
Lehigh University
Lehigh Preserve

Theses and Dissertations

1987

The optimization of dynamic properties of planar
linkages by internal mass redistribution /
Philip M. Chambers
Lehigh University

Follow this and additional works at: https://preserve.lehigh.edu/etd

Part of the Mechanical Engineering Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Chambers, Philip M., "The optimization of dynamic properties of planar linkages by internal mass redistribution /" (1987). Theses and
Dissertations. 4802.
https://preserve.lehigh.edu/etd/4802

https://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F4802&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F4802&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F4802&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=preserve.lehigh.edu%2Fetd%2F4802&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd/4802?utm_source=preserve.lehigh.edu%2Fetd%2F4802&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu


,. 

THE OPTIMIZATION 

OF DYNAMIC PROPERTIES 

OF PLANAR LINKAGES 

BY INTERNAL MASS REDISTRIBUTION 

by 

PHILIP M. CHAMBERS 

A Thesis 

Presented to the Graduate Committee 

of Lehigh University 

in Candidacy for the Degree of 

Master of Science 

• 
In 

Mechanical Engineering 

Lehigh University 

1987 

.. 



I 

I 
\ 

\ 

This thesis is accepted in partial fulfillment of the requirements for the 

degree of Master of Science. 

(date) 

Professor in Charge 

Project Director 

Chairman of Department 

•• 
11 



( 

Acknovvledgments 

Thanks must first be given to Dr. Robert A. Lucas and Dr. Richard 

Roberts for their support and encouragement. I would also like to express my 

thanks to the AMP corporation of Harrisburg, Pennsylvania, and in particular 

Mr. Homer Henschen and Mr. Howard Stine Jr., for their support. I would like 

to thank my father and mother, Henry and Phyllis, for their tireless support. 

And as in all things, I give thanks to the Lord Jesus Christ for His grace . 

•. ... 
111 

\ 

I 



.. 

Table of Contents 

Abstract 
1. Introduction 

2. Literature Review 

3. Description of Balancing 
4. Exa1nples 

4.1 Slider-(~rank Linkage 
4.2 Four-11ar 1-'inkage 
4.3 \\' att ,s Six-Bar I.Jinkage 

5. Concluding Remarks 

References 

Program 
4 ·, ....... 

Appendix A. Data for Slider-Crank Linkage 
Appe11dix B. Data for Four-Bar Linkage 
Appendix C. Data for Watt's Six-Bar Linkage 
Biography 

' .. 

.. 
IV 

1 

2 

6 

14 

26 

26 
34 
42 
55 
61 

66 

67 

68 

70 



. . 

Figure S-1: 
Figure 4-1: 
Figure 4-2: 
Figure 4-3: 

' _,.l, . 
Figure 4-4: 
Figure 4-5: 
Figure 4-6: 
Figure 4-7: 
Figure 4-8: 
Figure 4-9: 
Figure 4-10: 
Figure 4-11: 
Figure 4-12: 
Figure 4-13: 
Figure 4-14: 
Figure 4-15: 
Figure 4-16: 
Figure 4-17: 
Figure 4-18: 
Figure 5-1: 

List of Figures 

Outline of Balancing Program Operation 
Slider-Crank Linkage 
X-Shaking Force vs. 0 for Slider-Crank 
Y-Shaking l~orce vs. () for Slider-Crank 
Shaking Moment about A vs. () for Slider-Crank 
Four-Har Linkage 
X-Shaking f""orce vs. 0 for Four-Bar 
Y-Shaking Force vs. 0 for Four-Bar 
Shaking Moment about A vs. 0 for Four-Bar 
Input 1~orque vs. (} for Four-Bar 

Watt's Six-Bar Linkage 
X-Shaking ~""orce vs. 0 for Six-Bar, Plot #1 
Y-Shaking f~orce vs. 0 for Six-Bar, Plot # I 
Shaking Moment about A vs. () for Six-Bar, PJot #1 
Input Torque vs. () for Six-Bar, Plot # I 
X-Shaking Force vs. () for Six-Bar, Plot #2 
Y-Shaking Force vs. (} for Six-Bar, Plot #2 
Shaking Moment about A vs. (} for Six-Bar, Plot #2 
Input Torque vs. 0 for Six-Bar, Plot #2 

Four-Bar ParalJelogram Linkage 

, 
V 

15 
30 
31 
32 
33 
37 
38 
39 
40 
41 
46 
47 
48 
49 
50 
51 
52 
53 
54 
56 



, 

Table 4-1: 
Table 4-2: 
Table 4-8: 

Table A-1: 
Table A-2: 
Table B-1: 
Table B-2: 
Table C-1: 
Table C-2: 
Table C-8: 

1 

. ' 

List of Tables 

%RMS Changes, Weights, and Divisors for Slider-Crank 28 
%RMS Changes, Weights, and Divisors for Four-Bar 35 
%RMS Changes, Weights, and Divisors for Watt's Six- 44 
Bar 

Data for Counterweight Sets 
Geometric Data for Four-Bar Linkage 
Data for Counterweight Sets 
Geometric Data for Watt's Six-Bar Linkage 
Peak Joint Forces 
Data for Counterweight Sets 

• 
VI 

66 
66 
67 
67 
68 
68 
69 



' 
( 

I Abstract 

The literature of the passive balancing of planar mechanisms was reviewed. 

A numerical optimization method was considered to be the most promising 

technique available and was thus chosen for implementation. An interactive, 

graphically-oriented computer program for balancing planar mechanisms was 

written. The slider crank, four bar, and Watt's six bar linkages were balanced 

using the program with good results. The numerical optimization method, as 

implemented in this work, performed well. Comments concerning the use of the 

program were made and areas for improvement and for further work were 

noted. 
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Chapter 1 

Introduction 

All machines are composed of combinations of moving masses. The 

accelerations of these moving masses cause the development of inertia forces. 

' 

Typically, because of the difficulty of analysis, the effect of these inertia forces 

is not taken into account in many aspects of the machine's design, particularly 

in the early stages. 

The usual strategy for designing a linkage mechanisrr1 has three stages [39]. 

In the first stage the mechanism type, geometric parameters ( e.g. link lengths), 

and input motion(s) are chosen so as to satisfy all the necessary kinematic 

requirements upon the mechanism (e.g. output motion(s)). In the second stage, 

with heavy reliance upon the designer's experience, the size and shape of the 
4 

machine elements are designed so as to em body the geometric parameters chosen 

in the first stage and also satisfy their strength and material requirements. The 

kinematics and force calculations performed during the first two stages are made 

assuming the machine base and alJ the machine elements are rigid and the 

speed of the driving motor is constant. 

However, the inertia forces cause the machine to perform in ways the 

designer has not taken into account. The inertia forces act as inputs to the 

base of the machine, causing a forced vibration, which in turn causes the base 

of the machine to deflect. The other members of the machine also suffer 

deformation. The inertia forces feed back into the driving motor, causing speed 

fluctuations. These effects in turn affect the kinematic behavior ( e.g. output 

motion(s)) of the machine, so that the output(s) may be changed as to no 

longer provide the required motion that the machine was designed to perform. 

2 
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The third and final stage in the usual strategy of design attempts to 

overcome the effects of the inaccurate assumptions made in the earlier stages by 

"adjusting" the design so as to achieve satisfactory performance. This often 

occurs after a prototype of the mechanism has been built and is being tested. 

The usual "adjustments" made to remedy a mechanism suffering from the afore 

st&tea problems have been: 

l. to slow down the mechanism ( thus reducing the magnitude of the 
inertia forces). 

2. to add a flywheel or to increase the size of the flywheel if one exists 
(to smooth variations in the input speed). 

3. to begin a slow iterative procedure of altering the various parameters 
of the mechanism ( usually through a series of prototypes), attempting 
to improve the mechanism's dynamic perf orrnance and allow operation 
at the speeds desired. 

