Lehigh University
Lehigh Preserve

Theses and Dissertations

1987

Software documentation for the Department of
Defense using the software life cycle /

Demetria Deakos
Lehigh University

Follow this and additional works at: https://preservelehigh.edu/etd

b Part of the Electrical and Computer Engineering Commons

Recommended Citation

Deakos, Demetria, "Software documentation for the Department of Defense using the software life cycle /" (1987). Theses and
Dissertations. 4805.
https://preservelehigh.edu/etd /4805

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an

authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

https://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F4805&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F4805&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F4805&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=preserve.lehigh.edu%2Fetd%2F4805&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd/4805?utm_source=preserve.lehigh.edu%2Fetd%2F4805&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

Software Documentation
For The Department Of Defense

Using the Software Life Cycle

by

Demetria Deakos

A Thesis
‘ Presented to the Graduate Committee
of Lehigh University
in Candidacy for the Degree of
Master of Science
n

Computer Science

September 1987

Bz i U Sk A NS [N o A — e v g e

This thesis is accept,e:i and approved in partial fulfillment of the

requirements for the degree of Master of Science in Computer Science

Date : *S;A?'éwzt/z /7/ /j//

Professor in Charge

Head of Division

1

Table of Contents

Abstract
1. Introduction

1.1 Development Documentation
1.2 Product Documentation
1.3 Reasons for Documentation ,
1.4 Problems with Documentation
1.4.1 Who Writes It
1.4.2 Wrong Content
1.4.3 Wrong Point of View
1.5 Categories of Problematic Documentation
1.5.1 No Documentation
1.5.2 Insufficient Documentation
1.5.3 Misleading Documentation

2. Users of Documentation

2.1 Functional View of Documentation
2.1.1 Intertask Communication
2.1.2 Instructional Reference
2.1.3 Quality Assurance Support
2.1.4 Historical Reference

2.2 Software Project Manager

d
COOCO©PW®W® ITNDDOODOD U U b O N b

2.3 Software Development Manager 11
2.4 Software Testing Manager 11
2.5 Software Quality Control Manager 12
2.6 Software Configuration Manager 12
2.7 Software Design Engineer/Programmer 12
2.8 Software Engineer/Programmer 13
2.9 Software Maintenance Engineer/Programmer 13
2.10 Software Test Engineer 13
2.11 Software Quality Assurance Engineer 14
2.12 Software Configuration Engineer 14
2.13 User’s Systems Engineer/Analyst " 14
2.14 System User/Operator 14
2.15 Software User/Operator 15
2.16 Software Training Personnel 15
3. Software Life Cycle 16
3.1 System Life Cycle 16
3.2 Application 19
3.3 Software Requirements Analysis 20
3.4 Preliminary Design 21
3.5 Detailed Design 22
3.6 Coding and Unit Testing 22
3.7 Integration and Testing 22 .

3.8 System Testing ' 23

iii

4.

5.

6.

3.9 Reliability through Documentation
3.10 Department of Defense Documentation

MIL-STD-490

4.1 Type A - System Specification
4.2 Type B - Development Specification
4.3 Type C - Product Specification

DOD-STD-1679

5.1 Documentation Types
5.1.1 Management Documentation
5.1.2 Requirements Documentation
5.1.3 Design Documentation
5.1.4 Operations Documentation
5.1.5 Documentation of Changes
5.1.6 Support Documentation
5.1.7 Test Documentation

5.2 Software Development Plan

5.3 Software Quality Assurance Plan

5.4 Software Configuration Management Plan

5.5 Program Performance Specification

5.6 Interface Design Specification

5.7 Program Design Specification

5.8 Data Base Design Document

5.9 Program Description Document

5.10 Operator’s Manual

5.11 System Operator’s Manual

5.12 Software Change/Software Enhancement Proposal

5.13 Software Trouble Report

5.14 Computer Test Plan

5.15 Computer Test Specifications

5.16 Computer Test Procedures

5.17 Computer Program Tes$/ Report,

5.18 Software Program Package Document
5.19 Documentation in the Source Code

DOD-STD-2167

6.1 Documentation Types
6.1.1 Support Documentation
6.1.2 Diagnostic Documentation
6.2 System/Segment Specification
6.3 Software Development Plan
6.4 Software Configuration Management Plan
6.5 Software Standards and Procedures Manual
6.6 Software Quality Evaluation Plan
6.7 Software Requirements Specification
6.8 Interface Requirements Specifications
6.9 Software Top Level Design Document
6.10 Software Detail Design Document

1v

23
23

25

28
30
31

33

33
33
34

36
36
37
37
38
40
4]
42
43
45
47
49
o0
51
03
o4
56
57
59

61
61

63

63
63
64
64
64
64
65
65
65
65
65
65

6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25
6.26
6.27

Interface Design Document

Data Base Design Document
Software Product Specification
Version Description Document
Software Test Plan

Software Test Description

Software Test Procedures

Software Test Report

Computer Support Operator’s Manual
Software User’s Manual

Computer Support Diagnostic Manual
Software Programmer’s Manual
Firmware Support Manual
Operational Concept Document
Computer Resources Integrated Support Document
Engineering Change Proposal
Specification Change Notice

7. Conclusion

7.1 General Aspects of Good Documentation
7.2 Wniting Style Guidelines
7.3 Conclusion

References
Vita

Abstract

Software documentation is a major ingredient necessary for the success of
a software project. The Department of Defense has definitive software
documentation standards. These software documentation standards have been
used to provide the basis for the documentation standards of the IEEE and can
provide excellent resource material for internal standards for a software project
based on software size, complexity, and management considerations.

The evolution and content of the Department of Defense software

documentation standards are discussed in this thesis. The typical users and

developers of the software documentation are listed. Guidelines for improving the

readability and usefulness of documentation are established.

Chapter 1

Introduction

Documentation, an integral part of a software system, is the comprehensive
written description of computer software in various formats and levels of detail

that clearly define:

'

e Content
e Composition

e Design

e Performance

e Testing

o Use

The success of a large software system requires following sound
documentation principles during system development and beyond. Just as a
building should not be built until all plans are drawn up and agreed upon, the
same principle applies to a large software system.

Two major areas of software documentation exist, development
documentation and product documentation. They represent two types of
documentation for different audiences: in the first case all those persons
concerned with the development of the software product, and in the second case
all those concerned with the use and application of the software product.
Typical users of the development documentation are management, operational-
design engineers, program-design engineers, programmers, program-test engineers,

evaluation engineers, and on-site maintenance programmers. Typical users of

product documentation are training personnel, operational end-user, maintenance

programmers, and management.

1.1 Development Documentation

Development documentation is closely related to the software life cycle.
Documents needed during the development of the software system describe and
specify what the user needs, i.e. the user requirements, and what the software
does. Documents also deal with the specification of how programs should be
constructed, and how their performance should be tested.

Typical document types needed here are requirements and functional
specifications, emphasizing “what the system does”, as well as design
specifications, development, and test plans, emphasizing “how the system does
it”. It is the communications vehicle during the development process, recording

technical details and key decisions for each stage of the process.

1.2 Product Documentation

Product documentation is a critical element for the use, operation,
maintenance, and conversion of software systems. A software system refers to a
well-tested computer program(s) which is fully documented and supported by a
responsible organization.

Product documentation is prepared for the end-user to have available
during normal operation, or for maintenance programmers who correct errors, or
who enhance programs by adding new features based on systemn requirements.
The end-user, who may not have a background in computers, needs to know
how the program functions are to be operated, how the computer or related
devices are to be operated, and what should be done if there should be a

malfunction in hardware or software. The product documentation must be

prepared in a language most familiar to the specific user group it is intended
for easy comprehension and use.

Additional information is required by maintenance personnel. Needed are
details on the system environment such as relationships and interactions with
computer installation facilities and other manual or automated data systems.
This information is especially useful if programs are to transferred from one

location to another.

1.3 Reasons for Documentation

Documentation provides a vehicle for communication between all
individuals involved in a software project.

Documentation provides a vehicle for review of a software system.
Standard review plateaus during a system development process are facilitated by
timely presentation of accumulated system documentation.

Documentation provides a mechanism for monitoring project progress and
evaluating personne] effectiveness by standardizing the procedures of the system
development process. Since the documentation contains the breakdown of the
software project into smaller parts, each part can be estimated and more
accurate schedule be determined

Documentation minimizes problems with personnel absenteeism and
turnover. Standards and documentation can help make any software project
people-independent by not allowing dependence upon individuals for certain or
all segments of a software system.

Documentation provides material by which operational people can be
trained to use the system. A well written description is more satisfactory than a

verbal description. This documentation can aid in the development of training

4

’

programs and be usqq in day-to-day reference by user personnel.
Documentation provides a mechanism for maintenance of the software
system. Any modifications or updates to the software system procedures and/or

programs may require three to four times the effort without good

documentation.
1.4 Problems with Documentation

1.4.1 Who Writes It

Documentation has been traditionally written by the analyst/programmer.
Technical writers also write documentation. There are distinct differences in the
documentation produced by these two groups. Documentation written by
software people is generally sloppy and disorganized, with the English resembling
a programming language. However, if the documentation is less readable, it is
more substantial in content. Documentation prepared by the technical writer is
usually more readable, understandable, and very well organized. However, this
documentation may not provide enough information since the technical writer is
not software-oriented or user-oriented. If the information flow from system
people to technical writers is inadequate, conflicting and noncommittal

statements may be located throughout the documents, and essential ones may

disappear.

