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{ | o | Abstract | | .

This thesis describes the design and construction of a parallel computer
‘with four nodes. The system architecture is robust enough to withstand a
complete loss of all but one processor nodes at any time during execution. To
achieve this, the architecture depa‘rté from the conventional parallel
architecture ideas in that there is no master and slave relation between
processors. Each processor is independent and can perform the system control
through software. This machine uses coarse grained parallelism and a shared
bus architecture and-relies on task flow ideas developed here. The system 1s
expandable and is easily adaptable to future processor technology. This parallel
computer could be used in any application requiring high throughput coupled

with high reliability.
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{ o o Chapter 1 |
INTRODUCTION

The computer industry has long relied on rapid advances in technology to
produée faster and more powerful computers. To take advantagé of technological
breakthroughs such as cheaper memory and 'large scale integration the
architectures of computers must constantly be modified. These mo’diﬁcations
are sometimes severe, but none has had the ramifications of the one currently

threatening to take place -- Parallel architectures.

1.1 Parallel Alrchitectures
‘There are currehtly three approaches fo i_naking computers faster and yet
cost effective. The first approach concentrates on improving the instructions
executed by the processor and there are two divergent idioms, one which says
instructions should be made simpler, the other saying they should be made
more complex. Interestingly_, most practical success has come from taking
aspects of both idioms. Reduced instruction set computers (RISC) are an
attempt to make the processor execute each instruction as qﬁickly as possible
fed-ucing bus idle time and increasing system efficiency. The goal is to have all
instructions execute in one clock cycle, and this is accomplished by eliminating
complex ins‘tructioﬁs and streamlining the instruction set. RISC techniques will
"have a definite impact ori computers, but it is a one time gain, so it does nof
eliminate the need for other improvements. Com_plex‘ instruéti'on set computers
(CISC) are an attempt at having high level instructions directly executed by the
processor instead of being interpreted by compilers and assembly language
macros. The gain in 's;pe_e'd’ comes because the processor can ex‘ecute. the

. - instruction via firmware without having to do consecutive instruction fetches




R S | i - which would be the case if the compiler replaced the high level command wﬁjh
many simple instructions. The problem that CISC architectures face is that
they lose flexibility and must spend a great amount of time decoding the many

instructions they support. | | "-_/

Most success with instruction sets has been a combination of what may
apjﬁear to be the contradictory goals of RISC and CISC. Instruction sets are
designed as streamlined as possible but include some of the more -common high

level commands.

Another approach to improving computers is to simply take what exists

¢
:
§
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and make it bigger and faster. Bigger means more data bits on phefbus. and

bigger memory. Faster means increased clock speed of the processor and faster

memory. Bigger has proved very effective in all computers and is currently i%
_ making its final inroads in microcomputers with the introduction of 32 bit i
machines. This success, however, has limit. Since the largest data primitive i
operated on by a single instruction is the floating point number, and since few §
applications require precision greater than 10 places with an exponent of +/- 512 %
there is little gained in going beyond 64 bits. And even with 64 bits, most of the §»
precision 1s wasted in all but ité;‘ative finite l element analysis and other ;

scientific applications. Faster has also been very effective in making machines |
more powerful but faster processors only come with much effort, time and
money. Since faster circuits can be taken advantage of by any architecture, they

have not reduced interest in developing other methods of 'imprd'ving computers.

The third approach takes advantage of the decreasing relative cost of the

processing power in a system. Of the three components, only the cost of the

3
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processing power has been decreasing at an accelerating rate. 1/0 cost has been
relatively constant, and the cost of storage has only kept pace with the increased
needs caused by the increased processing power. Because of these economic

facts, designers are attémpting to use multiple proceséing units in one system

by exploiting parallelism in the applications. Simply defined, parallelism is a

situation where more than one part of the program ( a single instruction or a
group of instructions ) can be executed simultaneously. In general, there are

four levels of parallelism shown in Fig. 1-1 which can be exploited.
1. Data level. Executing an instruction on more than one piece of
‘data simultaneously. This can be applied only to problems which
are by their very nature, parallel. |

2. Instruction level. Executing multiple instructions simultaneously
on the same data. This is difficult to achieve since all the
instructions must be synchronized to guarantee the proper order of
execution. |

3. Task level. Executing groups of instructions simultaneously on
related data. The efficiency of this type is dependent upon the
architecture, and the programmer must define parallel tasks.

4. Job level. Simultaneous execution of unrelated j)pb_s. This type of
parallelism is employed in multiuser mainframes. Unfortunately
turn around time of each job is not improved by this technique.

1.2 Motivatiohs

Research in parallel architectures has concentrated on three types of
machines, with some success in two areas. The first, and most popular
motivation is to build a supercomputer. Current architectures suffer from the
Von Neumann bottleneck which defines a ceiling on their performance. Parallel
architectures are pursued to eliminate the bottleneck and improve the overall

performance The second motivation is that some applications are inherently

very parallel. This has met with the most success and is common in DSP and
' 1

graphics applications, but hasn’t helped advance the field of general purpose
computing. The third and least successful motivation is to decrease the cost of

3
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Figure

1-1:

Three ways of dividing serial code into parallel code.
Horizontally by instructions, or vertically by data.

Data Level °

Tnstruction Level




computing power. This has been pursued with little success because the

‘decreased cost of the computing power is offset by the increased cost of software

development.

In this thesis a parallel architecture will be exami’neé which ét‘tempts to

=,

satisfy three criteria.
» Take advantage of advancing VLSI technology.

e Easy to program for general purpose applications.
e Fault tolerant.

e Flexible enough in design and implementation to eliminate
obsolescence with each advance in VLSI technology.

Chapter two of this theéis. 1s an examination of the problems -and ma_jo)r-
decisions that affect parallel processing. It presents a methodic study of the
basics with the purpose of showing what is necessary for a successful parallel
architecture. Chapter three describes our implementation of the architecture.

Chapter four is a summary of current and future work.

L
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. ' Chapter 2
THEORY of PARALLEL
ARCHITECTURES

SOFTWARE.

