
Lehigh University
Lehigh Preserve

Theses and Dissertations

1987

A knowledge-based system for integrated circuit
package design /
Robert Steven Voros
Lehigh University

Follow this and additional works at: https://preserve.lehigh.edu/etd

Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Voros, Robert Steven, "A knowledge-based system for integrated circuit package design /" (1987). Theses and Dissertations. 4793.
https://preserve.lehigh.edu/etd/4793

https://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F4793&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F4793&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F4793&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=preserve.lehigh.edu%2Fetd%2F4793&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd/4793?utm_source=preserve.lehigh.edu%2Fetd%2F4793&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

,·

-~

•"
.... ~ ,..,., _ -

'·

-

A KNOltLEDGE-BASED SYSTEM

,. FOR

INTEGRATED CIRCUIT

PACKAGE DESIGN
,..

by

Robert Steven Voros

A Thesis

Presented to the Graduate Committee

of Lehigh University

·;

in Candidacy for the Degree of

Master of Science

in

Computer Science

I

Lehigh University

1987

--
-·~.

._

,

. A

•

•

...

·J

..

..
' ~ •.. .., \

"

• .

•

This thesis is accepted and approved in partial fulfillment of

the requirements for the degree of Master of Science.

()l,<.~__) r /J1 (~ ~
Professor Charge

Chair an of Department

'

. '

/

i -·'
.I .

' .

.,,

'.

I

.,

I

'

Acknowledpents

The writer would like to thank his parents, William and Alice, for
their love and support. · He is also very thankful for having an uncle

..
and an aunt, Franklin and Renie Voorhees, who made his Lehigh career
possible. He would like to express his gratitude to Kitty Liebhardt
who encouraged him to continue on with his education. He would also
like to show his appreciation to the Semiconductor Research
Corporation for their financial support. And finally, he would like
to thank Dr. Donald J. Hillman for his guidance through his graduate
program.

•

'
\

'·

·····.

·-,··.
J .-.

';

'

•• . . l •

' ' ,
,
. I

Table of Contents
. '

.

1 The Semiconductor Research Corporation (SRC)

t • I I I • • • • • • • • • I 0 I O t 0 I . 2
...

Project

1.1 Packages I I I e • e I I. I I I I I I . . . 2

2 Prolog's Database • • I I I I • • • • • •• 4·

2.1 Prolog Database ~lauses: Explanation • •

2.2 PrologBase: Excerpts from Source • • • •

3 Prolog Databases: Expert Knowledge Management

Systems I I I t • I I • I t I I I I e I I I I I I t

4 LUESS Version 1.0

4.1 Rule Syntax

. . '·

I I I I I I I I I I I I I t I

4.2 Knowledge Representation in LUESS I I I I

. ·7

11

14

20

21

24

4.3 The Inferen~e Engine: A description of how it

works •

4.4 Main Menu I t I I I I 1:· I I I. I I I I I I

4.4.1 Consultation

4.4.2 Read Knowledge

4.4.3 List Knowledge
. .

- 4.4.4 Compile Knowledge

~ i '

, .. ,

., -~

,· .. "' , ,, .. ·~
\ .·•

·' .

26

27

27

29

29

29

I

I
I.
I

I

•

•

'. '""'; .. ,.,J.,"~._:-.: ... ,#"- ,,,,,.;.• v.,J. ~

•

4.4.5 Push to DOS

4.4.6 Exit the system

4.4.7 Edit Knowledge

5 Application: An Expert System for Package

Design • e • I • I I I t I I I I I I I I I 1. ·.1 I

5.1 Materials • • • • • • • • • • • • • • • •

5.2 Typical VLSI Package Design Guidelines •

6. Enhancements and Future Directions • • • • • •

6.1 The SRC Expert System I I I I I I. I I I a

6.2 Summary

-7 Bibliography
•

8 Appendix ..

• • • • • • • • • • • • •• • • • • •

. ' •·
• • • I I I I • • • • • • . •. . . .

8.1 Sample Expert System I I I I I .1 I I I I

8.2 Vita

•

. ..

. . . '

,i

ii

• ' .
', .
' ' .. \. ' . '

30

30

31

32

32

34

37

37

40

42

43

43

46

,.,

,,,•

·'

•

•

•

•

-.~ !J '~

.
\, ..

J

_,.

Abstract

This paper describes a knowledge-based system for integrated

circuit package design. First, the Prolog programming language is

described, and the concept of relational databases in the language is

introduced. Next, fast retrieval methods such as indexing and

inverted files in Prolog are presented. An expert system shell, LUESS

is then described. This shell is unique because it generates a menu-
..

driven expert system from simple English-like rules. Finally all the

ideas introduced in the paper are pulled together and used in a

prototype expert system for the Semiconductor Research Corporation

Project .

•

.--

·'

. .

I

'·

•
,,;.·

l"" ~··.

.
' .. 1

)
,.·

..... ~ '
. ,,,

•

. -

,·

•

,,,. ..

'

_!. ·The Seaiconductor Research Corporation (SRC) Project

•

In the past decade, semiconductor technology has moved toward

large-scale integration (LSI) and very large-scale integration (VLSI)

of integrated circuit chips. With this advancing trend of

semiconductor ·technology, considerable research is needed in the

packaging of semiconductor components. Because of the increasing

knowledge, the process of package design is fragmented among many

individuals -- each having his own specialty. -currently we are

building large materials databases and learning the latest techniques

in package design from experts in the field. The primary goal of

this project is the total integration of these databases and design

tools into a unified knowledge base that will provide expert

packaging advice via a user-cordial interface. Eventually the power

/

of the expert system will be teamed with the power of CAD and finite

element analysis to totally automate the design and testing of

integrated circuit packages. ,

,

1.1 Packages

I

A package has to fulfill many needs. A semiconductor component,

.) or silicon die, needs electronic connections to outside logic

- 2 -

• • . ' ? .,

..

•.

'

(. ,•

•

• .

•

..

....

