
Lehigh University
Lehigh Preserve

Theses and Dissertations

1987

Software documentation for the Department of
Defense using the software life cycle /
Demetria Deakos
Lehigh University

Follow this and additional works at: https://preserve.lehigh.edu/etd

Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Deakos, Demetria, "Software documentation for the Department of Defense using the software life cycle /" (1987). Theses and
Dissertations. 4805.
https://preserve.lehigh.edu/etd/4805

https://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F4805&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F4805&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F4805&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=preserve.lehigh.edu%2Fetd%2F4805&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd/4805?utm_source=preserve.lehigh.edu%2Fetd%2F4805&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

•

Software Documentation

For The Department Of Defense

Using the Softvvare Life Cycle

by

Demetria Deskos

A Thesis

\ ?resented to the Graduate Committee

of Lehigh University

in Candidacy for the Degree of

Master of Science

•
Ill

Computer Science

September 1987

•
..,

This thesis is accepted and approved in partial fulfillment of the

requirements for the degree of Master of Science in Computer Science

Date : -.S;, }7 le'-i~ /7/ I 3.,/
- - - -~- - - - - - - ·- - - - - -

•
- -.- - - - -· -· - - - -·

Professor in Charge

·,

----------- ---------- .. --··-----.

Head of Division

, ••
11

Table of Contents

Abstract 1
1. Introduction 2

I.I Development Documentation 3
1.2 Product Documentation 3
1.3 Reasons for Documentation , 4
1.4 Problems with Documentation 5

1.4.] Who Writes It 5
1.4.2 Wrong Content 6
1.4.3 Wrong Point of View 6

1.5 Categories of Problematic Documentation 6
1.5.1 No Documentation 6
1.5.2 Insufficient Documentation 7
1.5.3 Mis)eading Documentation 7

2. Users of Documentation 8
2.1 Functional View of Documentation 8

2.1.1 Intertask Communication 8
2.1.2 Instructional Reference 9
2.1.3 Quality Assurance Support 9
2.1.4 Historical Reference 9

2.2 Software Project Manager 10
2.3 Software Development Manager 11
2.4 Software Testing Manager 11
2.5 Software Quality Control Manager 12
2.6 Software Configuration Manager 12
2.7 Software Design Engineer /Programmer 12
2.8 Software Engineer /Programmer 13
2.9 Soft\\'are Maintenance Engineer /Programmer 13
2.10 Software Test Engineer 13
2.11 Software Quality Assurance Engineer 14
2. I 2 Software Configuration Engineer 14
2.13 User's Systems Engineer/ Analyst

~ 14
2.14 System User /Operator 14
2.15 Software User /Operator 15
2.16 Software Training Personnel 15

3. Software Life Cycle 16
3.1 System Life Cycle 16
3.2 Application 19
3.3 Software Requirements Analysis 20
3.4 Preliminary Design 21
3.5 Detailed Design 22
3.6 Coding and Unit Testing 22
3. 7 Integration and Testing 22 ...

3.8 System Testing 23

•••
Ill

3.9 Reliability through Documentation
3.10 Department of Defense Docurnentation

4. MIL-STD-490
4 .1 rJ'y pe A - System Specification
4.2 Type B - Devcloprnent Specification
4 .3 1"'y pP (~ - Product Specification

5. DOD-STD-1679

5 .1 Documentation Types
5.1.1 Management Documentation
5.1.2 Requirernents Documentation
5.1.3 Design Docurnentation
5.1.4 Operations Documentation
5.1.5 Docurnentation of Changes
5.1.6 Support Documentation
5.1. 7 Test Documentation

5.2 Software Development Plan
5.3 Software Quality Assurance Plan
5.4 Software Configuration Management Plan
5.5 J>rogram Performance Specification
5.6 Interface Design Specification
5. 7 Program Design Specification
5.8 Data Base Design Document
5.9 Program Description Document
5.10 Operator's Manual
5.11 System Operator's Manual
5.12 Software Change/Software Enhancement Proposal
5.13 Software Trouble Report
5.14 Computer Test Plan
5.15 Computer Test Specifications
5.16 Computer Test Jlrocedures
5.17 Computer Program Tesy Report
5.18 Soft\\'are Program Package Document
5.19 Documentation in the Source Code

6. DOD-STD-2167

6.1 Documentation Types
6.1.1 Support Documentation
6.1.2 Diagnostic Documentation

6.2 System/Segment Specification
6.3 Software Development Plan
6.4 Software Configuration Management Plan
6.5 Software Standards and Procedures Manual
6.6 Software Quality Evaluation Plan
6. 7 Software Requirements Specification
6.8 Interface Requirements Specifications
6.9 Software Top Level Design Document
6.10 Software Detail Design Document

•
IV

,_,-·

23
23
25
28
30
31

33

33
33
34

"'35
36
36
37
37
38
40
41
42
43
45
47
49
50
51
53
54
56
57
59
60
61
61

63

63
63
64
64
64
64
65
65
65
65
65
65

6.11 Interface Design Document
6.12 Data Base Design Document
6.13 Software Product Specification
6.14 Version l)escription l)ocument
6.15 Softwar(' 'fest J>Jan
6.16 Software 1'est l)escription
6.17 Software Test Jlrocedures
6.18 Software 1'est Report
6.19 Computer Support Operator's Manual
6.20 Software User's Manual
6.21 Computer Support Diagnostic Manual
6.22 Software Programmer's Manual
6.23 Firmware Support Manual
6.24 Operational Concept Document
6.25 Computer l{esources Integrated Support Document
6.26 Engineering Change Proposal
6.27 Specification Change Notice

7. Conclusion

7. l (;eneral Aspects of Good Documentation
7. 2 Writing Sty le Guidelines
7 .3 Conclusion

References

Vita

V

..

66
66
66
66
67
67
67
67
67
67
68
68
69
69
70
71
71

72

72
72
73

74

77

Abstract

Software documentation is a major ingredient necessary for the success of

a software project. The Department of Defense has definitive software

documentation standards. These software documentation standards have been

used to provide the basis for the documentation standards of the IEEE and can

provide excellent resource material for internal standards for a software project

based on software size, complexity, and management considerations.

The evolution and content of the Department of Defense software

documentation standards are discussed in this thesis. The typical users and

developers of the software documentation are listed. Guidelines for improving the

readability and usefulness of documentation are established .

..

l

Chapter 1
Introduction

Documentation, an integral part of a software system, is the comprehensive

written description of computer software in various formats and levels of detail

that clearly define:

• Content

• Composition

• Design

• Performance

• Testing

• Use

The success of a large software system requires following sound

documentation principles during system development and beyond. Just as a

building should not be built until all plans are drawn up and agreed upon, the

same principle applies to a large software system.

Two major areas of software documentation exist, development

documentation and product documentation. They represent two types of

documentation for different audiences: in the first case all those persons

concerned with the development of the software product, and in the second case

all those concerned with the use and application of the software product.

Typical users of the development documentation are management, operational­

design engineers, program-design engineers, programmers, program-test engineers,

evaluation engineers, and on-site maintenance programmers. Typical users of

product documentation are training personnel, operational end-user, maintenance

2

~

,.

programmers, and management.

1.1 Development D0c11mentation

Developrnent documentation is closely related to the software life cycle.

Documents needed during the development of the software system describe and

specify what the user needs, i.e. the user requirements, and what the software

does. Documents also deal with the specification of how programs should be

constructed, and how their performance should be tested.

Typical document types needed here are requirements and functional

specifications, emphasizing "what the system does", as well as design

specifications, developrnent, and test plans, emphasizing "how the system does

it". It is the communications vehicle during the development process, recording

technical details and key decisions for each stage of the process.

1.2 Product D0cume11tation

Product documentation is a critical element for the use, operation,

maintenance, and conversion of software systems. A software system refers to a

well-tested computer program(s) which is fully documented and supported by a

responsible organization.

Product documentation is prepared for the end-user to have available

during normal operation, or for maintenance programmers who correct errors, or

who enhance programs by adding new features based on system requirements.

The end-user, who may not have a background in computers, needs to know

how the program functions are to be operated, how the computer or related

devices are to be operated, and what should be done if there should be a

malfunction in hardware or software. The product documentation must be

3

prepared in a language most familiar to the specific user group it is intended

for easy comprehension and use.

Additional information is required by maintenance personnel. Needed are

details on the system environment such as relationships and interactions with

computer installation facilities and other manual or automated data systems.

This information is especially useful if programs are to transferred from one

location to another.

1.3 Reasons for Documentation

Documentation provides a vehicle for communication between all

individuals involved in a software project.

Documentation provides a vehicle for • review of a software system.

Standard review plateaus during a system development process are facilitated by

timely presentation of accumulated system documentation.

Documentation provides a mechanism for monitoring project progress and

evaluating personnel effectiveness by standardizing the procedures of the system

development process. Since the documentation contains the breakdown of the

software . project into smaller parts, each part can be estimated and more

accurate schedule be determined

Documentation
. . .

problems with personnel absenteeism and m1n1m1zes

turnover. Standards and documentation can help make any software project

people-independent by not allowing dependence upon individuals for certain or

all segments of a software system.

Documentation provides material by which operational people can be

trained to use the system. A well written description is more satisfactory than a

verbal description. This documentation can aid in the development of training

4

•

,

programs and be us~ in day-to-day reference by user personnel.

Documentation provides a mechanisrr1 for maintenance of the software

' system. Any modifications or updates to the software system procedures and/or

progran1s may require three to four times the effort without good

documentation.

1.4 Problems with Documentation

1.4.1 Who Writes It

Documentation has been traditionally written by the analyst/programmer.