2.1 Description of Parallelism

The most difficult aspect of software design of a parallel processor is the
description of the parallelism in the algorithm. As mentioned in Chapter 1,
there are four levels of parallelism, three of which, data, instruction, and task
level, are well suited for execution on a parallel architecture; and the forth, job
level, requiring interprocess communication is suited for loosely coupled

conventional computers such as the VAX 8900 [1].

Several approaches have been tried to describe parallelism. One approach
is to leave the high level language software development unchanged and to use

a compiler which finds and defines parallelism. This method is most desirable

because of the easy transition from serial to parallel programming but has

several limitations. The success of this approach for scientific applications is
illustrated by Allient computer’s Fortran compiler which parallelizes DO loops.

Unfortunately, this is unlikely to affect general purpose programming great deal

since the compilation becomes expensive for more sophisticated automatic

parallel translation, and designing an efficient c0mpﬂ‘er is very difficult. The

fundamental drawback of this approach is that it relies on software (the

compﬂer) to replace the programmer’s intelligence to in recognize parallelism.

The coarse grained parallelism may be best defined by the programmer
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through special constructs in the prog‘rémming language. This complicates the
programrrﬁng, but shigniﬁcantly reduces the compilation time and run time

overhead [2].

2.2 Programmability of Parallel Architectures

Parallel architectures have been intensely researched with very little
sﬁc_ces_s in the area of general purpose computing. This is primarily because of
the incompatibility of current architectures with current serial programming
techniques. As a 'resplt, there are are a lot of parallel ar,’chitectﬁres available,
without appropriate software support. Thus, the primary objective 111 developing
a new architecture should be programmability, rather than merely the most
efficient use of the largest number of processing units. Efficiency improvements
are traditionally an evolutionary process, and therefore can be sacrificed

initially for an easier transition to parallel programming.

Software for a parallel architecture must conform to new constraints. The
job must be partitioned into instructions that can execute in parallel (as already
discussed); the instructions must 'bé scheduled for execution on a processing
unit; and the data flow must be accounted for. Scheduling implies keeping track
of the progress of a taé‘k (instruction or chunk of instructions) with respect to
time. Thus it is responsible for ensuring that the various portions of a program
bégin execution at the appropriate times so that the data requirements of each
portion afe correctly satisfied [3] [4]. To solve the problem of scheduling, most
often s_pecial parallel languages are uéed. This increases the 'efﬁciency of the
-progr_am, but requires the programmer to abandon the languages and

techniques he is comfortable with.
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In parallel architectures having more than one memory (which is required

r’“‘g

to solve the Von Neumann bottleneck as explained below), one has to deal with
the problem of keeping all the data residing in different memories consisfent.
This is refer}red to as the proElem of data coherency [2]. One way of
understanding the problem is to look at the structure of memory at two
architectural extremes. One extreme is only one memory and more than one
processor. This conﬁgl;ratioﬁn creates a bottleneck because most of a processors
time is spent awaiting for the bus. The other extreme is to have a separate
memory for 'each processor, with each data element in one gnd only one memory.
This cobnﬁguratiéns suffers from wastage ofi', processing time spent 1n
transferring data so that it is in the correct memory to execute. The only
solution to this dilemma is to allow multiple copies of data elements to reside in
more than one memory or ca‘che-s’imultanedusly. In this case, there has to be a
way to ensure that data in a memory is correct when 1t is used. If all the data is
corrected continuously, it would be no different than a single memory albeit

multi-ported. Thus the improvement in the execution performance forces one to

deal with the problem of data coherency.

These last two problems are often grouped together as the synchronization
problem, and are responsible for holding back the realization of parallel
processing in all but special purpose machinés. There are several approaches to
handling the synch;‘onization problem. Oﬁe is to use special constructs within a
conventional language such as TEST AND SET [5] [6]. This instruction allows
one process to access shared memory and check for other processes using a -da‘t_a_(
elements it is interested in. It also allows the processor to set a semaphore

é saying that it is us)ing the d:f:; [ data mov. ;prim. article]. Another approach is

to use special language structures such as Guarded Horn Claﬁses which have

9 —




Test and Set functions Impﬁéitly built in [7] . Both these ép}iroaches require
the programmer to spécify the parallelis’rﬁ and coordinate fhe execution of
instructions. Aé third approach is to use a whole new model for computing such
as data flow \;vhére the programmer imPlicitly describes the parallelism and the

operating system coordinates the execution dynamically.

2.3 Data and Task Flow
Because of the limitations on the Von N;umann architecture; a new
architecture has to be developed, and many researchers believe that first a
whole new paradigm for computation has to be devéioped [8]. Several models
have been proposed and one of the more promising ones is- the data flow
_paradigrﬁ.‘ As oppoged to a Von Neumann algorithm, where instructions are
defined sequentially and executed in order, data flow programs define a .grou.”p of
instructions with no explicit order of execution. Instead, each instruction
specifies data elements and is executed as soon as the data becomes available (a
more sOphisticaited and potentially more .efﬁcienﬁt variation is demand-driven
déta flow, where execution starts at the final dat-_a specifyiﬁg or tagging
instructions which need to be executed and once all necessary data is at the
input ’level; actual execution begins.) An example of the data flow execution of
the quadratic formula is shown in Fig. 2-1 because each instruction is available
to execute és soon as it’s data is ready, data flow algorithms are ideally suited
for parallel ‘exec‘ution [9] [10].
| In numerical computations, where the data is structured in -arra}}s data
flow 1s very attractive, but in generai purpose computing the fine grain of the
algorithms is impractical. The advantages to data flow are that it can extract

all possible parallelism from any problem and can execute independent of the

10
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number of processing units in a system. Thé disadvantage,_,hov;rever; is that it
develops a fine 'g‘raine.d parallel algorithm which is not suited fo; general
purpose computing. As can be seen in the above example, if a problem is
subdivided with each instruction -é_xecuting in a different pr,o_c_e_ssirig unit there
will be a large amount of inter-processor communication td transfer 'data
elements. Even Wlth a very -sophistiéated operating system Whi'cuh: has
‘instructions execute in the processing unit where their data ali'ea'dyt fesidés,
their will be more than one data or instruction transfer for each instruction

executed (see.Fig. 2-2)

In the Von Neumann model of computing control is specified by the
location of the instruction with%;espect to other instructions. This is called a
control flow paradigm because each instruction executes when control is p;s-sed
to it from the previous instrgc‘tio_n. In the Data flow model of computing, cohtrol
is specified by the data elements required by the instruction to execute. This
has the disadvantage of being difficult for humans to visualizé because of its
~ complexity. By its very nature, there are many branches of executing code and
although the parallelism does not have to be explicitly specified by the

programmer, it is very difficult to program and debug.