1.4.2 Wrong Content
Different document types require different types of information. An
example: in a document describing design, “what has been done” is not

satisfactory if it lacks “why it has been done”.

1.4.3 Wrong Point of View
System documentation is not satisfactory if it is written from the writer’s
point of view, rather than the user’s point of view. Information required in the

maintenance phase is in many respects distinctly different from that in the

development phase.

1.5 Categories of Problematic Documentation
Problematic documentation falls into three categories: no documentation,

insufficient documentation, and misleading documentation.

1.5.1 No Documentation

The problem of no documentation is most critical at the management
level. Documentation defines the software system to be developed. Without this
definition, it is not obvious if the software has met its specified requirements.

The development of the software system becomes more people dependent.
Turnover of key personnel becomes critical since their knowledge is lost.
Previous efforts in the software development may be discarded if it is not
understandable. New personnel and maintenance personnel need a longer learning
period since necessary information is not available. Flexibility and expandability
originally designed into the system may be lost Increasing the maintenance
effort.

The software user is also affected adversely. Many features of the software

6

system may not be utilized if a user has no way to learn of the software
capabilities. If problems are encountered, the user may not know how to

proceed.

1.5.2 Insufficient Documentation
lnsuff:l.cient documentation can be seen at all levels: management, systems
y
and programmming, and users. Several "fact,ors contribute to the situation,
including improper system planning, lack of budgeted funding, and insufficient
time. The foremost factor is not setting of standards for documentation.
Information not documented because of its obviousness in the development

stage may be extremely valuable for the maintenance personnel, and is often

lost..

1.5.3 Misleading Documentation

When insufficient documentation extends to the extreme, misleading
documentation develops. This is the worst type of documentation and usually is
the result of oversight, neglect, and ignorance.

The problem with misleading documentation is that an unwillingness to
trust any documentation occurs. A direct consequence of this is further
degeneration of documentation activity. If no decisive action is taken, eventually

all documentation becomes worthless.

Chapter 2
Users of Documentation

Different. users need varying amounts of documentation based on the'
function of each document and the job function of the user. The user may use
one type of documentation to develop other documentation. Descriptions of the
neede&;documentation are based on the software life cycle concept of the next

chapter.

2.1 Functional View of Documentation

The functions documentation serves are:

e Intertask Communication

Instructional Reference
e Quality Assurance Support

e Historical Reference

2.1.1 Intertask Communication
Most software projects are divided into tasks which often are carried out

by different people. Some of these tasks are:

e Analysts formulate system requirements
e Designers develop overall program design
e Programmers provide detail code

e Quality assurance specialists are concerned with methods for quality
software development and overall system testing

e Auditors monitor overall system integrity

e Maintainers improve operations or provide enhancements and
extensions

Intertask communications are established in a formalized way. They
provide requirements to designers, designs to coders, and system specifications to
auditors and maintenance people. Functional, design, test, or system

specifications provide intertask communication. .

2.1.2 Instructional Reference

Readily available reference materials are needed to train users in system
operation. Similarly, special documentation is needed by persons concerned with
maintaining software for correction of software errors and changed requirements.

This documentation is provided in user, maintenance, and operator’s manuals.

2.1.3 Quality Aﬁsurance Support
System documentation which tells how well a system should perform are
needed by all persons concerned with system performance and quality.

Requirements documents, design specifications, quality assurance plans, test plans

and test procedures need to be provided, and results need to be reported.

2.1.4 Historical Reference

Capabilities, system features, and operational details should be recorded.
This will facilitate the re-use of well-proven ideas and assist in transfer and
conversion of programs to new system environments. It may prevent false starts

by illustrating problem solutions that have proved ineffective. System

specifications, a variety of manuals, and test reports provide this information.

2.2 Software Project Manager

The software project manager uses the initial proposal requesting the
software system. This may be a document as formal as a MIL-STD-490 system
or product specification, or an informal wish list from an end user. The purpose
of reviewing the document is to determine the feasibility of the software project,
and the eventual resources necessary to complete @it. Feasibility may be
determined from management plans from previous projects sharing similar
characteristics as well as input from other personnel to be involved in the
project.

If the software project is determined feasible, the software project manager
must receive a formalized proposal of the actual requirements of the system.
This document will be used to generate a formal internal requirements document
for the developing organization. The establishment of the formal requirements
becomes necessary to determine design, testing, quality assurance and
configuration considerations.

The project manager will then draw his own plan(s) for the software
project. This will require input for other mangers in his group to coordinate
schedule and resources for design, testing, quality assurance, and configuration.

Having separate managers for each activity will be determined by the size of

the software project and the availability of personnel to fill these functions.

10

2.3 Software Development Manager

The software development manager will use the formal internal
requirements document to develop a software development plan concerning
design and coding standards. The software development manager will also use
the formal internal requirements document to determine the design of the
software. After the design is established, the software development manager is
responsible for the development of several design documents. These documents
describe the top level design, the lower level design, and the data base
consideration.

After the code is developed, the software development Imanager is
responsible for the development of the support documentation. This
documentation contains the practical information necessary to create, modify,

and install the source code and data.

2.4 Software Testing Manager

The software testing manager will use the formal internal requirements
document to develop a software test plan concerning testing. The software test
manager will also use the formal internal requirements document to determine
the specifications to be tested. After the testing methodology is established, the
software testing manager 1s responsible for the development of several test
documents. These documents describe the test specifications, the test procedures,

testing problems, and the report of the final test results.

11

2.5 Software Quality Control Manager

The software quality control manager will use the formal internal
requirements document to develop a software quality control plan. The software
quality contr;l manager will also use the formal internal requirements document
to verify that the software is reliable, effective and developed according to

software development plan. After the design is established, the software quality

assurance manager is responsible for documentation of discrepancies.

2.6 Software Configuration Manager

The software configuration manager will use all documentation available on
a software project. The software configuration manager is responsible for the
identification and control of the documentation, the establishment of baselines or
versions of documentation, the status accounting, the auditing of the

documentation, and the orderly process of filing and storage.

2.7 Software Design Engineer/Programmer

The software design engineer/programmer will use the formal internal
requirements document to determine the design of the software. After the
design 1s established, several design documents are developed. These documents
describe the top level design, the lower level design, and the data base

consideration. These documents are used to produce the code.

12

¢

2.8 Software Engineer/ Pr(?(gmmer

The software engineer/programmer will use the design documents, which
describe the top level design, the lower level design, and the data base
consideration. These documents are used to produce the code.

After the code is developed, the software engineer/programmer will
generate the support documentation. This documentation contains the practical

information necessary to create, modify, and install the source code and data.

2.9 Software Maintenance Engineer /Programmer

The software maintenance engineer/programmer will use the internal
requirements documents, the design documents, and the documentation in the
source code to design the changes to a software system. A new baseline of
documents may be created. If a change in requirements is implemented, the
requirements documents and design documents may be updated. If an error in
software is corrected, the design documentation may be updated.

The software engineer will use the support documentation to be able to

modify and reinstall the source code. This documentation may also be updated.

2.10 Software Test Engineer

The software test manager will use the formal internal requirements
document to determine the specifications to be tested. After the testing
methodology is established, several test documents are developed. These
documents describe the test specifications, the test procedures, testing problems,

and the report of the final test results.

13

2.11 Software Quality Assurance Engineer

The software quality control manager will use the formal internal
requirements document to verify that the software is reliable, effective and
developed according to software development plan. After the design is

established, the software quality assurance engineer documents the discrepancies.

2.12 Software Configuration Engineer

The software configuration engineer will use all documentation available on
a software project. The software configuration engineer identifies and controls
the documentation, establishes the baselines or versions of documentation,
provides the status accounting, provides the auditing of the documentation, and

performs the filing and storage of documentation.

2.13 User’s Systems Engineer/Analyst

The user’s system engineer/analyst will determine the needs of the user.
He will generate the original system documentation. He will evaluate the
developer’s formal internal requirements documents, operations manuals, and test
report for satisfaction of his requirements. He will be responsible for approving

requests for changes to the software system, and have his documentation

updated.

2.14 System User/Operator

The system user/operator will use the manual necessary for the operation
of the hardware hosting the software system. This information should include
the loading of the program, any necessary adaptation data, and requirements

that are site dependent.

14

2.15 Software User/Operator

The software user/operator will use the manual for the operation of the
software. This information should include program features, limitations, error

conditions, and recovery procedures for the software.

2.16 Software Training Personnel

The software training personnel will use the manuals describing the
operation of the system and the operation of the software. The operation of the
system concern the loading of the software program into the hardware. The
operation of the software concern the Input /output requirement of the software
program. An elementary training program would include examples of the more
common features. A more advanced training manual would includes examples of

features not commonly encountered.

15

Chapter 3
Software Life Cycle

There exists a time period between the formulation of the idea about the
software system and the time the software system ends. The software life cycle
divides the time of software development into manageable parts and provides a
framework of r;li]estones, which monitor progress and make decisions about
direction and control of the software project. These parts cover such different
activities as Iinitiation, requirements analysis, design, programming, testing,

operation and maintenance. Figure 3-1 on page 17 shows the different phases of

the software life cycle.

3.1 System Life Cycle
The software life cycle is part of the system life cycle. A system includes
the combination of hardware and software. The system life cycle is broken into

four phases:

e Concept Exploration
e Demonstration and Validation
e Full Scale Development

e Production and Deployment
The Concept Exploration phase is the initial planning period. = The
technical, strategic, and economic bases are established through comprehensive
studies, experimental development, and concept evaluation. This effort may be
directed toward refining solutions or developing alternative concepts to satisfy a
required operational capability.

