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Abstract

The overall objective of the research project of which this work is a com-
ponent is to develop a real-time, decision-support system for the design and
fabrication of large structural systems. This thesis surveys modeling tools which
are appropriate for the development of the knowledge base conceptual model.

Of the database models discusssed in this work (relational, inverted list,
network and hierarchic), the relational model is best suited for the
designer/fabricator knowledge base because o; its clearly-defined data manipula-
tion operators and integrity rules, and tabular representation of data.

As a semantic extension to the relational model, the Extended Relational
Model RM/T offers. several advantages over the Entity-Relationship Model, in-
cluding the use of system-defined surrogates and the availability of clearly-
defined data manipulation operators and integrity rules. In addition, the model
resolves ambiguities which result from distinguishing between entities and
relationships as semantic concepts. RM/T does not provide an alternative to
the diagrammatic technique offered by the Entity-Relationship Model; however,
Entity-Relationship Diagrams can be easily adapted to r'epresent the kernel,
characteristic and associative entitites of RM/T.

To avoid focusing problems information in the knowledge base could be or-
ganized in a hierarchical fashion, where each node in the tree is a specialisﬁ
which controls processing of rules within its domain. For example, the
specialist tree might consist of the type of information ‘normally contained in
taxonomic rules, in which case conceptual modeling could be viewed as the
process of “filling in” the specialist tree by modeling the‘ transformation rules,

state change rules and database facts which are associated with each specialist.




Further research is required to determine whether this approach is appropriate
for the designer/fabricator knowledge base, and for decision-support systems in

general.
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- Chapter 1
Introduction

1.1 A Structured Approach to Knowledge-Base Conceptual

Modeling

The term “knowledge engineering” was first coined by Feigenbaum (1977)
and refers to the process of reducing a large body of knowledge to a precise set
of rules and facts. Unlike conventional programs which proceed according to a
fixed algorithm and have no way of adapting to changing circumstances,
knowledge-based systems apply information, acquired from human experts, in
novel ways in different situations.

Figure 1-1, page‘ 5, 1llustrates a typical data processing environment which
consists of an application program connected to an I/O formatter and a
database management system. Whereas data processing systems use conven-
tional programs for computation, knowledge-based systems, such as the one
depicted in Figure 1-2, page 5, separate computational steps from the control
flow and put them in nonprocedural tables of rules. Such a system typically
consists of a language handler which analyzes input and generates output, an in-
ference engine that does deduction based on rules of logicc rather than
procedures, and a database management system which stores and retrieves data

upon request.1

A second major difference between data proceésing and knowledge-based

sysﬂte&\s lies in the nature of the information stored in the database. In a logic-

based representation, predicates reflect variety, whereas instances of predicates

lJohn F. Sowa, Conceptual Structures: Information Processing in Mind and Machine. (Reading, Mass:
Addison-Wesley Publishing Company, 1984), pp. 278-280.
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refer ‘to the population. For example, given the Prolog predicates:

customer (smith)
covered by (smith,term annuity)

“customer” and “covered by” reflect the variety of the database, whereas “Smith
iIs a customer” and “Smith is covered by term annuity” refer to the population.
In general, most knowledge-based system databases exhibit a large variety of

facts with a more variable population, and therefore tend to be more “wide”

and less “deep” than data processing databases.?

Because knowledge-based systems are complex and highly domain-specific,
the conceptual modeling process typically takes place without the benefit of the
structured approach typically used by system analysts. The lack of a generaliz-
able approach to knowledge-base conceptual modeling suggests that the first step
in the désign\pro.cess should be the selection of modeling tools which are ap-
propriate to the system domain.

The remainder of this thesis explores this process within the framework of
an ongoing research project at Lehigh University. Chapter 2 discusses the
project domain. Chapter 3 discusses modeling of the system’s inference
mechanisms. Chapters 4 and 5 suggest tools and techniques relevant to the

design of the database. Chapter 6 discusses the information presented and sug-

gests possible extensions.

2Matthias Jarke and Yannis Vassilious, “Coupling Expert Systems with Database Management
Systems” in Artificial Intelligence Applications for Business: Proceedings of the NYU Symposium, May, 1983, ed.
. Walter Reitman. (Norwood, New Jersey: Ablex Publishing Corporation, 1984), p. 70.
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Chapter 2
Problem Definition

2.1 Introduction
The first step in the development of a conceptual model is to analyze the:

types of generic tasks which need to be accomplished by the system. The most

frequently encountered generic tasks in knowledge-base design are:

e CLASSIFICATION: sort a large amount of data into categories,
typically for diagnostic purposes.

e DESIGN: perform plan synthesis by searching for some combination
of structures to fulfill a certain goal.

e DECISION-SUPPORT: aid decision making by exploring alter-

natives, making predictions and solving problems.3
e PLANNING: plan actions to achieve a goal.

e INTERPRETATION: analyze data to determine its meaning.

e MONITORING: analyze signals and plan appropriate actions.?

The overall objective of the research project of which this thesis 1s a com-
ponent is to develop a real-time decision-support system for the design and
fabrication of large structural systems. The purpose of this thesis is to suggest
analysis techniques and modeling tools which are appropriate for the develop-
ment of the knowledge-base conceptual model. The remainder of this chapter
places this goal in context by providing general characteristics of decision-

support systems (Section 2.2) and a more complete discussion of the system

domain (Section 2.3).

3Sowa, Conceptual Structures: Information Processing in' Mind and Machine, pp. 280-281.