Technical writers also write documentation. There are distinct differences in the

documentation produced by these two groups. Documentation written by

software people is generally sloppy and disorganized, with the English resembling

a programming language. However, if the documentation is less readable, it is

more substantial in content. Documentation prepared by the technical writer is

usually more readable, understandable, and very well organized. However, this

documentation may not provide enough information since the technical writer is

not software-oriented or user-oriented. If the information flow from system

people to technical writers
.
IS inadequate, conflicting and noncommittal

statements may be located throughout the documents, and essential ones may

disappear.

5

• , ~ - a ."< ';. •· ~ • • • _.. ,- -··--

.. I ,

1.4.2 Wrong Content

Different document types require different types of information. An

example: in a document describing design, "what has been done"

satisfactory if it lacks "why it has been done".

1.4.3 Wrong Point of View

• 1s not

System documentation is not satisfactory if it is written from the writer's

point of view, rather than the user's point of view. Information required in the

maintenance phase is in many respects distinctly different from that in the

development phase.

1.5 Categories of Problematic Documentation

Problematic documentation falls into three categories: no documentation,

insufficient documentation, and misleading documentation.

1.5.1 No Documentation

The problem of no documentation is most critical at the management

level. Documentation defines the software system to be developed. Without this

definition, it is not obvious if the software has met its specified requirements.

The development of the software system becomes more people dependent.

Turnover of key personnel becomes critical since their know ledge is lost.

Previous efforts in the software development may be discarded if it is not

understandable. New personnel and maintenance personnel need a longer learning

period since necessary information is not available. Flexibility and expandability

originally designed into the system may be lost increasing the maintenance

effort.

The software user is also affected adversely. Many features of the software

6

'

• system may not be utilized if a user has no way to learn of the software

capabilities. If problems are encountered, the user may not know how to

proceed.

1.5.2 Insufficient Documentation
-...

Insufficient documentation can be seen at all levels: management, systems

I~' . I

and prograrnming, and users. Several factors contribute to the situation,

including improper system planning, lack of budgeted funding, and insufficient

time. The foremost factor is not setting of standards for documentation.

Information not documented because of its obviousness in the development

stage may be extremely valuable for the maintenance personnel, and is often

lost.

1.5.3 Misleading Documentation

When insufficient documentation extends to the extreme, misleading

documentation develops. This is the worst type of documentation and usuaJly is

the result of oversight, neglect, and ignorance.

The problem with misleading documentation is that an unwillingness to

trust any documentation occurs. A direct consequence of this is further

degeneration of documentation activity. If no decisive action is taken, eventually

all documentation becomes worthless. ',

7

'
'

Chapter 2

Users of D0c11mentation

Different users need varying amounts of documentation based on the

function of each document and the job function of the user. The user may use

one type of documentation to develop other documentation. Descriptions of the
/'

neede~ documentation are based on the software life cycle concept of the next

chapter.

2.1 F11nctional View of Documentation

The functions documentation serves are:

• Intertask Communication

• Instructional Reference

• Quality Assurance Support

• Historical Reference

2.1.1 Intertask Communication

Most software projects are divided into tasks which often are carried out

by different people. Some of these tasks are:

• Analysts formulate system requirements

• Designers develop overall program design

• Programmers provide detail code

• Quality assurance specialists are concerned with methods for quality
software development and overall system testing

• Auditors monitor overall system integrity

• Maintainers
extensions

• improve operations or

8

I

provide enhancements and

,·

Intertask communications are established in a formalized way. They
I

provide requirements to designers, designs to coders, and system specifications to

auditors and maintenance people. Functional, design, test, or system

specifications provide intertask communication.

2.1.2 Instructional Reference ..
Readily available reference materials are needed to train users in system

operation. Similarly, special documentation is needed by persons concerned with

maintaining software for correction of software errors and changed requirements.

This documentation is provided in user, maintenance, and operator's manuals.

2.1.3 Quality Assurance Support
(

System documen.tation which tells how well a system should perform are

needed by all persons concerned with system performance and quality.

Requirements documents, design specifications, quality assurance plans, test plans

and test procedures need to be provided, and results need to be reported.

2.1.4 Historical Reference

Capabilities, system features, and operational details should be recorded.

This will facilitate the re-use of well-proven ideas and assist in transfer and

conversion of programs to new system environments. It may prevent false starts

by illustrating problem solutions that have proved ineffective. System

specifications, a variety of manuals, and test reports provide this information.

9

•

•

..

•

2.2 Software Project Manager

The software project manager uses the initial proposal requesting the

software system. This may be a docurnent as formal as a MIL-STD-490 system

or p,oduct specification, or an inforrnal Y.1ish list from an f'n~ user. The purpose

of revieY.1ing the docurnent is to determine the feasibility of the software project

and the eventual resources necessary to complete it. Feasibility may . be

determined from management plans from previous projects sharing similar

characteristics as well as input from other personnel to be involved in the

project.

If the software project is determined feasible, the software project manager

must receive a formalized proposal of the actual requirements of the system .

This document will be used to generate a formal internal requirements document

for the developing organization. The establishment of the formal requirements

becomes necessary to determine design, testing, quality assurance and

configuration considerations.

The project manager will then draw his own plan(s) for the software

project. This will require input for other mangers in his group to coordinate

schedule and resources for design, testing, quality assurance, and configuration.

Having separate managers for each activity wi11 be determined by the size of

the software project and the availability of personnel to fill these functions.

10

•

\

2.3 Software Development Manager

The software developrr1ent manager will use the formal internal
requirements document to develop a software development plan concerning
design and coding standards. The software development manager will also use
the formal internal requirements document to determine the design of the
software. After the design is established, the software development manager is
responsible for the development of several design documents. These documents
describe the top level design, the lower level design, and the data base
consideration.

After the code is developed, the software development • manager 1s

responsible for the development of the support documentation. This
documentation contains the practical information necessary to create, modify,
and install the source code and data.

2.4 Software Testing Manager

The software testing manager will use the formal internal requirements
document to develop a software test plan concerning testing. The software test
manager will also use the formal internal requirements document to determine
the specifications to be tested. After the testing methodology is established, the
software testing manager is responsible for the development of several test
documents. These documents describe the test specifications, the test procedures,
testing problems, and the report of the final test results.

11

2.5 Software Quality Control Manager

The software quality control manager will use the formal internal

requirements document to develop a software quality control plan. The software

quality control manager will also use the formal internal requirerr1cnts document

to verify that the software is reliable, effective and developed according to

software development plan. After the design is established, the software quality

assurance manager is responsible for documen talion of discrepancies.

2.6 SoftwBre ConfigurBtion MBnsger

The software configuration manager will use all documentation available on

a software project. The software configuration manager is responsible for the

identification and control of the documentation, the establishment of baselines or

versions of documentation, the status accounting, the auditing of the

documentation, and the orderly process of filing and storage.

2. 7 SoftwBre Design Engineer /Programmer

The software design engineer /programmer will use the formal internal

requirements document to determine the design of the software. After the

design is established, several design documents are developed. These documents

describe the top level design, the lower level design, and the data base

consideration. These documents are used to produce the code.

12

r·

2.8 Software Engineer /Pr(r:!mmer

The software engineer /prograrnmer will use the design documents, which

describe the top level design, the lower level design, and the data base

consideration. These documents are used to produce the code.

After the code is developed, the software engineer /programmer will

generate the support documentation. This documentation contains the practical

information necessary to create, modify, and install the source code and data.

2.g Software Maintenance Engineer/Programmer

The software maintenance engineer /programmer will use the internal

requirements documents, the design documents, and the documentation in the

source code to design the changes to a software system. A new baseline of

'
documents may be created. If a change in requirements is implemented, the

requirements documents and design documents may be updated. If an error in

software is corrected, the design documentation may be updated.

The software engineer will use the support documentation to be able to

modify and reinstall the source code. This documentation may also be updated.

2.10 Software Test Engineer

The software test manager will use the formal internal requirements

document to determine the specifications to be tested. After the _testing

methodology is established, several test documents are developed. These

documents describe the test specifications, the test procedures, testing problems,

and the report of the final test results. • '1

..

13

,.

•

2.11 Software Quality Assurance Engineer

The software quality control manager will use the formal internal

requirements document to verify that the software is reliable, effective and

developed according to software development plan. After the design •
IS

established, the software quality assurance engineer documents the discrepancies.

2.12 Software Configuration Engineer

The software configuration engineer will use all documentation available on

a software project. The software configuration engineer identifies and controls

the documentation, establishes the baselines
.

or versions of documentation,

provides the status accounting, provides the auditing of the documentation, and

performs the filing and storage of documentation.

2.13 User's Systems Engineer/Analyst

The user's system engineer/ analyst will determine the needs of the user.

He will generate the original system documentation. He will evaluate the

developer's formal internal requirements documents, operations manuals, and test

report for satisfaction of his requirements. He will be responsible for approving

requests for changes to the software system, and have his documentation

updated.

2.14 System User/Operator

The system user/ operator will use the manual necessary for the operation

of the hardware hosting the software system. This information should include

the loading of the program, any necessary adaptation data, and requirements

that are site dependent.

14

2.15 Software lJser/0J>erator

The software user /operator will use the manual for the operation of the

software. "fhis information should include prograrr1 features, limitations, error

conditions, and recovery procedures for the software.

2.16 Software Training Personnel

The software training personnel will use the manuals describing the

operation of the system and the operation of the software. The operation of the

system concern the loading of the software program into the hardware. The

operation of the software concern the input/output requirement of the software

program. An elementary training program would include examples of the more

common features. A more advanced training manual would includes examples of

features not commonly encountered.

15

Chapter 3

Software Life Cycle

There exists a time period between the formulation of the idea about the

software system and the time the software system ends. The software life cycle

divides the time of software development into manageable parts and provides a
~.

fr~mework of miiestones, rwhich monitor progress and make decisions about

direction and control of the software project. These parts cover such different

activities as initiation, requirements analysis, design,
.

programming, testing,

operation and maintenance. Figure 3-1 on page 17 shows the different phases of

the software life cycle.