A golden mean between sequential computing and data flow is what 1s
referred to as the task flow. Task flow is a model where a program is broken into |
tasks containin‘-g tens of instructions. within a task the program executes with a
normal flow of control by location. Each task however, specifies what data is
hecessary for it’s execution and the tasks are heaped and execute when the data

decreases the communication between executing tasks.

12
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{ 2.4 Overhead of a Parallel System
. Overhead i1s defined as any wt‘:ime dﬁringathe execution of a job that a
pro.cessor 1s not executing instructions specifically defined by the programme_ri
In a c.onventi“;)ﬂnal léompufé;er, this includes performing operating s;stem
functions, I/O, and even the instruction fetch cycle if the processor is not
simultaneously executing an instruction. In a -parailel system there are _sé.veral |

a )
additional operations which add to the overhead burden, these include [11]:
e transferring data between processors or from main memory to local
memory.

* Transferring instructions to the processor in which they are to
execute. o

* communication between processors including synchronization.

e Other operating system functions such as heap management and
I/O which are complicated by the parallel environment.

Conventional microcomputers have reduced the overhead by using
pipelining and cache memories and in developing a parallel systein, overhead
reduction must Be considered at the outset. In a déta flow architecture,
techniques such as pipelining can be used on the local level since each task will
execute as a serial program. There will be thr_:ee major causés of overhead,

specifically:

1. Data transferring. Data will need to be transferred from the main
heap to local memory at the beginning of each task, likewise, data
will have to be transferred back to the main heap at the end of the
task taking care not to ovérwrite any new data with an older
version. This portion of overhead can be reduced by reusing the
data in local memory in some instances.

2. Instruction transferring. Instructions will have to be transferred to
the local memory at the beginning of each task. A way of reducing
 this portion is to have a task execute in a processing unit where its
instructions already reside if possible,or having local memories
large enough to contain the entire program. |

3. Heap management. Befoye a local processor can start executing a
task it must update the’problem heap, search for a new task to

14




s

exeeute, and spawn new tasks to add to the heap. This requires -
some searching which can be very time consuming.

2.5 Task Execution Schemes

A task is a group of several instructions, and because of this, a task can be
partiaily executed when the program cont}ol goes to another task. This is
unlike Data flow in which by definition an instruction must be ready to execute
completely before execution is allo§ved tc; begin. A form of task flow could be
defined which requires the same constraihts as data flow, but this would inhibit
such programming tools as functi'tj'ns and nesting, and would cause more
overhead by causing tasks to be smaller, self contained units. Because of these
complexities, the basic form of a task, and allowable paths of control must be

defined.

A task must have a beginning and an end. Execution must start at the

beginning and must stop at the end. This 18, similar to the definition of a

subroutine or procedure in a structured language such as Pascal. A task can call

another task at any time during its execution. This will complicate the operating

system considerably; but as explained above, it is an essential complication. The
beginning of a task must define which data is required to execute the task, and

the end must define which data needs to be updated in the main heap. Other

aspects of task flow control will be considered in chapter 3, but for now enough

1s known about task execution to develop suitable hardware.

15
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2.6 Bus Structure And Connectivity &

The prbblém of determignirig" the best architecture for a parallel propcessor’
18 reélly the problem of determininé the best interconnection scheme between
processors. This decision affects every aspect of the machines performance,
from cost and reliability to programmability and overhead. Most of the

connection schemes currently being researched can be divided into two

categories although there are almost as inany variations as there are people

working in the field. The first category is a simple extension of the standard Von

Neumann architecture with a main bus which all processors must use to

communicate with each other and access m’ain memory. This suffers from an
aggravation of what is known as the Von Neumann bottleneck; because all
processors are using one bus, they will often have to wait to be granted access.
The second category requires many independent busses connecting a small
subset of processing units. This is considered the best scheme for désigns with
many processors because the addition of processors is accompanied by the
addition of busses and communication paths between processors. Although a
networked architecture appears to be the most sensible way to efficiently
connect many processing units, it has several serious problems with the most
serious being its difficulty to program. The operating system for these machines
must contend with a large amount of message vp‘assingf because of their
distributed nature, and a program running on these machine must be divisible

into hundreds of small tasks, all concurrently executing and comﬁunickating

through the network. Several companies have developed special processors with

instructions which are designed to deal with the communication problem and

this has helped reduce the cost of the processing units, lﬂ)ut because fhey are still
.

16
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difficult to program, most success has been in dedicated applications where the

problem is easily distributed and the communication between tasks can be

~ matched to the bus network. Unfortunately, this type of fixed network does not

serve the needs of a general purpose machine VZ] [13].

Shared bus architectures are generally easier to prdgram than networked
architectures because they have fewer processing units, and because each
processing unit is more independent. This implies task level parallelism rather
than data or instruction level. The processing units in such an architecture
sho‘uld‘b‘e" more powerful and self contained. There is less of a bottleneck when
the running j_dbx has a lérge Ix)ortion of serial code -- code which cannot run in

parallel with any other code. This is the most promising approach for a

computer which is easy to program since one is not bothered by serial portions of

code. However, an effort must be made to prevent common bus access from
slowing down the processors and a clever programming strategy should

distribufe an equal amount of work to all processors.

2.7 Memory Structures

In a parallel processor the bus is used primarily to access memory for data

- and instructions and therefore one way to reduce bus use is to modify the

structure of memory. The two most common structures are the shared local

memory architecture and the shared global memory with cache [14].