4Frederick Hayes-Roth, Donald A. Waterman and Douglas B. Lenat, eds., Buslding Ezpert Systems.
(London: Addison-Wesley Publishing Company, Inc., 1983), p. 14. '
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2.2 Decision-Support Systems

Decision-support expert systems have their roots in sophisticated software
packages designed to expand the capabilities of database query languages. SAS
is representative of systems in this category, providing a programming language,
statistical procedures, report generation facilities and liﬁe-printer graphics op-
tions, in addition to data management capabilities.

Whereas generalized statistical packages provide decision support through
the analysis of past and present data, decision-support systems operate within a
more specialized domain to make predictions of the future. Developed primarily
for business applications, early decision-support systems use fixed algorithms,
conventional programming techniques, and statistics to solve problems. Repre-
sentative systems in this category include BRANDAID, which evaluates business
decisions by relating strateéies to sales and profits, and the PORTFOLIO
MANAGEMENT SYSTEM, which evaluates decisions to buy or sell securities.’

The use of techniques from the field of artificial intelligence represents the
most recent development in the evolution of decision-support systems. Systems
in this category generally serve as intelligent front-ends to a knowledge base
which contains expertise about a highly specialized domain. Predictions of the
future are derived from the information in the knowledge base using surface or
model-based reasoning, a variety of search techniques and domain-specific heuris-
tics. - ‘

Rome, an expert system developed at Carnegie-Mellon University, is repre-

sentative of systems in this category. Designed to circumvent the limitations of

traditional financial-planning systems, Rome:

5S(°>wa, Conceptual Structures: Information Processing in Mind and Machsne, p. 284.
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o differentiates good from bad consequences based on corporate goals.

e provides “intelligent”™ decision support for long-range planning through
knowledge of the meaning of variables in financial models.
v

e presents not only the results of calculations, but a belief factor for
input data and confidence factor for the results.®

"The designer fabricator decision-support system most closely resembles this
last category of systems in that it requires the development of a domain-specific
knowledge base and the use of heuristics to process information. More specific

information on the proposed system is presented in the next section.

2.3 System Domain

Designers and fabricators of large structural systems such as bridges and
skyscrapers typically hold differing perspectives on a given construction task, a
fact which leads to frequent mismatches between the designer’s specifications and
the fabricator’s ability to build the components economically. The designer sub-
mits drawings and specifications to the fabricator, neither of which coptain a
great deal of information about the reasoning process which went into the
design of the structure. Without this information the fabricator must second-
guess the designer’s intentions, a process which can lead to frequent and costly
design changes.

The designer/fabricator decision-support system bridges the communication
gap between designers and fabricators by providing them with more immediate

access to one another’s expertise. The system is scheduled to be developed as

follows:

\

6Wendy B. Rauch-Hindin, Artificial Intelligence sn Business, Science, and Industry: Volume Il - Applications,
(Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1985), p. 35. |

8




1. Develop a knowledge base which can support the differing perspec-
tives of designers and fabricators.

o Select construction experts
o Identify design variables
o Identify design constraints
o Develop a conceptual model
e Implement the conceptual model
2. Enhance the knowledge base through the addition of an interpreter
which will allow designers and fabricators” to communicate in one

another’s language.

3. Evaluate the system for performance and acceptability.
The system i1s currently in the first stage of development. Once selected,
design and fabrication experts will identify design variables and constraints.

Design variables are expected to include:

e Dimensions and characteristics of objects and their components
e Performance measures

e Cost effectiveness

e Functionality requirements

e Serviceability requirements

e Aesthetic requirements

e Long-term maintainability

e Environmental factors
Values of design variables are typically constrained in some way. Ex-

'amples of design constraints include:

e Definitions (for example, dynamic loading)




e Models of the physical world (for example, stress-strain equations)

e Models of the performance of an object or its elements (for example,
finite element modeling)’

After construction experts have been selected and design variables and
design constraints have been identified, the conceptual model for the knowledge
base can be developed and implemented. The next chapter begins the process
of suggesting modeling tools which are appropriate to this task by discussing the

proposed system’s inference mechanisms.

7Dona,ld Hillman, “Knowledge-Based Systems for the Designer/Fabricator Interpreter,” Unpublished
Manuscript, Lehigh University, Bethlehem, PA, 1986, pp. 1-6.

10
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Chapter 3
Inference Mechanisms

3.1 Introduction

In order to fulfill its function as a decision-suppport system, the

designer/fabricator knowledge base should be able to handle the following types

of queries:

’

e What Ilimits do the fabricator’s assembly methods and available
equipment place on the structural design?

-« What design codes are in effect?

e Can a particular aspect of the design be changed? What would be
the consequences of such a change?

After a brief discussion of the system’s inference engine in Section 3.2, Sec-
tion 3.3 discusses a framework for modeling and implementation of the inference

rules in order to facilitate evaluation of these types of questions.

3.2 Inference Engine

The designer/fabricator knowledge base is scheduled to be implemented in
Prolog, a programming language with a powerful built-in inference engine.

Prolog (PRogramming language based on LOGic) is based upon a restriction of

8

the first-order predicate calculus that permits only Horn clauses.® There are

three basic statements in the language:

.- P, Means P is a goal to be proved.