3.1 System Life Cycle

The software life cycle is part of the system life cycle. A system includes

the combination of hardware and software. The system life cycle is broken into

four phases:

• Concept Exploration

• Demonstration and Validation

• Full Scale Development

• Production and Deployment

The Concept Exploration phase is the initial planning period. The

technical, strategic, and economic bases are established through comprehensive

studies, experimental development, and concept evaluation. This effort may be

directed toward refining solutions or developing alternative concepts to satisfy a

required operational capability.

The Demonstration and Validation phase is the period when major .system

16

A&TIV1Tl

UFlllAAI
ACTIVITY

IOfTIIAJII
MnctaUI

A¥Dm

c,1un 11 wo•s t 1'A 110• PRODUCTIO•
I 1'1 I ~A TIGI A._D YALIDAIIO•

f U l l ,u l I DI YI l D PIU I I UD D(P\OYMf II

IIINWOl/lnTIM IYITlM/10f TWAII(IYlllM
"GDUCTIOI

alQU4AlMllR al QUIA(Wl • n CDMIWTlA llf JllUI DlVllD,,.lll Ulll(QIIATIOI 1111 All D(I\OYMIIT
NfUUnOI Dlf 111110•

-- --- ----
-- -- -- -- ---I -
'4f111AIII

llGUUUHEln '11ll1Ml•AIY
AIALYW DlMGI

I I

I I
I I
I ! 6

J

I

A

llTAllll
11~11

J

I

!

COIIII AID
llfll i TUTll 1

AID 1111111
,

' ' ' ' '

IOf TllA~I
II T 18 "AT IO I
All TllTIII

I

!

•

IOf TftAAI
Pl Ar D IIMAICI

TIITIII

§
IYfflM laf TWA"l rMllMIIAJIY CAITICAl 111, ,uaCTIDIAl

COIIIIUIIA TIDI
AUIMI lfUJ ·

D(ll,1 IPlClflCATIOI DISJGI
UYl(W alYl(W IIIYIE•
CU)AJ IW) ""I

Figure 3-1:

DlllGI
Af Yll•

ICDIIJ

•

Software Life Cycle

17

Af ADIi(U
AlVl(W

CT IIAI PHY&,CAL
CDlflQUIIA TIOI

AUDIT CPCAI

fGIUUl
IUAllf lCATIQI
llYIIW If ~I

•

(

..

characteristics are refined through studies, system engineering, development of

preliminary equipment and
'

prototype computer software, and test and

evaluation. The objectives are to validate the choice of alternatives and to
/

provide th~. basis for determining whether to proceed into the next phase .
..... _. . ..

The Full Scale Development phase is the period when the system,

equipment, computer software, facilities, ,personnel subsystems, training, and the

principal equipment and software items necessary for support are designed,

fabricated, tested, and evaluated. It includes one or more major iterations of the

software development cycle. The intended outputs are a system which closely

approximates the production item, the documentation necessary to enter the

system's Production and Deployment phase, and the test results that

demonstrate that the system to be produced will meet the stated requirements.

During this phase the requirements for additional software items embedded in or

associated with the equipment items may be identified. These requirements may

encompass firmware, test equipment, environment simulation, mission support,

development support, and many other kinds of software.

The Production and Deployment phase is the combination of two

overlapping periods. The production period is from the production approval until

the last system item is delivered and accepted. The deployment period
l

commences with delivery of the first operational system and terminates when

the last systems are removed from operati9ns.

18

,

'

3.2 Application

Software development is usually an iterative process, in which an iteration

of the software development cycle may occur one or more times during each of

the system life cycle phases. Successive iterations of software development

usually build upon products of previous iterations. For example, design may

reveal problems which lead to the revision of requirements. Testing may reveal

errors in design, which in turn may lead to redesign or requirements revision.

Documentation preparation is a continuous effort covering the software life

cycle. It evolves from preliminary drafts during project initiation through various

reviews and changes in development. It continues through all, iterations of the

software life cycle with iterations caused by user feedback, changed user

requirements, and changed system requirements.

The software life cycle is broken into the six phases:

• Software Requirements Analysis

• Preliminary Design

• Detailed Design

• Coding and Unit Testing

• Integration and Testing

• System Testing

19

3.3 Software Requirements Analysis

The purpose of the software requirements analysis is:

• 1"'he requirements are clearly understood by the developer

• The requirements are mutually agreeable to the developer

• The requirements precisely state the constraints on the desired
software system

• The requirements precisely state all functions of the desired software

• Thr requirements provides default and error conditions whenever
~ '

necessary

• The requirements provides testable criteria for the acceptance of the
system

• The requirements indicates desired system qualities, their relative
importance, and how they wilJ be measured

The inherent ambiguity of natural language and the complexity of prose

description makes it difficult to verify if requirements are complete and non­

conflicting. The length and complexity of prose specifications also make them

difficult to understand.

The inadequacies of unstructured paragraphs of natural language for

requirements specifications include:

• They rely on the shared linguistic experience of those responsible for
reading and writing the specification.

• They are unable to express the description of activities performed by
the system and the interacting entities within the system in a clear
and concise way.

• They are over-flexible as they allow related requirements to be
expressed in completely different ways. The task of identifying and
partitioning related requirements is more prone to error.

• They do not partition requirements effectively. As a result, the effect
of changes can only be determined by examining every requirement

'

20

..

7'

rather than a group of related requirements.

Unstructured natural language does not always express requirements clearly

and unambiguously. However, no formal specification language has been widely

accepted.

Requirement analysis is performed by having the developer write

requirements documents which demonstrate the understanding of .the contractor's

· requirements document.

3.4 Preliminary Design

The purpose of preliminary design is .to develop a design approach which

includes:

• Mathematical models

• Functional flows

• Data flows

During this phase various design approaches are considered, analysis and

trade-off studies are performed, and design approaches selected. Preliminary

design allocates software requirements to the top level computer software

components (subsystems), describes the processing that takes place within each

top level computer software component, and establishes the interface relationship

between top level computer software components. Design of critical lower

elements of the system may also be performed. The result of this phase is a

documented and approved top-level - design of the software. The top-level design

is reviewed against the requirements prior to initiating the detailed design phase.

21

3.5 Detailed Design

The purpose of the detailed design is to refine the design approach so the

each top level computer software component is decomposed into a complete

structure of lower level computer software components (rr1odules) and units. The

detailed design approach is provided in detailed design documents and reviewed

against the requirements and top-level design prior to initiating the coding

phase.

3.6 Coding and Unit Testing

The purpose of coding and unit testing is to code and test each unit of

code described in the detailed design documentation. Each unit of code is

reviewed for compliance with the corresponding detailed design description and

applicable coding standard prior to establishing internal control of the unit and

releasing it for integration.

I
\

3. 7 Integration and Testing

The purpose of integration and testing is to integrate and test groups of

coded units. Integrations tests should be performed based on documented

integration test plans, test descriptions, and test procedures. Integration test

results, and system test plans, descriptions, and procedures for testing the fully

implemented software are reviewed prior to the next phase of testing.

·I

22

3.8 System Testing

The purpose of system testing is to test the fully implemented software

system. Test results are reviewed to determine whether the software satisfies its

specified requirements.

3.0 Reliability through Documentation

A major concern of the software system throughout the software life cycle

is the reliability of the software. Reliability is composed of:

• Correctness of system design

• Correctness of mapping of system design to implementation

• Reliability of components making up the system

• Meeting of all specifications

• Traceability of specifications to design

• Not producing incorrect output regardless of the input

• Not allowing itself to be corrupted

• Taking meaningful and useful actions in unexpected situations

• Only completely failing when further progress is completely impossible

Unless the system documentation is accurate, reliability will not be visible.
' J

3.10 Department of Defense Documentation

The Department of Defense currently has definitive software documentation

standards. These standards reflect the user /buyer experience gained from being
,,.

the largest purchaser of software with an annual ten billion dollar budget.

Because of the large investment in these software products, research was done

to optimize the software effort to increase reliability, understandability, and

23

'

maintainablility. Documentation was a key component during the software life
'

cycle. Until coding begins, documentation is the specification and the design.

The first attempt, MIL-S1'1)-490, was a standard on how to write

documentation. This was not enough since it did not define all the documents

needed. More software documents were established in DOD-STD-1679. As more

projects were completed using this standard, further documentation standards

were established in DOD-STD-2167.

These Department of Defense documentations standards provide the basis

for the documentation standards of the IEEE. They also provide excellent

resource material for internal standards of a software project. Some of the

factors for determining the amount and detail of documentation are:

• Functional complexity

• Size

• Criticality

• Interface complexity

• Database complexity

• Integration complexity

• Complexity of security requirements

• Certification requirements

• Probability of change

(

• In tended end-use

• Support concept

• Development location(s)

• Schedule

24

Chapter 4

MIL-STD-490

MIL-STD-490 establishes the format and contents of specifications for

development, procurement, production, assembly, installation, testing, or support

of items, processes, and materials. Uniform practices are established for

specification preparation, to ensure the inclusion of essential requirements, and

to aid in the use ·and analysis of specification content. This common style,

format, and general instructions allows the reader to know in advance what

items of information to expect to quickly gain familiarity with the document.

The types of specifications availabl~ are:

• Type A - System Specification

• Type B - Development Specifications

• Type C - Product Specifications

• Type D - Process Specification

• Type E - Material Specification

Only Type A, Type B, and Type C are applicable to software systems.

When a system (hardware and software) is to be implemented, a Type A

specification is used. When the hardware is determined, the Type C specification

is used. Both the Type A and Type C specifications describe "what to do" by

the user or contracting agency. The Type B specification describes "how to do"

by the developing agency.

Specifications will contain
..

