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Abstract

—
Demands for faster and more powerful signal processing capabilities have

resulted in the proliferation of reconfigurable bit-sequential systolic arrays. Data
communication with these machines must be at rates commensurate with their

operating speed in order to fully realize their computational potential.

The front end for the systolic array is typically a general purpose computer
which must be interfaced with the array. This thesis is concerned with studying

such an. interface, i1dentifying design problems, and proposing optimal solutions.

Architectural differences lead to a great disparity in speed and data formats
between the general purpose host computer and the reconfigurable array. The
difference 1n operating speeds and asynchronicity is overcome with the use of FIFOs
and careful selection of local memory word sizes. Input data conditioning is
berformed in a series of subsystems, each designed with VLSI implementation as a
consideration. Results generated by the simultanecous execution of multiple tasks in
the array are routed through two subsystems. The first subsystem separates data

by tasks and the second reformats data to match the host computer’s requirements

and pipelines these words for optimal throughput.




Chapter 1

Introduction
1.1 Systolic Arrays

1.1.1 An Overview

Exploding technological applications have resulted in demands for ever
increasing processing power in digital hardware. Applications such as 1mage
processing require data processing at rates exceeding 10 Mb\ytes/sec. To meet
these needs, many new architectural innovations have emerged in recent years.
Among these, one of the most promising is the systolic array [1-4]. This
architecture benefits from multiprocessing without sacrificing synchronization and
the simplicity of data paths. Systolic Arrays are modular in nature, as the
name implies, and each module communicates only with its nearest neighbor.
This characteristic translates to a very efficient implementation in silicon.

In a normal processor, an execution cycle is always preceeded by an
equally time-intensive instruction fetch cycle. The high throughput of a systolic
array may be attributed to the fact that each processing element in 1t executes
only. a single instruction an;i, therefore, no potential processing time is spent
performing an Instruction fetch. However, this results in a very inflexible
architecture which requires a sepdrate array for each task to be executed. Sﬁch
]imitations have prompted researchers to Investigate reconfigurable systolic
arrays. Processing elements in such arrays are reconfigured, if needed, before

the execution of a task.

A further improvement in systolic arrays comes from the use of bit-

sequential processing elements. Such elements are smaller and easier to design.




Additionally, inter-processor communication is greatly simplified, since all data
buses are one only bit wide. Both these factors contribute to more efficient use

of VLSI area, making this a very attractive option in systolic array designs.

1.1.2 Current Technology

The Massively Parallel Processor (MPP), designed in 1983 by Goodyear
Aerospace Corp. under contract from NASA Goddard Space Flight Center, 1s
the first example of a bit-sequential systolic array 5,6]. The MPP is cor.nposedv
of 16,368 processing elements arranged In a square array. This SIMD (single
instruction multiple data) machine performs 1mage processing on data collected
from satellites. The first commercially available reconfigurable systolic array,
the Geometric Arithmetic Parallel Processor (GAPP), with bit-sequential
modules, was marketed by NCR Corp. in 1984 2,7].  This MIMD (multiple
instruction multiple data) array is composed of 72 processing elements arranged
in a 9x8 grid on a single VLSI chip.  Because of the MIMD nature, the
applications of this array are wide and varied. There is an ongoing effort at
Lehigh University, and at other schools, to investigate various aspects of

reconfigurable VLSI bit-sequential systolic arrays.

1.2 Function of Interface

The systolic arrays previously described typically have a general purpose
host computer as a user interface. The data and instructions resident in the
host computer must be communicated efficiently to the systolic array to take |
full advantage of its processing power.  This thesis is concerned with the

development of pechniques necessary to accomplish this efficient transfer of

information.




Due to the increasing popularit;\' of bit-sequential systolic arrays, the need
fof such interfaces is. now greater than ever.  Design of these interfaces is
complicated because of the differences in speed and data formats of the host
and the array. It is not unusual for bit-sequential systolic arrays to have
clocking rates in excess of 30-40 MHz, whereas baud rates of a typical host are
limited to 19.2 kHz. Similarly, the data format of the host computer is a fixed
size word which does not necessarily match the bit-slice format requirement of a
systolic array. Further, this bit-slice format is dependent upon the particular
application, in the case of a reconfigurable array, giving rise to additiqnal
complexity in the design of the interface.

NASA’s MPP system uses a “staging memory” to effect data reformatting
5,6]. This staging memory consists of three blocks: | the main stager; the input
sub-stager; and the output sub-stager. ~ The main stager communicates with the
two sub-stagers and these, in turn, interface with th.’e front-end computer and
the array. The staging memory is programmed to manipulate data flowing
through it by the staging memory manager, which receives from the front-end
computer a description of the data and task to be performed.

Most of the mer;ory is in the main stager, which is made up of 32 RAM
banks (in a ful‘ly populated memory) arranged in 64-bit words. During one
C);cle of 1.6 usec, each memory bank can receive and transmit one word for a
transfer rate of 5 Mbytes/sec per bank (160 Mbytes/sec overall) for both the.
mput and output. |

The sub-stagers’ memory is smaller and composed of 128 1-bit RAMs

(since a bit slice for the MPP array is 128 bits), allowing data to be accessed

and rearranged bit by bit. Cycle time for the sub-stagers is 100 nsec, during




which 128 bits can be read and written.  These bits are packed into 4-bit

nibbles to reduce the wire count between the main stager and the sub-stagers.
&

Data is transferred in 4-bit nibbles, 32 nibbles every 100 nsec. Incorporated in

each sub-stager is a permutation network to rearrange the data before being

stored in the memory.

1.3 Objectives of Thesis

This thesis is devoted to investigating the architectural features of a host-
to-array interface. Design problems have been identified and solutions to them
examined, with results of these studies presented in Chapter 2. Some of the
more critical design considerations were found to be collecting data from the
array; matching memory and array bandwidths; and reformatting data. between
host and the array. We will elaborate briefly on these points in the following
paragraphs.

The array generates data in formats based upon its current configuration.
It s the function of the data collection network to convert these different
formats to the data format of the host. Our solution to this problem allows
the array to execute more than one task simultancously while ensuring that any
results generated are collected witho‘ut, any timing conflicts (Section 2.6.4).

Since an array works at clock rates many times greater than the presently
available memory elements, the array data storage and retrieval from this slow
memory presents._a bottleneck. In addition, the memory must service the I;GEdS
of the host in transferring data to and from the array. The solution to this
problem is to time multiplex RAM chips so that the effective memory bandwith
‘satisfies the demands of ‘both the array and host simuitaneously.  Details of this

are presented 1n section 2.7.
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Conversion of input data from the word parallel format of the host
computer to the serial nature of the array must be performed by a circuit that
is configurable to different formats as required by the array. The solution
presented in section 2.3 suggests a two stage data manipulation: first stage
’perforkming a row-to-column permutation (if necessary) and the second stage

implementing a generalized parallel-to-serial conversion.

1.4 Organization of Thesis

Chapter 2 of this thesis summarizes techniques which would be employed
in.the design of a general interface to be used between a host computer and a
bit-sequential Systo]ic array. Several key subsystems of this interface are
examined in great detail and, wherever possible, designs which are optimum in
terms of hard’ware minimization are presented. Pipelining is used extensively in
order to achieve speeds compatible with the array.

A specific implementation of the interface previously described 1s presented
in Chapter 3. It-is used in an ongoing research project, in which the array’s
flexibility demands are not as great as a general bit-sequential systolic array.
This has enabled us to present a simpler but complete design, and to discuss
specifically the control of the interface through  the wuse of a bit-slice
microcontroller.  Strict adherence to optimum subsystems detailed in Chapter 2
is relaxed in the design of some circuits of this interface due to the re.quired‘use

of commercial]y available parts.

Finally, Chapter 4 summarizes the results obtained in this work and points

out areas that need further investigation.




Chapter 2
General Interface Design

'

™

2.1 Introduction

The principal goal of this thesis is to investigate efficient interfacing
between a general purpose word-parallel host computer and a high speed
application-specific bit-sequential systolic array. This chapter presents the design
concepts of a universal interface that is adc;tpt,able to any size host and array.
The design will be such that the circuit is flexible enough to work directly with

various hosts and arrays.

2.2 Basic Design Considerations

The interface circuit between the host computer and the array of PEs
consists of several smaller circuits, or blocks, interconnected to perform the
required data staging functions. Essentially, what the interface needs to
overcome 1s the mismatch in data rates of the array and the host and the fact
that the host computer operates on data in a word-by-word manner and the
array 1n a bit (or bit slice) sequential format.

A block diagram of the interface design is shown in figure 2-1. The Input
and Output FIFOs and Conditioner & Memory blocks are used to bridge the
gap 1n data rates between the host and the array.  The Input and Output
Stagers, together with the Parallel-to-Serial Converter and Switch Network, are
responsible for manipulating data into the proper format of the unit receiving
the data: word-by-word for the host or bit-sequential for the PE array.

There aremﬁ}’i:"‘iiiffx%ifz:'titf“w-ayé for the ’*}n'tgrlface to be tonfigured depending

~on the task to be performed. A particular configuration is dictated by the host

-




HOST

1 T 4{
Output Input Instruction
Decoder Register/
FIFO FIFO l Controller
RESET
4 |
Output Input Switch PE
Conditioner Conditioner — Array -
& Memory & Memory Network
— K
N
Output Input Parallel
5 -to- Permutation -
Stager . Stager | Serial ‘Network |

T Converter _

Figure 2-1: Interface Block Diagram
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computer by means of instructions downloaded to the interface and interpreted
appropriately by the Instruction Register/Controller block shown. Since both
data and instructions will be on the same bus between the host and the
interface, a Decoder circuit is required to decide whether the word on the bus 1s
a data word or an instruction and to route the byte to the corresponding

destination.