P. ' Means P 1s an assertion.

81. Futo, F. Darvas and P. Szeredi, “The Application of Prolog to the Development of QA and
DBM Systems” in Logic and Databases, ed. Herve Gallair and Jack Minker. (New York: Plenum

| Press, 1978), p. 347.
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P:- Q R, S Means Q and R and S imply P.
A Prolog program is a collection of clauses whose variables are considered
'to Dbe universally quantified. = Each clause has both a declarative and a

procedural interpretation. For example, “P :- Q, R, 5.7 can be interpreted
declaratively as “Q and R and S imply P” or procedurally as “to satisfy P,
first satisfy Q and R and S”.
A given predicate is defiied by one or more clauses and is represented by
an AND/OR graph. Program execution involves a depth-first seach with back-
$ tracking on these graphs, using the unification process based on the resolution
principle [Robinson, 1965].°
The remainder of this chapter discusses the knowledge-base inference rules,
with illustrative examples written in Prolog. For a more complete discussion of

the syntax of Prolog see Clocksin and Mellish (1984).

3.3 Inference Rules

3.3.1 Maintaining Appropriate Levels of Abstraction

Prolog’s rule-based architecture works well when relatively little complex
coupling exists between rules in solving problems. In the designér/fabricator
knowledge base, however, the global reasoning requirements of a given task are
difficult to conceptualize as a series of linear local decisions, resulting in sig-
nificant focus problems.

In order to resolve this problem a system architecture is needed which al-
lbws‘ for the maintenance of multiple layers of contexts, goals and plans. One

method of doing so might be to organize the information in the knowledge base

9Jarke and Vassiliou, “Coupling Expert Systems with Database Manageinent Systems,” pp. 72-73.

12




in a hierarchical fashion, where cach node in the tree is a “specialist” which
controls processing of rules within its domain.

The use of system specialists as a method for maintaining appropriate
levels of abstraction has been implemented in classification systems and proposed
for decision-support systems. Given that the underlying knowledge base can be
viewed as a network of cause-effect links, classification specialists provide focus;
in the pursuit of correct causes, whereas decision-support specialists provide
focus in the pursuit of correct effects. Embedded problem solving techniques in
the two systems differ in a similar fashion.!”

One way to veiw specialists in the designer/fabricator knowledge base
would be as nodes in a hierarchical arrangement of superstructures and substruc-
tures. For example, “piers” and “foundations” are two substructures of the su-
perstructure “bridge”.

Given that specialists are determined by a hierarchical arrangement of

structures, one method of implementation might be to embed control directives

in taxonomic rules such as the following which represents a pier and its sub-

structures:

pier :- substructure 1,

substructure n.
This method represents a modification of Prolog’s two-part system architecture,

the consequences of which is a softening of the boundary between the inference

engine and inference rules.

A second method is to use a combination of rules and frames where

frames [Minsky, 1975] are used to represent the specialists and rules are used to

1OB. Chandrasakaran, “Expert Systems: Matching Techniques to Tasks,” in Artificial Inielligence Ap-
plications for Business: Proceedings of the NYU Symposium, May, 1983, ed. Walter Reitman, (Norwood, New

Jersey: Ablex Publishing Corporation, 1984). p. 58.

13




represent inferential knowledge in the domain. Centaur uses this approach in a
classification system for medical diagnosis. In Centaur control information is

represented explicitly and separately from inferential knowledge, and is as-

sociated with specific slots in the specialist frame.!?

The next section discusses modeling of inference rules within a hierarchical

framework of specialists.

3.3.2 Modeling of Inferential Knowledge

Two other types of rules are important for structuring the remaining in-
ferential knowledge in the knowledge base. The first type, transformation rules,
describe change. Transformation rules interact with the taxonomic rules
presented in the last subsection, providing a source of derivable facts. For ex-
ample, if a pier and foundation are substructures of a bridge (taxonomic ‘rule)
and thermal effects create forces that act on rigidly clamped substructures and
superstructures (transformation rule), then it can be inferred that a given pier
will react in a calculable way to thermal effects.!?

The second type of rule models the effect of state changes in one substruc-
ture on 1ts superstructures. For example, a state change in “pier” may produce
a change in the state of the superstructure “bridge”. This type of rule has the
form “<STATE CHANGE IN SUBSTRUCTURE> causes <STATE CHANGFE
IN SUPERSTRUCTURE>”. All state change rules whose left-hand side deals

with a given substructure are associated with the specialist for that substruc-

ture. Because of their hierarchical arrangement, specialists can determine the ef-

1lJanice S. Aikins, “Prototypical Knowledge for Expert Systems,” Artificial Intelligence 20:2 (1983): pp.
198.

leillman, “Knowledge-Based System for the Designer/Fabricator Interpreter,” p. 4.

14




fect of a state change on the immediately larger structure of which it is a part
and can call that structure's specialist with appropriate information.  This
process is repeated until state changes are propagated to the desired level of
abstraction. The addition of a blackboard-like architecture [Erman et al, 1980

would make it possible to account for interaction between substructures in the

model.!3

13Chandrasakaran, “Expert Systems: Matching Techniques to Tasks,” pp. 58-60.

15




Chapter 4 ,
Database Models

4.1 Introduction

In Prolog, knowledge about a domain is represented by rules and facts. In
general, rules are used to express definitions and to say that a fact depends
upon a group of other facts. For example, a structure is a bridge if it has a
foundation, piers and a number of other specific components.

In contrast, facts are represented in the knowledge base by simple asser-
tions about objects and their relationships. For example, one such assertion
might represent the length of a bridge currently under construction. The

database in Figure 1-2, page 5, is comprised of all such assertions for the

domain of the knowledge-based system.

The remainder of this chapter discusses the database component of the
designer /fabricator decision-support system. Séction 4.2 summarizes nonrelational
approaches to database modeling. Section 4.3 deals with the structures, In-

tegrity constraints and data manipulation language of the relational model.