Shared local memory architectures divide up memory into partitions with

each processor having direct access to one partition and access to other

partitions through the bus (see Fig. 2-3.) This is very similar to networked

“architectures, and suffers from many 'of the same problems. Specifically, if a

17




processor 18 running a task requiring access to memory locations through the

bus, it slows down the complete execution. However, these architectures have

the advantage that since all processors are working on the same information,
the data coherency problem is greatly simplified.'
, |

Shared gloBal memory architectures have a single memory, which all
processors have equal access to (see Fig. 2-4.) To reduce the strain on the bus,
they also have a cache for each processor where information that a processor 1is
using is temporarily stored. The drawback of this scheme is that there can be
more than one copy of each datum. If any data is changed in the cache, the d-\a/ta
must also be changed in main memory and in any other caches that have a copy
of that data. Several people have used this approach, but they have had to
develop complex hardware to solve the problem of cache coherency [2] and there
is still no guarantee that this type of architecture will be easy to program. For
an architecture to be easy to program, the data structures within the software
must easily map to the hardware -- either because of the highly limited

software, or because of very flexible hardware. \

Certain dedicated signal processing and graphics problems are more

suited to parallel processors because their data structures match the structure
of the processors. General purpose computing, however, has no predefined
structure to its data at the instruction level. The most structure that can be

guaranteed is at the subroutine level in a structured language such as Pascal or

C. In these langfuag.e-s, all dath defined in a procedure is global in that

procedure, and in all procedures called by it;; N‘o data (with minor exceptions) is
global at any higher level, and all data defined in a procedure is lost when that

- procedure reaches its END statément. Since this amount of structure already

18
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exists In common programming practice, it would be ideal to develop an

architecture which took advantage of this structure.

Such an architecture should have a main memory where all thé code and
global data is stored and a local ’memor.y where an executing task is stored along
with the data (see Fig. 2-5.) Since main memory /only contains global data; 18°18
only updated upon completion of a task; and since local memory contains

primarily local data it’s contents are no longer relevant when a task reaches its

END statement. This architecture would take the fullest advantage of

parallelism already identiﬁed with current programming techniques and

languages.

2.8 Supervising and Control

There must be a way of controlling all the interactions between
processors, and there must be a way -- either through software or hardware -- of
knowing the exact status of every processor and task in the system. This
supervisory function includes communication with the outside world,
initialization of the system, bus arbitration, job scheduling, and keeping track of
data. In a shared bus architecture, all of these functions can be either
distributed or centralized and in either case, they can be performed in hardware
or software. One common approach is to specify a single processing unit (PU) as
"supervisor." Such a PU has a special architecture and is dedicated to all the
above mentioned tasks with the exception of those that require excessive speed

such as bus arbitration.

To implement the supervisor, an analysis must be made of each function,

examining each of the three alternatives: software, dedicated processor, and
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Architecture for task flow machine.
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special circuit. Communications to the outside world will obviously require a
dedicafed interface to a high speed communication l“ink, but the control is
probably best performed through software running on a processor -- not
| necessarily a dedicated one. The system initialization can be performed by any
processor as long as there is a circuit which gives it preferen'c;e over the other
processors, and as long as it has an access to the initialization software which
resides in ROM. Bus arbitration is t}ie most critical function and therefore must
be performed by a special circuit to reduce the access delay time and increase

the bus efficiency.

2.9 Bus Arbitration

Bus arbitration in a shared bus system is a critical function because the
efficiency of the bus affects the number of processing units which can effectively
share it. A shared bus architecture Iﬁust have a high bandwidth bus, which is
used efficiently and equitably. The arbitration scheme must be optimized for
the type of access which the memory structure and operating system require. In
a shared global memory system the average packet size is proportional to the
size of the caches. On the other hand, a dual memory system, as is suited for a
task flow environment, the packet size is very large and the access frequency is
small. This is desifable because high speed transfer techniques such as direct
memory access can be employed in this situation to improve the bus

performance.

There are two important considerations in determining the arbitration
scheme for a system. the first is prioritization of processes and/or processors. In
a task flow environment, running on a shared bus system where all processors

are interchangeable, and where all processes are considered equal, One may use
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arbitrary prioritazition. The simplest schemé ;vould be to assign a fixed I;riority
level to each processor and more sophisticated realizations include rotating
priority and software assignable priority. These mor’e sophisticated schemes
reduce situations where -'séveral pro.cess‘o-i's- s;tre idle because they are awaiting"
for data from a process running on a 'low priority proc.eSsor "WhiCh 1s being
denied access to the bus. These bottlenecks can also be redpced by careful

operating system design, provided some hardware support is available.

The second consideration in the design of an arbitration logic is the
implementation of the logic as a cen‘/cfalized or a distributed architecture. A
distributed arbitration circuit is generally slower and expensive but is more
flexible, because it allows the addition of an indeterminate number of
processors. A centralized arbitrator, on the other hand, is better equipped to

4

handle complicated arbitration schemes, but increases the number of bus lines

needed for arbitration.

To simplify the hardware and to obtain maximum bus efficiency in a task
flow environmént, a fixed priority centralized arbitrator is chosen for the
architecture described in this thesis. This gives the added benefit of greatly

simplify the processing units by allowing a centralized bootstrapping as will be’

shown in chapter three.
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| 2.10 Fault Tolerance o D | ﬁ
In a system with many processing nodes, there has to be many |
iterconnections between nodes and interconnections are inherently very

unreliable. Because niany applications are totally dependent upon computers,

- _EAS

systems are currently being designed more fault tolerant; often using networked
systems, or redundant processors. Parallel systems have a great potential for
fault tolerance because of their built“ in redundancy, but this can only be
realized by careful design. For a system to be fault tolerant, it must be able to 7

function after a communication link or processor fails.