The Demonstration and Validation phase is the period when major system

16

T

PRODUCTION

concerty BEMONSTAATION
PUASE | ixpiaraTiON | AND VALIDATION FULLICALE OEVELOPLLNT AND DEPMLOYMENT
umomnnu SYSTEMI0F TWAARL SYSIEM PRODUCTION
ACTIVITY | REGUIREMENTS AEQUINEMENTS COMPUTER BOF TWARE DEVELOPMENT | INTEQRATION |OT&E | \0u'nrp ovmenT
pEFIRITION DEFINITION AND TESTING
T - N
~
~
- ~
- ' ~
| S o
LOFTWARE BOFTWARE] -
ACTIVITY “::'A"f"“u:“ PALLIWNARY | ' Se
DELGN DELGA CODINSAND [goprwant
US1G TESTIS | nrEgAATION $0F TWARE
| I AND TESTING | MAFOAMANCE
| I THITING
| ! A
| ' N A X
A A A A
SOFTWARE SYSTEM SOFTWARE PRELIMINARY CAINCAL 1131 FUNCTIORAL
ALVIEWS AND DERICH SPECIFICATION DESIGN DESICN READINESS CONFIGURATION
AUDITS REVIEW REVIEW REVIEW REVIEW REVIEW AUDIT (FCA) -
BOR) B3A) POR) (COA) (TRR) PHYSICAL
CONFIGQURATION
AUDIT (PCA)
FORMAL
QUALIFICATION
REVIEW (FQA)
Figure 3-1: Software Life Cycle

17

characteristics are refined through studies, system engineering, development of
preliminary equipment? and prototype computer software, and test and
evaluation. The objectives are to validate the éhoice of alternatives an to
provide thg basis for determining whether to proceed into the next phase.

The Full Scale Development phase is the period when the system,
equipment, computer software, facilities, .personnel subsystems, training, and the
principal equipment and software items necessary for support are designed,
fabricated, tested, and evaluated. It includes one or more major iterations of the
software development cycle. The intended outputs are a system which closely
approximates the production item, the documentation necessary to enter the
system’s Production and Deployment phase, and the test results that
demonstrate that the system to be produced will meet the stated requirements.
During this phase the requirements for additional software items embedded in or
assoclated with the equipment items may be identified. These requirements may
encompass firmware, test equipment, environment simulation, mission support,
development support, and many other kinds of software.

The Production and Deployment phase is the combination of two
overlapping periods. The production period is from the production approval until
the last system item 1is delivered and accepted. The deployment period

commences with delivery of the first operational system and terminates when

the last systems are removed from operations.

18

' _— e i R e e MR

3.2 Application'

Software development is usually an iterative process, in which an iteration
of the software development cycle may occur one or more times during each of
the system life cycle phases. Successive iterations of software development
usually build upon products of previous iterations. For example, design may
reveal problems which lead to the revision of requirements. Testing may reveal
errors in design, which in turn may lead to redesign or requirements revision.

Documentation preparation i1s a continuous effort covering the software life
cycle. It evolves from preliminary drafts during project initiation through various
reviews and changes in development. It continues through all iterations of the
software life cycle with 1iterations caused by user feedback, changed user
requirements, and changed system requirements.

The software life cycle is broken into the six phases:

e Software Requirements Analysis
e Preliminary Design

e Detailed Design

e Coding and Unit Testing

e Integration and Testing

e System Testing

19

3.3 Software Requirements Analysis

The purpose of the software requirements analysis is:

e The requirements are clearly understood by the developer
e The requirements are mutually agreeable to the developer

e The requirements precisely state the constraints on the desired
software system

e The requirements precisely state all functions of the desired software

e The requirements provides default and error conditions whenever
necessary

e The requirements provides testable criteria for the acceptance of the
system

e The requirements indicates desired system qualities, their relative
importance, and how they will be measured

The inherent ambiguity of natural language and the complexity of prose
description makes it difficult to verify if requirements are complete and non-
conflicting. The length and complexity of prose specifications also make them
difficult to understand.

The inadequacies of unstructured paragraphs of natural language for

requirements specifications include:

e They rely on the shared linguistic experience of those responsible for
reading and writing the specification.

e They are unable to express the description of activities performed by
the system and the interacting entities within the system in a clear
and concise way.

e They are over-flexible as they allow related requirements to be
expressed in completely different ways. The task of identifying and
partitioning related requirements is more prone to error.

e They do not partition requirements effectively. As a result, the effect
of changes can only be determined by examining every requirement

20

rather than a group of relaﬁed requirements.

Unstructured natural language does not always express requirements clearly
and unambiguously. However, no formal specification language has been widely
accepted.

Requirement analysis is performed by having the developer write
requirements documents which demonstrate the understanding of the contractor’s

requirements document.

3.4 Preliminary Design
The purpose of preliminary design is to develop a design approach which

includes:

e Mathematical models
e Functional flows

e Data flows

During this phase various design approaches are considered, analysis and
trade-off studies are performed, and design approaches selected. Preliminary
design allocates software requirements to the top level computer software
com;mnents (subsystems), describes the processing that takes place within each
top level computer software component, and establishes the interface relationship
between top level computer software components. Design of critical lower
elements of the system may also be performed. The result of this phase is a

documented and approved top-level design of the software. The top-level design

1s reviewed against the requirements prior to initiating the detailed design phase.

21

3.5 betaﬂed Design'

The purpose of the detailed design is to refine the design approach so the
each top level computer software component is decomposed into a complete
structure of lower level computer software components (modules) and units. The
detailed design approach is provided in detailed design documents and reviewed

against the requirements and top-level design prior to initiating the coding

phase.

3.6 Coding and Unit Testing

The purpose of coding and unit testing is to code and test each unit of
code described in the detailed design documentation. Each unit of code is
reviewed for compliance with the corresponding detailed design description and
applicable coding standard prior to establishing internal control of the unit and

releasing it for integration.

/
\
3.7 Integration and Testing
The purpose of integration and testing is to integrate and test groups of
coded units. Integrations tests should be performed based on documented
Integration test plans, test descriptions, and test procedures. Integration test
results, and system test plans, descriptions, and procedures for testing the fully

implemented software are reviewed prior to the next phase of testing.

22

3.8 System Testing
The purpose of system testing is to test the fully implemented software

system. Test results are reviewed to determine whether the software satisfies its

specified requirements.

3.9 Reliability through Documentation
A major concern of the software system throughout the software life cycle

1s the reliability of the software. Reliability is composed of:

o Correctness of system design

o Correctness of mapping of system design to implementation

* Reliability of components making up the system

e Meeting of all specifications

o Traceability of specifications to design

e Not producing incorrect output regardless of the input

e Not allowing itself to be corrupted

e Taking meaningful and useful actions in unexpected situations

o‘Only completely failing when further progress is completely impossible

Unless the system documentation is accurate, reliability will not be visible.

3.10 Department of Defense Documentation

The Department of Defense currently has definitive software docurnentation
standards. These standards reflect the user/buyer experience gained from being
~the largest purchaser of software with an annual ten billio’n dollar budget.
Because of the large investment in these software products, research was done

to optimize the software effort to increase reliability, understandability, and

23

maintainablility. Documentation was a key component during the software life
cycle. Until coding begins, documentation is the specification and the design.
The first attempt, MIL-STD-490, was a standard on how to write
documentation. This was not enough since it did not define all the documents
needed. More software documents were established in DOD-STD-1679. As more

projects were completed using this standard, further documentation standards
were established in DOD-STD-2167.

These Department of Defense documentations standards provide the basis
for the documentation standards of the IEEE. They also provide excellent
resource material for internal standards of a software project. Some of the

factors for determining the amount and detail of documentation are:

e Functional complexity

e Size

e Criticality

e Interface complexity

e Database complexity

e Integration comp]e;ity

e Complexity of security requirements
e Certification requirements

e Probability of change

e Intended end-use

e Support concept

e Development location(s)

e Schedule

24

Chapter 4
MIL-STD-490

MIL-STD-490 establishes the format and contents of specifications for
development, procurement, production, assembly, installation, testing, or support
of items, processes, and materials. Uniform practices are established for
specification preparation, to ensure the inclusion of essential requirements, and
to aid in the use and analysis of specification content. This common style,
format, and general instructions allows the reader to know in advance what
iterns of information to expect to quickly gain familiarity with the document.

The types of specifications available are:

e Type A - System Specification

e Type B - Development Specifications

e Type C

Product Specifications

e Type D

Process Specification

e Type E - Material Specification

Only Type A, Type B, and Type C are applicable to software systems.
When a system (hardware and software) is to be implemented, a Type A
specification is used. When the hardware is determined, the Type C specification
is used. Both the Type A and Type C specifications describe “what to do” by
the user or contracting agency. The Type B specification describes “how to do”
by the developing agency.

Specifications will contain six numbered sections, and appendixes as
required. These sections are titled and numbered as follows:

1. Scope

25

2. Applicable Documents

3. Requirements

4. Quality Assurance Provisions

5. Preparation for Delivery

6. Notes

10. Appendix

Subject matter is kept within the scope of the sections so that the same
kind of requirements or information will always appear in the same section o.f
every specification. Except for Appendixes, if a section contains no pertinent
information, the section cites that this section is not applicable to this
specification.