SIX numbered sections,

required. These sections are titled and numbered as follows:

1. Scope

25

and appendixes as

2. Applicable Documents

3. Requirements

4. Quality Assurance Provisions

5. Preparation for Delivery

6. Notes

\ 10. Appendix

Subject matter i~ kept within the scope of the sections so that the same

kind of requirements or information will always appear in the same section of

every specification. Except for Appendixes, if a section contains no pertinent

information, the section cites that this section is not applicable to this

specification.

Other items addressed were: language sty le, capitalization and spelling,

abbreviations, symbols, propriety names, commonly used words and phrases, use

of "shall", "will" and "may", paragraph numbering, paragraph identification,

underlining, cross references, location and preparation of figures, location and

preparation of tables, foldouts, contractual and administrative requirements,

definitions in specifications, references to other documents, identification of

specification, and changes and revision guidelines.

Section I or Scope consists of a clear, concise abstract of the coverage of

the specification. It may include, where necessary, information as to the use of

the item other than specific detailed applications covered under "Intended Use"

in Section 6 of the specification.

Section 2 or Applicable Documents consist of all and only those documents

referenced in Sections 3, 4, 5 and Appendixes. These documents are further

subdivided into Government Documents and Non-Government Documents and

26

I

(

are listed in the fallowing order:
•·

• Specifications

• Standards

• Drawings

• Other Publications

Section 3 or Requirements states the essential requirement~ and

descriptions that apply to performance, design, and reliability of the item,

material or process covered by the specification. This section is intended to

indicate the minimum requirements that must be met to be acceptable as

necessary and practicably attainable.

Section 4 or Quality Assurance Provisions includes all the examinations

and tests to be performed in order to ascertain that the product or process to

be developed or offered for acceptance conforms to the requirements in Sections

3 and 5 of the specification. The order of presentation of Section 4 material,

insofar as practicable, follows the order of requirements as presented in Section

3 of the specification, or alternately, in the most logical order of conducting the

tests listed.

Section 5 or Preparation for Delivery is the applicable requirements for

preservation, packaging, and packing an item and marking of packages and

containers.

Section 6 or Notes contains information of a general or explanatory nature,

and no requirements appear therein. The information contained is designed to

assist in determining the applicability of the of the specification. The section

should include the following, as applicable, in the order listed:

• Intended Use

27

,

• Ordering Information

"
• Preproduction Sample

• Standard Sample

• Definitions

• Qualification Provisions

• Cross Reference of Classifications

• Miscellaneous Notes

Section 10 or Appendix is a section of provisions added at the end of the

specification. An appendix may be used to append large (multi-page) 1ata

tables, plans pertinent to the submittal of the item, management plans pertinent

to the subject of the specification, classified information or other information or

requirement related to the subject that would normally be invoked by the

specification but would, by its bulk or content, tend to degrade the usefulness

of the specification. In all cases where an appendix is used, reference to the

appendix is included in the body of the specification.

4.1 Type A - System Specification
,r

The System Specification does the following:

~
• States the technical and mission requirements for a system as an

entity

• Allocates requirements to functional areas

• Defines the interfaces between or among the functional areas

Normally, the initial version of a system specification is based on

parameters developed during the concept exploration phase. This specification

(initial version) is used to establish the general nature of the system that is to

28

\

be further defined during the system life cycle. The system specification is

maintained current forming the future'- perforrnance base for the development and

production of prime items and subsysterns, the performance of such items being

allocated from system performance requirernents.

The requirements contains the following:

• The performance and design requirements of the system

• The performance requirements related to manning, operating,
maintaining, and logistically supporting the system, to the extent
these requirements define or limit design of the system equipment

• The design constraints and standards necessary to assure
compatibility of system hardware

• The definition of the principal interfaces between the system being
specified and other systems with it must be compatible

• The functional areas of the system, and the principal interfaces
between and within each functional area

• The allocation of performance to, and the specific design constraints
peculiar to, each functional area

..
• The identification and use of major Government-furnished property to

be designed into and delivered with system equipment, or to be used
with other system equipment as an entity and an integral part of
system capability

Unless purely descriptive by nature, requirements included are stated in

quantitative physical terms which can be verified. Since a system may be

either hardware, or a combination of hardware and software, the requirements

fall in to three categories:

• Hardware

• Software

• Combination of hardware and software

29

• A requirement that appears to be hardware may actually be a combination

of hardware and software. The type of requirement it becomes is dependent on

system design. Some examples are maintainability and availability.

An example of the maintainability requirement is if the system has a

hardware failure, that failure is pinpointed to the broken circuit board. The

system design may use visible latches to indicate a failure. These latches may

be set solely by hardware circuitry or by a software command to the hardware

circuitry.

An example of the availability requirement is that the system will continue

its processing if the power interruption is less than 200 milliseconds. If system

design has all the random access memory (RAM) power-protected, this is solely

a hardware requirement. If only part of the RAM is power-protected, th~n this

requirement becomes both a software and hardware requirement.

4. 2 Type B - Development SpecificBtion

The Development Specification states the requirements for the design or

engineering development, of a software system during the development period.

The requirements are described in operational, functional, and mathematical

language necessary to design and verify in terms of performance criteria. The

specification provides the logical, detailed descriptions of performance

requirements of a software system and the tests required to assure development

of the software system satisfactory for the intended use.

The requirements consists of

• Program Definition of Major Functions

• Detailed Functional Requirements

30

•

)

•

\

....

• Adaptation Information

Program definition provides details imposed by interfacing equipment,

timing and sequencing requirements, and the interactions of the major functions

of the system. An example of this is a message from the data bus is available
(

for only 100 k!_~lliseconds.

Detailed functional requirements contain the detail text and mathematical

description of each required function. This information is broken into input,

processing, output, and special processing. An example for a top level design of

a data entry system is:

Input - Receive Keystroke from Keyboard Unit

Processing - Determine Meaning of Keystroke

Output - Display Keystroke Meaning on Display Unit

Special Considerations - Perform in 50 milliseconds.

Adaptation Data contains a description of data requirements with respect

to system environment, system parameters, and system capabilities. Examples of

items affecting adaptation data are hardware changes and constants .changes for

operational needs.

4.3 Type C - Product Specification

The product specification is applicable to any item below the system level.

For a software system, this is the production of the computer programs and the

implementing media, i.e. magnetic tape, disc. etc. It does not cover the details

requirements for material or the manufacture of the implementing medium. A

translation of the performance requirements into programming terminology and

quality assurance procedures·, s provided.

The requirements contain a comprehensive description of t.he structure and

31

\

I

function of the software system as a whole. It consists of the following:

• Function Allocation Description

• Functional Description

• Storage Allocation

• Computer Program Functional Flow

Function Allocation Description identifies and describes the allocation of

functions and tasks to be performed ~y the individual subprograms.

Functional Description describes a general summary of inputs, outputs, and

functions to be performed for each subprogram and common subroutine.

Storage allocation describes the approximations of the allocation of memory

storage to subprograms, the executive routine, subroutines, and the data base.

The timing,
.

sequencing requirements, and equipment constraints used • In

determining the allocation is described.

Computer Program Functional Flow shows the general system flow of both

data and control. If the system is to operate in more than one mode, each

mode is clearly distinguished. Program interrupts, control logic involved in

referencing each subprogram, and special control features that affect the design

of the control logic but are not part of the normal operational are discussed.

32

MIL-STD-490

Chapter 5

DOD-STD-1679

addressed the • issues of the requirements and design

documents. Other formal documentation types were needed. DOD-STD-1679

established uniform requirements for software development. Documentation types

were developed based on the phases of the software life cycle and the needs of

particular groups of users.

5.1 Documentation Types

The main goal of these documents types is to allow project control for

development, maintenance and reliability considerations.

5.1.1 Management Documentation

At the beginning of the software life cycle, management determines how

the software project will be planned. Clear lines of authority and responsibility

are established. Coordination of the software project is through a schedule of

events and milestones. These plans are documented in the Software Development

Plan, The Software Quality Assurance Plan, and the Software Configuration

Plan. Some variations of these plans would be to include the Software Quality

Assurance Plan as part of the Software Development Plan, to include the

Software Configuration 1Management Plan as part of the Software Development
(

Plan, or include the Software Management Plan as part of the System

Configuration Management Plan.

33

'

..

5.1.2 Requirements Documentation

To determine whether the reciuirements were understood by the developer,

the Program Performance Specification and the Interface Design Specification

documents were established.

The Prograrn J>erformance Specification determines the detailed performance

requirements of the software from documentation provided by the user which is

considered the user's baseline. This information may be augmented by studies,

analyses, visits to the user, and surveys as necessary. However, if the augmented

information is in conflict with the user's baseline, the documented user's baseline

requirements take precedence. The rigid format of the document requires a

thorough understanding of the requirements. Incomplete or conflicting

requirements becomes apparent as the document is produced enabling the user

to evaluate and implement changes in the requirerr1ents.

The Interface Design Specification contains the data of the interfacing of

the software system with other computer programs or systems. The level of

detail required to adequately produce the document guarantees that enough

information is available for the eventual design of the software system.

Both the Program Performance Specification and the Interface Design

Specification are reviewed by the • users 1n a formal design review. Each

requirement specified in the user's baseline must be accounted for in the

Program Performance Specification. Until these documents are formally accepted

by the user, proceeding with the design documentation involves a risk to the

developer of unnecessary or inva.lid work. The formal acceptance of these

requirements establishes the developer's baseline that the design documentation

is based on. These requirements documents are complete that reference to the

34

.J

\

user's documents are no longer necessary and constitute the developer's baseline.

5.1.3 Design Documentation

DOD-STD-1679 has a single design phase of the software life cycle rather

than a separate preliminary design phase and detailed design phase. The

documents produced were the Program Design Specification, the Data Base

Design Specification, and the Program Description Document.

The Program Design Specification is the top level design of the software

system. The Program Design Specification demonstrates that the requirements

can be broken into functions or subprograms. The naming and programming

conventions are established.

The Data Base Design Document contains the detailed data descriptions

for the data which is used for the communication between the various functions

or subprograms as established in the Program Design Specification.

