
Lehigh University
Lehigh Preserve

Theses and Dissertations

1987

Software design and theory for a mobile robot /
Mona Ahmad Elgayar
Lehigh University

Follow this and additional works at: https://preserve.lehigh.edu/etd

Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Elgayar, Mona Ahmad, "Software design and theory for a mobile robot /" (1987). Theses and Dissertations. 4746.
https://preserve.lehigh.edu/etd/4746

https://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F4746&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F4746&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F4746&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=preserve.lehigh.edu%2Fetd%2F4746&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd/4746?utm_source=preserve.lehigh.edu%2Fetd%2F4746&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

•
.....

SOFTWARE DESIGN AND THEORY

FOR A

MOBILE ROBOT

by

Mona Ahmad Elgayar

A Thesis

Presented to the Graduate Committee

of Lehigh University

in candidacy for the degree of

Master of Science in Computer Science

Lehigh University

.. ,

1987
, .

. .

•..

"

'

.
. ••' I

This thesis is accepted and approved in partial fulfillment of the require

men ts for the degree of Master of Science in Computer Science.
"

. ,., .

• in ..

..

CSEB Department Chairperson

•

.).

.,Zo •

••• 8

0 ..

,,,

• 3

I I

' Y. I

' ,

:1

. ,_,

Acknowlegements

I would like to give my special thanks to Professor Nikolai Eberhardt who

was responsible for the design of the vehicle and the mathematical theory be

hind the navigation of the syste·m. It has been a great pleasure and experience

working with him, I have learned a great deal while working with him. I

would also like to express my thanks to Professor Meghanad W agh who taught

me a great deal in programming the vehicle, and helping me out whenever I

needed help. In addition, I would like to thank the most wonderful and closest

people to me, my father, mother, brother, sister, and Waleed for the support

they gave me during my stay at Lehigh University.

.~·

1

,.

Table of Contents

1. Introduction S

2. Optical Navigation System 8

2 .1 Beacon Identification l 2
2.1.1 Identification Via Angle Range 12

2.1.2 Distance Thresholding 16
2.1.3 Identification Via Distance Range 18
2.1.4 Final Checking 20

2.2 Beacon Selection 20
2.2.1 Beacon Selection Algorithm 23

2.3 The Mathematical Theory For Obtaining The Vehicle Position 25
2.3.1 Vehicle Position 25

2.3.2 Vehicle Bearing 33
2.4 The Optical Navigation System Software 35

2.4.1 The gonimeter procedure 35
2.4.2 Identify beacons Procedure 36
2.4.3 The Expected Angle Procedure 38
2.4.4 Compute Vehicle Position procedure 39
2.4.5 Calculate vehicle points procedure 41
2.4.6 Find Center Procedure 42
2.4. 7 Find Vehicle Coordinates Procedure 42
2.4.8 Beacon Selection Procedure 44
2.4.9 Shuffpoints Procedure 44

3. The Ground Navigation System 46

3.1 The Ground Navigation System 47
3.2 The Mathematical Theory For Ground Navigation System 47
3.3 The Ground Navigation Software 53

4. The Drive Routine 57

4.1 The Mathematical Theory of The Drive Routine 58
4.1.1 Computation of Parameters 58
4.1.2 The Computation of Double Arcs And Radius 60

4.2 The Computation of the Steering Angle 69
4.3 The Drive Routine Software 69

4.3.1 Compute Parameters and Angles Procedure 73
4.3.2 One Arc and Straight Line ONECI Procedure 74
4.3.3 A Straight Line and One Arc ONEC2 Procedure 74
4.3.4 Double arc TWOCl Procedure 76
4.3.5 Double arc T\VOC2 Procedure 76
4.3.6 Double arc TWOC3 Procedure 78

5. The Overall System Design 79

5.1 The Full Travel 79
5.2 The Simplified Travel 82

•

•
IV

..

6. Conclusions

References

Appendix A. The Goniometer Software

Appendix B. The Drive Routine

V

' ' ... · ,_ .. ·:,. ·;. • a ... I ,. '
4

' .,

'

I

~ : ' . . ~ ..

85

88

89

99

,. •·• ,ti.. . .•

.....
. ' . . .

Figure 1-1:
Figure 1-2:
Figure 2-1:
Figure 2-2:

Figure 2-3:

Figure 2-4:
Figure 2-5:
Figure 2-6:
Figure 2-7:
Figure 2-8:
Figure 2-9:
Figure 2-10:
Figure 2-11:
Figure 2-12:
Figure 2-13:
Figure 2-14:
Figure 2-15:
Figure 2-16:
Figure 2-17:
Figure 3-1:
Figure 3-2:
Figure 3-3:
Figure 3-4:
Figure 4-1:
Figure 4-2:
Figure 4-3:
Figure 4-4:
Figure 4-5:
Figure 4-6:
Figure 4-7:
Figure 4-8:
Figure 5-1:
Figure 5-2:

List of Figures

"Cyclopion" the Test Bed Vehicle
The Software Design of The Complete System

The Optical Goniometer.
The Overall Software Design for the Optical Navigation

System.
The Expected Angle t/J .•

' The Result of the Identification Process.
The Computation of Distance.
Distance Error.
The Beacon Selection Algorithm.
The Three Circles A, B and C.
The Calculation of the Center of a Circle.

Computation of the Vehicle's Point.
Vehicle Bearing.
Identify Beacons Procedure
Expected Angle Procedure
Compute Vehicle Position Procedure
Compute Vehicle Points Procedure
Find Vehicle Coordinates Procedure
Shuffpoints Procedure

The geometry of the vehicle
The minimum number of n counts
The geometry of the vehicle

111 Signal service routine
Case (1) of Double Arc
Case (2) of Double Arc
Case (3) of Double Arc
Case (4) of Double Arc
Case (5) of Double Arc
The Drive Routines
One circle and straight line procedure
Double Arcs Procedure
The Full Travel
The Simplified Travel

•
VI

. -.
•.

. .

"·

I •

4
6
9

13

15
17
19
21
24
26
28
31
34
37
38
40
41
43
45
48
51
52
56
61
65
66
67
68
71
75/~
77
80
83

' ...

· ..

,. ...

•

•

•·

••

•..

.. ~ ..

..

\

Taole 6-1:

...

,.

...

•.

I \·"'I\

List of Tables

The Result of A Typical Vehicle Run

•

,-

...

-

..

..
~ .

, .

..

••
Vil

...

..

• q .

r.

..,:'

..... ·
..

87

...

, r

"'

•
I(

'

. ..

,,,

·,

Abstract

This thesis presents the mathematical theory and the software design for ·

an autonomous guided vehicle. The mathematical theory and algorithms enable

the autonomous vehicle to determine its location accurately in a known world.

The vehicle has two navigation systems, 1) the optical navigation system is

based on a goniometer that emits an infrared beam. This is reflected from

retroreflectors (beacons) scattered in the constant environment (factory floor).

Angular displacement of the vehicles heading relative to each beacon is recorded

by the rotating goniometer, and the actual position of the vehicle and bearing . is

then computed using trigonometry. 2) The ground navigation system consists of

a gyroscope to measure the vehicles bearing, and the wheel encoder {odometer)

to measure the distance traveled by the front wheel. The bearing and the dis-

tance traveled is used to determine the vehicles position frequently. The two

navigation systems complement each other, since the ground navigation system

can compute the vehicles position more frequently but less accurately, whereas

the optical navigation system produces more accurate results but can compute

the vehicles position only every 0.5 seconds

The system software is written in PLM/86 for the 8086 micro processor

and operates in conjunction with a 8087 math processor, except for the ground

navigator progtam, which is written in 8086 assembly language. This thesis

describes the algorithm and software used to compute the vehicle position and

bearing via the optical systems and the ground navigation system. It also in

cludes the drive routine that drives the vehicle from the current point to the

next point along the prescribed path. Finally, the overall · systems and their in

teractions are described.
2

•

..

I

Chapter 1

Introduction

The correct determination of the· location of an autonomous vehicle is of

great importance to manufacturing and material handling systems. In par-

ticular, robots that navigate and perform., more autonomous roles are becoming

more and more necessary in today's and tomorrows factories. Path planning,

obstacle avoidance, and replanning are necessary for an autonomous robot to

achieve a goal. The more autonomous the robot becomes the more it will need

to rely on sensors to ascertain its environment. One important task in the

overall perception of the environment is the det_ermination of its position. Pre

vious researchers employed various methods for robot self~location such as com

puter vision, artificial markers, and an angular optical scanning sensor to detect

signals from three or four transmitters placed in strategic locations in the area

of navigation [1].

This thesis describes the mathematical theory and the software design that

will enable an autonomous guided vehicle A GV to determine its x-_y position

and bearing within a known world. Figure 1-1 Shows the "Cyclopion" the test

bed vehicle for this project. The vehicle is equipped with two navigation sys

tems: an "Optical" navigation system that consists of a goniometer that emits

an infrared laser beam towards "retroreflectors (beacons) tpat are scattered in the

plant environment, and measures the angles under which the individual beacons

are sighted. By determining the angles at which three beacons are sighted, the

on board computer can calculate the position of the vehicle accurately. The

vehicle uses another navigation system called the "Ground" navigation system.

3

r

;

.. ~ ~·;;...,.·,..,., ,..,. . . ~

fl"

• -· -~---- . - -

Figure 1-1:

Ill

. - --·-• f

CYCLOPION I

"Cyclopion" the Test Bed Vehicle

4

: •. ~. "'
1
" ,
~
1

I
'

•

I
' 4

I

I. I

. .

• •

The ground navigation system consists of a wheel encoder (odometer) that

measures the travel of the front wheel, and a gyroscope that measures the

vehicle bearing. With this data the on-board computer can compute the vehicle

position and bearing less accurately. Therefore, the two navigation systems sup

port each other to allow the vehicle to travel along its prescribed path as ac

curate as possible. The optical supplies the ground navigator with an accurate

vehicle position every 0.5 seconds. The ground navigation computes the vehicle

position every 0.005 seconds. The thesis describes the derivation of the equa

tions used for guiding this vehicle and describes the algorithms that are used to

determine the flow and the logic of each procedure . The program written for

the algorithms were run on an 8086 micro processo.r in conjunction with an In

tel 8087 numeric coprocessor.

Figure 1-2 on page 6 shows a block diagram of the overall functional

diagram of the entire system. A summary of each procedure is given below:

• Tl1e Goniometer Procedure. Reads the beacon angles from the
specified ports, the beacon identification process is executed to deter
mine the right beacons, and to omit anonymous objects. The beacons
selection process is then followed to select the best three beacons
that are needed for triangulation. Finally, it computes the vehicle
position and bearing.

• The Grou11d Navigation Procedure. With the rea.dings of the
wheel encoder (odometer) and the reading of the gyroscope, a set
of equations are obtained to compute the vehicle position for every
0.005 seconds.

• The Drive Routine. Requests position of vehicle and bearing when
needed and computes the double arcs and steering angle of the
vehicle for each arc. This is then translated to the drive ro11tine as a
command .

5
,,

Path
Points

Norn.
Radius

--
~

Path
Refittino

··vectors

_ Pa th
.,.. Control

'--,

, Next
Vector

Slowdown at x
'U

Impossible Path
r----~-------1"'1~

- "U
r\ -Path Accepted

- -
..- l/ 'U

Path Completed

...

Request -

r - - - -,
Goniometer,
L.. - - - - _J .,

-

, l3eacon
An~les

Parallax
Correction

. ,

Locate
Algorithm

I

,,Position
Bearin(J

C:
0
u
,0

C1'
co

,
Drive

Routine -...+-~-. ~ _.._ - - - - 1 I•

-..

Position,
,. Velocity,Bearin~

Angle - ·- - - - - ,
I .

I I
.- - . Drive 1

Fu 1-R- e ~ ;c o n t r o 1 l e r
o rw • . v .

L_ -r __ J

r-- --,
1 Motors 1

L - - - - _j

- .
• 1 Ground

I

_ :Navigator!
L-__.i;....., -&--.It r"°

:_-_]~~~··~
1 Gyro : a...

~

L - - - - _J <J
r ~ - - - -1
1 Wheel 1 1

1 Encoder r
L-----1

Figure 1-2: The Software Design of The Complete System

!# .-·
·- - 6

_I

' ' I
I

..

• The Overall System. Describes the sequence of events for comput
ing the vehicle position arid bearing, and when the double arcs are to
be computed. The full design of the overall system and the simplified
design that has been imp le men ted successfully by the vehicle are also
described.

The software described in this thesis is designed for the Cyclopion navigation

system, but the theory and the concepts can be very well applied to any

autonomous vehicle of this kind. Other approaches to non wire guided vehicles

can be found in [1] and [2].