In a networked ‘architecture this seems easy because of their multiple
communication links, but the difficulty is that thgre is no way for the other
processors in a system to know when a fault occurs. Fault detection is necessary
for the other processors to start performing the functions of the missing node,
and for proper rerouting of information. Current networked syét_ems aré less
reliable because of their multiple nodes. Shared bus architectures have an
advantage because most can function with a variable amount of nodes. The area

_where work is need is in fault detection. A task flow architecture is perfectly
configured for a fault tolerant system since any task can run on any node. The
only provision which.1s necessary 1s a way of removing the effects on the

problem heap by a processor which starts a task and cannot finish it because of

a fault.

25




'2.11 VLSI Compatibility

Advancing VLSI technology is providing microprocessors ‘havee functions
and sophistication dgveloped for mainframe computer systems. Because of these
advances, a parallel microprocessor system must be very flexible and ideally,
would have very independent processing units which interacted with a simple
protocol and therefore the aréhitec_ture_ would be flexible enough to take
advantage of future technolo_gy. An architecture which relies on special
functions for communications in a networked bus environment is not workable

because it can not take advantage of microprocessors developed for non parallel

systeins [15].
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" - Chapter 3
IMPLEMENTATION of FAULT
TOLERANT PARALLEL
ARCHITECTURE

"HARDWARE

The basic structure a computer is determined by the type of application it
is intended for, but once the basic structure is determined, there are still many
aspects of the computer which need to be decided. The;e factors largely
determine the cost, efficiency, flexibility and expandablility of an architecture.
For a general purpose parallel processor, the best architecture is the shared bus
design because its simple structure makes it easiest to program and because a
smaller number of powerful processing units makes it more robust regarding
software design. The chosen architecture as implemented is shown in figure 3-1.

Following sections describe details of this architecture.

3.1 Processor Considerations

Current general purpose microprocessor families are very similar in
computational power and type of instructions, so the choice of a processor is
relegated to other areas including basic architecture, upward compatibility,
software availability, higher operating system functions, and the availability of
support hardware and software. A general purpose machine which is easy to

develop software for should be based on a microprocessor family which already

has a large user base. There are two reasons for this, one, because the

transition from programming an ordinary computer to programming in parallélz
will be a big enough step without having to change processors. Two, because it

is intended that only minor modifications will need to be made to existing
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software to make it compatible with the task flow environment, although major

“modifications may be necessary to make it run efficiently.

"~ Three microprocessor families were considered im this study -- Intel,
Motorola, and NEC. Intels iapx series is notable for its popularity which
guarantees low price, abundant support software,' and.‘ future architectures
which are compatible with current software and bus structures. -Motorola has a
somewhat less popular line, but it is a family dedicated to future compatibility

to every possible degree. NEC’s line of processors is innovative, cheap, and

powerful, but as it is a parasite family relying on a petulant host, future

compatibility is questionable. Upward compatibility is a very important

consideration, with clock speeds increasing steadily (5M in 1981, 16M in 87) and

new processors coming out regularly, any new design should be easily modified
(by chang{ng processor boards, memory) to prevent obsolescence before it has a
chance to be developed and accepted. To this end, Motorola’ 68000 series of
processors is strongest. It is designed for complete software compatibility and
bus compatibility in steps (8 bits, 16 bits,..) to encourage it’s use iri a modular
family of computers all software compatible, and bus size dictated by specific
requirements. Furthermore, Motbro_la has stated a commitment to future chips
with higher clock speeds as the technology becomes available. Intels family,
although upward compatible is not downward compatible although this seems

irrelevant, mutual compatibility is desirable for three reasons.

1. Without downward compatibility, everything about a
microcomputer becomes obsolete as soon as a new processor comes
out (software, bus structure ...) This means that the only right time
to develop a microcomputer is as soon as a New processor 1S
introduced, the exact time when development support is least
available. |

2. No improvements in software can be used on machines other than
the most current ones because of incompatibility. This drastically
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reduces a machine’s usable life by making it prematurely obsolete. -

3. Everything has to be developed -all at once (operating system,
software, new hardware) increasing the development time and
decreasing the window of opportunity.

Considerations such as architecture and operating system functions are
not iﬁlportant in a task flow machine because as a multiprocessor, software will
handle multitasking and the host computer will handle most I/O. Although
obsolete, the 8086 was chosen for the first computer for ease of design and
testing a.gainst known performance as a uniprocessor. Also, Lehigh is fully
equipped with In Circuit Emulators for the Intel i}apx series. Future work may
use the Motorola Family, as it appears to be far superior to It’s competitors for
such an application. It should be noted here that the chosen architecture allows
for the possibility of computational nodes that are very different from each

other, as long as they follow the same basic structure and interface rules.

3.2 Floating Point Unit

Since most floating point coprocessors require very little interface
circuitry if any, it is common practice to design the coprocessor into the
processor board even if the majority of applications will not warrant the added

expense of the processor. These systems can be left with an empty socket on the

processor board which can always be upgraded by inserting the coprocessor.

This is the best approach also for a multiprocessor system because although the

coprocessor alone will cost more than the entire processor board, Floating point

intensive programs will run five to twenty times faster with the coprocessor. It

‘would not be logical to design a system with 10 processors which is slower than

a conventional machine with a coprocessor for this class of applications.
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The decision of which applications warrant the expense of coprocessors is
however somewhat different than for the case of a uniprocessbr. The speedup in
execution time will be proportionally the same for a multiprocessor, but the the
cost of adding coprocessors will be n times greater, where n is the numBer of
processors. This assumes that the amount of parallelism doesn’t change with
the change in software heeciéd to support a coprocessor -- which will not
necessarily be the case, and in fact will have to be researched for speciﬁc

applicati()ns to even get a qualitative feel for the effect.

It is possible to add coprocessors to only a limited number of processors
nodes in a parallel machine. However, in this event, the operating system would
have to try to route floating point ihtensive tasks to processors equipped with
floating point units. Even t};;)u'gh this i1s the best way to incorporate more
floating point power, this would increase the software complexity and the job
overhead. Floating point coprocessors are not incorporated into the first
prototype machine because the additional expense and development time will do
little to prove the effectiveness of a task flow architecture, but treatment of

special processing units will be examined in the operating system design later in

this chapter.

