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NOMENCLATURE 

A Dimensionless parameter associated with the vorticity in 

the wake region. 

c. Bernoulli constant in the wake region. 
1 

c Bernoulli constant outside the wake region. 
0 

d Half thickness of flat plate. 

f Wake profile function in the physical space. 

F Wake profile function in the hodograph space. 

P. Dimensionless pressure inside wake boundary. 
1 

P Dimensionless pressure outside wake boundary. 
0 

Re Reynolds number. 

u Dimensionless streamwise velocity. 

U
00 

Dimensionless mainstream streamwise velocity. -

UT Representative velocity in the wake region. 

v Dimensionless normal velocity. 

x Dimensionless streamwise coordinate. 

' . 

x Pertubation function in the hodograph plane; Equation (3.20). 

* x Streamwise coordinate. 

' . ' 

y Pertubation function in the hodograph plane; Equation (3.20). 

y Dimensionless normal coordinate. 

y* Normal coordinate. 
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. r . 

Length of wake in the physical space . 

. o Dimensionless parameter associated with the constant 

vorticity wake region. 

Dimensionless wake length in the physical space. 

p Density of fluid. 

Potential function. 

¢A Dimensionless wake length in the hodograph space. 

Stream function. 

w Constant vorticity in the wake region. 
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ABSTRACT 

In this study a model for the separated flow field behind a long 

thick flat body oriented parallel to a uniform flow is investigated. A 

model problem of flow over a flat plate of finite thickness with a 
• . ). 

square trailing edge is considered. The flow seperates at the trailing 

edge resulting in a separated wake region which is modelled as a pair 

of long recirculating eddies of uniform vorticity. The flow field 

exterior to the separated region is considered to be irrotational and 

inviscid. 

The problem is the determination of the shape of the streamline 

defining the edge of the separated wake region, for given levels of 

vorticity within the separated region, as well as the length of the 

wake. 

With the assumptions that the long eddy approximation is valid 

along the dividing streamline,/and the tangential velocity • 
1S 

discontinuous across the boundary of the separated region, it is shown 

that the shape function satisfies a nonlinear integro-differential 
\_ 

equation. This equation • 
lS solved • using an iterative numerical 

integration scheme. The results are illustrated by a series of plots 

of the. shape function. 

Limited success is achieved in the sense that short wakes 'are 

observed in contrast to the long eddy assumption and the solutions 

obtained are only acceptable in a limited parameter range. 
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1. INTRODUCTION 

The flow of a fluid past a rigid body occurs in a wide range 

of practical applications. For fluids such as water and air which have 

small kinematic viscosity, the flow Reynolds number is usually very 
. 

high. The-effects of viscosity give rise to thin hydrodynamic boundary 

layer regions adjacent to the body surface. When the body temperature 

is different from that of the bulk flow, thermal boundary la)ers also 
, -exist near the body surface. 

Convection heat transfer problems occur • • • 1n many eng1neer1ng 
I 

applications such as gas turbines and flow over aircraft wings; hence 

the ability to determine surface drag and heat transfer rates is 

necessary in engineering design. 

An area of particular interest is the trailing edge of a body. 

Trailing edge contours may be sharp or blunt. In the case of a thick 

flat plate. with a blunt trailing edge, high Reynolds number flows 

undergo complex boundary layer separation at the trailing edge, giving 

rise to a rotational wake flow region behind the body. A prerequisite 

for addressing the heat transfer problem a~ the trailing edge is an 
• 

understanding of the fluid flow field there. Experimental studies by 

Haji-Haidari and Smith (1984) show that for a long thick flat plate 

with a trailing edge having the shape of a circular cylinder, the mean 

flow at the trailing edge appears as a double-eddy separation bubble. 

In this study the Prandtl-Batchelor model proposed by Batchelor 

(1956a, . 1956b) is adopted for the time mean separation bubble. For 

2 

111·• 11 • 



... 

J 

• 

• 

• 
• 

this model, the separated wake region is considered to be bounded by 

·thin shear layers which become dividing streamlines in the limit 

Re -+ oo. 

Furthermore, flow • 
1n the rotational wake region is considered to be 

. r 

effectively inviscid and of constant vorticity . 

As a' simple model problem, a thick flat plate with a square 

trailing edge is selected since the location of the seperation points 

at the square corners is known a priori. Furthermore, it is expected 

(Batchelor, 1981) that the boundary layer separates at the square edge 

and leave~ the edge tangentially to the upstream face. 
- \ 

The main objective of this study is to determine the shape and 

the extent of the separated wake region. 