4.2 Nonrelational Database Models

Database models can be categorized according to the data structures ‘and
data manipulation operators they present to the user.  The four major

categories are:

e Inverted List
e Hierarchic

e Network

16




e Relational

The main difference between nonrelational and relational models is that
the user of a relational system sees the data as tables and nothing but tables.

In contrast, the user of an inverted list, hierarchic or network system sees other

data structures in addition to or instead of tables.!* The remainder of this sec-
tion provides & brief description of the data structures and data manipulation

operators for each of the three types of nonrelational database models.

4.2.1 Inverted List

An inverted list database consists of a collection of files or tables which
are divided up into rows (records) and columns (fields). Unlike a relational
database, rows in an inverted list database are ordered within and possibly be-
tween tables. Ordering of rows across all tables defines a total ordering for the
database, referred to as the database sequence.

Unlike relational databases, inverted list databases allow the user to view
certain access paths (in particular, certain indexes) in addition to tables. In-
dexes allow both direct and sequential access on the basis of search key values.

Data manipulation operators in inverted list databases are dependent on

record addressing and fall into two categories:

1. Operators that determine the address of a record.

2. Operators that insert, update or -delete a record once its address is

known.!®

\Q 14C. J. Date, An Introduction to Database Systems: Volume I. (Reading, Mass: Addison-Wesley
Publishing Company, 1986), p. 21.

. 151pid., pp. 487-489.
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4.2.2 Hierarchic

In the hierarchic database model, the entire database can be viewed as a
tree, where the hierarchical sequence of the tree defines a total ordering for the
set all all records in the database. This ordering applies not only to record
types, but to occurrences of records of the same type as well. The principal
difference between the hierarchic and relational model is that in a hierarchic
database certain information that would be represented in a relational database
by foreign keys (Section 4.3.1) is represented by parent-child links.

Data manipulation operators in a hierarchic database process data
represented in the form of trees and are typically all record-level operators. Ex-

amples of the types of tasks performed by these operators include:

1. Locate a specific tree in the database.
2. Move from record to record within the tree.

3. Insert, update or delete a specified record.!®

4.2.3 Network

The network model represents the last of the three categories of nonrela-
tional systems. Like the hierarchic database model, the network model consists
of parent and child records. In the network model, however, a given -child
record can have any number of parents. The database can be thought of more
precisely as a set of record types, together with a set of link types, where each
occurrence of a given link type consists of one occurrence of the parent record

type and an ordered set of occurrences of the child record type.

Data manipulation operators in the netwofk model process data in the

»
1611id., pp. 503-508.
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form of records and links. Representative tasks include:

1. Locate a specific record given a value of a field in the record.

2. Move from a parent to a child, a child to another child, or a.child
to a parent in a given link.

3. Insert, update or delete a specified record.!’

4.3 The Relational Model

The relational model developed as a way of shielding users of large data

18 As men-

banks from potentially disruptive changes in data representation.
tioned in the introduction to Section 4.2, relational databases are viewed by the

user as tables and nothing but tables, regardless of the way in which data is

stored at the internal level. More precisely: \

A relational database is a time-varying collection of data, all of
which can be accessed and updated as if they were organized as a col-
lection of time-varying tabular (nonhierarchic) relations of assorted

degrees defined on a given set of simple domains.'®

In addition to data structures which support the preceeding definition, the
"
relational model consists of integrity constraints and a relational algebra for

data manipulation. The remainder of this section discusses these three com-

ponents of the relational model in greater detaill.

171pid., pp. 541-547.

18E. F. Codd, “A Relational Model of Data for Large Shared Data Banks,” Communications of the
ACM 13:6 (June, 1970): p. 387.

19E. F. Codd, “Extending the Database Relational Model to Capture More Meaning,” ACM Trans-
actions on Database Systems 4:4 (December, 1979): p. 399. -
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4.3.1 Structures

Structurally, the relational model can be described in terms of its basic
components (relations) and the way in which associations are formed between
these components (primary and foreign keys).

RELATIONS. Roughly speaking, a relation corresponds to a table which
consists of attributes (columns) and tuples (rows). Given that the term domain
is defined as a set of values of similar type, a relation on domains D1,D2,...,Dn
(not necessarily distinct) can be defined more precisely as consisting of the fol-

lowing two components:

1. Heading: A fixed set of attributes A1,A2,...,An, such that each at-
tribute A7 corresponds to exactly one of the underlying domains D1 (1
= 1,2,...,n).

2. Body: A time-varying set of tuples, where each tuple consists of a
set of attribute-value pairs (Au:v) (1 = 1,2,...,n), one pair for each
attribute A7 in the heading. For each pair, v: is a value from the
unique domain D: that is associated with A2.%0

_ Given that all domains are simple (nondecomposable), a relation has a

tabular representation with the following properties:

e There are no duplicate rows.
e Rows are unordered.

e Columns are unordered.

o All table entries are atomic (i.e., there are no repeating groups).*!

PRIMARY AND FOREIGN KEYS. Primary keys provide the sole tuple-
level addressing mechanism within the relational model. The primary key for a

relation R is chosen from among one of the relation’s>1 (n>=1) candidate keys.

20Date, An Iniroduction to Database Systems: Volume I, pp. 239-240.

21Codd, “Extending the Database Relational Model to Capture More Meaning,” p. 399.
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A candidate key is defined as a collection of attributes from R with the follow-

. . . '\.,:) o
ing time-independent properties:

o UNIQUENFSS: No two tuples in R have the same K-component.

o MINIMALITY: No attribute of K can be dropped without destroy-

ing the uniqueness property.?

