
Lehigh University
Lehigh Preserve

Theses and Dissertations

1987

A feasibility study of the development of an IBM
PC-based programmable controller ladder logic
programming system /
Steven M. Howard
Lehigh University

Follow this and additional works at: https://preserve.lehigh.edu/etd

Part of the Manufacturing Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Howard, Steven M., "A feasibility study of the development of an IBM PC-based programmable controller ladder logic programming
system /" (1987). Theses and Dissertations. 4759.
https://preserve.lehigh.edu/etd/4759

https://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F4759&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F4759&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F4759&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/301?utm_source=preserve.lehigh.edu%2Fetd%2F4759&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd/4759?utm_source=preserve.lehigh.edu%2Fetd%2F4759&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

\
. .

A Feasibility Study of the

Development of an IBM PC-based

Programmable Controller Ladder Logic

Programming System.

by

Steven M. Howard

A Thesis

Presented to the Graduate Committee

of Lehigh University

in Candidacy for the Degree of

Master of Science

.
1n

Manufacturing Systems Engineering

Lehigh University

1987

This thesis is accepted and approved in partial

fulfillment of the reqLiirements for the degree of Master

of Science.

II 11! 7 --- ---+--·------------

(date)

11

Professor in Charge

·- ---..---------·----- --- --
~

Chairman of Department

Q

)
··:~ ,I'
~

!, -··---- --·--

Acknowledgments

First, I'd like to thank my family, my dad Bernie,

my mom Carol, my sister Karen, and my brother Mark, for

their understanding while I spent these long nine months

hacking away at my computer instead of visiting them at

home. Spec
1
ial thanks to my mom for the leftovers,

especially the chicken soup and beef stew, that were my

sustenance during many quick dinners.

Next, I'd like to thank Professor Groover for

allowing me the freedom to construct this thesis to test

my own ideas. I certainly appreciate his patient

reading of my rough drafts and the many excellent

comments that he offered for shaping this thesis into

its final form.

Also, I'd like to thank my girlfriend Sue for

sharing the joy of my accomplishments and having the

patience to deal with my lousy moods when things just

weren't working out.

Finally, I'd like to thank the Du Pont Company for

employing me while I finished my thesis and allowing me

some time to get it done.

. . .
111

,,,

1 .

2.

3.

4.

Table of Contents

Page

Introduction to Programmable Controllers • • • 3

1.1. Definition of a Programmable Controller 3

1.2. History of the Programmable Controller . 5

1.3. Programmable Controllers:

Simple, Time-proven Technology . • • • •

Trends in the Programmable Controller Market •

2. 1 .

2.2.

2.3.

Growth Statistics • • • • • • • • • • •

Reasons for Growth . • • • • • • • • • •

Dominance of Market • • • • • • • • • •

Programming the Programmable Controller • • • •

3. 1 .

3.2.

3.3.

3.4.

Relay Ladder Logic Programming .

Reasons to Adopt Ladder Logic

• • • •

Programming . • • • • • • • • • • • • • •

Programming Terminals • • • • • • • • •

Personal Computers as PLC Programming

Terminals. • • • • • • • • • • • • • • •

Needs in Today's Programmable Controller Market

4. 1.

4.2.

Training Tools for New Programmers. •

More Sophisticated Programming Tools.

.
lV

•

•

6

7

7

8

10

10

10

13

14

16

20

20

21

1·

...

5. The Proposed Solution:

A PLC Program Development System • • • • • • •

6. Description of Currently Available Products.

6. 1 .

6.2.

Dedicated Computer-based Systems .

Minicomputer-based Systems. • • •

• •

• •

•

•

•

6.3. Programmable Controller-based Systems •

6.4. IBM PC-based Systems . • • • • • • • • •

7. Thesis Description • • • • • • • • • • • • • •

8. Justification for this Thesis. • • • • • • • •

9. Programming Considerations • • • • • • • • • •

Turbo Pascal • • • • • 9. 1 .

9.2.

9.3.

Menu-Driven Software.

Modular Design. • • •

10. An Integrated Database:

•

•

•

• • • • • • • •

• • • • • • • •

• •• • • • • • •

The Heart of the PLC Development System • • •

11. Current Status of the Program • • • • • • • •

V

25

28

28

30

30

32

33

34

35

35

36

37

37

42

12. Future Direction for the Program. • • • • • •

12. 1 • Short Range. • • • • • • • • • • • • •

12.2. Long Range • • • • • • • • • • • • • •

12.3. What Should Be Done Differently? • • •

13. User's Manual • • • • • • • • • • • • • • • •

13.1. Program Start up • • • • • • • • • • •

13.1.1.

13.1.2.

11 /g" Option

11 /d" Option

13.1.3. Using Both Options

13.2. Main Menu Screen • • • • • • • • • • •

13.3. Quit • • • • • • • • • • • • • • • • •

13.4. Ladder Logic Programming Instruction

13.5.

13.6.

Set . • • • • • • • • • • • • • • • • • •

Entering a rung . • • • • • • • • • • •

13.5.1. Entering a Contact Instruction

13.5.2. Entering an Output Coil

13.5.3. Entering a Timer Coil

13.5.4. Entering a Counter Coil

13.5.5. Entering a Branch Instruction

13.5.6. Example Rung Entry

Cursor keys. • • • • • • • •

13.6.1. Right Arrow

13.6.2. Ctrl-Right Arrow

13.6.3. Left Arrow

13.6.4. Ctrl-Left Arrow

. ·,
I

.
Vl

• • • • •

44

44

45

46

47

48

49

52

52

55

65

13.7.

13.8.

13.6.5. Home

13.6.6. End

13.6.7. Up Arrow

13.6.8. Ctrl-Up Arrow

13.6.9. Down Arrow

13.6.10. Ctrl-Down Arrow

13.6.11. Ctrl-Home

13.6.12. Ctrl-End

13.6.13. * (PrtSc)

Edit keys • • • • • • • • •

13.7.1. Insert an Instruction

13.7.2. Insert a Rung

13.7.3. Delete an Instruction

13.7.4. Delete a Rung

13.7.5. Edit a Rung

• • • • • •

Searches
• • • • • • • • • • • • • • •

13.8.1. Address Search

13.8.2. Description

13.8.3. Coil

13.9.

13.10.

Cut/Paste. • • • • • • • • • • • • • •

Documentation
• • • • • • • • • • • •

13.10.1. Identification Sheet

13.10.2. Section Title

13.10.3. Comment

13.11. Help Function • • • • • • • • • • • •

. .
Vll

"'

70

72

76

77

80

•

13.12. Print Function. • • • • • •

13.12.1. Printer type

13.12.2. Ladder listing

13.12.3. Cross-reference report

13.12.4. Address usage report

13.12.5. No description report

13. 13. Filer Function . • • • • • •

13.13.1. Retrieve program file

13.13.2. Save program file

13.13.3. Delete program file

13.13.4. Clear current program

13.13.5. Rename program file

13.13.6. Directory

•

•

13.13.7. Change default drive

13.13.B. Change default directory

13.13.9. Function not used

13. 13. 10. Quit

• • • •

• • • •

13.14. Simulation Function • • • • • • • • •

14. Conclusions • • • • • • • • • • • • • • • • •

References •

. . .
Vlll

•

81

85

92

95

98

Appendix A. Data Structures • • • • • • • • • • • 101

Pascal definition of program storage data

structures • • • • • • • • • • • • • • • 101

Pascal definition of description tree

structure . • • • • • • • • • • • • • • • 102

Pascal definition of the data tables

structure . • • • • • • • • • • • • • • • 103

Appendix 8. Instruction and Address Byte Coding • 105

•

.
lX

•

Figure 3.1.

Figure 3.2.

Figure 10.1.

Figure 10.2.

Figure 13.1.

Figure 13.2.

Figure 13.3.

Figure 13.4.

List of Figures

Example ladder network diagram • • •

Documented ladder logic diagram . • •

Data structures for program storage.

Description tree • • • • • • • • • •

Function key assignment . • • • • • •

Cursor and Edit key assignment • • •

Program identification sheet menu. •

Print function menu . • • • • • • • •

)(

Page

12

18

39

42

51

66

78

82

Abstract

•

Today, the programmable logic controller (PLC)
.
1S

being used in an increasing number of applications for

machine control and higher-level cell coordination.

This trend is largely due to the decreasing

cost/increasing power of microprocessor chip technology.

The affordability of the new generation of PLCs

justifies their growing use in industrial applications.

This trend has stimulated demand in two areas

associated with PLC programming. The first is the need

for new PLC programmers. The second area is the

development of computer aided programming tools.

There are two drawbacks to the current

documentation/off-line programming systems. First,

documentation and off-line programming are sold as two

separate packages that can operate on a common database

of programs, but not as a totally integrated system.

Separate packages allow the end user to purchase only

the functionality that he requires. However, this

marketing methodology forfeits advanced functions that

could be implemented on an integrated system. The

second drawback is that today's packages do not include

a program simulation capability.

My thesis is to demonstrate the feasibility of

developing an integrated programming, documentation, and

1

simulation package for developing ladder logic programs

for programmable controllers. This software is for use

on an IBM PC-compatible computer.

The purpose of this project is two-fold.

Primarily, this software package is meant to serve as a

teaching aid for ladder logic programming. In addition,

it is the author's hope that this program will pioneer

the research for a simple, yet powerful, ladder logic

software development tool that would be useful in

industrial applications.

(_ __

2

I'

1. Introduction to Programmable Controllers

1.1. Definition of a Programmable Controller

The National Electrical Manufacturers Association

(NEMA) defines a programmable logic controller as a

digitally operating electronic apparatus that uses a

programmable memory for the internal storage of

instructions for implementing specific functions such as

logic, sequencing, timing, counting, and arithmetic, to

control machines or processes through digital 6r analog

input or output (I/0) modules [11]. Programmable logic

controller is often shortened in the trade literature to

programmable controller and abbreviated with the acronym

PC. Use of the acronym PC for programmable controller

leads to confusion with today's popular personal

computers. In this thesis report, the acronym PLC will

stand for the programmable logic controller while the

acronym PC will be used exclusively to describe the

personal computer; however, programmable controller will

be used interchangeably to mean programmable logic

controller.

The NEMA definition of programmable controllers is

long-winded and confusing. Separating the definition

into its components makes it easier to understand.

First, the PLC is a programmable, digital device.

Although it is highly specialized, the PLC is still just

a computer. Like any computer, the PLC's brain is the

3

central processing unit (CPU).

is normally a microprocessor.

In today's PLCs, the CPU

Second, the PLC has programmable memory, either

static, EPROM, or volatile RAM, in which to store its

program.

Third, the PLC has a number of functions, known as

the instruction set, which can be combined to form the

control program.

Finally, the PLC has input/output (1/0) devices

which allow the PLC to communicate with the outside

world. The I/0 devices are connected to sensors (for

example, photoelectric cells, limit switches, proximity

switches, tachometers, and thermocouples) and actuators

(for example, solenoid valves and motor starters) on the

machine or process to be controlled. The input devices

convert the feedback signals from the sensors into

digital signals that the PLC can understand. Based on

the digital signals read from the input devices, the PLC

executes the control program to generate commands to the

output devices. The output devices convert these

commands into control signals to the actuators which

perform the actual control of the machine or process.

4

----------------------------------~----- -

\

1.2. History of the Programmable Controller

Now that a PLC has been defined, the next step is

to understand why this specialized computer was needed.

In 1966, General Motors developed a specification (for

its Hydramatic Division) for a controller that was

programmable. This controller would be used as a

replacement for large relay control panels. GM wanted

to reduce the tremendous effort and expense that was

associated with the yearly changeover of car models. Up

to this time, changeover of the relay panels that

controlled the automated production lines was

accomplished by rewirng the panels. In some of the

larger panels, it was more cost effective to scrap the

old panels and rebuild new ones from scratch rather than

try to modify the hundreds of relays and thousands of

wires in the old relay panels. GM engineers felt that a

"programmable controller'' would be a new, efficient

method to meet the changing control requirements. No

longer would the engineers deal with hardwired relays.

Instead, they would work with "soft-wired" relays in a

control program.

In 1969, Modicon (now Gould) introduced the first

commercial PLC, the Modicon 084, to meet the

requirements of the GM specification [7]. With the

advent of this PLC, installation of control systems was

fairly easy because the hard wiring associated with

5

relays was eliminated. Production line changeover time

was reduced significantly because only the programming

logic needed to be modified, a relatively simple

procedure, to change the control of the lines. In

addition, the programmability of the PLC meant that it

was reuseable, which was a tremendous cost savings.

1 . 3. Programmable Controllers:

Simple, Time-proven Technology

Today, after nearly 20 years of exposure to harsh

industrial environments, an environment atypical to most

computers, the PLC has gained acceptance as the

workhorse of the manufacturing plant. This acceptance

has been earned because the PLC is a simple device that

does its job, the control of machines and processes, and

it does this job well. Today's PLCs are extremely

reliable. These opinions about today's PLCs were summed

up by Alex C. Mair, vice president, General Motors Corp.

and president of the Engineering Society of Detroit,

his keynote address at the Programmable Controllers

Conference in April 1986. He said, "Programmable

-1n

controllers are old technology. They've been around for

more than 20 years. The issue with programmable

controllers isn't really new technology--it's good

technology and programmable controllers are good

technology. They're simple, versatile, and time-

6

proven. And, perhaps most important, they can function

in a plant environment" [2J.

