be very time consuming.

2.5 Task Executi.on Schemes

A task is a group of several instructions, and because of this, a task can be

partially executed when the program control goes to another task. This is

unlike Data flow in which by definition an instruction must be ready to execute
completely before execution is allowed to begin. A form of task flow could be

defined which requires the same constraints as data flow, but this would inhibit

such programming tools as functions and nesting, and would cause more

overhead by causing tasks to be smaller, self contained units. Because of these

complexities, the basic form of a task, and allowable paths of control must be

defined.

A task must have a beginning and an end. Execution must start at the

begin11ing and must stop at the end. This is. similar to the definition of a

subroutine or procedure in a structured language such as Pascal. A task can call

another task at any time during its execution. This will complicate the operating

system considerably; but as explained above, it is an essential complication. The

beginning of a task must define which data is required to execute the task, and

the end must define which data needs to be updated in the main heap. Other

aspects of task flow control w;ill be considered in chapter 3; but for now enough

is known about task execution to develop suitable hardware.

15

•

I

' .

..
.. ·..::-

•

(

·!~

I •

I __ j.

I

·HARDWARE

2.6 Bus Structure And Connectivity
'

The problem of determining the best architecture for a parallel processor-
. '

is really the problem of determining the best interconnection scheme between

processors. This decision affects every aspect of the machines performance,

from cost and reliability to programmability and overhead. Most of the

connection schemes currently being researched can be divided into two
"•

categories although there are almost as many variations as there are people
•

working in the field. The first category is a simple extension of the standard Von

Neumann architecture with a main bus which all processors must use to

communicate with each other and access main memory. This suffers from an

aggravation of what is known as the Von Neumann bottleneck; because all

processors are using one bus, they will often have to wait to be granted access.

The second category requires many independent busses connecting a small

subset of processing units. This is considered the best scheme for designs with

many processors because the addition of processors is accompanied by the

addition of busses and communication paths between processors. Although a

networked architecture appears to be the most sensible way to efficiently

connect many processing units, it has several serious problems with the most

serious being its difficulty to program. The operating system for these machines

must contend with a large amount of message passing because of their

distributed nature, and a program running on these machine must be divisible

into hundreds of small tasks, all concurrently executing and communicating

through the network. Several companies have developed special processors with

instructions which are designed to deal with the communication problem and
" '

this has helped reduce the cost of the processing units, but because they are still
I

16

•

..

' •

' 0

-- ,. . .. ; --- ...

.. rn1: ... · .. · ;tllllli'xiifilll" · \j .. z .. s ~~ .. · ... ·· ~ - ... -· --· -.... -__;...;..........:::·...:...··::·...:...·· ,-:...C-'-~~·~~....;......~~~-~· '""...--~ llfJllllll!!!!!!!!!!!l!!l!lll!!!!!l!!!!!!!!!!!!!l!!l!!J!!l!!lllli!lllllll!ll!IJllll!!!!l!!! !!1!!111 llllllllllllillllliillllllliillllllillllliliil
~

'

i
"

• t •
q

. ·. ~,

>

(

.

= .

..•. I

• I

,r-

difficult to program, most success has been in dedicated applications where the

problem is easily ~istributed and the communication betwee·n tasks can be

matched to the bus network .. Unfortunately, this type of fixed network does not

serve the needs of~ general purpose machine y2J [13].

.

Shared bus architectures are generally easier to program than networked

architectures because they have fewer processing units, and because each

processing unit is more independent. This implies task level parallelism rather

than data or instruction level. The processing units· in such an architecture

should be more powerful and self contained. There is less of a bottleneck when

the running job. has a large portion of serial code -- code which cannot run in

parallel with any other code. This is the most promising approach for a

computer which is easy to program since one is not bothered by serial portions of

code. However, an effort must be made to prevent common bus access from

slowing down the processors and a clever programming strategy should
·"',.

distribut~ an equal amount of work to all processors.

2. 7 Memory Structures

In a parallel processor the bus is used primarily to access memory for data

and instructions and therefore one way to reduce bus use is to modify the

structure of memory. The two most common -structures are the shared local

memory architecture and the shared global memory with cache [14].

Shared local memory architectures divide up memory into partitions with

each processor having direct access to one partition and access to other

partitions through the bus (see Fig. 2-3.} This is very similar to networked

architectures, and suffers from many 1of the same problems. Specifically, if a

17

,/ •'j . _::;. •.

•

r

,_
'

,

.J

-, ..

•
•

•

processor is running a task requiring· access to memory locations through the

bus, it slows down the complete execution. However, these architectures have

the advantage tnat since all processors are working on the same information,

the data coherency problem is greatly simplified.

Shared global memory architectures have a single memory, which all

processors have equal access to (see Fig. 2-4.) To reduce the strain on the bus,

they also· have a cache for each processor where information that a processor is

using is temporarily stored. The drawback of this s.cheme is that there can be

more than one copy of each datum. If any data is changed in the cache, the data
--·

must also be changed in main memory and in any other caches that have a copy

of that data. Several people have used this approach, but they have had to

develop complex hardware to solve the problem of cache coherency [2].and there

is still no guarantee that this type of architecture will be easy to program. For

an architecture to be easy to program, the data structures within the software

must easily map to the hardware -- either because of the highly limited

software, or because of very flexible hardware.

Certain dedicated signal processing and graphics problems are more

suited to parallel processors because their data structures match the structure

of the processors. General purpose computing, however, has no predefmed

structure to its data at the instruction level. The most structure that can be

guaranteed is at the subroutine level in a structured langu,age such as Pascal or

C. In these languages, all daffa defined in a procedure is global in that
jl

procedure, and in all procedures called by it1~o data (with minor ~xceptions) is
. .I

global at any higher level, and all data defined in a procedure is lost when that

' procedure reaches its END statement. Since this amount of structure already

18

•
·' . ·, - . - ---- ·-----·---

--- ·- ·6-, .

- . ·- :·: ·-·· •.. •. - : . ,., ... :~ ~~~ '-_-: .. -. .-__ "'_ ;;·-:.:~ -···-· ~~--__:_---==--------___ _;_ _________________________ _

\ .

•

...

\

-- - -~r -

' .

..

I/0

/

' / .

~ I C> I r- !o ~~

/ ' .

' /

PROCESSING
lNtT

• .

Figure 2-3:
Shared local memory architecture.

,.

/

.,

' /

L~
t-EMORY

- . -------- -· --- -- -·---~ ---·----

! ' ,,.

,

. '

L~
t-£1-10RY

PROCESSING
LNtT

/

' /
.

' /
•

' .

/ "'

' /

PROCESSING ' /
UNIT

LOCAL
t-EHORY

-
·- .. ·--·--. ----~,"·--·- -· ---·-----------·-----., .. ----- ·- ··- -----·--------·------ -- --- - --------------------·----- ---- -- ,. __________________ -----·--···

'

/'

./

....
'

•
•

(

•

)

.

I

:I:/0 MAIN t-EHORY

.I /

' / ' /

::-" n. I t- .n Rl ~
/

.

/ / / ' •

r.'·

' / ' / ' / ' /
.

.
CAa£ ~ CACt-£ CAC}£

/ ' / '\ / /

' / ' / ' I/ ' /

PROCESSDIG PROCESSING PROCESSING PROCESS:tNG

•
• LNtT U-0:T LNtT LNIT

f

, .

., Fig1u·e 2-4:
Shared main memory· architecture.

--------- - ' .. - -. .

.. ·-------··------ ----':>· __ ,.__________ ----,..--- ------- - -

-
\

;,·- •

..

- .

..

I

exists in common programming practice, it would be ideal to develop an

architecture which took advantage of this structure.
' .

•

Such an architecture should have a main memory where all the code and

global data is stored and a local memo~y where an executing task is stored along
I

with the data (see Fig. 2-5.) Since main memory only contains global data, is·is

only updated upon completion of a task; and since. local memory contains

primarily local data it's contents are no longer relevant when a task reaches its

END statement. This architecture would take the fullest advantage of

parallelism already identified with current programming techniques and·

languages. . ·,

2.8 Supervising and Control

There must be a way of controlling all the interactions between

processors, and there must be a way -- either through software or hardware -- of

knowing the exact status of every processor and task in the system. This

supervisory function inclu·des communication with the outside world,

initialization of the system, bus arbitration, job scheduling, and keeping track of

data. In a shared bus architecture, all of these functions can be either

distributed or centralized and in either case, they can be performed in hardware

or software. One common approach is to specify a single processing unit (PU} as

11 supervisor. 11 Such a PU has a special architecture and is dedicated to all the

above mentioned tasks with the exception of those that require excessive speed

such as bus arbitration.

To implement the supervisor, aii analysis must be made of each function,

examining each of the three alternatives: software, dedicated processor, and

21

- "'"f- --

·;---·•:u.., . [__ _
-.

•

• I

,

.. ,

. ~..: ...

--~----~ -~- . - - -- -

,

•
L

•
.r, ..

/ r

PROCESSSJNG / ' L~
~ t-EHORY :t/0 LNrT H:J-iORY

/
. "

/ ' / ' .,

' / ' / ' /
.

OT.'.'.>lrri ~-

/ /

PROCESSSZNG / ' Loa:L PROCESSSING / ' Loa:L
LNIT t-EHORY ,, LNrT t-EHORY

• / /

,.

Figure 2-5:
Architecture for task flow machine .

. "

•
I

' /

!.