The Decoder works by assuming that any byte on the bus is data unless

it 1s the all 0 byté. If it is the all'0 byte; ther ‘the next byte ‘s an ‘instruction - v




unless the next byte is also all 0, in which case the data is all 0. Obviously,
then, the all 0 byte may not be used as an instruction. The Decoder also
responds to a RESET instruction to configure the interface to.a pre-determined
format. This insures that the host computer can always regain control of the

interface. A state diagram of this machine is drawn in figure 2-2.

Pwr Up\ G

Eq Eq

(2] - (=)
Eq

Eq: Byte matches all 0.
P: Panic, byte matches master reset instruction.

"Enable Data FIFO in state A.

Enable Instruction Register in state C.

Enable Master Reset in state R.
)

Figure 2-2: Decoder State Machine
The Decoder and the Instruction Register/Controller will not be disc-uséed
in detail here, but the Instruction Register/Controller could well consist of a
programmable microcontroller. A specific design of such a controller will be
presented in the next chapter. The rest of the subsystems comprising the

interface will now be examined in depth in the following sections.




2.3 Input Stager and RAM

The Input Stager, together with the RAM (within the Conditioner &
Memory block, which will be discussed in section 2.7), allows the input data to
be permuted from row to column form for up to N, rows at a time (where N,
is the maximum number of distinct data lines to the array). That is, the first
word stored in RAM may not be the first word of data sent by the host but,
rather, the first bit of D (D < N,) consecutive words; the second word in
RAM is made up of the second bit of these D words; and so on. Figure 2-3

llustrates this function (showing only the first three words of the host and

RAM) for N,=D=8.

C; Co C5 €4 C3 G € G
1 Words
b7 b6 b5 b4 b3 b:2 b1 b0 from
HOST
a, a, a, a, a, a, a; a
h, g, f, € d, ¢, b, a,
Words
h) g, 1, ¢ d ¢, b a In
RAM
hy 8 Ty ¢ dg < by, a,

Figure 2-3: Row-to-Column Permuting
This configuration (first bits In first word, second bits next word, etc.) is
necessary to execute bit slice oriented tasks in the array of PEs. If no row-to-
column permuting stager existed, the ﬁrs( bits of each word would have to be
-accessed  sequentially. (only ..one.\gr‘n.emOry..\wor\d,,can, ‘be. accessed in .a. given. clock

period). Since the Input Stager, once initially filled, has a throughput of unity,
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it represents a vast increase in speed over scequential access.

Figure 2-4 shows an Input Stager that would be used with an N-bit RAM.
It consists of N% cells (arranged in an N by N square) each with a flip-flop and
a 2:1 multiplexer as shown in figure 2-4. There are N 2:1 “collection
multiplexers” that lead data to the Parallel-to-Serial Converter. Operation of
this circuit is straight-forward: data enters the circuit from the top and
propagates down one row per clock with permuted data being collected from the
bottom row until all the data (up to N, words) has entered the circuit. At
this time, data flow changes direction (by changing the common select line of
each 2:1 multiplexer) and will now enter from the left edge and propagate

horizontally. Permuted data is now collected at the right edge of the circuit.

2.4 Switch Network

Data stored in the Input Memory is transferred to the array through a
generalized Parallel-to-Serial Converter and the Switch Network. These two
subsystems stage the data to the format required by the array. In addition, as
explained in section 2.3, the lnp-ut Stager also participates in the data staging
operation. Of these two blocks, the Switch Network 1s a conceptually simpler
circuit.  Its function is to route bits from any output line of the Parallel-to-
Serial Converter to the appropriate row(s) of the array of PEs.  This 1s
acc'omplished by simply providing R N,:1 multiplexers where R is the number
of rows of the PE ar;é)f (one multiplexer per row) and N, is the number of
output lines from the Parallel-to-Serial Converter of ‘the next section.  This
configuration allows maximum flexibility: any bit can be routed to any row,

including multinle destinations. - -

11
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2.5 Generalized Pnral]cl-to{-Serial Converter

Data that is stored in the Input Memory in parallel fashion must be
converted to some serial format before being presented to the array of PEs.
Given that a word in memory 1s of the form (for N,=8 bit word)

a,8¢a.a,a5a,a a,, there are four possible combinations of serial output that will

6 473727170

be treated. These forms are shown in figure 2-5.

a, ag a; a, a; a, a; a, All bits to one row
ag a, a, a, Bits to
a, a. 3 a two rows

a, 4,
a, a, Bits to
a; a, four rows
a, a,
4,
a,
a,
a, Bits to
a, eight rows
ag
dg
a,

Figure 2-5:  Output Formats
These formats are achieved by reading the Input Memory word-by-word
Into a shift register and shifting the bits out. There are essentially two choices

for implementing this process which will be referred to as:

I.“‘Simple-Shift/Complex,-L.o.ad and

2. Simple-Load/Complex-Shift.

13




These two approaches will now be discussed and compared in terms of their
hardware complexity. The complexity of a boolean expression is equal to the

number of its literals times the size of each. Thus the complexity of an n:l

multiplexer is

(# of terms) *(size of each term)

= n*(logzn + 1).

Thus, since a 4:1 multiplexer’s expression 1is
Output = §,85xy + §;8gX; + 8;85X, + 8,84Xg,

its complexity is 12.

The concept of simple-shift/complex-load is that, when in shift mode, bits
proceed one cell at a time toward their output destinations. That is, if a bit 1s
currently in cell ¢, then it will next be in cell c ;. The loading of the register
is arranged to achieve the desired output staging. Figure 2-6 shows an 8-bit
simple-shift /complex-load shift register. Notice that the output is from different
cells of the shift register depending on the format of the output (number of
bits/clock). For instance, if the output is two bits per clock (even indices on
one line, odd indices on another) then the output is from cells 0 (even indices)
and 4 (odd indices). If the output format is four bits per clock then cells 0, 2,
4, and 6 generate the output.

The complexity of the simple-shift/complex-load form can be ca]culat.ea as

follows (for the example of N=8):

®
6) 4:1 multiplexers: 6*(4*(1og24 + 1)) = 72
1) 2:1 multiplexer: 1*(2*(log22 + 1)) = 4
76

8) D-type Flip Flops

MAKMsimple-load.‘/c{‘or}lp]ex-shift conﬁg'ﬁ;‘éttion (figzure 2-7) is different 1n that

the parallel data is always loaded into the same cell of the shift register: data

14
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bit a. is loaded into cell ¢, However, cell ¢, is not necessarily transferred into
c. , when in the shift mode. For instance, if the output format is two bits per

clock, then c. is transferred to c. To generalize, if the format is [ bits per

"
clock then c. is transferred to c., at the clock edge. This parallel-to-serial

conversion technique will generate the ! output bits in the right-most I cells of

the shift register. The complexity of an 8-bit simple-load/complex-shift

converter 1Is:

4) 4:1 multiplexers: 4*(4*(log24 + 1)) 48
2) 3:1 multiplexers: 2*(3*(10g23 + 1)) =18
1) 2:1 multiplexers: 1*(2*(10322 + 1))

I
1+N

68
8) D-type Flip Flops

Obviously, there is a reduction in complexity with the simple-
load/complex-shift approach and this 1s our method of choice for parallel-to-

serial conversion.
2.6 Accessing Results

2.6.1 Overview

Data results generated by the array are available one column (slice) at a
time. This column is the right-most PE of each row of the array. Just as we
assume that input data to the array will be 2" bits per clock (n>0) we will
allow data output from the array only in groups that are powers of two. In
other words, serial data that is to be grouped together as the same word in
memory must be outputted one bit per clock (one row), two bits per clock (two
rows), four bits per clock (four rows), etc. up to N=2" bits per clock where N
1s the. “word. size” of the array.

Figure 2-8 depicts how results are captured from the array of PEs. Since

16
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the array is of row size M and the word size is N, at most N of the M rows

may be accessed at any one time.

PE \ Permutation Output
M, MUX N, N, N
Array 4 ) 77 Network - Stager O,utpu%
/

Figure 2-8:  Accessing Results
M may be greater than N necessitating an M-to-N multiplexer to select which
rows will be accessed (fewer than N rows may be active but this poses no
problem).

The Permutation Network can re-order the N input lines (r,r, ... ry,) to
all possible permutations at the output. The need for this network will be

v
subsequently explained.

The Output Stager circuit takes as input the N lines of output from the
Permutation Network (which is basically serial in nature) and outputs an N-bit
word at a rate up to one word per clock (when there is agtive data on N
lines). The Output Stager is modular in design, with each module consisting of

a serial-to-parallel converter, N 2:1 multiplexers, and an N-bit latch. All

components of the data access circuit will now be discussed in more depth.

18




2.6.2 Permutation Network

The Permutation Network consists roxf g butterfly networks where ¢ is
calculated from 29> N!. For N=8, N!=40,320 which means that ¢=16 butter.fly
networks would be needed. This can be implemented as four stages of four
networks each. Figure 2-9 shows an example of how the butterfly networks are

implemented by a Permutation Network for N=4 (4!=24, ¢=5).

> >

N

N - ; /f

> > >
2 Control 2 Control 1 Control
Lines~—3 Lines Line

Figure 2-9:  Permutation Network, N=4
 Each butterfly network consists of two 2:1 multiplexers sharing a common select
line (see figure 2-10). Each butterfly network has a unique control line so there

are ¢ control lines to the Permutation Network.

19




Control

MUX y

_—

Figure 2-10:  Butterfly Network

2.6.3 Output Stager

Figure 2-11 shows one of the modules used to construct the Output Stager

circuit. There are N=2" modules making up the Output Stager circuit.

e AP
Parallel MUX N, ﬂLatch ~ N
T / A}
A Converter N, N
/7 7 /
' B._ N
KGR DL e e e » - .