3.3 Memory Structure and Bandwidth

Since the number of processors which can efficiently use a single shared
bus depends on the bandwidth of that bus, it is important to keep that
bandwidth as high as possible. There are three basic limitations to bus
bandwidth with only one of them inherent to the bus itself. That limitation is
the delay caused by the tranceivers and Wirés of the bus but this theoretical

maximum bandwidth 1s rarely reached. The second limitation is the access
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i& times of the memory or I/O device receiving or transmitting the data across the

bus and the third limitation is the cycle time of the processor controlling the

transfer.

The number of processors shou’la' be determihed by the amount of

parallelism which can be easily extr_a_cte_d. from the average general purpose

. | program. This cannot be calculated with any accuracy given the range of
software run on 'a general purpose machine, Therefore the only effective

procedure is to predict a range with an upper bound determined by the overhead

and then tailor the system to specific applications by fadding processor nodes

where needed, and supplying overhead reducing techniques such as direct

memory access. Current version. vof the architecture has four nodes based on

i Intel 8086.

One way of increasing the effective bus bandwidth is to use the Direct

Memory Access (DMA) technique to transfer data along the main bus; usually

between main memory and local memory. DMA is essentially a circuit which

performs the block move function which is an instructions in most

microprocessors; but the dedicated hardware of a DMA circuit can utilize the

maximum bus bandwidth limited only by the memory access times and the bus

delays. This avoids the repeated instruction fetch and cycles of the - "
microprocessor, and c;m increase the transfer rate by two to four times. The | |
transfer rate can be doubled again by incorporating the DMA into main memory
and separating the address bus under DMA control as shown in fig. 3-2. This
enables the DMA to simultaneously perform a read and a write to a different
address in each memory. This technique is not used in uniprocessor systems

~ because they only have one memory and therefore cannot separate the address
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busses.

3.4 Fault Detection and Tolerance

A system is considered fault tolerant if it can continue functioning after
there is a hardware or software failure somewhere in the system. Since it is

impossible to guarantee that a fatal fault will not happen, there is no such thing

as a "fault proof" system. It is not practical to anticipate every possible failure, |

and high reliability can be obtained by simply preparing for the most common

ones. For a system to be fault tolerant it must be designed with that in mind

from the outset. Such considerations often include: ;o

1. Design to reduce low reliability components such as mechanical
interconnects, and simplify critical functions to increase reliability.

2. Incorporate redundancy for critical functions.

3. Provide fault detection circuitry which is capable of. detecting
faults as they occur, and correcting any damage that may have
been done to the operating-environment.

The shared bus data flow architecture is inherently fault tolera’nf because

of the problem heap which provides an easy way to bypass faulty. nodes. To

further increase the fault tolerance, the system was designed without

designating any single processor as a master processor in charge of the system
critical functions. Instead, the controlling functions were implemented either

through dedicated circuits (to whom normal fault detection techniques are

applicable), or through software functions which run on any processor when it

has access to the main bus and memory. All scheduling and control tables are
o~ |

stored in main memory where.any processor can access it. Thus if any node

encounters a fault, it would not stop the operation of the entire parallel system

but would only affect the speed of the system.
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3.5 Host Interface

To prevent parallel machines from‘ becoming I/O bound, there must be a
high speed interface between it and the host computer. The speed of the
iﬁterface is related to the task execution speed of the. pafallel machine so this is

another parameter which could determine the upper bound on the number of

processors. Thus, the interface should be upgradable when the need arises.

Our system has been built with an RS232 serial interface to reduce desigﬁ

time and cost. This is not an effective interface because of its slow speed, but

operating at up to 19.2K baud, it is sufficient for testing a prototype.

N

“5(".‘»—)

3.6 Arbitration Logic

The arbitration circuit used in the system is shown in schematic C2. It
was built for eight processors, but the hardware 1s easily expanded to handle
more. The bus requests (BRQ\) come in to the control board, are prioritized and
then the output bus grants (BG\) are latched until the single processor granted
access is no longer requesting use of the bus. This is done with the feedback in
the lower portion of the circuit. U19 receives the address of the processor using
the bus, and that BRQ\ input is piped to 'e'wnable the clock to the latch. This
arbitration scheme can be overridden by the control signals Boot and Real. The
Boot signal disables the outputs of all the latches and gives control to pullup
resistOrs%iszh,ich are preset so only one processor is given access during boot-up.
The Real signal enables latch U8 to control the bﬁs with a byte written to it by
the initial bus master. The use of these signals will be explained in the next

section.

To reduce unnecessary bus accesses, there is also a signal called Token
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generated by the arbitration circuit. This signal is a positive pulse whenever a

processor relinquishes the bus. This signals idle processors that there may be

new tasks available to them so that they don’t have to continuously access the
bus looking for work. Token is initially given to the highest priority processor
and is passed along to successively lower priority processors if the higher

priority ones are in use. Using this scheme, only the one highest priority idle

processor checks for work, and only after each access by a working processor.

3.7 System Initialization

When the system is first powered up, the individual processing units have
no operating system kernel and therefore, they all must be disabled except one
which will be given access to the ROM on the central memory board. This is
done by U7 on the control board, which makes Real low, and Boot high upon
reset. With this set of inputs, the arbitration circuit gives control to to the
Resistors on the BG\ outpu‘tysignals,_ Processor 0 is given access to the ROM

and initiates communication to the host. Once the host loads down the

operating system to main memory, Processor O raises Real, and gives bus access

to all the processors in the system. Because Boot is still high, all the processors
except O are in the hold state. Processor 0 then performs a block move of the
operating system kernel from main memory to its own local memory, and
because of the tranceiver control logic, the information is simultaneously
written to all the local memories in the system. Upon completion of this task,
Processor 0 reverts access back to itself exclusively, and lowers Boot. At this
time, the system is operating normally, and control is given to the highest

priority processor (0) to start execution of the job.
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'SOFTWARE

The wp’rimary function of the operating system in a task flow system is
managing the problem heap. This combines techniques common to data heap
management in a serial machine, and data flow control used in data flow
machines. There is also the added problem of accounting for data and
transferring information to and from the local processors. To understand the