The Program Description Document is broken into separate volumes for

each function or subprogram. The Program Description Document further shows

the breakdown of the function or subprogram into modules and units that

satisfies the performance requirements. The Program Description Document

contains the detailed data descriptions for the data which is globally used by

more than one module or unit.
'

The Program Design Specification, the Data Base Design Specification, and

the Program Description Document are reviewed by the user in a formal design

review. Each requirement specified in the developer's baseline must be accounted

for in the Program Design Specification. After the validation of the design, the

developer gives these documents to the computer programmers to create the

source code.

35

•

5.1.4 Operations Documentation

Operations documentation contains the procedures for the loading,

initialing, and operating the software system. The documents produced are the
_,,..-

Operator's Manual and the System Operator's Manual.

The Operator's Manual is concerned with the non-functional operations.

The Operator's Manual defines minimal processor and peripheral equipment

requirements, equipment set-up for system operation, software set-up, special

parameter entering requirements, standby /operate procedures, monitoring

procedures, and recovery procedures.

The System Operator's Manual is concerned with the functional operations.

The System Operator's Manual defines the individual and station functions, the

coordinated stations procedures, all user aspects, modes and procedures to

perform the system operation, the function of every control button, switch,

readout, and display affected by or affecting the system, and all constraints

imposed on the operator.

5.1.5 Documentation of Changes

For changes in the user's baseline to be reflected in the requirements

documentation, the user must issue Software Change Proposals and Software

Enhancement Proposals. These new or modified requirements become part of the

new user's baseline. The importance of formalized requirements changes become

apparent in management schedule and budget considerations caused by the

impact upon the software life cycle. What may appear as a deletions of

requirements, may still have a negative effect on budget when documentation

- considerations are evaluated.

For changes not related to the requirements, the Software Trouble Report

36

•

is used. These changes occur from problems in the documentation and operation

of the software system.

The earlier a change is implemented in the software life cycle, the less

costly it becomes. For example, if the change is made during the requirements

phase of the software life cycle, then only the requirements documentation is

affected. If the change is made after the software is coded, the requirements

document, the design documentation, the test documentation, and the code may

be affected. Configuration control procedures are followed for the

implementation of changes to the software documentation and software system.

5.1.6 Support Documentation

Support documentation contains the information necessary to create the

software system using the source code. The document produced is the Program

Package Document. The Program Package Document contains all the program

materials used to produce, maintain, and update the software system.

This documentation type needs more information concerning the hardware

and software procedures for compiling, debugging and installing. These

deficiencies are to be addressed in DOD-STD-2167.

5.1. 7 Test Documentation

The quality assurance portion of the MIL-STD-490 documents gave rise to

a series of test documents. Since reliability is an important consideration of the

software system, testing becomes a significant part of the software development.

The documents produced are the Computer Test Plan, the Computer Test

Specifications, the Computer Test Procedures and the Computer Test Report.

The Computer Test Plan defines the total scope of testing. Each

37

requirement in the Program Performance Specification must be accounted for in

the Computer Test Plan. The testing validates these requirements and is

independent of the design.

The Computer Test Specifications is prepared for each test specified in the

Computer Test Plan. The Computer Test Specifications are delineated as the

System Test Specification and the Funct · n Test Specification. The requirements

that can not be tested by the operatio of the software system are specified in

the Function Test Specification. All other requirements are specified in the

System Test Specification. For example, if the system must maintain a 50%

memory reserve, this requirement cannot be tested by operating the software

system. Therefore this requirement is tested in the Function Test Specification.

The Computer Test Procedures present detailed instructions for test setup,

execution, and evaluation for each test specified • In the Computer Test

Procedures. The Computer Test Report documents the result of the tests

generated by the Computer Test Procedures. Any discrepanci~ in the expected

result and the actual result are described.

5.2 Software Development Plan

The Software Development Plan describes the comprehensive plan for the

management of the development of effort for the software system. The Software

Development Plan provides the means for the development effort to:

• Coordinate schedules

• Control resources

• Initiate actions

• Monitor Progress

38

;

The Software Development Plan contains:

I

• Project development organization and their titles, duties, and
relationship to other organizational entities

• Program design approach
software systen1 design
performance requirements.

• Implementation approach
development techniques as
production methods

of methods and techniques to ensure the
satisfies all technical, operational, and

to conform with DOD-STD-1679
well as special coding techniques and

• Resource utilization control of memory usage, mass storage allocation
and usage, system response times, central processor usage, and 1/0
utilization

• Certification test philosophy and plans for each phase of the software
life cycle such as unit and module tests, program debug, integration
tests, and acceptance testing

• Program
• manning,

support
special

maintenance

center
tools,

facilities capabilities,
and arrangements

projected usage,
for post-delivery

• Quality assurance with the information required of the Software
Quality Assurance Plan or, if separate, a reference to the Software
Quality Assurance Plan

• Programming standards and conventions that apply to the design and
production of the software system

• Configuration management with the information required of the
Software Configuration Management Plan, or, if separate, a reference
to the Software Configuration Management Plan or System
Configuration Management Plan.

• Government furnished equipment and services to be used for the
production or test of the software system

• Software integration approach, plan, and organization to achieve
software integration in all system elements in both software and
hardware

• Risk areas in cost, schedule, and technological risks

• Schedules and milestones in the software development schedule,

39

•

including status reports, reviews, and audits

• Resource allocation of personnel, material, and financial resources

Graphic representations of project organization, schedule and milestones,

and resource allocation could present a clearer representation of these areas. A

minimal amount of narrative would then be needed for full understanding.

'

5.3 Softw8re Qu8lity Assurance Plan

The Software Quality Assurance Plan describes the organization and

procedures to assure the software written complies with the requirements. The

Software Quality Assurance Plan is oriented toward the design and production

of software that is effective and reliable, and planned and developed

consonance with other adminstrative and technical programs.

The Software Quality Assurance Plan contains:

• The software quality assurance organization of authority and
responsi bi Ii t y

• The software quality assurance procedures with rules, techniques, and
methodologies for:

o Software development management
•

o Software configuration management

o Software specification, design, and production

o Software testing

o Corrective actions on deficiencies

• Plan implementation of specific tasks, responsibilities, and resources

• Reporting and control system to:

o Monitor overall development status

40

• 1n

'

I

o Base decisions on quality control data

o Disclose inadequacies, discrepancies, and deficiencies as well as
proposed in1provement

o Allow rapid and effective corrective actions

5.4 Softw8re Configur8tion M8nagement Plan

The Software Configuration Management Plan describes how to assure

proper configuration identification, configuration control, and configuration status

accounting.

The Software Configuration Management Plan contains:

• The configuration management organization with the responsibilities
of the members and their relationship to the overall organization and
the policies and directives relating to configuration management

• The configuration identification policies and procedures for identifying
the documentation of the functional and physical characteristics of
configuration items

• The configuration control for changes to the baseline

• The software configuration authentication of the software to the
documentation

• The configuration status accounting procedures for collecting,
recording, processing, and maintaining data

• The interface management for coordinating efforts to ensure
compatibility with other systems

• The configuration audits plans, procedures, schedule, quality assurance
measures, and for mat

• The control over subcontractors and vendors

• The configuration management milestones for the software life cycle
phases

41

..

\

"

I

5.5 Program Performnnce Specific8tion

The Perf ormancc Specification • 1n describes detail aJI the Program

operational and functional requirernents necessary to design, test, and maintain

the software system. It provides the iogical, detail description of the performance

requirements of the system software.

The Prograrr1 Performance Specification contains:

• System description - All the components in the system which affect
the software or the software performance ~equirements are described.
How thP software interfaces to perform the required system functions
with the other components is determined.

o Peri phera] equipment identification - all the equipment which
the software will interface by then physical characteristics and
type of interface

o Interface identification - all other computer programs or systems
with which the software will interface

• Functional description - The major functions and the functional
relationships of the software with the interfaces are analyzed. The
performance of each function supported by the software, it purpose,
and functional design is described.

o Equipment description The requirements imposed
software by each interfacing equipment, the purpose
equipment, and the use of the options and controls

on the
of the

o Diagrams - Diagrams of equipment and software relationships
with internal and external data flow

o Intersystem interface The requirements imposed on the
software by each interface with other systems and equipment,
the purpose of the interface, the data to be exchanged, and the
data quantity, frequency, rate, format, content, scaling
requirements, and conventions of the data

• Detail functional requirements - Each function is described in detailed
text with logical and mathematical descriptions

o Inputs - Both internal and external with their source, format,

42
..

..

..

method of reception, quantity, timing, range, and scaling

o Processing Textual and, as appropriate, mathematical
descriptions of the processing requirernents of each function,
including functional pararneters and geornetric diagrams

o Outputs - Both internal and external with their method of
transmission and timing, meaning, format, quantity,
destinations, range, and scaling

o Special Requirements - Requirements imposed by higher-level
constraints or by exigencies of the function

• Adaptation - Parameters which reflect the system environment, limits,
and capacities and which can be defined symbolically to subsequently
be modified without altering the software logic

• Testing requirements of the functions for all levels

5.6 Interface Design Specification

The Interface Design Specification establishes the requirements for any

system which utilizes direct digital processor interfaces. The Interface Design

Specification provides a detailed logical description of:

• All data uni ts

• All messages

• Use of all control signals for defining interdigital processor
communication conventions

The Interface Design Specifications contains for the software system to

other systems interface signals and the other systems to the software system

interface signals:

• The summary cross reference with an alphabetical list of all signals
with page number cross references for the signal in the:

o Signal definition list

o Narrative signal flow table

43

I

)

o D~ta unit _description

o Message description

• Signa] l)efinition List which, for each signal, provides a detailed
description of the:

o Initiation J

o Use

o Effects

--
• Narrative Signal Flow Table in logical groupings for all signal in a

specified interface, arranged and numbered in a sequence of normal
expected occurrences of events

• lnterdigital Processor Communications consisting of:

o Communication control signals

o Enable and disable procedures

o Unique input/output requirements

o Control word formats

o Communication responsibilities

o Data transfer technique and sequence

o Error conditions

o Data transfer requirements

o Data transfer rate

o Whether Periodic/ aperiodic

o Minimal interval between transfers

o Interface testing techniques

• Data Unit Descriptions consisting of:

o Positions of the fields
'

44

•

o Use of field

o Name of field

o Beginning and ending bit positions

o Bit positions not used and available

o Scaling and units

'
o Scaling convention

o On or set conditions

• Message Descriptions consisting of:

o Positions l>f the fields

o Data unit source and use

o Word positions of the words of the message

o Name of field

o Beginning and ending bit positions

o Bit positions not used and available

o Scaling and units

o Scaling convention

o On or set conditions

5. 7 Program Design Specification

The Program Design Specification document is the design description of

the software system. It is based upon the performance requirements defined in

the Program Performance Specification. The Interface Design Specification is

also accommodated. It specifies the programming approach for implementing the

computer program and defines the program architecture for further program

45

'

decomposition.