‘#Figure 2-11:  Output Stagér Module
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"The basic operation 1s that data from the Permutation Network, which 1s
primarily serial in nature, is clocked into a module’s shift register. When the
shift register fills up 1t is dumped into that module’s latch. The data byte in
the latch then propagates toward the output by being traﬁsferred to the next
higher (lower index) module with each clock cycle until it reaches the top
(output) module. |

These modules are not strictly identical: the serial-to-parallel (éhif@
register) converters are of different degrees of flexibility depending upon the shift
register’'s position relative to the final output latch. This is done to re(’iuce the
total | hardware complexity without affecting the system’s flexibility or
e‘x«pandability. If desired, all the shift registers can be made identical. Modules
are interconnected as shown in figure 2-12 with D_,, of lower modules connected

t

to B, of the module directly above it. A, hnes to all modules are from the
Permutation Network.

The Output Stager must be capable of handling output data generated by
the array in formats analogous to those at the array input. That is, data
belonging to one task (that which should be stored together) may be generated
from only one row (one bit per clock). from two rows (two bits per clock), etc.
up to 2" rows (2" bits per clock), where 2"=N. In addition, the Output Stager
should be capable éf servicing more than one task being executed concurrently
by the array; providing the total number of bits per clock generated by all the
tasks does not exceed N.

Figure 2-13 shows the Qutput Stager for the case of N=2"=8. When
there 1s one task producing eight bits of output every clock, the top module

(with 8 input lines). is the only module utilized and is dumped into latch, at
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Figure 2-13: Output Stager, N=8

23




every  clock. At the other extreme, if eight separate tasks are running
concurrently and cach is gencrating one bit of oulput per clock then eight
modules are active and are being dumped into their respective latches every
eight cycles.

The question that then arises is: “If the total number of bits per clock
generated does not exceed N, can modules always be assigned suzh that, for any
combination of tasks, all data from those tasks can be collected?” If so, then
maximum efficiency is achieved. Since data in the modules’ latches propagates
upward one module at a time, there is the possibility of “data collision” if a

data word from a lower modulei arrives at modulei at the same time that

+1
shift register. is dumping collected data into latch.. | -
Consider as an example a system with N=8 and two tasks being executed
concurrently, each producing four bits of output per clock. Thus there are 8
bits of output per clock being generated by the two tasks and, since this does
not exceed the word size (N=8, in this example), all da£a should be collectible.
Since each task produces four bits per clock, each task will fill an 8-bit shift
register every other clock. Therefore, each shift register will have to be dumped
into its latch every other clock. Clearly, then, data from these two tasks
should not be routed to modules that are separated by one module (module,
and module, for example). If they are, then when the data originally collected
in module, propagates to module, (2 clock cycles), the shift register of module,
will be dumping data to its latch and data collision will result. . This situation

is remedied if adjacent modules (e.g., module, and module,) are scheduled.

Actually, data collision in this example will result any time the two tasks’

o

outputs are scheduled for modules whose distance (difference in modules’ indices)
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is a multiple of two and no collision will result otherwise.

Obviously, to achieve maximum efficiency (the ability to collect N bits of
output per clock), proper assignment of tasks to modules must be employed.
Foliowing is an algorithm for scheduling such that, for any combination of
concurrent tasks generating no more than N bits of total output per clock, an

assignment of tasks to modules results such that all bits can be collected

without data collision.

2.6.‘4 Task Scheduling

Define the weight of a task, w, to be the number of bits per clock
generated by that task. We will allow w to take on only values that are
powers of 2 (1, 2, 4, 8, etc.). The following algorithm i1s a means of scheduling
tasks to the Output Stager modules in such a way that data collision, as

previously described, will not occur.

Task Output Scheduling Algorithm

1. Choose S, the set of available indices, to be {0, 1, 2,... N-1}.

2 Let s be the minimum element of S and w the maximum element of

W,
3. Assign task of weight w to module s.
4. Delete w from W and all elements j from S where j=s+ k(N/w).

5. If set W is not empty then return to step 2. Else the required
output scheduling is complete.

Before presenting the proof of collision avoidance, the algorithm will first
be illustrated with the following example. Consider a case where N=8 and the

~ tasks to be scheduled are: task
>y o R N A I IENE B s TR DR

ks producing i:qgr bits per cl'qcl'(‘;_qtgskz, producilr}g.) (

two bits per clock; task, and task,, each producing one bit per clock.

25 ¥




Therefore, W-{4, 2, 1, 1} and S {0, 1, 2, 3, 4, 5. 6, 7}. Tasks are then

assigned to modules as follows:

1. The largest w is 4 and the smallest available index is 0. Hence
assign task, to module,.  Eliminate indices 0, 2, 4, and 6 yielding

W={2, 1, 1} and S={1, 3, 5, 7}.

2. Schedule task, to module, and eliminate indices 1 and 5. Now

W={1, 1} and S={3, 7}.

3. Schedule ta.s](3 to module3 and eliminate 1ndex 3. This leaves

W={1} and S={7}.
4. Schedule task, to module,. This concludes the task scheduling.
Thus, the modules used for collecting data in this example are:  module,
module , module,, and module,. The remaining modules serve only as links for
data word propagation. The reader can convince himself that there are no data

collisions with this scheduling.

We now prove that the algorithm described above yields a task assignment

with no collisions.

Theorem 1: The Task Output Scheduling Algorithm described
earlier gives a schedule to avoid collisions between outputs of tasks.

Proof: Let module, and modulej be two arbitrary modules. Assume (without
loss of generality) that i< j; Data words are collected 1n modulej at times !
which are multiples of /N/w].). These words then propagate through the lower

order modules and arrive at module, at times t given by
t = (3-1) mod (N/w). |
However, module, collects its own data at times t’ such that
(N/w) |t
‘In order to avoid conflicts between the collected data ,.im;ﬁ_.fn.od(l_)lei, and...the

propagating data from module,, one must satisfy the inequality
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(,\'/’u-i)-k 4 (J 1) mod {,'\'/ﬁ?wj) for any k

Since 7 < j,w |w, or (N/w)!(N/w). Thus, to avoid collision, one should have
FRI t "

(N/w;)+(1-1)
or y # t mod (N/w).

However, according to the scheduling algorithm, 7 is picked from the set of
indices which has had indices of the type ¢ mod (N/w) already removed.

Hence, j # « mod (N/w,) and collision between data from module, and modulej

1s avoided. Q.E.D.

The proof of Theorem 1 indicates that there would be a'collision between

data outputs of module, and modulej if, and only if,
(N /max{uw, )| (7).
This 1s avoided by proper association of the modules with data weights in the

task assignment algorithm. The next obvious question is “Can all tasks’ output
-

rd

be collected using the scheduling algorithm described?” The following theorem

answers that question.

Theorem 2: (Algorithm Coverage) The task scheduling
algorithm presented earlier can schedule every available task provided

that (Zwﬁ W u)) < N.

Proof: The required result is proved by induction over the cardinality of set
W. We show that S is non-empty as long as W is non-empty and, therefore, at
any stage one can always associate the smallest s € S to the largest w € W. In

particular, we show that (3., w) £ |S| at any stage of the algorithm. This

1s true at the starting stage by assumption of the theorem. Suppose i1t is true
at a particular stage and let Q be the largest element in W at the time.
According to the algorithin, assign to 2 the smallest index s available in S
(step . #3. of the algorithm). This then removes from S all integers.. of the form

{s + k-(N/Q)} (step #4). But there can be only Q such distinct integers (for k
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0, 1, ... Q-1) since cach of them must be less than N Thus |5 decreases at
most by (1.

However, since 2 is now dropped from W, > " . w decreases by @ at the

next stage. Note that the assignment I to s is compatible with any future

assignment of any remaining j€ S to a remaining Q€W because non-

compatibility (i.e. collision) between module  of weight (1 and modulej of weight

1’ would imply that

(-9 | (N/max{0.07)
But, max{Q,2°} is © and this would mean j = s mod (N/Q). Since j belongs
to a set of indices obtained by dropping all indices congruent to s mod (N/Q),
the non-compatibility is avoided. Q.E.D.

We next consider the problem of minimizing the complexity of each
module. In particular, we attempt to design modules with the minimum
number of data input lines which will still support all possible task weight sets
W. A non-minimal solution is to connect each output line from the Permutation
Network to each module. This is undesirable since, as we will show .laLer, the
complexity of a module is dependent upon the number of its input lines. For
clarity, the solution to the problem will first be stated, followed by a proof of
its minimality.

The Output Stager consists of N=2" modules labcled with indices 0
through N-1. FEach of the modules accepts a certain number of output lines
from the Permutation Network. Let M. denote the set of indices of the lines

Q

entering module,.  These sets are chosen in the very specific manner indicated

L4

below for reasons that will become clear later.
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Data Collection Network: Lach M. starts with the bit-reversed 1 and
uses consecutive 1\"/2'1"“2("'“” integers.

Thus, the first set, M, has N elements, the second set N/2 elements, the
third and fourth sets N/4 elements, and so on until the final N/2 sets with one

element each. For example, if N=8 then

First no. of

Index - Elem elems.

MO:{O,1,2,3,4,5,6,7} 000 000 8
M,={4,5,6,7} 001 100 4
M2:{2,3} 010 010 2
M3:{6,7} 011 110 2
M,={1) 100 001 I
M, ={5) 101 101 1
M.={3} 110 011 1
M,={7} 111 111 1

We now prove that the Data Collection Network presented here 1s

sufficient and minimal.
/
Theorem 3: (Sufficiency of Data Collection Network) The
Data Collection Network presented earlier is sufficient to collect data
from any set W of tasks (of weights w) provided (ZwEW w) < N.