,,

,

7

..

•

Chapter 2

Optical Navigation System

The optical system consists of a goniometer, a device designed to emit a

horizon tally· sweeping infrared laser beam. This beam detects retro reflecting sur

faces, called beacons and measures the angles under which the individual

beacons are sighted.

The goniometer is mounted on the vehicle at the midpoint of the rear axle

as shown in Figure 1-1 on page 4. Figure 2-1, page 9, depicts the device in

more detail. It consists of an Amprex Corporation CQL16 diod laser called a

collimator pen. This pen produces a well collimated beam that is about five

millimeters in diameter and is directed upwards so as to strike a front surface

mirror. The mirror is situated at a 45 ° angle to the beam so that it reflects

the laser beam in a direction 90 ° to its incidence. This mirror is connected to

a synchronous motor which rotates the mirror at two revolutions per second.

Mounted on top of the motor is a Hewlett Packard HEDS-6000 series shaft en

coder that produces one thousand pulses and an index pulse for each revolution

of the mirror. The index pulse is used as a zero reference angle for the

goniometer and also initiates readout and computation of vehicle position and

bearing.

Whenever the laser beam strikes a retroreflecting tape { a beacon) the

beam is reflected back onto itself. Since the reflected beam is larger in

diameter than the incidence beam, it is focused on arrival by a mirror lens into

the photodetector. The resulting output is a pulse which indicates the sighted
\\.

8

I
I

i

\

· <,_ · ti e

/

.. '

•

'
., .

;,
• . -

1 - ·- - ... -.__ . -- --J . - ~ -- ~ - - ... " -- ---- - __ .,._ ------- ·------.... • • I:-- - r-~ - - - - ~ - ~ - - - -- - - •-: -~-
a I. I.. ---4---------J.• 1--- ---- .. · . ---'•--
• I I
I •
I I

I I
I I
I I
I I
I 1· ,.

I
I

I
I l),'OJ>c ~ #

I eau.,~~ P£V ·

• . -~l
I

-~ I
t . / I . I\

1
..

1 , ., ·.l . , ~ r
. \

•, • - I 'i

····-~· .. t ·: ·Y, . .

I I-~-~~

: I '
i-· ' ---'--

. I I
. I

Figure 2-1:

I I
I I
I I , ,
1,

The Optical Goniometer.

9

-·-

-· ..

beacon angle and the angular width of the beacon. A description of the man

ner in which the angle is measured follows.

Once the encoder produces an index pulse, an internal counter starts

counting the number of pulses generated by a clock synchronized with the mir

ror rotation. Every time a beacon is sighted, the current count is stored in

RAM. The angles are read through the 1/0 ports and are scaled since they are

produced in binary numbers ranging from zero to 50,000, where the 50,000

represents 360 °. In addition to storing the beacon sighted angle, the system

also stores the beacon width. The actual beacons are all of the same width,

but their widths appear smaller to the goniometer as the distance from

goniometr to beacon increases. The apparent width is measured by the dura

tion of the received optical pulse. At present, the system stores up to fifteen

beacon angles and widths per revolution. Also part of the optical system is an

electronic circuitry and computer interface board.

Calcu]ations of position may be performed only once every half second-.

This is one reason why the navigation of the vehicle cannot depend on the op~

tical system alone. Another navigation system, the ground navigation, almost

continuously keeps track of the vehicle's position and bearing using inputs from·

an odometer and a gyroscope. This system, however, constantly accumulates er

rors generated by the ground navigation system and these have to be corrected

by the optical navigation system every time a position "fix becomes available.

\ 10

J

,

8

The computer software of the optical navigation system is designed to .,.

compute the vehicle position and bearing once the beacon has been sighted.

The index pulse activates the goniometer program. Once an index pulse is

generated and beacon angles and widths have been read into the buffer through

1/0 ports, an interrupt is generated masking all interrupt service routines ex

cepting the goniometer routine. Also, once the beacons angles have been read

in, the system prohibits further reading in of beacon angles and widths during

the time of computation.
• I~ •

Once they have been read in, the beacons angles are calibrated and stored

in an array of dimension M, where M is the number of beacons sighted. With

an approximate vehicle position and bearing, and a map of beacon coordinates

and expected angles as input, the goniometer procedure goes through the follow

ing steps in the order stated, to produce an accurate vehicle position and bear-
-.

• 1ng as output:

1. It identifies the beacon, determining if the angles read in represent
valid beacons, since the goniometer can encounter other reflecting ob
jects like mirror or glass. The algorithm is described in Section 2.1,
page 12.

2. It selects the most desirable set of beacons from the set of identified
beacons. This should not be less then three beacons, the minimum
numbers needed for a position fix.

3. Finally, it computes the vehicle's position and bearing using the tri
angulation routine as described in Section 2.3, page 25.

The index pulse can not be deactivated by the software but can be ig

nored whenever not needed. Once the accurate vehicle position is calculated,

the ground navigation system utilizes the computed vehicle position to correct

11

the vehicle's position and bearing. The correct vehicle position will be used as

input to the drive • routine, thus driving the vehicle towards the next

programmed point.

Shown on page 13, Figure 2-2 describes the overall design for the software

used in the optical system. If the vehicle fails to find enough beacons to cal

culate its position after several attempts, the ground navigation system will stop

the vehicle. The distance the vehicle will be permitted to travel without optical

position fixes depends on the accuracy of the ground navigation system. Such a

distance has yet to be determined.

2.1 Beacon Identification

Beacon identification involves matching a beacon sighted through th.e

goniometer against the beacons stored in the map-if they match then that

beacon has been identified. Therefore, the beacon identification process intel

ligently takes care of invalid objects such as mirrors and glass windows scat

tered in the factory or the lab. Since they are objects that do not retroreflect,

such occurrences are rare, yet possible. The identification program takes care of

ambiguous objects by rejecting them from the set of sighted beacons. Varying

degrees of refinement for identifying the correct beacons can be applied to such

vehicles and what follows is a description of these refinements.

2.1.1 Identification Via Angle Range

Vehicle position and bearing is only approximately known, therefore a

given beacon will not appear exactly in the expected direction '11 i as computed

from the beacon map, but in a vicinity of w. ± 6. A threshold !). t/J can be
1

....

..

\.-1

Index Pulse

Beacon Sighted angle
and width, read &
calibrated.

-----"' ,. _____ _
Identify beacons

Check if No. of matched
beacons are less then 3.

_________ i False

Select best 3 beacons.

_______ ____________ _
Calculate vehicle position
and bearing.

Output to drive routine & for
driving purposes, and to the

Approx. vehicle Pos.
and Bearing.

ground navigator for error correction.

•
"~ 't

Figure 2-2: 1""he Overall Software Design for the Optical Navigation System.

13

I

selected such that if the sighted angle falls within the interval t/J. ± llt/J, the ' .

beacon is considered to be identified as the ith beacon. Otherwise, the ith

beacon is rejected. Rejection also occurs if two or more beacons are sighted

within one angle range, or if adjacent ranges overlap. In these cases beacons i

and i + 1 could be accidently interchanged and therefore must be rejected.

Figure 2-3, page 15, describes the computation of expected angles. (X0,Y0)

is the vehicle position, (Xi,Yi) are the beacon coordinates, ¢ is the bearing and

t/J. is the expected angle. At this point o can be computed from the triangle
t

Cl = 180 ° - /3.

Therefore, t/Ji is (a - <j,). In this algorithm several cases have to be distinguished

due to the modulo 360 ° nature of angles and the multivaluedness of tan - 1•

The idea behind this process is to compute the expected beacon angle \JI k-

for k = 1 ... L, where L is the number of beacons in the map-using the ap

proximate vehicle position and the X and Y coordin·at~s of beacons stored in the

map. The expected angles are subtracted from each of the sighted angles 0 i'

ascertaining if the difference is less then a certain threshold fl t/J. If so then the

kth beacon has been identified, unless a second match has been obtained in the

same angular range. In this case the two beacons will be rejected. If a beacon

has matched then it is added to that set of matched beacons. This process has

been successfully applied to the vehicle, but for safer and more reliable results

other refinements will be discussed in t~~ following sections.

•

- .

y

I
I
I
I

XI , YI

XO,YO
'

THE EXPECTED ANGLE

Figure 2-3: The Expected Angle t/J .• 1

15
'

/
I

/

,·

',

,.

In order to identify the right beacons, let us assume that the inputs to

the "Identify_ beacon" procedure are as follows:

• X a' Ya is the approximate coordinate of the vehicle position as given
by the ground navigator;

• ~ is the approximate vehicle bearing supplied by the gyroscope;

• X k' Yk are the beacon coordinates stored in a map, where k = 1 ... L,
and L is the number of beacons stored in the map;

• e . are the sighted beacon angles, where i == 1 ... M and M is the ' number of beacons sighted. fl.t/; is the selected threshold.

The following algorithm is applied to identify the right beacons:

l. If M < 3, then stop.

2. Compute the expected beacon angle Wk from Xa,Ya and Xk,Yk for
each k, where k = 1 ... L.

3. Starting with i .= 1 ... M for a sighting e i' compute It k - 0 ii fl.k
for- k + I ... L.

4. If /:ik < ~w, then the kth beacon has been identified, unless a second
match occurs for a different k. If no positive identification occurs,
go to the next i in Step 3. If there is a match, record X k'yk and
0 i in a set that contains the matched beacons. Repeat Step 3 until

·i == M. If the number of matched beacons is less then three, in
crease the threshold by a computed constant, and repeat Step 3 until
enough beacons have been identified.

Figure 2--4, page 17, illustrates the· results of the identification process.

2.1.2 Distance Thresholding

This is a first order improvement upon the previous approach. It may

happen that in a given floorplan and beacon map .too many beacons are sighted,

for instance, exceeding the maximum number of fifteen; or, so much crowding

16

. '

' I

/

•
•

0

10
DEGREES

5. Figure 2-4: The Result of the Identification· Process.

17

/

DISTANCE
THRESHOLD

.,

,

exists that too often more than one sighting occurs in a given angle range plus

or minus a. In this case one can use the measured apparent beacon width in

order to eliminate sightings that indicate a beacon beyond a certain threshold,

T, in distance.

The process involves computing di, the sighted beacon distance. Figure

2-5 on page 19 represents the geometry of the beacons made into cylindrical

posts. The distance di is inversely proportional to the angle wi. Therefore,

d. = Wtan -I w.. Once the distance d. is computed for i = 1 ... M, where M is t t t

the number of beacons sighted, the distance is checked to see if it falls within

within the chosen threshold T. If it does fall within, then that beacon is ac

cepted, otherwise it is rejected. Furthermore, if not enough beilchns were iden

tified (for example, less than three beacons) one can increase the threshold by a

certain constant, repeating the previous process until enough beacons have been

identified.

This process will also help in preventing misidentification due to spurious

reflections from objects other than beacons, for such reflections have the ten

dency to be narrow in angle. In addition if two or more beacons fall within

the same angular width after distance thresholding then the vehicle should dis

card those beacons.

2.1.3 Identification Via Distance Range

Further safety against misidentification can be incorporated if the measured

distance di, as computed above in Section 2.1.2, is compared to the distance Di,

as computed from the beacon map. Then, if /Di-· dil > ~d, the sighting shou]d

18

;,

V

CYLINDRICAL BEACON

w

FLAT BEACON

r--..

Figure 2-5: The Computation of Distance.

-
19

be rejected. Ad can not be made too small, since the distance measurement via

the beacon width is not very accurate. Nevertheless, this procedure reduces the

occurrence of further misidentification.

2.1.4 Final Checking

After the computation of position and bearing other checks of the results's

validity may be made:

• If in making computations more than one triplet of beacons is used,
where each gives an independent position fix, the results should be
all within the same vicinity. If a large variance exists, one or more

beacons may have been misidentified. -

• If only one triplet is used and the computed position or bearing has
significantly deviated from the estimated values, misidentification

quite likely occurred.

2.2 Beacon Selection

Once the beacons have been correctly identified, the beacon selection

process is applied to select the most feasible set of triplets for use in calculating

the vehicle's position and bearing. One approach is to find all sets of triplets

using permutation, catculating the vehicle position from each set of triplets, then

averaging the results. This approach can generate very accurate results, but

one disadvantage is that the approach will generate a great amount of computer
'

time. And, reducing computation time is a goal within a real time system.

A different approach would be to select one best set of triplets that will

give the most accurate results. Through theorizing we intend prove that the

best set of beacon triplets is the one in which the spacing of the three adjacent

beacons is closest to 90 ° each. To prove that, let us consider the angle a be-

20

I

•

BEf\CCN I

D

s

VEHICLE POSlllON

BEAC~ 2

Figure 2-6: Distance Error.