Other 1items addressed were: language style, capitalization and spelling,
abbreviations, symbols, propriety names, commonly used words and phrases, use
of “shall”, “will” and “may”, paragraph numbering, paragraph identification,
underlining, cross references, location and preparation of figures, location and
preparation of tables, foldouts, contractual and administrative requirements,
definitions in specifications, references to other documents, identification of
specification, and changes and revision guidelines.

Section 1 or Scope consists of a clear, concise abstract of the coverage of
the specification. It may include, where necessary, information as to the use of
the item other than specific detailed applications covered under “Intended Use”
in Section 6 of the specification.

Section 2 or Applicable Documents consist of all and only those documents
referenced in Sections 3, 4, 5 and Appendixes. These documents are further

subdivided into Government Documents and Non-Government Documents and

26

are listed in the following order:

o Specifications

e Standards

e Drawings

e Other Publications

Section 3 or Requirements states the essential requirements and
descriptions that apply to performance, design, and reliability of the item,
material or process covered by the specification. This section 1s intended to
indicate the minimum requirements that must be met to be acceptable as
necessary and practicably attainable.

Section 4 or Quality Assurance Provisions includes all the examinations
and tests to be performed in order to ascertain that the product or process to
be developed or offered for acceptance conforms to the requirements in Sections
3 and 5 of the specification. The order of presentation of Section 4 material,
insofar as practicable, follows the order of requirements as presented in Section
3 of the specification, or alternately, in the most logical order of conducting the
tests listed.

Section 5 or Preparation for Delivery is the applicable requirements for
preservation, packaging, and packing an item and marking of packages and
containers.

Section 6 or Notes contains information of a general or explanatory nature,
and no requirements appear therein. The information contained is designed to
assist in determining the applicability of the of the specification. The section

should include the following, as applicable, in the order listed:

e Intended Use

27

e Ordering Information

»

o Preproduction Sample

o Standard Sample

o Definitions

o Qualification Provisions

e Cross Reference of Classifications

e Miscellaneous Notes

Section 10 or Appendix is a section of provisions added at the end of the
specification. An appendix may be used to append large (multi-page) data
tables, plans pertinent to the submittal of the item, management plans pertinent
to the subject of the specification, classified information or other information or
requirement related to the subject that would normally be invoked by the
specification but would, by its bulk or content, tend to degrade the usefulness
of the specification. In all cases where an appendix is used, reference to the

appendix is included in the body of the specification.

4.1 Type A - System Specification

The System Specification does the following:

o States the technical and mission requirements for a system as an
entity

o Allocates requirements to functional areas
o Defines the interfaces between or among the functional areas
Normally, the initial version of a system specification 1is based on

parameters developed during the concept exploration phase. This specification

(initial version) is used to establish the general nature of the system that is to

28

be further defined during the system life cycle. The system specification is
maintained current forming the future performance base for the development and
production of prime items and subsystems, the performance of such items being

allocated from system performance requirements.

The requirements contains the following:

e The performance and design requirements of the system

o The performance requirements related to manning, operating,
- maintaining, and logistically supporting the system, to the extent
these requirements define or limit design of the system equipment

e The design constraints and standards necessary to assure
compatibility of system hardware

e The definition of the principal interfaces between the system being
specified and other systems with it must be compatible

e The functional areas of the system, and the principal interfaces
between and within each functional area

e The allocation of performance to, and the specific design constraints
peculiar to, each functional area

-

e The identification and use of major Government-furnished property to
be designed into and delivered with system equipment, or to be used
with other system equipment as an entity and an integral part of
system capability

Unless purely descriptive by nature, requirements included are stated in
quantitative physical terms which can be verified. Since a system may be

either hardware, or a combination of hardware and software, the requirements

fall into three éategories:

e Hardware
e Software

e Combination of hardware and software

29

A requirement that appears to be hardware may actually be a combination
of hardware and software. The type of requirement it becomes is dependent on
system design. Some examples are maintainability and availability.

An example of the maintainability requirement is if the system has a
hardware failure, that failure i1s pinpointed to the broken circuit board. The
system design may use visible latches to indicate a failure. These latches may
be set solely by hardware circuitry or by a software command to the hardware
circuitry.

An example of the availability requirement is that the system will continue
its processing if the power interruption is less than 200 milliseconds. If system
design has all the random access memory (RAM) power-protected, this is solely
a hardware requirement. If only part of the RAM is power-protected, then this

requirement becomes both a software and hardware requirement.

4.2 Type B - Development Specification

The Development Specification states the requirements for the design or
engineering development of a software system during the development period.
The requirements are described in operational,.functional, and mathematical
language necessary to design and verify in terms of performance criteria. The
specification provides the logical, detailed descriptions of performance
requirements of a software system and the tests required to assure development
of the software system satisfactory for the intended use.

The requirements consists of

e Program Definition of Major Functions

e Detailed Functional Requirements

30

e Adaptation Information
Program definition provides details imposed by interfacing equipment,
timing and sequencing requirements, and the interactions of the major functions

of the system. An example of this is a message from the data bus is available

y
for only 100 tilliseconds.

Detailed functional requirements contain the detail text and mathematical
description of each required function. This information is broken into input,
processing, output, and special processing. An example for a top level design of
a data entry system is:

Input - Receive Keystroke from Keyboard Unit

Processing - Determine Meaning of Keystroke

Output - Display Keystroke Meaning on Display Unit

Special Considerations - Perform in 50 milliseconds.

Adaptation Data contains a description of data requirements with respect
to system environment, system parameters, and system capabilities. Examples of
items affecting adaptation data are hardware changes and constants changes for

operational needs.

4.3 Type C - Product Specification

The product specification is applicable to any item below the system level.
For a software system, this is the production of the computer programs and the
implementing media, i.e. magnetic tape, disc. etc. It does not cover the details
requirements for material or the manufacture of the implementing medium. A
translation of the performance requirements into programming terminology and
quality assurance procedures)s provided.

The requirements contain a comprehensive description of the structure and

31

function of the software system as a whole. It consists of the following:

e Function Allocation Description

e Functional Description

e Storage Allocation

e Computer Program Functional Flow

Function Allocation Description identifies and describes the allocation of
functions and tasks to be performed by the individual subprograms.

Functional Description describes a general summary of inputs, outputs, and
functions to be performed for each subprogram and common subroutine.

‘Storage allocation describes the approximations of the allocation of memory
storage to subprograms, the executive routine, subroutines, and the data base.
The timing, sequencing requirements, and equipment constraints used in
determining the allocation is described.

Computer Program Functional Flow shows the general system flow of both
data and control. If the system is to operate in more than one mode, each
mode is clearly distinguished. = Program interrupts, control logic involved in
referencing each subprogram, and special control features that affect the design

of the control logic but are not part of the normal operational are discussed.

32

Chapter 5
DOD-STD-1679

MIL-STD-490 addressed the issues of the re(juirements and design
documents. Other formal documentation types were needed. DOD-STD-1679
established uniform requirements for software development. Documentation types
were developed based on the phases of the software life cycle and the needs of

particular groups of users.

5.1 Documentation Types
The main goal of these documents types is to allow project control for

development, maintenance and reliability considerations.

5.1.1 Management Documentation

At the beginning of the software life cycle, management determines how
the software project will be planned. Clear lines of authority and responsibility
are established. Coordination of the software project is through a schedule of
events and milestones. These plans are documented in the Software Development
Plan, The Software Quality Assurance Plan, and the Software Configuration
Plan. Some variations of these plans would be to include the Software Quality
Assurance Plan as part of the Software Development Plan, to include the
Software Configuration (fManagement Plan as part of the Software Development

Plan, or include the Software Management Plan as part of the System

Configuration Management Plan.

33

5.1.2 Requirements Documentation

To determine whether the requirements were understood by the developer,
the Program Performance Specification and the Interface Design Specification
documents were established.

The Program Performance Specification determines the detailed performance
requirements of the software from documentation provided by the user which is
considered the user’s baseline. This information may be augmented by studies,
analyses, visits to the user, and survéys as necessary. However, if the augmented
information is in conflict with the user’s baseline, the documented user’s baseline
requirements take precedence. The rigid format of the document requires a
thorough understanding of the requirements. Incomplete or conflicting
requirements becomes apparent as the document is produced enabling the user
to evaluate and implement changes in the requirements.

The Interface Design Specification contains the data of the interfacing of
the software system with other computer programs or systems. The level of
detail required to adequately produce the document guarantees that enough
information is available for the eventual design of the software system.

Both the Program Performance Specification and the Interface Design
Specification are reviewed by the users in a formal design review. Each
requirement specified in the user’s baseline must be accounted for in the
Program Performance Specification. Until these documents are formally accepted
by the user, proceeding with the design documentation involves a risk to the
developer of unnecessary or invalid work. The formal acceptance of these
requirements establishes the developer’s baseline that the design documentation

is based on. These requirements documents are complete that reference to the

34

L}

user’s documents are no longer necessary and constitute the developer’s baseline.

5.1.3 Design Documentation

DOD-STD-1679 has a single design phase of the software life cycle rather
than a separate preliminary design phase and detailed design phase. The
documents produced were the Program Design Specification, the Data Base
Design Specification, and the Program Description Document.

The Program Design Specification i1s the top level design of the software
system. The Program Design Specification demonstrates that the requirements
can be broken into functions or subprograms. The naming and programming
conventions are established.

The Data Base Design Document contains the detalled data descriptions
for the data which 1s used for the communication between the various functions
or subprograms as established in the Program Design Specification.