' '

special circuit. Communications to the outside .world will ,obviously require a
a .

dedicated interface to a high speed communication link, but the control is

probably best performed through software running on a processor -- not

necessarily a dedicated one. The system initialization can be performed by any

processor as long ·as there is a circuit which gives it preference over the other
'

processors, and as long as it has an access to the initialization software which

resides in ROM. Bus. arbitration is the most critical function and therefore must
"

be performed by a special circuit to reduce the access delay time and increase

the bus efficiency.

2.9 Bus Arbitration

Bus arbitration in a shared bus system is a critical function because the

efficiency of the bus affects the number of processing units which can effectively

share it. A shared bus architecture must have a high bandwidth bus, which is

used efficiently and equitably. The arbitration scheme must be optimized for

the type of access which the memory structure and operating system require. In

a shared global memory system the average packet size is proportional to the

size of the caches. On the other hand, a dual memory system, as is suited for a
..

task flow environment, the packet size is very large and the access frequency is

small. This is desirable because high speed transfer techniques such as direct

memory access can be employed in this situation to improve the bus

per£ormance.

There are two important considerations in .. determining the arbitration

scheme for a system. the first is prioritization of processes and/or processors. In

a task flow environment, running on a shared bus system where all processors

are interchangeable, and where all processes are considered equal, One may use

23

•:··

...

'

)

.. L.. .J//t
.:.__ _________________ -----------------------------------·".;...,. __ ---,--~.:.------·"""',--~ .. ':l:!,jj'~~~-~-. -~':..;.._........;-;;.;.· .;...· ;.;..· - - - -"""""-"! iililtill!ffll!i _____________ _

0

r

J

'

,'

0

arbitrary prioritazition. The simplest scheme would be to assign a frxed priority

level to each processor and more sophisticated realizations include rotating

priority and software assignable priority. These more sophisticated schemes

reduce situations where several processors are idle because they a:r,e awaiting·

for data from a process running on a low priority processor which is being

denied access to the bus. These bottlenecks can also be reduced by careful
'

operating system design, provided some hardware support is available.

The second consideration in the design of an arbitration logic is the
! .

implementation of the logic as a centralized or a distributed architecture. A

distributed arbitration circuit is generally slower and expensive but is more

flexible, because it allows the addition of an indetermin,ate number of

processors. A centralized arbitrator, on the other hand, is better equipped to
4

handle complicated arbitration schemes, but increases the number of bus lines

needed for arbitration.

To simplify the hardware and to obtain maximum bus efficiency in a task

flow environment, a fixed priority centralized arbitrator is chosen for the

architecture described in this thesis. This gives the added benefit of greatly

simplify the processing units by allowing a centralized bootstrapping as will be·

showp. in chapter three.

24

' . . ., ... "• .. ,,.-.,-, ' ,,

.. -5

..

•

--- ·-- - - ------ '

' l.

.,

• IJ

2.10 Fault Tolerance

In a system with many processing nodes, there has to be many

interconnections between nodes and interconnections are inherently very

unreliable. Because many applications are totally dependent upon computers,

systems are currently being designed more fault tolerant; often using networked

systems, or redundant processors. Parallel systems have a great potential for

fault tolerance because .of their built in redundancy, but this can only be

realized by careful design. For a system to be fault tolerant, it must be able to ,;

function after a communication link or processor fails.

In a networked architecture this seems easy bec.ause of their multiple

communication links, but the difficulty is that there is no way for the other

processors in a system to know when a fault occurs. FauJt detection is necessary

for the other processors to start performing the functions of the missing node,

and for proper rerouting of information. Current networked systems are less

reliable because of their multiple nodes. Shared bus architectures have an

advantage because most can function with a variable amount of nodes. The area

~tere 'Work is n~ed is in fault detection. A task flow architecture is perfectly

configured for a fault tolerant system since any task can run on any node. The

only provision which. is necessary is a. way of removing the effects on the
-

problem heap by a processor which starts a task and cannot finish it because of

a fault.

25

. '

• ' i

i!

\
'·

"

. .

(

-J

•

'2.11 VLSI Compatibility

Advancing VLSI technology is providing microprocessors have- functions

and sophistication developed for mainframe computer systems. Because of these

advances, a parallel microprocessor system must be very flexible and ideally,

would have very independent processing units which· interacted with a simple
.,

protocol and therefore the architecture would be flexible enough to take

advantage of future technology. An architecture which relies on special

functions for communications in a networked bus environment is not workable

because it can not take advantage of microprocessors developed for non parallel
"

systems [15].

26

0

•
" .

•

. ,..t''

•

/

•

Chapter 3
IMPLEMENTATION of FAULT

· TOLERANT PARALLEL
ARCHITECTURE

HARDWARE

)

The basic structure a computer is determined by the type of application it

is intended for, but once the basic structure is determined, there are still many
I

aspects of the computer which need to be decided. These factors largely

determine the cost, efficiency, flexibility and expandablility of an architecture.

For a general purpose parallel processor, the best architecture is the shared bus

design because its simple structure makes it easiest to program and because a

smaller number of powerful processing units makes it more robust regarding
\/·

software design. The chosen architecture as implemented is shown in figure 3-1.

Following sections describe details of this architecture.

3.1 Processor Considerations

Current general purpose microprocessor families are very similar in

computational power and type of instructions, so the choice of a processor is

relegated to other areas including basic architecture, upward compatibility,

software availability, higher operating system functions, and the availability of

support hardware and software. 'A general purpose machine which is easy to

develop software for should be based on a microprocessor family which already

has a large user base. There are two reasons for this, one, because the

transition from programming an ordinary computer to programming in parallel

will be a big enough step without having to change processors. Two, because it

is intended that only minor modifications will need to be made to existing

27

•

----------------------~~~--------------------~~~~----------~~-- q

~-------·---~ ·-· -
----------~

-----. -· ···-··--.--···---·-·· .
·-·····-

•
...... -.. -- ----·· ·----~-

-·~ > ::-_._ _.,.,. (' • -· • " •
. . ,._. -

---~ -
-·--- __ ,_ ·- -·' ~-, -- -- '

- .' ·_ .• ·--:-···- -:- .. --··-- -- ·-.-, -~-- . ., ... --: -- --·--~-s·c.--=-.=··

". -- - - .. ---·-

!
l
'

..

I
f

'

. ,

i
,/,~.

•

-,, .- -. I~

i--~--~---····· ·······-·····1
, I

I ! . '

,,.
i

'

• I
!
I
!
l
I .
I
I •
I -

/

'

..

HOST PC

/'.

V RS232
/

,,

:··~~-~~--------··············-
I
I

····-·····-·· ··-······
i

' . •
!

.. '/

:I/0

i
' . : •
i
I

Al~X I RATION
LOOIC

/

..._ _____ _.,
! -........................ · --...................... .

. '

'
O:IAGNOS'Tl:CS

At-0
CONTROL

/ ._ _______ .. !
:
l
!
I ··--- -...................... -...... ·····-·-

/

/

:· ---...................... -.. -. -.. .. -·--. ------ --- -- - -· ·······---~·-·
• I
l
I
' •
l 80136 6 '

' !
:
: :
I
I
' I
!
I
!
:

! !

i .. N~ ... ~---····················.·························· ·····-······················j

. .-------------.
/ ' 8008 5

/

. . i
!
l
l
i
I •
I
!
l
I
i
' •

' '
·i ... Hsx:cf: ... J. ... , .• ~ ""' •••.• , J

Figure 3-1:
Block diagram of system .

.-. - .. -.-.-.-. -.-,

---·----- -- .. -- ..

_)

.. ,,,l

r··.~--~----·-:·········-···--·-··--··.-···--······-···········--····:
•
l .
I
!
I
l
i
I •
l
l •
l
!
l

.

5

. .

/

•.·····-~·-·············~·-·······-·-········ ..

'
/

/

eese 5 .

'

'
/

-- . ·-

/

. ... ~

'
/

I
I
i
l

l i
! !
i i . ' . . .
t .. ~. 2 ··-............ ·········· - '"':'" -----~· -······ ----. - J

'
'

•

'

·- •
• ,,(..

.... ! !
!
'1

v

I ., ..
r I

_. _____ .._ __ - -- ----~-·-

I

I
I
\·

.,
'

l ;
J
,.'
;

~
Ii.
,1

~

•

~- ---- '"... ·----

,- ;

I

I

software to make it compatible with the task flow environment, although major

'modifications may be necessary to make it run efficiently.

-,,, Three microprocessor families were consideredlll this study -- Intel,

Motorola, and NEC. Intels iapx series is notable for its popularity which

guarantees low price, abundant support software, and future architectures

which are compatible with current software and bus structures. Motorola has a

somewhat less popular line, but it is a family dedicated to future compatibility

to every possible degree. NEC's line of processors is innovative, cheap, and

powerful, but as it is a parasite family relying on a petulant host, future

_/ compatibility is questionable. Upward compatibility is a very important

consideration, with clock speeds increasing steadily (5M in 1981, 16M in 87) and

new processors coming out regularly, any new design should be easily modified

•
(by changing processor boards, memory) to prevent obsolescence before it has a

chance to be developed and accepted. To this end, Motorola' 68000 series of

processors is strongest. It is designed for complete software compatibility and

bus compatibility in steps (8 bits, 16 bits, ..) to encourage it's use in a modular

family of computers all software compatible, and bus size dictated by specific

requirements. Furthermore, Motorola has stated a commitment to future chips

with higher clock speeds .as the technology becomes available. Intels family,

although upward compatible is not downward compatible although this seems

irrelevant, mutual compatibility is desirable for three reasons.

1. Without downward compatibility, everything about a
microcomputer becomes obsolete as soon as a new processor comes
out (software, bus structure ...) This means that the only right time
to develop a microcomputer is as soon as a new processor is
introduced, the exact time when development support is least
available.