Proof: In order to show the sufficiency of the data collection network we first
prove that for any arbitrary weight distribution set, W, every module can be
configured to collect data on distinct output lines from the Permutation
Network (i.e., the proposed network does indeed provide distinct lines to distinct
modules). If this is true, sufficiency follows because for any W with
(2, eww) = N, all tasks toéether generate /N output bits in one clock (if‘
(2, ewt) < N'thein add pseudo operations of weight w to satisfy this re]atibn).
If each module picks up w distinct bits per clock then the network 1s sufficient
~ for all the- modules together to gather all the N distinct bits per clock. This

implies sufficiency of the network.
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Thus, to prove sufficiency:
Let N=2". Consider two arbitrary modules i and j of the Output Stager

such that, expressed as binary strings,

i = [00... Oa_ .a ,.. aa,|
\__\’_/Q i )

~

n-p p

and
] = [OO... Ob -1b g blbo].
g_\’___/ t 'q —~~——
n-qg q

It 1s now shown that if the Data Collection Network specified earlier is used

then modu]ei and modu]ej collect distinct bits.  Define a and B to be bit-

reversed 1 and j, respectively, 1.e.

r=aga;..a ,a ), a=r-2""" (2.1)

_ __.on—gq

s_bObl"'bq-2bq-l’ B=s-2 (2.2)
We now compute the elements of set M.  Clearly it starts with r.2"77,

(bit-reversed i) and has N/2°92(i*1) = 9n /9P = 9"=P elements. Hence,

M. = {r2"P+k |O0<k < 2P }.
| 1 1

¥

Similarly,

My = {s2"794+ k|0 <k <2777 L

Assume (without loss of gencrality) that j>i:. Then [M | > IM].I. The
same data element picked up by module, and modulej implies that an element

n Mi 1s the same as an element in Mj. That 1s

r2"°P 4 k. = §:2"79 + Ic]. for some ki and kj

I AN RS ¢

dat

Let g=p +t. Then the same equation can be rewritten as
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52" 9. 2" P vk where ko k& ko,
or g = r29 P 4 k/2" 7

cor2tge .
In this last expression,

¢ = k/2"9 < 2,

since k = k. — k. < k < (2" P=2Y
! b !

Thus the last ¢ bit positions in the binary expansion of s would be

determined by ¢ and the remaining n-t by r. The n-bit string for s would then

take the form: 'f\\\
-
r 2! posn.
4 N — ™ L
s = [aga.. A, a 1€ ¢y €€

a
)
2" posn.

Comparing this string of s with the string in equation (2.2), one gets that, for

a= b..... a_ .=b and ¢ .=b c”:b

collision, a =b 1P 17 P

0 "0 4 1" p+1°°

Cl:bq-Q’ cozbq_l.

Thus the binary string 7 may be expressed as

J = [00... Ocyep.. ¢ e b b b,

Comparing this with the string for 1

i = [00... Ob_ b b, b,

5
one gets

(5= 1) = (eqeqmc, _oc, )20

However, note that since 7 <, ’u:t. >w. and
- N/max{w,w} = 2" /2" 7P = 2P,

Thus, a collision implies:
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(N/max{wz.,u,-j}) | (5--1), . \
or (N/w) | (5-1),

or 7= v mod (N/w).

However, according to the task scheduling algorithm presented earlier, j 1is
chosen from a set of indices which have already had elements removed that are
congruent to :mod (N/w.) .  This éontradiction shows that elements selected
from module. and modulej are distinct, completing the proof of tHe sufficiency of
the Data Collection Network. Q.E.D.

We will now discuss the measure of complexity alluded to in Theorem 3
which is related to the number of input lines to an Output Stager module. We
stated earlier that module complexity increases as the number of its input data
lines increases.  The variable in the module complexity 1is all within the
module’s serial-to-parallel converter, since the multiplexer and latch size are
determined by N, and is fixed and constant for all modules.

By way of example, we will show that module complexity increases as the
number of input lines, [, increases. Figure 2-14 shows the data collection circuit
(serial-to-parallel converter) for word size N=8 and number of input lines [=8.
For this module, data collection can be one, two, four, or eight bits per clock.
Therefore, every cell must be connected to some L (to collect eight bits per
clock); the four right-most cells to a cell a distance of four to its left (to collect
four bits per cldck); the six right-most cells to a cell a distance of two to the
left (to collect two bits per clock); and the right-most seven cells to the cell to
its immediate left (to collect one bit per clock). Thus, for N=8, [=8 one has

S §

~ the -foHowing:
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4) 4:1 multiplexer 4 [ 4 (10324 + 1) ] = 48
2) 3:1 multiplexer 2 [ 3 (10823 + 1) ] = 16
1) 2:1 multiplexer 1 [ 2 (10322 + 1) ] = 4

68

for a total complexity of 68 (as defined for a multiplexer in section 2.5).
If the number of lines is reduced to four, then the lines in bold italics in figure
2-14 are not necessary because one never collects eight bits per clock and the
complexity is reduced to 51 as the right-most four multiplexers are reduced from
4:1 to 3:1 multiplexers. Similar reductions occur as more lines are eliminated.

Since we have demonstrated the desire to keep the number of input lines
to a module to a minimum, we will show that the Output Stager circuit

presented i1s indeed minimal. Notice that the Output Stager circuit consists of

modules of the following type:

N-input module

N/2-input module

N/4-input modules

N /8-input modules
®

oh DY et e

N/2  1-input modules

for a total of N modules altogeLher. Clearly, at least one N-input module is
necessary 1f a there 1s a task which produces N bits of output per clock. If
there are two N/2-bit output tasks (total N bits per clock) then there must be
at least two modules of size N/2 or greater. We use the one N-bit module and
one N/2-bit module. In general, 1f there are v concurrent tasks producing N/v
bits per clock then there must be at least v modules with [ > N/v. For all
caseé, the Output Stager circuit has ezactly v modules meeting the nﬂ'ecessary
- requirements (the minimum ‘jumber . necessary),. giving rise. to the following

theorem.
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Theorem 4: (Minimality of Data Collection Network) The
Data Collection Network. consisting of N Output Stager modules, is the
minimal network capable of collecting data from any set W of tasks (of
weight w) with (SwEW w) < N.

The need for a Permutation Network to re-order lines in any sequence
should now be clear. This flexibility is necessary to route the various tasks to
the appropriate .Output Stager module for data collection.  This allows a
minimal Output Stager circuit at the expense of having a Permutation Network,
resulting in an overall savings in hardware.

Finally we consider the control of the Output Stager modules. Note that
the Permutation Network requires a separate control line for each butterfly
multiplexer or [log,(\')'.  On the other hand, the Output Stager requires N/2
distinet control lines for its N 2-word:1-word multiplexers (one in each module).
This 1s because modu]ei and modu]eHN/2 (0 <i<N/2) will share the same
control line. What this means is that both modules are ei;ther propagating a
word from the next lower module or loading a collected word form 1its own
serial-to-parallel converter.  Using a single control line for two modules 1s
permitted as long as no data collision occurs In moduleHN/2 as a result.

Because of the Task Output Scheduling Algorithm there are three cases that

must be considered:

1. neither module is collecting data from the. array;

2. module, is used for data collection but moduleHN/z 1sn’t;
3. module. and module. . ,, are both used for collecting data.
i 1+ N /2
Obviously there is no data collision in the first case since neither module

is collecting data (the control line always selects data propagation).

In case 2, if modulei is assigned a task of weight w=1 then moduleHN/2
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would not be eliminated from consideration for task scheduling and, if 1t s
unused. then all modules with a higher index must also be unused because' the
Task Output Scheduling Algorithm schedules tasks to the lowest indexed module
available. If no modules with index greater than i+N/2 are used there can be
no data collision In moduleHv_N/z.

If module, has been assigned a task with weight w > 1 then modulei+N/2
is not used for data collection but it will still be loading data from its serial-to-
parallel converter whenever module, is, since the modules use a common control

line. If this loading in module. occurs when a word 1s attempting to

+N/2

r o]

propagate 1into moduleHN/q then data collision exists. However, by the way
tasks are assigned to modules, no valid data word can be propagating into

moduleHN/ at time t (when module, and modu]eHN/2 are being loaded) because

2

this word would then arrive at module, at time t+N/2 when it would be
loading again.  Since the Task Output Scheduling Algorithm precludes this

collision. there could have been no valid data propagating into modu]eH_N/2 at

time t.

For case 3 to exist both module, and mOdU]Ci+N/2 must each be collecting

data from tasks of weight w=1 since, if module, was collecting a task of weight

w > 1 then moduchN/q would not be assigned a task according to the Task

/
r )

Output Scheduling Algorithm. Therefore, both modules load from their

respective serial-to-parallel converters once every N clocks and there is no data

collision.

Notice that, because of the Task Output Scheduling Algorithm, there exists

no case 4 with module, unused and moduleHN/2 collecting data since tasks are

VR e ey oo s IR, SIS

_alWays assigned to lower indexed modules first ancﬁ if module. had to be
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climinated from scheduling consideration because of data collision with a lower

indexed module, then moduleiﬂ\,/2 necessarily had to be eliminated, too.

/

Remember that, to prevent data collision, modules a distance of N/w (or a
multiple thereof) from an assigned module cannot be assigned a task. Thus if
module, is a distance of k(N/w) away from an assigned, module then

module. is a distance of (k + w/2)N/w (a multiple of N/w) away, too.

i+N/2

Figure 2-15 shows an activity table for N=8 and five tasks of weight

S
L
b
S
[l
S
1
S
|

=W, w,=w,=1. bThese tasks are assigned (by the Task Output
Scheduling Algorithm) respectively to module,, module, module,, module, and
module.. This is an example in which module, and module, illustrate case I;
module, and module,, case 2; and module, and module, case 3. In the fhgure,
the presence of an L in a row means that data from the serial-to-parallel
converter is entering the module and a P means that data word is propagating.