The Program Design Specification contains:

• Functional allocation to be perforrned by the subprogram or modules
with a table showing which subprograrn or n1odule satisfies which
requiren1ent f rorn thf~ J>rogram J>erforrnance Specification

• Functional description for each subprogram or module containing:

o Inputs with specific data required and its sources

o Processing

o Outputs with intended destination .

o Other functions performed by the subprogram

o Common subroutines

o The interface between the executive control routines and the
subprogram with scheduling requirements and conditions

• Subprogram storage and processing allocation of memory storage and

processing time

• Program functional flow of both system data and execution control
with diagrams and containing:

o Program interrupt control with the source, purpose, type,
predicted rate, of occurrence, and reqgired control response

o Subprogram reference control with the control logic, assignment
of priorities, and permissible cycle times

o Special control features which affect the design of the control
logic

• Programming guidelines containing:

o The programming language and its supporting system

o Manuals for the programming language and supporting system

o Mnemonic labeling conventions

46

....

• \

o Program version identification

• Quality Assurance

5.8 . Data Base Design Document

The Data Base Design Documents provides a complete detailed description

of all common data items necessary to carry out the functions of the software

system. Common data is that data required by two or more subprograms.

Common data includes

• Tables

• Variables

• Constants

..... Flags

• Indexes

The detailed information of each table contains:

• Table name

• Purpose and type

• Size and indexing procedure

• Subitems

o Field name

o Purpose and type

I
o Size

o Binary point

o Range of values and initial conditions

o Static or dynamic

47

'

o Structure and bit layout

The detailed information of each variable contains:

• V ariablc name

• Purpose and type

• Size

• Binary point

• Range of values

• Static or dynamic

• Structure and bit layout

The detailed information of each constant contains:

• Constant name

• Purpose

• Initial condition

• Structure and bit layout

The detailed information of each flag contains:

• Flag name

• Purpose

• Initial condition

• Structure and bit layout

The detailed information of each index contains:

• Index name

• Purpose

The Data Base Design Document also contains a matrix of all the data

48

I

base items with the referencing subprograms. The matrix indicates whether the

data item was set, used, or both.

The Data Base Design Document is based on the Program Performance

Specification and is developed in consonance with the Program Design

Specification, and concurrently with the Program Description Document.
~I

5. g Program Description Document

The Program Description Document represents the further detailing of the

software system into individual operations to be performed by the soft)Vare

systern. The Program Description Document provides a complete technical

description of all software system subprogram functions, structures, operation

environments, operating constraints, data base organization, source and object

code listings, and diagrammatic/narrative flows. Each subprogram or function is

described in its own volume with referenced appendixes as software printout

listings. The Program Description Document is oriented to programming logic

and programmer's language. The
. .

aim 1s to design and completely define the

basic subprogram logic and program procedures for each application subprogram

and each system control subroutine. The Program Description Document is

generated from the Program Design Specification.

The Program Description Document contains:

• A detailed subprogram description with its processing capability using
the same mnemonics which will appear in the source code

• The subprogram data base in the same detail as found in the Data
Design Document for each:

o Table

o Variable

' 49

.·.

o Constant

o Flag

o Index

• A common data base reference to local and common data base items
and the location of each ref ere nee

• Input/ output formats processed by the subprogram

• Required system library subroutines and volume the subroutine is
described

• Conditions for initiation of the subprogram

• Subprogram limitations including:

o Timing requirements

o Limitations of algorithm and formulas used

o Design limits of input and output data

o Associated error condition sensing provided

o The error and reasonableness checks that are programmed into
the various routines

• Interface description with other subprograms and system or executive
which it interfaces

5.10 Operator's MBnual

The Operator's Manual presents procedures for prestandby /operate,

monitoring, and recovery of the software system. It is limited to instructions for

preparing and

capability.

maintaining the software system

The Operator's Manual contains:

•
Ill the required state of

• Operational Environment to allow operation of the software system
which include:
-~

;
l

50

•, -

o Equipment requirements

o Program rnaterials

o Supporting Docurnentation

• Prestandby ProcedurPs for preparation and setup prior to the
software system operation which include:

o Equipn1ent Setup

o Program Setup

o Adaptation Data Setup

• Standby /Operate Procedures which start the system after prestandby
procedhres are complete

• Monitoring Procedures for trouble and malfunction indications

• Recovery Procedures for restating the software system after an abort
or interruption

5.11 System Operator's Manual

The System Operator's Manual is intended to be the sole reference that is

required for the individual operator.

The System Operator's Manual contains:

• Instructions from the system control panel for:

o Program loading

o lni tiation

o Modification

o Operation

o Termination

• Communication links descriptions and the requirements for link
operation

51

,

\

• Instructions for operating the system keyset devices with figures for

clarity

• Instructions for the basic operation of the consoles with figures for

clarity

• The normal sequence of functions the operator must perform

• The random conditions requiring an operator's response

• The corrective response
operator must perform

.
1n response to illegal actions that

The operational procedure is written with the following guidelines:

• The procedures agree exactly with the performance requirements

the

• If the procedure includes several modes of operation, each mode is
clearly defined and presented individually

• The material is presented in a step-by-step manner

• Procedural steps are expressed precisely in the imperative mode, using
system nomenclature

• Each step is listed as an individual item

• Each step is listed in the order in which it is to be performed

• Each step is precise and unambiguous

• Supporting illustrations is comprised of view of the equipment with
each control and indicator identified

• Data entry number and name is to be contained within each
appropriate mode

• The difference in mode operations while using any reduced capability
modes or program is described

52

'

5.12 Software Change/Software Enhancement Proposal

The Software Change f>roposal and the Software f~nhancement Proposal

are used to request changes to established baselines. A Software Change

Proposal is used in cases where the change is an addition, deletion, or

modification of a capability which would be evident to the user /operator of the

system and/or affect the compatibility of the software with previous unchanged

versions. A Software Enhancement Proposal is used in cases where the change

will alter the component operation but has no externally visible effect on the

operation of the system nor alter the compatibility of the software with previous

versions. The Software Change Proposal/Software Enhancement Proposal is the

vehicle for analyzing, approving, and acting on the propsed change and must be

complete in detail and supporting documentation to fulfill this function.

The Software Change Proposal/Software Enhancement Proposal contains:

• System/Project name

• Date Prepared

• Identification number for the proposal

• Ti tie of the proposal

• Originator of the proposal

• Component affected

• Description of problem or need

• Alternative/Impacts if not approved

• Baselines affected

• Documentation affected

• Other systems affected

'

53

• Effect on user I
;

• Net effect on system resources

• Developrnental requirements

• Most effective point in the development recommended

• Accomplishment of the proposal

• Supersedes or replaces other proposals

• Cost, schedule or interface impact

• Configuration control information

5.13 Software Trouble Report

The Software Trouble Report shows all essential data on each software

problem detected. Software problems are classified by category as fol1ows:

• Software Trouble - The software does not operate according to
supporting documentation and the documentation is correct.

• Documentation Trouble - The software does not operate according to
supporting docun1entation but the software operation is correct.

• Design Trouble - The software operates according to the supporting
documentation but a design deficiency exists. The design deficiency
may not always result in a directly observable operational symptom,
but possesses the potential of causing trouble.

The Software Trouble Report is the basic input to the Software Quality

Assurance program during the test and acceptance phase of the development

effort.

The Software Trouble Report contains:
.,

• Date Prepared

• Category of Software Trouble

• Priority of the Severity of the Software Trouble

54

• Number for control purposes

• Title describing the problem

• Official designation of the problem

J

• Document affected

I
• Unit/Test which trouble was detected

• Program identification number

• Reference document

• Function affected

• Responsible module

• Test step being executed when the trouble was discovered

• Originator, title, and phone

• Run time elapsed until trouble occurred

• Simulation used for operational conditions

• Linking for intersystem communications

• Configuration in Memory

• Problem duplicability

• Data dump

• System status/environment

• Trouble description

• Stop data available

• Testing performed

• Software Quality Assurance sign-Dff

• Current status of the trouble

55

5.14 (~om1>uter Test Plan

i'hr Cornpu tcr 'l'cst l'lan defines the total scope of the testing to be

performed. It identifies the particular level of testing and describes its

contributing role for ensuring the reliability and certified acceptance of the

softwarr system. 1'he Computer 1'est Plan is used to review and ensure that the

software systerr1 is effectively meeting the technical requirerr1ents and the system

integration is ensured.