2. No improvements in software can be used on machines other than
the most current ones because of incompatibility. This drastically

29

•

.. ,;...

. ,

--- - _...._.:. ___ ----' --·--- -· ----------- -

. ---·--- ~ -- ----- ---- --- --------- - ---------- -

;~

•
!
i
1

'

•

.. .

:(

"

..

reduces a machine's usable life by making it prematurely obsolete.

3. Everything has to be developed -all at once (operating system,
software, new hardware) increasing the development time and
decreasing the window of opportunity.

Considerations such _as architecture and operating system functions are

not important in a task flow machine because as a multiprocessor, software will

handle multitasking and the host computer will handle most I/0. Although

obsolete, the 8086 was chosen for the first computer for ease of design and

testing against known performance as a uniprocessor. Also, Lehigh is fully

equipped with In Circuit Emulators for the Intel iapx series. Future work may
I

use the Motorola Family, as it appears to be far superior to It's competitors for

such an application. It should be noted here that the chosen architecture allows

for the possibility of computational nodes that are very different from each

other, as long as they follow the same basic structure and interface rules.

3.2 Floating Point Unit

Since most floating point coprocessors require very little interface

circuitry if any, it is common practice to design the coprocessor into the

processor board even if the majority of applications will not warrant the added

expense of the processor. These systems can be left with an empty socket on the

processor board which can always be upgraded by inserting the coprocessor.

This is the best approach also for a multiprocessor system because although the

coprocessor alone will cost more than the entire processor board, Floating point

intensive programs will run five to twenty times faster with the coprocessor. It

·would· not be logical to design a system with 10 processors which is slower than

a conventional machine with a coprocessor for this class of applications.

30

. .

•

J

•,.

- -----··--·-· •.6ti

__ ;...,...,., ------------~-------~-___,,.,_..,.,,.=="=,,,.,.....,,;;~.;:_ . .:.:....:..._ .. _. _______ ...;..;...,;.__---------!!!!!!!!!!!!~------------ --
•

>· '··

' '

'

•

The decision of which applications warrant the expense of coprocessors is

however somewhat different than for the case of a uniprocessor. Th~ speedup in

execution time will be proportionally the same for a multiprocessor, but the the

cost of adding coprocessors will be n times greater, where n is the number of

processors. This assumes that the amount of parallelism doesn't change with

the change in software needed to support a coprocessor -- which will not

necessarily be the case, and in fact will have to be researched for specific

applications to even get a qualitative feel for the effect.

It is possible to add coprocessors to only a limited number of processors

nodes in a parallel machine. However, in this event, the operating system would

have to .try to route floating point intensive tasks to processors equipped with

floating point units. Even though this is the best way to incorporate more

floating point power, this would increase the software complexity and the job

overhead. Floating point coprocessors are not incorporated into the first

prototype machine because the additional expense and development time will do

little to prove the effectiveness of a task flow architecture, but treatment of

special processing units will be examined in the operating system design later in

this chapter.

3.3 Memory Structure and Bandwidth

Since the number of processors which can efficiently use a single shared

bus depends on the bandwidth of that bus, it is important to keep that

bandwidth as high as possible. There are three basic limitations to bus
...

bandwidth with only one of them inherent to the bus itself. That limitation is

the delay caused by the tranceivers and wires of the bus but this theoretical

maximum bandwidth is rarely reached. The second limitation is the access

. "·-·· -....

31

•

·,

I

1 •• -

-·--··---,--------------------------!!!!!!!'1!!11!-------..-------·-

,

..

~

I. ···\

• I

,

"'

. I

" times of the memory or I/0 device receiving or transmitting the data across the

bus and the third limitation is the cycle time of the processor controlling the

transfer. . .

The number of procesf?ors1 should· be determined by the amount of

parallelism which can be easily extracted from the average general purpose

program. · This cannot be calculated with any accuracy given the range of

software run on a general purpose machine, Therefore the only effective

procedure is to predict a range with an upper bound determined by the overhead

and then tailor the system to specific applications by adding processor nodes

where needed, and supplying overhead reducing techniques such as direct

memory access. Current version of the architecture has four nodes based on

Intel 8086.

One way of increasing the effective bus bandwidth is to use the Direct

Memory Access (DMA) technique to transfer data along the main bus; usually

between main memory and local memory. DMA is essentially a circuit which

performs the block move function which is an instructions in most ~-·--.

microprocessors; but the dedicated hardware of a DMA circuit can utilize the

maximum bus bandwidth limited only by the memory access times and the bus

delays. This avoids the repeated instruction fetch and cycles of the

microprocessor, and can increase the transfer rate by two to four times. The
-

transfer rate can be doubled again by incorporating the DMA into main memory

and separating the address bus under DMA control as shown in fig. 3-2. This

enables the DMA to simultaneously perform a read and a write to a different

address in each memory. This technique is not used in uniprocessor systems

because they only have one memory and therefore cannot separate the address

32

'

..
"'

' .

'

. . ·----~- _:____:: __ !l!!l!!I!!!!!!! ____ __ _

·- ..• ~
--·--, -'e : . . ------...... ----------~---=--------:-~.4 :;-.., -----------···

....

•
•

:, ..

.- . -- . - ----- -·------ --------- - - ' _,
;:,

_,
~ •···

i
•

j

• a

"'--·•· C •• e ('~: .:.::: •• -· •

- - - ,~"" .

..

• •

,

busses.

3.4 Fault Detection and Tolerance

A system is considered fault tolerant if it can continue functioning after

there is a hardware or software failure somewhere in the system. Since it is

impossible to guarantee that a fatal fault will not happen, there is no such thing

as a "fault proof' system. It is not practical to anticipate every possible failure,

and high reliability can be obtained by simply preparing for the most common

ones. For a system to be fault tolerant it must be designed with that in mind

from the outset. Such considerations often include: 1

1. Design to reduce low reliability components such as mechanical
interconnects, and simplify critical functions to increase reliability.

2. Incorporate redundancy for critical functions.

3. Provide fault detection circuitry which is capable of detecting
faults as they occur, and correcting any damage that may have
been done to the operating"'environment.

The shared bus data flow architecture is inherently fault tolerant because

of the problem heap which provides an easy way to bypass fault"'nodes. To

further increase the fault tolerance, the system was designed without

designating any single processor as a master processor in charge of the system

critical functions. Instead, the controlling functions were implemented either

through dedicated circuits (to whom normal fault detection techniques are

applicable), or through software functions which tun on any processor when it
"

has access to the main bus and memory. All scheduling· and. control tables are
~

stored in main memory where, any processor can access it. Thus if any node

encounters a fault, it would not stop the operation of the entire parallel ·system

but would only affect the speed of the system.

33

. /.

,

I

\ }

l

0

-···- . -- - - - ·-· - - -- -- - -

1 •

,,,

. ,

#",.

'

..

. ..e . '

' . -,.

,

1

1 "'

Ha~ n ~ '--------lI

•

8uf"f'er

<-·---------,

Hain
t1enllDI ~

--~--~J.:t -........ ---·- -----.... ·--.. -···-··· .. - .. -- --· ----. -· l-•• ------------··· ·-----·······- ---- ···----- _____ , ___ -- ..

~ Ca"'ltrol

Ac:Jdt ess
Cot.rlter

0 '--------~o

Adc:Jress
Co..rlter

• :,

,·

J Circuit~ ,
1
K. _ ~

~ '-------------------~--------------e1-....i1y/~~~-~......... :
• •
I I
• • ··--. ----- .. ---------·-··· -----.. --.. ---· -...... -·-·- --- --- ---... ---- -- --- -----... -----··· .. -·· ----·-----· -.. -- ---.·-. --~-----··· ----- -- .. ,

Figure 3-2:
DMA circuit for direct memory to memory transfers .

•
"

•. ..
\ ..

..

. ,

,

/

...
)

' t ,
I
'

' i ,.
.

I
j
!

t
t
f
.<
;l'

.~

j
' I
f
~(

i •

/

•

•

3.5 Host Interface

To prevent parallel machines from becoming I/0 bound, there must be a

high speed interface between it and the host computer. The speed of the

interface is related to the task execution speed of the parallel machine so this is

another parameter which could determine the upper bound on tne number of

processors. Thus, the interface should be upgradable when the need arises.

Our system has been built with an RS232 serial interface to reduce d_esign

time and cost. This is not an effective interface because of its slow speed, but

~e~ating at up to 19.2K baud, it is sufficient for testing a prototype.
-.- ...• -

3.6 Arbitration Logic

The arbitration circuit used in the system is shown in schematic C2. It

was built for eight processors, but the hardware is easily expanded to handle

more. The bus requests (BRQ \) come in to the control board, are prioritized and

then the output bus grants (BG\) are latched until the single processor granted

access is no longer requesting_ use of the bus. This is done with the feedback in

the lower portion of the circuit. U19 receives the address of the processor using

the bus, and that BRQ\ input is piped to enable the clock to the latch. This

arbitration scheme can be overridden by the control signals Boot and Real. The

Boot signal disables the outputs of all the latches and gives control to pullup
~

resistors which are preset so only one processor is given access during boot-up.

The Real signal enables· latch Ul.S to control the bus with a byte written to it by

the initial bus master. The use of these signals will be explained in the next

section.

To reduce unnecessary bus accesses, there is also a signal called Token

35

.~·.,...·
'". -·-·- . ,'-.' _.· .. , .,_ --

l•

•·

- -,.0,.....

1

- -·-- . -- "' .. ··----------- - - .