In the relational model, associations between relations are represented
solely by values, rather than by structural links such as pointers. Specifically,
references from one relation to another are accomplished through foreign-to-
primary key matches, where a foreign key is an attribute or combination of at-
tributes in a relation R2 whose values are required to match those of the
primary key of some relation RI (R1 and R2 not necessarily distinct).*’

In addition to providing an addressing mechanism for the database and a
means of forming associations between relations, primary keys play an important

role in maintaining integrity constraints. This function is discussed in greater

detall 1n the next subsection.

4.3.2 Integrity Constraints
Given that a “base relation” is an autonomous, named relation (i.e., it 1is
not completely derivable from any other base relation(s)), inserts into, updates

of, and deletions from base relations are constrained by the following rules:

1. ENTITY INTEGRITY: Attributes participating 1n the primary key

of a base relation cannot accept null values.

2. REFERENTIAL INTEGRITY: If a base relation R2 includes a
foreign key FK which matches the primary key PK of some base
relation R1 (R1 and R2 not necessarily distinct), then every value of

221bid., p. 400.

23Date, An Introduction to Database Systems: Volume I, pp. 251.
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FK in R2 must be either:

e equal to the value of PK in some tuple of RI, or

e wholly null.?*

4.3.3 Relational Algebra

L 4

The data manipulation language of the relational model consists of the fol-

lowing components:

1. A set of operators known as the relational algebra.

2. An assignment operator which assigns the result of an algebraic ex-
pression to some other relation (for example, Z := X u Y).

In relational systems the relational algebra and assignment operator are
generally used to define the scope of an explicit insert, update or delete opera-
tion. Since these operations and the use of the assignment operator are self-
explanatory, the remainder of this section is devoted to a discussion of the rela-

tional algebra.

The original relational algebra consists of four set operators and four spe-

]

cial relational operators which are illustrated in Figure 4-1, page 25, and defined

informally as follows:
e SET OPERATORS

1. Union: resulting relation consists of all tuples appearing in one
or both of two specified relations.

2. Intersection: resulting relation consists of all tuples appearing
in both of two specified relations.

3. Difference: resulting relation consists of all tuples belonging to
the first, but not to the second of two specified relations.

]

« pia., p. 252.
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it 4. Carlesian Product: resulting relation consists of all possible

pairs of concatenated tuples, one from cach of two specified

. i
relations.?®

e SPECIAL RELATIONAL OPERATORS

1. Select: resulting relation consists of a subset of the tuples
(rows) of a specified relation.

2. Project: resulting relation consists of a subset of the attributes
(columns) of a specified relation.

3. Theta-Join:  resulting relation consists of all possible con-
catenated pairs of tuples, one from each of two specified rela-
tions such that for each pair the value of a given attribute in
the first relation is related to the value of a given attribute
defined on the same domain in the second relation in a
specified way. When the values of the two attributes are equal
the operator is known as equi-join. When the values of the
two attributes are equal and redundant columns are removed
from the resulting relation the operation 1s known as natural

jorn.

4. Divide: resulting relation consists of all values of one attribute
of a specified relation RI such that its Cartesian product with
the sole attribute of a specified unary relation R2 is included in

R1.%6

Note that the set operators union, intersection and divide apply only to

pairs of union-compatible relations (i.e., relations with a one-to-one correspon-

dence between attributes, with corresponding attributes defined on the same

domain).

4.4 Discussion

Of the four categories of database models discussed the relational model 1s
best suited for representing information in the designer /fabricator knowledge

base. In addition to clearly-defined data manipulation operators and integrity

251bid., pp.257-258. | - ~—

26Codd, “Extending the Relational Model to Capture More Meaning,” pp- 400-403.
C N\
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rules, the relational approach offers the following advantages:

e Relational databases have a natural affinity with the types of
knowledge which need to be captured in the designer/fabricator _
knowledge base.

e Engineers feel comfortable working with tabular data representations.
e The viewpoints of designers and fabricators can be easily compared.

o Update requirements for managing designet/fabricator interactions can
be accurately specified.

A\
e The elicitation of each expert’s knowledge can be accomplished in the

same fashion and represented consistently.?’ ,

\ . The next chapter discusses semantic extensions to the relational database model. .

27Hillman, “Knowledge-Based System for the Designer/Fabricator Interpreter,” pp. 4-6.
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RELATIONS ~
R1(A B) R3(C D) R3 (E)
a l a 1l 1
a 3 b1 3
b 2 b 2
c 1 c 38
c 8 .
)
SET OPERATORS
UNION INTERSECTION DIFFERENCE CARTESIAN PRODUCT
Ri1 v R2(F G) R1 OO R3(F G) Rl1 - R2(A B) Rl1 X R2(A B C D)
a l a 1 a 2 a lal
a 2 b 2 c 1 albl
b 1 c 3 alb 2
- b 2 a lc 3
' c 1 a 2 a 1
c 3 a 2 b 1
a 2 b 2
a 2 c 3
- b2al
b2bl1
b2Db 2
b 2c¢c 3
c 1l al
. c1lb1
c1lb 2
c 1l c 3
c 3 al
c 3bl1
c 3 b 2
c 3 c 3
[' SPECIAL RELATIONAL OPERATORS
SELECT PROJECT THETA-JOIN EQUI-JOIN
R1 (A=a) (A B) R1 (A) R1[B>E]JR3(A B E) R1[B=E]R3(A B C)
a 1 a a 2 1 a 11
a 2 b b21 cl1
c c 31 c 3 3
NATURAL-JOIN DIVIDE
R1[BxC]R2(A B) R1[B-E]R3(A)
a 1 c
c 1
c 3
' Figure 4-1: Relational Operators
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Chapter 5
Semantic Modeling

et

5.1 Introduction
Semantic modeling refers to the process of incorporating more meaning into

the database. In general, semantic models consist of the following four sets:

1. semantic concepts which are used to talk about the real world.
2. symbolic objects which represent the semantic concepts.