Because of the dependability of the PLC, they are

becoming more than the simple hardwired relay replacers

as intended in the original GM specification. Today,

PLCs are integrating large processes through distributed

control networks. PLCs no longer are limited to the

control of a single machine. Larger programmable

controllers are capable of controlling multiple machines

or processes. Communications networks enable larger

PLCs to serve as cell level controllers, overseeing the

coordination of a group of smaller PLCs. In fact,

programmable controllers are fast becoming the universal

building block for industrial automation [BJ.

likely, PLCs will be a major factor in the now

More than

developing computer integrated manufacturing <CIM)

hierarchical architectures [7].

2. Trends in the Programmable Controller Market

2.1. Growth Statistics

The lavish praise being given to programmable

controllers is substantiated by the sales growth in the

PLC market. Fe~ products have been more rapidly and
l

widely accepted in industry than programmable

controllers. For the years 1977 - 1982, sales of PLC

equipment grew at an annual rate of 44% from $60 million

7

1n 1977 to $370 million in 1982 [1]. PLC sales are

currently valued at more than $600 million. Sales show

no signs of slowing. By the mid '90s, PLC shipments

will approach the $4 billion mark, predicts Business

Trend Analysts, a market research firm based in Long

Island, N.Y. [12].

Although PLCs were originally targeted for the

automotive market, their ruggedness, flexibility, and

ease of use have expanded their application into nearly

every industry, from chemical processing to

metalworking, with energy management representing the

biggest market for PLCs. However, material handling

equipment is moving up quickly and is expected to take

over the number one spot in the next couple of years as

PLCs move into the factory of the future. Over the next

decade the material handling equipment market for PLCs

wil~ grow from $200 million to $650 million, predicts

Business Trend Analysts. And only a small step behind

will be the food processing equipment market, where PLC

sales are expected to approach $640 million by 1995

[12].

2.2. Reasons for Growth

The tremendous growth in the PLC equipment market

has been fueled by a number of factors. The proven

reliability record of PLCs has been a contributing

8

factor, as well as the substantial corporate backing of

established manufacturers of programmable controllers

[1] •

More importantly, new markets for PLCs, such as

food processing and materials handling, have developed

as the devices have become smaller and more powerful

[1] • Alex C. Mair, vice president, General Motors Corp.

reiterated this point in his address at the Programmable

Controllers Conference. He commented, "New developments

in electronics and computers are key to many elements of

the second industrial revolution. The incredible

ability of the modern computer to store information, to

calculate, and to release data at tremendous speeds is

the key to the exponential rise in technology we see all

around us" [2]. The key to the increasing performance

of the modern computer has been the development of

microprocessor technology.

Increasing performance alone would not have

triggered the growth in the PLC market. Performance

gains were coupled with the decreasing cost of

microprocessors. The affordability of PLCs justified

their growing use in various industrial applications.

Thus, the lower-than-ever cost/performance ratio of PLCs

is the most important reason for skyrocketing sales.

9

2.3. Dominance of Market

An interesting note about the PLC market is that

although more than a dozen manufacturers produced PLCs

as of May 1984, two manufacturers, Allen-Bradley and

Gould Modicon, dominated the market with a combined

share of 70Y. [1]. Even though a number of new

manufacturers have since entered the PLC market and

chipped away at this market share, these two companies

remain dominant in the current U.S. market.

3. Programming the Programmable Controller

3.1. Relay Ladder Logic Programming

Up to this point, it has been determined that the

programmable controller is a reliable piece of hardware.

But the hardware is useless without a simple programming

language for writing the control program. The industry-

adopted standard programming language is known as relay

ladder logic programming. This language is derived from

series and parallel-connected ladder networks that were

drawn to wire electromechanical relay panels. Ladder

networks were so named because when drawn, they look

like a ladder. The left vertical post is the "hot" bus

connected to a power source and the right post is the

"neutral" bus. Interconnected relay contacts and coils

are tied between these two posts. These circuits, drawn

horizontally between the posts, are known as rungs.

10

I_

When the proper set of conditions exists, power flows

from the left post through the contacts to energize the

coils. These coils drive the actuators that cause

specified actions to occur on the controlled device.

<Refer to Figure 3.1 for an example ladder network

diagram.)

Although PLCs were designed to replace these

hardwired relay systems, they maintained the idea of

ladder networks for programming. In effect, programming

the PLC was done by copying the ladder network drawings

into the PLC through a graphical interface. Imaginary

power flows through the software networks to energize

the programmed coils. Based on the coils that are set,

the PLC energizes the actuators through its output

interface. This pictorial-based system makes

programming of the PLC a relatively simple task for

maintenance personnel accustomed to dealing with

electromechanical relay systems.

11

I

R

R

R

I

I

0

I

R

R

T

I

001 C 001 I 002 R 00 1
.__-~ 1 -1---1 1 .---------<)

001

001 R 002 C 00 1
,.__..~------f1/.--~~~~~~~~~~~~TR

aOOO p

001 R 00
----------------------<)

003 0 00
/1----------------------~~<)

003 I 004 0 00
-----------It-----------~------<)

002

004 I 005 R 00
..-~~----4/1---------------~--<)

003

003 T 00
.._.-~---------------~---TON

aOOO p

001 0 00
1------------------------<)

005 C 00
..---------~---~---------~TU

012

2

1

2

3

1

060

3

1

aOOO p 012

Figure 3.1. Example ladder network diagram.

12

3.2. Reasons to Adopt Ladder Logic Programming

It is easily implied from the previous section that

the main reason for programming PLCs in ladder logic was

to allow plant electricians to quickly adapt to the

electronic technology, especially in applications that

required replacing an existing relay design [5].

Because the electricians were very familiar with ladder

networks, they could begin to use the new PLCs with a

minimal amount of training.

Today, ladder logic programming is still the

accepted standard. Unlike programming languages used in

conventional computers, relay ladder logic is understood

by most plant personnel. Says Dr. Jesse T. Quatse, vice

president of technology and founder, Maxitron Corp.,

"Ladder language is an elegant, high-level language with

beautiful graphics and a simplified, user-friendly way

of expressing a logic program" [9].

Relay ladder diagrams are expected to . remain

popular for many more years. However, increased use of

PLCs in process, integrated manufacturing, and total

plant control applications is resulting in greater use

of alternative languages [11]. Many of these

alternative languages are based on structured

programming languages such as FORTRAN and Pascal. In

response to this trend, the PLC manufacturers now offer

these alternative languages as enhancements to the

13

standard ladder logic programming language. Notice that

these alternative languages are enhancements; they add

to the standard ladder logic programming language.

Relay ladder logic still remains the foundation for the

programming of PLCs and it seems that this standard will

continue. According to Mr. Bob Lyons, manager of PLC

operations, Telemechanique, the electrical maintenance

man will always want relay ladder languages because he's

the person troubleshooting and maintaining the PLC,

regardless of who else is involved in designing a PLC

solution. It doesn't take a great deal of expertise and

experience to maintain and troubleshoot relays [9].

In summary, relay ladder logic programming
.
1s a

simple, pictorial-based language that is understood by

many plant electricians and maintenance personnel and is

easily learned by novice programmers.

3.3. Programming Terminals

The relay ladder logic program is entered into the

PLC using a device known as a programming terminal. The

first programming terminals were monochrome CRTs with

industrialized casings and keyboards. These specialized

terminals could be used only for the entry of ladder

logic programs. In addition, programming could be

accomplished only when the terminal was connected to the

14

PLC. Thus, programming of PLCs usually meant a trip to

the plant floor.

Later, tape loaders were developed for the storage

and retrieval of ladder logic programs on magnetic

cassette tapes. With this development, programs could

be developed at alternate locations and then carried to

the plant floor on tape.

Today, there are a variety of programming

terminals. Small, handheld terminals that use LCD

technology can display one rung of logic at a time.

These mini-terminals can be easily carried around
.
1n a

briefcase and used for quick programming fixes in the

plant. Large, color computers are also being used as

programming terminals. The use of color makes the

pictorial programming interface even simpler. The

advance from terminals to actual computers had led to

the development of off-line programming systems; no

longer does the terminal have to be connected to the PLC

to enter a program. The program can be developed off-

line in the computer's memory and disk drive system, and

the completed program can be either downloaded directly

or transported via newer magnetic cartridge tape to the

PLC.

15

-----------------~-----

3.4. Personal Computers as PLC Programming Terminals

The latest advance in the area of programming

terminals is the use of the emerging industry standard

IBM PC-compatible computers for the entry of ladder

logic programs into the PLC. This trend has all but

caused proprietary programming terminals and panels to

become obsolete [9]. Users can now program different

manufacturers PLCs on a common programming terminal.

The PC systems also support off-line PLC programming

which allows engineers to program in their offices and

not in the midst of the plant floor distractions. In

addition, dedicated programming terminals no longer sit

idle because the PC can be used for a tremendous range

of other functions, such as word processing, spreadsheet

analysis, and project planning, when not being used as a

programming station [8].

One critical function that can be performed on a PC

system is the documentation of ladder logic programs.

Documentation packages allow programmers to add text

descriptions to each contact and coil used in the

program, and commentary (similar to the comment

statements in FORTRAN or Pascal programs) to describe

the function of each rung of logic. These documentation

systems are capable of printing 1/0 cross-referencing

reports which are indexes that lists every rung in which

a given contact or coil appears in the program. Before

16

these documentation systems e~isted, documentation was

done manually on the ladder network diagrams. Manual

documentation was prone to errors; therefore, it was not

useful to the PLC programmer. Today's systems, which

contain comprehensive labeling, comments, and I/0 cross­

referencing, greatly simplify.the tasks of debugging and

troubleshooting [6]. (Refer to Figure 3.2 for a

documented ladder logic diagram and contrast the

readability of this diagram to the ladde,- netwo,-k

diagram in Figure 3.1.)

17

System
System Process System Run
Start PB Counter Stop PB Permit

I 001 C 001 I 002 R 001

-· ·, r· · ---- 1 .._, --· ·, 1 r· · -------< > --t

9

System
Run
Permit

R 001

System
Run
Permit

R 001

I

System
Run
Permit

R 001

1

1

Run
Permit
One Shot

R 002

11
3

Process
Counter

C 001
TR

aOOO p012

Run
Permit
One Shot

R 002
.._~~~~~~~~~~~~~~~~~~~~~~~-< >~~

1

Part at
Conveyor
End

I 003

Input
Conveyor
Motor On

0 001

-· . , / r· . ---------------· . < > ••

Figure 3.2. Documented ladder logic diagram.

18

Par
Con
End

I
- ..