------·---

J

,.
:I '

,·

·•"'.

'

..
'

generated by the arbitration circuit. This signal is a positive pulse whenever a

processor relinquishes the bus. This signals idle processors that there may be

new tasks available to them so that they don't have to continuously access the
-.

bus looking for work. Token is initially given to the highest priority processor

and is passed along to successively lower priority processors· if the higher

priority ones are in use. Using this scheme, only the one highest priority idle

processor checks for work, and only after each access by a working processor.

3.7 System Initialization

When the system is first powered up, the individual processing units have

no operating system kernel and therefore, they all must be disabled except one

which will be given access to the ROM on the central memory board. This is

done by U7 on the control board, which makes Real low, and Boot high upon

reset. With this set of inputs, the arbitration circuit gives control to to the

Resistors on the BG\ output signals.. Processor O is given access to the ROM

and initiates .communication to the host. Once the host loads down the

operating system to main memory, Processor O raises Real, and gives bus access

to all the processors in the system. Because Boot is still high, all the processors

except O are in the hold state. Processor O then performs a block move of the

operating system kernel from main memory to its own local memory, and

because of the tranceiver c·ontrol logic, the information is simultaneously

written to all the local memories in the system. Upon completion of this task,

Processor O reverts access back to itself exclusively, and lowers Boot. At this

time, the system is operating normally, and control is given to the highest

priority processor (0) to start execution of the job.

36

,.

,' .. .
'

' .· ..
·' .

. . . ;i-.-1
,' . ' . . ,, -...

..

,

\

•

• •••.- "T"_. --• "• ----.-

..

'

I

'·

·'
•

I .

'

' ' I '

SOFTWARE

The primary function of the operating system in a task flow system is

managing the problem heap. This combines techniques common to data heap

management in a serial machine, and data flow control used in data flow

machines. There is also the added problem of accounting for data and

transferring information to a_nd from the local processors. To unde·:rstand the

structure of the operating system, it is first necessary to understand the

functions associated with handling the tasks, including possible bottlenecks and ··
.,

overhead. For the purpose of the operating system, each task has a structure

characterized in table 3-1. The multiprocessor built during this project exploits

this structure to provide the task execution sequence, as explained in the

following sections

3.8 Task Management

Any structured language program with Minor modifications can efficiently

run the task flow machine explained in this chapter. Programming techniques

will have to optimize parallelism; other than this, only a definition of

dependencies and the task structure outlined in table 3-1 will be necessary for

source code to be recompiled for the task flow architecture. Compilation will
·e.

perform the standard functions such as parsing, translation, relocation, and

linking but also should generate 'a physical task list. This task list typically 1
·

"'

consists of following information.
• The location of each task for loading into local memory.

• Specification of data that is used by the task for loading into local
memory.

• Specification of data that is produced by the task for loading into
main memory upon completion.

• Identification of the mother task and any daughter tasks.

37

'

•

---- -----~- -

,·

)

. ,,.:.,

.i
'

'

/ .

l

- . ~ ;

.. , ,..._ _________ ~-· ' .. --·..;.' ;•_ '

I

" .

1, . ,

'

Table 3-1: Defining task structure

1. A task has a beginning and an end. Program control must start at
the beginning, and finish at the end.

I •

2. Eachrtask (except the main task) is contained within another task
called its mother task And the contained task is labeled the
daughter task.

3. Tasks with the same mother are sister tasks.

4. Tasks are born when their mother task starts execution and they
can then be listed on the problem heap.

5. Once born, a. task can only execute if all its dependent tasks are
completed and off the problem heap.

6. A task can only be dependent upon its sister ta~s (It cannot be
dependent upon its da~ghters.) ,

7. A task can contain (or make a call to) any other task, including
itself.

8. A function is similar to a daughter task, but it can be dependent,
and therefore must be attached to its mother so as not to delay
execution.

9. All data, defined in a task is global only to its decendents.

• List of all the functions required by the task.

• Specification of any special requirements such as extra memory, or
a floating point unit for systems which are not homogeneous.

In addition, the physical task list also contains the current count, or the

number of the most recent logical task. The task list governs the task execution

in our multiprocessor architecture.

At the start of execution, main memory contains the program, the task

list, the data heap, and a task heap which contains one element -- the main or.

38

·- - ·- . ,, , .. , ', ... , . .,._ .,. ~· •". ··.··• '

I.

{)

•

'

•

. I.

initial task. As execution progresses, logical tasks are ·added to the task heap,

executed, and removed. To understand this process we must examine the life of

a task. 1

When a processor is idle, it searches the task heap for an available task.

Upon fmding a task which is not being executed, it sets a flag indicating that it

is executing that task, loads the physical task into its local memory, loads all

necessary global data, and begins execution. The first step in execution is the

creation of new logical tasks to be added to the problem heap. Once this is done,

the local processor can relinquish the bus. After execution the processor regains

a9cess to the bus and has to update the data heap and remove the task from the

heap, but this can only be done if the daughter tasks spawned at the beginning

of execution have been completed. To eliminate processors from being held idle

because their task cannot be removed from the task heap, there is a morgue

where all tasks are listed before they can be eliminated from the heap.

Processors search the morgue every time they remove a task from the heap to

see if its mother is awaiting to be removed.

Removal from the heap means that .a task is completed, and its resulting

data has been added to the data heap. When a processor is checking to see if

dependent tasks are completed to determine if a task is executable, it needs only

check to see if those tasks are on the heap. If they are, then they are in progress

and the task dependent on them must wait. This is a consequence of the sixth

property of a task as listed. Because of this, the time spent searching is kept at

1Throughout this chapter, it is assumed that the local memories are not large enough to contain
the entire program as is the case with the prototype machine. For systems with larger memories,
physical tasks need not be transferred. \

39

:~ , ,, *1· (;; . « -----------.i_....,.~--"!"'. "-.P,.~. _,,_ -- .. ~J .. ,...,..,,~ , . '~·-,. ·"· .. ~-...

• - - . •···--•--~- ---· ----- --

. .

, ·I·

•

....

,,

I .: '

.. ---· ---------. -- - - - .. --·"· ·, __ ,._. - ,. ··-· ·-

. .

. -· I ~

a minimum. To start a task and to end a task, the entire problem heap must be.

searched, but the problem heap is never very large.
1 -'

3.9 Dynamic Task Spawning

A useful tool for coding repetitive sequences such as DO loops is the

ability to create a logical task dynamically. After a,· task is loaded into local

memory to execute, the system must check if it is to be repeated, and if so, its

name, with an incremented count, must be added to the task heap. The new

addition to the heap will be identical to the first, with the exception of the count.

To distinguish daughter tasks created by these repeated tasks, each task must

also contain the count of its mother task. A task is not dependent upon the

completion of sister tasks created dynamically.

The second way that tasks will be added to the heap is when their mother

commences to execute; At the beginning of each task there will be a list of

daughter tasks which are to be added to the task heap. These daughter tasks

can be dependent upon each other, but their mother cannot require any of the,

data produced by them. T~e mother however, must wait for their execution t

before it:can be removed from the task heap. This interaction of dependencies is

displayed in the example program shown in Fig. 3-3.

Execution in this case will proceed as follows:

• Start up -- Task table is initialized with task A as the only element.

• First processor starts execution of task A by listing its daughter
tasks -- AA, AB, and AC in the task table.

• The second processor then proceeds by checking the task table,
finding Task AA is available and not dependent upon anything and

40

a

•

h .••

• 0 ~-- --···- --~-- .-~-~ --·. ·-

l.

,, .. '

l

I

,-
'

A Task • Main task I

AA Task • When AA begins, it puts AAA, AAB, I

AAA Task • and AAC on the heap. I

• • •

AAA End

AAB Task
• • •

AAB End
• • •

AA End

AB Task (AA)
' Call AAA • When AB begins, it puts AAA on the I

• heap, but AB does not execute • • • I

AB End • until AA is removed from heap I

AC Task (AA) ; Dependent upon AA
• • •

AC End
A End

Figure 3-3: Typical execution of a program in a task flow architecture.

f

therefore executable. Its daughter tasks are listed in the task table.

• The third processor will now attempt to load a task, and find that
AA's daughter tasks are available.

• When task AB starts execution, it continues until it reaches the
"CALL AAA" statement. At this time the processor must access the
bus to load task AAA while task AB is put aside in the local
memory. In this situation one processor is executing more than one
task, and careful programming is required to prevent a software
bottleneck.

• As processors finish tasks, they remove them from th~ heap and
continue the process.

41

•

=.-·· •. , .;;:··-:...· __ .;.;·;;;·---··----·-··-·--·-· ----·· ll!llllriP"l·r.·!::· . .. ,._ ,ft& HO O .:;.,.ia<,.-,.,,:_ $ • - - . ~_,.,..., ---~.- -' ... -. -~-=- ~--- , ·- '. . ~:a::;;, .. ·"' -"' -~-....,__!:-~----- #U>-~,, .• ~

.. , I
(

·1,.. :

•

1 ..

s !' _£

0

/

' '

.I

-
(

···=- .
. ",/' , ... ·· ; ,., - ,,:-::

,

' I

3.10 Data Management
I.

With a task flow, structure, management of the data heap is· similar to

management in 1a standard processor. Access to the heap. is controlled by the

problem heap, so that Scheduling and data coherency are not a problem for the

operating system. If a process has access to the data heap, then it is accessing

the correct data. Two processors do not have simultaneous access to the heap, so

synchronization is not necessary. The only consideration that is not taken care

of inherently; is reloading data from local memory to the heap. Care must be
•.

taken to insure that all updated data is the most current. An example being the

case of an array which is loaded into several local memories, each processor

updating certain elements. Upon reloading, only the updated elements can be

changed in main memory [16].