The Program Description Document 1s broken into separate volumes for
each function or subprogram. The Program Description Document further shows
the breakdown of the function or subprogram into modules and units that
satisfies the performance requirements. The Program Description Document
contains the detailled data descriptions for the data which i1s globally used by
more than one module or unit.

The Program Design Specification, the Data Base Design Specification, and
the Program Description Document are reviewed by the user in a formal design
review. Each requirement specified in the developer’s baseline must be accounted
for in the Program Design Specification. After the validation of the design, the
developer gives these documents to the computer programmers to create the

source code.

39

5.1.4 Operations Documentation

Operations documentation contains the procedures for the loading,
initialing, and operating the software system. The documents produced are the

/ﬂ

Operator’s Manual and the System Operator’s Manual.

The Operator’s Manual is concerned with the non-functional operations.
The Operator’s Manual defines minimal processor and peripheral equipment
requirements, equipment set-up for system operation, software set-up, special
parameter entering requirements, standby/operate procedures, monitoring
procedures, and recovery procedures.

The System Operator’s Manual is concerned with the functional operations.
The System Operator’s Manual defines the individual and station functions, the
coordinated stations procedures, all user aspects, modes and procedures to
perform the system operation, the function of every control button, switch,
readout, and display affected by or affecting the system, and all constraints

imposed on the operator.

5.1.5 Documentation of Changes

For changes in the user’s baseline to be reflected in the requirements
documentation, the user must issue Software Change Proposals and Software
Enhancement Proposals. These new or modified requirements become part of the
new user’s baseline. The importance of formalized requirements changes become
apparent 1n management schedule and budget considerations caused by the
impact upon the software life cyclee. What may appear as a deletions of
requirements, may still have a negative effect on budget when documentation
~considerations are evaluated.

For changes not related to the requirements, the Software Trouble Report

36

is used. These changes occur from problems in the documentation and operation
of the software system.

The earlier a change is implemented in the software life cycle, the less
costly it becomes. For example, if the change is made during the requirements
phase of the software life cycle, then only the requirements documentation is
affected. If the change 1s made after the software 1s coded, the requirements
document, the design documentation, the test documentation, and the code may
be affected. Configuration control procedures are followed for the

implementation of changes to the software documentation and software system.

5.1.6 Support Documentation

Support documentation contains the information necessary to create the
software system using the source code. The document produced is the Program
Package Document. The Program Package Document contains all the program
materials used to produce, maintain, and update the software system.

This documentation type needs more information concerning the hardware

and software procedures for compiling, debugging and installing. These

deficiencies are to be addressed in DOD-STD-2167.

5.1.7 Test Documentation

The quality assurance portion of the MIL-STD-490 documents gave rise to
a series of test documents. Since reliability is an important consideration of the
software system, testing becomes a significant part of the software development.
The documents produced are the Computer Test Plan, the Computer Test
Specifications, the Computer Test Procedures and the Computer Test Report.

The Computer Test Plan defines the total scope of testing. Each

37

-

requirement in the Program Performance Specification must be accounted for in
the Computer Test Plan. The testing validates these requirements and is
independent of the design.

The Computer Test Specifications is prepared for each test specified in the
Computer Test Plan. The Computer Test Specifications are delineated as the
System Test Specification and the Function Test Specification. The requirements
that can not be tested by the operatio}i)f the software system are specified in
the Function Test Specification. All other requirements are specified in the
System Test Specification. For example, if the system must maintain a 50%
memory reserve, this requirement cannot be tested by operating the software
system. Therefore this requirement is tested in the Function Test Specification.

The Computer Test Procedures present detailed instructions for test setup,
execution, and evaluation for each test specified in the Computer Test
Procedures. The Computer Test Report documents the result of the tests

generated by the Computer Test Procedures. Any discrepancigs, In the expected

result and the actual result are described.

5.2 Software Development Plan
The Software Development Plan describes the comprehensive plan for the
maﬁagement of the development of effort for the software system. The Software

Development Plan provides the means for the development effort to:

e Coordinate schedules
e Control resources
e Initiate actions

e Monitor Progress

38

The Software Development Plan contains:

!
Project development organization and their titles, duties, and

relationship to other organizational entities

Program design approach of methods and techniques to ensure the
software system design satisfies all technical, operational, and

performance requirements.

Implementation approach to conform with DOD-STD-1679
development techniques as well as special coding techniques and
production methods

Resource utilization control of memory usage, mass storage allocation
and usage, system response times, central processor usage, and 1/0
utilization

Certification test philosophy and plans for each phase of the software
life cycle such as unit and module tests, program debug, Integration
tests, and acceptance testing

Program support center facilities capabilities, projected usage,
manning, special tools, and arrangements for post-delivery

maintenance
»

Quality assurance with the information required of the Software
Quality Assurance Plan or, if separate, a reference to the Software
Quality Assurance Plan

Programming standards and conventions that apply to the design and
production of the software system

Configuration management with the information required of the
Software Configuration Management Plan, or, if separate, a reference
to the Software Configuration Management Plan or System
Configuration Management Plan.

Government furnished equipment and services to be used for the
production or test of the software system

Software integration approach, plan, and organization to achieve
software integration in all system elements in both software and
hardware

Risk areas in cost, schedule, and technological risks

Schedules and milestones in the software development schedule,

39

including status reports, reviews, and audits

e Resource allocation of personnel, material, and financial resources
Graphic representations of project organization, schedule and milestones,
and resource allocation could present a clearer representation of these areas. A

minimal amount of narrative would then be needed for full understanding.

5.3 Software Quality Assurance Plan

The Software Quality Assurance Plan describes the organization and
procedures to assure the software written complies with the requirements. The
Software Quality Assurance Plan is oriented toward the design and production
of software that 1is effective and reliable, and planned and developed in
consonance with other adminstrative and technical programs.

The Software Quality Assurance Plan contains:

o The software quality assurance organization of authority and
responsibility

o The software quality assurance procedures with rules, techniques, and
methodologies for:

o Softyvare development management
o Software configuration management
o Software specification, design, and production
o Software testing
o Corrective actions on deficiencies
e Plan implementation of specific tasks, responsibilities, and resources

e Reporting and control system to:

o Monitor overall development status

40

o Base decisions on quality control data

o Disclose inadequacies, discrepancies, and deficiencies as well as
proposed improvement

o Allow rapid and effective corrective actions

5.4 Software Configuration Management Plan

The Software Configuration Management Plan describes how to assure

proper configuration identification, configuration control, and configuration status

accounting.

The Software Configuration Management Plan contains:

The configuration management organization with the responsibilities
of the members and their relationship to the overall organization and
the policies and directives relating to configuration management

The configuration identification policies and procedures for identifying
the documentation of the functional and physical characteristics of
configuration 1tems

The configuration control for changes to the baseline

The software configuration authentication of the software to the
documentation

The configuration status accounting procedures for collecting,
recording, processing, and maintaining data

The interface management for coordinating efforts to ensure
compatibility with other systems

The configuration audits plans, procedures, schedule, quality assurance
measures, and format

The control over subcontractors and vendors

The configuration management milestones for the software life cycle
phases

41

5.5 Program Performance Specification
The Program Performance Specification describes in detail all the
operational and functional requirements necessary to design, test, and maintain

the software system. It provides the logical, detail description of the performance

requirements of the system software.

The Program Performance Specification contains:

o System description - All the components in the system which affect
the software or the software performance requirements are described.
How the software interfaces to perform thé required system functions
with the other components is determined.

o Peripheral equipment identification - all the equipment which
the software will interface by then physical characteristics and
type of interface

o Interface identification - all other computer programs or systems
with which the software will interface

e Functional description - The major functions and the functional
relationships of the software with the interfaces are analyzed. The
performance of each function supported by the software, it purpose,
and functional design is described.

o Equipment description - The requirements imposed on the
software by each interfacing equipment, the purpose of the
equipment, and the use of the options and controls

o Diagrams - Diagrams of equipment and software relationships
with internal and external data flow

o Intersystem interface - The requirements imposed on the
software by each interface with other systems and equipment,
the purpose of the interface, the data to be exchanged, and the
data quantity, frequency, rate, format, content, scaling
requirements, and conventions of the data

 Detail functional requirements - Each function is described in detailed
text with logical and mathematical descriptions

o Inputs - Both internal and external with their source, format,

42

method of reception, quantity, timing, range, and scaling

o Processing - Textual and, as appropriate, mathematical
descriptions of the processing requirements of each function,
including functional parameters and geometric diagrams

o Outputs - Both internal and external with their method of
transmission and timing, meaning, format, quantity,
destinations, range, and scaling

o Special Requirements - Requirements imposed by higher-level
constraints or by exigencies of the function

e Adaptation - Parameters which reflect the system environment, limits,
and capacities and which can be defined symbolically to subsequently
be modified without altering the software logic

e Testing requirements of the functions for all levels

5.6 Interface Design Specification
The Interface Design Specification establishes the requirements for any
system which wutilizes direct digital processor interfaces. The Interface Design

Specification provides a detailed logical description of:

e All data units

e All messages

e Use of all control signals for defining interdigital processor
communication conventions

The Interface Design Specifications contains for the software system to
other systems interface signals and the other systems to the software system

interface signals:

e The summary cross reference with an alphabetical list of all signals
with page number cross references for the signal in the:

o Signal definition list

o Narrative signal flow table

43

e Signal Definition List which, for each signal, provides a detailed

o Data unit _description

o Message description

description of the:

-

e Narrative Signal Flow Table in logical groupings for all signal in a
specified interface, arranged and numbered in a sequence of normal

o Initiation

o Use

o Effects

expected occurrences of events

e Interdigital Processor Communications consisting of:

Communication control signals
Enable and disable procedures
Unique input/output requirements
Control word formats
Communication responsibilities

Data transfer technique and sequence
Error conditions

Data transfer requirements

Data transfer rate

Whether Periodic/aperiodic

, Minimal interval between transfers

Interface testing techniques

e Data Unit Descriptions consisting of:

o Positions of the fields

44

o Use of field

o Name of field

o Beginning and ending bit positions
o Bit positions not used and available
o Scaling and units

o Scaling convention

o On or set conditions

e Message Descriptions consisting of:

o Positions ®f the fields

o Data unit source and use

o Word positions of the words of the message
o Name of field

o Beginning and ending bit positions

o Bit positions not used and available

o Scaling and units

o Scaling convention

o On or set conditions

5.7 Program Design Specification

The Program Design Specification document is the design description of
the software system. It is based upon the performance requirements defined in
the Program Performance Specification. The Interface Design Specification is
also accommodated. It specifies the programming approach for implementing the

computer program and defines the program architecture for further program

45

decomposition.