OK
Get

0

tat
veyor Part

Loaded
003 I 004

OK to
Get Part

D 002
i f-· . -· . ~ / f-· . ----------· . (> ••

to
Part
002

. . ~ t-· .
5

Par t Station Part at
Loa ded Unloaded Station

I 004 I 005 R 003
.. ~ f-·. -· . ~Ir· . -----------<) ~

Par
Sta

R

Par
Sta

R

Sta

tat
tion

003

tat
tion

003

6

Station
Cycle
Timer

T 001
~~~~~~~~~~~~~~~~~~~~~-TON~~ 

6 aOOO p060 

Cycl 
tion 

e 
er 

001 

OK to 
Unload 
Part Tim 

T D 003 

7 

Sta tion Process 
Unl oaded Counter 

I 005 C 001 
.. i f-··----------~~----..,j-r--~~~~~--~~~~~~TU~--1 

aOOO p012 

Figure 3.2 (continued). Documented ladder logic 
diagram. 

19 



4. Needs in Today's Programmable Controller Market 

More PLCs are being used today than ever before. 

The tremendous growth rate has stimulated demand in two 

areas associated with PLC programming. These areas are 

the need for training tools for the many new PLC 

programmers and for more sophisticated programming 

development systems to further simplify the PLC 

programming task. 

4. 1 . Training Tools for New Programmers 

Many new PLC programmers are required to program 

the ever growing number of programmable controllers. 

These new programmers are being recruited from college 

graduate engineers. These engineers, however, do not 

receive intensive training in electromechanical relay 

control design because it is fast becoming obsolete 

technology. Nor do they receive ladder logic 

programming skills because universities focus on higher 

level programming languages such as FORTRAN and Pascal. 

On the other hand, the manufacturing industry is 

demanding new-hire engineers with extensive PLC training 

to replace the retiring plant electricians. No longer 

1s on-the-job training sufficient to train these new 

programmers. In fact, the increased functionality of 

today's PLCs which includes arithmetic, data 

manipulation, and block transfer instructions, 

20 

. 
requires 



new PLC programmers to have some advanced computer 

programming training to become fluent in PLC 

. programming. 

For these reasons, inexpensive PLC programming 

training tools need to be developed, particularly for 

use at the college level. Preferably, these tools 

should be designed for the IBM PC-compatible computer 

which are widely accessible on today's campuses. 

4.2. More Sophisticated Programming Tools 

Since the experience base of PLC programmers . 
1S 

shrinking, one method to increase their productivity 

to develop more sophisticated programming tools. The 

documentation and off-line programming systems that 

. 
15 

exist today are simple, yet effective programming tools. 

An important advantage is that some of these systems are 

now being developed for IBM PC-compatible computers. 

Documentation systems improve the readability of 

programs by adding text descriptions to the ladder 

diagrams. Off-line programming sytems allow the creation 

of ladder logic programs without using the PLC 

controller. These systems allow for the maintenance of 

\, 
PLC programs while the controllers remain on-line on)the 

factory floor. Another advantage of off-line 

programming systems is the ability to create a database 

of PLC programs and subroutines on the PC's disk drive 

21 

•t •. ~· 



system. This type of library allows for faster 

. 
programming by reusing old programs and for 

standardization of PLC programs by accessing standard 

subroutines. 

There are two drawbacks to the current 

documentation/off-line programming systems. First, 

documentation and off-line programming are sold as two 

separate packages that can operate on a common database 

of programs, but not as a totally integrated system. 

Separate packages allow the end user to purchase only 

the functionality that he requires. However, this 

marketing methodology forfeits advanced functions that 

could be implemented on an integrated system. 

For example, a PLC programmer might need to 

implement the following logic: 

If the safety chain is latched and the 

machine door is closed, then the machine can 

be started. 

There will be two sensors to indicate that the 

interlocks are satisfied and the machine can only be 

started when a master relay is energized. 

22 



·' 

Normally, the programmer would sketch this logic 

onto paper and it would look as follows: 

Safety 
Chain 
Latched 

Machine 
Door 
Closed 

Machine 
Master 
Relay 

---] [-------] [------------( )---

Since the off-line programmer recognizes input/output 

numbers and not text descriptions of the I/0 points, the 

next step would be to assign I/0 numbers to each I/0 

point as follows: 

I 1 I 2 D 1 

---] [-------] [------------( )---

This rung could now be entered into the program. The 

final step would be to use the documentation package to 

reassign the text descriptions to each I/0 point. 

This extra work could be avoided with an integrated 

software package. The programmer would be able to write 

the entire program using text descriptions only. When 

the programmer is satisfied with the complete program, 

he could then assign all I/0 numbers. Assi·gning I/0 

numbers after completing the program promotes an 

efficient and orderly numbering system because all 

required I/0 points are better known when the program -15 

completed. There is no havoc created by added, deleted, 

23 



or changed I/0 points which occur frequently as the 

program is developed. 

Another advantage of an integrated package is the 

text description-based search. Searching allows the 

programmer to scan the program for a specified I/0 

point. This is similar to a word processor's capability 

to search for words in a text document. Today's 

programming systems implement searches based on I/0 

numbers. This means that the programmer must maintain a 

list of the text descriptions currently assigned to each 

I/0 number, either on paper or in his head. However, it 

is more natural for the programmer to ask for an I/0 

point by name. From the example above, the programmer 

might want to locate this rung in his program. He would 

accomplish this by searching for the rung that turns on 

the machine master relay. Today's off-line programmers 

would require the programmer to recall that this relay 

is assigned to 02 and then to perform a search for it. 

An integrated package would directly search for the 

output called "Machine Master Relay." 

The second drawback is that today's packages do not 

include a program simulation capability. Instead, the 

makeshift solution offered is the ability to 

upload/download programs into the actual programmable 

controller for testing there. This creates two 

problems. First, most programmable controllers do not 

24 

_, 



have the text description capability because they were 

designed for high-speed industrial control and no memory 

was allotted for storage of "unnecessary" text. Second, 

and more critically, the cost to maintain a dedicated 

programmable controller for simulation purposes is 

prohibitive. 

5. The Proposed Solution: 
I 

~ .,·· 

A PLC Program Development System 

The original PLCs were designed as relay replacers 

and PLC programming was based on the existing techniques 

of ladder diagramming. These simple systems were 

designed to improve the productivity of manufacturing 

processes by augmenting manual labor with automation and 

to reduce direct labor costs. Programmable controllers 
.,. 

have been quite successful in achieving these desired 

goals. 

The push in today's manufacturing processes for 

full computer integrated manufacturing requires much 

more from PLCs and all programmable automation. Since 

the control and integration of these processes is much 

more demanding than simple relay replacement, more 

sophisticated programming tools and techniques are 

needed. In addition, the increasing complexity of CIM 

systems requires an enormous initial investment, not 

only in capital but also in ~ngineering. Therefore, the 

25 



goal of the latest automation equipment has become the 

decrease of engineering input [3]. 

The solution to achieve these goals in the PLC 

market is to develop a PLC program development system. 

A PLC program development system is an integrated 

software package that allows for: 

o off-line programming for the development of 

new programs as well as the modification of 

existing ones, 

o documentation of these programs (l/0 

descriptions, section titles, and rung 

comments) interactively as they are developed 

including the ability to use symbolic text 

descriptions for I/0 points (as discussed 

previously), and 

o off-line simulation capabilities (that doesn't 

require the actual PLC or any hardware other 

than the computer system that the development 

system runs on) for testing PLC programs. 

An integrated development system of this type would 

allow the PLC programmer to write, debug, and modify PLC 

programs quickly and easily. 

As mentioned previously, the optimal solution is to 

create a development system that is based on the widely 

available IBM PC-compatible computer. This 

accessibility makes for a cost-effective solution 

26 



because a new computer system doesn't need to be 

purchased. Even if PCs aren't currently available at 

the PLC programming site, the solution is still cost­

effective because of the relative inexpensiveness of IBM 

PC-compatible computers. 

In addition, this development system should be easy 

to use, commonly called user-friendly. This can be 

accomplished by using pull-down menus (which presents 

the user with a list of the options currently available 

to him) and context-sensitive help screens (which means 

that information is displayed based on the current part 

of the development system that is being used). 

A development system based on the previous criteria 

becomes an effective training tool. Because the entire 

PLC program can be written, debugged, and modified off­

line on an IBM PC, many more engineers will be able to 

access and learn about PLC programming. The pull-down 

menu and help systems will allow new users to start 

programming without many hours of preparation time spent 

leafing through cryptic computer manuals. 

Finally, this PLC development system should be 

I . . 1nexpens1ve. This would guarantee widespread use of the 

system. In particular, colleges, which are desperately 

in need of a PLC programming teaching tool (as discussed 

previously) but do not normally have funds available for 

27 



,. 

this type of expenditure, would be able to afford this 

development system. 

6. Description of Currently Available Products 

This section is not meant to be a complete listing 

of the available PLC program development systems. 

Instead, it is meant to show trends that are occurring 

in the marketplace, and hint at the possible direction 

that future programs might take. 

6. 1 . Dedicated Computer-based Systems 

One of the original PLC documentation-only systems 

was the Xycom Ladder Diagram Translator (LDT). LDT ran 

on a dedicated CP/M operating system computer. LDT 

allowed the PLC programmer to download the PLC program 

and add descriptions and comments to the ladder listing. 

The commented listing, as well as a number of cross 

reference reports, could be printed out. The programmer 

could then reference these separate printouts as he made 

modifications to the PLC program. A later modification 

to LDT allowed the programmer to make minor program 

modifications off-line and then to upload the altered 

program to the PLC. 

There are a number of drawbacks to this system. 

Since the dedicated computer system was based on an 8-

bit processor, LDT was very slow. In addition, LDT 

28 



could perform only one task at a time. Thus, printing 

of a sizable ladder listing could tie up the system for 

3-4 hours. Finally, LDT was independent of the PLC. Any 

modification to the PLC program required the download of 

the new program followed by the regeneration and 

printing of the new documented ladder listing. Since 

this was a time-consuming task, regeneration would be 

saved until a number of modifications had been made. 

During the interim, the programmer had to work from 

outdated documentation. Often, this waiting period 

resulted in the failure to include all of the changes 
. 
1n 

a new program generation. The net effect of this system 

was the proliferation of inaccurate documentation data 

that resulted in a number of wasted hours for PLC 

programmers. 

In spite of its drawbacks, LDT was the first step 

in the right direction for PLC programming documentation 

systems. In fact, it was regarded as the industry 

standard for a number of years. Because of this 

acceptance, LDT systems are still in wide use today to 

maintain the many existing programs that were documented 

using this system. However, as more of the new systems 

offer translators to convert LDT files, the Xycom LDT 

system will become obsolete. 

29 

• 



6.2. Minicomputer-based Systems 

Minicomputer-based systems such as Process & 

Instrumentation Design, Inc.'s ProDoc documentation 
system attempted to correct the slow performance of the 
LDT system. By using a minicomputer, tasks could be 
performed in parallel; documentation of a program could 
be performed while another program listing was being 
printed. In fact, tasks unrelated to PLC programming 
could be running on the minicomputer along with ProDoc. 

The prohibitive factor for this type of system is 
the initial capital outlay for a minicomputer system. 
As the size and environment requirements for 

minicomputers systems lessen, greater use of ProDoc-like 
systems is anticipated. Another contributing factor to 
greater usage is the ability to attach the newer PLCs to 
communications networks, allowing for a direct 
upload/download link to the minicomp~ter. 

6.3. Programmable Controller-based Systems 

The dedicated and minicomputer-based documentation 
systems discussed previously were stand-alone systems 
developed by third party vendors. The PLC manufacturers 
soon realized that they needed to become part of this 
market. The advantage that PLC manufacturers could 
offer was an integrated programming and documentation 
system. No longer did the programmer have to look at 

30 



the PLC programming terminal while referencing a 

separate ladder diagram printout to decipher the 

program's operation. 

Examples of this type of system are the Honeywell 

IPC 620 PLC and the General Electric Workmaster 

Programmable Control Information Center. These systems 

allowed for 7 character labels to be assigned to I/0 

points in addition to the actual 1/0 numbers. Both the 

number and label are displayed on the programming 

terminal, and either could be used to reference the I/0 

point. The integration of programming and documentation 

greatly simplified the programmer's job. As he changed 

the program, he could also update the documentation. 

Thus, documentation of PLC programs became much more 

reliable. In addition, the display of the documentation 

information along with the program made debugging much 

. easier. 

There are two drawbacks to this system. First, the 

amount of documentation that could be attached to the 

program was limited compared to the LDT and ProDoc 

systems. Programmable controllers are industrial 

workhorses when running control programs, but they are 

not very good at maintaining text. A more costly 

drawback is that these documentation systems worked only 

on the manufacturer's PLCs. The investment • 
1n one 

manufacturer's documentation system made it more costly 

31 



to switch to a different PLC better suited for new 

applications. This lack of flexibility is most likely 

the reason that these type of systems have not gained 

wide acceptance in today's market. 

6.4. IBM PC-based Systems 

Rapidly gaining acceptance today are the IBM PC­

compatible computer-based systems such as the Universal 

Programmer/Documenter CUP/DOC> by Xcel Controls, Inc. 