21

'

•

)

tween beacons one and two as shown on page 21 in Figure 2-6. D is half the

distance b~een the two beacons, while , is the distance between the midpoint
/

/

between beacons one and two and the vehicle position. From this figure one

obtains:

D
- = tan a: ; and, then
8

s = D cot a:.

Taking the derivative of this equation produces

ds
-D (cota: + 1) . --

do:

A distance error 6.s may now be stated in terms of an angle error, Lia:

!is -D (cot o: + 1) 6.o:, and

6.s -D [
1

] Lia.
sin 2a

6.-s will increase when a decreases, implying that with a larger angle o: the

vehicle estimation will be more accurate. The minimum error will occur with

an angle o: of 90 ° •

Obviously, the above geometry represents a special case, however, it serves

as an illustration. A general error analysis is difficult to generate since the er

ro-r will depend on too many parameters, making a reasonable general discussion

• evasive.

I
I

22

2'~.1 Beacon Selection Algorithm

As flowcharted in Figure 2-7, page 24, the beacon selection algorithm is

used to select the three most feasible beacons which are then used to calculate

the vehicle position. Let us assume that the sighted angles of the matched

beacons are e ., where i = 1 ... N, and N is the number of beacons matched.
'

1. If N = 3, then those are the beacons used to calculate the vehicle
position.

2. If N > 3, then find the difference between two angles of adjacent
beacons for every beacon in the set of matched beacons. For ex-
ample:

Dif [i] == 0 i + 1 - 0 i' i - 1 ... N-1 , and,

This is the pair that includes a zero degree in between. If the dif
ference between two angles is less then zero, then the angle difference
should be complemented by adding an angle of 360 ° to it.

3. Find the minimum of the angle differences where

I

Min == Dif [k] , for some k, such that 1 < k < N.

Next, begin omitting un\\ranted beacons from the set of matched
beacons using the following algorithm:

a. First case: If 1 < k < N.

i. If Dif [k - 1] < Dif [k + 1], omit beacon k by setting
Dif [k - 1} == Dif [k - 1} + Dif [k].

ii. If Dif [k - 1] > Dif [k + 1], omit beacon k + 1 by. setting
Dif [k] == Dif [k + 1} + Dif [k].

b. Second case: If k = 1.

i. If Dif [N] < Dif [k + 1], omit beacon k from the set of
matched beacons and set Dif [NJ = Dif [NJ + Dif [k].

23

I
I

OMIT BEACON

N

N=N- I

CC'.f,f)UT'E TH(o:n:i:ERiflCE
B£TWEEN TWO A[).JACE:NT
SIGHTED ANGLES CDIFF I

FINO THE MINI~ 0: THE

Al'G.E DIF'FEREIICE:S

K : 0:

K=K-+I:

OMI'T BE~ON
K t I

'
•·

SIGHTED BliACON AIG..ES (1l£TA)

LI«). a:' 9':ACOIS M~TC!,£0 (N)

l>tIT BE~ON K+ I 0411 I(!EACt>I

Figure 2-7: The Beacon Selection Algorithm.

24

•

'

ii. If Dif [N] > Dif [k + 1 J, omit beacon k + 1 from the set of
matched beacons and set Dif[k] == Dif[k + 1] + Dif[k].

c. Third case: If k = N.

i. If Dif [N - 1 J > Dif [1}, omit beacon 1 from the set of
matched beacons and set Dif [N- 1] == Dif [N] + Dif [1].

ii. If Dif [N - 1] < Dif [1], omit beacon N from the set of
matched beacons and set Dif[N-1] == Dif [N-1] + Dif[N].

Decrement the number of matched beacons by 1. If N == 3, then
stop, otherwise go to Step 3.

This algorithm has been very successful in choosing the proper beacons.

2.3 The Mathematical Theory For Obtaining The Vehicle Posi

tion

After appropriate beacons are identified and selected, the vehicle position

and bearing may be computated. To compute the vehicle position X0 ,Y0 , let

the cartesian coordinates of the three selected beacons be denoted by (X 1, Y 1),

{X2,Y2), (X3,Y3), and let the angle between beacons 1 and .2 be o 1, the angle

between beacons 2 and 3 be a 2, and the angle between beacons 1 and 3 be a 3•

2.3.1 Vehicle Position

Let us assume a circle, A, is drawn through the points of beacons 1 and

2, and the as yet unknown vehicle position X0 , Y0• Circle B is drawn through

the points of beacons 2 and 3 and X0,Y0• Circle C is drawn through the points

of beacons I and 3 and X0 ,Y0 as shown in Figure 2-8, page 26.

Each of the circles is determined through a theorem of geometry stating

that from each point on a circle, say A, the distance between beacons 1 and 2

appears under the same angle. This angle is a 1 and serves to find the center

25

\

t'

I

XI t YI C

A X2,Y2

31Y3
XA,YA XC.YC

B XB.YB

XO,YO

Figure 2-8: The Three Circles A, B and C.

26

•·

of circle A. Intersections between the circles provide the vehicle coordinates.

The centers of circles A, B and C a.re calculated as shown in the following

paragraphs.

As in Figute 2-9, Circle A will be an example for the calculating the cen-

~ ter of a circle given the coordinates of the beacons that fall on the same circle.

Let line a be the line between beacons 1 and 2, line b be the line drawn

through the center of the circle (X c' Ye), and let X m' Y m be the middle of line a

where

X == m
, y

m

Let l be half t·he distance between beacons 1 and 2, where

The slope of line a is·

and, since line a is perpendicular to line b, the slope of line b is

-1
m = - or 2 '

ml

m = 2
•

The equation of line b through (X c' Ye) is

x1 - x2
Y = Y + (X - X) .

c m y -Y c m
2 1

27
I

(2.1)

(2.2)

(2.3)

(2.4)

•

XI , YI X2,Y2

(XO, YO)

VEHICLE POSITION

Figure 2-9: The Calculation of the Center of a Circle.

28

.. ..

'\

And, referring to Figure ·2-9,

(2.5)

From Equation 2.5 the following is generated:

(2.6)

Substituting (Xe - Xm) into Equation 2.4 results in

From Equation 2.6 we can generate thLf ollowing:

{2.7)

Then, substitute (Ye - Y m) in Equation 2.4 so that

And, having substituted the value of Xm, the center of circl~ A is

Similarly, the center of circle B is

and the center of circle C is

29

i

..

'C

Having found the centers of the circles, one next calculates the intersection

points in the manner shown in Figure 2-10, page 31. Intersections are com

puted between every pair of unique circles and each intersection point serves as

the computed vehicle position. The average of the three intersection points

provides an accurate vehicle position.

Let us take the two circles A and B, where X01 ,Y01 and X02 ,Y02 are the

center of the circles respectively-see Figure 2-10, page 31. And, letting the

common beacon coordinates between the two circles be X ,Y, and X ,Y be the c c m m

midpoint between the vehicle position and the point X ,Y, then the slope of line
C C

•
a IS

m ----·
X02 - XOl,

and, the slope of line b is

,.
m

m

Thus, the equation of line a through points (Xm,Ym) and (X01 ,Y01) is

and the equation of line b through (Xm,Y m) and the common point (Xc,Yc) is

Y - Y == (X - X) m' . m c m c

With these two equations one calculates the intersection of lines a and b:

(Xm-Xo1)m+Yo1 == (Xm-Xc)m'+Yc;

(Xm-XOl)m = (Xm-Xc)m'+Yc-Yo1·

30

(2.8)

•

..

XI , YI

A
X2,Y2

3,Y3 -.

XO I • Y

B

XO.YO

(J

Figure 2-10: Computation of the Vehicle's Point.
\J'

i

31

/

Thus,

m-m , • (2.9) X m

As shown in Figure 2-10, one may find the vehicle position (X0,Y0), since

X • m 2

As a result,

X0 = 2X - X . m C
(2.10)

And, one substitutes the values of (Xm,Ym) in Equation 2.10 so that the com

puted vehicle position is

[
Ye - YOl - Yem, + XOl m]

2 -X.
m - m' c

Similarly,

y
m 2 '

and as a result,

Y = 2Y - Y . (2.11) 0 . m C

By substituting the value of Y from Equation 2.8 into the resulting Y coor-m

dinate of the vehicle's position in Equation 2.11 one gets

Assuming that the vehicle positions obtained using circles A and B, B and

vehicle position will be
32

...

.'

f

I
I

•

·-

xab + xbc + xac xo = ___ s ___ ,
• s

Problems occur if all three beacons and the vehicle lie on the same circle,

then it will be impossible to calculate the vehicle position. Near such a situa

tion, calculations will produce large errors, and thus safeguards have to be built

into the program to identify such an event.

2.3.2 Vehicle Bearing

Figure 2-11, page 34, shows the vehicle bearing </,, the beacon sighted

angle (), and the angle ,, as referred to the x-axis. Given pqth the beacon

coordinate (X1,Y1) and the exact vehicle coordinates (X0,Y0) from the previous

section one may compute the following:

tan,

'
Since () is known and , is computed, the vehicle bearing is ¢ , - 0.

33

•

y

I
I
I

XI , YI

XO,YO

Figure 2-11: Vehicle Bearing.

34

')

' I

2~4 The Optical Navigation System Software

This section describes the subroutines written for the optical system. Each

coming section will describe each subroutine what it does and, and what are the

inputs outputs for that particular routine a flow chart will be associated with

each routine to explain the algorithms used. See Appendix A for the code

programs used for the Cyclopion.

2.4.1 The gonimeter procedure

This procedure goes through the foil owing steps

1. Checks if the vehicle is in reverse or forward mode, to determine
the vehicle starting point and bearing.

2. Call "ldentify_beacons" procedure to identify the right beacons.

3. Then calls the procedure "Compute_Vehicle_Pos" to compute
the accurate vehicle position.

4. Finally, computes the vehicle bearing.

Inputs:

1. THETA(!) :Sighted beacon angles Oi,
For i - 1 ... N, where N is
the Number of sighted beacons.

2. (XP, YP) •

3. (APRX, APRY)

4. BEA

Outputs:

:The Beacons coordinate map
..

:The approximate vehicle position

:The prescribed bearing

1. (VEH_POS_X, VEH_POS_Y) :The accurate vehicle position

2. BEARING :The computed Bearing

Figure 2-2 on page 13 describes the goniometer procedure.

35

..

" l

' ,

2.4.2 Identify beacons Procedure

This procedure identifies the correct beacons using via angular range algo

rithm described in section 2.1 on page 12. Figure 2-12 on page 37 represents

this procedure.

1. Computes the expected beacon angle by calling the "Expected angle"
• routine

2. Identifies the right beacons using the method described in section 2.1.

3. Once a beacons has been identified the corresponding beacon coordinate
and angles are stored in a array of matched beacons.

Inputs:

1. THETA(I)

2. (XP,Y.P).

Outputs:

1. (XPOINTS, YPOINTS)

2. THEATS.

:Sighted beacon angles 8.
1.

for i == 1 ... N, where N
is the number of sighted beacons.

:The Beacon coordinates.

:An array of matched beacon
coordinates

:The matched beacon sightings

,,--.-
. < /·

36

J ll 0:
~TCHE:O :Q . .

COM'UTE EXPECTED

AfG...E:S (Ii: XANG)

.J : .J • I · 1<: I ·
CJ.£0< = o. . .

D-£CK=C:1-ECK-t I · .
TEM>x : XP (I<) •

'TD9Y : YX (I<) •

TE)f>AAC=THCTA (K •

~ MAP C XP. yp J • SIGHTED 6.1.~L£S ,.,,~ CT~AJ
NMS£EN AND Nl.JleEACOIS

BEA~ J HAS BEEN
IDENTIFIED. ACX) TEMPX
TEI-PY A NO T'DiP ANG
TO S~T CF MAT D-E: D

9EACONS

FALSE

BEAC~ J HAS

BEEN

HISIDENTIFI

Figure 2-12: Identify Beacons Procedure

37

•

2.4.3 The Expected Angle Procedure

The procedure computes the expected beacons angles of all beacons in the

map relative to the vehicle position. Figure 2-13 on page 38 display the flow of

the computation, of the expected angle.

Inputs:

1. (APRX, APRY) •

2. BEA.

3. (XP,YP).

Outputs:

1. EXANG(I)

NG.E =
1AN (AR~/~GI l-t
160 - BEARlNi

FALSE

C(M>UTE

:The approximate vehicle positions.

:The prescribed bearing.