If the addition of a flywheel (or adding a larger flywheel) works, then this 

solution is generally acceptible, since the cost of the modification is relatively 

small. However, the other alternatives are neither direct nor attractive. To 

slow down the mechanism means to cut down the productivity of the 

manufacturing process, possibly to the point where it is no longer profitable. 

An interative, trial and error redesign of the mechanism can be extremely 
• 
' expensive, and there is no guarantee of obtaining the desired results. 

An alternate way to anticipate these kinds of problems is to consider the 

effects of the inertia forces on the machine's behavior earlier in the design 

process and attempt to minimize their net effects by balancing the mechanism. 

The balancing of a mechanism can take two forms: active or passive. In 

active balancing additional moving masses are added to the mechanism in such 

, a way as to counteract the forces produced in the unbalanced mechanism. 

3 
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Passive balancing seeks to redistribute the internal mass of the members of the 

mechanism so as to diminish or eliminate the unwanted inertia forces. At the 

current time, passive balancing efforts usually involve the design of 

counterweights to be added to the existing members, as the synthesis of actual 

mechanism members is a great deal more difficult to perform. Passive 

balancing usually costs less than active balancing and has the advantage of not 

adding any additional moving parts to the machine. 

The use of balancing to "adjust" the design in order to optimize in some 

sense the dynamic performance of the mechanism generally falls into the third 

stage of the design, with the useful exception that it can be done in advance of 

the construction of a prototype mechanism. Hence, balancing can avoid or 

reduce the "adjusting" effort involved in the performance testing/evaluation 

process. 

The goal of this work is to develop an interactive, computer-aided­

engineering program to perform the passive balancing of a linkage or mechanism 

through counterweight synthesis. Its eventual use will be by machine designers 

at the AMP corporation of Harrisburg, Pennsylvania, in conjunction with their 

existing machine-design software. 

characteristics: 

The program should have the following 

1. It should be able to work with a wide variety of linkages and 
mechanisms. 

2. It must not require an undo understanding of the analytical and 
kinematic aspects of a machine in order to be used, i.e., it must be 
usable by an average engineer after some limited training. 

3. It must allow the user flexibility in terms of achieving the effects· be 
desires. 

A review of the current literature in the field of passive balancing will be 

4 



presented first to show the state-of-the-art in this field. After this, a 
description of the program developed will be given, followed by a number of 
problems to demonstrate the capabilities of the program and a conclusion. 
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Chapter 2 

Literature Review 

The fallowing is a review of the literature in the field of passive balancing. 

It is not intended to be a complete survey of the literature in the field of 

balancing, but rather this review will concern itself mainly with the papers of 
.) 

passive balancing which present topics in the methodology of balancing, as 

opposed to papers presenting applications of previously advanced balancing 

. 
techniques. Furthermore, this review will be limited to the more modern trends 

in this field. The list of references, however, contains not only the papers cited 

in this review, but a number of additional papers in the field of balancing 

which treat the subject matter not addressed here. 

It should be pointed out that this review is an abstraction and update of 

I 
I .. , 

the review· done by Lowen, Tepper, and Berkof (23). Their work contains 

additional information on this topic and a more extensive list of references. 

First, several terms must be defined. The shaking force in some 

coordinate direction is defined as the vector sum of aJl of the bearing reactions 

on the frame of a mechanism in that coordinate direction. For example, 

referring to Figure 4-1, the shaking force in the x-direction ( or the X-shaking 

force) would be F X == -RAX" A mechanism is generally said to be fully force­

balanced if the shaking forces in the specified coordinate direction(s) are 

identically zero. A mechanism is generally said to be partially force-balanced if 

the shaking forces in the specified coordinate direction(s) have been reduced 

from those of the unbalanced mechanism. 

The shaking moment is defined as the sum of 'the moments caused by the 

bearing reactions of a mechanism on its base, taken relative to some point. 

6 
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Sometimes the input torque or force is include<}, sometimes it is ·not, depending 

on the physical configuration of the device. . 
' 

The modern developments in the field of passive balancing began in the 

late 1960's with the publication of the paper by Berkof and Lowen 14]. In this 

paper they presented the technique for fully force-balancing planar linkages 

knQll/n as the Method of Linearly Independent Vectors. This technique makes 

the center of mass of the linkage stationary, so that the sum of the external 

forces in any coordinate direction on the moving members of the linkage must 

be zero. This contition is accomplished by writing the equation for the center 

of mass of the linkage and then substituting into it the loop equation(s) [24, 

p.233-35] for the linkage. The resulting equation will have several time-

dependent terms, each multiplied by another term which is a function only of 

the mass properties of the links. By setting each of the terms which multiply 

the time-dependent terms equal to zero, the center of mass is made stationary, 

and a number of conditions on the inertial properties of the links are 

determined. 

Tepper and Lowen [29) generalized the Method of Linearly Independent 

Vectors for single degree-of-freedom linkages. Furthermore, they showed that, in 

general, in order for it to be possible to fully force-balance a linkage, a path to 

ground through revolute joints only must exist for each link, or ( equivalently in 

a kinematic sense), that each loop of the linkage may contain at most one 

prismatic joint. Such a linkage can be balanced by the "apparent" minimum of 

n/2 counterweights for an n-linked mechanism. 

Walker and Oldham [37], following an earlier paper by Smith et al. [28], 

presented a theory of balancing based on an alternate interpretation of the work 
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of Berkof and Lowen. This paper presented equations which allow one to write 

directly the necessary and sufficient conditions on the counterweights to force­

balance a mechanism, instead of extracting them from the kinematic equations 

of motion. Extending their work, Walker and Oldham 138) developed a formula 

for determining the minimum number of counterweights needed to fully force­

balance a multi-degree-of-freedom linkage ancl, in addition, established a means 

of identifying which links in a linkage should have the counterweights attached 

to them. 

While all the work above concentrates on full force-balancing, the workers 

in this field also turned their attention to the effect of full balancing upon the 

other characteristics of a linkage, i.e. upon the shaking moment and the input 

torque. It was found that the shaking moment and input torque of the fully 

force-balanced linkage often became worse than those of the unbalanced linkage. 

Berkof and Lowen first examined these effects in [5] and [21] for the four-

bar linkage. They presented the theory in [ 5] which used a least-squares 

optimization technique to develop the conditions upon the mass properties of the 

links in the mechanism needed to minimize the shaking moment of a fully force­

balanced four-bar linkage. In [21] they applied their conditions to a four-bar 

, linkage of standard configuration, i.e. one in which the geometries of the links 

are defined by non-dimensional ratios, such as the ratios of the lengths of the 

coupler and follower to the length of the crank and tpe width of the center 

sections of the links to the length of the crank. They generated graphs and 

tables in terms of selected ratios, and showed how to use them to design a fully 

force-balanced linkage with minimum shaking moment. However, for certain 

values of the parameters, no solution was possible. Furthermore, it was noted 
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that in attempting to apply their general moment-balance· criteria, the 
I 

counterweights needed could be unrealistic due to their size and/or location. 

Tepper and Lowen (30) studied the mathematical nature of the root-mean­

square shaking moment function for unbalanced planar linkages and showed that 

the root-mean-square shaking moment is constant when taken with respect to all 

points along the concentric isomomental ellipses in the mechanism plane. 

Further, the root-mean-square shaking moment is minimum when taken with 

respect to the point at the center of the family of isomomental ellipses. They 

showed that if the shaking moment of the fully force-balanced linkage with 

respect to this point is lower than that of the unbalanced linkage, then the 

shaking moment of the fully force-balanced linkage will be lower than that of 

the unbalanced linkage when taken with respect to all points in the mechanism 

plane. This provides an easy criteria for judging the effect of full force-

balancing upon the shaking moment for a particular linkage. 

Carson and Stephens [7] continued the work of Berkof and Lowen for the 

problem of the shaking moment balance of the four-bar linkage ( of standard 

configuration, again because of the difficulty of solution), examining the feasible 

ranges of the design parameters developed by Berk of and Lowen in [21]. 