I

•

for it to function. It needs an · enclosure to protect it fro11

hostile environments and to facilitate mounting to circuit boards.

The semicondutor's package must also keep it cool as it dissipates

heat while performing its function. In addition, since most

silicon components have a finite failure_ rate, the package must

allow for easy removal and replacement from a PC board.
.....

The central focus of this thesis is on the application of

Artificial Intelligence in the Semiconductor Research Corporation

Project. The goal of th~ project is the development of a knowledge

based system for integrated circuit package design. This paper is

divided into six chapters. The first chapter describes databases in

Prolog. The next chapter shows how to speed up searching in Prolog.

'
Chapter Three describes LUESS, an expert system shell. The fourth

'chapter goes into more depth about packages and demonstrates the use
\

of LUESS with simple packaging rules. The last chapter lists

conclusions and future developments and enhancement~to the system .

•

.

- 3 ~

•

/

•

'/
r

,,
1·

•

-•

.! Prplo1'a Database

Prolog can be used to implement a relational database. There

are three characteristics that make Prolog relational. First, facts

are perceived by the user as a collection of tables. Next, the Prolog

language is utilized as a powerful query language.
)._,_

Fina 11 y, a 11

possible solutions can be found via backtracking. Backtracking is the

process of re-satisfying queries which is described below.

As with relational databases, information is regarded as a set

of tables in Pro log. A Pro log table consists of one or more facts,

each having a predicate and a collection of arguments. There is

generally no limit to the number of tables that can be asserted in a

--
Pro log database. Nor is there a limit to the number of arguments in a

Prolog predicate. The following is a sample table in Prolog:

part(shovel,[top handle assbly, - -
scoop shaft connector, - -
shaft, nail, rivet, scoop assembly]). -

part(top handle assbly,[top handle,nail,bracket]). - - -
part(scoop assembly,[scoop,blade,rivet]). -'

The Prolog language can be used as a powerful query language for

databases.
•

Typically, the user has a number of different facts
•

,.

asserted into RAM, and Prolog questions are formulated to select any
b

of these facts. A question in ·Prolog consists of a predicate name

• • 1.,

,,... .

- 4 -

I ..,

' \

'W ' ...

,.

r

).

•

,..._

and one or more uninstantiated arguments. For example, a question

for the database above could be part(shovel,X), where X is an

uninstant lated var !able. Upon execution of this question, Pro log

will match "shovel" in the database and instantiate X with a list of

component parts. The process of "matching" that has been referred to

above is called unification. "A set of atomic formulae are unifiable
I

if, as Prolog structures, they can be matched together." 1 Thus, in

Pro log, unification takes care of assigning values to variables,

accessing data structures via a general pattern-matching mechanism,
..

and certain kinds of tests for equality. 2

part(shovel, X) .

returns: X = [top handle assbly, ~ - -
scoop shaft connector, - - .

shaft, nail, rivet, scoop assembly]). -

Finally, Prolog searches for all possible solutions to a

question.+l It does this with the use of backtracking. "Backtracking

consists of reviewing what has been done, attempting to re-satisfy

1. W.F. Clocksin and C.S. Mellish, Programming in Prolog, New York:
Springer-Verlag, 1984, p. 247

2. _____ , Turbo Prolog User's Manual, Borland International,

1986, p. 54

...

··(

•

,· ,-• . '· ' ti

...

' .•..

... , ..

'

'

.. ,

'

"

•

the goals by finding an alternative way to satisfying thea." 3

Backtracking can be in! tiated by typing a semicolon after Pro log

returns a solution:

I

part(X, Y).

returns:

X = shovel,
Y - [top_handle_assbly,

scoop shaft connector, - -
shaft, nail, rivet, scoop assembly]) ; -

X - top handle assbly, - -
Y - [top~handle,nail,bracket]) ;

X - scoop assembly, -
Y - [scoop,blade,rivet])

Pro log al lows facts to be wr i ttel}.._ to and read from external

files much like facts asserted in RAJI databases. There are many

benefits in using external files. For example, the programmer is no

longer restricted by the size of available RAJI for his database

only by the size of available disk space. Secondly, with external

disk files, heap overflows are not likely to occur due to a decrease

in need for internal memory. Finally, different searching techniques

can be employed to speed up;access to the facts in the database. This
' ' i

is particularly important for large databases (2000+ entries), for

3. W.F. Clocksin and C.S. Mellish, Programming in Prolog, New York:
Springer-Verlag, 1984, p. at ·

\

... . - 6 -

.,

•
using Prolog's pattern matching facilities may take too long for real

)

time applications (See Expert Knowledge Management Systems) .

•

2.1 Prolog Database Clauses: Explanation

·The last'three pages of this section contain a group of clauses

that are used to implement a database in Turbo Prolog. Most of these

clauses appear on pages 143-144 of the Turbo Prolog manual; however,

they are slightly modified. The listed clauses require the user to

enter an index file and data file. They also allow for the user to

directly access specific facts in these files.

The first two clauses assert facts into a database on disk. If

the user types in the following goal:

dbass(alloy(l,aluminum),
"indexfile","datafile").

Prolog would execute the first dbass tlause. To prevent overwriting

existing files, dbass checks to see if the files have already been

created. Exlstflle performs this function. If the two files have been

previously created, dbass will open the files by calling openappend

and append new facts to the end of them .

.... 7 --

. ·,

,.. '

,.

'

•

I

•

: I •

r
•

'
Appending is done by calling wrltedevlce, which tells Turbo

Prolog that the device that is to be written to is the data rt\ile.
f. I I

Filepos(datafile,Pos,O) returns an integer value in Pos which is the

location of the file position pointer in the data file. Finally the

new fact is written into the data file, and the file is closed. The

same sequence is repeated for the index file: in this case the file

position pointer, Pos, is added to the end of the index file. The

second dbass clause performs the same sequence of events; however,

ff.the two files do not exist, they are created.