3.11 System Overhead and Bottlenecks

For a system with n processors, the best possible performance would be n

times that of a uniprocessor. This speed-up ratio however, is not obtained in

practice. There are two fundamental reasons for this.· Firstly, most problems

have sections of code which 111ust be run instr~ serial fashion independent of

the machine arch.itecture. For a problem with s% serial code, the maximum

speedup possible for an n processor machine is T/n+T(s%) where T is the

exe~ion time on a uniprocessor. Sections of code with less than n parallel

tasks capable of executing simultaneously will causes similar inefficiencies,

although not as severe. These losses are intimately related to the application,

algorithm, and skill of the programmer; so we will not go into details except to

say that research in this area has shown that most general purpose programs

have a sufficient amount of parallelism to be worthwhile, and as programmers

become more experienced with parallel machines, this amount will probably

• •

42

..... ,.,_~

'

·, .

\

\ .

/·

'.

•

. "

..
" '

I

'

...

•

,,

•

,·

• rise.

The second type of inefficiency is caused by the architecture or operating

system used in a particular machine. These losses · can be further divided into

Isolation losses, Parallelizing overhead, and Bottlenecks.

Isolation losses are caused by processors not· having the most current

information on the progress of other tasks in the system. This includes braking

, loss caused by a process continuing to solve a problem which is already

completed by another processor [11] This loss can be reduced by programming

technique, or by providing an interrupt system in the hardware.

Parallelizing losses are inherent to any parallel algorithm. This category

includes time spent transferring data between processors, searching heaps, and

anything else that is necessary whenever there is more than one processor

executing. These losses can sometimes be reduced by Cq.reful software design,

but they are generally inherent to the architecture and operating system.

Bottlenecks are the classification of losses caused by too many processors

trying to do something at the same time. The most common bottleneck for a

shared bus architecture is the access to the bus for a task to execute, although

in more complex architectures this can include other functions. One way to

reduce bottlenecks is to eliminate any unnecessary bus use. This is the purpose

of the Token signal which ~s only one idle processor to access the bus at a

time.

The only other way to reduce bottlenecks is to lengthen the average task

43

t

....
' .c,..,.

....

'

. i

-

•• ...

•

length so that there are fewer tasks for a given application. This is the best way

for a programmer or compiler to optimize a task for .a specific number of

processors or a specific system architecture. As the number of tasks increases,

.·, the · _isolation losses decrease and the parallelizing and bottleneck losses

increase. Some application require a large amount of data transfers to execute a

task. for these applications, it may be advisable. to decrease the task size to
, •

reduce parallelizing losses and bottleneck~ at the expense of Isolation losses.

44

•••
0 - - - ' ---,,-----

- ,~. --,0.

---------------------------...._.,.,,,_.......:., _______________ ~~~----- ·~-- ~--~-,------,,...,.......--.----~!!!I!!!!!!!!=
" ,

. '

" •

... .

•

---- -' - - ~ - -- - ·-

\

·/

. ' .

•
- --.,

I. 1 .

' . -

4.1 discussion

·•

Chapter 4
CONCLUSION

In this thesis, the goals were to build a parallel microcomputer which was

fault tolerant, easy to program for general purpose applications, and adaptable

to new VLSI technology. To a large extent, these g~als were met. The machine

which was built is a shared bus architecture for course grained para1lelism

which makes it simpler to program than other configurations. The Processing

nodes are independent, and conform to a simple interface standard, and

therefore they can be upgraded independently and adapted for specific

applications as new microprocessors are introduced. This allows them to realize

advances from technology developed for serial.microcomputers such as increased

clock speed, advanced instruction sets and even sophisticated pipelining when

VLSI technology advances to that level.

Since the nodes are independent and the architecture is flexible, if one

processor fails the other nodes can continue functioning with only a relative loss

in overall system speed. This is facilitated by the processors independently

choosing tasks from the problem heap. Because of this, any processor can

execute any task, and there is a record of which tasks are currently being

executed by each processor.

Because of the ecor1omics of VLSI, it is inevitable that computers evolve to

systems which are optimized for the limitations of current VLSI technology, yet

are ad;;iptable to the future technology. Uni-processor technology requires

either that the processor be limited to the complexity that can be integrated

<'
45

F _;.ac.

' .

0

. ..
)_ •• - ,-- ,: • J,

t ,

'

'·7

-·-~- ---- --

I

..
' '
.: :~~-

' i

, '.

.-._

t ..._

•

l

_ .. ,,,

onto one circuit, or that it require many different circuits ... usually in the form

of application specific integrated circuits .. Although Von Neumann architectures

do benefit from the decreasing cost of integrated circuits, they are not optimized

to get the greatest benefit. Most parallel :rp.achines currently being researched

·are optimized by having many identical processors working in parallel, however,

they suff~r from one or more of the following drawbacks.

• They are difficult to program which eliminates the cost savings in
the hardware. This also increases the time required to develop a
substantial user base -- decreasing the effective life of the system.

• They are not adaptable to new processor technology which in the
near future will be developed to increase the power of serial
programs.

• They have decreased reliability due to increased chip count and
interconnections, without sufficient provisions for fault critical
applications.

• They are not robust enough when executing serial code. This
severely limits their suitability for many applications.

The task flow architecture described in this thesis was designed to

overcome these drawbacks.

4.2 Future Directions

Future work on this architecture should concentrate on overcoming the

short comings in the hardware, and developing more software for the machine.

The .greatest limitation to the the machine is that it has only one bus and

therefore cannot be expanded much beyond eight processing nodes- before the

bus bandwidth limits performance. A D.MA circuit will help increase the

bandwidth but more testing is needed to determine if typical applications will be

able to use the additional processors. An expanded architecture "with a complete

task flow architecture at each node might be a desirable configuration to achieve
. '·

46
.) ..

..

'

- ·-· ,- ··-c,.,1,,_ _ , .. ····~-- -· ...

' •

. I

•

!Z
.1--·-"

,.:.

., -~ .

'

I
•

I
more processing power without excessive bus conflicts.

Currently the machine communicates with the host computer through a

serial link. for certain applications it might be desirable to upgrade this to a

high speed interface. Such an interface could also provide interrupt capabilities
'

for interactive computing.

The software developed for the system includes the system initialization,

diagnostics, task flow kernel, and communication modules. Of these, the task

flow kernel is a rudimentary version developed only0 to test the task flow ideas.
q,

Since the task flow operating system is fundamental to the concept of thi,s
.';1 ,.

architecture, further work in this direction is warranted. Work would also be

required in developi;:g compilation post,.processing to organize the object code

for the task flow architecture.·

47

....

J

I

7,,

•

. ---~··-· .. , ..

·, • ' ·-~·-,•·' - , .. ' •. - •. ' ... <' • ,' •'"~ ----~ ••

1,

'·

I

I

•

''

References

[_1] J .. Bo.nd, "Parallel-processin\ finally come together in real systems"

Computer Design, pp.51-74, 1une 1987.

[21 D. D. Gajski and J. Peir, "Essential Issues in Multiprocessor

Systems," Computer, vol. 18, no. 6, pp. 9-27, June_ 1985.
'

[3] H. F. Jordan, "Structuring Parallel Algorithms in an MIMD,
Shared Memory Environment" Parallel. Computing 3, vol. 3, no. 2,

pp. 93-110, 1986.

[4] A. H. Karp, "Programming for Parallelism," Computer, vol. 20, no.

4, pp. 43-57, May 1987.

[5] J. E. Roskos and C. Hsieh, "Data-movement Primitives," Byte, pp.
239-252, May 1985.

[6] A. Gottlieb et al., "The NYU Ultracomputer -- Designing an MIMD
Shared Memory Parallel Computer," . IEEE Transactions on

Computers, vol. C-32, no. 2, pp. 175-189, February 1983.

[7] J. Tanaka et al., "Guarded Horn Clauses and Experiences with

Parallel Logic Programming," Joint Computer Conference

Proceedings, pp. 948-954, 1986.

[8] R. Krajewski, ''Multiprocessing: an Overview," Byte, pp. 171-181,

May 1985.

[9] W. G. Paseman, "Applying Data Flow in The Real World," Byte, pp.

201-214, May 1985.

[10] J. L. Gaudiot and W. H. Wei, "Token Relabeling in a Tagged Data

Flow Architecture,11 Proceedings of the 1986 International

Conference on Parallel Processing, August 1986, Washington, pp.

592-599.

[11] P. Moller-Nielsen and J. Staunstrup, ''Problem-heap: A Paradigm

for multiprocessor Algorithms," Parallel Computing, vol. 4, no. 1,
pp. 63-74, 1987.

[12] J. P. Hayes and Q. F. Stout, "A Microcomputer-based Hypercube
Supercomputer," IEEE Micro,] vol.6, no. 5, pp. 6-17, October 1986.

[13] J. Gaudiot et al., "The TX16: A Highly Programmable Multi
microprocessor Architecture," IEEE Micro, vol. 6, no. 5, pp. 18-31,

October 1986.

[14] J. K. Peacock, "Application Dictates Your Choice of a

Multiprocessor Model," EDN, vol. 32, no. 13, pp. ~41-248, June 25,
1987.

[15] P. Walker, "The Transputer" Byte, pp. 219-235, May 1985.

48

"-"----· ----- ~-- ·--·---~--

..

r

,.;.