Other work to minimize the shaking moment and input torque has been 

performed. Wiederrich and Roth [41] showed how to perform a full force-

balance and a full or partial moment-balance of a four-bar linkage by working 

directly with the expressions for the linear and angular momentum. Berkof [6] 

discussed the least-square minimization of the input torque of a force-balanced 

four-bar linkage, basing his work on the expression of the input torque as a 

function of the first derivative of the kinetic energy. Haines [17) treated the 

9 
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problem of optimizing the root-mean-square shaking moment and/or input torque 

of a fully force-balanced four-bar linkage, subject to physical constraints on the 

parameters ( e.g. constraints on the size and location of counterweights as 

determined by the mechanism envelope). Elliot and Tesar jl3], making use of 

the linear qualities of Berkof and Lowen 's technique, developed a generalized 

methodology which· allows for full force-balancing and moment balancing with 

fulJ force-balancing about points in the mechanism plane which do not coincide 

with the center of a fixed revolute joint. Their technique also allows for the 

satisfaction of user-specified non-zero values of the dynamic properties of the 

mechanism, including input torque, shaking force, shaking moment, kinetic 

energy, and combinations thereof, at specified points in the motion of the 

mechanism. They noted, however, that the counterweights so obtained were 

sometimes unrealisitic ( e.g. negative masses were required). 

Al] the above techniques have been spawned by the pioneering work of 

Berkof and Lowen, and begin with full shaking force balancing and develop from 

this premise. Other techniques and methods have been applied, however. 

For instance, Triacamo and Lowen [32], building on a graphical technique 

developed earlier by G heronimus [ 14], developed a method for balancing four-bar 

linkages which, given a prescribed maximum shaking force to be realized by the 

counterweighted linkage, allows for a substantial flexibility in the choice of the 

location and size of counterweights. Lowen, Tepper, and Berkof (23] describe 

the work of Urba [34, 35, 36), who in (34] used "best-fit" coefficients of a 

truncated Fourier series to describe the angular accelerations of the links of a 

four-bar mechanism. She then used this description to determine the best input 

link counterweight to perform partial force-balancing of four-bar linkages in (35], 

10 
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and to balance actively four-bar linkages in (36). 

Non-linear programming has also been applied to this problem. Lowen, 

Tepper, and Berkof 123] describe~ the work of Dresig and Schoenfeld ll I, 12}, 

who applied several numerical optimization techniques (Powell's method, Monte 

Carlo techniques, and the Gauss-Seidel method), with several forms of the object 

function (Chebyshev-type and root-mean-square type), to the balancing problem. 

Walker and Haines 139) synthesized counterweights for a Watt's six-bar linkage 

using numerical optimization of an object function that considered the combined 

effect of shaking force, shaking moment,· input torque, and bearing forces. This 

work was followed by an experimental study of the results of counterweighting 

upon the six-bar linkage 140]. Tricamo and Lowen [33), extending the method 

developed in a companion paper [32], used a generalization of their graphical 

technique combined with numerical optimization to minimize the combined 

effects of bearing forces, input torque, and shaking moment while synthesizing 

counterweights which produce a prescribed maximum shaking force. Lee and 

Cheng [20] examined the combined balancing of shaking force, shaking moment, 

and input torque of a four-bar linkage using heuristic optimization. In this 

study they discretized the solution space into a set of finite points and then 

used a random-walk type of optimization technique for solution. Rao 125] 
examined the combined shaking force, shaking moment, and input torque of a 

four-bar linkage using multiobjective function optimization techniques. 

In summary, there are two major trends in passive balancing. The first is 

that work which considers full force-balancing first ( either by the Method of 
0 

Linearly Independent Vectors or one of its derivatives or related methods) and 

then attempts to optimize the remaining dynamic properties of the mechanism. 

11 



A considerable amount of analytical work has been done with this approach, 

and the solutions and their limitations are well known. Criterion exist for 

judging whether or not the linkage can be fully fo!"P-balanced; and if it can, 

the techniques for performing the full force-balance are relatively simple. 

Optimizing the other properties is not as direct, but it can be accomplished. 

However, these techniques have only been applied to mechanisms containing 

lower-order pairs (i.e. revolute and prismatic joints) and not mechanisms which 

contain higher order kinematic pairs ( e.g. cams), and thus the number of 

mechanisms to which it can be applied is limited. Furthermore, the insistance 

upon full force-balancing as a prerequisite for further balancing is questionable, 

because of the constraints it imposes upon the designer's choice of what he 

wishes to achieve by balancing. 

The second major trend is the use of numerical optimization. Almost any 

criterion of success can be used with numerical optimization, but it can be 

difficult to obtain reliable results, and often a great deal of guesswork and 

experience is required. It can also be very expensive in terms of computer time. 

However, this procedure allows great flexibility in terms of what the designer 

chooses to optimize and how he chooses to perform the analysis. He can 

attempt to optimize virtually any of all of the dynamic properties of any 

mechanism for which a description of the mechanism's kinematic behavior exists. 

There are other techniques, such as those of Tricamo and Lowen [32, 33) 

and Urba [34, 35, 36], whose work does not fall into the above stated 

categories. They were mentioned because the uniqueness of their methods may 

have promise in providing a base for further analytical work, a~d, at some time 

in the future, may yield techniques with more general applicability. 

12 



After reviewing the literature, given the objectives of this investigation, the 

most viable solution technique was deemed to be a numerical optimization 

method. One reason for not choosing the methods of the first category is that 

their insistance upon full force-balancing was considered to restrain unnecessarily 

the designer's choices in balancing. Futhermorc, they are applicable only to 

mechanisms having lower order pairs, which further limits severely the range of 

mechanisms to which the balancing program would be applicable. The 

techniques other than non-linear optimization mentioned above which have the 

capability of overcoming these defects, such as the work of Urba and the 

methods developed by Elliot and Tesar, have not been been refined to the point 

where they are generally applicable. Thus, the logical choice is that of 

numerical optimization. 

The optimization method is the only method available at this time which 

can treat a wide variety of mechanisms and allows for designer flexibility. It 

may not be attractive in the sense of embodying elegant mathematics, as it is a 

brute-force technique which draws heavily upon the ever-increasing speed of 

computers to make it attractive. At some future time, analytical techniques 

may be developed that will be suitably general and flexible to meet the 

objectives set forth in the Introduction; but as for now, such analytical 

techniques do not exist and non-linear optimization is the best technique 

available. 

13 



Chapter 3 

Description of Balancing Program 

An interactive program for the balancing of mechanisms was written to 

satisfy the following goals: 

I. It should be able to work with a wide variety of linkages -- and 
mechanisms. 

2. It must not require an undo understanding of the analytical and 
kinematic aspects of a machine in order to be used, i.e., it must be 
usable by an average engineer after some limited training. 

3. It must allow the user flexibility in terms of achieving the effects he 
desires. • 

The following is a description of the program's use, salient features, and 

overall organization. In Figure 3-1 is shown an outline of the operational 

-4:" .... "f - ,· 

procedure of the balancing program. The details and tasks indicated in the 

figure are discussed in the material that follows. 

Program Preparation 

In order to understand the function and use of the balancing program, it 

is necessary to remember where, in the usual strategy of design ( as described in 

the Introduction), the balancing program is used by the designer and to what 

end. The designer should have completed both the first design stage (type 

synthesis of the rriechanism and synthesis of geometric parameters and input 

motion necessary to meet the kinematic requirements of the mechanism) and the 

second design stage ( designing the size and shapes of the mechanical elements so 

as to em body the geometric parameters chosen in the first stage and to meet 

static strength and materials requirements). The balancing program is then 

used to design counterweights for the links so as to improve the dynamic 

14 
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l. Program Preparation 

a. Design mechanism to produce output motion; design trial 

geometry for links. 

b. Decide what dynamic properties should be modified, and to 

what extent any one property should be optimized at the 

expense of other properties., as well as any quantitive limits or 

requirements on any dynamic property. 

c. Design the object function to be used. 