3. operators which manipulate the symbolic objects.

4. integrity constraints.%8

The relational model described in the last section captures a limited
amount of semantic information. For example, foreign-to-primary key matches
provide some information about the meaning of a particular relation. The
remainder of this chapter describes two database models which extend the
semantic capabilities of the relational model, the Entity-Relationship Model and
the Extended Relational Model RM/T. Both models are discussed in terms of
their semantic concepts, symbolic objects, data manipulation operators and in-

tegrity constraints.

5.2 The Entity-Relationship Model

5.2.1 Semantic Concepts
The entity-relationship model, as propsed by Chen (1976), is a generaliza-
tion or extension of, rather than an alternative to the relational database model.

The model views the world as consisting of entities and relationships. An entity

2

28Dat.e, An Introduction to Database Systems: Volume I, p. 610.
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is defined as a thing which can be distinctly identified. Examples of entities in-
clude a specific person, company or event. A relationship is defined as an as-

sociation between entities. Examples of relationships include PROJECT-

MANAGER and FATHER-SON.

5.2.2 Symbolic Objects .

ENTITY RELATIONS. The entity-relationship model separates infor-
mation about entities from information about relations.  Thus, entities are
represented by entity relations and relationships by relationship relations.

Figure 5-1, page 28, illustrates an entity relation in tabular form. As in

the relationel database model:

e Each table has a unique identifier or primar{ key.

e Each row of the table is a tuple (in this case, an entity tuple) of
attribute-value pairs.

e There are no duplicate rows.
e Rows are unordered.

e Columns are unordered.

e All table entries are atomic.

The main difference between Figure 5-1 and a table in the relational
model lies in the column headings. In the relational model columns are headed
by attributes, each of which are defined on a specific domain. In the entity-
relationship model, columns are headed by attributes and value sets. A few
definitions are required in order to understand this distinction.

Entities, such as those represented .by the primary key EMPLOYEE-NO in
Figure 5-1,' are grouped into entity sets, which are not necessarily mutually dis-

joint. For example, the individual represented by EMPLOYEE-NO 2566 may

Q

27




—--Primary--- \

Key
_ Alternative-
Attribute Employee-No. Name Name Age
Value Set First- Last-  First- Last-  No.-of-
(Domain) Employee-No. Name Name Name Name Years
Entity 2566 Peter Jones Sam  Jones 25
3378 Mary  Chen Barb  Chen 23

“

Figure 5-1: Regular Entity Relation EMPLOYEE?®®

belong to both the entity sets PERSON and I\:iALE—PERSON. Information
about entities is represented by attribute/value pairs such as COLOR/RED and
NAME/JOHN DOE. Values such as RED, JOHN and DOE are grouped into
value sets such as COLOR, FIRST-NAME and LAST-NAME. An attribute of an
entity relation is defined as a function which maps from an entity set into such
a value set or Cartesian -product of value set;. Thus the concept of value set
is similar to that of domain in the relational model, except that value sets form
an integral part of the tabular representation of data, thereby making semantic
information more accessible to the user.

Similar properties apply to relationship relations with the following distinc-
tions:

e Each row of the table is a relationship tuple.

o The primary key is represented by the primary keys of the involved
entities.

e The role of an entity in a relationship is its function in that

29'Pet'.er Pin-Shan Chen, “The Entity-Relationship Model: Toward a Unified View of Data,” ACM

‘Transactions on Database Systems 1:1 (March, 1976): pp. 17.
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o Relationship attributes arc attributes of the relationship other than
entity attributes involved in the primary key.

Finally, the entity relationship model distinguishes between weak and
regular relations. Regular entity and relationship rélations were discussed in the
preceeding paragraphs. A relation is a weak entity relation when a relationship
must be used to uniquely identify an entity in an entity set. For example,
dependents might be identified in the da’tabase by their names and the value of
the primary key of the employee supporting them. Likewise,"if one or more en-

tities involved in a relationship relation are identified by other relationships, the

relation is a weak relationship relation.>”

5.2.3 Data Manipulation Language
Chen states that “information requests may be expressed using set notions

31

and set operations”;®! however, his article does not clearly specify which

operators are supported. Although there is apparently no union or explicit join,
the operators in the entity-relationship model appear to be basically the same as

in_the relational algebra. As in the relational model, these operators are used

to define the scope of explicit insert, update or delete operations.

5.2.4 Integrity Constraints

The entity-relationship model supports the following integrity “rules”:

e When deleting an entity tuple, delete any entity tuple whose exist-
ence depends on it, and delete relationship tuples which are as-

sociated with the entity.

o When inserting an entity tuple iIn an entity relation, check to see

3OPeter Pin-Shan Chen, “The Entity-Relationship Model - Toward A Unified View of Data,” ACM
Transactions on Database Systems 1:1 (March, 1976): pp. 10-18.

3libid., p. 25.
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that the entity primary key does not already exist and is an accept-
able value.

e When inserting a relationship tuple in a relationship relation, verify
the existence of the entities whose primary keys comprise the

relationship primary key.

e When updating a value which is part of an entity primary key, cas-
cade the update to all relationship and entity relations which use this

value as a part of their primary keys.

e When inserting or updating any value, check to see that the value is

|

acceptable.