(

·-

~-----• ___ , ----·-· -·n, • , •• r-.. ,,•.-

--~---

/

J

•

~ I

[16] S. H. Bokhari, "Multiprocessing the Serve of Eratosthenes,"
Co,mputer, vol. 20, no. 4, pp. 50-58, April 1987.

49 ..

---- ···-----~- .. ·-···-· ______ ...__ ___ - . ~-- ---···-- ..

_,.,-=·-··:oz:== ··-~,!,-"-.c"-

•

J
I • ···1

I}

>
,. ·-···- ··-- •·-··•••--·-•---·---n.---

•

i '-

' ---- --· ·-

I

•

I. ,.

'

- .•.

Appendix A
SCHEMATICS

•

•

50

.. - ·" . ··---··· . , .. ·- ... ··.-. ,~ . ., ..

.,. ' j

/

•

•

',,-.,.J'a

I

I

...
•• .;;ri .•

=

U17C
!::;: " Ct

~~
U9A

~

I 3

~·

U17A ~ R ... -1 • 1 I I

~ 1 s:>

V
74LS04 Ir,

~ .. C:

"' I
Q7 a..R -· "" QB G -

'
QS ' I

•
Q4 S2 >

I
Q3 S1
Q2 S0

Res.at
~ •t

-, ~ 07 RST .. D6 F1.. ., D5 A0 --, D4 Ai
>, D3 A2

V r ~ 02 A3
-. : vcc

'
Q1

t "" Q0 D

~ BIAS
• BIAS

' .

'

' --/ ___ t
~ ,... I (-,,. I I
' .~ • • I I

I s::o
-
' Y3 G

Y2
?

'
Y1 8
Y0 A 1

.. ,1_3: .

-~ Y3
b-....__--tt--...+:lil,H~ Y2 t

"" <:>

YJ.
- Y0

I

G - tr:

B .. .,
A t ..

•

11?
• , 1Y1

0."7 /,_.~.i.i..1 1 Y2
~-.v i~

"V/ 2Y1
....... ,o,11"1.. -il~•

'-t-------------1;;~ ~ I ~~
'-------------"V 2Y4

I J 1A1 i:> "'/T{\

1A2 ' [:»a:

1.A3 4 " 1A4
.. ...

2A1 " 2A2 !

2A3 -E---;,,
2:A4 . ~., '

" -.

···- ' V ~
= D1 BIAS

00 A4
RO CLS

1G 1
~,~

cG
A~ • • CE

GN) - <- Q,o
Gt-.D _.; Q,o

.

...!112

Q

~ - - 1• -
- - 1

ax - -
WR ~

vcc I .d. - • •---. ~

.

LJ21t""
I i"' C,

Cl

\
741 ~Y.J

v,o
• I

1-=

VDD

-

vcc

.., 1· ,,,

I

/

'-
7· B

vcc
I

Re-1 ~~ .--. _ ,,,

/Al.

'
I

'

t"'

' /
!'I R-E I

.

I t?d ,~
I T)R[)Y

T)E
TXC

fq

D0 ~-, ...
D1 =, '
D2 ...
D3 , ...

.. lL..1 I I- I I

..

IJJ

1Y1 1A1
1Y2 1A2
1Y3 1A3
1Y4 1A4
2Y1 2A1
2Y2 2A2
2Y3 2A3
2Y4 2:A4

1G
2G

~...,i, ~

Rl:I
A•

I::

. '

Q-1)

•;>

•

...
,I

- 1
1q

.. >

" .,

• t - -- "1 TXD
RXD

J

D4

C6 '
00 ' '

RXJ. 001 • I
TX.1 Dr! I

o--+_...,~ 'Y----------l,..'~ • -
-- - t • -
- - 1 -
- 1-

-' - - ;,, ' - - '
- - .,..

• - -- ,., - - ' - - s ~ - ' -
- ...

'<> -- .,...._
-• - -
~

1""

•

'

- - - -. - ,.
vss

,-....-' I

.. ,..,..
i.
'RS

\1K
\

1A1 '::>
1A2 1--.;;!,-...

1A3 I--,~
1A4 1-.-l
2A1 I-+.~
2A2 H~,•
2A3 H's!!IH
2A4 µs.;'L...J

.
I

~

.d ·~ ·~
-,

I

..
•

RX2 002 ,.
TX2 DI2
RX3 003 (no DI3
vss CN) 1

MC1,._.
QO

1= JP1
' A CA - -

' . ~a._
B (;i3 - b •
C IQ(: .c
D ,;(J - d -

'V -
Ro::

DP
ENT .,

' LC-:::0
aR
• .:L);1 <=;.iBJ

·~ ~ t "" L/-
74LS04
-

..t R~Y D7 P ' ' ' •
.--. ' I ... -"'.~ """la RXC /

SY/ER ~ ·:3 ---- ,""'t"'H-t-"-~--------------
d

I r.t)) > , >) >) SIP4 ~<!t-~·- i -· = . - .,----- => I ~ / ·;:: ~:· i > L-.) ,..:.;::' f++-f--{,'R_IE"~-ri

--" > > '> > > > > 10<'.
~ >))>)

'."\

•
IA

i
R..E

~

-- RTS CS --------"

QI)

'

. R2 , Rl
,> 470 ? 470
> K E Q 1 , '.'=l"------_.__--

v:;c
X1 .-Jlollct.z_ ____ _

--~:o: 17 Xi ,u -
J Q

t?

LJ I """'

74LS73

U17E
74...904

• l

'R? > 470
>

14.7456H
L--------'"'"""-' A X2

• L--------;;;HRDY1
Di -*-IRDY2

·.' R0 CSl'NC
NC _> 13< ~~

R? >
V C_>-::-----·,.~-~T,,.._-~~--------J.J.dRES

GNO -
GNO ': 1•
GNO ~ .. J

GND - ' ~

1 ..

R8=0Y
CU<

RESET

PO.}{

09C

J

1

Pl

1 i:>

r-... ,'--tH-+H++-1----+.~" B8
,'--1 4--1-1---+-.µ~--4"'.;;..J97
,'--i-++-H-4-.µI----+>,~ B8
,.,_. '-----i.-++-IJ-f-+-+-1--~--+.~ BS
,.'--t-t-+-lr-*+-~-~~s4
r,,.'--+-+-+-l-+~1-+-~~ 83
,."----i--+-+-H+•1----+,,f--l 82
'---1--L.L~L..L_..__.,___.i=-ie1

Bx>t >,---'
Re 1 ">----'

.,
~

I

,

~

I IA

1A1
1A2
1A3
1A4
2A1
2A2
2A3
2A4

1G
2G

AS
A7
A8
;:6
A4
A3
A2
A1

1Y1
1"2
1Y3
1Y4
2Y.1
2Y2
2Y3
2'1'4

•• 1244
CN)

... ~
~ ..

C \C11

•
•• ' • ,, ...
' - .. '
? ...

I

I
... . : 1 ...
~ =>1' LL

-
L '

:.,.. -
~ .. - .
> - •1"

~ ·--L

Jd ,n C. p.._.,o

>

.,
Q,I)

~1~ ~ ~~r--~ -- C2 Lehigh Uni ver11i::_.. n.,~--------1 r--e!!.r--=-:~::r.-=-=-=~------~-;-:;::.-=-------- - -- -----r .1 i.~
Cc:nirol ~ - Cleek & I/0

• 1S.2t< ~,d
b S.SK ~,d
C 4.st< b• ac:I Cl
d 2.4K ball.id

'' '

. -·-·-···"· - -,-· ···~-~--·-. - --·-·--- -----···'--:--····-·~--- ___ , ______ _ . -- --· ·-·. -· . ---- --
~- _._ -~-- .. -. ~ ... --.

' ., ~~-... ~ ::....,.., , ,, .. ,..,;x.-- ..• , .-l,"".9-3 ", .?, ,- "". ,,,
·~

.•

•

·,

•
i.

•· .

i

'

' I
'

a

f
1

i
'·

l
j

i

t
' '

'I '

,J

·- - ---

,

-,

. -. ,

,] ...

•
r rt:

I ,

11----.-.+~ ,-, ., -i,

.

.. , I l 1 ,

.u·-f_, 1·r•t I~

•-•-] I r I I

'

1rf·-i""'

t
~J L .

-

//~~ ~·~: >, >10 K
.> > • >, >SIP
>) } >

I"' f

26 - --.,, , .
24 = "

..
~ 22

,.,,
20 "

,..
18 ..-,,: ~

16 ""' 14 w ..,.. " "
1? '

L

t=
GNO, ~

I(T[; 1 (: 1 I -..,

. '

t 1 1 1 1 1

1 ,

B~~~~889 ABCG

w y

l
s 6

-

.

li_

• ;~ ~-::;.-._.· li!ll'ti'iii,ttii'liil"'ili~l· :_-~- :~~--- '

·'

.

.

I II A
~ Q

0 A0 -1 Ai t'. 0
2 A= -3 1 .4
4 cs
5
8
7

EI EO 1c::

1.q' ~-1.qs

U19
74..9151

..

,

• •

•
;

'

-,

.
"'I~ '" ','\." ,

I w:>n •
, 0

I :;:> '
1 f ·~ .

' • llo(~2
j i .

U17D F'F'

~ ~-R ~~~ sg 8~88~8~'r
U13
74HCTS7'4

/ Q

1~
74LS04 Q~QQ~QQ'r

' 2 e es 32
' U17B 1 111 1

.

~~- 4

f 1 ~a -
' 10K 5lP , I

- -- .
/

V V . . .
-,,.. v ..

74LS04 - ,.. . --
, , . .