2. Program Initialization 

a. Enter kinematic data of mechanism, mass properties of trial 

geometry, 

b. Enter state of mass properties of counterweights (i.e. identifying 

each mass property as constant or variable), bounds on 

variables, and initial guess for counterweights. 

c. Enter object function weights, penalty function parameters. 

3. Program Operation -- Loop until user quits 

a. Enter number of simplex steps to be taken, go, view plots. 

b. Reinitialize simplex, enter number of steps to be taken, go, view 

plots. 

c. Edit current value of mass properties, state of mass properties, 

bounds on mass properties, object function weights, penalty 

function parameters. 

Figure 3-1: Outline of Balancing Program Operation 

15 
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properties of the mechanism. Thus the balancing program is used in the third 

stage of the usual strategy of design, with the -important exception that the 

"adjustments" occur while the mechanism is still on the drawing board. 

Before initializing the balancing program, the designer must contemplate 

how sensitive the machine will be with regard to the shaking force, shaking 

moment, and input torque that the mechanism being designed will produce. He 

must come to an understanding of what kind of shaking force, etc. the machine 

can tolerate, or wilJ require, to guarantee smooth operation. An understanding 

of what sacrifices can be made in the optimization of certain properties relative 

to other properites is also required, as it may not be possible to obtain exactly 

what the designer wishes. Hence, to get the "best" solution, he may have to 

modify his goals after he has a better idea of what he can achieve. The word 

"best" is in quotes because the decision of what constitutes "best" is extremely 

subjective and is based to a great extent on intuition and experience. 

The designer must next design an object function which will provide a 

measure of the quantites to be minimized in the balancing program. He may 

feel it necessary to examine only one dynamic property, or he may feel it 

necessary to include a relatively large number of properties in the object 

function. This process must be done with some care and foresight, as otherwise 

getting the desired overall results is virtually impossible. 

The general form of the object function, E, consists of a "root-mean­

square-like" integral of the weighted sum of the squares of the dynamic 

properties of interest, I, plus penalty function terms, D and F. 

E=l+D+F 

The integral forms the major part of the object function; the penalty functions 
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are used to limit the ranges of the variables and to penalize certain situations 

the designer deems unacceptible, i.e. when the force at a bearing exceeds the 

safe design limit. 

The integral portion of the object function, I, is this: 

n P. 2 

1 = 1ycl• L '\ ( V') dO, 
i=) I 

where 

1. P. is the i-th physical 
I 

properties of interest, i.e. 

term (physical terms are the dynamic 
the shaking force in the X-direction, the 

input torque, etc). 

2. V. is the maximum absolute va]ue of the i-th physical term over the I 

input cycle for the uncounterweighted mechanism. 

3. o. are the weighting factors for the sum of squares of the physical I 

terms, reflecting the ~mount the i-th physica] term should be 
optimized re]ative to the other physical terms. The larger the o. , 

I 

the greater the importance of the term. 

4. n is the number of physical terms in the summation. 

5. "Cycle" refers to the full cycle of the input motion of the 
mechanism. 

The penalty function on the range of variables, D, is of the form 

m 

D == L (G(x - l.;} + G{ui - x)), 
i=l 

and the penalty function for the prescribed design Jimits on the joint forces is 

I 

F L G(Fi - Di), 
i=l 

where 

G(q) 

Here 

Hxq 

0 

R/q 

if q < 

if lql 

if q > 

-f. 

< f. • 

f 
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l. m is the number of variables. 

2. G is the actual penalty for a violation of a bound by an amount q 
( G is not calculated for a variable or jotnt force if that bound or 
design limit is not being enforced). 

3. u. is the upper bound on the i-th variable. I 

4. I. is the lower bound on the 1:.th variable. I 

5. H is a large number ( e.g. l 010). 

6. R is the sharpness factor, which is set and modified by the user. 

7. £ is a small number (e.g. 10· 10). 

8. l is the number of joints. 

9. F. is the force on the ,:.th joint. 
I 

l 0. D. is the design limit for the force on the i-th joint . • 

In practice, the integral is evaluated at a finite number of points around 

the input cycle of the mechanism, and thus when something is said to be 
\ 

evaluated ov't the input cycle of the mechanism, it should be taken to mean 

over the finite set of points in the input cycle of the mechanism used to 

evaluate the integral. 

The penalty function "sharpness" factor determines how "sharply" the 

penalty function is applied as a variable approaches a bound. The larger the 

number, the more severely excursions toward the boundary (from inside the 

allowable region) are penalized. However, because of magnitude of penalization 

of excursions beyond the bound, the larger the sharpness factor, the more 

smooth the transition going from inside the bound tlS outside the bound. This 

property is important, because numerical optimization methods will frequently 

"st!l'll" against a boun<l. in space which is too sharp. Therefore, the user should 

begin with a relatively large value of the sharpness parameter (about 10 is 
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usually good). Then, when the solution appears to be converging (especially to 

a point near a boundary), the sharpness parameter should be decreased and the 

search should continue. Each time the solution converges, the sharpness 

parameter should be decreased until the user is satisfied with the solution. 

There are no hard and fast rules for using a sharpness parameter such as this; 

experience is the best guide, and fortunately exact choices are rarely needed to 

get a solution. 

Program Initiali,;ation 

The initialization of the balancing program consists of inputting the results 

obtained from the first two stages of design, namely: 

I. The type of mechanism and all necessary geometric parameters ( e.g. 
link lengths, cam profi]es). 

2. The input motion. 

3. The external forces and torques. 

4. The mass properties. For a planar linkage these are the mass of the 
link, polar radius and polar ang]e of the center of mass of the link 
relative to some reference joint ( as dictated by the kinematic analysis 
routines), and the cen troidal inertia, all specified in a frame located 
on that member, of each of the moving members of the 
uncounterweighted mechanism. 

5. The simplex optimizer step sizes. 

The designer must specify the state of each of the mass properties of the 

counterweights for each member of the mechanism. The state of a mass 

property refers to whether that mass property will be considered by the 

program as a variable or a constant. If the designer chooses that mass 

property to be variable, he must then specify whether or not the absolute value 

of that mass property will be used.. If· he chooses not to use the absolute value 

19 

.... 

\ 

\ 



',, '/(,, ,. 

of that mass property, he must then decide if he wishes to enforce a lower 

bound on that mass property {i.e. to keep the optimizer from choosing a value 

below that of the lower bound). The designer must also decide, whether or not 

he has chosen to use the absolute value, if he wishes to enforce an upper bound 

on that variable (i.e. to keep the optimizer from choosing a value above that of 

the upper bound). The state of any or all of the mass properties can be 

changed at any time in the operation of the program. 

The designer must also provide an initial guess for the mass properties of 

the counterweights. This initial guess will be treated as the current best 

estimate of the optimum mass properties of the counterweights for the 

mechanism. The optimizer will then attempt to find continually better 

estimates for the optimum mass properties of the counterweights. 

The designer must enter the object function and the object function 

weights (which express the relative importance of the terms of the object 

function) and the penalty function sharpness parameter. These can be changed 

by· the user at any time during the operation of the program. 

Finally, the designer must enter the simplex optimizer step sizes. These 

are used when the optimizer initializes or reinitializes the simplex. A step size 

must be given for each variable. The \value of th~ step size is approximately 

that for which, holding all the other varibles constant, a Taylor series centered 

at the initial guess, carried to the first-order term, would be accurate. 

Fortunately, these values need only be approximate, although it is always best 

to make them larger rather than smaller. 
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Program Operation 

The operational mode of the program is a cycle or loop. At any time 

during the operation of the program, there exists a current best guess for the 

optimum set of counterweights for the mechanism being balanced. As the 

program goes through the loop, the goal of the program is to improve the 

current best estimate. It must be kept in mind that, as the program is 

operating, it always deals with this current best guess. 

The loop begins with the user telling the program how many simplex steps 

he wishes to take. The program takes that number of steps, pauses, and then 

draws a series of plots. These plots provide information about about the recent 
• 

progress of the opimizer and the degree to which the current best estimate has 

modifed the dynamic properties of the mechanism. This information forms the 

" 

basis from which the designer will choose the course of action which will be 

taken next. 