Remember that when module, is being loaded, so is module; , (N/2 = 4, in this

example).

2.7 Mecmory Utilization

Overall interface efficiency can be further enhanced by selecting RAM
memory size to be large enough to service incoming and outgoing data demands
simultancously. Consider, for example, the Input Conditioner & Memory block
shown in figure 2-1 containing a bank of RAM chips which ba’sli%élly are written
to by the host computer and read from by the array of PEs. It is true that
the Input FIFO and Input Stager are between the host and the RAM, but

these units operate at the same data rate as the host, so it is effectively the

“ ~host* that wtites' to the RAM ‘bank-{a§ “ar ‘as data transfer rates are concerned,’

which is what interests us now). Similarly, the Parallel-to-Serial Converter 1s

g
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Time |
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module, Lo | Py Lo | P, | L, | P,| L, | P, | L
module, L, P, P ' P, L,
module, | P, % P i P,
module, L, P, P, L,
module, L, | P L, | P oL, L, L,
module L, P, | L,
module, P.
module. L. | L,

L: module being loaded from its serial-to-parallel converter
P: propagating word
Figure 2-15:  Data Collection/Propagation

clocked with the same signal as the PE array (the Switch Network is purely
combinatorial logic and, therefore, doesn’t affect data transfer rates) so it is the
PE array that governs the data transfer rate out of the RAM bank. Similar
arguments hold for the Output Conditioner & Memory and data transfer rates
so that the interface block diagram can be re-drawn, as far as the memories are
concerned, as shown in figure 2-16.

Let’s focus our attention on the Input Conditioner & Memory and then
relate our results to the Output Conditioner & Memory. For the Input, it is
likely that data will be read from the memory to the PE array at a much

higher rate than will be written to the RAM by the host. Nonetheless, while

< ey ¢ PR g, M aX 2 7‘( \l L ote PO \,' e RS s NLr g % . T ; vty - « - PO ]
the ‘array is extracting data from™ fhe memory to execute tihe current task. it
b

makes sense to allow data to be written to the memory from the host as well.
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Figure 2-16: Interface Memory Block Di‘agram
This “simultaneous” read/write capability becomes even more advantageous as
the data transfer demands of the host approach those of the array: the
memory will be filling at a rate comparable to the rate it is emptying and
there will be no “wait” time.

To effect this dual capability, the RAM bank must be of sufficient size
(word size, width) to service the array with data as fast as the array needs 1t
and still have idle time (as far as the array is concerned) to service the host’s
demands to write data to the memory. The following equation determines the

number of RAM chips necessary to implement this dual capacity:

)

sR:[(TR/NR)-(NH/THnLNA/TAH (2.

where

sp 1s the number of RAM chips
T, is the access time of the RAM chips

R
N, is the word size of each RAM chip

R

TH 1s the time between words from the host

is the word size of the host (bus)

- \ 2 NG b LR Y: o CRIS ¢ Wik .
AT SRR ¢ oo 1Ry € NI S A T I LTS R VO AT . & el AL =« R

is the period of "the “array clock
N, is the “word size” of the array (the maximum number

of lines requesting distinct bits).
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This equation is simply stating that the number of RAM chips (sp) times the
data rate each chip is capable of must equal or exceed the data rate demands
of the host and array combined. We now know how many RAM chips are
needed to meet the demands of the system. What needs to be examined is how
the reading and writing is to be scheduled, since the writing is done by “cycle
stealing” from the reading and since Ny, N,, and Np may not all be equal.

Figure 2-17 shows a block diagram of the scheme developed for this.

\Nm

Host

> Register,

¥

Register,

L

RAM Chips Word size, wp=s,-Np

w
4 H
,{ Register,
N
Register, 7— Array

Figure 2-17:  Memory Architecture
Notice 1n hgure 2;17 that for both the read and write there is two-level
buffering. This is done to match word sizes between the host and the RAMs
and between the RAMs and the array. Sizes of the four registers are chosen 1n
a specific manner. Since Register, and Register, communicate with the RAM,
.each 1s a multiple of the ,RA(M word size '(@}Z“V(FUR"'—“{R-’NR)' ?hough"net.ﬂnu(ic_we.ssgr”i'l).: |

NS A

the same size. Define s, and sy as follows:

A

40




Register,! s

HYnR

and

'Register =5 ,-w, |

The question, then, is how s, and s, should be chosen. The answer comes

from the fact that the registers are used to match word sizes. Consider the
pair Register, and Register,. We know that Register, is written to the RAM
banks w, bits at a time. Therefore, both Register, and Register, should be a
length that 1s a multiple of w,. We also know that Register, is filled N, bits

at a time (size of one host word). Therefore, the length of the registers should

be a multiple of N, too:

] .
AH|wR b2
or

5= Ny /gcd(Npy,wp). (2.4)
Applying similar arguments for the array and its word size to Register, and

Register, yields
.sA-:NA/ng(NA,wR). (2.5)

The registers™ functions are conceptually straightforward. Register is filled at a

rate of N, bits (the host’s word size) every T, seconds until it is filled

(s;wp/Ny host words).  All of Register is then dumped to Register,.
Register, is then written to the RAM banks in sy bytes of size wp, each.
4

Analogously, RAM chips are read into Register, in w, bytes until Register, is

full (s, bytes). Register, is then dumped into Register, which clocks s ,-w,/N,

/

bytes of size N, each to the array of PEs.
Because the number of RAM chips was selected in such a manner that the
- RAMs’ data handling. capability meets or.exceeds the combined. demands of the

host and the array, we know that the data transfer scheme just described is
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capable of servicing the host and éxrra_y “simultaneously”™.  That is, whenever the
host wishes to send a data byte, there must be room for it in Register, and,
whenever the array requests a data byte, one must be available in Register,.
The next section describes a method that rhight be used by a memory controller

to effect this read/write scheduling for the memory.

2.7.1 Memory Control

Certain éspects of register loading are known exactly. Register, must be
loaded with the contents of Register, every (s, wp/N,)-T, seconds. This 1s how
long 1t takes the host to fill Register . If Register2 1sn’t loaded when Register
fills. there will be no room in Register, when the next data word arrives from
the host, resulting in a loss of data. Similarly, Register, must be filled at least
every (s, wp/N,)T, seconds, since this i1s how frequently the array empties
Register,.  Failure to meet this demand results in the arrray trying to read
data that isn’t present.

Read /write control operatio.n can now be discussed. Arbitrarily give the
array higher priority than the host as the default condition. That 1s, memory
will normally be accessed by the array to write to Register, (until it is filled)
unless the host demands access to the memory. This demand is the result of a
situation presented earlier:  Register, is filled (or will be filled before Register,
is emptied into the memory) and needs to be dumped into Register, to make
room for the next word of data from the host. Under these circumstances, the
host will have access to write to the array (remember that all these arguments
are presented for data input to the array but are analgous for the output as
‘wg‘ll‘). Because the memory was _;lzo;sen sufficiently large to meet or exceed all

S

data 1/O demands, this method of read/write control will work with no access
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conflicts.  Figure 2-18 shows an activity table employing the technique just

discussed for the following parameters:

N, 12 T, = 5T

N, = 10 T, = 2T

A A
Np = 8 T, = 3T
which yields:
Sp = 3 from equation (2.3)
sy = | from equation (2.4)
S, — O from equation (2.5)

2.7.2 Optimization of Memory Size

We have seen in equation (2.3) an expression for the iminimum number of
RAMs necessary to service both the host and the array simultaneously. Upon
investigation, it was discovered that this number is not necessarily optimal.
Since our goal 1s an efficient interface, hardware reduction is a prime concern.

Define complexity here as simply:

C=w -(5A+s

RlEaTsy)

Calculating complexity for different s S, while the other parameters (NH’ N,,
N, Ty, T,, and TR) are held constant, demonstrated that the optimal number
of RAMs 1s often not the minimum number. Results for two such cases are
listed in figure 2-19, where each table begins with the minimum sp calculated
from equation (2.3). Note that if w, = LCM(N,N,), then s, = s, = 1 and

all registers have the same width as the memory. In most cases, this_wy also

ylelds minimum complexity.
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0 N, N, = 1
2 Ty, - T, =5
SR YR SA SH C
31 31 10 8 558
32 32 5 1 192
33 33 10 8 594
34 34 5 4 306
35 39 2 8 348
36 36 5 2 252
37 37 10 8 666
38 38 S 4 342
39 39 10 8 702
40 40) 1 1 80
41 4] 10 8 738
42 42 d 4 378
43 43 10 8 774
10 N, = N, = 8
2 T, = T, = 5
SR YR SA SH C
4 32 5) 1 192
5 40 1 1 80
§) 48 5) 1 288
7 56 5) 1 336
8 04 5) 1 384
9 12 5) ] 432
10 &0 1 | 160
11 88 5 1 528
12 96 O 1 576
13 104 5) 1 024
14 112 5 1 672
15 120 ] 1 740
16 128 o 1 768
. Figure 2-19:

Complexity vs. Memory Size
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Chapter 3
A Specific Interface Design

3.1 Introduction

This chapter ié devoted to the design of an interface circuit to be used in
an ongoing research program sponsored by Accusort Inc. This design can be
thought of as a specific example of the more general (and complex) interface
described in the previous chapter. In this particular design, blocks of the
general Interface designated as the Input and Output Conditioner & Memory,
the Input Stager, and the Permutation Network are not employed. The other
blocks comprising the general interface have been incorporated in this design but
are less complex than their counterparts of the general interface circuit
previously described.

In the project under discussion, the task at hand is to provide an interface
so that character strings resident in the host computer’s memory can be trans-
ferred to a string matching module circuit. The host computer 1s based on an
Intel 8085 microprocessor and the matching module is a bit-serial VLSI custorm
design [8].