(
Dbread opens both the datafile and the indexfile for reading and

calls the dbaaccess clause. If the user types:

dbread(alloy(X,Y),
"datafile","indexfile").

all the facts in the database will be returned, because both X and Y

are uninstantiated. If the user enters the following Prolog query:

dbread(alloy(l,Y),
"datafile","indexfile").

dbaaccess will read the facts sequentially until it finds one that

matches the .l in the first attribute. dbaaccess does this by

recursively calling itself .

.,

.. '
~ii',

'

, . ~I' • •

~·
... ~.

..
" ,

,•

•

..

-.

I

•

Dbret retracts facts from the database. Dbret does not ·actually

remove facts from the database file, it just replaces the facts'index

numbers with -l's so that the facts are overlooked by dbaaccess.

The last two clauses access the database randomly instead of

sequentially. Dbread2 opens both the datafile and the indexfile and

calls dbaccess (NOTE: different from above). Because the data file

positions are formatted into a field of 7 as they are placed into the

index file, access into the data file can be done very quickly. If

the 52nd fact is sought in the data file, dbaccess calculates the

position into the index file with the following equation:

Index3 = (Index - 1) * 9.

In our case, Index= 52, and 9 is the field length (7) plus <er> and

<If>. The f ileposi tion now points to the 52nd integer in the index

file. This integer is a pointer that points to the 52nd fact in the

data file. Using this file position, the fact is read from the data

file and returned to the user.

The clauses introduced in this section allow Prolog to be ·a very

powerfµl database system. Since random access can be performed, facts

can be retrieved very quickly from the database. And by making simple
•

modifications, hashing and binary searches are possible. The next

- 9 -
0

·,

'
'·

r·

.. ~ ..

...

-

'.

• I

\ .•

chapter describes indexing and inverted files, which greatly decrease

Prolog's search time .

..,

,

--··-'

,

"

•

. '

/

- 10 -

•
• •

,,

..
·• '

. '

•

-

..

2.2 PrologBase: Excerpts fro• Source 4

/***/

/*
/*
/*

PrologBase

/*
/*

Robert Steven Voros

/* This group of Prolog
/* database files.
/* ...

clauses allow Prolog to have external

*/
*I
*I
*I
*/
*/
*/
*I

/***/

DOMAINS
file= datafile; indexfile

DATABASE
alloy(integer,string)

PREDICATES
dbass(dbasedom, string, string)
dbaaccess(dbasedom, real)
dbret(dbasedom, string, string)
dbretl(dbasedorn, real)
dbread(dbasedom, string, string)
dbread2(dbasedom, integer, string, string)

dbaccess(dbasedom, integer, integer, real)

CLAUSES

/

I.

/********************* Dbassert ********************************/

dbass(Term, IndexFile, DataFile) :-
existfile(DataFile) , existfile(IndexFile) , I,

openappend(datafile, Datafile),

4. __________ , Turbo Prolog Manual, Borland International, 1986, pp.

143-144

• - 11 -
'

..

I

..
,.

,,

..

·,

.\

...

- . i

..... ,.

/

I
/

. -~ '

•
I

. .

writedevice (datafile),
filepos(datafile, Pos, 0),

write(Term), nl,
closefile(datafile),
openappend(indexfile, IndexFile),

writedevice(indexfile),
,writef("%7.0\n", Pas),

closefile(indexfile).

dbass(Term, IndexFile, DataFile) :
openwrite(datafile, Datafile),

writedevice(datafile),
filepos(datafile, Pas, 0),

write(Term), nl,
closefile(datafile),
openwrite(indexfile, IndexFile),

writedevice(' indexfile) ,
writef("%7.0\n", Pos),

closefile(indexFile).

/********************** Dbread *********************************/

dbread(Term, IndexFile, DataFile) :
openread (datafile,. DataF i le) ,

openread(indexfile, IndexFile),
dbaaccess(Term, -1).

dbread(, ,) :-- - -
closefile(datafile), closefile(indexfile), fail.

/********************* Dbaccess ********************************/

dbaaccess(Term, Datpos) :-.
Datpos >= 0,
.-filepos(datafile, Datpos, 0),

readdevice(datafile),
readterm(Dbasedom, Term).

dbaaccess(Term,) :--
readdevice(indexfile),

readreal(Datposl),
dbaaccess(Term, Datposl).

..

/********************* Dbretract *******************************/

dbret(Term, Indexfile, Datafile) :-

- 12 -

•

I •
I..
\.

..

I

•

,.

I
I

I
I

/'-

/.

!
'

'

openread(datafile, DataFile),
openmodify(indexfile, IndexFile),

' dbretl(Term, -1).

dbret1(Term, Datpos) :-
Datpos >= 0, ··
filepos(datafile, Datpos, O),

readdevice(datafile),
readterm(Dbasedorn, Term),I, ..

filepos(indexfile, -9, 1),
flush(indexfile),

writedevice(indexfile),
writef("7.0\n",-1),

writedevice(screen).

dbretl(Term,) :--
readdevice(indexfile),

readreal(Datposl),
dbretl(Term, Datposl).

~

- -- ,,..=-•

•

,.

• •

l

/********************* Dbread2 *********************************/

dbread2(Term, Index, Indexfile, Datafile) :
openread(datafile, Datafile),
openread(indexfile,Indexfile),

' dbaccess(Term,Index,0,0),

•

closefile(indexfile),
closefile(datafile), l.

/********************* Dbaccess2 *******************************/

dbaccess(Term, Index, Index2, Datpos) :
Index3 = (Index - 1) * 9,

•

filepos(indexfile, Index3, 0),
readdevice(indexfile),
readreal(Datposl),

filepos(datafile, Datposl, 0),
readdevice(datafile),

readterm(Dbasedom,Term), I.

•

- 13 -

..
•

..

)

'

-·

\ ..

..! Prolog Databases: Expert Knowled2e Mana2eaent Syateaa

Many times expert systems lack the means to provide efficient ,

knowledge bases, and database technology lacks

representation schemes and reasoning capabilities.
•

knowledge management syste11, however, integrates

knowledge

An expert

artificial

intelligence with data processing techniques. As mentioned earlier,

Prolog provides database facilities much like those in relational

database programs, but searching tends to be very slow. If a database

of 500 facts were asserted into RAM, typical searches would take four

to seven minutes; searches would take even longer in external files.