The Computer Test Plan contains:

• The test requirements for each level of testing addressing each:

o Input

o Output

o Operator actions

o Any other requirements deemed necessary for evaluation

• The test management requirements

• Personnel requirements

• Hardware requirements
~

• Supporting software requirements

• Schedule

• Quality assurance

56

5.15 Comp11ter Test Specificatior1s

The Cornputer 1"est Specification is prepared for each test specified in the

corresponding Computer Test Plan, norrr1ally one for each subprogram or

specified function and one for the pertinent test. A Computer Test Specification

is prepared before, and is the basis of the developrnent of the Computer Test

Procedures.

The Computer Test Specifications are broken into two parts, the System

Test Specification ancJ the Function Test Specification. The System Test

Specification test the requirements of the Program Performance Specification by

the normal operation of the software system. The Function Test Specification

test the requirements of the Program Performance Specification that cannot be

verified by normal operation of the system.

Both parts of the Computer Test Specifications contain:

• Test management requirements

• Personnel requirements

• Hardware requirements

• Support software requirements

• Schedule

•

• Quality assurance

These topics are only addressed if there was a change in the Computer

Test Plan.

\

The System Test Specification contains:

• Test inputs of upper and lower limits with methods of generation

• Required accuracies

57

• Expected output values and, if the output is a range, the upper and
lower lirnits of the range

• Data collection methods type of recording, frequency, and duration

• Interface of hardware/man-machine, input/output system interface,
the destination, and result intended

• Method of data exchange for the data flow •
• Timing requirements for the input/ output to the various subsystems

• Degradation of maximum time limit for continuous operation

• Casualty recovery techniques

• Display requirements that are obtained

• Communications requirements both internal and external

The Function Test Specification contains:

• Pretest inputs that are used to replace the dynamic values necessary
for the operation of the function but not the evaluation of the
function

• Test inputs of upper and lower limits with methods of generation

• Required accuracies
,

• Expected output values and if the output if a range, the upper and
lower limits of the range

• Data collection methods type of recording, frequency, and duration

The Computer Test Specifications can be reviewed to ensure that the

overall objectives are fulfilled and the primary features of the software system

are evaluated, e.g., that the system or functional characteristic or particular

modes of operation are tested.

58

5.16 Computer Test Pr~edures

rfhe Computer Test Procedures provide detailed instructions for the

execution and for the evaluation of the results for each level of testing specified.

The C~ornputer 1"'est Procedures provide the quantitative results which are later

extracted from the tests themselves. The Computer Test Procedures are

developed from the System Computer Test Specifications, the Function

Computer Test Specification, and relevant design documents.

These Computer Test Procedures contain:

• Materials needed to run test

• Personnel necessary and required experience

• Setup of the computer hatdware

• Power-on of the hardware

• Loading of the software

• Step by step operating instructions

• Recording instructions

• Deviations from the Computer Test Specification

The Computer Test Specification also contains:

• Test management requirements

• Personnel requirements

• Hardware requirements

• Support software requirements

• Schedule

• Quality assurance

These topics are only addressed if there was a change in the Computer

59

)

I

Test Plan.

5.17 Computer Program Test Report

The Computer Test Report is the vehicle by which the results of the

validation of the software system are documented. The Computer Test Report is

used to describe, define, and evaluate discrepancies between the intended system
I

'

requirements and design and the program capability as produced by the· code.

The Cqmputer Test Report contains:

• The test criteria which are:

o Range of data and parameter values

o Accuracy requirements

o Program/subprogram/module capabilities

o Data rates from minimum to maximum

o Duration of test in time or number of events

o Definition of error

o Definition of failures

• Test results based on the data collected with any discrepancies with
its impact and validity noted

• Evaluation criteria with range of data and parameter tested and
identification of any functional deficiencies, limitations, or constraints
detected during the test

• Test evaluation that the functional capability was demonstrated

• Recommendations of improvements
determined during the test period

60

•
Ill design or operation as

.. ~

•.

5.18 Software Program Pncknge Document

The Software J>rograrn Jlackage l)ocument consists of the code and any

data which are necessary to run the software properly. - This data may include,

but not limited to:

• Adaptation Data

• Data File Con tents

• Set-up Data

• Progran1 Parameter Values

The Software Program Package Document contains:

• Software source code suitable for assembly or compilation

• Complete object form suitable for loading and execution

• Source program listing

• Error-free source/ object listing

• Cross reference listing of each mnemonic and statement that
references that mnemonic

• Miscellaneous listings used in the program reproduction

The program material items are used to produce, maintain, and update the

software system.

5.19 Documentation in the Source Code

Thes source code is documented different ways. Each program, subprogram,

module, and unit has at the beginning of the executable code an abstract. This

textual description contains:

• Inputs with the allowed and expected range of values for all inputs

• Outputs with the allowed and expected range of values for al1

61

'

,,(

...

outputs

• Function or task
i
l

• List of other components called

• The original and updating programmer names

• Dates and reasons for all changes

• A description of any transportability constraints

In addition to a general explanations, to assist understanding, precise

references to the appropriate statements labels and data-names are included in

each module and unit.

Comments are used throughout the software to facilitate software

comprehension. Each source statement is to be self-defined or defined by a

comment phrase to a level of understandable by a person knowledgeable in

software but not associated with the original development effort. Logical groups

of comments may be included in a single comment line.

Other methods to improve readability and clarity include:

• Software structural indentation

• Paragraphing

• Blocking by blank lines

62

I

Chapter 6

DOD-STD-2167

DOD-STD-1679 documents are all included in the DOD-STD-2167. More

documents were added, either by splitting DOD-STD-1679 documents into

separate documents, or adding documentations requirements which were lacking.

More detail is given concerning paragraph numbering and cover page layouts.

6.1 Documentation Types

The documentation for management documentation, requirements

documentation, design documentation, operations documentation, and the

documentation of changes remained essentially the same.

The major type of documentation that was changed was the support

documentation. A new documentation type was added for diagnostics.

6.1.1 Support Documentation

Support documentation contains the information necessary to create the

software system using the source code. The documents produced are the Version

Description Document, the Software Programmer's Manual, Firmware Support

Manual, and the Computer Resources Integrated Support Document.

Since software may have many different baselines, a Version Description

Document is used to identify the version of the software system concerning

contents and operations.

The Software Programmer's Manual contains the information necessary for

programming the software on the target computer. The Firmware Support

Manual contains the information necessary for installing firmware devices. The

Computer Resources Integrated Support Document contains the software life

63

·,

!

(

r
'

'

support information.
..

6.1.2 Diagnostic Documentation

Since a software program may be written to throughly test the software

system, this program may be adapted as a diagnostic tool. Diagnostic

documentation contains the information necessary to identify a software

malfunction. The document produced is the Computer System Diagnostic

Manual.

6.2 System/Segment Specification

The System/Segment Specification is similar to the MIL-STD-490 Type A

- System Specification. The main difference is the requirements are either

designated as a hardware or software requirement.

6.3 Software Development Plan

The Software Development Plan is similar to the DOD-STD-1679 Software

Development Plan. A section has been added concerning software standards and

procedures. This may cite a Software Standards and Procedures Manual or

include the information here.

6.4 Software Configuration Management Plan

The Software Configuration Plan is similar to the DOD-STD-1679 Software

Configuration Plan.

64

..

6.5 Software Standards and Procedures Manual

The Software Standards and Procedure Manual is the information that was

formerly found is in the DOD-STD-1679 Program Design Specification

concerning programming guidelines.

6.6 Software QuHlity Eval11Htion Plan

The Software Quality Assurance Plan is similar to the DOD-STD-1679

Software Quality Assurance Plan.

6. 7 Software Requirements Specification

The Software Requirements Specifications is similar to the DOD-STD-1679

Program Performance Specification.

'\

6.8 Interface Requirements Specifications

The Interface Requirements Specifications is similar to the DOD-STD-1679

Interface Design Document.

6.0 Software Top Level Design Document

The Software Top Level Design Document is similar to the DOD­

STD-16 79 Program Design Specification without the programming guidelines.

6.10 Software Detail Design Document

The Software Detail Design Document is similar to the design section of

the DOD-STD-1679 Program Description Document.

65

'

-,
l

6.11 Interface Design Doc,1ment

The Interface l)esign Document is similar to the DOD-STD-1679 Data

Base Design Document.

6.12 Data Base Design Document

rfhe l)ata Base Design Document is similar to the data base section of the

DOD-STD-1679 Program Description Document.

6.13 Software Product Specification

The Software Product Specification is similar to the DOD-STD-1679

Program Description Document.

6.14 Version Description Document

The Version Description Document is used to identify new and interim

versions of the software system. This identification contains:

• Inventory of materials to be released

• Inventory of the contents of the software system

• Changes installed

• Adaptation data

• Interface compatibility

• Bibliography of ref ere nee documents

• Operational Description

• Installation Instructions

• Possible problems and known errors

66

..

I

r

6.15 Software Test Plan

The Software Test Plan is similar to the DOD-STD-1679 Computer Test

Plan.

6.16 Software Test Description

The Software Test Description is similar to the DOD-STD-1679 Computer

Test Specifications.

6.17 Software Test Procedures

The Software Test Procedures is similar to the DOD-STD-1679 Computer

Test Procedures.

6.18 Software Test Report

The Software Test Report is similar to the DOD-STD-1679 Computer Test

Reputer.

6.19 Computer Support Operator's Manual

The Computer Support Operator's Manual is similar to the DOD­

STD-1679 System Operator's Manual.

6.20 Software User's Manual

The Software User's Manual is similar to the DOD-STD-1679 Operator's

Manual.

67

..