The ultimate goal of the system is to be able to reconstruct bar code
labels read by a linear laser scan from packages moving on a conveyor belt. In
cases where the laser sweeps through the entire label in one scan, the
reconstruction is trivial.  However, when no single scan sweeps through the
entire label, but only part of it, the label must be reconstructed from the

fragments obtained from each scan. Figure 3-1a depicts a situation where a

N S 4 N T ¢ LT : 07t I

scan will sweep through an entire label. Figure 3-1b illustrates a situation
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A
AN
Laser > S5 Laser
Scan Scan
A A
Package | Package
moving moving
(a) Laser scans (b) Laser scans only
entire label. part of label.

Figure 3-1:  Laser Scan
where no one scan will cut through the entire label. ~ There will be several
scans of the label as it moves through the sweep field of the laser providing
label fragments with overlap. This overlap 1s ca“used by two consecutive scans
cutting through some common area of the label.

The matching module is utilized in the reconstruction of the label by
matching fragments’ overlap.  Conceptually, the module will compare a new
string (called the A-string) to an existing string (called the X-string) and
attempt to concatenate the A-string to the X-string. The strings are three-
valued- 0, 1, W- where 0 and 1 are conventional Boo]eém logic values and W
(wild card) can be thought of as a don’t care. That Is, when checking for a
match with W the result is always true, whether comparing 0 and W, 1 and

W, or W and W.
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3.2 Description of Problem

The basic interfacing problem is twofold:

1. that data is available from the host computer in 8-bit words while
the matching module needs to be loaded in serial form and

9. the matching module is capable of operating speeds far in excess of
the host’s ability to make data available.

For these reasons, a FIFO to hold an entire string of characters (maximum of
48 in the Accusort project) and parallel-to-serial shift registers are employed.
The manner in which this alleviates the timing problem is simple: the host
simply fills the FIFO with all the data as fast as it can and then instructs the
module that the necessary data is now resident in the FIFO. The problem of
parallel to serial conversion to load the strings into the matching module 1s
more complicated.

There are two basic loading modes for the matching module: X-string load
and A-string load. An X-string load is done when an entirely new label
reconstruction process is to commence (there is no current string to be
concatenated) and the initial string (X-string) is to be loaded into the matching
module. In the case of an A-string load, a partially reconstructed X-string 1s
already resident in the module and this new A-string is to be concatenated to
it. Because of the design of the matching module, an X-string load 1is
performed by serially loading one character per clock cycle while an A-string
load requires that two characters be loaded per clock cycle. Obviously,
implementing an X-string load is the easier of the two tasks.

Each of the strings consists of I’s and O’ representing wide and narrow
‘bars - anid spaces encountered by the laser scans. = Difficulty .arises based on the

orientation of the label relative to the laser scan. Ideally, one would like the
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scan to always begin at one end of the label and proceed toward the other end

-~

(see figure 3-2).

AN
Scan Bits read
st
1 b0 b1 b2 :
nd
2 b4 ~b5 b6 :
rd
Laser R 5 3 b7 b8 b9
Scan

Package
moving

Figure 3-2: Good Scan
However, if the label is angled wrong, the bits will be read in reverse order as
shown 1n ﬁ'gure 3-3.  The host computer readily recognizes when a label has
been read in the reverse order and will output the data words to the FIFO 1n
proper order. However, it would take the host a prohibitively long time to
properly reorder the bits within each byte. Instead, the host signals the
terface hardware that this situation exists through a control signal “Flip” and

the bit juggling 1s done by the interface.

3.3 Problem Solution

There are four cases of string loading which need to be addressed:

1. Normal X-string load;
2. Flip X-string load;
3. ‘Norinal A-string load;

. 4. Flip A-string load.
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Scan Bits read

| 1 b, bl’bO :
d
/\ 2" b, by b,
. rd
Laser N > 3 b10 b9 b8
Scan /
A
Package
moving

Figure 3-3: Inside-out Scan
Case 1 is the most straightforward to implement and easiest to understand. It
will therefore be discussed first.
For a normal X-string load, the data 1s resident in the FIFO as depicted

in figure 3-4 when the loading is to begin.

\/\

FIFO: X-stringg .

X-string, -

X count

~Figure 3-4: ~Data Configuration . .. & « .. c L ace v o e xs

\

The first word in the FIFO is X count, an 8-bit word whose magnitude 1s the
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number of non-wild-card characters in the X-string. The remaining words in

the FIFO are the non-wild-card characters (0 or 1) themselves arranged as in

figure 3-5.

Xl X e X 1 X 1 X ol X ol X[ X,

8n+7 8n+6 8n+5 8n+4 8n+3 8n+2 8n+1

n=2012 3 4,5

Figure 3-5: Organization of a string in FIFO
Since the X-string 1s three-valued, there are two X-string input lines to the
matching module: X and W . When W =0 the binary value on the X line is
the character of the X-string at that time. When W =1 the character of the
X-string 1s a wild card at that time, regardless of the value of X. The three-
valued A-string is similarly implemented.

To load a normal X-string resident in the FIFO into the matching
module, the X count 1s first loaded into a count-down counter (X counter)
and then the first word of the X-string is loaded into a shift-right register.
Also, a count-down counter is loaded with 48, the expected reconstructed string
length 1n the Accusort project.  This counter will be referred to as the
48 counter. The shift register, X counter, and the 48 counter are now all
enabled. Additionally, at every eighth clock pulse, the shift register is loaded
with the next 8 string bits from the FIFO by a control signal from the
microcontroller. W _1s 0 as long as the X_countér is non-zero (indicating there
are “still- "ﬁon:wi-ld-'~card“"tha-ratters). “When the X counter reaches "0 it stops

counting and W_=1, indicating that the remaining string characters are wild-
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cards. When the 48 counter reaches 0 all 48 characters have been loaded Into
‘. |
the matching module and the load instruction has been executed.

In the case of a Flip X-string load, complications are introduced: the
characters in the X-string word are in reverse order and, if the number of non-
wild-card characters isn’t a multiple of 8, there is some initial set-up of the
data to be performed. As an example,” let the number of non-wild-card

characters be 11 (X count=11). The string words in the FIFO would be

arranged as shown in figure 3-6.

FIFO
b, b, b, b b, b, by by, 274 word
X-string
e s- e = = b, b, b, 1°* word .
X-string

X count

Figure 3-6: FIFO word organization- Flip
Clearly, for the second and succeeding words of the X-string, all that needs to
be done is to use a multiplexer to route ‘the right-most bit of the FIFO into
the left-most bit of the shift register, etc. (see figure 3-7). However, for the
first word of the X-string, the shift register contents will have five (in ‘this
example). ~initial junk bits (see figure 3-8) after going through the multiplexer.

Therefore, for the first word of the X-string in the case of a Flip X-string load,

the shift register must be clocked N times (where IG(:[8—(X_count MOD 8)])
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FIFO Output

vﬁ ) 4

10 10 10 10 10 10 10 10 /
MUX Se/ Flip

MUX, | MUX,

Shift Register >

Figure 3-7: Flip MUX

b, {b, | b {-—-{--]-—-1]--]--- Shift Register

Figure 3-8:  Shift Register
unless X count is a multiple of 8 in which case no initial shifts are done.
This scheme of initial shifts is implemented through control signals from the
microcontroller which looks at the X count to determine how many initial
shifts ’need to be performed by the shift register. During these initial shifts, the
X counter and 48 counter are disabled. After the initial shifting, the down-
counters afé enabled and ]‘oading proceeds as a normal X-string loé‘dﬁ with the

microcontroller signalling when the shift register is to be loaded from the FIFO

I
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(still every 8 clocks, but with an offset due to the initial shifts).

When executing an A-string load, which must load two characters per
clock cycle, the problem is further complicated. As before, the normal A-string
load will be discussed first since it is more straightforward than the Flip A-
string load. When performing an A-string load, the FIFO contains data in the
same format as for an X-string load: the first word in the FIFO is A _count
and the remaining words are the A-string characters. Since the A-string is
loaded two characters per clock cycle and there are two lines per character

there are four A-string inputs to the matching module: A and W_ each for

upper cells and lower cells.

Odd
Shift Reg Upper \l\
0
W
" W —+A 1 Upper
A
MUX, e Cells
A
W
MUX,
Lower
Cells
A 1\[
._.T“ B A
Shift Reg Lower _ —10 ,
Delay /Cross

~ Figure 3-9:  A-String Load

Figure 3-9 depicts in block diagram form how the A-string load 1is
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implemepted.  The upper cells of the matching module are to receive characters

a and the lower cells a,, a,, a.... In that order. Again, as with an

3y, 8y Ay P

07

X-string load, the normal (not Flip) A-string load will be discussed first

because it is conceptually clearer.

To simplify discussion, an example with A-string length of 13 will be used
to explain how an A-string load is executed. For a normal A-string load the

contents of the shift register will be as shown in figure 3-10.

- | a5 | a0] ag SR U ac| a,| a,| a,
—| - la,,| & SR L a,|a;|a;|a,
(b) 2™ word (a) 1°' word

Figure 3-10: SR Configuration

For an A-string load the total length counter is loaded with 24 (was 48 for an

X-string load) and the A counter with M (where M=|A count DIV 2|). This

1s because two characters per clock cycle are loaded into the matching module.
Since this is a ‘normal (not Flip) A-string load, the microcontroller sets
Delay /Cross- the select line of a multiplexer-. to 0 (this MUX will be fufther
explained later). Figure 3-10a shows the first word of the A-,stxingui'n...the...shift

registers.  Everything is now ready for execution and the shift registers,
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O X 0

. reaches 0.

24 counter, and A _counter are enabled. The microcontroller signals the FIFO
to load the shift registers with a new word every fourth clock pulse, since two
bits are shifted each clock cycle. In the example, after the sixth clock cycle,

the shift registers look like figure 3-11 and the A counter is 0 (13 DIV 2 =

6).