In query-oriented environments, there is not a lot of time available

for scanning entire files for desired attributes. To speed up

retrieval, data processing techniques have to be applied. The

techniques used in this research are indexing and file inversion.

A typical Pro log database file consists of many facts, each

being a predicate with one or more attributes. Below is a sample of

a record in a Pro log database. In this case each record is split

across three files: alloy, alloy2, and comments.

alloy(1, 11 ALUMINUM", "6 . 24", "A91060", "", "AA1060",

J " 10 KS I " , "A" , "", "4 KSI", "A", "A1060 (89)", "43 %",

"E" , 11 1 A 11
, " 19 HB" , "X" , "0 . 0 0 0 0 11

, " 0 " , "B " , " " , "8" ,

"O") .

- 14 -

..

r ,-.

..

alloy2(1, ["STRESS CORROSION RESISTANT"],
["WROUGHT" , "FORGING" , "EXTRUSION" , "SHAPES" ,
"SHEET", "PLATE", "BAR", "WIRE", "TUBE"]).

co11•ents(l, ["Applications requiring very good resistanc to
corrosion and", "good formability, but tolerate
low strength. Chemical pro-", "cess equipment is
typical."]) .

An inverted list is a list of all records having a given value

of some primary or secondary key. Let us take the above example. The

database contains 500 metal alloys, and these alloys can be of

certain classes, certain forms and certai11 properties. These facts

can be represented as the following:

inverted CLASS(" ALUMINUM" , [1, 2·:@:, 4, 5, 6, 7, 8, ... , 60]) . -
inverted CLASS("TIN", [200,203,205,206, ... , 215]). -
inverted FORMS("WROUGHT", [25, 30, 31, 32, 89,100]). -
inverted FORNS("FORGING", [230,231,400,423,424,425]). -
inverted PROPS("STRESS CORROSION RESISTANT", [34,35,60,67]). - .

. ~ inverted PROPS("ELECTRICAL MATERIALS",[401,402,403,404]). -

As seen above, an inverted file contains unique keys with lists

of index numbers. Each index number corresponds to an alloy in the

main metals database. Remember from chapter l, two files are

created: a data file and an index file.

- 15 -

I

•.

. ·'

-

•

The data file consists of the facts in Prolog. The index tile,

on the other hand, consists of pointers into the data flle. The

following figure shows this relationship between the files:

,,

- 16 -

-.

'
I).

(

•

y
V

• -

..

•

F91xed F"lelds

J.

2

3

4

5

6

7

8

9
..

10

11

499

500

000

'

...

Uar I ab I e Slz• ,:-1elds

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

000 000

DATA

DATA

•

...
•

(1

}
(

. '

•

,

Because the index file has fixed fields, pointers can be retreived

directly by multiplying index-1 by nine (field length+ <er>+ <If>),

and reading the file position.

Now that there is an efficient way of retrieving facts from a

database, simple Prolog predicates can be used for database queries.

Remember, no facts are asserted into RAM: just lists of index

numbers. Therefore, only list manipulation clauses are needed. The

most common list manipulation clauses are intersection and union. 5

aeaber(Element,[Elementl_]).
ae•ber(Element,[_ITail]) :- member(Element,Tail).

intersection([],X,[]).
intersection([XI R], Y, [XI Z]) : -

rnernber(X,Y),
! ,
intersection(R,Y,Z).

intersection([XI R], Y, Z) : - intersection(R, Y, Z).

uni on([] , X, X) .
union([XIR],Y,Z) :-

member (X, Y),
! '
uni on (R, Y, Z) .

union([XIR],Y,[XIZ]) :- union(R,Y,Z).

If the user wants to find all those alloys that contain aluminum

or tin, a union is taken between the lists associated with the

5. W.F. Clocksin and C.S. Mellish, Programming in Prolog, New York:

Springer-Verlag, 1984, p. 154

'\ '

- 18 -

.......

/

..

' ..

...

'
/

alu11inum and tin classes in the inverted file. If the user desires
.

to view all those metals that are composed of aluminum and are stress

corrosion resistant, an intersection can be taken between the lists.

As will be seen irr the last sections of this paper, the

techniques developed here in expert knowledge management systems are

applied to various applications .

..

- 19 -
.. ,.

-

4 LUBSS Version 1.0 -

Expert system "shells" are becoming more popular as research in

Artificial Intelligence escalates. Shells are problem-independent .,,

tools used to facilitate the design of expert systems. Much like a

language, shells interpret rules that are entered by the user.
'

Expert system tools such as shells furnish the power of
.,

Artificial Intelligence in simple English-like style notation.

Knowledge is acquired from seasoned experts. However, many times

experts do not understand the representational mechanisms of common

Artificial Intelligence languages. There are two alternatives for

knowledge acquisition. The first is not to give the expert direct

access to the system; rather, use a computer scientist as a buffer.

The second alternative is to use a shell that takes as input simple

"if-then" rules. It is this second approach that I employ in my

system. The Lehigh University Expert System Shell (LUESS) was created

for the Semiconductor Research Corporation. The shell compiles simple

English-like rules into Prolog predicates which are then used to

build a menu-driven expert system.
~

•

One of the key features of LUESS is that it is· a menu-driven

expert system. Many expert system shells require the user to do a

considerable amount of typing. And other systems allow the user to

- 20 -

I

..

answer only "yes" or "no". LUBSS, on the other hand, prompts the

user w j th questions and menus . After the initial knowledge is

entered into the system, users need only point to the answers to the

questions.

4.1 Rule Syntax

\

The syntax of the rules is quite simple. There are currently

nine key words: RULE, IF, IS, IN, ARE, AND, OR, QUESTION, RANGE. And

'
, . ,

I , ' : ', and there are four Key punctuation marks: ' ,, ,

'
The following is the syntax diagram for a rule:

RULE: goal I~value IF
[AND clauses] ;
[OR clauses] ;
QUESTION: [question] .