- The Program Design Specification contains:

e Functional allocation to be performed by the subprogram or modules
with a table showing which subprogram or module satisfies which
requirement from the Program Performance Specification

e Functional description for each subprogram or module containing:

o Inputs with specific data required and its sources
o Processing

o Outputs with intended destination

o Other functions performed by the subprogram

o Common subroutines

o The interface between the executive control routines and the
subprogram with scheduling requirements and conditions

e Subprogram storage and processing allocation of memory storage and
processing time

e Program functional flow of both system data and execution control
with diagrams and containing:

o Program interrupt control with the source, purpose, type,
predicted rate, of occurrence, and reqiired control response

o Subprogram reference control with the control logic, assignment
of priorities, and permissible cycle times

o Special control features which affect the design of the control
logic

e Programming guidelines containing:
o The programming language and its supporting system
o Manuals for the programming language and supporting system

o Mnemonic labeling conventions

46

o Program version identification

e Quality Assurance

5.8 Data Base Design Document

of all common data items necessary to carry out the functions of the software

system. Common data is that data required by two or more subprograms.

The Data Base Design Documents provides a complete detailed description

Common data includes

-
o

Tables
Variables
Constants
Flags

Indexes

The detailed information of each table contains:

Table name
Purpose and type
Size and indexing procedure

Subitems

o Field name
o Purpose and type
/

o Size

o Binary point

o Range of values and initial conditions

o Static or dynamic

47

o Structure and bit layout

The detailed information of each variable contains:

Variable name
Purpose and type
Size

Binary point
Range of values
Static or dynamic

Structure and bit layout

The detailed information of each constant contains:

Constant name
Purpose
Initial condition

Structure and bit layout

The detailed information of each flag contains:

Flag name
Purpose
Initial condition

Structure and bit layout

The detailed information of each index contains:

Index name

Purpose

The Data Base Design Document also contains a matrix of all the data

48

base items with the referencing subprograms. The matrix indicates whether the
data item was set, tjsed, or both. |

The Data Base Design Document is based on the Program Performance
Specification and is developed in consonance with the Program Design

Specification, and concurre}‘;tly with the Program Description Document.
{)

5.9 Program Description Document

The Program Description Document represents the further detailing of the
software system into individual operations to be performed by the software
system. The Program Description Document provides a complete technical
description of all software system subprogram functions, structures, operation
environments, operating constraints, data base organization, source and object
code listings, and diagrammatic/narrative flows. Each subprogram or function is
described in its own volume with referenced appendixes as software printout
listings. The Program Description Document 1s oriented to programming logic
and programmer’s language. The aim 1is to design and completely define the
basic subprogram logic and program procedures for each application subprogram
and each system control subroutine. The Program Description Document 1is
generated from the Program Design Specification.

The Program Description Document contains:

e A detailed subprogram description with its processing capability using
the same mnemonics which will appear in the source code

e The subprogram data base in the same detail as found in the Data
Design Document for each:

o) Table

o Varlable

49

o Constant
(@ Flag
o Index

e A common data base reference to local and common data base items
and the location of each reference

e Input/output formats processed by the subprogram

e Required system library subroutines and volume the subroutine is
described

e Conditions for initiation of the subprogram

e Subprogram limitations including:

o Timing requirements

o Limitations of algorithm and formulas used
o Design limits of input and output data

o Associated error condition sensing provided

o The error and reasonableness checks that are programmed into
the various routines

e Interface description with other subprograms and system or executive
which it interfaces

5.10 Operator’s Manual

The Operator’s Manual presents procedures for prestandby/operate,
monitoring, and recovery of the software system. It is limited to instructions for
preparing and maintaining the software system in the required state of
capability.

The Operator’s Manual contains:

e Operational Environment to allow operation of the software system
which include:

)

o0

o Equipment requirements
o Program materials
o Supporting Documentation

e Prestandby Procedures for preparation and setup prior to the
software system operation which include:

o Equipment Setup
o Program Setup
o Adaptation Data Setup

e Standby/Operate Procedures which start the system after prestandby
procedures are complete

e Monitoring Procedures for trouble and malfunction indications
e Recovery Procedures for restating the software system after an abort

or interruption

5.11 System Operator’s Manual

The System Operator’s Manual i1s intended to be the sole reference that 1s

required for the individual operator.

The System Operator’s Manual contains:
e Instructions from the system control panel for:

o Program loading
o Initiation

o Modification

o Operation

o Termination

e Communication links descriptions and the requirements for link
operation

51

\

Instructions for operating the system keyset devices with figures for
clarity

4

Instructions for the basic operation of the consoles with figures for
clarity

The normal sequence of functions the operator must perform
The random conditions requiring an operator’s response

The corrective response in response to illegal actions that the
operator must perform

The operational procedure is written with the following guidelines:

The procedures agree exactly with the performance requirements

If the procedure includes several modes of operation, each mode is
clearly defined and presented individually

The material is presented in a step-by-step manner

Procedural steps are expressed precisely in the imperative mode, using
system nomenclature

Each step is listed as an individual item
Each step is listed in the order in which it is to be performed
Each step is precise and unambiguous

Supporting illustrations is comprised of view of the equipment with
each control and indicator identified

Data entry number and name is to be contained within each
appropriate mode

The difference in mode operations while using any reduced capability
modes or program is described

52

5.12 Software Change/Software Enhancement Proposal

The Software Change l’foposal and the Software Enhancement Proposal
are used to request changes to established baselines. A Software Change
Proposal is used in cases where the change is an addition, deletion, or
modification of a capability which would be evident to the user/operator of the
system and/or affect the compatibility of the software with previous unchanged
versions. A Software Enhancement Proposal is used in cases where the change
will alter the component operation but has no externally visible effect on the
operation of the system nor alter the compatibility of the software with previous
versions. The Software Change Proposal/Software Enhancement Proposal is the
vehicle for analyzing, approving, and acting on the propsed change and must be
complete in detail and supporting documentation to fulfill this function.

The Software Change Proposal/Software Enhancement Proposal contains:

e System/Project name

e Date Prepared

o Identification number for the proposal
o Title of the proposal

e Originator of the proposal

o Component affected

o Description of problem or need

e Alternative/Impacts if not approved

o Baselines affected

e Documentation affected

o Other systems affected

53

e Effect on user ,,/

3

e Net effect on system resources

e Developmental requirements

e Most effective point in the development recommended
e Accomplishment of the proposal

o Supersedes or replaces other proposals

e Cost, schedule or interface impact

e Configuration control information

5.13 Software Trouble Report
The Software Trouble Report shows all essential data on each software

problem detected. Software problems are classified by category as follows:

o Software Trouble - The software does not operate according to
supporting documentation and the documentation is correct.

e Documentation Trouble - The software does not operate according to
supporting documentation but the software operation is correct.

o Design Trouble - The software operates according to the supporting
documentation but a design deficiency exists. The design deficiency
may not always result in a directly observable operational symptom,
but possesses the potential of causing trouble.

The Software Trouble Report is the basic input to the Software Quality
Assurance program during the test and acceptance phase of the development

effort.

The Software Trouble Report contains:

e Date Prepared
o Category of Software Trouble

e Priority of the Severity of the Software Trouble

o4

Number for control purposes

Title describing the problem

Official designation of the problem
Document affected

Unit/Test which trouble was detected
Program identification number
Reference document

Function affected

Responsible module

Test step being executed when the trouble was discovered
Originator, title, and phone

Run time elapsed until trouble occurred
Simulation used for operational cc:nditions
Linking for intersystem communications
Configuration in Memory

Problem duplicability

Data dump

System status/environment

Trouble description

Stop data available

Testing performed

Software Quality Assurance sign-off

Current status of the trouble

55

5.14 Computer Test Plan

The Computer Test Plan defines the total scope of the testing to be
performed. It identifies the particular level of testing and describes its
contributing role for ensuring the reliability and certified acceptance of the
software system. The Computer Test Plan is used to review and ensure that the

software system is effectively meeting the technical requirements and the system

Integration 1s ensured.