- structure of the operating system, it is first necessary to understand the

functions associated with handling the tasks, including possible bottlenecks and

overhead. For the purpose of the operatingg system, each task has a structure
characterized in table 3-1. The multiprocessor built during this project exploits
this structure to provide the task execution sequence, as explained in the

following sections

3.8 Task Management

Any structured language program with Minor modifications can efficiently
run the task flow machine explained in this chapter. Programming techniques
will have to optimize parallelism; other than this, only a definition of
dependencies and the task structure outlined in table 3-1 will be necessary for
source code to be recompi}ed‘ for the task flow architecture. Compilation will
perform fhe standard functions such as parsing, translation, relocation, and
linking but also should generate a physical task list. This task list typically

consists of following information.
* The location of each task for loading into local memory.

e Specification of data that is used by the task for loading into local
memory.

o Specification of data that 18 produced by the task for loading into
main memory upon completion. |

* Identification of the mother task and any da-ughter tasks.
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%’ Table 3-1: Defining task structure

1. A task has a beginning and an end. Program control must start at
the beginning, and finish at the end.

2. Each task (except the main task) is contained within another task
called its mother task And the contained task is labeled the

daughter task.
3. Tasks with the same mother are 81ster tasks.

4. Tasks are born when their mother task starts executlon and they
can then be listed on the problem heap.

5. Once born, a task can only execute if all its dependent tasks are
completed and off the problem heap.

6. A task can only be dependent upon its sister taslgs (It cannot be
dependent upon its daughters.)

7. A task can contain (or mdke a call to) any other task, including
itself.

8. A function is similar to a daughter task, but it can be dependent,
and therefore must be attached to its mother so as not to delay
execution.

9. All data defined in a task is global only to its decendents.

e List of all the functions f’equire’dby the task.

e Specification of any special requirements such as extra memory, or
a floating point unit for systems which are not homogeneous.

In addition, the _physical task list also contains the current count, or the o
number of the most recent logical task. The task list governs the task execution

in our multiprocessor architecture.

At the start of execution, main memory contains the program, the task

list, the data heap, and a task heap which contains one element -- the main or
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initial task. As execution progresses, logical tasks are added to the task heap,

.
faa .

executed, and removed. To understand this process we must examine the life o

a task.!

When a processor is idle, it searches the task heap for an available task.

Upon finding a task which is not being executed, it sets a flag indicating that it

L

1s executing that task, loads the physical task into its local memory, loads all
necessary global data, and begins execution. The first step in execution is the
creation of new logical tasks to be added to the problem heap. Once this is done,

the local processor can relinquish the bus. After execution the processor regains

access to the bus and has to update the data heap and remove the task from the

heap, but this can only be done if the daughter tasks spawned at the beginning
of execution have been completed. To eliminate processors from being held idle
because their task cannot be removed from the task heap, there is a morgue
where all t‘as‘ks are listed before they can be eliminated from the heai)-.
Processors search the morgue every time theJy remove a task from the heap to

see if its mother is awaiting to be removed.

Removal from the heap means that a task is completed, and its resulting

data has been added to the data heap. When a processor is checking to see if

dependent tasks are completed to determine if a task is executable, it needs only

check to see if those tasks are on the heap. If they are, then they are in progress

and the task dependent- on them must wait. This is a consequence of the sixth

property of a task as listed. Because of this, the time spent searching is kept at

‘l_T_hroughout this chapter, it is assumed that the local memories are not large enough to contain
the entire program as is the case with the prototype machine. For systems with larger memories,
physical tasks need not be transferred. \
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a minimum. To start a task and to end a task, the entire problem heap must be.

searched, but the problem heap is never very large.

3.9 Dynamic Task Spawning‘ 7

A useful tool for coding repetitive sequences such as DO loops is the
ability to create a logical task dynamically. After a task is loaded into local
memory to execute, the system must check if it 1s to be repeated, and if so, its
name, with an incremented count, musf be added to the task heap. The new
addition to the heap will be identical to the first, with the exception of the count.

To distinguish daughter tasks created by these repeated tasks, each task must

also contain the count of its mother task. A task is not dependent upon the

completion of sister tasks created dynamically.

The second way that tasks will be added to the heap is when their mother
commences to execute. At the beginning of each task there will be a list of

daughter tasks which are to be added to the task heap. These daughter tasks

~can be dependent upon each other, but their mother cannot require any of the

data produced by them. The mother however, must wait for their execution
before it can be removed from the task heap. This interaction of dependencies is
displayed in the example program shown in Fig. 3-3.

=

Execution in this case will proceed as follows:

o Start up -- Task table is initialized with task A as the only element

o First processor starts execution of task A by 11st1ng its daughter
tasks -- AA, AB, and AC in the task table.

e The second processor then proceeds by checking the task table,
finding Task AA is available and not dependent upon anything and
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{ A Task ; Main task |
= AA Task ; When AA begins, it puts AAA, AAB,
AAA Task - ; and AAC on the heap.
AAA End
AAB Task
AAB End
AA End
AB Task (AA) | C |
5 Call AAA ; When AB begins, it puts AAA on the
. ; heap, but AB does not execute
AB End ; until AA is removed from heap
AC Task (AA) ; Dependent upon AA
AC End
A End

Figure 3-3: Typical execution of a program in a task flow architecture.

!

therefore exécutable_. Its daughter tasks are listed in the task table.

* The third processor will now attempt to load a task, and find that
AA’s daughter tasks are available.

e When task AB starts execution, it continues until it reaches the
"CALL AAA" statement. At this time the processor must access the
bus to load task AAA while task AB is put aside in the local
memory. In this situation one processor is executing more than one
task, and careful programming is required to prevent a software
bottleneck.

e As processors finish tasks, they remove them from the heap and
continue the process.

41




3.10 Data Management

With a task flow st;'ucture, managemernit of the'./data heap is similar to
management in a standard processor. Access to the heap is controlled by the
_problém heap, so that Scheduling and data cohérency are not a problem for the
operating system. If a process has access to the data heap, then it is accessing
the correct data. Two processors do not have simultaneous access to the heap,‘so
synéhronizatioﬁ is not necessary. The only cor;sideration that is not taken care
of inherently, is reloading data _froxﬁ local memory to the heap. Care must be
takeny-to insure that all updated data is the most current. An example being the
case of an array Which is loaded into several local memories, each processor
updating certain elements. Upon reloading, only the updated elements can be

changed in main memory [16].