and the Ladder Logic Documentation and Off-Line 

Programming System by Taylor Industrial Software. These 

systems offer capabilities similar to LDT or ProDoc with 

the advantages associated with being IBM PC-based. 

Unfortunately, these systems do not yet integrate 

the programming and documentation systems. Thus, the 

advantages of having commented program displays on 

screen as found in the PLC-based systems are not yet 

available on these systems. In addition, these systems 

do not yet offer a simulation capability. 

A recent development in the PLC market was the PLC-

2 I/0 Simulator by HEI Corporation. This system allows 

the IBM PC to be connected to an Allen-Bradley PLC 2/20 

or 2/30 for simulation purposes. The user can write 

simulation programs in higher-level languages such as 

FORTRAN or Pascal on the PC and then run them to test 

the functionality of the PLC program. The PC in effect 

32 



becomes the machine or process to be controlled. Thus, 

programs can be more thoroughly debugged before the 

actual machine or process is connected to the PLC. 

In summary, the current PLC market offers excellent 

off-line programming, documentation, and simulation 

systems based on the IBM PC. The next step is ta offer 

these functions as an integrated PLC program development 

system. 

7. Thesis Description 

The purpose of my thesis project is to verify the 

feasibility of a PLC program development system. The 

method for verification is to actually program a working 

development system that meets the proposed criteria 

(outlined in Section 5, "The Proposed Solution: A PLC 

Program Development System"). 
C 

The results of this 

project will be the specification of the data structures 

and program algorithms needed by an integrated PLC 

program development system and the demonstration that 

the specification can be implemented on an IBM-PC 

compatible computer. 

The IBM PC-compatible computer should be equipped 

with a monochrome screen, DOS 2.0 or higher, and 256K 

The use of a hard disk drive 
bytes of RAM memory. 

. 
1S 

recommended for optimal performance. The software will 

33 

• 



be written in Borland International's Turbo Pascal which 

is a powerful extension of the standard Pascal language 

and is now recognized as the industry standard Pascal 

language for the IBM PC. The PLC programming language 

implemented in this system will be a limited instruction 

set containing the more frequently used instructions, 

contacts, coils, timers, and counters. The method of 

entering the program will be based on the Allen-Bradley 

PLC methodology since they are the current LI. S. market 

leader. 

8. Justification for this Thesis 

The justification for a PLC program development 

system has been described previously; the creation of an 

integrated PLC programming system does seem warranted. 

The demonstration that such a system is feasible may 

spurn PLC manufacturers to consider the development of 

this type of system. In addition, a small-scale working 

model of a PLC development system will help to develop 

user interest. It may just be pressure from these users 

that cause the PLC manufacturers to introduce advanced 

PLC program development products. 

More specifically, this small-scale software 

package is meant to serve as a teaching aid for ladder 

logic programming, particularly at the collegiate level. 

The final product of this thesis should be capable of 

34 



serving this need; a future industrial-capable PLC 

development system would improve upon the system's 

training capabilities. 

9. Programming Considerations 

9.1. Turbo Pascal 

The Pascal language was selected because the data 

structures implemented in Pascal, in particular records, 

linked lists, and binary trees, were most appropriate 

for developing the data structures required to store the 

PLC program data base. 

Turbo Pascal was selected for a number of reasons. 

First, it is becoming widely accepted as the Pascal 

language for programming on the IBM PC. Next, it is a 

very inexpensive compiler; the list price is under $100. 

In spite of the low cost, Turbo Pascal is one of the 

fastest compilers on the market. Also, Turbo Pascal 

offers a number of extensions to the Pascal language 

that are geared for the IBM PC. The ones that were 

important to this application were: 

o Standard functions and procedures for 

performing graphics drawing on the screen, 

o An easy interface to call MS-DOS interrupts 

and functions without coding assembly language 

macros, and 

35 



o An overlay system that allows for swapping of 

program pieces on and off of disk drives that 

is transparent to the programmer (which means 

that it does not require special programming; 

instead, Turbo Pascal takes care of this 

function). 

9.2. Menu-Driven Software 

The program will be menu-driven wherever possible. 

Usually, these menus will appear on the last three lines 

of the screen. This area will be known as the "soft 

key" command area display. "Soft key" means that the 

command area display changes based on the current state 

of the program. For example, each function key can have 

up to four functions associated with it (unshifted, 

shifted, control, and alternate key combinations). 

Normally, the command area display will list the 

unshifted function key functions. By pressing the 

shift, control, or alternate key, the command area 

display will change to the respective menu of functions. 

This eliminates the need for a template or overlay (for 

example, Lotus 1-2-3 or Word Perfect require special 

templates) to remind the user of each key's functions. 

Some functions will have menus that fill the entire 

screen. For example, the print function will display 

all the possible reports that can be printed and prompt 

36 



----------..------------------~---~----

the user to select only those reports that should be 

printed. 

9.3. Modular Design 

The program will be modular in design so that 

functions may be pdded or changed with minimal 
\ 
' 

difficulty. This will allow for future upgrades to the 

program; for example, the implementation of a different 

instruction would require the modification of only a few 

procedures. To support the modular design, global 

variables will be used sparingly. Instead, variables 

will be passed as local parameters into functions and 

Also, constants will be procedures that require them. 
I 

used to specify program parameters. This ensures that 

program parameters can be easily modified throughout the 

program by redefining the constants in a single place at 

the top of the program. 

10. An Integrated Database: 

The Heart of the PLC Development System 

The PLC development system revolves around its 

integrated database. The database links the program 

instructions with the text descriptions and comments 

that are associated with them. Through these integrated 

links, programmers can access contacts by either their 

37 



I/0 numbers or their text descriptions; either form of 

reference is equivalent in the integrated database. 

Three types of data structures form the integrated 

database. They are the program storage, data tables, 

and the description tree. Links between these data 

structures allow information from one data structure to 

be referenced by another. For example, the program 

storage data structure references the description tree 

to get the text description names for each of the 

contact and coil instructions in the ladder logic 

program. The Pascal definitions and further details 

concerning these data structures can be found in 

Appendix A. 

The PLC ladder logic program is constantly 

changing. For example, the programmer adds, modifies, 

and deletes instructions and rungs of the program many 

times during the debug stage. The program storage data 

structure reflects this constantly changing nature. It 

uses linked lists to allow for dynamic allocation for 

program storage space on an "as needed" basis. Doubly 

linked lists are used to allow for movement through the 

database in either direction, for example, to advance or 

to go back a number of rungs of the program. The 

program storage data structure (diagrammed in Figure 

10.1) consists of a main trunk of doubly linked nodes 

(shown on the left in Figure 10.1). 

38 



First rung 

Parallel 
branches 

Previous 
rung 

First cell 

Next rung 

Section 
title 

A 

Last rung -, 

Parallel 
branches 

Previous 
rung 

' 

First cell 

Next rung 

Section 
title 

Current rung 

X 

X 

X 
X 

Current cell 

Instruction 

Address 

Previous 
eel 1 

Next eel l 

Title 

Creating 
rung 

Next 
Title 

Instruction 

Address 

Previous 
eel 1 

Next cell 

') 

i 

Instruction 

Address 

Previous 
cell 

Next eel 1 

Instruction 

Address 

Previous 
cell 

Next eel 1 

Figure 10.1. Data structures for program storage. 
Boxes represent records of data. 
X represents a pointer to nil. 

39 

X 



Each node (represented by the larger boxes in Figure 

10.1) represents one rung of the ladder logic program. 

The double linking is accomplished with "previous rung" 

and "next rung." Each of these rung header nodes 
. 
1n 

turn points (with "first cell") to a doubly linked list. 

This secondary linked list stores the instructions for 

that rung. Each instruction node (represented by the 

smaller, square boxes in Figure 10.1) stores one program 

instruction, such as a normally open contact or a timer. 

Notice the double linking implemented with "previous 

cell" and "next cell." A number of pointers are used to 

mark specific locations in the program data structure. 

These are "first rung" which marks the beginning of the 

program, "last rung" which marks the end of the program, 

"current rung" which points to the rung which is 

currently at the top of the display screen, and "current 

cell" which marks the instruction on which the cursor is 

currently displayed. 

The data tables contain information about each I/0 

point that could be used in the PLC program. The data 

tables store cross-referencing information, every rung 

number in which a given I/0 point is used. 

the presets for all timers and counters. 

It stores 

It also 

maintains run time information for use during simulation 

testing. This run time information is the on/off status 

40 



of contacts and coils, the time elapsed for timers, and 

the current count for counters. 

The description table (refer to Figure 10.2) stores 

an alphabetical listing of the currently used text 

descriptions for all program instructions in a data 

structure known as a binary tree. The tree is arranged 

in alphabetical order such that all 0 descriptions stored 

in the left subtree of a given node are alphabetically 

before the description stored in the given node and all 

descriptions stored in the right subtree of a given node 

are alphabetically after the description stored in the 

given node. By constructing this tree such that it 

remains height balanced, text descriptions can be found 

very quickly in this database. One example of the need 

for the description tree is searching for a contact by 

description. 

in the tree. 

The desired contact description is found 

Then, the description's link to the 

program storage data structure is used to locate the 

rung 1n which the instruction is contained. For a more 

in-depth discussion of height balanced binary trees, 

refer to the reference by D. Knuth [10]. 

41 



' Description 
1 i ne 

Before 

After 

Balance 
factor 

Description 
line 

Before 

After 

Balance 
factor 

Figure 10.2. Description tree. 

' Description 
1 i ne 

Before 

After 

Balance 
factor 

Boxes represent records of data. 

X represents a pointer to nil. 

11. Current Status of the Program 

The "User's Manual 11 section (Section 13) provides a 

detailed description of the currently implemented 

functions. This section discusses the software 

development that has been completed as part of this 

thesis project. 

Currently, the program is capab;le of retrieving a 

program file from disk and loading it into the 

development system's internal data structures. The 

ladder logic diagram, including text descriptions and 

rung cross reference numbers on contacts, can be 

42 . 



displayed on the screen. Cursor keys allow for movement 

throughout the program. Some of the search capabilities 

have been implemented. A filer function for retrieving, 

saving, deleting, renaming, and listing a directory of 

program files is functional, as well as the print 

function for printing a hard copy of the PLC ladder 

listing program to a dot matrix or daisy wheel printer. 

Commenting of the program with section titles and a 

program identification sheet is also available. 

These functions listed above are implemented 
. 
1n 

fully commented Pascal program files which total over 

9000 lines. Approximately 3000 of these lines are 

actual executable code. These files compile to a 

program size of 51K bytes. Development of these program 

files took seven months of work averaging 12 man-hours 

per week. 

Functions that still need to be integrated are the 

entry, editing, and deletion of new PLC program rungs 

through the keyboard, the cut/paste rung function, some 

of the search functions, some of the supplemental print 

reports, and the simulation function. Algorithms to 

perform these functions have been developed. 

The reason these functions have not yet been 

integrated is that the program size limit of the Turbo 

Pascal compiler has been exceeded. Approximately BK 

bytes of program code remains to be integrated. This 

43 



memory overflow situation was not anticipated because 

Turbo Pascal claims to have a 64K byte program size 

limit. However, closer examination revealed that the 

Pascal run time library requires 13K bytes of this 

space, thereby reducing the effective program size limit 

to 51K bytes. 

12. Future Direction for the Program 

12.1. Short Range 

The program memory limitation can be circumvented 

through the use of the overlay system. By keeping part 

of the program on disk, the program memory limit will 

not be exceeded. Storing of parts of the program on 

disk does reduce the performance of the program because 

disk accesses must be performed to get those pieces of 

the program when they are needed. With careful 

planning, the amount of disk acc~sses, and therefore the 

degradation of the program performance, can be 

minimized. 

The use of the overlay system will require some 

restructuring of the current program. Because of the 

modular nature of the program, there are some natural 

breakpoints in the program for segregating the pieces to 

store to disk. It is anticipated that this 

restructuring (with program debug) will take 

approximately two months to complete. Integration of 

44 



'". 

the remaining program functions is anticipated to take 

an additional one month. 

However, the results to this point indicate that a 

PLC development system for the IBM PC is feasible. 

12.2. Long Range 

As this program was developed, a number of new 

ideas were envisioned for future revisions of the 

system. These long range goals are intended to upgrade 

the current prototype into a workable product for 

industrial users. 

The obvious enhancement is the extension of the 

instruction set to ones that are used by currently 

available PLCs such as the Allen-Bradley PLC-2/30 or the 

PLC-5. Because the program is modular in design, this 

extension is feasible. Limitation on any extension 

would be the number of functions that can be attached to 

the function keys, currently limited to 40 
. 

minus the 

number of keys that are used for functions other than 

program instructions. A new menu-type entry system may 

be needed to overcome this limit. 

Another enhancement would be the ability to upload 

and download PLC programs to and from the programmable 

controller. This would require a simple program 