., 
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2. STATEMENT OF THE PROBLEM 

A long thick flat plate with a square trailing edge is oriented 
I . 

parallel to a uniform flow. The flow which approaches the trailing 

edge ultimately evolves into a wake flow. As a simplifying assumption, 

the flow approaching the trailing edge is assumed to be irrotational 

and inviscid. The flow separation points for a square geometry are 

fixed at the corners as indicated in Figure 2.1. The plate is assumed 

to have a smooth leading edge and the plate thickness, 2d, is 

considered small with respect to the length L. The cartesian 

coordinates * X 
* and y are centered on the trailing edge and the 

profile of the separated region attached to the trailing edge is 

* N * N * given by y = df(x) with f(x) satisfying 

N 

f(O) - 1, 
N 

f(i) - 0; (2 .1) 

£ is the unknown wake length in the x* direction. It is assumed that 

the flow leaves the separation point tangentially (Bachelor, 1981) so 

that 

f 1(0) - 0. (2.2) 
• 
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At large distances from the body the flow is assumed to approach~ 

uniform flow speed u: corresponding to uniform flow far upstream. The 
/j/ 

flow field outside the separated region is inviscid and irrotational. 

For the £lo, in the separated wake region the Prandtl- Batchelor model 

is adopted. In accordance with this model, the separated wake region 
. 

is bounded by thin shear layers which become dividing streamlines in 
' 

the limit Re~~. Furthermore, flow in this region is considered to be 

effectively inviscid, rotational and of constant vorticity. The is 

then to determine the length and the shape of the separated wake for a 

given level of vorticity. 
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3. MATHEMATICAL FORMULATION. 

Introduce the following non-dimensional variables; 

* * * * u V X I u - - V - - X - y --
' 

-
' 

- d ' 
- d • 

u* u* 
00 00 

Define a velocity potential function; and a stream function; by 

u - ~ - ~ - ox - oy' V -~--~ - oy - ox· 

... . 

(3.1) 

(3. 2) 

Since the flow field outside the body is irrotational, ¢and; satisfy 

the continuity equation 

.. 2 ·V ti = O, 

where 

• 

is the Laplacian operator in two dimensions and· 

; -+ y~ . ; -+ X 
2 2 as x + y 

7 

-+ 00 • 

(3.3) 

(3. 4) 

.. \ 
(3. 5) 
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The;= 0 streamline defines the shape of the body and the boundary of 

the wake region. In the separated wake region the flow is assumed to 

be. inviscid an9 the vorticity constant (Batchelor; 1956a,1956b) and 

equal to 2w. The equation for the stream function is 

(3. 6) 

where the dimensionless constsnt Bis defined by 

r () - u* u* 
00 = 00 

' 
(3. 7) 

wd UT 

UT - wd is a representative velocity in the wake region. 
--- -

The basic assumption in the subsequent analisis is that the 

separated eddy is long in relation to the thickness of the plate, 

hence, 

(3. 8) 

Consequently gradients in the x direction may be neglected with 

respect to those in the y direction. This is the long eddy 

approximation. µsing this approximation equation (3.6) reduces to 

(3.9) 

8 
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The general solution of equation (3.9) with the conditions;= 0 on 

the centerline y = 0 and on the wake boundary y = f(x) is 
.. 

'I= ![Y - f(x)J. (3 .10) 

It follows from equation (3.10) that the velocity components within 

the wake region are 
• .. 

.. . 

.., 

- I I 
V - (Jf (x) .. 

Near the eddy edge, y ~ f(x) and the velocity components become 

U 
_ f(x) 
- 8 ' 

- lli) r 'c ). V - {) X . 

The shape function f(x) is to satisfy the boundary conditions 

f (0) = 1, f (X) = O. 

(3 .11) 

(3 .12) 

(3 .13) 

Furthermore, it • 
lS assumed that the flow leaves the trailing edge 

tangentially· so that 

I 

f (0) = 0. (3 .14) 

g 
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In the region external to the separated wake, the stream 

function ;(x,y) and the potential ¢(x,y) are assumed analytic. Hence 

for each; and; there exists x and y such that 

X = x(;,,;), 
{ 

y = y(¢,;). 
• 

Under this hodograph transformation,; and; become independent 

variables with respect to.x and y. Differentiation of equations 

(3.15) with respect ~ox and y yields 

_· Ql ox _qf ox _ ox ax 
l - ax _a;+ ax a; - Ua; - Va;' 

_ QJ_ ox· ~ox_ ox ox 
Q - Oy 0¢ + Oy Otp - Vo;+ UOtp' 