The first display is a plot of the normalized average object function value 

of the simplex versus the step number. This information gives the designer idea 

of what kind of progress the numerical optimization routine is making. 

Next the program draws a plot of the square root of the weighted sum of 

squares of the terms of the object function (the int~grand of the main term of 

the object function) versus input variable ( e.g. crank angle). Following this, the 

program sequentially displays the plots of each of the physical terms used in 

defining the object function versus the input variable. On these plots, two lines 

are drawn, one for that quantity for the uncounterweighted linkage and one for 

the linkage with the current best estimate of the counterweights. This allows 

the designer to see how the dynamic properties have been modified from those 
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of the uncounterweighted linkage. 

From these plots, the user must decide what to do next. 

If he feels that the optimizer is making good progress towards the kind of 

solution that he wants, he should go to the top of the loop and continue. 

If he feels that the optimizer has just about reached • • and a m1n1mum 

wants to be sure, he can perturb the current best estimate (by changing the 

value of a variable slightly) and go to the top of the loop. After the optimizer 

has taken some more steps and he sees the series of plots, he should look to see 

whether or not the optimizer has begun to make any significant progress toward 

a new set of values. If it has, the numerical optimizer most likely had become 

stalled in a "corner" of the surface of the object function, and disturbing the 

point helped to get the optimizer going again. If it has not, the optimizer has 

probably reached a local minimum, and the designer should output the results 

and quit the loop, either to try to find another solution or to make use of the 

results he has. 

He may choose to edit the current best-guess mass properties of the 

co·unterweights and restart the process. This is simply equivalent to choosing 

another initial guess. 

If one or more of the variables on which he put no bounds are getting 

into regions where he does not wish them to be, he may choose to add or to 

modify the bounds on some or all the variables. .. 

If the properties are not being modified as he deems appropriate, he may 

choose to change the weigh ts of the object function. 

If he feels the optimizer is converging to a solution which has variables 

near their limits, he may wish to "sharpen" the penalty function by reducing 
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the value of the sharpness parameter. 

Finally, he may simply quit. 

Program Generalities 

In order to understand the structure of the program, it is necessary to 

describe some of the complexities of numerical optimization. There are two 

main problems associated with multi-dimensional, non-linear optimization. One 

is to determine when the optimizer has converged on a minimum. The second 

is to try to design an object function which accurately incorporates the desires 

of the designer. 

The balancing program deals with these difficulties in 
. 

a unique way. 

Unlike most optimizers, the user controls the progress of the optimizer from the 

keyboard. The graphics portion of the program provides the visual feedback 

link to the user from which the designer makes decisions and directs the 

progress of the program. 

The balancing program addresses the first difficulty by asking the user to 

decide if convergence has occured based upon information it presents to the 

user, namely the plot of the normalized value of the object function versus the 

iteration counter of the optimizer. "Normalized" in this case means that the 

current object function value is divided by the value of the object function for 
.. 

the uncounterweighted linkage. Thus, if the line on the plot dips below unity, 

the object function value of the counterweighted linkage is less than that of the 

uncounterweighted linkage, and at least some small success has been achieved. 

The shape of the line serves to indicate if and how well the process is 

• converging. If the line seems to be tending toward an asymptote as the 

iteration number increases, it would seem that the process is "stalling". The 
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optimizer may either have converged or have hit a region where progress may 

be slow for a while. In such a case, if the user simply perturbs the point 

(moving it by a smaJI amount), thereby reinitializing the simplex, he can better 

discern what has happened. If the optimizer resumes making good progress in 

minimizing the function, the optimizer had previously reached a region of slow 

progress. If the optimizer makes little progress but tends back toward the first 

point, the optimizer has probably converged. 

The balancing program tries to address the second difficulty: "What 

parameter( s) shall I minimize?" by treating the object function as a necessary 

evil. The program regularly plots the dynamic properties the designer has 

chosen, such as the shaking force in each direction, the shaking moment, and 

the input torque, with the property for the counterweighted linkage plotted on 

the same graph as the property for the uncountweighted linkage. The designer 

then can see how each of the dynamic properties is being modified. If one 

property is getting worse rather than better, he can increase the weight on that 
I"' 

property to try to cause the optimizer to seek solutions which minimize that 

property more specifically. In this way, the designer can vary the weights of 

object function in order to make the object function better reflect ~is interests. 

This program is unique in the sense that, the user is required to use his 

engineering judgment and physical insight to help guide the program. The use 

of engineering judgment and physical insight are of course desirable in all facets 

of design, but this program attempts to encourage the designer to use them and 

become actively involved in the operation of the program. This is in direct 

constrast to simply treating the program as a black box into which one dumps 

data and from which one gets the answer, and, hence, develops no great 
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understanding of either the problem being solved or how the solution was 

obtained. The degree to which this technique is successful could yield important 

insight into how to best design the algorithms to be used for all computer­

aided-engineering software. 

It should be pointed out that this program is the first attempt at a 
\ 

continuously evolving program. The software will continue to evolve with 

updated versions as users point out deficiencies and features which are seldom if 

ever useful, and make suggestions for new features. One area of probable 

redesign is the object function; it is doubtless that the current form will be 

supplemented by additional forms that wilJ better reflect the users' design 

decisions. 
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4.1 Slider-Crank Linkage 

Chapter 4 

Examples 

The first linkage to be investigated using the balancing program will be 

the slider-crank. Because of its relatively simple kinematic relationships, it is 

possible to obtain approximate analytical solutions for the shaking forces and 

shaking moment [24, p.530--537]. Furthermore, because of its use in the internal - ,., 

combustion engine, the slider-crank has been examined in great detail and the 

basics of balancing it are well known and establish procedures. 

The linkage data for this example are contained in Appendix A, as are all 

data of for the various sets of counterweights. The crank speed was 60.0 

radians per second. A schematic drawing of the linkage is given in Figure 4-1. 

'""'. 

The balancing solution sought will attempt to find the counterweights for 

the crank and connecting rod which best balance the linkage. However, since 

this linkage exists only on paper, no physical design restrictions or 

considerations exist. Therefore, several of solutions will be obtained, using the 

balancing program, simply to show the range of solutions possible. 

The integral portion of the object function to be used is: 

I. F x , F y , and MA are the shaking force in the X-direction, the 

shaking force in the Y-direction, and the shaking moment about the 

.. crankpin (A), respectively. 

2. Vx , Vy , and V M are the maximum absolute values over the cycle 
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of input motion of F x , F y , and MA , resi'ectively, for the 
uncounterweighted linkage, hereafter called divisors. 

3. a 1 , a 1 , and o 5 are the weights for Fx , F y , and MA , respectively. 

4. (J is the crank angle fiQ~ut) . 
. 

For reference, a standard balancing recipe was used, as prescribed in a 

machine design textbook [24}. This solution is approximate, being obtained 

from a truncated series solution for the shaking forces and shaking moment, and 

-
considers only the first harmonic components of the shaking force and shaking 

moment. 

In the discussion which follows, all references to the value of a dynamic 

property refer to the percent change of the root-n1ean-square (RMS) value of 

that dynamic property from that of the unbalanced linkage. The percent 

changes in the root-mean-square values of the X-shaking force (F x), the Y­

shaking force (F y), and the shaking moment about the crankpin (MA) are given 

in Table 4-1 for the various counterweight sets to be examined, along with the 

weights used to obtain the counterweight sets and the divisors. Plots of F X , 

F y , and MA are given in Figures 4-2, 4-3, and 4-4, respectively. 

The classical solution reduces F X , increases F y , and zeroes the shaking 

moment. 