The last ihtegrity rule requires maintenance of the following:

e constraints on allowable values for a value set.

e constraints on permitted values for a certain attribute (i.e., certain
allowable values may not be permitted for a given attribute in a
given relation.)

e constraints on existing values in the database, including:

l‘ [ .
o constraints between sets of existing values (for example, the en-

tity .set MANAGER must be a subset of the entity set
EMPLOYEE).

o constraints- between particular values (for example, the value
which represents an individual’s tax must be less than the value

which represents that person’s salary).’
Chen’s paper does not explicitly define foreign key rules. However, the
user can specify that a given relation is one-to-one, one-to-many or many-to-

many, in which case certain foreign key rules are implicitly understood.>3

321pid, pp.22 -25.

33Date, An Introduction to Dattibase Systems: Volume I, p. 612.
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5.2.5 Entity-Relationship Diagrams

The entity-relationship model offers a diagrammatic technique for represer;t-

ing the entities and relationships described in this section. Figure 5-4, page 32,

adapted from Chen’s article, illustrates the principal characteristics of entity-

relationship diagrams:

e Each entity set is represented by a rectangular box. A double rec-
tangular box (not depicted) can be used to represent a weak entity

relation.

e Each relationship set is represented by a diamond-shaped box which
1s connected by lines to the entity sets participating in the relation-
ship. Note that a relationship set may be defined on one or many

entity sets.

e Lines on the diagram are labeled 1, m or n, where 1:1 indicates a
one-to-one, I:n indicates a one-to-many and m:n indicates a many-to-

many mapping.>*

34Chen, “The Entity-Relationship Model - Toward a Unified View of Data,” pp. 19-20.
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SUPPLIER

PROJECT SUPP_ SUPP_PART
PART PROJ

PART

PART
STRUCTURE

Figure 5-2: Example Entity Relationship Diagram

5.3 The Extended Relational Model RM/T

5.3.1 Semantic Concepts

The extended relational model RM/T was introduced by Codd in 1979.
The model views the real world as consisting of entities, where the concept of

entity encompassses both entities and relationships as defined in the entity-

relationship model.
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5.3.2 Symbolic Objects

SURROGATES. In RM/T user-defined primary keys (and associated
foreign keys) are replaced by system-controlled entity representatives which are
associated with specific domains. All internal system references are accomplished
using these surrogates, even though the user may still address the system via

NN
user-defined primary keys. The following properties apply to surrogates:

e Each surrogate is unique and guaranteed never to change.

e Two surrogates are equal if and only if th(;y denote the same entity.

One of the domains of the database, the E-Domain serves as the source of
all surrogates. Attributes defined on this domain are known as E-Attributes and
‘are given names which end in the special character ¢.

. FE-RELATIONS. Entities are representecj in RM/T by E-Relations and P-
Relations. An E-Relation is a unary relation which lists the surrogates for all
entities of a given type which currently exist in the database. Theﬁ name of the
E-Relation is the name of the entity type. The name of the E-Relation’s single

E-Attribute consists of the name of the E-Relation concatenated with the special

character ¢. An example E-Relation, EMPLOYEE, follows:

EMPLOYEE¢

alpha
beta

e

P-RELATIONS. P-Relations are used to represent properties of entities.
The name of the E-Attribute which serves as the primary key consists of the
name of the entity type with a trailing ¢ Values for the E-Attribute represent

the surrogates for all of the entities in the P-Relation. - The remaining at-
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tributes represent properties of the entity type. All such properties may be
grouped into one P-Relation or divided into many P-Relations at the discretion

of the database designer.’® An example P-Relation, EMPL-NAME, follows:

EMPLOYEE(/ LASTINAME FIRST-NAME
A\

alpha Doe John

beta | Smith Mary

5.3.3 Data Manipulation Language

The data manipulation language for RM/T consists of the following:

1. The relational algebra.
2. The assignment operator.

3. Operators which Tanipulate various RM/T objects.

The relational algebra and assignment operators were discussed in Section

4.3.3. The special RM/T operators are:

e NAME OPERATORS

1. NOTE: Returns the character string representation of a rela-
tion or null.

2. TAG: Returns the Cartesian products of a relation with the
character string representation of the relation.

3. DENOTE: Returns the relation denoted by a particular charac-
ter string representation. >

e SET OPERATORS

1. COMPRESS: Given that f is an associative and commutative
operator that maps a pair of relations into a relation, and Z is

a set of relations such that f can be validly applied to every

35.Codd, .“Extending the Relational Model to Capture More Meaning,” pp. 409-413.
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pair of relations in Z, then COMPRESS(f,7) is the relation ob-
tained by repeated pairwise application of f to the relations in

4o

2. APPLY: Creates a set of all relations f(z) such that f denotes
a unary operator that maps relations into relations, Z 1s a set
of relations which are not necessarily union compatible, and z 1s
a member of 4. APPLY allows every member of a set of rela-
tions to be evaluated in an algebraic equation in any place
where a relation name would be syntactically valid.

3. Partition by Attribute (PATT:) Creates a set of relations ob-
tained by partitioning a relation R per all the distinct values of

an attribute A. (Note, R =~ UNION/PATT(R,A))

4. Partition by Tuple (PTUPLE:) Creates a set of relations ob-
tained by promoting each tuple of a relation R into a single-

tuple relation. (Note, R = UNION/PTUPLE(R))

5. Partition by Relation (PREL:) Creates a set of relations whose
only member is the relation R. (Note, R = UNION/PREL(R))

6. SETREL: Creates a set of relations from any number of ex-
plicitly named relations. For example, SETREL(R1, R2,..,Rn)

creates a set containing relation R1I through Kn.