_ Q£ oy ~ oy _ ~ p_r 
Q - OX 0¢ + OX Otp - Uo; - Vo;' 

_Q!P_I ~~- ~ P_I 
} - Oy o; + Oy o; - Vo;+ Uo;· 

Solving equations (3.16) for the partial derivatives of x an4 y 

with respect to; and~ yields the following, 

ox_~ _ 
a; - a; 

ox - - p_r -a; - a; 

u 
2 2' 

U + V 

V 

2 2 
U + V 

10 

• 

(3 .15) 

(3 .16) 

(3 .17) 
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It follows from equations (3.17) that the Jacobian of the hodograph 

transformation is 

a(x,y) 
ac;,;) 

1 
(3 .18) 

At large distances from the body the flow must approach a uniform 

streaming motion and we have 

¢ - x, ,; = y. (3 .19) 

Define variables x and y as follows, 

-
y = y - ,;. (3. 20) X = X - f', 

2 2 - -
Then at large distances from the body c; + 'P -+ oo), X and y vanish. 

C 

In view of equations (3.17) and (3.20) we have, 

- -ox._~ -
.a; - a; 

- -
ox - ~ -
~ = a; -

u 
-1+---2 2' 

U + V 

V 

11 

(3. 21) 

~ (, .._ ____ .., 

' ,I 



... 

' 

.. 

Equations (3.21) are the Cauchy-Riemann conditions and it follows 

- -
that x and y are analytic (except at stagnation points u = v = 0) 

•• 

and satisfy Laplaces equation 

2-v X = 0, (3. 22) 

where 

a2 
+ -2. 

a; 
(3. 23) 

In terms of the independent variables~ and~' the outer flow 

problem is reduced to solving Laplaces equation in the upper half 

plane,> 0 with boundary conditions 

x, y -+ 0 as ;2 + ,;2 -+ 00. (3. 24) 
-. -

12 

' 
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y 
D x=-- ~=0 y=f(x) d 

I ~ I X=A 

0 I 
I 

X 

x=-L 
·, 

-
d ' 

- -· - - -
y=O y=Y(¢) y=l y=F(¢) y=O 

I I I I , I ~, 

¢L <PD 0 ¢A 
. . 

Figure 3 . 1 : Hodo graph • mapping of ( X 'y~.) plane onto 
(<P,1JJ) plane. 
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Along the streamline;= O, y is given by 

. .. 

0 ;ip<(JL 

Y(;) ; ;L~; ~ ;D 

-y(;,o) 1 (3. 25) 

F(;) ; 0 s; s ;A 

; > IA 
' 

0 .• 
' 

\as illustrated in Figure 3.1, where ;L and ; 0 are values of the 

potential at the front stagnation point and the end of the curved 

leading nose respectively; Y(¢) is the shape function of the leading 

nose region; F(¢) is the function describing the boundary of the 

separated wake region and ;A is the potential at the rear stagnation 

point. 

s·ince y satisfies Laplaces equation (3. 22) , the solution in the 

upper half plane;> 0, can be written in terms of the distribution of 

-
y along;= 0 as 

00 

(3. 26) 

14 
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It follows from equation (3.25) that 
• 

' ' 

·-

-

+ 

' . 

• 

-1 f_ ] tan C;) 

(3. 27) 

The first term on the right side of equation (3.27) may be neglected 

since ;Land ;Dare assumed large. By differentiating equation (3.27) 

with respect to;, carrying out an integration by parts and taking the 

limit;~ 0 we obtain 

( 

-
Qr -
0; 'f=O -

1 

where the integral is interpreted in the Cauchy principal sense. 

(3. 28) 

Note that in accordance with equations (3.13), the conditions on Fare 

F(O) - 1, (3. 2Q) 

The first term on the right side of equation (3.28) may be neglected 

15 
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.. 

for O < ; < Ix since it is assumed that 1;01 >> 1. Equation (3.28) 

then reduces .to 

- ;"' I 

! ( F (s)ds. 
'K J s-¢ 

0 

,I 

In accordance with our model, the shear layer defining the 

boundary of the wake becomes a dividing streamline in the limit 
J\ 

(3.30) 

' Re~~. It is ass~ed that there is a jump in the tangential velocity 

th. d .. d. JS~ 1· Lt d d t th 1 ·t· across · e 1 v1 1n( __ ~ream 1ne. e ui an u
0 

eno e e ve oc1 1es 

just inside and outside the dividing streamline respectively. Then 

according to the Bernoulli law, we have 

and 

P. 
1 

- + 
p 

C o' 

(3.31) 

where P. and P are the dynamic pressures inside and outside the wake 
1 0 

.. 
. ' 

respectively; and c. and c are 
1 0 p is the density of the fluid 

constants. Since the pressure must be continuous across the dividing 

streamline, P. - P. Hence, 
1 0 

" ; 16 
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from which it follows that 

• 

2 
+ u. ' 

1 

.. 