The solutions under the columns counterweight sets # I and #2 were 

obtained using the balancing program. Counterweight set # I, for which the 

weights a 1 , at , and a 9 were chosen as specified in Table 4-1, reduces F X by 

an amount slightly greater than does the classical solution, increases F y by an 

amount about 13% less than the amount the classical solution does, and reduces 

MA by 94.0%, as opposed to a full balance of· it, as the classical solution does. 
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Table 4-1: 

Term 

0: 3 

vx 
V y 

VM 

%RMS Changes, Weights, and Divisors for Slider-Crank 
Classical 
Solution 

-50.1% 

+53.9% 

-100.0% 

-----

--.---

-----

-----

Counterweight 
Set #1 

-53.8% 

+40.9% 

-94.0% 

10.4011 

0.407923 

0.0001 

1133.80N 

224.536N 

3.51558N·m 

Counterweight 
Set #2 

-41.7% 

-18.3% 

-93.2% 

10.4011 

0.815846 

0.0001 

1133.80N 

224.536N 

3.51558N·m 

' ... 

Thus, the counterweight set # 1 yields results similar to those produced by the 

counterweights chosen by the classical solution, except that it trades off the 

zeroing of MA for a greater reduction in F x and for a smaller increase in F y . 

In most cases, since the magnitude of the shaking moment is relatively small 

compared to the magnitudes of the shaking forces, this solution would probably 

be more useful. 

Counterweight set #2 reduces all three dynamic properties. The reduction 

in the X-shaking force is about 9.6% less than that of classical solution. The 

Y-shaking force is decreased by 18.3%, as opposed the 53.9% increase that the ... ' 

classical solution causes. The reduction in MA is about 7% less than that of 

the classical solution. This counterweight set is probably the best of the three 

for most situations, since it leads to a good reduction in F X without causing a 

marked increase in F y , with lef A still being reduced markedly. For purposes of j 
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comparison, o1 for counterweight set #2 was twice the value used in finding 

counterweight set #I. 

It can be seen that the balancing program has generated solutions which 

are comparable to the classical solution. The solutions presented are but two of 

an seemingly infinite number of solutions which could be found; they were 

chosen to demonstrate the variety of solutions which can be obtained. For 
,. 

these solutions, it was not necessary to enforce bounds on any of the variables 
., 

to prevent them from becoming obviously unreasonable. For a real mechanism, 

constraints might exist which cause the counterweight sets found by the 

balancing program to be unfeasible. 
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4.2 Four-Bar Linkage 

The second linkage to be examined will be the four-bar. Data for the 

example linkage and the counterweight sets are in Appendix B. The crank speed 

was 150.0 radians per second. A schematic drawing of the linkage is given in 

Figure 4-5. 

The combined effects of the shaking forces, the shaking moment, and the 

input torque will be considered. The integral portion of the object f t1t1ction to 

be used is: 

I == 

where 

l. F x , F y , MA , T are the shaking force in the X-direction, the 
shaking force in the Y-direction, the shaking moment about the 
crankpin (A), and the input torque, respectively. 

2. Vx , Vy , VM , and -VT are the maximum absolute values over the 
cycle of input motion of the F x , F y , MA , and T, respective)y, for 
the uncounterweighted linkage, hereafter called divisors. 

3. o: 1 , o 2 , o: 3 , and o:4 are the weights for Fx, Fy, and MA, and T 
respectively. 

4. (} is the crank angle (input). 

For purposes of comparison, the Method of Linearly Independent Vectors 

with least-squares optimization of the shaking moment (5] has been applied to 

produce a set of count~rweights for the example linkage. This technique first 

determines conditions which zero the shaking forces in the X and Y direction 

and then minimizes the shaking moment. 

In the following discussion, any references to the value of a dynamic 

property will refer to the percent change of the RMS value of that property 
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from that of the unbalanced linkage. Table 4-2 contains the percent changes of 

the X shaking force (Fx), the Y-shaking force (F y), the shaking moment about 

the crankpin (MA), and the input torque ( 1j for the various counterweight sets, 

as well as the weights used to obtain the counterweight sets and the divisors. 

Plots of F x , F y , MA , and T are given in Figures 4-6, 4-7, 4-8, and 4-9, 

respectively. 

Table 4-2: %RMS Changes, Weights, and Divisors for Four-Bar 

Term 

Fx 

Fy 

MA 

T 

0. 4 

V X 

Vy 

VM 

VT 

Berkof 
and Lowen 

-100.0% 

-100.0% 

+127.0 

+21.1% 

-----

------

-----

.----~-

-----

-------

~ 

Counter­
weight 
Set #1 

-73.0% 

-74.9% 

+7.2% 

-39.4% 

0.025 

0.025 

0.750 

1.500 

820.546N 

688.508N 

65.2I59N-m 

I2.5423N-m 

Counter­
weight 
Set #2 

-51.4% 

-79.4% 

-42. 7% 

+15.5% 

0.250 

0.250 

1.000 

0.250 

820.546N 

688.508N 

65.2I59N-m 

12.S423N-m 

Counter­
weight 
Set #3 

+48.1% 

+64.8% 

-14.8% 

-19.5% 

0.005 

0.005 

1.000 

1.000 

820.546N 

688.508N 

65.2I59N-m 

12.5423N-m 

The balancing program was used to find three solutions. The first 

counterweight set was found with T more heavily weighted than F X , Fy , and 

MA. Significant reductions in Fx , Fy , and T are obtained. The shaking 
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moment is increased, however. 

Counterweight set #2 was found with MA weighted more heavily than T, 

F x , and F y . Good reductions in F x , F y , and MA are found. 
,I . 

T is 

increased, however. 

For comparison, it is seen that the counterweight set found by the method 

of Berkof and Lowen zeroed both Fx and F y (i.e. a full force-balance), while 

r 
significant increases in MA and T are induced. Both counterweight sets # I and 

#2 offer good reductions in Fx and F y , while neither increase either MA and 

T as severely as the counterweight set obtained with the method of Berkof and 

Lowen. In addition, both sets offer a decrease in either MA or T. 
' 

This demonstrates how the insistance upon full force-balancing before 

balancing other dynamic properties can limit the range of solutions that the 

designer may obtain. It is most likely that, in actual practice, either of 

coun~rweights sets # 1 or # 2, obtained by the balancing program, would be 

\ 
more usjful, as the increases in the shaking moment and input torque of the 

/ 

(--., 

countervkight set due to Berkof and Lowen 's solution would make it 

unattractive in most situations. 

Counterweight set #3 offers reductions in both MA and T, at the expense 

of increases in F x and F y . It was found to be very difficult to find a 

counterweight set which offered improvements in both MA and T. This is 

thought to be due to the nature of the kinematics of the mechanism. This 

example serves to illustrate that it may not always be possible to find exactly 

the kind of solution the designer desires. 
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Figure 4-8: Shaking Moment about A vs. 8 for Four-Bar 
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4.3 Watt's Six-Bar Linkage 

The third and final linkage to be examined will be a Watt's six-bar 

linkage, as shown in Figure 4-10. Data for the linkage and for the 

counterweight sets are in Appendix C. The crank speed was 62.83 radians per 

second. 

This linkage has five moving links, all of which may be counterweighted, 

and thus it is significantly more complex than either of the two linkages 

previously examined. Furthermore, bounds on variables will be used, as well as 

design limits on joint forces, adding to the complexity of the problem. 

As with the four bar linkage, the combined effects of the shaking forces, 

the shaking moment, and the input torque will be considered. The integral 

portion of the object function to be used is: 

[2~ (F)2 (F)2 (M)2 (T)2 I = Jo °'1 V: + o2 V: + °'3 V ~ + °'4 VT d8, 

where 

1. F x , F y , MA , T are the shaking force in the X-direction, the 

shaking force in the Y-direction, the shaking moment about the 
crankpin {A), and the input torque, respectively; 

2. Vx , Vy , V M , and VT are the maximum over the cycle of input 

motion of the F x , F y , MA , and T, respectively. 

3. o: 1 , o: 2 , o: 9 , and o: 4 are the weights for F X , F y , and MA , and T 
respectively; 

4. () is the crank angle {input). 