The Computer Test Plan contains:

e The test requirements for each level of testing addressing each:

o Input

o Output

o Operator actions

o Any other requirements deemed necessary for evaluation
e The test management requirements
e Personnel requirements
e Hardware requirements

)

e Supporting software requirements
e Schedule

e Quality assurance

56

5.15 Compu'ter Test Specifications

The Computer Test Specification is prepared for each test specified in the
corresponding Computer Test Plan, normally one for each subprogram or
specified function and one for the pertinent test. A Computer Test Specification
is prepared before, and i1s the basis of~t,he development of the Computer Test
Procedures.

The Computer Test Specifications are broken into two parts, the System
Test Specification and the Function Test Specification. The System Test
Specification test the requirements of the Program Performance Specification by
the normal operation of the software system. The Function Test Specification
test the requirements of the Program Performance Specification that cannot be
verified by normal operation of the system.

Both parts of the Computer Test Specifications contain:

e Test management requirements
e Personnel requirements
e Hardware requirements
e Support software requirements

e Schedule

e Quality assurance

\

These topics are only addressed if there was a change in the Computer
Test Plan.

The System Test Specification contains:

o Test inputs of upper and lower limits with methods of generation

e Required accuracies

57

Expected output values and, if the output is a range, the upper and
lower limits of the range

Data collection methods type of recording, frequency, and duration

Interface of hardware/man-machine, input/output system interface,
the destination, and result intended

Method of data exchange for the data flow ¢

Timing requirements for the input/output to the various subsystems
Degradation of maximum time limit for continuous operation
Casualty recovery techniques

Display requirements that are obtained

Communications requirements both internal and external

The Function Test Specification contains:

Pretest inputs that are used to replace the dynamic values necessary
for the operation of the function but not the evaluation of the

function
Test inputs of upper and lower limits with methods of generation
Required accuracies

Expected output values and if the output if a range, the upper and
lower limits of the range

Data collection methods type of recording, frequency, and duration

The Computer Test Specifications can be reviewed to ensure that the

overall objectives are fulfilled and the primary features of the software system

are evaluated, e.g., that the system or functional characteristic or particular

modes of operation are tested.

58

5.16 Computer Test Procedures

—

The Computer Test Procedures provide detailed instructions for the
execution and for the evaluation of the results for each level of testing specified.
The Computer Test Procedures provide the quantitative results which are later
extracted from the tests themselves. The Computer Test Procedures are
developed from the System Computer Test Specifications, the Function
Computer Test Specification, and relevant design documents.

These Computer Test Procedures contain:

e Materials needed to run test

e Personnel necessary and required experience
e Setup of the computer hardware

e Power-on of the hardware

e Loading of the software

e Step by step operating instructions

e Recording instructions

e Deviations from the Computer Test Specification

The Computer Test Specification also contains:

e Test management requirements
e Personnel requirements
e Hardware requirements
e Support software requirements

e Schedule

e Quality assurance

These topics are only addressed if there was a change in the Computer

59

Test Plan.

5.17 Computer Program Test Report

The Computer Test Report is the vehicle by which the results of the
validation of the software system are documented. The Computer Test Report is
u§ed to describe, define, and evaluate discrepancies between the inten‘ded system
requirements and design and the program capability as produced by the'code.

The Camputer Test Report contains:
e The test criteria which are:

o Range of data and parameter values

o Accuracy requirements

o Program/subprogram/module capabilities

o Data rates from minimum to maximum

o Duration of test in time or number of events
o Definition of error

o Definition of failures

e Test results based on the data collected with any discrepancies with
1ts impact and validity noted

e Evaluation criteria with range of data and parameter tested and
identification of any functional deficiencies, limitations, or constraints
detected during the test

e Test evaluation that the functional capability was demonstrated

e Recommendations of improvements in design or operation as
determined during the test period

60

5.18 Software Program Package Document

The Software Program Package Document consists of the code and any
data which are necessary to run the software properly. - This data may include,

but not limited to:

e Adaptation Data
e Data File Contents
e Set-up Data

e Program Parameter Values

" The Software Program Paékagé Document contains:

e Software source code suitable for assembly or compilation
o Complete object form suitable for loading and execution

e Source program listing
e Error-free source/object listing

e Cross reference listing of each mnemonic and statement that
references that mnemonic

e Miscellaneous listings used in the program reproduction

The program material items are used to produce, maintain, and update the

software system.

5.19 Documentation in the Source Code
Thes source code is documented different ways. Each program, subprogram,

module, and unit has at the beginning of the executable code an abstract. This

textual description contains:

e Inputs with the allowed and expected range of values for all inputs

e Outputs with the allowed and expected range of values for all

61

outputs
e Function or task
e List of other components called
e The original and updating programmer names
e Dates and reasons for all changes
e A description of any transportability constraints

In addition to a general explanations, to assist understanding, precise
references to the appropriate statements labels and data-names are included in
each module and unit.

Comments are used throughout the software to facilitate software
comprehension. Each source statement is to be self-defined or defined by a
comment phrase to a level of understandable by a person knowledgeable in
software but not associated with the original development effort. Logical groups
of comments may be included in a single comment line.

Other methods to improve readability and clarity include:
e Software structural indentation
e Paragraphing

e Blocking by blank lines

62

Chapter 6
DOD-STD-2167

d
DOD-STD-1679 documents are all included in the DOD-STD-2167. More
documents were added, either by splitting DOD-STD-1679 documents into
separate documents, or adding documentations requirements which were lacking.

More detail is given concerning paragraph numbering and cover page layouts.

6.1 Documentation Types

The documentation for management documentation, requirements
documentation, design documentation, operations documentation, and the
documentation of changes remained essentially the same.

The major type of documentation that was changed was the support

documentation. A new documentation type was added for diagnostics.

6.1.1 Support Documentation

Support documentation contains the information necessary to create the
software system using the source code. The documents produced are the Version
Description Document, the Software Programmer’s Manual, Firmware Support,
Manual, and the Computer Resources Integrated Support Document.

Since software may have many different baselines, a Version Description
Document 1s used to identify tile version of the? software system concerning
contents and operations.

The Software Programmer’s Manual contains the information necessary for
programming the software on the target computer. The Firmware Support
Manual contains the information necessary for installing firmware devices. The

Computer Resources Integrated Support Document contains the software life

63

support information.

6.1.2 Diagnostic Documentation

Since a software program may be written to throughly test the software
system, this program may be adapted as a diagnostic tool. Diagnostic
documentation contains the information necessary to i1dentify a software

malfunction. The document produced is the Computer System Diagnostic

Manual.

6.2 Systemn/Segment Specification

The System/Segment Specification is similar to the MIL-STD-490 Type A
- System Specification. The main difference 1s the requirements are either

designated as a hardware or software requirement.

6.3 Software Development Plan

The Software Development Plan 1s similar to the DOD-STD-1679 Software
Development Plan. A section has been added concerning software standards and
procedures. This may cite a Software Standards and Procedures Manual or

include the information here.

6.4 Software Configuration Management Plan

The Software Configuration Plan is similar to the DOD-STD-1679 Software

Configuration Plan.

64

6.5 Software Standards and Procedures Manual
The Software Standards and Prbcedure Manual is the information that was

formerly found is in the DOD-STD-1679 Program Design Specification

concerning programming guidelines.

6.6 Software Quality Evaluation Plan

The Software Quality Assurance Plan is similar to the DOD-STD-1679

Software Quality Assurance Plan.

6.7 Software Requirements Specification

The Software Requirements Specifications is similar to the DOD-STD-1679

Program Performance Specification.

6.8 Interface Requirements Specifications

The Interface Requirements Specifications is similar to the DOD-STD-1679

Interface Design Document.

6.9 Software Top Level Design Document
The Software Top Level Design Document is similar to the DOD-

STD-1679 Program Design Specification without the programming guidelines.

6.10 Software Detail Design Document

The Software Detail Design Document is similar to the design section of

the DOD-STD-1679 Program Description Document.

65

6.11 Interface Design Document

The Interface Design Document is similar to the DOD-STD-1679 Data

Base Design Document.

6.12 Data Base Design Document

The Data Base Design Document is similar to the data base section of the

DOD-STD-1679 Program Description Document.

6.13 Software Product Specification

The Software Product Specification is similar to the DOD-STD-1679

Program Description Document.

6.14 Version Description Document
The Version Description Document is used to identify new and interim

versions of the software system. This identification contains:

e Inventory of materials to be released

e Inventory of the contents of the software system
e Changes installed

e Adaptation data

e Interface compatibility

e Bibliography of reference documents

e Operational Description

e Installation Instructions

e Possible problems and known errors

66

6.15 Software Test Plan

The Software Test Plan is similar to the DOD-STD-1679 Computer Test

Plan.

6.16 Software Test Description

The Software Test Description i1s similar to the DOD-STD-1679 Computer

Test Specifications.

6.17 Software Test Procedures

The Software Test Procedures is similar to the DOD-STD-1679 Computer

Test Procedures.

6.18 Software Test Report

The Software Test Report i1s similar to the DOD-STD-1679 Computer Test

Reputer.

6.19 Computer Support Operator’s Manual
The Computer Support Operator’s Manual is similar to the DOD-

STD-1679 System Operator’s Manual.

6.20 Software User’s Manual

The Software User’s Manual 1s similar to the DOD-STD-1679 Operator’s

Manual.