translator that converts the PLC program from the 

45 

·-. ' 



' 

t 

internal storage system of the development system to the 

coding format used by the PLC memory. 

Finally, a major enhancement to the system would be 

the development of a batch analysis simulation function. 

This function would analyze an entire PLC program and, 

based on a set of internal rules, would print out timing 

charts of how the program will operate. It is 

envisioned that this function would be developed using 

an artificial intelligence language such as LISP or 

Prolog. A natural selection here could be Turbo Prolog, 

but further investigation of this solution is required. 

12.3. What Should Be Done Differently? 

The PLC development system that was developed 

this thesis might require a major overhaul if the 

current program cannot be structured to work as an 

overlay system. The modular nature of the program 

should allow for this restructuring, so drastic 

. 
1n 

revisions are not anticipated. In reference to this 

possibility, it is appropriate to discuss what could 

have been done differently. Better documentation from 

the outset would have dramatically improved the 

development of the program. The use of the structured 

analysis method to initially plan and then maintain the 

interaction of all the program's subroutines would have 

been a great benefit. This method was not elected for 

46 



use because the complexity of the program was 

underestimated from the start. It was felt that the 

full commentary in the program source files would be 

sufficient. However, the increasing length of the 

program and the longer time frame needed for programming 

warranted the use of structured analysis to better 

document the program. 

Another suggested improvement to the documentation 

scheme would have been the maintenance of a more 

complete list of program revisions. Since there was 

only one programmer, it was felt that a complete 

revision list would be an unnecessary and time-consuming 

task. Many of the program changes were documented 
. 
1n 

the program's comments. However, as the program 

progressed, it was soon apparent that a more formal list 

of revisions would have contained beneficial 

information. 

13. User's Manual 

Since the PLC program is not yet completed, this 

section will describe the use of the completed functions 

and specify the desired operation of the functions still 

to be implemented. The current status of each command 

will be detailed in the first paragraph of its 

description. In addition, this user's manual will 

47 



I 

discuss the reasons why functions were implemented using 

the described scheme. 

13.1. Program Start up 

The commands in this section have been implemented 

and debugged, and are currently available for use. 

The PLC development system is started by typing (at 

the MS-DOS "A> 11 prompt) the command: 

A>stp. 

13.1.1. "/g" Option 

There are two optional switches that can be used when 

starting the program. The 11 /g" option tells the PLC 

development system that a color graphics card is 

installed in the computer. Otherwise, the program 

defaults to a monochrome card. This option is invoked 

by typing: 

A>stp /g or A>stp /G. 

1 3 • 1 • 2 • 11 
/ d II Op t i on 

The 11 /d 11 option sets the PLC program for printing 

to an attached daisy wheel printer. This causes only 

standard ASCII characters to be used for printing and 

not the special higher-order box drawing characters 

available in the IBM character set. ,,. The program 

defaults to the dot matrix printer setting which uses 

48 



the higher-order character set. 

by typing: 

A>stp /d or A>stp /D. 

This option 
. 
1S invoked 

This printer setting can also be changed from within the 

program. Refer to the Print function for details. 

13.1.3. Using Both Options 

Both options can be selected for use by typing: 

A>stp /g /d or stp /d /g. 

Note that the order for invoking the options is not 

important. However, the space between the two option 

switches is necessary. 

After typing the appropriate command, a boot screen 

will appear and some music will play. At this point, 

press the Space Bar to enter the PLC development system 

. main menu screen. 

13.2. Main Menu Screen 

The main menu screen consists of the status display 

line, the program area, and the command display area. 

The status line, located at the top of the screen, 

contains current information about the state of the 

program. The left part of the line displays the current 

rung number and the total number of rungs in the 

program. The center part of the line is a real-time 

clock. The right part of the line displays the settings 

49 



of the Caps Lock, Num Lock, and Insert/Overwrite mode. 

Refer to the section on Entering a Rung (Section 13.5) 

for a description of the Insert/Overwrite mode. 

The command display area, located on the bottom 

three lines of the screen, displays a menu of the 

current functions of the keys F1-F10. By depressing and 

holding the Shift, Ctrl, or Alt key, this area will 

change to display a menu of the functions associated 

with the Shift Fl-FlO, Ctrl F1-F10, or Alt Fl-FlO keys, 

respectively, if functions are currently associated with 

these keys. Refer to Figure 13.1 for the main menu 

function key assignments. 

The remaining center of the screen is used for 

drawing the ladder logic program. 

50 



Fl 

-J [-
-CTU-
Identification Sheet 
Help 

F3 

- ( ) -
-CTR-
Section Title 
Print 

F5 

-<L>-

Simulation 

F7 

-TON­
Cut/Paste 

F9 

Branch Start 
Coil Search 
Descriptions On/Off 

Figure 13. 1. Function ke~ 
Line 1 shows 
Line 2 shows 
Line 3 shows 
Line 4 shows 

F2 

-J/[-
-CTD-

F4 

Comment 
Filer 

F6 

-(U}-

FB 

-TDF-
Address Search 

FlO 

Branch End 
Description Search 

Quit 

assignment. 
unshifted key function. 
shifted key function. 
Ctrl key function. 
Alt key function. 

51 

• 



13. 3. Quit 

The commands in this section have been implemented 

and debugged, and are currently available for use. 

To exit from any submenu back to the main menu, to 

abort any operation (except as noted below>, or to. exit 

the program from the main menu, press the Escape <Esc> 

key. 
One exception to this rule occurs in the Filer 

function. To abort a file retrieve, save, delete, or 

rename, type a Return only at the Filename: prompt. 

In addition, a number of menus have a quit function 

attached to a function key, normally FlO, or Alt-FlO at 

the main menu. 
This method of exit is equivalent to 

pressing the ESC key. 

13.4. 
Ladder Logic Programming Instruction Set 

The ladder logic program (see Appendix A for an 

example> can be bu'ilt from the following instruction 

set: 

-] [-

-]/[-

Normally open contact 

Power can flow when the associated coil 
. 
1S 

energized (ON>. 

Normally closed contact 

Power can flow when the associated coil is 

deenergized <OFF>. 

52 



-( )-

-<L>-

-<LI>-

-TON-

-TOF-

Output or internal control relay coil 

Energized (ON> if a continuous path of power 

flow exists from the left ladder to the coil. 

Latch output 

Output that remains energized (ON) even if the 

continuous path of power flow from the left 

ladder no longer exists. 

Unlatch output 

A continuous path of power flow from the left 

ladder to this coil deenergizes a latched 

output. 

Timer On 

Continuous power flow from the left ladder to 

this coil for the preset period of time causes 

a timeout contact to energize. The timeout 

bit is deenergized at all other times. If the 

continuous power flow is broken, the timer 

resets to zero. 

Timer Off 

Continuous power flow from the left ladder to 

this coil for the preset period of time causes 

a timeout contact to deenergize. The timeout 

bit is energized at all other times. If the 

continuous power flow is broken, the timer 

resets to zero. 

53 



-CTU-

-CTD-

-CTR-

Up Counter, , 

Counter is incremented by 1 when power flow 

first energizes this coil. Maintaining power 

flow to this coil will not cause additional 

increments. The next increment will occur 

only when power flow to this coil is broken 

and then energized again. The counter will 

not increment higher than its preset value. 

The countout bit is energized when the counter 

value reaches its preset value. 

Down Counter 

Counter is decremented by 1 when power flow 

first energizes this coil. Maintaining power 

flow to this coil will not cause additional 

decrements. The next decrement will occur 

only when power flow to this coil is broken 

and then energized again. The counter will 

not decrement if the counter value is zero. 

Reset Counter 

Energizing this coil resets the counter value 

to zero. 

54 



Br. 

Start 

Br. 

End 

Branch Start 

Initiates the start of a parallel branch. A 

maximum of three parallel branches can be 

programmed per rung. 

Branch End 

Connects a parallel branch to the previous 

branch. 

Refer to Appendix C for a description of the internal 

coding of the instruction set. 

Addressing consists of two parts, the address type 

and the address number. The address type can be: 

I for real inputs, 

R for internal relays, 

0 for real outputs, 

T for timers, and 

C for counters. 

The address number can range from 1 to 256 for real 

inputs, internal relays, and real outputs, and from 1 to 

32 for timers and counters. Refer to Appendix C for a 

description of the internal coding of the address. 

13.5. Entering a rung 

This function is currently not implemented. The 

method of programming rungs was based on Allen-Bradley 

PLC-2 family ladder logic programming because of the 

current popularity of these PLCs. 

55 



Entering a rung consists of the entry of each 

instruction of the rung in a specific order. Each 

instruction of the instruction set can be accessed using 

the Fl - F10 and the Shift-Fl - Shift-F3 keys from the 

. main menu. 

There are two types of cursors in the PLC 

development system. The first will be called the cursor 

or the current cursor. This cursor is a large, reverse 

video block that indicates what the current instruction 

is. This block will highlight the current instruction's 

text description, address, graphical symbol, and cross-

reference number. The second cursor is called the edit 

cursor. This cursor is a small blinking underscore that 

is used during entry and editing of text descriptions, 

addresses, and presets of single instructions. This 

cursor underscores one character at a time. 

13.5.1. Entering a Contact Instruction 

To enter a contact instruction, press the 

appropriate function key, Fl for normally open or F2 for 

normally closed. If the insert/overwrite mode is set to 

insert (by pressing the 11 + 11 key until 11 Insert 11 appears 

on the status line), then the graphical symbol will be 

drawn at the position to the right of the current 

cursor. If the mode is set to overwrite (by pressing 

the 11 + 11 key until "Overwrite" is displayed on the status 

56 



.. 

line), then the instruction at the current cursor will 

be overwritten by the new instruction. 

The next step is to enter the text description. 

There are three lines with eight characters each 

available for the description. Notice that the edit 

cursor will wrap to the beginning of the next line if 

the end of the previous line is reached. Press Return 
... 

when finished entering the text description. 

If the text description has been used previously, 

then its corresponding address will be entered 

automatically. The programmer can change this address. 

Note that this change will reassign this new address to 

all instructions in the program with the corresponding 

text description. If the text description is new, then 

the address will be filled with the first available 

internal relay address number. First available is 

defined as the lowest address that has not yet been used 

anywhere else in the program. The edit cursor will be 

positioned on the address type letter. The default 

address can be accepted by pressing Return at this 

point. 

Otherwise, the programmer can alter the address in 

two ways. First, the programmer may change the address 

type letter from 11 R 11 to the appropriate letter, "I", 

11 0 11
, "T", or "C". In this case, the address number will 

automatically change to the first available address 

57 



corresponding to the new address type letter. The 

programmer can now opt to accept this default address 

number by pressing Return. If no change to the address 

type letter is desired, then the programmer can press 

the Space Bar to advance the edit cursor to the address 

number. 

The programmer can change the address number to 

another value and then press Return to enter it. 

Note that the left and right arrow keys can also be 

. 

used to switch back and forth between the address type 

letter and the address number. 

13.5.2. Entering an Output Coil 

To enter a standard output coil instruction, press 

F3 for a coil, F5 for a latch coil, or F6 for an unlatch 

coil. The graphical symbol will be placed at the 

rightmost part of the screen connecting to the right 

ladder and overwrite any existing coil instruction, 

regardless of the insert/overwrite mode. 

The next step is to enter the text description. 

There are three lines with eight characters each 

available for the description. Notice that the edit 

cursor will wrap to the beginning of the next line if 

the end of the previous line is reached. Press Return 

when finished entering the text description. 

58 



If the text description has been used previously, 

then its corresponding address will be entered 

automatically. The programmer can change this address. 

Note that this change will reassign this new address to 

all in\tructions in the program with the corresponding 

text description. If the text description is new, then 

the address will be filled with the first available 

internal relay address number. First available is 

defined as the lowest address that has not yet been used 

anywhere else in the program. The edit cursor will be 

positioned on the address type letter. The default 

address can be accepted by pressing Return at this 

point. 

Otherwise, the programmer can alter the address in 

two ways. First, the programmer may change the address 

type letter from 11 R 11 to the letter "O". In this case, 

the address number will automatically change to the 

first available output address. The programmer can now 

opt to accept this default address number by pressing 

Return. If no change to the address type letter is 

desired, then the programmer can press the Space Bar to 

advance the edit cursor to the address number. 

The programmer can change the address number to 

another value and then press Return to enter it. 

Note that the left and right arrow keys can also be 

59 



used to switch back and forth between the address type 

letter and the address number. 

13.5.3. Entering a Timer Coil 

To enter a timer coil instruction, press F7 for a 

timer on coil, or FB for a timer off coil. The 

graphical symbol will be placed at the rightmost part of 

the screen connecting to the right ladder and overwrite 

any existing coil instruction, regardless of the 

ir,sert/overwrite mode. 

The next step is to enter the text description. 

There are three lines with eight characters each 

available for the description. No.tice that the edit 

cursor will wrap to the beginning of the next line if 

the end of the previous line is reached. Press Return 

when finished entering the text description. 

If the text description has been used previously, 

then its corresponding address will be entered 

automatically. The programmer can change this address. 

Note that this change will reassign this new address to 

all instructions in the program with the corresponding 

text description. If the text description is new, then 

the address will be filled with the first available 