6.21 Comp11ter Support Diagnostic Manual

The Corr1puter Support Diagnostic Manual contains the information

necessary to identify a computer systern malfunction and instructions to run the

diagnostics. This information include:

• Identification of all support hardware, software, and procedures to
perforrr1 system diagnosis

• A description of each diagnostic tool available for the system

• A description of each diagnostic test available on the diagnostic tools,
including:

o The purpose of each test

o The procedures for executing the test

o Additional hardware, software, or firmware for executing the
test

o All diagnostic messages

6.22 Software Programmer's ManuBI

The Software Programmer's Manual contains the information to facilitate

programming or reprogramming software for the target computer. This

information includes:

• Equipment configuration

• Operational characteristics, capabilities, and limitations

• Compilation and assembly instructions

• Programming features

• Program instructions

• 1/0 control features

• Examples of programming technique

68

• Special features

• Error detection and diagnostic features

6.23 Firmware Support Manual

The Firmware Support Manual contains the information necessary to

modify or replace the read-only memory, programmable read-only memory, and

other such firmware components of the system. This information includes:

• Description of the firmware components

• Installation and repair procedures

• Security implications

• Operational and environment limitations

• Hardware needed for programming firmware devices

• Software needed for programming firmware devices

• Procedures for programming firmware devices

• Vendor information

6.24 Operational Concept Document

The Operational Concept Document contains:

• The mission of the software system

• The operational environment

• The support environment

• The functions and characteristics of the software system withi"n the
overall system

-,

69

I

,

6.25 Computer Resources Integrated Support Document

The Computer ltesources Integrated Support Document contains the

information that is required to perforrn life cycle support of the software system.

This information includes:

• The support environment describing required

(J
o Support software

o Equipment

o Facilities

o Personnel

• Support operations, describing:

o General usage instructions describing

• Initiation

• General Operation

• Monitoring operations of the support environment

o Administration

o Software modification

o Software integration and testing

o System and software generation

o Software quality evaluation

o Corrective action system

o Configuration management

o Simulation

o Emulation

70

• .

'

o Reproduction

o Operational d istri bu tions

• Training plans and provisions

• J>redirtrd level of change to software system in the support
environment

6. 26 Engineering Cl1ange Proposal

The Engineering Change Proposal is similar to the DOD-STD-1679

Software Change Proposal .

6.27 Specification Change Notice

The Specification Change notice will describe changes to the baseline and

accompanies an Engineering Change Proposal.

71

_
I

Chapter 7

Conclusion f

Writing good doctffTlentation is not easy., nor is it a single stage process.

Documents must be written, read, criticized, and then rewritten, and the process

should continue until satisfactory documents are produced.

7.1 General Aspects of Good Documentation

While documentation may be technically complete, certain considerations

can enhance the information presented. In summary they are:

• Who - understand the user's thought process

• Simplicity - keep it simple

• Examples - use plenty of meaningful examples

• Details - sink the details

• Retrieval - provide easy access

• Perspective - keep the user point of view at all times

• Appearance - it must look nice to read well.

7.2 Writing Style Guidelines

Some writing sty le guidelines are:

• Active tense rather than passive tense should be used.

• Long sentences which represent a number of different facts should not
be used. It is better to use a number of shorter sentences.

• Previously presented information should not be referred to only by a
reference number. What the reference covered should also be stated.

• Facts should be itemized whenever possible rather than present them
in a sentence.

72

• If a description is cornplex, it should be repeated by presenting two
or rr1or(1 differently phrased d(•srriptic>ns of the sarn(• thing.

• A sent.('llf«' should uot h<' vtrbose. A conr(!J>t should be stated in as
fe\\' words as possibl(• without losing th<' rneaning.

• 1'errninology should Le precisP, and if necessary, the terms may need
to b(• defiru'd before they are used.

• Paragraphs should bt· short. As a general rule, no paragraph should
be mad(1 up of rnore than S(!V (1 n sentences.

• 11eadings and Subheadings should be used.

• (;rammatically correct constructs should be used.

• Words should be spelled correctly.

7 .3 (~011clusion

The key to a large software system control is the software system

comprehension. Comprehension of the software system and its parts requires

• Knowledge of total system objectives
J

• The partition of requirements into individual capabilities or functions

• The mapping of requirements onto a system structure and its

structural elernents

• The algorithm used in implementing the system and its subsystem at

various levels

Clearly then a large software system must be accompanied by

documentation containing this information. Moreover, the documentation must

be readily accessible according to the particular needs of the inquirer. And the

documentation must remain correct and complete as it keeps pace with the

changing system.

73

...

References·

Andriole, Stephen J. Software Validation, Verification, Testing, and
Documentation. Princeton, NJ: Petrocel Ii Books, 1986.

Belady, l.1. A. and l.Jehrnan, M. M. Characteristics of Large Systems. In
11

Wegner, Peter {Ed.), Research /Ji.rections in Software Technology.
Massachusetts Institute of Technology, 1980.

DOD. Military Standard Specification Practices {DOD-STD-490 ed.). Author,
30 October 1968.

Gilbert, Philip. Software Design and Development. Chicago, Ill.: Science
Research Associates, Inc., 1983.

Mecham, Douglas. Writing A User Guide. In Warren, Jim (Ed.), Conference
Proceedings, The Second West Cost Computer Faire. Palo Alto, Cal.:
Computer Faire, March 1978.

Navy. Computer Program Test Plan (DI-T-2142 ed.). Author, 1983.

Navy. Computer Program Test Procedures (DI-T-2144 ed.). Author, 1983.

Navy. Computer Program Test Report (DI-T-2156 ed.). Author, 1983.

Navy. Computer Program Test Specification (DI-T-2143 ed.). Author, 1983.

Navy. Computer Resources Integration Support Document (DI-MCCR-80024
ed.). Author, 1985.

Navy. Computer Software Trouble Report (DI-E-2178 ed.). Author, 1983.

Navy. Computer Support Diagnostic Manual (DI-MCCR-80020 ed.). Author,
1985.

Navy. Computer Support Operator's Manual (DI-MCCR-80018 ed.). Author,
1985.

Navy. Data Base Design Document (DI-MCCR-80028 ed.). Author, 1985.

Navy. Data Base Design Specification (Dl-S-2140 ed.). Author, 1983.

Navy. Department of Defense Standard, Software Development (D0D-
STD-1679A ed.). Author, 22 October 1983.

Navy. Firmware Support Manual (DI-MCCR-80022 ed.). Author, 1985.

Navy. Interface Design Document (DI-MCCR-80027 ed.). Author, 1985.

Navy. Interface Design Specification (DI-E-2135 ed.). Author, 1983.

Navy. Interface Requirements Specification (DI-MCCR-80026 ed.). Author,
1985.

74

;,

•

Navy. Military Standard Defense System Software Development (DOD-STD-2167
ed.). Author, 4 June 1985.

Navy. Operati'onal Concept /)ocument (DI-M(~CR-80023 ed.). Author, 1985.

Navy. Operator's Manual (1)1-M-2145 ed.). Author, 1983.

Navy. Program Description Document (DI-S-2139 ed.). Author, 1983.

Navy. Program l)esign Speczficatz'on (Dl-f~-2138 ed.). Author, I 983.'

Navy. Progran1 Package Docunient (DI-S-2141 ed.). Author, 1983.

Navy. Program Perforrn.ance S"'pecification (DI-E-2136 ed.). Author, 1983.

Navy. Softu,are Configuration Management J>/an (DI-t:-2175 ed.). Author,
1983.

Navy. Softu,are Configuration A1anagement Plan (DI-MCCR-80009 ed.).
Author, 1985.

Navy. S~oflt1Jare Detail Design l)ocument (DI-MCCR-80031 ed.). Author, 1985.

Navy. Softu,are Development Plan (DI-A-2176 ed.). Author, 1983.

Navy. Software Development Plan (DI-MCCl{-80030 ed.). Author, 1985.

Navy. ..',oftware Product Specification (DI-MCCR-80029 ed.). Author, 1985.

Navy. Software Programmer's Manual (DI-MCCR-80021 ed.). Author, 1985.

Navy. Software Quality Assurance Plan (DI-R-2174 ed.). Author, 1983.

Navy. Software Quality Evaluation Plan (DI-MCCR-80010 ed.). Author, 1985.

Navy. Software Requirements Specification (DI-MCCR-80025 ed.). Author,
1985. • ...

Navy. Software Standards Procedures Manual (DI-MCCR-80011 ed.).
Author, 1985.

Navy.

Navy.

Navy.

Navy.

Software

Softu1are

Software

Software

Test Description (DI-MCCR-80015 ed.). Author, 1985.

Test Plan (DI-MCCR-80014 ed.). Author, 1985.

Test Procedure (DI-MCCR-80016 ed.). Author, 1985.

Test Report (DI-MCCR-80017 ed.). Author, 1985.

Navy. Software Top Level Design Document (DI-MCCR-80012 ed.). Author,
u 1985.

Navy. S"oftware User's Manual (DI-MCCR-80019 ed.). Author, 1985.

N8\"Y· System Operator's Manual (DI-M-2148 ed.). Author, 1983.

75

Navy. System/Segment Specification (DI-MCCR-80008 ed.). Author, 1985.

Navy. Version Description Document (DI-MCCR-80013 ed.). Author, 19c8~/

Parikh, Girish. Techni'ques of JJrogram and S"ystem Maintenance. Winthrop
Publishers, Inc., 1982.

Royce, Dr. Winston W. Managing the l)cvelopment of Large Software Systems.
In 9th International l""onference on ..'ioftware Engineering. IEEE, 1987.

Sommerville, I. Software Engineering. Addison-Wesley Publishing Co., 1982.

Tausworthe, Robert. Standardized Development of Computer Software. Prentice­
Ha11, Inc., 1977.

76

Vita

Demetria Deakos was born 'November 18, 1950 in Hazleton, Pa. She was

the youngest child of Pietro and Amalia Deakos. She attended Wilkes College

from 1968 to 1972, and graduated with a Bachelor of Science in Chemistry. She

attended Lehigh University from 1983 to 1987 and graduated with a Master of

Science in Computer Science.

""'·

.77
'

	Lehigh University
	Lehigh Preserve
	1987

	Software documentation for the Department of Defense using the software life cycle /
	Demetria Deakos
	Recommended Citation

	tmp.1551116526.pdf.i2ImV