AND clauses--> [goal IS value [AND]]*

I I

[goal IS IN RANGE number TO number
[AND]]*

[goal IS number [units] [AND]]*

OR clauses --> [goal IS value [OR]]*
[goal IS IN RANGE number TO number

[OR]]*
[goal IS number [units] [OR]]*

- 21 -

, ,
• •

..

l.

. ,, ·- .~.

. '

..

. .

., ' \ ~ ..
' ·: \

r ..

.•

Question --> " [string] "
·-

i

Every rule must~be2in with the keyword RULE followed by a colon.

During compilation, the shell attaches unique integers to each rule .
..

These values will be displayed in future edits of the rulebase.

The first line of a rule is the "goal". That is, if all the

conditions are satisfied, the goal will be proven true. The

conditions are themselves goals, but they are goals of other rules

that are generated by the system.

line:

RULE: package IS pga IF
• • •

•

The following is a sample goal

As mentioned above, condition lines follow the goal line. These

1 i nes are either ANDed or ORed. An AND clause consists of one or

more conditions ANDed together, and all the conditions must be proven

true for it to succeed. A typical AND clause is displayed below. In

this case, in order for the package to be a pin grid array, the clock

rate has to be high, the dielectric has to be ceramic and the there

should be between 200 and 1000 pins.

RULE : package IS pga IF
clock rate IS high AND -
dielectric IS ceramic AND ...
pins ARE IN RANGE 200 TO 1000 ;

- 22 -

'•'-i, •

"'

t

C'..

')

"
I•• ..

QUESTION: ti It
•

An OR clause is exactly the same as an AND clause, but in this

case the lines are ORed. At least one condition must be proven true

for an OR clause to succeed. Below. in order for the clock rate to

be high, the chip technology must be cmos or eel.

RULE: clock_rate IS high IF
chip_technology IS cmos OR
chip_technology IS eel ;
QUESTION: "What is the clock rate?"

Many of the rules will not contain any conditions. They will

consists only of a goal line and a QUESTION line. These rules are the

"end of the line" in the inference engine's recursion. An ·inference

engine can be thought of as a rule interpreter. It is the job of the

inference engine to decide what rules are to be applied. The strategy

that the inference engine uses is called the control strategy. In

LUESS a goal driven control strategy is used: the system starts with

an initial goal, breaks this goal into a number of subgoals, and

these subgoals are broken into more subgoals. The inference engine

will work its way down this tree of goals until it arrives at a point

were it can go no further. LUESS will then search the rulebase for

any other rules with the same rule name and create a selection menu.

The user will then be prompted with a question, and will be asked to

- 2.3 -

,-

•

.,

..

select one of the items in the selection menu. The following is an

example of a "goal-question rule":

RULE: low_cost IS yes ;
QUESTION: "Is a low cost package required?" .

4.2 Knowledge Representation in LUESS

LUESS compiles the rules down into Prolog predicates, which are

then used as the system's rulebase. Because the number of rules may

run into the thousands, database techniques are used to retrieve only

those rules that are needed (See Databases in Turbo Prolog). There

exists seven slots in the rule predicate: Rule Number, Rule Question, - -
Rule Name, Value, Range, OR List, and AND list. The following shows - -
the syntax of a rule in the rulebase of LUESS:

rule(Rule Number, Rule Question, Rule Name, Value, Range, - - -
OR List, AND List). - -

Each rule contains a unique rule number. As mentioned earlier,

I unique rule numbe~ are generated during compilation. In addition,

each rule has an optional question. Questions are optional because

rules that contain AND clauses or OR clauses never prompt the user

•

- 24 ...

. ,_.

•

...

....

\

•

•

'

•

with a selection aenu. Only "roal-question" type rules need

questions.

Each rule has a rule name and rule value. Both these fields do

not have to be unique. Rule Name is a goal and Rule Value is the - -
value of the goal. For example, if we had "RULE : package IS pga

IF', package would be the Rule Name and pga would be the Rule Value. - -
If the above were the goal of a "goal-question" type rule, LUESS

would search for all those rules with the same Rule_Name and generate

a selection menu containing the Rule Values from each. -

During compilation, if a rule is encountered that contains a

RANGE, the key word range will be placed in the Rule Value slot. -
The range slot will then· contain a set of real numbers. If the

keyword IS is encountered followed by a numeric value, Rule_Value

will take the val.ue ls and the range slot will contain a single real

number.

Finally, each rule contains a list of ORed ·rules and a list of

ANDed rules. These lists are lists of integers, each associated with
\

other rule numbers generated by the compiler. Below is a set of rules
•

as they would appear in an LUESS rulebase.

rule(1 , package, "" , [] , [] , [9, 1 O, 12]) .

rule(9, clock rate, "What is the clock rate?", high, -
Q .

- 25 -

•

,.

•

·-
• •

[1 , [24 , 26] , [1) .

rule(24, chip technology, "What is the chip technology of the chip?", -
cmos , [] , [] , [1) . •

rule(26, chip technology, "What is the chip technology of the chip?", -
eel, [], [], []).

rule(lO, dielectric, "What is the dielectric material?", ceramic,
[], [], (17, 18]).

rule(12, pins, "What range is the number of pins in?", range,
(1000, 200], [], []).

I \

'

4.3 The Inference Engine: A description of how it works·

The inference engine of LUESS is very simple. Like Prolog LUESS

implements a goal-driven strategy based upon resolution. Resolution

is the process of starting with an initial goal statement and resolve

it with one of the hypotheses to create a new clause. This new clause -

is then resolved with one of the hypotheses to give another new

clause. This process continues unti 1 it reaches a point where the

new clause can be conclusively answered. In Prolog terms, goals lead

to sub-goals, and sub-goals lead to other sub-goals, etc. This

process continues until the sub-goals are satisfied.a

6. W.F. Clocksin and C.S. Mellish, Programming in Prolog, New York:
Springer-Verlag, 1984, pp. 250-252

- 26 -

-0.