. y,, -

V V . . -
, ,

. . .
R3

'W' V •

I !Cl II I,:,
1, a<,.. t

t <=- ~ a •T
? A Y0 4 'j D1 Qi

B Yi D2 ,;:e <= ~ ' 13
":l c-1 • .d ' -c· Y2 D3 Q3 '

,5

- ••
Y3 D4 04 ' '7

10K / - C: ., 19
C Y4 - DS Q5 L

vcc ~- . Gi 'I'S D6 .. 00 ' -::, 1
~ V V ~ - • ~

~ CNO - c: G2A Y6 D7 Q7
~

CNO - Y7
< ~ ?S

- G213 - DB Q8 - - •
138 f 1

1 CU< J t 1 Js oc 1 - - • 3 - •
' " • .,,

I·---
, ".<... Tb 4 01234587 ~

U14

1

74LS148
',

'
,:,

~
AAA G E
012 s 0

II ~As " l ~ • ~ . g

C

\ ~:1 IIIC::O
I .d

. -
CEXT

y~

•
100icf'"

,-

R4
IC::

• RS

vcc~ - .) 3,31<
y - y REXT/CEXT 1 .

1~ > B,a< GNO
.

A . :>'"
Q I ' I

, B 4 vcc _ ~ CLR Q

,'"tLS22.1

Jc:hrt C, P~g,.;,no

Lehi Uni._.__!

Control Board - ~bi 1:ration l..ogJ.c

..
C2

.1

s4
• •---•--A~• • o,·.o ~ -

..

'

•
/'/

/l:O !,.A'

~ .
.11. 1 I'll

tt/

~~
u110

'\
A

I . ·~
) u;:.
. ~- - ~ra?S l~ CLR Q7

C Q8
! -

06
~

j ~ 04
61 Q3
60 Q2

'IlJ'. Qi 1~ 0 Q0 ' ,,~Q'
4 . -

I~
l : ~ . l 01

~ .'\
D0 A0 c:;:, '\,

AJ.
,r 01 Al

'\ :I'. ' A3
/

,
D• A3

A::3 '\ .,
0::3 A::3

:::i, '\

...... '
., 01 ' A4 D4 A4

Ala • ' / -. OS AS
:::i~ '\

AB '
., .

C>8 AB • :::i ., ' ' ,/ ... UM '\,
A7 - I ·' V

D7 A'? -!!l I ' AS AQ ~

' -' , '\

AB AS
l '\ '\

A10 '\
Al.Ill

' A.l..1
. • A1.1

Ala ' ' ' Al.a
:• '

'
'\

·= Ot!I , • .' ,c -·-
~ ~

~~., .. cl ' 1
• '\

~ ~, ~'
'

:, 1-<P, _, ... l,ifl'
'\,

41
n

·~

"-._Ill~
' 1~ IJli::la

11 4 ,
1~ ~

i::
~~ . ~

. 32

' -1111c U14C
I

•
1 "\

"'~ a
. -· .

.2 IC E;
3 • ~

~04
_;
~ AL~,40-,,s , ..., ·-

U11B
(~ '

.g i::

b

I I ii:IQ U14A ~ -
1 ' "'- ~

;' .. ·-'"07S
I ~

2

~ 91 _,/

~ --
aa LJs:;}Q

!) 3

ft ·-.

-· ------·-
.~···

. .
- -- . --.-- ---- --···· ... ·-----·-··-----~.

'

;;
/,

' . ,
'

V •.N'\. .,
I

, "~· • ;c;

·1

V , I J

V ~ ""'' ·'
V r / J-,!

V

I ,,
vcc

Al
/ .. ,"
., '"'' v~ •
,/ .. ., .. .,
/. .E .,

C
V :, ., ,,

'\ ., . ·'
'\ L/ • ' V

V '

L/ c::,

V

,014 2

'
,, ;

'\. IC/ •
I\.

' " 1,

• I\. 1;
I\. "

1A.
j .

I"- ~ ~ '

r\. I .
'\.
I\.

' I

'\. ~ •
'\. ' ..
\.

19-
1·

:•

U1
OIR 1

<: .l, Cl

BS AS I:

B? A7
I -' '\ ea A8

a. AG
I '

B-4 A4
93 A3 •
ia:a A4

;

S.L A.L ~

·~ ' .
U4 WC

D:IR 1
~]Q

C ,-

I
BS AB
B7 A7

I ' -

' B0 A0
BG A6
84 A4
83 A3 '

ea A2
.

liil Al •
-7 ,o ',

LJ~

DIR
C

88 AS
B? A?
BG AG
86 A6
S4 A4
93 A3
B2 A2 ,u. Al

n .
I~

DIR
C

BS AS
B? A?
80 AG
Elli AS
84 A4
B3 A3
lil:a A:2
Iii .I. Al

• !~

I r.:I

Al 8.1
A:2 8:2
A3 83
A4 84
AS 85
AG Bio
A? 87
AQ aia

G
DIR

~· •

I~

AJ. B1
A2 e:a
A:i '3:i
A4 B4
AS g-
AG 8'3
A7 87
AS BS

C
O:IR
~n .

Titl•

1
-.lB
-

E

-

' ;
~

1
-1.a

I

-

'
'
i

8 ,,
B -

' .
.

8
I

t

.t

••

... ' I"'

·c

' -'\

-'
·' ' ' _,
'

' _,
-'\

' '\ _,
'
'

;I
-/
/

/
/
,/

j ,,

/
/
/
/
~
/
/ ·,,

. ' ,,

•

ec,
'\

) '

' '

' ' '\
.

I I ... l R("-1- "'

'" -...

t---ia:;;J I u >

'

•' .

,

Johr'i c.- -p~ - •

•
•

i .r

'!,·.

•·

-- - ' . .t:

;. .

' I

---------------~lu

3

I 11 "'C
Cl '\

-------i-1-1-4-....., . IJ?

J. A 1. - .1.A2 '
... J.AJ lilAQ,>-+-+-1--

HQ 1.A >-+-+-----!~
.1.A4
2A1.

'
2A:iil

ALE: >-+----;rw-1 2A3
CNO..--~ :2A4

GNO - I .lC

.--------~-+----4-----,_j·1~~"C: :ac

1 y J.
1Y2
J.Y:i
1Y4
:aY .L
;aya
2'(3
2Y4

'l •
, •• ''t

' I

__ }-L, >
, ~•n-in ~.

0 1 • o~ •n-o• rt
...---.., ..,. n,

.,. ... t"'\ -10.

...H 'rac:, . < / Raa•t

I
":l

a
.... 7~~r.l.'J44-"'

14' 5

U.109
'?4HC32

,,

.

I 11 S::~
e

"
Cl'-0 .

1 _,,
c::i

s e!

UJ.4C 7~:32

.___.a._ ~;xi~"'~_.. __ __,

VI: :c:;

'
1 Ul.2A

. '.

JPl

UlC!IO
1~ '

Q,jQ

' '4
C

C:

U240

,------~a~c·~ ~-.-i..a---<:cu,
"-. I\ 01

~ RED LE:O '?4LS 4 --
U24E u1en

,------.a 1-=c °'·-.::~1-.. 1..._1. .. 1-*-<1

02 --..........

"'· ~ Y0-1...0I-I LED 7 '" ... •4 --
Q,lO U24F'

7 13

12
\

BRQ,

. '

.c
' . I llQ

':l':I
f'rt\l

22 RE:i:'OY 18
;:>l CLK

R£SE:T
li:I :rNTR

-6

I •

I 11-,

~ r 1
V • • 1 - Q.1
~~iii-t'iii-i 02

V Q:i
V Q4
V
V ,, , Q6
An~-.iii-f 00

V ·• Q?
V~:io,;"l-1111..·-~;; Q8

AOQl 1-+-liir::,----/ V

-

M/J

I~,

0 .1. 1--~r*', = .4 ..,

o:a : r-- v~"'---.:i...J.
••

8~ 1, r,_)Q::U..-,--..li"'~

OS '\ V L' ,r,rr~
" --,~ 32

DB 1-ill-,~r'I""'\, , A':I
D7 , w " ,°"~o-::i--------
OB ,r\.01

C I l
oc ~ 1

~

'\O"'--------
/

,,~
r'ln

~"-->4~ D«l
V.., 1 - 01
/.., 02
V v~,."---+~ D3
/ ,~ D4
/ ,c:: .E< 06
/ 7 t:1 OG ADJ. ~."---~

AO:a '-"i.----'/
A03 ~---....J"/
A04 ~:;&---/

r • ·--- (...:.
/ D7

A06 1-fili---'/ • • C

A09 ./ V -i

Ill :::I
I
I

Ql
oa

-Hlr-1 Q3 A07 / ,,,Ai: ...
ADS 1-,a.---
AO&a / .,. 1o

i:DlCZI ~t.;:'. t:
.:011 /
~J.i /
~1:a ·.,1

.:014 1-w,lii--__,.
i:'015 ~ /

A16/S3 ·.,1

AJ. 7/94 /

-HIH 04
~~ei •

....+iiH Ql3
t-f"*"'I Q?
.... &.I ~
' I

·c
C 11

oc - .L

AJ.B/S5 ~ / -- ...-...:

A19/SG / J.118'\,'\.QI

SAC/S?~i,c.':l~--~.,1..,,...,. ~..i,..._,..,._.

ALI&: 1-',...;..::;. ... ___ ~-~'i=t..£
INTA ,_:::i.a /

'\I/
HoldA

~~

"ni;:N'\.

l\.nT~

I ~c !
'

SG
~

r--------•.1ac .,,,~/'1,--.•.:a.. -:i--------·-----------------· ._, ------------------or-' " '---------

ng•

• proc«awOf"' •1
b - all otha,...