For comparison, two counterweight sets given by Walker and Haines have 

been included, referred to as Walker and Haines set F and set G. These sets 

were obtained for slightly different considerations ( witji gravity acting in the Y 

direction) than those of this investigation (gravity acting in the Z direction), 
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but the effect is rather smalJ compared to the inertial forces and thus these 

counterweight sets still provide useful comparisons. Set F is an example of an 

input torque balance, which balances the input torque at the expense of the 

other dynamic properties. Set G is a full force-balance example. 

As before, any references to the value of a dynamic property will refer to 

the percent change of the RMS value of that property from that of the 

unbalanced linkage. Table 4-3 contains the percent changes of the X-shaking 

force ( F x), the Y-shaking force ( F y), the shaking moment about the crank pin 

(MA), and the input torque ( T) for the various counterweight sets, as well as 

weights used in obtaining the counterweight sets and the divisors. Plots of F X 

, F y , MA , and T are given in Figures 4-11 through 4-18. 

In finding counterweight sets # 1 and #2, F x and F y were weighted more 

heavily than MA and T , and both counterweight sets reduce F x and F y more 

I 

than MA and T. The weights on MA and T used in finding set #2 were higher 

than those used in finding set # l; hence set #2 reduces F x and F y less than 

set # l while increasing MA and T less. Neither sets achieve the reductions in 

Fx and Fy that Walker and Haines' full force-balance (set G) does, but both 

counterweight sets produce much lower increases in MA and T than set 

G. Because of this, it is more likely that these counterweight sets would be 

more useful for most machine design situations. 

In finding counterweight set #3, MA and T were weighted more heavily 

than F x and F y . This set produces reductions in all the dynamic properties, 

which is unusual, with particularly good reductions in F y and T. Since 

counterweight set #3 reduces T only 8.2% less than Walker and Haines' input 

torque balance (set F), without increasing the other dynamic properties, it is 
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Table 4-3: 

Term 

F X 

Fy 

MA 

T 

OJ 

of 

0 j 

o, 
vx 

Vy 

VM 

V T 

%RMS Changes, Weights, and Divisors for Watt's Six-Bar 

Walker & 
Haines' IF) 

+48.7% 

+59.9% 

+33.2% 

-54.1 % 

-----

-·---

-----

-----

--·---

-----

------· 

------

Walker & 
Haines' IC) 

-99.8% 

-99.7% 

+165.6% 

+59.8% 

-----

-----

-----

-·-·--·-

---·--

-----

-----

-----

Counter­
weight 
Set #1 

-72.1% 

-83.3% 
~ 

+43.0% 

+7.1% 

1.000 

1.000 

0.200 

0.200 

643.695N 

346.389N 

395.096N-m 

23.407IN·m 

Counter­
weight 
Set #2 

-73.1 % 

-55.9% 

+28.8% 

+17.8% 

1.000 

1.000 

0.500 

0.500 

643.695N 

346.389N 

395.096N ·m 

23.407IN-m 

Counter­
weight 
Set #3 

-13.6% 

-69.9% 

-4.5% 

-45.9% 

0.100 

0.100 

1.000 

1.000 

643.695N 

346.389N 

395.096N-m 

23.4071N·m 

unquestionably a better design choice in most situations. 

The bounds applied to variables in this example were applied to the polar 

angles of the variables, specifically, the bounds on the polar angles were placed 

at zero and at 21r. This was done only for the sake of testing, as the nature of 

the trigonometric functions makes this unnecessary. As will be discussed in the 

Conclusion, the presence of the bounds made operation somewhat more difficult. 

Also present in this example were bounds on the joints forces at joints A, 

B, C, D, E, and F. The three counterweight sets all satisfied the requirements 

on the joint forces. The bounds on the maximum joint forces, as well as the 
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maximum joint forces found for each ·counterweight set, are tabulated in 
, •. 

Appendix C . 

... 
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Fx = RAX + Rox 

FY = RAY + ROY 

MA= ADO ROY 

Figure 4-10: ·Watt's Six-Bar -Linkage 
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Chapter 5 
Concluding Remarks 

As the examples treated in the previous chapter indicate, the balancing 

program is capable of producing useful solutions. However, there are several 

issues concerning its use which need to be pointed out. 

First, some observations about the object function are in order. One of 

the difficulties in designing an appropriate object function involves what the user 

thinks an object function should describe versus what results it may actually 

produce. To demonstrate, consider a four-bar parallelogram linkage with an 

ideal massless coupler, Figure 5-1, operating at a constant speed w , with no 
C 

external forces or torques exerted on the system. The massless coupler does not " 

make this example unrealistic, since a real coupler whose mass center lies on its 

line of centers may be reduced ( using a kinematically equivalent link [ 24]) to a 

coupler with point masses at either end and a massless hoop inertia (located in 

the midsection of the link). The point masses may then be lumped together 

with those on the crank (AB) and follower (CD), resulting in the same system 

as will be treated here, since the assumption of constant input velocity makes 

no use of the value of the hoop inertia of the kinematically equivalent link. 

In addition, it will be assumed that the inertia of the crank and follower 

are sufficient to avoid any difficulties at the singular points of the linkage. 

Intuitively one realizes that the shaking force in both directions, the shaking 

moment about the crankpin, and the input torque can alJ be made identically 

zero by adding counterweights such that the · mass centers of the crank and 

follower are located at their points of rotation. However, if one were to 

attempt to balance this linkage and include only the shaking force (in either 
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Figure 5-1: Four;_Bar Parallelogram Linkage 
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direction or both) in the object function, one would probably not get th.at as a 

solution. 

and 

~ 

Summing the net force in each coodinate direction, one obtains 

From this, it can be seen that 

2 • w . 

can be realized by using counterweights on the crank and follower which are 

such as to cause the net mass properties of the crank and follower to satisfy 

and 

Therefore, if one used the program to balance this linkage and defined an 

object function that minimized only the shaking forces, one could get either the 

solution originally expected (which make the polar radius of mass centers of 

counterweighted crank and follower zero), or the solution satisifying the 

conditions above. In practice, it is most likely that one would not get the 

solution originally expected, as it is but one solution which satisfies the 

condition above. 

However, if the shaking moment was also included in the object function 

definition, only the intuitive solution would result. In this example, the above 

condition would not zero out the shaking moment and therefore would not 

minimize the object function. 

This simple example demonstrates how the user can be "fooled" by his 

57 



object function definition. This is an extremely simple linkage, and an alert 

kinematician would have grasped the peculiarities arising from the geometry 

immediately. However, similar situations can occur with other linkages, and the 

designer must beware of such. 

A second problem in the area of the object function concerns the penalty 

functions. Knowing when and how to modify the penalty function sharpness 

factor, for instance, requires experience and judgment, along with some good 

fortune. The designer must be aware of the effects of the penalty function on 

the object function definition, as they can cause results which might otherwise 

mislead him. For instance, sometimes the graph of the object function versus 

the input will show that the object function is uniformly lower across the input 

motion for the counterweighted mechanism than for the uncounterweighted 

mechanism. This should mean that a good set of counterweights has been 

found. If, however, one of the variables is near its bound, the object function 

value may be so inflated that the plot of the normalized object function value 

versus the simplex step number may show that no success has yet been 

achieved, i.e. that the· line has not yet dipped below unity. If this is so, 

reducing the value of the sharpness parameter will result in a rapid reduction in 

the values of the object function. This will show the progress made al\d allow 

further progress. If the designer does not take the presence of the penalty 

function into account, situations such as this will appear to be noo-sensical, 

causing him to wonder what is wrong with the program. 

A third problem is the difficulty of providing initial guesses for the 

counterweights which will lead to an optimal solution. To help deal with this 

problem, a program option is given which allows the designer to generate a 
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limited number of solutions randomly and store those with the least object 

function values for future use in the program. 

Designers must also recognize the limitations of the state of undestanding 

of the optimization technique. Because of the uncertainties of non-linear 

optimization, there is no way to guarantee that one has the global minimum. 

The best that can be hoped for is that one will find a good, or at least a 

better, solution, In any case the time required to balance most linkages is small 

enough that it will be worthwhile to attempt the balancing of the linkage. In 

many cases the designer will be able to make a distinct improvement. 