:The actual coordinates of the beacon

:The expected beacon angle~ .. 1

INPUT
A?PROXlMAl[VD4. POSJTIO,I (.&.PRX, APRV).

&£ARIN:.. At-0 n-E BEACON POINT [XP, '<P)

ARG I : XP- APRX .

ARG2 = YP - APR't

lR\J:

ANGLE =

FALSE

FALSE

NG-E =
lAN !ARG:2/~G I)

....-.::,,:-_ja..-ING -t 360 .

lAN (ARG/AR'GI) -
BEARING.

~: 270. ANGLE= 0.0 .

Figure 2-13: Expected Angle Procedure

38

-~

I
/

2.4.4 Compute Vehicle Position procedure

The Fallowing steps describe the flow of this procedure

1. Check if the number of identified beacons are equal to three, if so
compute the vehicle position, using those beacons.

2. If not, the "Triplet procedure is called to select the most feasible
triplet's using the beacons selection algorithm described in section
2.2.

2. Procedure "Suffpoints" is called to shuffle the beacon points if
needed.

3. Then the Procedure "Cale-points" is called to determine the accurate
vehicle position.

Inputs:

1 . (XPOINTS, YPOINTS)

2. THEA TS.

3 . NUMMA TCHED •

Outputs:

1. (VEH_POS_X, ~EH_POS_Y)

:An array of matched beacon
coordinates.

:The matched beacon sightings.

:The numbe~ of matched beacons.

:The accurat~ vehicle position .

J

39

I

/

Figure 2-14:

"

INPUT

FALSE
SELECT T~EE: KlS T

F~L E: B~o--lS

IC04PUTE ALPHA I , ALPH~

N-0 ALPHA3, lt£N

SH..ff'El... E T t-E BEACO.S

CAL.Cl.LA TE Tt-£ VEHICLE

POSITION

(YEtLPOS_x. VEtt_POS_Y I

Nl. ~ MAlO-fi:D BtACCNi(N...M4Al~D)

ARRAY or M~Tc....:o e,ACONS L SJGHTINl
(XPOINTS, YPDINTS, Tl-ETAS)

TRUE

•

Compute Vehicle Position Procedure

40

2.4.5 Calculate vehicle points procedure

The procedure, first, computes the the center of circle, A, Then the center

of circle, B, finally the center of circle C. The next step, it computes the coor

dinates of the vehicle using circles A and B, A and C, and B and C. then

I averages the three vehicle points to produce the accurate vehicle position.

Inputs:

1 • (Xl, Yl) , (X2, Y2)
and (X3, Y3)

:The coordinates of the three
selected beacons

Outputs:

1. (VEH_POS_X, VEH_POS_Y) :The accurate vehicle position.

C04PUTE: CE NTE: R OF C IRQ..£ A

C(:M)UTE CE:NITR OF' CIRLC B

co.PUTE CENTER OF CIRCLE C

CCMNTE: VE H POS . (XA8 , y Aa)

USil"G CE:NlERS CF CIRCLES

A AKl B, At-0 ALPHA I

CCMlUTE VEH. POS. (XBC. YBC)

USI~ CE:NlERS CF CIRCLES

B N-0 C, At£> APL~

CXM>UTE VEH. PCS. (XAC, YAC)
USit-13 CENlERS CF CIRCLES

A AKJ C. At-0 ALPHAJ

C09UTE Tl1E ACCURA1E VEH.

POS. B'Y AVERAGING Tt£ 3
C()4)1.JTED VEHl Cl.£ POSITIONS

Tl-£ COOROINTES OF' T~EE SELECTED BEACONS.

ALP~I. ALPHA2 AfiO ""-PHAJ

Figure 2-15: Compute Vehicle Points Procedure

41

' l

2.4.6 Find Center Procedure

The procedure computes the center of a given circle, section 2.3 on page

256. describe the algorithms of that procedure

Inputs:

1. (PXl, PYl) , (PX2, PY2) .

2. ALPHA

Outputs:

1. (CENTERX, CENTERY)

:The coordinates of the
two beacons that pass through
the circle.

:The angle o between
the two beacons.

:The center of the circle

2.4. 7 Find Vehicle Coordinates Procedure

The procedure computes the vehicle coordinates.

Inputs:

1. (CXI, CYI) ,. (CX2, CY2)

2. (XC, YC)

Outputs:

1. (XCORD, YCORD) •

:The center coordinates of the
two circles

:The common beacon coordinates
that passes through the two
circles.

:The computed vehicle coordinates

42

~ = XC

'YCDRO = 2 • CYI - YC

FALSE

CENTER CF TWO CIRCt.£S (CXI • cY I) AND (C>Q .CY:,!) ,

ANJ TI-E COfff)N BEACtN COCR)INATES
(CX. YC)

YCCR) : YC

XCCRO = 2 • ex, - XC

SL.OPE or Tt£ LINE M = (CY2-CYl)/(CX2-CXI)
XC~: (~•(YC-CYl+(XC/M)+CX~(M+I/M))-XC

YC04) = { (XC - Xl:mO) / M) ~ YC

RET

Figure 2-16: Find Vehicle Coordinates Procedure

43

2.4.8 Beacon Selection Procedure

This procedure selects the right sets of beacons to compute, the vehicle

position, the algorithm was describes in section 2.2 on page 20

inputs:

1. (XPOINTS, YPOINTS) •

2. THETAS

Outputs:

1 • (X , Y) , (X , Y) .
1 1 2 2

and (X
3

, Y
3

)

2.4.9 Shuffpoints Procedure

..

:An array of matched beacons
coordinates.

:The matched beacon sightings

:The coordinates of the

three beacons selected

This procedure ALPHA!, APLHA2, AND ALPHA3 and rearanges the numbering

of the tree selected beacons according to angle difference between them.

inputs:

1 • (X , Y) , (X , Y)
1 1 2 2

(X3,Y 3)

2. THEA TS.

Outputs:

1. (X1,Y i)' (X2, y 2)

(X3,Y 3)

2. ALPHAl, APLHA2, ALPifA3.

:The coordinates of the

three beacons selected

:The matched beacon
sightings

:The coordinates of the

three shuffeled beacons

:The angles a 1 ,a2 , o 3

44

...

)

/

COt4'\Jlli ALP HA I :2

1HILTA(3) - ~ETA(I);

ALPHA2=
lt-£TAIJ)-Tt-£1A(~);

ALPHAl=TI-£TA(l)-Tt£TA(J) •
360:

Pt1A2:=THETA(~)-n-£TA(I);
PLACE (XI .YI l BY (X2.Y~);

REPLACE (X2,Y2) BY (XI.YI);
L..ACf: (X3.Y3) !Y (X:2.Y~).

11£ACON CXXlRO]NA.TCS (><I.YI). ()Q, v:z, »fl (XS, Yl)

N-0 n-£ RE em RES P0i0Ip..(; SIIHTED AAGLES

(THiTA)

ALPHAl=THl:TA(3)-Tl-£TA(1);
HA2=T..-ETA(l)-Tl-£TAC31+36

(XI ,YI) BY (X2.Y:2)
(X2. 'f21 BY (X3.'f3);

~, (X3.Y3) BY (XI.YI)

360 - ALPH'-3;

Figure 2-17: Shuffpoints Procedure

,,

45

Chapter 3
The Ground Navigation System

The ground navigation system is the second navigation system for this

vehicle, and is needed for three reasons: 1) the vehicle might not be able to

calculate its position using the optical system when the beacons are not visible

due to dust accumulation or objects in the factory environment, 2) the optical

navigation system can determine the vehicle location only once every half

second, and therefore the ground navigation will have to be used to locate the

vehicle position between fixes. The ground navigation system computes the

position every 0.005 of a second, which for all practical purpose is continuous.

3) frequent computation of the vehicle position is needed, the ground navigator

board (processor) was introduced to reduce the burden on the 86/85 computer.

The constituents of the ground navigation system are a gyroscope that

measures the angle ~¢, a wheel encoder (odometer) for measuring the distance

!il traveled by the front wheel of the vehicle, and a ground navigation processor

that uses the angle ~¢ and 111 · to calculate the vehicle position and bearing.

Although, the system allows the vehicle to travel a long· distance without

relying on the optical system, an error may result in determining the vehicle

position and bearing, therefore, the position coordinates of the ground navigation

system are updated and corrected using the actual position and bearing cal

culated by the optical system.

'

*-46

/

/

The error originates from two devices, the gyroscope and the wheel en

coder odometer. The effect of the earths rotation causes the gyroscope to drift

over time (approximately 1 / 4 of a degree per minute). In addition, the resolu

tion of the gyroscope is of one quarter of a degree and therefore, the vehicle

bearing is measured by units of quarter of a degree. The effect of tire wear or

wheel slippage will effect the accuracy of the wheel encoder (odometer) in deter

mining the distance traveled. Only a very small error will be due to the

resolution of the wheel encoder which issues a pulse for every 0.01 inches of the

front wheel travel.

3.1 The Ground Navigation System

As the vehicle travels, at regular distance intervals, lll, a pulse is

generated from the drive board, and the vehicle position is recalculated.

Changes in X-Y coordinates are computed and added to the previous XP-YP

coordinates to provide the current vehicle position. At full speed the positions

are recalculated at a rate of once every 0.005 of a second. If an accurate posi

tion is determined by the optical system, the ground navigation board corrects

the current ground navigator reading.

3.2 Tl1e Mathematical Theory For G1·ound Navigation System

The vehicle travel geometry is shown in Figure 3-1 on page 48, where !ls

is the distance traveled and D.<f, is the change of angle for <f, 1 to <t, 2• Vehicle

coordinates refer to the point, V, the center of the rear axle.

Ill is the increment of the front wheel travel. This is generally not the

distance traveled by the vehicle, except if the vehicle is traveling on a straight

line. For each lll, increments of llx and ~Y are calculated and added to the

47

..

-----------~~~-..

•

L

V

R
- -

Figure 3-1: The geometry of the vehicle

48
/

I

"

previous X -Y cartesian coordinates of the vehicle position. To provide the cur-
P p

rent vehicle position the approximate change is determined as follows:

ll.y = ll.s sin (a) (3.1)

fl X = ~ 8 COS (er) (3.2)

Where,

er

The arc Jength

~a == R ~</> {3.3)

Where R is the radius of the circle, and ll</> is the change in angle cf, (i.e.

fl</> == <J, 2 - <p 1). From the geometry,

r2 == L2 + R2,

where., L is a constant representing the distance bet\\1een the front wheel and

the rear axle of the vehicle. Hence,

and from Figure 3-2 on page 51,

Substitute R and r Equation 3.3

2
- ,1:11 . 2
v·--L

ll cf,2

49

•

(S.4)

Substituting LlS and o in equation. 3.1 and Equation 3.2 on page 49, then the

increments are:

•
/

There are three different situations when calculating the vehicle position:

1. When the steering angle, a, is 90 °, as in Figure 3-2 on page 51
shows, the front wheel will travel:

6-L == L 6-<f> == 30 X 0.25 ° == 01.308

Since lll
be

AL
- ==
Al

0.01 inches., the count, n, of the odometer pulses will

13.08.

Hence, the minimum number of odometer counts n n·eeded to com
pute !ls of Equation 3.4 on page 50 cannot become imaginary. But
due to accidental events, such as startup conditions we have to in
sure that a count n < 14 will not lead to errors. Therefore, If
n < 14, the vehicle has not changed its position, but the values of n

in this particu]ar situation reflects the steering angle a of being 90 °.

In this case the current vehicle position (X, Y) equals the previous
vehicle coordinates (X , Y) . p p

3. As long as there are no changes of Ll<p, reported by the gyroscope,
the angle used to calculate the vehicle position will be the previous
angle ¢,, (i.e. </, 1 of the current interval will be c/, 2 of the previous

interval). In this case the path is estimated to be continues on a
straight line. Therefore, Llx and Lly will be:

50

•

D

\

Figure 3-2: The minimum number of n counts ..

(LA</>)
Ay == Al VI - 2 sin (</>.1)

n Al ·
p

Where n is the n increments of wheel travel ll.l during the previous
p

interval. Therefore the computed vehicle position will be:

X == X + n Ax
p

Y = Y + n fly p

51

I

{3.5)

(3.6)

/
,I

y

I
I
I
I

~
I
I
I

I
I
I
I
I

'ill'
I

1 ------~-----1-------------~-~~~-

b.Y vi:
i -------:~---L-+------.!4-~ ----

X

T

3. Figure 3-3: The geometry of the vehicle

52

l

where, X , Y are the computed vehicle coordinates during the pre-p p

vious change in fl</>.