12

Figure 3-11: SR After 6 Clocks
Notice that on the next clock cycle, the lower cells should be loaded with a
wild-card character while the upper cells should clock in a,. The wild-card
MUX select line should be high (Odd=1) to accomplish the necessary one clock
delay for W _ to the upper cells (refer to figure 3-9). This delay in wild card
generation 1s necessary any time the number of non-wild-card characters in the
A-string is odd. The microcontroller tests the LSB of A count (first word in
the FIFO before load éxecution) and if 1t 1s 1, sets Odd to 1 and consequently
the delayed W 1s selected for the upper cells by the MUX. Things proceed in

much the same manner as for an X-string load: when the A counter reaches 0

it stops counting and -W_=1. Execution-is complete when the 24 counter

L S S S RVE BN I (S ¢

-t
R

In the case where the label is read in reverse order (Flip is true) there is
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a further complexity similar to that found in an X-string load.  For our

example of 13 non-wild-card characters, figure 3-12 shows the state of the shift

registers for the words.

11 9 7 5

12 10 8 6 4

(b) 2" Word (a) 1°* Word

Figure 3-12: SR Initial, Flip True

Notice that to prepare a, to be loaded into the matching module, the upper

1

shift register must be initially shifted twice. Since the upper and lower shift
registers are clocked simultaneously, the lower shift register will be shifted twice

also and a; will then reside in the one-bit delay register (D in figure 3-9).

Remember that when doing an A-string load, a, and a, are loaded

simultaneously, as are a, and a,, etc. and that even-numbered components are

to be loaded into the upper cells and the odd-numbered components in the
lower cells. For this reason, the Delay/Cross control line in figure 3-9 s
driven high by the microcontroller when doing an A-string load if both Flip

and Odd are true.

Figure 3-13 demonstrates the loading of our example string from clock

»

~ pulse 2 through clock pulse 4. As before, Wa:I iwhen the A counter reaches'

D R AT L W QIR . Y

0. Also as before, W_ to the upper cells is delayed one clock cycle since the
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o
v
v
o

12 10 8 6

Figure 3-13: SR: Clocks 2 thru 4

string length is odd. Loading is complete when the 24 counter reaches 0.

3.4 Design Principles
There are three functions that the matching module and the interiace

hardware must perform:

1. begin a totally new string;

2. attempt to add to an existing, partially reconstructed string;
3 remove some characters front the end of an existing .string. = ...

The instructions for these three functions are, respectively:
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1. Reset;
2. Add;

3. Undo.

The microcode to execute these instructions is resident in memory beginning at

locations 04H(Reset), 74H(Add), and FCH(Undo). Examining the binary

representation of each (below)

b, b, b b, b, b, b b
04H 0 0 0 0 0 0 0
74H 0 1 1 N 0 0
FCH 1 ] 1 1 1 0 0

recognize that the last three bits (b,, b, b,) don’t change and that b,=b, and
b,=b.=b,. Therefore, only two bits are needed from the host computer to

specify the instruction to be executed if the 8-bit microprogram address 1s

generated as shown in figure 3-14.

IR,
—

IR, y

|RER RN a !

b, b, b. b, b, b, b, b,

p-Sequencer

Figure 3-14:  Microsequencer
In addition to the two bits of the instruction register specifying what the
general instruction is, there are two .other bits in the instruction word- Flip

~and Bar/Space. Flip and its function have been discussed previously- it is an
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indication of whether or not the laser scanned the  label “inside out”.
Bar /Space indicates whether the first character of the A-string is the result of
the laser having read a bar (black stripe on the label) or a space between two
baﬁ (both bars and spaces contain information about the label). The matching
module uses the Bar/Space bit to ensure that a 1 (or 0) of the A-string that
corresponds to a bar doesn’t get matched up with a 1 (or 0) of the X-string
correspohding to a space between bars and vice versa. A summary 01: the 4-bit

instruction set as implemented is given in figure 3-15.

Four-bit Instruction Codes:

R, IR, IR, IR,

Totally new string, characters inside out
Totally new string, characters in order
A-string to be added, inside out, Space first
A-string to be added, inside out, Bar first
A-string to be added, in order, Bar first
A-string to be added, in order, Space first
String characters to be removed

—_— O O O O O O
e e T e e N = Bl )

5
1
0
0
1
1
X

X O e e O K K

Interpretations of Specific Instruction Bits:

IR,: Bar/Space = 0 — First character i1s a space

W
IR,: Flip = O/ — Inside-out scan

IRLO: 00 Reset

01 Add
1x Undo
Figure 3-15: Instruction Set
The interface is address mapped by the host computer with very simple y

handshaking on the multi-bus of the 8085. The individual addresses on the
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interface are:

1. Input FIFO (data);
2. Instruction register (instruction word);

3. Instruction In FF;

4. Input FIFO Clear;

5. Undo Counter (length data);

6. Output FIFO (data output to host);

7. Current count (length data output to host).
These addresses are decoded and the necessary enabling signals for the
individual devices generated. For 1 through 5, the device is clocked when the
handshake signal MWTC from the multi-bus goes low and the handshake signal
XACK is then generated by the interface. For 6 and 7, the devices are read

when MRTC is driven low by the host. This action does not affect any other

function occurring at the time.

3.5 Collecting Results

Valid data begins to propagate from the matching module circuit 24 «clock
cycles after an A-string load has been completed.  This data is the newly
reconstructed X and W_, on two separate lines. As this data is generated, a
counter is enabled as long as W_=0, indicating that the string character at that
time is not a wild card. At the completion of 48 clock cycles, the counter
“\{a]ue will be the number of non-wild-card characters in the newly reconstructed
st~rir:1g.

. The X line f{gom,the-matching &r{)‘ggule circuit ’_i\s,_.\_hixiﬂlp_ut to. an 8-bit serial-

input parallel-output shift register. ~ The contents of this shift register are
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. illustrates the microsequencer with the additional.support. Ingic.

clocked into an output FIFO every eight clock cycles on command from the

interface controller. The FIFO is then read upon demand by the host

computer.

3.6 Control

All control signals in the project under discussion (both for the interface
and the matching module itself) are generated by a microcontroller. This umt
consists of a microsequencer (AM2911), PROMs, and multiplexers. This
approach to the design of the control umt was selected because it has the
advantage of good speed (faster than a microprocessor), flexibility (easy to
expand the number of control signals or change them by simply adding or re-

burning EPROMS), and ease of design.

3.6.1 Microcontroller Hardware

The AM2911 microsequencer block diagram is shown in figure 3-16. The
control logic in the Accusort project is rather simple, so neither the 2911’s
Stack nor its Register are used (shaded blocks in figure 3-16). The AM2911 1s
used simply to generate the next pPC address by incrementing the current
address (uPC «— pPC+1) and selecting either this next instruction address or
the address on the D/R lines (a JUMP) depending on whether SISO. are 00 of
11. In this project, the JUMP address is either generated within the
micfoprogram (address has been burned into the PROM) or is external (namely
the starting address of our 3-instruction set). Additionally, conditions must be

tested to determine whether or not a JUMP should be performed. Figure 3-17

T I R

In figure 3-17, the three bits from the PROM labeled Branch Sel?ct
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Figure 3-16:  u-Sequencer Block Diagram
determine which condition should be tested. For example, if Branch Select is
111 then logic 1 is selected from the test condition MUX and an unconditional
JUMP will be executed. The destination address will either be an instruction if
Address Select 1s 1 or will be the add;ress in the jump-address-field of the
PROM word if Address Select is 0. W Branch Select is 000 then logic 0 is
selected By the test condition MUX and no jump will be executed- the next
address will be the current address plus one. 1f Branch Select is 001 through
110 then a JUMP will occur if that condition selected for test is true (logic 1)

-at the time of the next clock, ,, ...

- -

o - ‘r) 7 & « ~('\ \“ DR G f&,-{ }
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Figure 3-17:  pController Block Diagram

3.8 Microscquencer Software
Development of the code for the microsequencer will be discussed in the
following order: waiting for an instruction; X-string load; A-string load; Undo.
Initial address at power-up and after completion of any instruction i1s 00l. At
~  location 00H, the Instruction _.in*FF bit (001 Branch Select) is tested and, if it

o be cxecuted), a J

< ;'.“;'\(’.“-\*’( . C) - 4 PO '33" f("-‘_ A

‘has been set (indicating that .there is ap instruction t

4 TS . . . S e
. NG e e LS

to the instruction address (either 0411, 74H, or FCH) is taken. Otherwise, the

‘MP

SR IR GEEENR AN

J

1
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next address is O which simply jumps unconditionally back to 00H. Until
the microcontroller is informed that an instruction is to be executed, the pPC
waits in the O0OH to O1H loop.

The X-string load instruction routine beginsesat 04H. Here two counters

are loaded: Scratch with the 3 LSBs of X count (remember that X _count 1s

the number of non-wild-card characters in the X-string) and 6 count with the

value six.

The 6 count counter is responsible for counting the number of times
that an X-string load software loop has been executed (each time through the
loop loads one 8-character data word into a shift register and clocks the FIFO
for the next word). When the 6 count has reached 0, all 48 characters of
the X-string have been loaded and the X-string load instruction is completed.
The program will then jump back to 0O0H to await the next instruction.