RM/T also provides three graph operators, OPEN, CLOSE and STEP, the

details of which are beyond the scope of this work.3® .

5.3.4 Integrity Constraints

CLASSIFICATION OF ENTITIES. There are three categories of entities

in RM/T: !

-

1. Characteristic entities fill a subordinate role in describing entities of
some other type. (Characteristic entities are existence-dependent on

the entities they describe.)
2. Associative entities fill a superordinate role by interrelating entities.

3. Kernel entities are entities which are neither characteristic or associa-
tive.

361pid., pp. 425-428.
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TYPE HIERARCHIES. A given entity may be of several types simul-
taneously. An entity type and its subtypes constitute a type hierarchy with the

following characteristics:

e Properties of a supertype apply to all of its subtypes.

e All associations in which a supertype participates are automatically

N N . . e it |
associations in which a subtype participates.”’

INTEGRITY RULES. RM/T maintains a,formal catalog structure which
identifies entities as characteristic, associative or kernel and maintains infor-
mation about type hierarchies. This information is used to enforce the model’s

integrity rules:

[ =3

1. ENTITY INTEGRITY: (Section 4.3.2)
2. REFERENTIAL INTEGRITY: (Section 4.3.2)

3. ENTITY INTEGRITY IN RM/T: E-Relations cannot be updated or

accept null values. Insertions and deletions are allowed.

4. PROPERTY INTEGRITY: A surrogate appearing in a P-relation
must also appear in the E-Relation for that entity type.

5. CHARACTERISTIC INTEGRITY: In order for a characteristic en-
tity to exist in the database, the entity which it describes most im-
mediately must also exist in the database.

6. ASSOCIATIVE INTEGRITY: Assuming there are no explicit in-

tegrity constraints to the contrary, an assoclative entity can exist in
the database even though one or more entities in the association are
unknown. (The surrogate FE-null is used to indicate that a par-
ticipating entity is unknown.) - '

7. SUBTYPE INTEGRITY: A surrogate belonging to the E-Relation
for an entity of type e must also belong to the E-Relations of entity

types of which e is a subtype.>8

37Date, An Introduction to Database Systems: Volume I, p. 619.

38Codd, “Extending the Relational Model to Capture More Meading,” pp. 411 - 421.

36




Chapter 6

Conclusions

Of the database models discussed in this work (relational, inverted list,
network and hierarchic), the relational model is best suited for the
designer /fabricator knowledge base because of its clearly-defined data manipula-
tion operators and integrity rules, tabular representation of data, and natural af-
finity with the types of information which need to be incorporated in the

knowledge base.

Semantic extensions to the relational model are summarized in the follow-

ing table:
ENTITY- RM/T
RELATIONSHIP
SEMANTIC CONCEPTS | entities entities
relationships
SYMBOLIC OBJECTS |entity relations E-Relations
relationship relations | P-Relations
OPERATORS relational algebra (7) | relational algebra
assignment operator
. RM/T operators
INTEGRITY RULES relational integrity integrity rules:
rules (?) entity
referential
entity in RM/T
property
characteristic
*| association
subtype

The extended relational model RM/T offers the following advantaées over

the entity-relationship model:

1. The' distinction between entitites and relationships is not always clear
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in the real world. Such ambiguities are resolved by classifying every-
thing in the real world as an entity.

2. The use of system-defined surrogates eliminates the disadvantages in-
herent in user-defined primary keys.

3. RM/T provides a clearly-defined data manipulation language which
includes the relational algebra, assignment operator and special RM/T
operators. '

4. RM/T provides a clearly-defined set of integrity rules in addition to
the integrity rules in the relational model.

ryy d,’ . . . . .
RM/T does not provide an alternative to the diagrammatic technique of-

fered by the entity-relationship model. One solution to this problem is to adapt

the entity-relationship diagram to the requirements of RM/T as follows:

e Each kernel entity type would be represented as a rectangle.

e Each associative entity type would be represented by a diamond-
shaped box.

e Each characteristic entity type would be represented by a double rec-
tangle.

Further research is required to determine whether the concept of a hierar-
chical arrangement of specialists is applicable to the designer/fabricator
knowledge base. If it is, then grouping information in the knowledge base ac-
cording to specialists provides a framework for acquiring information from the
experts whose knowledge will be encoded in the system.

The process of acquiring and modeling information within this framework
is outlined in Figure 6-1, page 40. The first stage of the process is to work
with the expert to determine a preliminary version of the specialist tree. The
information in the tree corresponds to the type of information typically con-
tained in taxonomic rules. Once a tree of height of N has been built, an itera-

tive process of evaluating database facts and transformation rules for the bottom

.




two levels (N and N-1) of the tree begins.

When this process is complete, state change rules, which model the effects
of changes in level N-1 on level N, can be modeled. Once all databascAfacts,
transformation rules and state change rules seem correct, the value of N 1s
decremented. If N>0. the new level N-1 is evaluated in a similar fashion. At
any stage in the process previous levels of the tree can be modified, provided
that changes are systematically propagated up the tree. When N=0 all levels,

including the root, have been evaluated, and the process 1s complete.
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BUILD SPECIALIST TREE

h)

MODEL DATABASE FACTS FOR LEVEL N

MODEL TRANSFORMATION RULES FOR LEVEL N

> MODEL DATABASE FACTS FOR LEVEL N-1

MODEL TRANSFORMATION RULES FOR LEVEL N-1

MODEL STATE CHANGE RULES LEVEL N TO N-1

Figure 6-1: Model for Conceptual Analysis
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