4. Finally, if a change in the direction by fl</> == 0.25° is indicated by
the gyroscope , it becomes possible to compute the accurate coor
dinates from the circular arc in Figure 3-3 on page 52. The incre
ments flx and fly are:

(
Lfl<f,) (</>1 + 'P2)

flY = nlllVl- ntil 2 sin 2

Then the computed vehicle position is:

X == X + flx p

y = y + fly
p

where X and Y are the previous by computed vehicle position at p p

the end of the previous fl</> interval.

(3.7)

(3.8)

The sin and cos values are determined by a look up table stored in the com

puter. Once the vehicle position is computed using the third situation the pre

vious point (XP, YP) are set to· ·the current point (X, Y), the counter n is set to

zero for the next computing interval, and the angle <J, 1 is set to <J, 2 for the next

interval.

3.3 The Ground Navigation Software

The soft\\rare for the grour1d navigation program is written in assembly

language for the 8085 micro processor. The ground navigator program the

program has been debugged , but has not yet been implemented by the vehicle.

53

/

"

(

-.

The program consists of four interrupt procedures. Since the 8085 will

function on an interrupt driven basis, all interrupts will be serviced on first

come first serve basis, except for the 'Coordinate Request interrupt that is

unmask able [5].

The 'Beacon Sighted' interrupt service routine, is activated by an interrupt

that is generated when a beacon is sighted. The routine outputs the current

X-Y coordinates and bearing to the address latched in the RAM and therefore,

the coordinates are stored in memory.

The 'Buffer Full' interrupt service routine, is activated by a interrupt in

dicating that the on board computer has located a set of updated X and Y

coordinates from the optical navigation system. The routine handles replacing

the current X-Y coordinates by the updated X-Y coordinates, computed by the

optical system.

The 'coordinate Request' interrupt service routine is generated when the on

board computer requests the current position coordinates. The service routine,

allows the X-Y coordinates to remain in memory unchanged long enough to al

low the on board computer read the data.

The '6.l' interrupt service routine, is activated every 0.01 inches. of travel

by the front wheel. The vehicle position will be calculated using the algorithm

described in the previous section. The routine starts by reading the bearing ¢

from ports and checks to see if any changes have occurred, if no change in ¢

54

, I

I

has occurred then Equations 3.5 and Equations 3.6 are used, if there was a

change, then Equations 3. 7 and Equations 3.8 are used. In addition the routine

also checks if the number of fixed interval n is less then 14, in order to avoid

computing the square root of a negative number. Therefore, the current vehicle

position will equal the previous vehicle position. The cos and sin of the angle </>

are obtained from a look up table which will reside in the ROM. Presently this

table has increments of 0.5 ° between points. Only the first quadrant (0 - 90 °)

is stored. Figure 3-4 on page 56 Displays the flow of l:l.l signal service routine.

55 •

/

ll z = fl I ../ 1 - 2 cos ('P) (
Llltp)

n Ill l ,

~v = ~l../1- 2 sin (,p) (Llltp)
n lll 1 p

X : XP + h 6-X

Y = VP +nbi. Y

RET

..

FALSE

•

START

I

1RUE

(
Lflef,) ('P1 + 'P2) A Y = n !ll Vl - n fll 2 sin 2

x·=XP1Ax
Y : YP -t ~ Y

XP = Xi YP = Y
NP : Ni N :O

RET

..

FALSE

Figure 3-4: Ill Signal service routine

56

X = X?
y = yp

I

Chapter 4
The Drive Routine

The drive routine controls the driving and steering system of the vehicle.

It is activated whenever the !lS pulse is generated by the drive board signaling

the on-boa.rd computer that the present path segment distance is almost com

pletely traversed so that the computer can compute the steering angle, the

velocity and the length of the next path segment to travel.

The computation of next path segment has to be finished before the

completion of the previous path, in order to guarantee that a drive instruction

will always be obtainable in time. The vehicle travels from one point to another

within a segment consisting of two circular arcs with two turning radii. The

radii are adjusted to be equal in magnitude for smoothness of movement but of

opposite signs, where, the sign indicates right or left turns. Since the vehicle
\

travels upon two arcs, the vehicle trajectory is approximated by a sequence of

circles. The length of each double arc is of the order of 1.0 meter.

As a result, the following 'Strategy' [3] can be derived which will direct

the vehicle towards the ideal path:

a. At the end of each section, the computed vehicle coordinates and bearing
are taken from the ground navigator. Then, the next section is computed
in such a way that it will bring the vehicle to the next point on the
prescribed path.

b. Due to the deviation of trajectory, as mentioned above, this point will
never be reached, but the true position will again be determined and a
new section computed, and so on.

57 ~-

\ .
4.1 The Mathematical Theory of The Drive Routine

Figure 4-1 on page 61 shows the geometry of the vehicle traveling from

point (X
1
,Y

1
) to the desired position (X2,Y2), following two circular arcs S1 and

S
2

• Where the initial vector at point (X1,Y1) is A, and its destination vector at

point (X
2
,Y

2
) is B. The vector D reflects the straight line between the current

vehicle point and the destination point. It turns out that the computation of

the two double arcs S
1

and S
2, and their radii, r, depends on three parameters.

They are: the change of the vehicle bearing {J, the angle ¢, between the vectors

A and the vector D itself. This results in five different cases of double arc, each

having different equations and the mirror image of each. Three of these cases

reflect a trajectory of the vehicle traveling along two circular arcs, where as the

other two cases reflect a trajectory of the vehicle traveling consecutively along

an arc and a straight line. The drive routine computes the following values:

1. The parameters that are needed to select the trajectory.

2. The double arcs lengths S1 and S2, and radius r.

3. The steering angle o: 1 and a: 2 •

4.1.1 Computation of Parameters

As mentioned previously, some derived parameters are needed to compute

the double arcs and the turning radius of th.e vehicle. The parameter, T,

(translation) is computed to determine whether the target point (X2,Y2) is to

the left of the vector A or to the right. Similarly, the rotation , C, is to deter-

-mine whether the vector B causes the vehicle to ·rotate clockwise, CW, or

counter clockwise, CCW. The following are definitions of the needed paran1eters:

1. The translation of the vehicle:

58

I

I
I

If the sign of T is positive then the vehicle is translated to
the left, otherwise it is translated to the right.

2. The parameter P is computed to determine the range of /3, where

If the sign of P is positive then the range of /3 is within
± 90 °, otherwise /3 is outside of ± 90 °

3. 1 The rotation of the vehicle is determined by the parameter, C, where

If the sign of C is positive then the rotation of the vehicle is
counter clock wise (CCW), otherwise rotation is clock wise (CW)

4. S is computed to determine the range of </, where:

If t"he sign of S is positive then <f> is within ± 90 °, otherwise
<f, is outside of ± 90 °.

5. A number of other desired parameters are needed for the computation of
the double arcs. Theses are:

cos (</>)
- -
IAI IBI

sin (<,h)
- -
IAI IBI

',

59

•

. .-·

d =· _P-_IT_I _ISI_I I_CI

and,

ITI
a=-;

-IAI

-
IAI

h = ITI IBI
ICI I

4.1.2 The Computation of Double Arcs And Radius

Since the computation of the double arc and turning radius depend on the

values of <J, and /3 and a minimum permissible turning radius. There are five

different cases of computing these arcs and their radii.

describe each case in detail.

This section will

1. Case (1): If O < <J, < 2 {3. and the rotation of the vehicle and the trans

lation are in the same direction. Then, in order to compute the length of the

two arcs S
1 and S2, one needs to analyze the geometry of Figure 4-1 on page

61. The parametric equations of circle CA are obtained as follows:

X - X01 == -r cos (t/JA). (4.1)

{4.2)

Where (X01 ,Y01) is the center of circle CA Since t/; A at point (X1, Y1) is

zero then the parametric equation for circle CA through point (X1,Y1) must

have:

60
j

A

XI • Y I

\

'

~ -· I

·-

'

SI

•

----.._ _,,- ,,,,,.

/ '
/ '

/ '
I '

1
1 \CB

I \
r X02.Y02

1
\
\
\

\

' ' ' ~

XO I I YO I I

' '

.~

-- ,, _,

/
/ .,,,

/
/

/

,tA

Figure 4-1: Case (1) of Double Arc

. .,.

61

(

. t'

-B

Y2

·-

-

'·

• I

By substituting X01 and Y01 into equation 4.1 and 4.2 respectively, the

parametric equation of any point on circle CA will be:

Similarly, the general parametric equation for circle CB will be:

(4.3)

(4.4)

Since t/;8 at point (X 2 , Y2) is equal to </,, the parametric equations through point

X02 == - r cos (</,) + X 2. r sin(</,)+ Y2

By substituting X02 and Y02 into Equation. 4.3 and 4.4 respectively, the

parametric equation of any point on circle CB will be:

Th.e Two circles CA and CB intersect at a point where,

Hence,

62

- r cos (tp) + r + X 1 = r cos (tp) ..:. r cos (<P) + X 2.

Simi~-arly,

Hence

r sin (,t,) + Y1 = - r sin (,t,) + r sin (ti>)+ Y2

By rearranging Equation 4.5, one can obtain the following:

-2 r cos (t/;) + r cos (¢) + r = X 2 - X 1.

and

(X2-X1) a
-2 cos (¢) + cos (¢>) + == --------· - - •

r r

From Equation 4.6. one can obtain the following:

(y 2 - y 1 l a cot (q,) + d
2 sin (1/J) + sin (ef,) - ---

r r
•

Then,

a cot (q,) + d
r ==

2 sin (t/;) + sin (tj,) ·

Substitute r in Equation 4. 7, to solve for 1/;:

where

a 2 sin (1/J) + a sin (</,)
-2cos (t/J) +cos(¢)+ 1 =------

. a cot(¢)+ d

-2 cos (tp) + cos (,fl) + 1 = a (2 sin (t/;) + sin (</,)) .
a cot (ef,) + d

63

(4.5)

(4.6)

(4.7)

/

/

and

2 a sin (t/,) a sin (¢,)
2 cos (t/,) + () = + cos (¢,) + 1.

d + a cot ¢, d + a cot (¢,)

By trigonometric identity

2 VI+ [a]2 cos(.;, - tan -l [--a--])
d+acot(¢,) d+acot(¢,)

(4.8)

a
=cos(¢,)+ (sin(¢,)+I.

d + a cot ¢,)

Define

a
K == == tan (,B)

d+acot(<,h) .

Substitute K, in Equation. 4.8

2 VI+ K2 cos (t/J - tan- 1(K)) ==cos(</>)+ K sin(¢)+ 1.

Then,

_ 1 (cos (</>) + K sin (¢,) + 1)
tp == cos . + ,B.

2 Vl + K 2

From Equ·ation 4. 7 one can obtain r where,

a
r=-------

cos (¢,) - 2 cos (tp) + 1

Since t/J and r ·are kno~n, the equations for the lengths of the double arcs

S = r •1• • 1 ff/ ,

64

I
I
\
\

I

•

/
I

,,,,
/

/

XO I I YO I

X2,Y2

S2

SI

X02.YO~

--p

" ,,,,.., --- /

-
I , Y I

' 'CA ', ' ;'
' /

"' ... /__ ___ ___

/
/

I

I
I

I
I

Figure 4-2: Case (2) of Double Arc

2. Case (2): If <P > 2/3, and the rotation and translation of the vehicle are in

the same direction. Then by looking at Figure 4-2 on page 65, the following set

of equations can be derived similarly to case (1):

_ 1 (K cos(¢)+ sin (<P) + 1)
t/J .:_ cos - (3

2 J1 + K2

The radius will be:

a
r =--------

2 cqs (t/J) - cos (<P) - 1

and the equations for the lengths of the double arcs are:

S = r •1•• 1 't',

0

! 65

-

..

CB,,,.
/

/
/

I
I
I

'
\
\
\

\
\

' '

...
A

......

XI , YI

B

.... ---.... _.,.

- - "'-,.

X2.Y2

..............

' ' ' \

\CA
XO I .YO I \

I
I

\ I
\ I

\ I

' // ' ,,,,
' ,I' ' .,,,, ___ _

Figure 4-3: Case (3) of Doubl~ ~~re

3. Case (3): If O <if,< 90 °, and the translation and rotation of the

vehicle are in opposite direction, then from Figure 4-3 on page 66, one obtains:

_ 1 (K sin(¢,) - cos (4>) - 1)
'P = cos - {3.

2 v'1 + K 2

The radius will be:

66

'

-
a

r = --------
2 cos (t/J) + cos (¢,) + 1

The equations of the length of the two arcs S1 and S2 are :

sl = r (,r - t/J); S2 == r (1r - t/J + </,).