timer address number. First available is defined as the 

lowest address that has not yet been used anywhere else 

in the program. The edit cursor will be positioned on 

60 



the address number. The default address can be accepted 

by pressing Return at this point. 

Otherwise, the programmer can alter only the 

address number for timer instructions. The programmer 

can accept this default address number by pressing 

Return. The programmer can change the address number to 

another value and then press Return to enter it. The 

edit cursor will now be positioned for entry of the 

timer preset value. 

If the timer address is currently used elsewhere in 

the program, then the preset will be filled in with the 

currently assigned preset value. If the programmer 

elects to change this preset, then the value will be 

changed throughout the program. If the timer address 

new, then no default value will be displayed. 

preset values are accepted by pressing Return. 

13.5.4. Entering a Counter Coil 

Timer 

. 
15 

To enter a Counter coil instruction, press Shift-Fl 

for a counter up coil, Shift-F2 for a counter down coil, 

or Shift-F3 for a counter reset coil. The graphical 

symbol will be placed at the rightmost part of the 

screen connecting to the right ladder and overwrite any 

existing coil instruction, regardless of the 

insert/overwrite mode. 

61 



The next step is to enter the text description. 

There are three lines with eight characters each 

available for the description. Notice that the edit 

cursor will wrap to the beginning of the next line if 

the end of the previous line is reached. Press Return 

when finished entering the text description. 

If the text description has been used previously, 

then its corresponding address will be entered 

automatically. The programmer can change this address. 

Note that this change will reassign this new address to 

all instructions in the program with the corresponding 

text description. If the text d,escription is new, then 

the address will be filled with the first available 

counter address number. First available is defined as 

the lowest address that has not yet been used anywhere 

else in the program. The edit cursor will be positioned 

on the address number. The default address can be 

accepted by pressing Return at this point. 

Otherwise, the programmer can alter only the 

address number for counter instructions. The programmer 

can accept this default address number by pressing 

Return. The programmer can change the address number to 

another value and then press Return to enter it. The 

edit cursor will now be positioned for entry of the 

counter preset value. 

62 



If the counter address is currently used elsewhere 

in the program, then the preset will be filled in with 

the currently assigned preset value. If the programmer 

elects to change this preset, then the value will be 

changed throughout the program. If the counter address 

is new, then no default value will be displayed. 

Counter preset values are accepted by pressing Return. 

13.5.5. Entering a Branch Instruction 

The branch start instruction can be entered by 

pressing the F9 key to signify that the beginning of a 

parallel branch will be at the current cursor. The 

branch start instruction will always be inserted to the 

right of the current cursor, regardless of the 

insert/overwrite mode. 

The branch end instruction can be entered by 

pressing the FlO key to rejoin a parallel branch to the 

. previous one. 
The branch end instruction will always be 

inserted to the right of the current cursor, regardless 

of the insert/overwrite mode. ~-

13.5.6. Example Rung Entry 

Refer to the first rung of Figure 3 .. '2i throughout 

the following example on how to enter a rung of ladder 

logic into the PLC development system. 

63 



This example rung would be entered instruction by 

instruction using the previous descriptions of 

instruction entry. 

follows: 

The order for entry would be as 

o Branch start (F9) to initiate the first 

parallel branch. 

0 Normally open contact (Fl). Enter the text 

description. Note that the default address 

will appear as R 001. Change the R to I and 

then press Return to accept this address. 

o Branch start (F9) to move to the second 

parallel branch. 

0 Normally open contact (Fl). Enter the text 

description. Accept the default address R 

001. 

o Branch end (FlO) to rejoin the two branches. 

0 

0 

Normally closed contact (F2). Enter the text 

description. Note that the default address is 

R 002. Change the R to C and the address 

number will change to 001. Accept this 

default value. 

Normally closed contact <F2). Enter the text 

description. Note that the default address is 

R 002. Change the R to I. The address number 

will remain 002. Accept this default value. 

64 



0 Output coil (F3). Note that the connection 

line is drawn automatically and the output 

coil appears next to the right ladder. Enter 

the text description. The default address 

will appear as R 001 because this description 

exists. Accept this default value. 

13.6. Cursor keys 

The commands in this section except for the "Go to 

rung number" function have been implemented and 

debugged, and are currently available for use. 

Refer to Figure 13.2 for the cursor key assignment. 

The cursor keys allow for movement among 

instructions on the current rung, or among rungs in the 

\ 
\ 

program. ) 

Movement among instructions on the current rung can 

be accomplished by pressing the following keys: 

13.6.1. Right Arrow 

The cursor is moved one instruction to the right. 

Notice if the cursor is at the end of a parallel branch, 

then it will move down to the beginning of the next 

branch. If the cursor is at the last instruction of the 

rung, depressing this key will not cause an error but no 

movement will be performed. 

65 



<--

delete 
eel l 

Enter 

edit 
eel 1 

* 

go to 
rung no. 

Ins 

insert rung 

Num Lock 

toggle cursor/ 
number keypad 

Home 

first 
eel 1 

first 
rung 

Left 
Arrow 

left 
eel 1 

left 
eel ls 

End 

last 
eel 1 

last 
rung 

Up 
Arrow 

up 1 
rung 

5 

1 

3 

Down 
Arrow 

down 
rung 

Del 

1 

Scroll Lock 

PgUp 

up 5 
rungs 

Right 
Arrow 

right 
cell 

right 
cells 

PgDn 

down 5 
rungs 

1 

3 

before/ delete current rung 

+ 

insert/ 
typeover 

after current rung from program 

\ 

Figure 13.2. Cursor and Edit key assignment. 
Upper box shows the key function. 
Lower box shows the Ctrl key function. 

66 

- . 



13.6.2. Ctrl-Right Arrow 

The cursor is moved three instructions to the 

right. Notice if the cursor is at the end of a parallel 

branch, then it will move down to the next branch. If 

movement of the cursor is attempted beyond the last 

instruction of the rung, no error will be displayed and 

the cursor will be placed at the last instruction in the 

rung. 

• 

13.6.3. Left Arrow 

The cursor is moved one instruction to the left. 

Notice if the cursor is at the beginning of a parallel 

branch, then it will move up to the end of the previous 

branch. If the cursor is at the first instruction of 

the rung, depressing this key will not cause an error 

but no movement will be performed. 

13.6.4. Ctrl-Left Arrow 

The cursor is moved three instructions to the left. 

Notice if the cursor is at the beginning of a parallel 

branch, then it will move up to the next branch. If 

movement of the cursor is attempted beyond the first 

instruction of the rung, no error will be displayed and 

the cursor will be placed at the first instruction in 

the rung. 

67 



13.6.5. Home 

The cursor is moved to the first instruction in the 

current rung. 

13.6.6. End 

The cursor is moved to the last instruction 

current rung. 

Movement among rungs in the program can be 

accomplished by pressing the following keys: 

13.6.7. Up Arrow 

. 
1n the 

The current rung is moved up (towards the beginning 

of the program) by one rung and the cursor is positioned 

on the first instruction of the rung. Notice if the 

cursor is at the first rung of the program, depressing 

this key will not cause an error but no movement will be 

performed. 

13.6.8. Ctrl-Up Arrow 

The cursor is moved to the fifth rung before the 

current rung and the cursor is positioned on the first 

instruction of the rung. If movement of the cursor is 

attempted beyond the first rung of the program, no error 

will be displayed and the cursor will be placed at the 

first instruction in the first rung of the program. 

68 



13.6.9. Down Arrow 

The current rung is moved down (towards the end of 

the program) by one rung and the cursor is positioned on 

the first instruction of the rung. Notice if the cursor 

is at the last rung of the program, depressing this key 

will not cause an error but no movement will be 

performed. 

13.6.10. Ctrl-Down Arrow 

The cursor is moved to the fifth rung after the 
' 

> 

current rung and the cursor is positioned on the first 

instruction of the rung. If movement of the -cursor 1s 

attempted past the last rung of the program, no error 

will be displayed and the cursor will be placed at the 

first instruction in the last rung of the program. 

13.6.11. Ctrl-Home 

The cursor is positioned on the first instruction 

of the first rung in the program. 

13.6.12. Ctrl-End 

T~ cursor is positioned on the first instruction 

of the last rung of the program. 

69 

" 



13.6.13. * (PrtSc) 

The cursor is positioned on the first instruction 

of the specified rung in the program. When this key is 

pressed, the prompt "Go to Rung No." will appear in the 

command display area. Enter the number of the specified 

rung and press Return. If the specified number is less 

than one or greater than the total number of rungs . 
1n 

the program, a beep will be sounded and the prompt will 

be redisplayed for the entry of a new number. To abort 

the "Go To 11
, press Return without entering a number and 

the cursor will remain at its previous position. 

13.7. Edit keys 

The Insert rung command has been implemented and 

debugged, and is currently available for use. 

functions are currently not implemented. 

All other 

Refer to Figure 13.2 for the edit key assignment. 

The edit keys can be used to insert instructions or 

rungs, to delete instructions or rungs, and to edit 

instructions in the program. 

13.7.1. Insert an Instruction 

To insert an instruction after the cursor in the 

current rung, set the insert/overwrite mode to insert. 

Confirm this by checking that the word "Insert" is 

displayed in the status line at the top of the screen. 

70 



Follow the procedure for entering an instruction as 

outlined in "Entering a Rung". 
_y 

13.7.2. Insert a Rung 

The Ins key allows for the insertion of a rung 

before or after the current rung. After pressing the 

Ins key, ·a status line will appear in the command 

display area. Use the left and right arrow keys, or 

press II 8 II or II A II to select insertion before or after, 

respectively, the current rung. The choice will be 

highlighted on the status 1 ine. Press "R" or the Return 

key to confirm the insertion. Press "E" or the ESC key 

to abort the operation. The inserted rung will be 

displayed as start and end branches on the ladders. 

Follow the procedure in "Entering a Rung" to add the 

instructions for the inserted rung. 

13.7.3. Delete an Instruction 

The Backspace key allows for the deletion of the 

current instruction highlighted by the cursor. Press 

the Backspace key and the confirmation prompt "Are you 

sure?" will appear in the command display area. 

"Y 11 followed by Return to confirm the deletion. 

press Return to abort the deletion. 

71 

Press 

Just 

-' \ 

1 
I 
I 

' ' I 
/ _,,, 



13.7.4. Delete a Rung 

.... 
I I ,. 

rung. 

The Del key allows for the deletion of the current 

Press the Del key and the confirmation prompt 

"Are you sure?" will appear in the command display area. 

Press "Y" followed by Return to confirm the deletion. 

Just press Return to abort the deletion. 

13.7.5. Edit a Rung 

The Return key allows for the editing of the 

current instruction. Press the Return key to enter the 

Edit mode. The arrow keys will now move the edit cursor 

among the text description and the address. If the 

insert/overwrite mode is set to insert, then any 

modifications will be inserted at the edit cursor. If 

the mode is overwrite, then the modifications will 

overwrite the old information at the edit cursor. Press 

Return to exit the edit mode, or press ESC to abort the 

changes and restore the instruction to its state before 

the edit mode was entered. Note that any changes to the 

text description or address will be made throughout the 

program. 

13.8. Searches 

The Coil Search command has been implemented and 

debugged, and is currently available for use. The 

72 



Address and Description Search commands are currently 
, 

not implemented. 

13.8.1. Address Search 

Address search moves the cursor to a new 

instruction in the program by specifying the desired 

instruction's address. This function can be accessed by 

pressing Shift-FB from the main menu. At this point, 

the choices Before or After will appear in the command 

display area. Press B to look for the first occurrence 

of the specified address before the current rung or 

press A to look for the first occurrence of the 

specified address after the current rung. A default 

address, the last address that was searched for, will 

now appear. Just press Return if this is the desired 

address for which to search. Otherwise, type in the 

address, both address type letter and address number, of 

the instruction for which to search. The program 

display will change such that the rung at the top of the 

screen will contain the instruction with the specified 

address and the instruction will be highlighted by the 

cursor. If the specified address is not found, then an 

error message will beep and appear in the command 

display area.· Press the Space Bar to acknowledge the 

error and continue. In the case of an error, the cursor 

will remain at its previous position. 

73 



Address search is the least useful method of 

searching because it requires the programmer to remember 

all of the address assignments in the program. Use of 

this function will be easier if the programmer has a 

copy of the cross-reference list which lists these 

assignments. See the Print function for details. 

13.8.2. Description 

Description search moves the cursor to a new 

instruction in the program by specifying the desired 

instruction's text description. This function can be 

accessed by pressing Shift-FlO from the 
. 

main menu. At 

this point, the choices Before or After will appear 
. 
1n 

the command display area. Press 8 to look for the first 

occurrence of the specified description before the 

current rung or press A to look for the first occurrence 

of the specified description after the current rung. A 

default description, the last description that was 

searched for, will now appear. Just press Return if 

this is the desired description for which to search. 

Otherwise, type in the text description of the 

instruction for which to search. This search is 

normally case insensitive which means that differences 

in descriptions due to upper and lower case letters will 

be ignored. To maintain case sensitivity in the search, 

add 11 /e" at the end of the description to force a search 

74 



for an Exact match. The program display will change 

such that the rung at the top of the screen will contain 

the instruction with the specified text description and 

the instruction will be highlighted by the cursor. If 

the specified address is not found, then an error 

message will beep and appear in the command display 

area. Press the Space Bar to acknowledge the error and 

continue. In the case of an error, the cursor will 

remain at its previous position. 

Searching by description 1s a more natural method 