A number of capabilities of the program have not been examined. First, 

the program allows any mechanism to be balanced, but so far only linkages 

have been treated. This is due to the lack of suitable routines to handle the 

more difficult kinematics of mechanism elements such as cams. 

Furthermore, while this program was designed primarily to perform passive 

balancing, the design of the program has been such as to also alJow the solution 

of the active balancing problem. By examining the mechanism to be balanced 

and its active balancing mechanism as one mechanism, making the mass 

properties of the components of the active balancing mechanism identically zero, 

and restricting the program so as to find counterweights only for the active 

balancing mechanism, the program can be used to determine these 

counterweights. This result will provide the optimal mass properties for the 

members of the active balancing mechanism. This has not yet been attempted. 

Another area in which no work has been done is in the area of balancing 

mechanisms which already exist. By measuring the necessary force components 

as functions of the input variables directly, it is not necessary to know the 
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mass properties of the mechanism already built. By using superposition 

techniques, the balancing program can be used to find the counterweights for 

the mechanism. This too will ultimately be attempted. 
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Appendix A 
Data for Slider-Crank Linkage 

LINK LINK 
SUFFIX 

AB 1 

BC 2 

CD 3 

MASS 

(kg) 

0.300 

0.460 

Table A-1: 

CENT. RADIAL ANGULAR LINK 
INERTIA OFFSET OFFSET LENGTHS 

p /3 
(kg m2) (m) (OEG.) (x10·2 m) 

0.000200 0.030 0.0 AB 5.00 

0.000900 0.050 0.0 BC 12.50 

1.110 

Table A-2: Data for Counterweight Sets 

LINK MASS 

(kg) 

Classical Solution [24] 
AB 1.268 
BC 0.220 
CD 0.0 

Counterweight Set # 1 
AB 0.731 
BC I. 790 10·6 

CD 0.0 

Counterweight Set #2 
AB 0.619 
BC 1.073 10·7 

CD 0.0 

CENTROID AL 
INERTIA 
(kg m2) 

0.0 
0.001684 

0.0 

0.0 
7.754 10·4 

0.0 

0.0 
8.809 10·4 

0.0 

66 

RADIAL 
OFFSET 

(m) 

0.050 
0.625 
0.0 

·0.015 
0.054 
0.0 

0.067 
0.078 
0.0 

ANGULAR 
OFFSET 
( degrees) 

180.0 
0.0 
0.0 

180.0 
0.0 
0.0 

180.0 
0.0 
0.0 
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LINK 

AB 

BC 

CD 

AD 

\· 

Appendix B 

Data for Four-Bar Linkage 

Table B-1: Geometric Data for Four-Bar Linkage 

LINK 
SUFFIX 

1 

2 

3 

4 

MASS 

(kg) 

0.300 

0.450 

0.690 

Table B-2: 

CENT. 
INERTIA 

(kg m2) 

0.000400 

0.006653 

0.001700 

RADIAL 
OFFSET 

p 

(m) 

0.030 

0.125 

0.025 

ANGULAR 
OFFSET 

(DEG.) 

0.0 

15.0 

10.0 

Data for Counterweight Sets 

/3 

LINK 
LENGTHS 

(x10·2 m) 

AB 5.00 

BC 20.00 

CD 15.00 

AD 27.50 

LINK MASS CENTROID AL RA:Q!AL ANGULAR 

(kg) 

Berkof and Lowen [5, 21] 
AB 1.582 
BC 1.160 
CD 0.528 

Counterweight Set # 1 
AB 0.791 
BC 0.692 
CD 0.667 

Counterweight Set #2 
AB 0.574 
BC 0.489 
CD 0.789 

Counterweight Set #3 
AB 0.540 
BC 0.368 
CD 0.795 

INERTIA 
(x10·3 kg m2) 

1.363 
0.282 

0.004 
0.002 

0.049 
0.014 

0.055 
0.007 

67 

OFFSET 
(m) 

0.057 
0.048 
0.033 

0.075 
0.027 
0.021 

0.085 
5.11 10-S 

0.039 

4.65 10·3 

0.028 
0.025 

OFFSET 
(degrees) 

180.0 
195.0 
190.0 

182.0 
195.8 
153.8 

189.0 
4.5 

137.2 

329.5 
183.9 
146.1 
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Appendix C 
Data for Watt's Six-Bar Linkage 

LINK 

AB 

BCE 

CDC 

AD 

EF 

FG 

Table C-1: 

LINK 
SUFFIX 

1 

2 

4 

5 

6 

MASS 

(kg) 

0.377 

0.740 

0.540 

0.644 

0.427 

Geometric Data for Watt's Six-Bar Linkage 

(~EN1'. 
INERTIA 

(kg m2) 

0.000373 

0.000243 

0.000405 

0.001443 

RADIAL 
Of.,FSET 

p 

(m) 

0.031 

0.126 

0.116 

0.080 

0.114 

ANGULAll 
OFFSET 

(DEG.) 

0.0 

12.7 

7.8 

11.6 

7.6 

{3 

LINK 
LENGTHS 

(x10·2 m) 

AB 6.00 

BE 15.00 
EC 15.00 
CB 20.00 

CG 11.00 
GD 13.00 
DC 18.00 

AD 25.00 

EF 17.50 

FG 15.00 

Table C-2: Peak Joint Forces 

Joint 
[Design 
Limit] 

Walker & 
Haines' [F] 

Walker & 
Haines' [G] 

Counter­
weight 
Set #1 

Counter­
weight 
Set #2 

Counter­
weight 
Set #3 

A [6000N] 964.90881N 1142.6113N 662.77368N 743.35937N 473.81470N 

B [1250N) 1067.6130N 1205.9109N 826.58874N 913.71960N 822.78955N 

C [1250N) 566.51465N 765.80005N 414.84216N 478.78998N 325.17322N 

D [1090N) 634.64563N 1144.1528N 560. 72327N 522.91736N 399.85669N 

E [1250N] 273.96356N 295.44366N 338.52319N 343.66296N 290.15686N 

F [1250N] 44.066154N 105.25644N 153.56085N 154.59659N 55.183647N 
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' Table C-3: Data for' Counterweight Sets 

LINK 

' . 

Walker and 
AB 

BCE 
CDC 
EF 
FC 

c,, 

Walker and 
AB 

BCE 
CDC 
EF 
FC 

11aines' 

Haines' 

MASS 

(kg) 

Set F 
0.963 
1.515 

-----
--·---· 
-----

Set C 
0.963 

-----
3.35 ~ 

-----
0.38 

Counterweight Set # I 
AB 1.498 

BCE 0.040 
CDC 3.607 
EF 0.010 
FC 0.341 

Counterweight Set #2 
AB 0.926 

BCE 0.067 
CDC 3.480 
EF 0.024 
FC 0.366 

Counterweight Set #3 
AB 1.105 

BCE 0.754 
CDC 0.001 
EF 0.012 
FG 0.015 

CENTROID AL 
INERTIA 

(x10·3 kg m 2) 

---.--
0.98 
-----
-----
--.---

-----
-----
1 I .38 

-----
0.15 

-----
1.224 
0.198 
0.967 
1.963 

-----
1.161 
8.281 
0.501 
0.256 

-----
0.912 
0.841 
0.247 
0.899 

69 

RADIAL 
OFFSET 

(m) 

0.044 
0.147 

-----
-----
-----

0.044 
-----

0.262 
-----

0.305 

0.046 
8.05 10·4 

0.215 
0.024 
0.325 

0.086 
0.030 
0.208 
0.048 
0.328 

0.092 
0.162 
0.099 
0.021 
0.011 

ANGULAR 
OFFSET 
(degrees) 

152.2 
238.5 
-----
----
---

152.2 

-----
357.4 
----
1.2 

166.5 
93.4 

359.56 
53.4 

320.0 

161.8 
66.6 

356.3 
39.2 

318.4 

196.0 
265.6 
6.4 

156.5 
355.2 
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