A

XI , YI

I
I
I
I

I
I
I
I
I

2
--8

- "" -L- -- -
......

' ' ' \
\

\
\
\

}
I
I

\ I

', ,I
' / ' / ' /,,

~----"

Figure 4-4: Case (4) of Double Arc

'
I

I

' I
I

!

4. Case (4): If </> < 2/3, translation and rotation of the vehicle are in the

same direction, but the vehicle first travels in an arc then travels on a straight

line. Figure 4-4 on page 67 The following are a set of equations that should be

used: The turning radius r will be:

d
r = ----

tan (<I>/ 2)

The equations of the two lengths of arcs S1 and S2 are:

67

\

t

I .. ' t

XI , YI

r-

' '

....
X 2 , ..Ly 2~_,::--;,,.~~JBL------------

.....
' ' ' ' ' \

\
\

I
I

I
/ ' / ' / ' / /

"" --.___, - ~ ---

Figure 4-5: Case (5) of Double Arc
•

5. Case (5): If cf, > 2(3, and the translation and rotation of the vehicle

are in the same direction. The vehicle first will travel in a straight lir1e, then

on an arc Figure 4-5 on page 68. The following set of equations should be

used. •

The turning radius r is:

h
r = ----

tan(¢,/ 2)

The equations of the length of the two arcs are:

s = d-h 1

\

68

4.2 The Computation of the Steering Angle

Once S1 and S2, and the turning radius have been computed, the com

mands to the drive controller are determined by computing the length of the

arcs /1 and /2 that are covered by the front wheel, and the steering angle Q

where,

\
'•

Where, L, is the length of the vehicle from the front wheel to the rear axle. L

in this case is 30.0 inches. r, is the computed turning radius, and the factor

(4.4) is used to convert the arc length from units of /:J./ increments of travel, to

inches. The steering angles, a
1

and a
2

are:

Where r 1 and r 2 are equal in magnitude but of opposite directions. For back-

ward travel, the signs of the all prescribed vectors B and measured vectors A -

are changed and the left and right turns are reversed. The direction of vectors

A and B are used in this routine, therefore one simply can use the prescribed
u -

vectors B to compute the velocity of the vehicle at each prescribed point.

4.3 The Drive Routine Software

The drive program was written to assist the vehicle in traveling from one

point to another using double arcs with a constant turning radius. This program

provides the vehicle with intelligence, by allowing it to select the the correct

path it should traverse.

69

Figure 4-6 on page 71, describes the flow of the different procedures to

compute the length of the arcs and the turning radius of the vehicle. The

,

procedures are executed after the measured vehicle coordinates are received from

the ground navigator and the bearing from the gyroscope. Once the drive

routine is activated, it follows a sequence of steps to compute the length of

double arcs and turning radius. The steps that it follows are described below:

1. Compute parameters T, C, and S, and the angles </> and {3.

2. Check if the sign of the translation, T, is positive. If so, then the
translation of the vehicle is to the left and the flag is set to true,
otherwise the translation of the vehicle is to the right and the flag is
set to false.

3. Check if the sign of the rotation, C, is positive. If so, then the rota
tion of the vehicle is to the left CCW, otherwise the rotation of the
vehicle is to the right, CW .

4. If the rotation and the translation are of opposite directions, then
Case (3) is selected and the following steps are executed:

a. Compute the double arcs S1 and S2 and the turning radius, r.

b. If the flag is set to true then the vehicle first turns to the left
then turns to the right. Otherwise the vehicle first turns to the
right then turns to the left.

c. Go to step (7).

5. If the rotation and the translation are in the same direction, and
cp > 2/3 then.

a. Compute the turning radius r.

b. If the radius, r, is less then the permitted radius then Case
(2) of double arcs is selected, and the following steps are ex
ecuted:

i. Compute the lengths of the double arcs S1, S2 and turning

radius, r. If the flag is set to true, then the vehicle first
turns to the right and then turns to the left. Otherwise
the vehicle first turns to the left then to the right.

70

0.

J

..

·/

C(),,f)UTE T.C. P.D

TRL£ (LEFT)

FLAG = F" AL S£ !=LAG : TRUE

(LEFT)

TRLE

ONECI

R :0/T.A.N(PHI/~)

GHT ROT. LEF'T

TR\.E'.

(Ot-EC2)

R=H/TAN(PHI/~)

FALSE

RIGH'l

T~N2 = LEF"T

R' .SI.~, (TWO::l)
CASE (J)

TURNI = LETT
TURH2 = RlGHT

R, SI ,S2 (TWOC:2) FALSE
::,-----IE .S (CASE(.&.)) s:>---t!ILASE I :2) I\

fALSE

TURN I = RlGH1
TLR~ = LEFT

R. SI .S~ (T'wOC.I

CASE{!)

TLRNI = LErT

1URN2: RIGHT

FALSE

lURNI = LEF"T

Tl.RN! : RIGH1 TURN2: RlGHT

ICO"Pl.l E S1EERD-G
ll"f'tl~ . .:, APL HA I • A LPHA2

TURN I =LEFT
TURN2=RlGHT

~N:2 = LEFT

ii. Figure 4-6: The Drive Routines

71

.........

-~

ii. Go to step (7).

c. If the turning radius, r, is greater than the permitted radius the
Case (5) of double arcs is selected, and the following steps are
executed.:

i. Compute the length of the straight line, e, and the length
of the arc.

ii. If the flag is set to true, then the vehicle first travels in a
straight line then turns to the left. Otherwise the vehicle
first travels in a straight line then turns to the right.

iii. Go to step (7).

6. If the rotation and translation are in the same direction and </, < 2 /3
then:

a. If </, < f3 then the go to step (6.b), otherwise the following steps
are executed.

i." Compute the turning radius, r.

ii. If the computed radius, r, is less than the permitted
radius then go to step (6.b). Otherwise Case (4) of
double arcs is selected.

iii. compute the length of the first arc, e, which in this case
is a straight line and the length of the second arc.

iv. If the flag is set to true then the vehicle first turns to the
left then along a straight line. Otherwise the vehicle turns
to the right then travels along a straight line.

v. Co to step (7).

b. Case (1) of double arts is selected, and the following steps are
executed.:

i. Compute the length of the double arcs S1 and S2 , and

the radius r.

ii. If the flag set to true then the vehicle first travels to the
left then to the right. Otherwise the vehicle first travels
to the right then to the left.

/
72

...

•

\

8. Return to main the program.

4.3.1 Compute Parameters and Angles Procedure

This procedure is responsible of computing the parameters such as the

rotation and translation of the vehicle and the angles <j, and {3. The program

assumes that the vehicle is traveling from the measured point (X 1, Y1) to the

prescribed point (X2,Y2) the following inputs are needed to to compute those

parameters:

Inputs

1. (VEH_DIR_XA, VEH_DIR_Y A) • The direction at point A. •

2. (VEH_DIR_XB, VEH_DIR_YB) • The direction at point B • •

3. (VEH_POS_X , VEH_POS_Y) • The coordinates of the vehicle •

point A

4. (POINTSX, POINTSY) : The prescribed point B.

Outputs

1. d and h

2. PHI : The angle¢

cos (</>) sin (~) 3. CPHI AND SPHI • and •

4. BETA • The angle {3 •

6. TRA·NS • The translation o:f the vehicle •

• T
6. C • The Rotation of the vehicle. •

7. s • Its value determines the range •
of <I>

8. p • Its value determines the range •
of /3

73

•

~

4.3.2 One Arc and Straight Line ONECl Procedure

This procedure is executed, whenever <J, < 2 f3 and the translation and rota

tion of the vehicle are in the same direction. If the computed radius is less

than the minimum radius of turning the procedure TWOCl is called resulting

in double arcs computation. Figure 4-7 on page 75 describes the flow of

ONECl procedure.

Inputs

1. d and h

2. PHI

3 • CPHI AND SPHI

4. BETA

6. MIN RADIUS

Outputs

1. RADIUS!, RADIUS2

2. ARCI, ARC2

: The angle</,

: cos(</>) and sin(</,)

: The angle /3

: The minimum constant radius.

: The radius of the arc

: The length of the two arcs ARCI & ARC2

where ARC2 represents a straight line.

4.3.3 A Straight Line and One Arc ONEC2 Procedure

This procedure is executed, whenever ¢ > 2 f3 , and the translation and the

rotation of the vehicle are in the same Ji rections. In this case the vehicle first

travels on a straight line then along an arc resulting in Case (5) of double

arcs, unless the computed radius is less than the minimum permitted radius of

turning. In this case select Case (2) of double arcs by calling procedure

TWOC2.

ONECl.

This procedure has the same inputs and outputs of procedure

74

..

TLRNI = LEFT lRLE

> Figure 4-7:

•

INPllT

RADJUSI = D/lAN(PHI/)

FALSE:

ARCI = RADIUS! • PHI

ARC2 = H - D

RADUS2 = 999.0

FALSE

T~NI = RlGHT

TRUE

FALSE

TRLE

DlUS I =-RI-.DIUS I

RET

D.H. PHI. COS(PHI) I SIN(PHI)

B£TA t..fl MIN.._RMlIUS .FLAG

CALL DOUBLE ARCS

PROCECtJRE (TWOCI)

CASE (I)

One circle and straight line procedure

75

I
I

4.3.4 Double arc TWOCl Procedure

This procedure is executed under two conditions, 1) if the radius computed

in procedure ONECl is smaller than the permitted radius or, 2) </, < {3. As a

result the vehicle will travel along two circular arcs. Figure 4-8 on page 77

describes that procedure. Below is a description of the inputs and outputs to

that procedure.

Inputs

1. d e.nd h
•

2. PHI

3. CPHI and SPHI

4. BETA

6. MIN RADIUS

6. FLAG

Outputs

1. RADIUS!, RADIUS2

2. ARCI, ARC2

: The angle</,

: cos (tp) and sin (4>)

: The angle /3

: The minimum constant radius.

: The flag.

: The radius of the circular a.re.

: The length of the two arcs ARCl

and ARC2.

4.3.5 Double arc TWOC2 Procedure

This procedure is executed if the radius computed in procedure ONEC2 is

smaller than the permitted minimum radius. Therefore, the vehicle will travel

through t\\ro double arcs. The inputs, outputs, and flow chart are similar to

procedure TWOCl.

76

/

TLRNI = L.EF"T

1URN2 = RIGH1

TRLE

INPUT
4'

COvPUTE PSI, ARCI

ARC2 AND RADlI

FAL~

TlRN I = R!GH1

lURN2: LEFT

FALSE

RADJUS~ = RADIUSI

RADlUSI = - RADIUSI

RET

PHI. COS(PHI). SIN(PHI) Af\D BETA

FALG

TRUE
RADJUS~ = -RADIUSI

RADIUSI= - RADIUSI

Figure 4-8: Double Arcs Procedure

77

...

. I
, ' . ' . J ,•J,A, .. '.\. s

,,

4.3.6 Double arc TWOCS Procedure

This procedure is executed, whenever O > ~ < 90 °, and the translation and

the rotation of the vehicle are of opposite directions. The procedure's inputs,

outputs and flow chart are similar to procedures TWOCl and TWOC2.

78

•

Chapter 5
The Overall System Design

This chapter describes the overall system design, and the overall timing of

events for the vehicle Cyclopion. At the present time the ground navigation

program has not yet been in operation. Nevertheless, this chapter will describe

the full travel sequence of events. Including the ground navigation system. Then

a simplified method of travel will be described which has been successfully im

plemented on this test bed vehicle.

5.1 The Full Travel

Figure 1-1 on page 4 [3], sh-ows the diagram of the complete system,

where o_ne can distinguish two separate u-nits the drive software on the left hand

side, and the goniometer and locating vehicle position software to the right.

These two units communicate through "the request for position and bearing"

and the "position and bearing response". Before the vehicle starts, the path

vectors with their speeds are down loaded

to the computer from tl1e base station, to be used by the path refitting

routine. The routine also accepts the "nominal radius" which the vehicle ,viii

normally use at every corner of the path. The radius is selected big enough to

produce a smooth ride and small enough to avoid obstacles. The vehicle accepts

the initial steering angle and the direction.