·~· / "· -~

•
,I

\

'

I

•

..

The inference engine is displayed below. Check has two

parameters:.Rule_No and a List_of_rules that have to be proven. If

the list of rules is empty, the rule can be evaluated by calling

evaluate rule. If the list of rules is not empty check is called
-

recursively, this time with the first element of the new list of

rules. LUBSS continues to creep down the left side of the tree until

a rule can be evaluated. If it succeeds it is asserted into RAM with
r.1·

those rules that have been proven so far. If it fails, the system

will backtrack until another rule can be evaluated. LUESS will

continue to execute until the goal has been proven or disproven.

check(Rule No; []) :- evaluate rule(Rule No). --- - - .

check(Rule_No, [BNOIREST]) :-
get_rule(BNO, Rule_Quest, Rule_Name, Value, Range, Any, All),
check(BNO, All),
asserta_if_necessary(BNO, Rule_Name, Value, Range, Any, All),
check (0, REST) .

I

4.4 Main Menu

4.4.1 Consultation

After a rulebase is loaded into LUESS, the system is ready for

consultation. The consultation screen consists of three windows: a

- 27 -

. '

" ,_
1.

...

!

l
I

I I
,i

' •

J .,

I

trace window, a se11'ction window, and a dialog window. The Trace

window displays LUESS's reasoning; that is, the facts that have been

inferred. Menus generated by LUESS are displayed in the selection

window. And finally the dialog window contains questions that are

asked of the user.

..

- 28 -

I

,.

-·

j

.. ..

4.4.2 Read Knowled~e

By selecting this choice in the main menu, the user is able to

read in a knowledge base. Knowledge bases have ".dba" extensions and

are generated by compiling the user's source code.

4.4.3 List Jnowledge

List Knowledge allows the user to display the knowledge from a

rulebase. The user should have loaded or comp! led his source code

before using this facility.

4.4.4 Coapile Knowledge

If knowledge was edited on an outside editor, it can be loaded

into LUESS by using thi~s option.a

- 29 -

....

•

4.4.5 Push to DOS

The user can temporarily leave LUBSS using this option. To

return, type "Exit" at the DOS prompt.

4.4.6 Exit the systea

This option allows the user to· halt execution of the LUESS .

..

- 30 -

\

•
.....

. .

·'

,

4.4.7 Edit Knowled1e

Edit Knowledge al lows the user to edit the knowledge in his

rulebase. Upon 'completion, the knowledge is recompiled.

Keys

Esc or FlO
keys, PgUp,
Del

Snaaary of Editor Keystrokes7

PgDn, Home, End

Purpose

Exit the editor Arrow
Move the cursor
Delete the character at the cursor
Mark the beginning of a block
Mark the end of a block
Un-mark a block

•

Ctrl-K B
Ctrl-K K
Ctrl-K H
Ctrl-K C Copy a marked block to the position~

indicated by the cursor
Delete a marked block

,,

Ctrl-K Y
Ctrl-K V

Fl

Move a marked block to the position
indicated by the current cursor posit ~

Help information
F5
F6
F7
F3
Shift-F3
F4
Shift-F4

\,

Copy block
Move block
Delete block
Search
Repeat last search
Search and replace
Repeat last search and replace

7. _________ , Turbo Prolog Manual, Borland International, 1986, p.
13.

- 31 -

·<

I

..

...
•

•

•
•

\

~ Application: An Expert Syatea for Packa2e Desi211

r

As described at the beginning of this paper. a package has to

fulfill many needs. A semiconductor component, or. silicon die,

needs electronic connections to outside logic for it to function .
. .

It needs an enclosure to protect it from hostile environments and

to facilitate' mounting to circuit boards. · The semicondutor' s

package must also keep it cool as it dissipates heat while

performing its function. In addition, since most silicon

components have a finite failure rate, the package must allow for

easy removal and replacement from a PC board. To give the reader an

idea of the vast amount of knowledge that is needed for package

design, the next two sections introduce the types of materials and

typical guidelines for VLSI package design.

5 .1 Materials

Typical desirable properties in a package are hermeticity,

high thermal conductivity, low di.electric"-----constants. high

'

mechanical strength, thermal expansion that matches other

components, low sintering temperatures, and low cost.

32 -

.I
·,

'

..

Hermetic! ty is an i•portant property in a seaiconductor

component's package. The package must be impervious to water

vapor, air, etc. 1 This is particularly important for high

reliability and for optical component packages with

thermoelectric coolers. Possible failure points in a, package that

would destroy its hermetici ty are pores, delaminations, vias,

ceramic-metal interfaces, and seals.

High Thermal Conductivity is another important property in a
•

package. As the density of semiconductor chips gets greater, the

thermal load in the chip becomes very large. And as packages get

the temperature constraints become more severe. It is

desirable to utilize a high thermal conductive

larger,

therefore

material. Conditions for high thermal conductivity are low

average atomic mass,

crystal structure.

strong interatomic bonding, and a simple

Materials with high thermal conductivities are

SiC (270 W/mK), BeO (250 W/mK), and.AlN (60-170 W/mK).

Thermal expansion is also important. As the semiconductor chip

expands due to heat, the package should also expand,

preferably matching the thermal expansion of the chip it is

encasing.

Finally, low sintering temperatures are desirable. The sintering

process becomes increasingly expensive as the temperature increases.

)
I

-~,' ',
,.

- 33 -

..,..---

\
J,. , ..

•

• r

•

..

...
\ . -~
'

Lower sintering temperatures also allow for the use of less resistive

metals. Typical sintering temperatures are the following: Glass

bonded ceramics (500-1200), Borosilicate (1000), S102 (1000-1200),

and SiC (2100).

5.2 Typical VLSI Package Design Guidelines

Below is a list of package design guidelines. It is by no means

complete: however, it demonstrates the type of knowledge that is

needed in package design.

make ·up the SRC rulebase.