for PLC programmers. It is 
. easier to remember an 

instruction by its text description than by its address 

number. For example, the "Pad Pickup Counter" is easier 

to remember than C 010. This ease results in faster 

search times for the PLC programmers. 

13.8.3. Co i 1 

Coil search moves the cursor to the coil in the 

program that energizes the contact on which the cursor 

currently sits. This function can be accessed by 

pressing Shift-F9 from the main menu. At this point, 

the nearest occurrence of the coil that energizes the 

contact will be found. The program display will change 

such that the rung at the top of the screen will contain 

the specified coil highlighted by the cursor. If the 

cursor is not currently on a contact instruction, or the 

75 



specified coil is not found, then an appropriate error 

message will beep and appear in the command display 

area. Press the Space Bar to acknowledge the error and 

continue. In the case of an error, the cursor will 

remain at its previous position. 

This function is useful during the simulation 

phase. If the PLC programmer discovers that the current 

rung is not being energized because of a particular 

contact, then he can use the coil search to quickly move 

to the rung that energizes the contact. Tracing through 

the program using this method will simplify the debug 

process. 

13.9. Cut/Paste 

This function is currently not implemented, and a 

specification for implementation has not yet been 

developed. 

The Cut/Paste function is similar to the Cut/Paste 

function in any word processor. By pressing the Shift­

F7 key, the PLC programmer can select rungs and move 

them from one part of the program to another. 

rung execution order in a ladder logic program 

Since the 

. 
15 

critical, this function is quite valuable during the 

program debug stage if only a rung reordering is 

required to correct the problem. Without this function, 

the programmer would have to delete the rungs, and then 

76 



,1 

redefine them in the new location. Thus, this function 

can save the programmer a great deal of time. 

13.10. Documentation 

The Identification Sheet and Section Title commands 

have been implemented and debugged, and are currently 

available for use. The Comment function is currently 

not implemented. 

The three documentation functions add text comments 

to the ladder logic program. This added information 
. 
1S 

useful when the program is being debugged. More 

importantly, these descriptions are useful when someone 

other than the PLC programmer, for instance, the plant 

maintenance electrician, needs to look at and understand 

the program. 

13.10.1. Identification Sheet 

The program identification sheet contains 

information about the ladder logic program. Figure 13.3 

shows the list of the information in the ID sheet. The 

identification sheet can be viewed and modified by 

pressing the Ctrl-Fl key. 

77 

L 



Use the Up and Down cursor keys to change information. 
Date and revision number are updated automatically. 
Press ESC when selection is completed. 

Program name: 

Programmer 

Project 

Company 

• • 

• • 

• • 

Last update: 

Revision no.: 

Figure 13.3. Program identification sheet menu. 

The up and down cursor keys can be used to move among 

the different fields of information. The left and right 

arrow keys move the edit cursor within a specific field. 

New information that is keyed in will be inserted at the 

edit cursor if in insert mode, or will overwrite the 

current character at the edit cursor if in overwrite 

mode. 

The revision number and date fields cannot be 

edited by the programmer. These fields are updated 

automatically whenever the program is modified and 

saved. The revision number will increase by one and the 

current date will be entered. 

The identification sheet can be exited by pressing 

the ESC key. 

78 



13.10.2. Section Title 

Sections of the ladder logic program can be 

identified by a section title. This allows the 

programmer to identify a group of rungs by the function 

they perform. For instance, a group of 10 rungs may 

perform the "Robot Safety Interlock Checks". Sections 

are defined as all rungs located from the rung where the 

section title was entered to the rung before the next 

section title. Press the Ctrl-F3 key to enter, view, or 

modify the section title. The prompt "Section Title:" 

will be displayed in the command display area followed 

by the current section title, if one exists. 

New text can be entered and will be inserted or 

overwrite the previous section title based on the 

insert/overwrite mode setting. If the modified title 
. 
1S 

blank, then the section will be deleted and incorporated 

into the previous section. 

Press the ESC key when finished with the section 

title. 

13.10.3. Comment 

Comments can be associated with individual rungs. 

This allows the programmer to explain in detail the 

function of a single rung. For example, a rung in the 

"Robot Safety Interlock Checks" section may be described 

by the comment: 

79 



This rung checks that no one has stepped on the 

pressure sensitive mat. 

is emergency stopped. 

If someone does, the robot 

Press the Ctrl-F4 key to enter, view, or modify a 

comment. The existing comment will appear in the 

command display area. The cursor keys can be used to 

move around the comment. New text will be entered based 

on the insert/overwrite mode. Press the ESC key when 

finished with the comment. 

13.11. Help Function 

This function is currently not implemented. 

Pressing Alt-Fl from the main menu will invoke the 

Help index. Use the cursor keys to select the desired 

topic and press Return. The help information will be 

displayed. Press the ESC key when finished with the 

information to return to the Help index. Select another 

topic using the cursor keys, or select the Quit topic or 

press the ESC key to return to the program display. 

A future revision of this software will use 

prepackaged subroutines that can be purchased from third 

party vendors for developing context-sensitive Help 

menus in Turbo Pascal. Context-sensitive means that the 

Help screens can be accessed from anywhere in the 

program, and the screen appropriate to the current state 

of the program will be automatically displayed. For 

80 



J '\ I 

example, pressing the Help key from inside the Print 

function would automatically display the Print function 

help screen. In addition, the program would return to 

the Print function after the help screen was exited. 

This would be a major improvement over the current 

specification which would force the PLC programmer to 

exit the Print function, access the Help index, select 

the desired screen, and the return to the Print 

function. 

13.12. Print Function 

The commands in this section have been implemented 

and debugged, and are currently available for use. The 

Cross-reference, Address usage, and No description 

reports are currently not implemented. 

The print function is used to print a hard copy of 

the ladder logic program, as well as to generate and 

print the cross-reference, address usage, and no .. 

description reports. These reports are useful for 

debugging the ladder logic program. The print function 

is invoked by pressing the Alt-F3 key. The print 

options menu (refer to Figure 13.4) will be displayed on 

the screen. Use the up and down cursor keys to select 

the different options. 

81 
,) 



Use the Up and Down cursor keys to choose a report. 
Use the space bar to toggle YES/ NO. 
Press ESC when selection is completed. 

Printer type 

Ladder listing 

Descriptions 

Start rung 

End rung 

Cross reference report 

Address usage report 

No description report 

DOT 

YES 

YES 

1 

3 

NO 

NO 

NO 

Figure 13.4. Print function menu. 
Default values are shown for the reports. 
Printer default value depends on startup. 
End rung default is the total rung number. 

13.12.1. Printer type 

The printer type can be, selected as either daisy 

wheel or dot matrix. Selecting daisy wheel causes only 

standard ASCII characters to be used for printing while 

the dot matrix setting uses the special higher-order box 

drawing characters available in the IBM character set. 

The dot matrix setting produces a higher quality ladder 

logic diagram, but requires greater printing tim~r\ 

'· 
Printing on a daisy wheel printer must always use the 

daisy wheel setting. However, printing on a dot matrix 

printer can use the daisy wheel setting for draft copies 

and the dot matrix setting for the final copy. The 

82 



default value for this setting is normally dot matrix, 

but can be changed to daisy wheel. Refer to "Program 

Startup" for details. To temporarily switch the printer 

type for the current print only, press the Space Bar 

until the appropriate setting, "DOT" or "DAISY" is 

displayed. 

13.12.2. Ladder listing 

The ladder listing option prints a hard copy of the 

ladder logic program. To select this report, press the 

Space Bar to make "YES" appear. The default setting for 

this report is 11 YES 11
• Only when this report is selected 

for printing do the next three print menu options 

appear. 

The descriptions option causes the ladder listing 

to be printed with text descriptions attached to all the 

instructions. This option requires a longer print time 

to complete. To select this option, press the Space Bar 

to make "YES" appear. The default setting for this 

option is "YES". 

The start rung option allows the programmer to 

select the first rung to be printed. This number must 

be greater than zero, and no more than the total number 

of rungs programmed. Enter the desired start rung 

number, or use the default value 1. 

83 

' .,, 



The end rung option allows the programmer to select 

the last rung to be printed. This number must be 

greater than zero, and no more than the total number of 

rungs programmed. In addition, this number must be 

greater than the start rung. Enter the desired end rung 

number, or use the default value of the total number of 

rungs programmed. 

13.12.3. Cross-reference report 

The cross-reference report is a listing of each 

address used in the program with its assigned text 

description followed by a list of all the rungs that use 

this address. This report is useful during debugging to 

analyze the interdependencies among rungs. 

10 select this report, press the Space Bar to make 

"YES" appear. The default setting for this report 

II NO II • 

13.12.4. Address usage report 

The address usage report lists all addresses, 

marking which are currently used in the program and 

which are still available. This report is used to 

. 
15 

select new addresses when making modifications to the 

program. 

To select this report, press the Space Bar to make 

84 

' . , 
> ..,. 



. , .. 

,.. 
11 YES 11 appear. The default setting for this report 

. 
15 

"NO". 
'. 

13.12.5. Nb description report 

The no description report lists all addresses which 

do not have a text description associated with them. 

This report is used during final documentation cleanup 

to ensure that all addresses are assigned a text 

description. 

To select this report, press the Space Bar to make 

"YES" appear. The default setting for this report . 
1S 

II NO ti. 

Press the ESC key when the print options have been 

selected . A prompt will appear in the command display 

area notifying the programmer to turn the printer on. 

Press the Space Bar when the printer is ready, or press 
~ 

the ESC key to abort the print. Once printing has 

started, the screen will contain status information 

concerning what is currently being printed. The main 

screen will be restored when printing has completed. 

13.13. Filer Function 

The commands in this section have been implemented 

and debugged, and are currently available for use. The 

Delete current program function is currently not 

85 



implemented. The Retrieve file must be modified to 

first delete the current program before retrieving . .. 

' '' ,, 

The filer function allows a~cess to PLC program 

file stored on disk. Press Alt-F4 to access the filer 

function. The filer function menu screen displays the 

current default drive and directory. If no drive or 

directory specification is given when inputting a file 

name, then these defaults are assumed. These defaults 

can be changed within the filer function. Refer to the 

"Change default drive" and "Change default directory" 

sections for details. The filer function command menu 

is displayed in the command display area. Note that the 

function key assignments are different in the filer 

function than in the main menu. Each of the filer 

functions will be described in detail. 

13.13.1. Retrieve program file 

The retrieve program file function loads ladder 

logic program files from the disk into the computer's 

memory. The program can now be viewed and modified. 

Only files written by the PLC development system using 

the Save program file command can be retrieved. An 

attempt to retrieve non-PLC written files will generate 

an error. The retrieve function also checks that the 

file has not been corrupted in any way, for example, 

through a disk error. 

86 



To access the retrieve program function, press the 

Fl key. If a program currently exists in memory, then a 

prompt will ask if it is okay to erase this program from 

computer memory. Enter "N" to abort the retrieve and 
V 

return to the existing program. Enter "Y" to continue 

with the retrieval. Next, a prompt will ask for the 

file name. To abort the retrieval at this point, do not 

enter a filename, but just press Return. Otherwise, 

enter the desired file and press Return. If the file is 

found and is a valid file (as discussed previously), 

then it will be loaded into memory. 

13.13.2. Save program file 

The save program file function stores ladder logic 

program files from the computer's memory to the disk. 
•Q 

The program can then be retrieved later for review and 

modification. 
/ 

To access the save program function, press the F2 

key. A prompt will ask for the file name for the save. 

To abort the save at this point, do not enter a $~ 

filename, but just press Return. Otherwise, enter the 

desired file and press Return. If the file is found on 

the disk, .then a prompt will ask if this file can be 

overwritten. Enter ~.'N 11 to abort the save and return to 

the existing program. Enter "Y" to initiate the save. 

The program will be stored on the disk as a special PLC-

87 



"".~ ' 

written file. The ladder logic program will • • remain 1n 

the computer 1 s memory during a save; the programmer does 

not need to retrieve the file upon completion of the 

save to continue editing the program. 

13.13.3. Delete program file 

The delete program file function deletes ladder 

logic program files from disk. Note that this function 

can delete PLC-written (using the Save function> files 

only. 

To access the delete program function, press the F3 

key. A prompt will ask for the file name to delete. To 

abort the delete at this point, do not enter a filename, 

but just press Return. Otherwise, enter the desired 

file and press Return. If the file is found on the disk 

and it is a valid PLC-written file, then. a prompt will 

ask if the programmer is sure that this file should be 

deleted. Enter "N" to abort the delete. Enter 11 Y 11 to 

confirm the delete. 

13.13.4. Clear current program 

The clear current program file function clears the 

ladder logic program from the ~omputer's memory. Note 

that this function has no effect on the program files on 

disk. 

88 



To access the clear current program function, press 

the F4 key. A prompt will ask if the programmer is sure 

that the ladder logic program should be cleared from 

memory. Enter 11 N11 to abort or "Y" to confirm the 

program clear. 

13.13.5. Rename program file 