Before the vehicle starts its run, the path fitting routine will compute

suitable secondary path vectors, filling in between the primary points in such a

79

/

way, that the distance corresponds to the desired double arc length of the drive

routine as explained in [4]. The vehicle then issues a ready signal to start com

puting and traveling along its prescribed path. The sequence of events for the

complete system of a vehicle of this kind is shown below:

•

It«X PULSE:

lRIAI\GJLATION

ll'OEX PU..SE:

0.5 SEC

ORlVE ROJ1INE

READ GROUND
NAVlGATOR

BOARD

NEW OOJBLE

Figure 5-1: The Full Travel

If\OEX PULSE:

I .0 SEC

At t
0

, at the second index pulse, the approximate vehicle position and bearin·g

are read from the ground navigator, with the approximate vehicle position and

bearing, and the beacon map. The accurate vehicle position and bearing are

computed by the goniometer routine using triangulation. The vehicle position

computed by the ground navigator is corrected. Then the drive routine requests

the vehicle position and bearing from the .ground navigation and computes the

80
..

double arcs and steering angle which will be completed at t1 + at1, noting, if

the prescribed vector B is the last vector in the prescribed path, then the com

puter must be aware in order to stop the vehicle once it reaches that point.

Once the double arcs have been computed they are sent to the drive board at

the time t 1 + Llt 1. At the next index pulse the entire sequence is repeated. Read

ing last point on the path it will stop and wait for orders.

In more detail, one can summarize the sequence of events for the full drive

as follows:

1. In order for the vehicle to start functioning the f~Jlowing inputs are
loaded: ~

a. The path vectors with their associated speed.

b. The initial vector.

c. The selected nominal radius.

d. The direction of travel: forward / backward.

e. The secondary path points are computed and the ready sign

issued by the vehicle if path acceptable.

f. First selected target vector and its speed.

g. First double arc computed and loaded into drive controller, this

starts the run.

2. At t0, when the second index pulse is generated, the following steps

are executed:

a. Read the approximate vehicle position from the ground naviga
tion board.

b. Compute the accurate vehicle position and bearing.

81

' ("

..

a. From the deviation between the approximate vehicle position
and bearing, and the computed vehicle position , correct the
ground navigator state, and set the gyroscope.

b. Estimate future vehicle position and bearing at t1 + ~t 1•

c. Determine next target vector B.

d. Compute the next double arcs leading from e·xpected position at

a. Load double arcs into drive controller. If the vector B was the
last point, go to stopping routine, step(5).

b. Wait for a period of tlt 2, to make sure the servo has stabilized.

c. At the next index pulse go to 2a.

5. The stopping Routine has the following steps:

a. Reduce the speed of the vehicle at end of the first
arc segment.

b. At the end of the second arc, stop the vehicle ..

5. 2 The Simplified Travel

(

Due to the uncompleted ground navigator, a simplified design \\'as intro

duced to test the performance of the optical .. navigation system, and the drive

routine. The Figure 5-2 on pa.ge 83 describes the sequence of events _pf_ the

simplified • version: The procedures that are activated by the index pulse

generated by the gonio1neter, and the !!,.S pulse generated by the drive board

are interrupt cl.riven procedures. By software the program ignores the first index

pulse indicating a revolution of the goniometer. At the end of the second index

pulse all the interrupt procedures are masked except for the goniometer proce-

82

•

Dax PLLSE: If\aX Pll..SE:

TRIANGULATION

(17 .0) HSEC

S1DP

VEHICLE

COPUTE DOUBLE

ARCS AND RADII

(I 8 .0) MSEC

Figure 5-2: The Simplified Travel

,

D"lEX PLLSE

dure that reads the beacon sighting from the ports. Once that is done the index

pulse is disabled to prevent any other readings from the goniometer while com

puting the vehicle position and bearing, which is computed in a period of 17.0

msec. Once the computation of the vehicle position a11d bearing is completed,

the length of the double arcs and steering angle is calculated, the length of the

double arcs and steering angles is calculated within a period of 18.0 msec. Once

they are completed they are down loaded to the drive controller. This starts the

drive motor. The vehicle then moves towards the next point. At the end of the

first circular arc a fl.S pulse is generated by the drive board, signaling the

completion of the first arc. No action is taken. At the end of the second arc a

•

•

... , ''"'!'"!!E',. . ·• . ~

,, /

•.

second 6. S pulse is generated signalling the completion of second arc. Now zeros

speed is loaded into the drive board. This stops the drive motor. At the second

index pulse, the cycle is repeated all over again.

The program does not handle the situation, where the second circular arc

may be too small to generate a second ~S pulse, which can obscure the se

quence of events. We overcome this problem by checking to see if the length

of the second arcs is less than a minimum length that will be needed to

generate a clear ~ S pulse.

One can describe the simplified sequence of events as follows:

1. Stop the vehicle in order to start computation after the second index

and ~s pulses.

\

J 2. Enable the routine that handles the reading of the goniometer.

3. Read beacon sighted from the specified ports.

4. Disable the index pulse in order to prevent any further reading
from the goniometer during computation of the vehicle position.

5. Compute the vehicle position and bearing

6. Compute the length of the double arcs and steering angle.

7. Down load the length of the arcs, steering a angle and the speed
of the vehicle to the drive board. This starts the drive motor

8. At the second ~S p11lse generated by the drive board
Signaling the completion of the second double arc, load zero

velocity.

' 9. Select next target vector B.lf the vehicle has reached the last point
in the prescribed path, stop. Otherwise go to step (2) .

...

84

I

..

.. _..,..-

..

Chapter 6

Conclusions

-

The test bed vehicle Cyclopion described in this thesis, is a demonstration

of an optically based au to mated guided vehicle. As in any experiment, there are

observations and suggestions to be added for future work .

As mentioned previously the procedures that were used for the vehicle

software are interrupt driven procedures. During experimentation, the vehicle

sometimes acted unpredictable due to noise on the bus lines. One might over

come this problem by using "State Table Control Systems", \\i·hich allows the

vehicle to act by matching the state in a state table and firing the next action

according to a matching condition state without having to rely on any inter

rupts coming from the vehicle's circuitry. The National Bureau of Standards

(NBS) have adopted "State Table Control Systems" for the under water

vehicles very successfully [8]. Careful attention should be given to quieting the
-

circuitry in a finalized design.

In the beacon identification process, the vehicle currently uses one beacons

identification algorithm. In the future one should consider using all the iden

tification methods mentioned in this thesis. For that and other reasons one

should use a faster .compute~. The present clock rate is only 4 MI-IZ.

In addition, further research should be done in selecting the best three sets

of beacons. A simulation program was written using C-Terp interfaced with

HALO graphics for experimenting on different beacon selection algorithms. This

package will be used for further beacon
8
ielection experi1nentation.

. ...

.b

Finally, due to accumulation of error in the vehicle position by the ground

navigator one would like to determine the maximum accumulated error allowed,

to keep the vehicle on the its correct path. .

For the typical results of vehicle runs, please refer to Table 6-1 on page

87. Note that with careful adjustment of the steering system much better ac

curacy has been achieved.

•

86

",,. (,·v·~-.,. ..

•

PRESCRIBED MEASURED ACTUAL

X y Phi X y Phi X y

36.0 142.0 270.0 34.71 144.12 270.0 36.00 142.0

42.0 108.0 300.0 45.68 106.88 294.0 40.50 107.5

36.0 60.0 270.0 30.80 61.50 264.9 31.00 62.50

48.0 36.0 315.0 44.95 31.45 308.40 46.00 33.50

72.0 30.0 o.o 77.82 29.96 358.56 77.50 27.0

108.0 30.0 0.0 108.34 29.45 356.04 107.25 28.5

144.0 30.0 0.0 141.15 27.35 356.6 141.50 28.5
.

Table 6-1: The Result of A Typical \'ehic]e Run

87

. ' . •,

·,

. ..,,,,

/i

..

References

[1] Rafic Bazzi, Repe Siy ., Angular Optical Scanning for Autonomous Vehicle
Self Location in Constarint Environment, Oakland University, center for
Robotics and Advanced Automation intelligent systems and Machines, con
ference, Rochester, MI, APR 23-24,85, P. 92(5).

(2] Rathbone R. Rodin., Robert A. Valley, Jr, and Peter J. Kindlman, "Beacon
Referenced Dead Reckoning: A Versatile Guidance System"; Robotics En
gineering, VB, P. 11(6), December 1986.

[3] Eberhardt N. and Wagh, M., "Cyclopion, An Autonomous Guided Vehicle
for Factory Use"; Proceedings of SPIE; Applications of Artificial Intelligence
III, Vol. 635, P. 536, April 1986.

[4] Singh, S., "Path Planning and Navigation for a Mobil Robot"; A Thesis
Pressented to the Graduate Comittee of Lehigh University, June 1985.

(6) Marshall, C., "Hardware Design for an Intelligent Vehicle"; A Thesis Pres
sented to the Graduate Comittee of Lehigh University, June 1986.

[7) Shauh-Wen Ma., "Active Optical Detection Of Retro reflectors"; A Thesis to
be Presented to the Graduate Committee of Lehigh University, 1987.

[8] Barbera j. Anthony, M.L. Fitzgerald, James S. Albus, Leonard S. Haynes.
"RCS: The NBS Real-Time Control System", Proceedings of Robots 8 con
ference and Exposition, Detroit, Michigan, June 6, 1984.

88
.... I

...

Appendix A

The Goniometer Software

.•

/'

89

I

• 4

/ ,

·••••••••••••••••••••DIST••
'he procedure coaputes the distance between beacon pofnts
Xt,Yl) and (X2, Y2).

~••**··························••/

DIST: PROCEDURE(X1,Y1,X2,Y2) REAL;
DECLARE (Xl,Y1,X2,Y2) REAL;
RETURN(mqerY2X((X2-Xl)•(X2-X1) + ((Y2-Y1)•(Y2-Y1)),8.S));

£ND DISTi

••••••••••••••••••••••• CROSS •••
The procedure coaputes the cross product of tvo vectors .

.. ,
CROSS: PROCEOURE(X1,Y1,X2,Y2) REAL;

DECLARE(Xl, Y1,X2, Y2) REAL;
RETURN((Xl•Y2) - (Y1•X2));

END CROSS;

/•••••••••••••••••••••••DOT••••••••••••••*••••••••••••••••••••••••••

The procedure coaputes thP. DOT product of two vectors.

···*···············••/
DOT: PROCEDURE(X1,Yl,X2,Y2) REALr

DECLARE (Xl,Yl,X2,Y2) REAL;
RETURN((Xl•X2) + (Y1•Y2));

ENO DOT;

-

/•••••••••••••••••••••••MAG•••••••••••*•••••••••••••••••••••••••••••
The procedure computes the MAGNITUDE of a vector.

**'

MAG: PROCEDURE(X,Y) REAL;
DECLARE (X 1 Y) REAL;
RETURN(aqerY2X((X•X + Y•Y),8.5))i

[Nil MA<i;

\ ...

90

)

.......

/••••••••••••••••••••• SHlJ •. fPOJNI~ ••--•••••••••••••••••••••••••••••••••
The procedure co•putes the angles, alphat, aplpha2, aplha3,
and exchanges the beacons coordinates 1f neccessary

··································••***********·····················•••/

SHUFFPOINTS: PROCEDURE(ANG1,ANG2,ANG3);
DECLARE (ANG1,AN62,ANG3) REAL;
DECLARE (TY,TX) REAL;

ANGLEl = AN62 - ANGl;
If ANGLE! >= 180.8

:: ANG3 - ANG2;
\ .

THEN DO;
ANGLEl
ANGLE2
TX

= ANGl - ANG3 + 368.8i
= Xl;

TY C Yl;
Xl = X2i
Yl = Y21
X2 = X3;
Y2 = Y3,
X3 = TX;
Y3 = TY;

ENO· I
ELSE 00;

ANGLE2 = ANG3 - AN62;
If ANGLE2 >= 188.9

THEN DO;
ANGLE1
ANGLE2
TX

- ANGl
= AN62
= Xl;

- ANG3 + 368.8;

TY
Xl
Yl
X3
Y3
X2
Y2

END;
END;

ANGLE3 = ANGLE2 + ANGLEl;

END SHUFFPOINTS;

= Yl;
= X3i
= Y3;
= X2;
= Y2;
= TXi
= TYi

91

- ANGl;

.. -

!••••••••••••••••••• EXPECTED_ANGLE•••••••••••••••••••••••••••••••••

The procedure calculates the expected angle.