67

6.21 Computer Support Diagnostic Manual
The Computer Support Diagnostic Manual contains the information
necessary to identify a computer system malfunction and instructions to run the

diagnostics. This information include:

e Identification of all support hardware, software, and procedures to
perform system diagnosis

e A description of each diagnostic tool available for the system

e A description of each diagnostic test available on the diagnostic tools,
including:

o The purpose of each test
o The procedures for executing the test

o Additional hardware, software, or firmware for executing the
test

o All diagnostic messages

6.22 Software Programmer’s Manual
The Software Programmer’s Manual contains the information to facilitate
programming or reprogramming software for the target computer. This

information includes:

e Equipment configuration

e Operational characteristics, capabilities, and limitations
e Compilation and assembly instructions

e Programming features

e Program instructions

e 1/O control features

e Examples of programming technique

68

e Special features

e Error detection and diagnostic features

6.23 Firmware Support Manual

The Firmware Support Manual contains the information necessary to

modify or replace the read-only memory, programmable read-only memory, and

other such firmware components of the system. This information includes:

e Description of the firmware components

e Installation and repair procedures

e Security implications

e Operational and environment limitations

e Hardware needed for programming firmware devices
e Software needed for programming firmware devices
e Procedures for programming firmware devices

e Vendor information

6.24 Operational Concept Document

The Operational Concept Document contains:

e The mission of the software system
e The operational environment
e The support environment

e The functions and characteristics of the software system
overall system

69

within the

6.25 Computer Resources Integrated Support Document
’ The Computer Resources Integrated Support Document contains the
information that is required to perform life cycle support of the software system.

This information includes:

e The support environment describing required

>J

o Support software
o Equipment

o Facilities

o Personnel

e Support operations, describing:
o General usage instructions describing

e Initiation

e General Operation

e Monitoring operations of the support environment
o Administration
o Software modification
o Software integration and testing
o System and software generation
o Software quality evaluation
o Corrective action system
o Configuration management
o Simulation

o Emulation

70

o Reproduction
o Operational distribﬁtions
e Training plans and provisions
e Predicted level of change to software system in the support .

environment

6.26 Engineering Change Proposal

The Engineering Change Proposal is similar to the DOD-STD-1679

Software Change Proposal.

6.27 Specification Change Notice

The Specification Change notice will describe changes to the baseline and

accompanies an Engineering Change Proposal.

71

Chapter 7

Conclusion

Writing good documentation is not easy, nor is it a single stage process.
Documents must be written, read, criticized, and then rewritten, and the process

should continue until satisfactory documents are produced.

7.1 General Aspects of Good Documentation
While documentation may be technically complete, certain considerations

can enhance the information presented. In summary they are:

e Who - understand the user’s thought process

e Simplicity - keep it simple

e Examples - use plenty of meaningful examples

e Details - sink the details

e Retrieval - provide easy access

o Perspective - keep the user point of view at all times

e Appearance - it must look nice to read well.

7.2 Writing Style Guidelines

Some writing style guidelines are:

e Active tense rather than passive tense should be used.

o Long sentences which represent a number of different facts should not
be used. It is better to use a number of shorter sentences.

e Previously presented information should not be referred to only by a
reference number. What the reference covered should also be stated.

e Facts should be itemized whenever possible rather than present them
In a sentence.

72

o If a description is complex, it should be repecated by presenting two
or more differently phrased descriptions of the same thing.

o A sentence should not be verbose. A concept should be stated in as
few words as possible without losing the meaning.

o Terminology should be precise, and if necessary, the terms may need
to be defined before they are used.

e Paragraphs should be short. As a general rule, no paragraph should
be made up of more than seven sentences.

e Headings and Subheadings should be used.
o Grammatically correct constructs should be used.

e Words should be spelled correctly.

7.3 Conclusion

The key to a large software system control is the software system

comprehension. Comprehension of the software system and its parts requires

o Knowledge of total system objectives
J

e The partition of requirements into individual capabilities or functions

e The mapping of requirements onto a system structure and 1ts
structural elements

e The algorithm used in implementing the system and its subsystem at
various levels

Clearly then a large software system must be accompanied Dby
documentation containing this information. Moreover, the documentation must
be readily accessible according to the particular needs of the inquirer. And the

documentation must remain correct and complete as it keeps pace with the

changing system.

13

References

Andriole, Stephen J. Software Validation, Verification, Tesling, and
Documentation. Princeton, NJ: Petrocelli Books, 1986.

Belady, L. A. and Lehman, M. M. Characteristics of Large Systems. In
Wegner, Peter (Ed.), Research Directions in Software Technology.
Massachusetts Institute of Technology, 1980.

DOD. Military Standard Specification Practices (DOD-STD-490 ed.). Author,
30 October 1968.

Gilbert, Philip. Software Design and Development. Chicago, Ill.: Science
Research Associates, Inc., 1983.

Mecham, Douglas. Writing A User Guide. In Warren, Jim (Ed.), Conference
Proceedings, The Second West Cost Computer Faire. Palo Alto, Cal.:
Computer Faire, March 1978.

Navy. Computer Program Test Plan (DI-T-2142 ed.). Author, 1983.

Navy. Computer Program Test Procedures (DI-T-2144 ed.). Author, 1983.
Navy. Computer Program Test Report (DI-T-2156 ed.). Author, 1983.
Navy. Computer Program Test Specification (DI-T-2143 ed.). Author, 1983.

Navy. Computer Resources Integration Support Document (DI-MCCR-80024
ed.). Author, 1985.

Navy. Computer Software Trouble Report (DI-E-2178 ed.). Author, 1983.

Navy. Computer Support Diagnostic Manual (DI-MCCR-80020 ed.). Author,
1985.

Navy. Computer Support Operator’s Manual (DI-MCCR-80018 ed.). Author,
1985.

Navy. Data Base Design Document (DI-MCCR-80028 ed.). Author, 1985.
Navy. Data Base Design Specification (DI-S-2140 ed.). Author, 1983.

Navy. Department of Defense Standard, Software Development (DOD-
STD-1679A ed.). Author, 22 October 1983.

Navy. Firmware Support Manual (DI-MCCR-80022 ed.). Author, 1985.
Navy. [Interface Design Document (DI-MCCR-80027 ed.). Author, 1985.
Navy. Interface Design Specification (DI-E-2135 ed.). Author, 1983.

Navy. Interface Requirements Specification (DI-MCCR-80026 ed.). Author,
1985.

74

Navy. Military Standard Defense System Software Development (DOD-STD-2167
ed.). Author, 4 June 1985.

Navy. Operational Concept Document (DI-MCCR-80023 ed.). Author, 1985.
Navy. Operator’s Manual (DI-M-2145 ed.). Author, 1983.

Navy. Program Description Document (DI-S-2139 ed.). Author, 1983.
Navy. Program Design Specification (DI-E-2138 ed.). Author, 1983

Navy. Program Package Document (DI-S-2141 ed.). Author, 1983.

Navy. Program Performance Specification (DI-E-2136 ed.). Author, 1983.

Navy. Software Configuration Management Plan (DI-E-2175 ed.). Author,
1983.

Navy. Software Configuration Management Plan (DI-MCCR-80009 ed.).
Author, 1985. -

Navy. Software Detail Design Document (DI-MCCR-80031 ed.). Author, 1985.
Navy. Software Development Plan (DI-A-2176 ed.). Author, 1983.

Navy. Software Development Plan (DI-MCCR-80030 ed.). Author, 1985.
Navy. Software Product Specification (DI-MCCR-80029 ed.). Author, 1985.
Navy. Software Programmer’s Manual (DI-MCCR-80021 ed.). Author, 1985.
Navy. Software Quality Assurance Plan (DI-R-2174 ed.). Author, 1983.

Navy. Software Quality Evaluation Plan (DI-MCCR-80010 ed.). Author, 1985.

Navy. Software Requirements Specification (DI-MCCR-80025 ed.). Author,
1985. ‘v

Navy. Software Standards & Procedures Manual (DI-MCCR-80011 ed.).
Author, 1985.

Navy. Software Test Description (DI-MCCR-80015 ed.). Author, 1985.
Navy. Software Test Plan (DI-MCCR-80014 ed.). Author, 1985.
Navy. Software Test Procedure (DI-MCCR-80016 ed.). Author, 1985.
Navy. Software Test Report (DI-MCCR-80017 ed.). Author, 1985.

Navy. Software Top Level Design Document (DI-MCCR-80012 ed.). Author,
1985.

Navy. OSoftware User’s Manual (DI-MCCR-80019 ed.). Author, 1985.
Na.\vy. System Operator’s Manual (DI-M-2148 ed.). Author, 1983.

75

Navy. System/Segment Specification (DI-MCCR-80008 ed.). Author, 1985.
Navy. Version Description Document (DI-MCCR-80013 ed.). Author, 1985./

-

(

Parikh, Girish. Techniques of Program and System Maintenance. Winthrop
Publishers, Inc., 1982.

Royce, Dr. Winston W. Managing the Decvelopment of Large Software Systems.
In 9th International Conference on Software Engineering. IEEE, 1987.

Sommerville, . Software Engineering. Addison-Wesley Publishing Co., 1982.

Tausworthe, Robert. Standardized Development of Computer Software. Prentice-
Hall, Inc., 1977.

76

Vita

Demetria Deakos was born November 18, 1950 in Hazleton, Pa. She was
the youngest child of Pietro and Amalia Deakos. She attended Wilkes College
from 1968 to 1972, and graduated with a Bachelor of Science in Chemistry. She
attended Lehigh University from 1983 to 1987 and graduated with a Master of

Science in Computer Science.

77

	Lehigh University
	Lehigh Preserve
	1987

	Software documentation for the Department of Defense using the software life cycle /
	Demetria Deakos
	Recommended Citation

	tmp.1551116526.pdf.i2ImV