(3.32) 

(3.33) 

where A* is the difference in the Bernoulli constants (A*= c - c.). 
0 1 

In view of equation (3.12), 

u = 
0 

A* f 2 
+ -

82 
• 

Applying the long eddy approximation along the dividing 

streamline, we have v << u so that equation (3.21) becomes 

-
8v _ 
::....L -1 a; f=O -

1 
+ -

u 

and it follows from equation (3.34) that 

- () 
~ - -1 + -- , 
a; ;=o JA + ,2 

17 

(3. 34) 

(3.35) 

(3.36) 

' 

' 



~-

where A= 02A*. Combining equations (3.30) and (3.36), we have 

-1 + 

;A I 

- ! f F (s)d J. s. 
'If s-,, (3.37) 

0 

This is a nonlinear integro-differential equation in the function 

f(;) which describes the boundary of the separated wake region, with 

conditions 

F(O) - 1, 
I 

F (0) - 1. (3.38) 

Band A are to be specified and¢>.. is to be determined . 

., 

18 
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4. OPEN WAKE SOLUTION 

4.1 SOLUTION TECHNIQUE 

The integral equation (3.37) with conditions (3.38) may be 

inverted using the results of Appendix C; Ece, Varley, Walker (1986) 

to obtain 

¢x 
. 1 _L ¢x-s (} ds 

F'(¢) = -1 + ( 4. 1) - -
'X ¢x-¢ s-¢' 

s J 2 A+F (s) 
0 

Note that it has been assumed in the inversion that F has a square 

root singularity at ¢ = ¢x· Integrating the first term in (4.1) we 

have 

(J 
- -

,r 
_L 
¢ -¢ 
X 0 s 

Integrating equation (4.2) and applying the boundary condition 

F(O) = 1 yields 

, 

19 

(4. 2) 

.... 



(4. 3) 

ds 
---' 

A more convenient form of equation (4.3) may be obtained by 

introducing new variables 

with the range of the variable a being (0, ;). Substitution in 

equation (4.3) yields 

flx 
F(a) = 1 + 2 {sin2a ~ 2a·) 

0 

4 2p . 2p 1 sin(a+fi) 
acos - sin og . ( /3) 

S1Il a-

I" 
0 <a< 2 . 

Applying the condition F(;x) = F(i) = O, we obtain 

20 

dfi 
--' 

J A+F2 C.o') 
J 

• 

(4. 4) 

(4. 5) 

.. 

\ 



or 

w/2 2 
1 - ;;A+ 2e;A J cos /J dp = 0, 

0 JA+F2(P) 

Substitution in equation (4.5) yields 

;'A • 2a 
F(a) = 1 + - s1n2a - ~ 2 'I 

e; 1r/2 
___ 'A J . 2/J 1 sin(a+p) 

sin og . ( /J) 'I Sln a-
Q 

( 4. 6) 

• 

(4.7) 

dp ( 4. 8) 

Equation (4.8) is a nonlinear integral equation for the shape function 
I 

·F(¢) and it follows from equation (4.6) that the stagnation point 'x 

is given by 

'I 
- -
2 

w-/2 2 
20 I cos /J dp 

0 JA+F2 (P) 

-1 

• (4.9) 

21 
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4.2 NUMERICAL SCHEME AND PROCEDURE 

Initial approximations of Ix and the distribution of Fare 

determined and equations (4.8) and (4.9) are evaluated iteratively 

to generate refined values of ;A and F. 

To obtain the initial approximations of ;A and F, consider the 

case when the shear layer is very strong. We then have 

2 A= 0 (c - c.) >> 1, 
0 1 

(4.10) 

which signifies a large jump in the tangential velocity across the 

dividing streamline. Neglecting F2 (p) with respect to A in equation 

(4.9), the initial approximation for ¢xis given by 

Neglecting F2 (p) with respect to A in equation (4.1) we have 

F 1
(;) - -(1 - O) 

vA 
• 

(4.11) 

(4.12) 

Integrating (4.12) and applying the condition F(O) - 1, yields the 

initial approximation of F(;), 

22 
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' " 
" ' 

or 

F(a) = 1 +(1 - !...)IA(sin2a 
JA 2 

( 4 .13) 

2a). ( 4 .14) 

To evaluate the integrals in equations (4.8) and (4.9), the 

'K interval (0, 2) was subdivided into N equal sub-intervals and the 

trapezoidal rule was used. Special care must be taken when evaluating 

the integral in equation (4.8) since the integrand has a weak 

logarithmic singularity at p = ai. Denote this integral by I(ai). 