3.11 System Overhead and Bottlenecks

| For a system with n processors, the best poss‘ible performance would be n
times that of a uniprocessor. This speed-up ratio however, is not obtained in
practice. There are two fundamental reasons for this. Firstly, most problems
have sections of code which must be run in strﬁ? serial fashion independent of
the machine rar;chitectux;e-.. For a problem with s% serial code, the maximum
speedup possible for an n processor machine is T/n+T(s%) where T is the
_execution time on a uniprocessor. Sections of code with less than n parallel
tasks c_ap“a'ble of executing simultaneously will causes similar inefficiencies,
although not as severe. These losses are intimately related to the application,
algorithm, and skill of the programmer; so we will not go into details except to
say that research iin' this area has shown that most general purpose programs
have a sufficient amount of parallelism to be worthwhile, and as progréinmers

become more experienced with parallel machines, this amount will probably
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rise.

The second type of inefficiency is caused by the architecture or operating
system used in a particular machine. These losses can be further divided into

Isolation losses, Parallelizing overhead, and Bottlenecks.

Isolation losses are caused by processors not- haﬁng the most current
information on the progress of other tasks in the system. This includes braking
‘loss caused by a process continuing to solve a problem which is already
completed by another processor [11] This loss can be reduced by programming

technique, or by providing an interrupt system in the hardware.

P‘ara.llelizing losses are inherent to any parallel algorithm. This category
includes time spent transferi'ing data between processors, searching heaps, and
anything else that is necessary whenever there is more than one processor
executing. These losses can sometimes be reduced by careful software design,

but they are generally inherent to the architecture and operating system.

Bottlenecks are the classification of losses caused by too many processors
trying to do something at the same time. The mo"st common bottleneck for a
shared bus architecture is the access to the bus for a task to execute, although
in more complex architectures this can include other functions. One way to
reduce bottlenecks is to eliminate any unnecessary bus use. This is the purpose
of the Token signal Whic;h&llﬁc&vs only one idle processor to access the bus at a

time.

The only other way to reduce bottlenecks is to lengthen the average task

o~
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| ,iength so that there are fewer tasks for a given application. This is the bést way | - .
for a programmer or coﬁlpileij to optimize a task for a specific number of | o
processors or a specific system architecture. As the number of tasks increases,

the "isolation losses decrease and» the parél_le’lizin_g and bottleneck losses
increase. Some application require a large amount of data transfers to -exécute a

task. for these applications, it may be advisable to decrease the task size to

| reduce parallelizing_ losses and bott_lenecks at the expense of Isolation losses.
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Chapter 4
CONCLUSION

4.1 discussion

In this thesis, the goals were to build a parallel micro’corhputer which was
fault tolerant, easy to program for general purpose applications, and adaptable
to new VLSI technology. To a large extent, these goals were met. The machine
which was built is a shared bus --ai'chitecture for course grained pardllelism
‘which makes it simpléﬁr to program than ot};er configurations. The Processing .
nodes _are independent, and conform to a simple interface standard, and
therefore they can be upgraded independently and adapted for specific
applications as new microprocessors are introduced. This allows them to realize
advances from technology developed for serial, microcomputers such as increased
clock speed, advanced instruction sets and even sophisticated pipelining when

VLSI technology advances to that level.

Since the nodes are independent and the architecture is flexible, if one
- processor fails the other nodes can continue functioning with only a relative loss
in overéll system speed. This is facilitated by the processors independently
choosing tasks from the problem heap. Because of this, any processor can
execute any tasl{,_ and there is a record of which tasks are currently being

executed by each processor.

B.éc'ause of the economics of VLSI, it is inevitable that computers evolve to
systems which are optimized for the limitations of current VLSI t-echno’l()gy, yet
~ai~e- adaptable to the future téchnology. Uni-processor technolog_y requires
either that the processor be limited to the complexity that can be integrated

-
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onto one circuit, or that it require many different circuits -- usually in the form

of application specific integrated circuits. Although Von Neumann architectures
do benefit from the Idecreasing cost of integrated circuits, they are not optimized

to get the greatest benefit. Most parallel machines currently being researched

are optimized by having many identical processors working in parallel, however,

fhe'y suffer from one or more of the following drawbacks.

e They are difficult to program which eliminates the cost savings in
the hardware. This also increases the time required to develop a
substantial user base -- decreasing the effective life of the system.

e They are not adaptable to new processor technology which in the
near future will be developed to increase the power of serial
programs.

. Théy have decreased reliability due to increased chip count and
interconnections, without sufficient provisions for fault critical
applications.

e They are not robust enough when executing serial code. This
severely limits their suitability for many applications.

The task flow architecture described in this thesis was designed to

overcome these drawbacks.

4.2 Future Directions

Future work on this architecture should concentrate on overcoming the

short comings in the hardware, and developing more software for the machine.

The greatest limitation to the the machine is that it has only one bus and

therefore cannot be ’expanded much beyond eight processing nodes before the

bus bandwidth limits performance. A DMA circuit will help increase the

bandwidth but more testing is needed to determine if typical applications will be
able to use the additional processors. An expanded architecture with a complete

task flow architecture at each node might be a desirable configuration to achieve
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{ more processing power without excessive bus conflicts.
* U .

Currently the machine communicates with the host computer through a
serial link. for certain applications it might be desirable to upgrade this to a

high speed interface. Such an interface could also provide interrupt capabilities

for interactive computing.

The software developed for the system includes the system initialization,
diagnostics, task flow kernel, and communication modules. Of these, the task
flow kernel is a rudimentary version developed only to test the task flow ideas.
Since the task flow operating sygtem is fundamental to the concept of this
architecture, further ;;ro'rk in this direction is warranted. Work would also be
required in developing compilation post-processing to organize the object code

for the task flow architecture.
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