It is this type of knowledge that will

Skeleton List 8

Die Characteristics

Size --- 1/0 Pads Thickness Power --- --- ---

Cavity Design (for eutectic attach with scrub)

Size (add .05" to .08" per side to die size)
Length Width ---
Depth (add .005" to die thickness) ---
Die pad flatness .003 max., .002 preferred.

!

8. John A. Nelson, VLSI Package Design Considerations, IEEE VLSI
Computer-Aided Design Testing, and Packaging, 1982, pp. 320-324

- 34 -

..

'\

Outer W1re Bond Led6e DeB1611

-Cavity Length

-Package suppliers prefer line widths and spaces of .010".

-Calculated by: L = (N X WL) + [(N+l) X WS]
N = number of bonding pads per cavity side.
WL - the width of the bonding pad.
WS = the width of the space.

Wire Bond Ledge Length

,,, L - 2H + . 010"
H - thickness of the top layer of ceramic

Sealing Area Design

A minimum of .08" per side should be allowed.

Electrical Requireaents

Resistance of
Resistance of
Capacitance:

special leads milliohms maximum. ---
all others milliohms maximum. ---
Specify lead to ground or lead to lead

required.
Inductance: Low inductance grounds or other

require special design enhancements.
conductors

Ther•al Desieri

Maximum die power .
Desired maximum junction temperature TJ =
Maximum ambient temperature TA=
ThetaJ. Cooling media= TJ - TA

max power

• ---
• ---

as

may

This chapter was to have given the reader an idea of the

cQmplexities involved in designing packages for integrated circuits.

- 35 -

.

..

" .
\

It introduced many properties and deai~n criteria that are used, but

was by no means a complete list.

\

\ •
•

36 -
'

.•

•
'

•

8 Bnbanceaenta and Future Direction• -

8.1 The SRC Expert Syatea

An expert system is currently being designed for the

Semiconductor Research Corporation. Its goal is to decide what kinds

of packages would be best for various semiconductor components. If

a package does not.exist, the expert system will aid the user in the

design of a new package using information from a database that

contains instantiated packages. TKe system is currently being

developed using the Lehigh University Expert System Shell (LUESS) on
..

the Personal Computer. The expert system will eventually use a CAD

system for designing packages,. ANSYS for finite element analysis,

and LUESS written in Quintus Pro log as the inference engine. The

Appendix contains a prototype system developed in LUESS. This last

chapter describes enhancements of LUESS that are currently being

added.
.,

Currently, many databases have been created, and user friendly

routines have been developed to retrieve the information. However,

much of the knowledge in these databases is not pertinent to package_

' design; for example, information on cast iron or magnesium is not

- 37 -

/

'. ,
•

•

, __

(

i

•

..

needed. Therefore, the next goal for the project is to prune the

databases and make them specific to package design only.

Next the databases need to. be integrated with the shel 1. The

most feasible method of integration would be to build a database

language into the rule language. The most common and most widely

used database language is SQL. SQL is a relational language used by

many of the most popular database systems. This querying system was
,_

developed to be used by both technical and nontechnical people. In

the case of LUESS, only a subset of SQL needs to be implemented, for

the expert system shell will not be updating the databases, just

retrieving information (at tbis time). The integration of such a
- '

language would increase the power of LUESS tremendously. Instead of

the expert entering all the pertinent information into the rulebase,

the needed information can be retrieved from existing databases and

used as if they were part of the rulebase.

'•

; '

- 38 -

' 1

1'l

•

..

•

I ',

I. ;

I, ~ '

••I

..

I

i

'

The aost coaaon SQL command is SBLBCT. Select has the following

foraat:
" .

SELECT field (s)
FROM table
ltHERE predicate

An example of SELECT is the following:

SELECT•
FROM metals
WHERE property -

stress corrosion resistant - -

•
The above syntax structure for SELECT can easily be added to

LUESS' s rule language. The internal representation for rules with

imbedded SQL can be represented as the following:

rule(Rule Number, Rule Question, Rule Name, Value, Range, - - -
OR List, AND List, SQL). - -

SQL --> [database name, [[where predicate],[where predicate]]] -

All that is needed in the internal representation of rules is a

new field called SQL. When Rule Name is "database", this SQL sl-ot is -
filled with a list that contains the database query. An example of a

rule being represented internally is the following:

RULE : "database" IS "" IF
SELECT*
FRON metals

.Jr/llERE property== "stress corrosion resistant" - -

- 39 -

'·
1

J
... -···· .. , ...

...

'•

-

'·.

' •

.AND

QUESTION:
property = "electrical";

" " •

rule(12, "database","","",[], [], [], [metals,
[[property,[stress_corrosion_resistant]],
[[property,[electrical]]])

The database query will then be performed by a Prolog clause

that opens the database and sifts through the properties of the

metals. The only command that is needed in LUESS at this time is

SELECT. But in the future, other SQL commands will be added that will

allow for database updates and insertions.

*
Another goal of the SRC project is to integrate CAD into the

system so that a package design can be displayed on the screen. With

this feature, finite element analysis routines will be built in,

providing information on the thermal properties of the package.

6.2 Suuary

This paper introduced a knowledge-based system for integrated

circuit package design. The system currently developed is still a

prototype, but eventually it will. be fully implemented and will

contain design rules of many experts. The concept of relational

databases in the Prolog programming language was introduced, and fast

- 40 -

\.

·I.

'

.•

-

..

•

retrieval methods such as indexing and inverted files were described.

An expert system shell, LUESS was then presented. This shell uniquely

generates menu-driven expert systems from simple English-like rules.

The project will continue for the next two years, and will continue

to grow and change. And in the future, this integrated expert system
' . might help lead the American semiconductor companies back to the

front of this rapidly changing technology.

u

- 41 -

•

,,J··. ' .

.·•
I

..
~-

.1 Bibliography

Clocksin, W.F., and Mellish, C.S., Programming in Prolog, 2nd
ed., New York: Springer-Verlag, 1981.