.,,., _, ..
.

:,_ 03
·" GREEN LED --

•
. .:....._ ·------·--·----..,,r·-·--- ·- -· ·; ·-·.-.. -~ ·-· ---···

.,_,,_ .. '"jj

.,,,.. . - • • "•'A .C~••• _ _., < ---••

··.-- .. -

. ,I ..

,

•

..

IJ?

C a.

.
~ G 6 A YCD ,rQ ~ • B Y1 - -~

/'-I • :: .
C Y2

/ Y:3 =
Y4 =

OIQ I~ ::
/ 1 Qi YB

C>-QNO - 02!!A YB -
CNO ~ - c.28 Y7 --

,..n, ~1~t:1 . ·--
.J

1, .;

u1:::i

\

I\. • 1 "'\

'
A0 Dill

" Al D1 .,
I\. " \.. A3 D3 '\ .,

A3 D3
..

I\. •• - ,, ' :, A4 D4

'
- .

' • ·AS D6 \.. ' j':\B D'3 • " \... .
.. h .. '\

\... A? 07 '\ > AB ,. • AS \.. ' A10 '\.- . ::
All \.. 3 ~ A.1.a

: ' ~
• t CS2
• ~ 2~) O"t"

~ '1P-J.c:

Ul:3
\.. 1 Aca 00 I\.. ' '\. Al 01 '\
I\.. A2! D2!

' A3 D3 ,.
I A4 D4 ' '\. A6 D6 ' "\.

\.. ' AG DG E ' \.. . E ' ' c:!
A7 Di

' \... ; ' AS

' ; AB
\... ; ,. A10

., All
' < A12

' C
~

i'
~ n .

111a
I\. 1 A0 D0 I\.. AJ. DJ. ' \... A2 oa ' \.. ' A3 03 \... A4 04 ' ' AG D6 '\

' AB oa '\

' ' I\. - A? O?
' AS '\. •• AB '\.

'\... A.1.'21
C:, A1.L i\." • A.1.2
~CZ,
~ -::>6

:l;> C82
~

,, 22 CJE:'
~ n

'·

Ul-,
\... 1 A0 00 j

'\. .
' Al 01 ' '\. ' '\. '

A:2 02
' A3 D3 '\. I

A4 D4 '\
\. I Alii D6 '\
"\. ' Al3 08 '\ ,· - ' \.. ,: A? 07

' \... • AB
'\. • AB
\.. r •

A10

\... All
r Ala

-::, CII
~

.:!b

.:! ,, 12 ;:,~

621iii4

-

...

('_.-

"!:.·· __

,..__, - - - ' _ . .,.

...

(I.Ar

9 "

T
- I 0

e:I
..

~

·~=02

~

,

'\. 0 l
\.. ·;
'\.

' •
's}
·-.. ,
'\. Q

\.. ...
" \.. .. .1

'\.
\.. r

.

'\. 0

' " ' ..
'\. ' \.. . , ...
\..:::
'\.
'\. ... I

'\.
\.. ..
'

.

'

i, "\ '
' '

"'

r:

I

•
'

....
'

l ~
...

18
;:,171

r:

I

• .

"'·

19
,::>[21

•.

1111
A0
Al
A2
A3
A4
A6
A'3
A?
AB
A.I
A.1.0
AJ.1

rr
~/VPP
27~2

LJIO,

Ara
AJ.
A2
A3
A4
Alii
AB
A7
AB
A!il
Alt2l
A1.L

i°NPP
,c r,.;,c.

-- - - ·-- .. _.__

I

•

...

I

'

·'

00
ii,

01 ' 02
,a ' "" '-0::3

.

04 • ,4 ' 06 E _) i:::; "\..

OB I t ' . 1, ' Oi
'

00 J!J
' ' 01 ,,

02

' 03 '

04 • ' 05
:, ' ' OG 3 ' ' 7 E ' 07

'

• •

•
.. ---- - - ~-l . . - - ;.; : ~

.; .•. .i

John C. F'e;iano

Titl•
Main M•morw eo..-d

oc:unent mb'2r"
--• Jr-

Ml ,~i- -· ·- -· ··-·-- -~ "'
.. 1 o -1 ·-·- . ·-·· ' . ·--··

/

• I

•
I IOl'.lo , ,,_ .
Y0 A 2 •' 14 A Yl2l

~ 2 • ':I I :a Y1 (ii s Yi ·-.~
k Y2 I 11::. Y2 t:: " Y3 C

~L
C: Y3

, I '1~ -, i .i. ... t:

I/ Q 1""
V

' ~ I " c;;;-

'I · ·~ I\. ~1.4 !
1A1 1Y1 A /

I\. ~I:::, ' b / ·'
\. Dl'a 1A2 1Y2 .q /

'
,, - 1A3 1Y3

/

' ,r J.A4 1Y4
/

~ ~
2A1 2Y J.

/ I II A
I 2A2 2Y2

I / I\.. A J. 1 C!I 1 00 . 2A3 2Y3 A!il Dl2l \. .., I '71 7 2A4 2Y4 :~ / "'- CJ:;;, Al DJ. >I '\
'\. :~ . ,,, '

~
'\. .d A:2 02 ... ~ GNO - J.C: A3 03 GNO - :ac: "'- ...

A4 04 1.d ' - \. D'-" '~ "' • A '"' ,,,, '\. CJ ,I . A6 06 ,t '\
,

A9 06
~~ ' A? 07 "' ·~! ' '- ''

AB
'\. AB

IIS '- AJ.0
I\. A!S ,;J 19 / '\. .. All. 1A1 1Y1 . . AJ.2 -~ '.::J ~ / • 1A2 1Y2 I\. • / C I\. :, J. A::il 1Y3 ,-:~ -'j ~

~
I\. " J.A4 J.Y4 csa -I\. :i: 2A1. 2YJ.

/ §E -. 2A2 2Y2 '
' :I b

~~ '\. "I l T -,, 2A3 2Y3
2A4 2Y4

GNO. 1 • J.C
GND ~ 1a: :2C ,.

U1S , n, • ,14 I\. A18 t\. 10 ' A!il Dl2l t\. r, I~ I\. "' t\.
,_ Al DJ.

' t\.
... A2 02

' I'(A3 03
"' Li:::! t\. A4 04
"' 01"\',_ ~ .9 ~n, t\. '

A6 06
' 11-(1 1' ~ ,_, ,4 1Al. 1YJ.

I'\. A9 D9

'
.,

1A2 1'(2 b /
A7 07 ' .J.A3 1Y3 4 / I\.
AB

'\ t\. ;,., / t\. ,,
t\. J.A4 1Y4

' / I\.. A9
\. I 2A1 2Y 1

1', ,/ t\. A 10
I\: I 2A2 2Y2 I.IA'\. I',. A! 1. 1~, ...

2A3 2Y3 A.12 lf~T/C °' ./= IJl "R 2A4 AY4 ::,
~ 1

GND J. C:

I' " GNO -
11-1 ac: -

.-,,111 I: '~14 ' .
• -

. ,.
ll!A

. t\. 1121
I\.. I Al2l 00 ~ ' " • A1 01

' U-48 ~ A:i oa
' I ,. 6 t\. '

A3 03
"' ,4_

'- A4 04
" 6 '\. A6 06
" '\. A9 DB I '\.

?4L I\. '
A7 07 '\.

I\.. ''
AB

'- A;! .c;; ·-- ,·~
\. A.10

IJ~
' . A! l.

I\. ' ~ 8 AJ.2
\. : AJ. 81 - ' ~171
\. A2 82

~ ~, en • A3 83
12

- ... \.
");•

\. A4 84 . ' ,
'\. ,, A5 86

' '\. ,. I
A9 89 "\, 'A i A? 87 . '\. • "\, Alil 68 '\.

1 l''L
C 1 -
DIR

'- I
/4HCT2-' 5 \. A0 00 '\.

\. AJ. 01
" \. A2 02 "\,

.
A3 03 ' '- '\.

'
A4 04

" I IC: ' • AS D6
' Aa D6 u

'
,. . .8 '- " A.l 81 A? D? '-' ,) \. ' 7 ' ' ' A2 s:a '\ ' ,, AB \. ' 83 A'1 \. A3

' e"'I " A.L0 '"
A"'I

' ' \."
\. AS 86

'\ ' :;;a A.l1
I'\ AG 8G

' A.l2

' A? 87
' "' AB 88 ~ _,_
' csa -l 8.

G §E 1 - DJ:R
, .. ,_ T2-' t:>

vcc Jc
'~

101-< MB . 11211-(MB :~ RESISTOR ·~ RESI:aTOR
•

~ ~ '

I

•
1, '
f~ ·~

0

., - ,-. - '· '. :... , ' '

- -,--------- ---- - ;"'·-.- - - - ·-·· -- ,----·-

. -- - -.- _-,----·_-

: I

. J'

'

'

, ..•. :.a..._. .C..., ••.• _ .. ,,

'

VITA
q

John C. Pagano was born to Dominick and Anne Pagano on October 12,
• . .

1962 in Paterson New Jersey. He graduated from Lehigh University in 1985

with a B.S. degree in Electrical Engineering. He was coauthor of a paper

presented at the .1985 IEEE International Test Conference -~ Backdrive Stress

Testing of CMOS Integrated Circuits .

57

;

. , - '

	Lehigh University
	Lehigh Preserve
	1988

	A parallel microprocessor architecture for a task flow programming enviornment [sic] /
	John C. Pagano
	Recommended Citation

	tmp.1551116526.pdf.aCykS