The rename program file function allows ladder 

logic program file name to be changed on disk. Note 

that this function can rename PLC-written (using the 

Save function) files only. 

To access the rename program function, press the F5 

key. A prompt will ask for the file name to rename. To 

abort the rename at this point, do not enter a filename, 

but just press Return. Otherwise, enter the desired 

file and press Return. If the file is found on the disk 

and it is a valid PLC-written file, then a prompt will 

ask for the new file name. Again, to abort the rename, 

do not enter a filename, but just press Return. 

Otherwise, enter the new file and press Return. The 

program file name will be renamed on disk. 

13.13.6. Directory 

The directory function allows for the listing of 

the files on a disk. The directory will list all files, 

not just PLC-written files, on the disk specified. The 

89 



.. 

directory function supports full path name 

specifications. 

To access the directory function, press the F6 key. 

A prompt will ask for the directory to list. To list 

the default directory of the default drive, just press 

Return. Otherwise, enter the drive, pathname, and/or 

filename (including wildcards) specification and press 

Return. The directory will remain on screen until 

another filer function key is pressed. 

13.13.7. Change default drive 

The change default drive function allows the 

programmer to specify the drive to be used when a drive 

letter is not explicitly entered in a file 

specification. To access the change default drive 

function, press the F7 key. The prompt will ask for the 

new drive letter. Just press Return to abort the change 

' 
and maintain the current default drive. Otherwise, 

enter a new drive letter, "A", 11 8 11
, or "C", fo I lowed by 

Return to select a new default drive. The new default 

drive will be displayed at the top of the filer main 

menu screen. 

90 



13.13.8. Change default directory 

The change default directory function allows the 

programmer to specify the directory to be used when a 

directory name is not explicitly entered in a file 

specification. To access the change default directory 

function, press the FB key. The prompt will ask for the 

new directory name. Just press Return to abort the 

change and maintain the current default directory. 

Otherwise, enter a new directory name followed by Return 

to select a new default directory. An error will be 

generated if the specified directory does not exist an 

the default drive. Do not attempt to use the change 

default directory ta specify a new drive. Use the 

change default drive function for that purpose. The new 

default directory name will be displayed at the top of 

the filer main menu screen. 

13.13.9. Function not used 

13 • 1 3 • 1 0 • Qu i t 

Press the FlO key to exit the filer function and 

return to the program main menu screen. Equivalently, 
,,~ ·- .. 

the ESC key can be pressed to qJi~ the filer function. 

91 

. . . 



13.14. Simulation Function 

This function is currently not implemented. Refer 

to the section "Long Range" under "Future Direction for 
f 

the Program" for details about an alternative 

implementation of the simulation function. The 

following description is the currently planned 

implementation. Formal definition of the function has 

not been completed; the following discussion will be 

conceptual. 

The simulation function allows the PLC programmer 

to debug the PLC ladder logic program by observing the 

effects of different input combinations on the 

programmed output coils. To enter the simulation 

function, press the Alt-F5 key. 

The programmer would set up the inputs that he 

wants energized. He would also set up the time interval 

for the program scan time. The scan ~ime will be used 

to update the timers in the program. By adjusting the 

program scan time, the programmer can emulate the real­

time scan that would occur in the actual PLC. The 

programmer would then signal that the program should 

scan once. The ladder logic program would be evaluated 

and the=·outputs would be updated to reflect this new 

state. 

The programmer can verify the results in two ways. 

First, he could scan through the program using the 

92 

' 



cursor keys to examine the actual ladder logic rung by 

rung. Any instructions that were energized would be 

displayed in bold. The programmer could determine from 

this display exactly what conditions were causing the 

output coil to energize or inhibiting it from 

energizing. Optionally, the programmer could toggle to 

a global display list. This list would display all of 

the addresses used in the program. It would display the 

on/off status of the inputs, internal relays, and output 

coils. Timer addresses would be displayed with their 

accumulated times and the on/off status of the timeout 

bits. Likewise, the counter addresses would be 

displayed with their accumulated counts and the on/off 

status of the countout bits. This option would allow 

the programmer to analyze the overall performance of the 

program. 

In addition, an option exists to allow multiple 

scans to occur. The programmer could enter the desired 

number of scans and then initiate the ladder logic 

program execution. After the specified number of scans 

occurred, the programmer could examine the results using 

the two options described above. 

-~he ability to simulate the program off-line is 

probably the most valuable tool in the PLC development 

system. The cost savings associated with debugging the 
.• 

program before it 
. 
1s ever loaded to the actual PLC are 

93 

i 



( 

tremendous. The machine to be controlled, as well as 

the control equipment, is no longer tied up for extended 

debugging periods. Also, damage to the machine due to 

program errors is minimized. Indeed, an off-line 

simulation function is a critical part of any PLC 

program development system. 

94 



1) 

/\ 

. .:.,,..,, 

14. Conclusions 

A number of goals were proposed in the "Thesis 

Description° section (Section 7). The conclusions about 

the feasibility of each of these goals will be 

summari2ed in this section. 

The first goal was to develop a specification of 

the data structures and the program algorithms required 

by an integrated PLC program development system. A 

nearly-complete description was presented in the "User's 

Manual" section (Section 13). The simulation function 

that was described at a conceptual level needs to be 

further defined in order to complete the specification. 

I believe that this specification should be incorporated 

into any PLC development system. Other functions may be 

added to enhance the system, but none of the specified 

functions should be omitted • 

The second goal was to develop the system for IBM 
PC-compatible computers. The program was developed 

specifically on a Compaq Portable computer. At this 

point, I still believe that the IBM PC-compatible is the 

proper computer system. Execution speed of the program 

is acceptable, and the 640K memory limitation of the PC 

1s not a factor. The low cost and availability of PCs 

make them the optimal choice for a PLC program 

development system workstation. 

Use of Turbo Pascal as the programming language for 

95 



writing the PLC development system was the third goal. 

The low cost of Turbo Pascal alone justifies its use. 

However, this low cost is coupled with more built-in 

features than any other PC-based Pascal compiler on the 

market today. The PLC development system requires a 

great deal of graphics display and text manipulation. 

Built-in Turbo Pascal functions make these operations 

easy. Note that the program size limitation that 

impeded the completion of the prototype PLC system is 

not imposed by Turbo Pascal, but by the 8088 processor 

in the PC. Fortunately, the selection of Turbo Pascal 

(with its built-in overlay system) will facilitate the 

programming to overcome this limitation. 

A fourth goal was to use the Allen-Bradley 

programming methodology. Although this methodology 

resulted in more difficult programming for ladder logic 

program entry and display, it has two benefits. First, 

Allen-Bradley is still the accepted leader in U.S. 

market. By conforming to their standard, I believe that 

the PLC development system will be better accepted by 

today's PLC programmers. Also, this method of entry 

makes program storage in a linked list data structure 

(described in.Section 10) easier to program. This 

factor is important because the linked list data 

structure is more appropri~te for implementing a 

simulation function. 

96 

,·, 



/ 

( 

The final goal was to verify the feasibility of the 

PLC development system by actually programmimg a 

prototype. Although the PLC development system has not 

yet been completed, it is my belief that the work-to­

date demonstrates that such an integrated system is 

feasible. The "path forward" (as described previously) 

was that the final system would be completed within 3-6 

months. Tr1is conclusion should be a great delight to 

the many PLC programmers. 

97 



C 1 J 

[2] 

---------------~-----· 

References 

-------' "Programmable Controller Market to 

Exceed $1 Billion," Machine Design, Vol. 56 (May 

31 , 1984 > , p • 4. 

-------' "Programmable Controllers and Computer 

Identity," Production Engineering, Vol. 33 (June 

1986), pp. 8 (2). 

[3] Allen-Bradley Company, Milwaukee, Wisconsin. FMS 

Roundtable, April 15, 1987. 

[4] Biondi, Frank, "PLCs and PCs," Machine Design, Vol, 

57 ·(June 6, 1985), p. 110. 

[5] Crater, Ken, "Programming Automation's Future," 

Design News, Vol. 42 (January 6, 1986>, pp. 63 (4), 

[6] Curtin, Keith, "Selection and Installation Hints 

for Simplifying PC Troubleshooting and Maintenance 

Jobs," Plant Engineering, Vol. 39 (January 24, 

1985), pp. 84 (3). 

98 



C7J Donovan, John W., "Programmable Controller Update: 

A Guide to Specifications," Plant Engineering, Vol. 

39 (March 28, 1985), pp. 44 (20). 

[8] Donovan, John W., "Programmable Controller Update," 

Plant Engineering, Vol. 40 (March 27, 1986), 

pp. 30 < 14 > • 

[9] Jasany, Leslie C., 11 Programming PCs: Is One 

Language No Longer Enough?" Production Engineering, 

Vo 1. 33 < Apr i 1 1986), pp. 48 ( 6) • 

[10] Knuth, Donald E. Sorting and Searching, The Art of 

Computer Programming. Vol. 3. Reading, 

Massachusetts: Addison-Wesley Publishing Company, 

1973. 

[11] Meinhold, Ted F., "Programmable Controllers ••• An 

Overview of Sizes and Capabilities Plus Guidelines 

on Selection, Installation, Maintenence, and Use," 

Plant Engineering, Vol. 37 <November 23, 1983>, 

pp. 52 C 16) • 

[12] Raia, Ernest, 11 The Other PC Boom: Programmable 

Controllers," Purchasing, Vol. 101 (August 21, 

1 986 > , pp • 38 < 4 > • 

99 "' 

" 



C13J Stone, J. N., "Documenting Programmable Controller 

trograms ••• With a Microcomputer," Plant 

Engineering, Vol. 39 <April 25, 1985), pp. 66 (4). 

I 
100 

t' 

• 



• 
Appendix A. Data Structures 

Pascal definition of program storage data structures 
(Refer to Figure 10.1 for a diagram of the structure) 

type cell_pointer = Acell; 

cell = record 
instruction 
address 
previous_cell, 
next eel 1 
end; 

canst title_length = 60; 

"'title nod~; 

: byte; 
: byte; 

: cell_pointer; 

= string [title_lengthJ; 
type title_pointer = 

title_string 

rung_pointer = Arung_header; 

rung_header - record 
parallel_branches: byte; 

title node 

. prev1ous_rung, 
next_rung 
first cell 
section title 
end; 

= record 
title 
creating_rung 
next title 
end; 

101 

: rung_pointer; 
: cell_pointer; 
: title_pointer; 

• • title_string; 
: rung_pointer; 
: title_pointer; 



Pascal definition of description tree structure 

<Refer to Figure 10.2 for a diagram of the structure> 

canst descripto,- _word = 8; 
description_size = 24; 

type text_description = string [description_sizeJ; 

description_pointer = ~description_table_entry; 

description_table_entry = 
record 
description_line: text_description; 

before, after 
balance factor 
end; 

var description_table, 

: description_pointer; 
: byte; 

available_descriptions: description_pointer; 

102 



Pascal definition of the data tables structure 

canst entries needed= 32; -
timer_counter_limit = 999; 

reference_pointer = Areferences; 

references = record 
rung_number 
cell 
next reference 
end; 

in_table_entry = 
record 
eight_ID_points: byte; 

• • integer; 
: cell_pointer; 
: reference_pointer; 

description : array [0 .. 7] of 
description_pointer; 

ND_contact_reference, 
NC contact_reference: array [0 .. 7] of 

reference_pointer; 
end; 

out_table_entry = 
record 
eight_ID_points: byte; 
description : array [0 .. 7] of 

description_pointer; 
NO_contact_reference, 
NC contact reference : array [0 .. 7] of 

reference_pointer; 
coil_reference, 
latch_reference, 
unlatch reference: array [0 .. 7] of 

reference_pointer; 
end; 

in table = array [1 •• entries_needed] of 
in_table_entry; 

out table= array [1 .. entries_needed] of 
out_table_entry; 

103 



Pascal definition of the data tables structure (cont.) 

timer_table_entry = 
record 
accumulated_value, 
preset_value : integer; 
description : description_pointer; 
timer on reference, - -
timer off reference, - -
NO timeout bit reference, - - - ' 

NC_timeout_bit_refer\hce : reference_pointer; 
end; 

timer_table_array = array [1 •• entries_needed] of 
timer_table_entry; 

counter_table_entry = 
record 
accumulated_value, 
preset_value : integer; 
description : description_pointer; 
counter_up_reference, 
counter_down reference, 
reset_reference, 
NO count out bit reference, - - - .... 
NC_count_out_bit reference: reference_pointer; 
end; 

counter_table_array - array [1 .. entries_neededJ of 
counter_table_entry; 

var first_rung, current_rung, 
last_rung, available_rungs: rung_pointer; 

current_cell, available cells: cell_pointer; 

input_table: in_table; 
internal_table, output_table: out table; 
timer_table: timer_table_array; 
counter_table: counter_table_array; 
available references: reference_pointer; 

104 



Appendix B. Instruction and Address Byte Coding 

Instruction byte coding 

Input i 
I 

J-
1 npu t ~ r 
Internal -( )-

Internal -(L)-

Internal -(U)-
Internal 

~I~ Internal 

Timer 
Timer 
Timer 
Timer 

Notes: 

-TON-
-TOF-

~/~ 

4 
5 

16 
17 
18 
20 
21 

64 
65 
68 
69 

Branch Start 
Branch End 

Output -( )-
Output -<L>-
Output -CU)-
Output 

~I~ Output 

Counter -CTU-
Counter -CTD-
Counter -CTR-
Counter 

~/~ Counter 

12 
13 

32 
33 
34 
36 
37 

128 
129 
130 
132 
133 

1. Each instruction group is defined by a specific bit 
in the instruction byte (bit O is least significant 
bit, bit 7 is most significant): 

Inputs: Bit 2 is set. 
Branches: Bit 3 is set. 
Internals: Bit 4 is set. 
Outputs: Bit 5 is set. 
Timers: Bit 6 is set. 
Counters: Bit 7 is set. 

2. Bit 2 is set for all contact type (normally open, 
normally closed) instructions. Bit 2 'is clear for 
all coil type (internal coils, output coils, 
timers, and counters) instructions. 

Address byte coding 

Addresses 1 - 256 are stored as O - 255 for inputs, 
outputs, and internal relays. 

Addresses 1 - 32 are stored as 1 - 32 for timers and 
counters. 

105 

I 



Vita 

Steven M. Howard was born on June 5, 1963 in 

Philadelphia, Pennsylvania to Bernard M. and Carol L. 

Howard. He graduated with highest honors from Case 

Western Reserve University (Cleveland, Ohio) with a 

Bachelor of Science in Engineering, Major Field: 

Computer Engineering, in May 1985. He accepted the-

Kingsley Fellowship ta attend the Graduate School at 

Lehigh University. Currently, he is employed in the 

Engineering Department of E. I. Du Pont de Nemours & 

Co., Inc. 

Training. 

He is also a Professional Engineer-in-

106 


	Lehigh University
	Lehigh Preserve
	1987

	A feasibility study of the development of an IBM PC-based programmable controller ladder logic programming system /
	Steven M. Howard
	Recommended Citation


	tmp.1551116526.pdf.NfqXx