Date, C. J. ,
revised.
Company,

~

An Introduction to Database Systems, 4th ed.
Reading, Massachusetts: Addison-Wesley Publishing

1986.

Harmon, Paul, and King, David, Expert Systems, New York: John.
Wiley & Sons, Inc., 1985.

Kroenke, David, Database Processing, 2nd ed., Chicago:
Science Research Associates. Inc., 1983.

Rich, Elaine, Artificial Intelligence, New York: McGraw-Hill
Book company, 1983.

Winston, Patric Henry, Artificial Intelligence, 2nd ed.,
Reading, Massachusetts: Addison-Wesley Publishing Co., 1984.

----~~~-· Turbo Prolog, Borland International, 1986.

Nelson, John A., "VLSI Package Design .considerations", IEEE VLSI
Computer-Aided Design, Testing and Packaging, IEEE (1982),
pp 320-325.

- 42 -

/

·- , l, •

• I

..

..

..! Appendix

8.1 Saaple Expert Systea

The following is a short example of an expert system created in

LUESS. In this case it is a prototype expert system that

helps recommend packages for integrated circuits.

Rule 1: package IS pga IF
clock_rate IS high AND
dielectric IS ceramic AND
pins IS IN RANGE 200 TO 10000;
QUESTION: "" .

Rule 2: package IS dip IF
clock rate IS low AND -
pins IS IN RANGE OTO 100 AND
dissipation IS IN RANGE OTO 0.001 ;
QUEST I ON : " " .

Rule 3: package IS soic IF 0-

clock rate IS medium AND -
pins IS IN RANGE OTO 100 AND
dissipation IS IN RANGE OTO 0.001 ;
QUESTION: "" .

Rule 4: package IS plcc IF
clock rate·1s high AND -
pins IS IN RANGE 99 TO 201 ;
QUEST I ON: "" .

Rule 5: package IS clcc IF
clock_rate IS high AND ~

pins IS IN RANGE OTO 100;
r,.

- 43 -

. " t

I _.,, ,, -•, -· .

• . •
'---

QUESTION: "" .
. '

Rule 6: package IS lccc IF
clock_rate IS high AND
dielectric IS ceramic AND
pins IS IN RANGE 99 TO 201 ;
QUESTION: "" .

Rule 7: clock rate IS low IF -
chip_technology IS pmos ;
QUESTION: "What is the clock rate?" .

Rule 8: clock rate IS medium IF -
chip_technology IS nmos OR
chip_technology IS ttl OR
chip_technology IS lsttl OR
chip_technology IS i21 I ,
QUESTION: "What • the clock lS

Rule 9: clock_rate IS h~gh IF
chip_technology IS cmos OR
chip_technology IS eel ;

rate?" I

QUESTION: "What is the clock rate?" .

Rule 10: dielectric IS ceramic IF
low cost IS no AND -
high_reliability IS yes ;

••

\

QUESTION: "What is the dielectric material?" .

Rule 11: dielectric IS plastic IF
low_cost IS yes AND
military IS no AND
high reliability IS yes ; -
QUESTION: "What is the dielectric material?" .

Rule 12: pins IS IN RANGE 200 TO 10000;
QUESTION: "What range do the pins fall in?" .

Rule 13: pins IS IN RANGE OTO 100;
QUESTION: "What range do the pins fall in?" .

Rule 14: pins IS IN RANGE 99 TO 201;
QUESTION: "What range do the pins fall in?" .

Rule 15: dissipation IS IN RANGE OTO 0.001;

,.

QUESTION: "What is the range of heat dissipation?" .

- 44 - J

....

\ ,_

I , ·t.'

--·

,,,

• I I '

'
I .

-

-)
Rule 16: low cost IS yes: -QUESTION: "Is a low cost package required?" .

Rule 17: low cost IS no; -QUESTION: "Is a low cost package required?" .

Rule 18: high reliability IS yes;
-

QUESTION: "Does the chip require a highly reliable package?" •

1

Rule 19: high reliability IS no;
-

QUESTION: "Does the chip require a highly reliable package?" •

Rule 20: military IS yes;
QUESTION: "Will the chip be used in military applications?" .

Rule 21: military IS no;
QUESTION: "Will the chip be used in military applications?" .

.. Rule 22: chip_technology IS nmos:
QUESTION: "What • the chip technology?" 1S I

'

Rule 23: chip technology IS pmos;
-

QUESTION: "What • the chip technology?" 1S I

Rule 24: chip technology IS cmos; -QUESTION: "What is the chip technology?" .

Rule 25: chip technology IS ttl; -QUESTION: "What is the chip technology?" .

Rule 26: chip_technology IS eel;
QUESTION: "What is the chip technology?" .

Rule 27: chip technology IS lsttl; -QUESTION: "What is the chip technology?" .

Rule 28: chip technology IS i21; -QUESTION: "What is the chip technology?" .

. .
•

- 45 -

'
' "' ' \

-~

. ~ .

..

,

•

' i.l

\

'

8.2 Vita

Robert Voros, son of William and Alice Voros, was born in

Bethlehem, Pennsylvania February 6, 1963. In 1985, ,he received a

Bachelor of Science degree in computer engineering from Lehigh

University. Robert then continued at Lehigh for his Master of

Science degree in computer science. For his first year in graduate

school, he served as computer assistant to the off ice of· the Vice

President and Provost at Lehigh. Later he became a research

assistant in the Computer Science and Electrical Engineering

department where he did research in the area of Artificial

Intelligence for the Semiconductor Research Corporation. Currently,

Robert is managing the Artificial Intelligence Laboratory at Lehigh

and is pursuing a doctoral degree in Computer Science at Lehigh .

•

..
- 46

. •.

'
' (

.. • •·• • -· :.- , ... 1~ ~

' ~. I.

	Lehigh University
	Lehigh Preserve
	1987

	A knowledge-based system for integrated circuit package design /
	Robert Steven Voros
	Recommended Citation

	tmp.1551116526.pdf.8SYtP