The Scratch counter is used when a string has been read “inside-out”
(described earlier in this chapter) and the number of non-wild-card characters is
not a multiple of 8. As previously mentioned, the first word of characters must
be initially shifted [8-(X count MOD 8)| times for this case. Since Scratch 1s
loaded with the 3 LSBs of X count (this equals X count MOD 8), the first
data word is shifted and the Scratch counter incremented until Scratch
becomes eight. The first word has then been prepared and X-string loading can
commence. |

The program will now jump to a load routine related to the three LSBs

N

of X count. Different routines are necessary because the second data word

..,m.&st'ﬂ be .fetched from the FIFO at. different ,kti.mes.._for .different . X-string lengths

(all this applies only when Flip is true). For example, if X__count is 37, then
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(here are five characters in the first data word (37 MOD 8 - 5) and, after X-
string loading has commenced, the second data word must be fetched after five
clock cycles. On the other hand, if X _count is 19 then the second data word
must be fetched after three clock cycles (19 MOD 8 = 3). In all cases, after
the first word, future data words must be fetched every eight clock cycles.

An example of the “code” for an X-string load (for X__count MOD 8 =

5) is shown in figure 3-18.

Begin: Enable X count, X-shift
Enable X count, X-shift
Enable X count, X-shift
Enable X count, X-shift
Enable X count, X-shift; fetch next word
Enable X count, X-shift
Enable X count, X-shift
Enable X count, X-shift, 6 count; jump to Begin if TC #0
Routine done; jump to O0H for next instruction
Figure 3-18:  X-string load routine
Notice that the loop that is repeated is eight lines long. This means that a
new data word will be fetched on the 5", 13'h 21° 29" etc. clock cycles. In
other words, after the initial word 1s loaded, each succeeding word is fetched

every eight clock cycles until all words have been fetched. Figure 3-19 shows
the flow chart for an X-string load.

The software for an A-string load is structured in much the same manner
as an X-string load. There are some differences, however. For instance, since
the A-string is loaded two characters per clock cycle, a new data word must be
fetched from the FIFO every fourth clock cycle rather than every eighth as with

an X-string load. Just as with an X-string load, no initial shifting of the first

[ .

) 3 ."t‘\‘{\i'f.ﬂ‘ﬁ;:w: ) ey -\: oy . = . . .
word of t.e A-string 15 ‘fiecessary if the label was not scanned inside out or if

the length of the string is a multiple of eight.
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Begin

Load X counter r
Load SR

Load 48 counter

Is length
mult. of 87

1< Flip? Y
i 7 N
Set 1=8 ‘
w_=0
X
Enable SR; Decrement 1, Set 1=0; Shift
X count, 48 count (8-(X _count DIV 8))
times
i AN \b
Enable SR &
Done Decrement
X count,
48 count
Set 1=8 ’
Clock FIFO
to SR
X coun
' Y multiple
l of 87
Decrement
X count
of ‘ Set
W =1 g
N
Decrement
48 count
Figure 3-19:  X-string load F/lowchartﬂ
..‘:\.i Coel | » (’j“"fl:: - G . C o mpyw | VRS

67




count) .

If Flip is true (label scanned inside out) and the string length (A
Is not a multiple of eight then the .ﬁrst, word of the A-string in the shift
register must be shifted initially (refer to figure 3-12).  The number of initial
shifts to be performed is P, where P = [4 - (A__count MOD 8) DIV 2]. To
perform this, the Secratch counter is loaded with A_ count,,A _count, .(this 1S

0n

P). When the Scratch counter reaches four, the initial shifting is done and
the A-string load can proceed.

For an A-string load, the 6 count is again loaded with the value six
and the software loops are each four lines long.  Since two characters are
loaded per line, six times through the loop will load all 48 characters. Figure
3-20 gives the code for loading am A-string where P is 2. The flowchart for an

A-string load is shown in figure 3-21.

Begin: Enable A count, A-shift
Enable A count, A-shift; fetch next word
~ Enable A count, A-shift
Enable A count, A-shift, 6 count; jump to Begin if TC,#0

Jump to OOH for next instruction

Figure 3-20:  A-string load routine

An Undo instruction is executed when the host computer recognizes that
some part of the reconstructed string does not belong where placed. It then
requests that all characters in the reconstructed string after a certain number
(Undo __count) be converted to wild-cards, effectively erasing these characters.
The implementation is rather simple- the host computer memory writes the
Undo count ‘to a down counter and, when this counter reaches 0, the
remaining (48 - Undo_count) characters are made wild-cards. ~When finished,

the program again returns to OOH to wait for the next instruction. A flowchart

'.‘J'. - . , o i _
SR AR T - S S < e ., , . . . e
” ~ A A : < L RO TR Y . \ (\%,34'3, o <L <

~ K

for an Undo instruction is given in figure 3-22.
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Be (_']i n

Load A counter
w/(A__count DIV 2)
Load 24 counter

Clock FIFO to SRs

Set Delay
Cross=1

Set i=4 1<

W, =

&

Enable SRs &
Decr A count,
1, 24 count

A coun
Y multiple
of 47
N

Done

Y

24 count
=07

Shift
4-(A - count DIV 4)
times

Set 1=4 Decr A count,
N Clock FIFO 24 count;
to SRs Enable SRs gud#
Done &
Decrement o
24 counter | -
SN L N SR N S R S SN SR G e CoGe e ayed 2 o e eyl PR S AN S SN o f'\,,'< P SR ISR S N

Figure 3-21:  A-string loa Flowchart
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Begin

~

Load 48 count,
Undo count

Undo
count
=0 7
N

Y

Decrement
48 count,
Undo count

Done

o e *"',, o Lo e , - » . 0 . , L, \ . ' - ’ l
cox L RS RO e G v B e 0 S 0 e e R O A S ISR RN FLx SR T wepil 1 S
- . NN . X Lo ) . . e ik 3

Figure 3-22: Undo Flowchart
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3.7 Comparisons to General Interface

The Accusort project interface can be thought o.f as a specific example of
the general interface design presented in the previous chapter. Because the
range of functions to be performed by the Accusort interface is limited, much of
the flexibility of the general interface (and the associated circuitry) is not
implemented. However, there are definite parallels between the two designs.

Obviously, the use of FIFOs to queue data and to bridge the speed gap
between the array and the host 1s the same in both interfaces. Also, both the
X-string load and the A-string load utilize parallel-load serial-output shift
registers. Because available off-the-shelf parts had to be used, conventional 8-bit
shift registers were used in lieu of the Parallel-to-Serial Converter of the general
interface design. Nonetheless, the function performed by these discrete
components strongly matches that of the general interface’s Parallel-to-Serial
Converter. The Switch Network in the general design 1s directly analgous to
the multiplexer of figure 3-9 that routes A to the upper and lower cells of the
matching module circuit.

There 1s no Permutation Network in the Accusort interface since output
generated by the matching module circuit 1s of one format only. Output
generated bit-serially by the matching module circuit i1s routed to an 8-bit
serial-input parallel-output shift register (commercially available). This is a very
basic Output St,ager‘circuit consisting of one QOutput Stager Module, since N=1
1s the number of “rows” (as defined in the general interface) of the array

simultaneously generating output. The output of this shift register is clocked

directly _int& ahontont, FIFQ,
. . - - . N : - _
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Chapter 4

Conclusion

4.1 Summary of Important Results

Having demonstrated the need for a high-speed general purpose interface to
connect a host computer to a bit-sequential Systolic Array, this thesis has
attempted to highlight 1mportant considerations in designing such a circuit.
Many aspects of such a design pose significant hurdles to an efficient interface.
These aspects, and solutions which would yield an efficient design, were
examined in depth and are summarized in the paragraphs below.

The interface must accomodate differences in data formats and operating
speeds between the host and the array. This implies that the interface have its
own memory- to buffer bulk data transfers; its own data staging circuitry- to
satisfy array 1/O requirements; and its own controller- to intelligently interpret
structions from the host computer and configure itself accordingly.

Great effort was concentrated in the area of array 1/O, especially 1n the
efficient collection of array output. The data collection and routing strategy
presented In section 2.6.4 1s optimal and is applicable to any situation in which
independent processes time-share a single resource. As such, Its potential
application reaches far beyond use solely in a host-to-array interface.

The mismatch in bandwidths of the host, the array, and the interface

memory requires a solution that s multi-faceted.  Because the host and the

array do not operate synchronously, FIFOs are employed to ensure that there

, are no Jmemory access conflicts. The proper selection of RAM memory word
8 - . . ‘N (\.,,54., - '\;”'," ] Yotk . ‘)"( . |

L ]
o ) .
[N 4 el ¥ K

size (section 2.7) is fundamental to the most efficient data transfer between host
\i‘-& . ) » . '
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and array.

Bit-slice microcontroller technology proved an effective solution to the
problem of interface control logic. This approach provic;es the flexibility, speed,
and intelligence to perform the necessary control functions, as demonstrated In
section 3.6.

Although time constraints prohibit our investigating all possible aspects of
the design, the major points of a general interface have been addressed in this

work. Areas which merit further consideration are discussed 1n the next section.

4.2 Future Work

The effect of changing array word size (N,) or host word size (N) on the
Conditioner & Memory circuits deserves examination. Optimality for one set of
N, and N, may be a miserable choice when one of the word sizes changes. A
possible solution to this problem may be the use of programmable Conditioner
& Memory subsystems that can be reconfigured for a variety of host and array
word sizes.

Additional future work should be focused on design of the controller, as
this unit is the nervous system of the interface. As mentioned earlier, bit-slice

mmicrocontrollers have desirable properties and, therefore, deserve further study.

Effort should also be concentrated on the design of algorithms and instruction -

sets for the microsequencers.
A#

In considering data formats for the array 1/0O, only word sizes that are a
power of 2 were allowed. These word sizes permit a wide range of

computations to be performed and, so, are not terribly restrictive. However]

e T

-ty .

methods - for generating and collecting = array words of “~any “‘size could be

investigated.
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Additional attention should be paid to universal “bit shuffling™ within the
array words. The Input Stager described in Chapter 2 is capable of performing
row-to-column permutations. Others have studied methods of bit shuffling [9,10]
and incorporating their techniques into the design of the Input Stager would

make it- and, consequently, the general interface- more universal and powerful.
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