Then, 

where 

'K/2 

I(ai) = f sin2P loglsin(ai+p)IG(P)dp 

0 

•/2 
-f sin2p 

0 

G(P) - __ 1_ 

J A+F2 (P) 

loglsin(a.-P) IG(P)dp, 
1 

• 

(4.15) 

( 4. 16) 

Using the trapezoidal rule for all but two sub-intervals around p = a. 1 

in the second integral in equation (4.15), we have 

23 
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I 

I (a.) 
1 

h N 
= 2>

j=l 

I 

[sin2pJ. loglsin(a.+p.)IG(p.) 
1 J J 

+ sin2p. 1 loglsin(a.+p. 1)1G(p. 1)]. 
J+ 1 J+ J+ 

h N 
+ -> 2 -. -1 

J= 
j#i,i-1 

[sin2pJ. loglsin(a.-p.) IG(p.) 
1 J J 

• 

+ sin2p. 1 loglsin(a.-p. 1)1G(p. 1)] 
J+ 1 J+ J+ 

* + I (a.), 
1 

( 4 .17) 

where I*(a.) is the integral over the two sub-intervals on either side 
1 

of a. and is given by 
1 

• 
a.+h 1 . 

1*cai) = f sin2p loglsin(ai-P)IG(p)dp, 

a.-h 
1 

.. 

where his the length of a subinterval. Since (a.-p) is small,we 
1 

• 

( 4. 18) 

approximate sin(a.-p) 
1 

by (a.-p) and evaluating the rest of the 
1 

integrand at p = a., we have 
1 

a.+h 

I*(a.) = sin2a. G(a.)f loglsin(a.-P)ldp 
1 1 1 1 

a.-h 
1 

24 

... 

( 4. 19) 
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Evaluation of the integral in equation (4.19),in the Cauchy principal 

sense yields 

r*(a.) = 2h(logh - l)sin2a. G(a.). 
1 1 1 

(4.20) 

To obtain the shape function f(x) in the physical space, we 

determine x in terms of;. It follows from equations (3.17) and (3.34) 

that 

Integrating equation (4.21) we have 

; 
X - J ==-:::::-8 _::::-~ d;. 

0 JA+F2 (g)) 
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(4.21) 
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5. ·RESULTS AND DISCUSSION 

In computing -A and the distribution of the shape function, the 

I" 
interval (0, 2) was divided into a 100 equal subintervals in order to 

use the trapezoidal rule for the integrations in equations (4.8), and 

(4.9). Furthermore, the iteration procedure was continued until the 

difference in values between suc,cessi ve i terate.s at each mesh point 

-4 was less than 10 . 

For each value of O = 0.5, 0.7 and 0.9, F was computed for a 

series of values of A, as illustrated in Figures 5.1, 5.4 and 5.7 

respectively. It is observed that for a fixed value oi 0, the wake 

length increases as A is decreased. This trend is consistent·with 

equation (4.9). At a certain value of A the iterative scheme failed 

to converge; for 9 - 0.5, 0.7 and 0.9 these values were 0.08, 0.26 

and 0.55 respectively. These results are illustrated. in Figures 5.2, 

5.5 and 5.8 respectively. Below these values of A, negative values of 

F occur near the rear stagnation point of the wake. The failure modes 

for O = 0.5, 0.7 and 0.9 are illustrated in Figures 5.3, 5.6 and 5.9 

respectively. Note that once negative values of F occur it proves 

impossible to obtain convergence of the numerical scheme. The profiles 

depicted in Figures 5.3, 5.6 and 5.9 represent intermediate results in 

a calculation that did not converge. 

An important feature observed is that the solution yields short 

wakes, which is inconsistent with one of the basic model assumptions. 
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Another interesting trend near the stagnation point is that for a 

given value of 8, as A is decreased, the slope of f(x) appears to 

decrease and tend to a finite value. 

In conclusion we note that in order to achieve more success, the 

model assumptions should be changed. Suggestions for a future 

treatment of this problem are, that the long eddy approximation be 

relaxed and that the inversion of the integral (3.37) should satisfy 

the condition that F has zero slope at the stagnation point. 
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