**••/

EXP[CTED_ANGLE: PROCEDURE(POSX,POSY) REAL,

DECLARE(POSX,POSY) REAL;
D£CLAR£(ARG1,ARG2,ANGLE,BEAR) REALi

\

BEAR =BEARING* (Pl / 188.8)i
ARGl = POSX - APRX;
ARG2 = POSY - APRY,
If ARGl = 0.0

THEN DO;
If ARG2 > 0.0

THEN ANGLE= PI /2.0;
ELSE IF ARG2 < 0.0

THEN ANGLE= 1.5 * PI;
ELSE IF ARG2 = 0.0

END;
ELSE DO;

THEN ANGLE= 0.0;

END;

IF ARGl > 0.0 THEN DO;
IF ARG2 >= 0.0 THEN

ANGLE= mqerATN(ARG2 /ARGl) - BEAR;
ELSE

END;
ELSE

ANGLE= mqerATN(ARG2 / ARGl) -BEAR+
(2.0 * PI);

ANGLE= PI+ mqerATN(ARG2 /ARGl) - BEAR;

If ANGLE< 0.0
THEN

RETURN((2.0 *PI+ ANGLE)* 180.0 / PI);
ELSE

RETURN(ANGLE * (180.0/PI));

END EXPECTED_ANGLE;

'*********************** COMPUTE YEH POSITION ***************************
The procedure gdoes the ·foll owf ng steps:

1- Checks if the number of identified beacons are equal to
three if so, it use those beacon for traingulation by
going to step3.

2- Otherewise it selects the three best beacons by callling
procedure 'TRIPLET·.

3- Then ft calls procedure shu~fpoints .
.

4- Call procedure "CALACPOINTS" to determine the vehicle position.

**'

,··

~.

,·

92

·'

(, .

I>

COMPUTE VEH POSITION, PROCEOURE(N, LIMIT)1
- DECLARE N INTEGER;

DECLARE(ANG1,ANG2,AN63) REAL1

THEN DO; If N = 3
Xl
X2

= XPOINTS(l); Yl = YPOINTS(l);
= XP0INTS(2); Y2 = YP0INTS{2);

X3
CALL
CALL

= XP0INTS(3); Y3 = YP0INTS(3);
SHUffP0INTS(THETAS(1),THETAS(2), THETAS(3));
CALCP0INTS(ANGLE1,ANGLE2);

END;
ELSE DO;

CALL TRIPLET(N, LIMIT);
Xl = XX(l); X2 = XX(2);

Yl = YY(l); Y2 = YY(2);
AN61 = AG(l); ANG2 = AG(2);
CALL SHUFfPOINTS{ANG1,ANG2,ANG3);
CALL CALCP0INTS(ANGLE1,ANGLE2);

£ND;
END COMPUTE_VEH_POSITION;

X3 = XX(3);
YJ = YY(3);
ANGJ c AG(3);

/•••••••••••••••••••••••TRIPLET************************************
The procedure finds the a set of triplet beacon points to deterafne
the coordinates of the vehicle.
***'

TRIPLETr PROCfDURE(N,LIMIT);
DECLARE(N,HATCH,I,J,K,LL) INTEGER;
DECLARf(ANG1,AN62,ANG3,LIMIT,MIN) REAL;
DfCLARE(XX, YY,AG,Dlff) (20) REAL;

(

'

MATCH = 0· I
DO I= 1 TON·

. ' XX(I) = XPOINTS(I),
YY(I) = YPOINTS(I);
AG(I) • THETAS(I)i

END·
' DO I:: 1 TO Ni
DIFF(I) = AG(l+l) - AG(I)1
If I= N THEN DO;

DIFf(I) = AG(l) - AG(I);
IF DIFf(I) < 8.8 THEN

END;
END;

Dlff(I) = Dlff(I) + 368.8;

00 LL = 1 TO N;
I = 1;

·MIN = DIFF(I),
J = I;
DO I= 2 TON;

If Dlff(I) < MIN THEN DO;
MIN= Diff(I);
J = I;

END;
END;

DO I= 1 TON;
If I= J THEN DO;

IF (J > l) AND (J < N) THEN 00;
If DIFF(J-1) < D1ff(J+1) THEN DO;

DIFF(J-1) = DIFF(J-1) + DIFF(J};
DOK= I TO N-1 i

Dlff(K) = DIFF(K+l);
XX(K) = XX(K+l);
YY(K) = YY{K+l);
AG(K) s AG(K+l);

93

•.

I I I

\

END;
END TRIPLET;

END· . .
• END1

ELSE DO,
DlfF(J) = DIFF(J) + Dlff(J+ 1);
DOK c I+ 1 TO N-1;

OIFF(K) = D1Ff(K+1);
XX(K) = XX(K+l);
YY(K) = YY(k+1);
AG{K) = AG(K+l)i

END;
END;
I - N· - '

END;
ELSE
If J = 1 THEN DO;

_, _ _J F O I F F { N) > DI f F LJ + -1--~ -l-H_[_N . DO i __ - _
--- -- ------ - -- ----~ ------ ---- -- --. - -··- ----- -- --- -

Dlff(J) = DIFF(J) + DIFF(J + 1);
DOK= 2 TO N-1;

Dlff(K) C DIFF(K+l);
XX(K) = XX(K+l);
YY(K) = YY(K+l);
AG(K) = AG(K+l);

ENO;
END;

ELSE DO;

END;

Olff(N) = Dlff(J) + OIFF(N)i
DOK= 1 TO N-1,

ENDi

DIFf(K) = D1Ff(K+1);
XX(K) = XX(K+1);
YY(K) = YY(K+l);
AG(K) = AG(K+l);

I = N;
END;

ELSE
IF J = N THEN DO;

IF DIFF{N-1) > 0Iff(1) THEN DO;
Dlff(N-1) = DIFF(l) + 0Iff(N};
DOK= 1 TO N-1;

END;
END;
ELSE

Dlff(K) = DIFF(K+l);
XX(K) = XX(K+l);
YY(K) = YY{K+l);
AG(K) = A6(K+l);

DIFF(J-1) = Dlff(J-1) + DIFF(l)i

I = N·
' END;

END;
END;

N = N-1 i
If N = 3 THEN

_LL = N;

94

,

(
'

\

I
•

I

.)

"

I

...

/•••**************** EXPECTED GAMA•••••••••••••••••······-·········--
The procedure calculates the expected GAMA.

**'

EXPECTED GAMA: PROCEDURE{POSX,POSY) REAL;
DECLARE(POSX,POSY) REAL;
DECLARE{ARG1,ARG2,ANGLE,BEAR) REAL;

BEAR
ARGl
ARG2
If ARG1

THEN

=BEARING* (PI / 180.0);
= POSX - APRX;
= POSY - APRY;
= 0.0
DO;
If ARG2 > 0.0

THEN ANGLE= PI /2.0;
ELSE IF ARG2 < 0.0

END;
ELSE DOi

THEN ANGLE= 1.5 • PI;
ELSE IF ARG2 = 0.0

THEN ANGLE= 0.0;

END;

IF ARGl > 0.0 THEN DO;
If ARG2 >= 0.0 THEN

ANGLE= mqerATN(ARG2 /ARGl);
ELSE

END;
ELSE

ANGLE= mqerATN(ARG2 / ARGl) +
(2.0 • PI);

ANGLE= PI+ mqerATN(ARG2 /ARGl);

IF ANGLE< 0.0
THEN

END EXPECTED_GAMA;

RETURN((2.0 •PI+ ANGLE)• 180.0 / PI);
ELSE

RETURN(ANGLE • (180.0/PI));

/••******************* FINDCORD••••••••••••••••••••••••••••••••
The procedure findS the coordinates of the position of the

vehicle.
**'

FINDCORD: PROCEDURE(CX1,CX2,CY1,CY2,XC,YC);
DECLARE(CX1,CX2,CY1,CY2,XC,YC) REAL;
DECLARE(R1,R2 ,N) REAL;

Rl = D1ST(CX1,CY1 1 Xl 1 Y1);
R2 =Rt• R1;
IF R2 < 5.8 THEN DO;

XCORD = 8.8;
YCORD = 8.8;

END-
• •

ELSE If A8S{CX2 - CXl) < 8.81

95

I•

·'

·--"'

THEN

END;
ELSE

001
YCORD = YC1
XCORD C 2.8

IF A8S(CY2
THEN 00;

YCORO
XCORD

END;
ELSE DO;

• ext - XC;

- CYl) < 8.81

- 2.8 • CY1 - YC1 -- XC· - '

M = (CY2 -CY1) / (CX2 - CXl);
XCORD = (2.8 •(YC -CY1 + XC•(t.8/M) + CXl

• M)/ (M + (1.8 /M))) - XC;
YCORD = {(XC - XCORD) • (1.0/M)) + YC;

END1
END FINDCORD;

/•******************** FINDCENTER *****************••••••••••••••••

The procedure finds the center of a circle.
**'

FINDCENTER: PROCEDURE{PX1,PY1,PX2,PY2,ANGLE);
DECLARE(PX1,PY1,PX2,PY2,ANGLE) REAL;
DECLARE(MIOX,MIOY,U,LEGl,SLOPE) REAL;

MIDX = (PX1 + PX2) / 2.0;
MIDY = (PYl + PY2) / 2.0;
U = mqerCOS{DTOR • ANGLE) / mqerSIN(DTOR • ANGLE);
CENTERX = MIDX + (PY1 - PY2) • (U /2.8);
CENTERY = MIDY - (PX1 - PX2) • (U /2.0);

fND fINOCENTER;

/••***************** CALCPOINTS ************************************

The procedure goes through the following steps:

1- coaputes the center of the 3 cfrcles.

2- for every two circles, it computes the vehicle position

and bering, resulting 1n 3 vehicle coordinates.

***'

CALCPOINTS: PROCEDURE(ANGLE1,ANGLE2)i
DECLARE(ANGLE1,ANGLE2) REAL;
DfCLARE(CX1,CX2,CX3,CY1,CY2,CY3) REAL;

I• Compute the center of circle A using
of beacons 1 & 2

CALL f1J4DCENTER(X1,Y1,X2,Y2,ANGLE1),
CXl = CENTERX;
CY1 = CENTERY· I

'* Compute the center of circle 8 using
of beacons 2 & 3

CALL FINDCENTER(X2,Y2,X3,Y3,ANGLE2);
CX2 = CENTERX;
CY2 = CENTERY· I

the coordinates

the coordinates

•I

•I

I* Compute the center of circle c using the coordinates

of beacons 1 & 3 •/

I
I

I
'

- - . .. - -- --- .,,,_

96

•

• ,... . . .ii:'.!-' r

..

- -

..

/

IF ANGLE3 > 180.0 THEN DO;
ANGLE3 = 360.0 - ANGLE3;

. CALL FINOCfNTfR(X3, Y3,X1,Y1,ANGLf3)·
END· '

' ELSE
CALL FINOCfNTfR(Xl, Y1,X3,Y3,ANGLfJ),

CXJ = CENTERX; '
CYJ = CENTERY;

'*** Find the vehicle coordinates using circle A & e ***/

CALL FINDCORO(CX1,CX2,CY1,CY2,X2 Y2)·
XCORD1 = XCORD; ' '
YCORD1 = YCORD;

'*** Find the vehicle coordinates using circle A & c ***/

CALL FINOCORD(CX1,CX3,CY1,CY3,X1,Yl)·
XCORD2 = XCORD; '
YCORD2 = YCORD,

'*** Find the vehicle coordinates using circle B & c ***/
CALL FINDCORD(CX2,CX3,CY2,CY3,X3 YJ)·
XCORD3 = XCORD; ' '
YCORD3 = YCORD;

VEH POS X
VEH-POS'(

ENO CALCPOINTS;-
= (XCOROl + XCORD2 + XCORD3) / 3.0;
= (YCOROl + YCORD2 + YCORD3) / 3.8;

'*********************** IOENTifY_BEACON *****************************

The procedure identifies beacon within a certain angle and distance
limit

**'

IOENTifY_BEACON: PROCEOURE(NUMB,NUMBS);
DECLARE(NUMB,NUMBS,I,CHECK) INTEGER;
DECLARE(X,Y,ANG) REAL;
DECLARE EXANG(20) REAL;

NUMMATCHED = 8;
DO I= 1 TO NUMB;

EXANG(I) = EXPECTEO_ANGLE(XP(I),YP(I));
DO I= 1 TO NUMBS;

CHECK= 0;
DOK= 1 TO NUMB;

If ABS(EXANG(K) - THETA(I)) <= THRESH! THEN DO;
CHECK= CHECK+ 1;
X = XP{K);
Y = YP(K);
ANG = THETA(!);

ENO;
END;
If CHECK= 1 THEN DO;

NUMMATCHED = NUMMATCHED + 1;
XPOINTS(NUMMATCHED) = X;
YPOINTS(NUMMATCHED) = Y;
THETAS(NUMMATCHED) = ANG;

END;
END;

0

END IP.£NTIFY_BEACONi

• 97

,.

!

GONIOMETER: PROCEDURE;
COUNTERl = 8.8;
RTOO = 180.8 /Pl;
DTOR = Pl /188.li

$INCLUDE(:f1:BEARING.DAT}

$INCLUDE{:f1:MAP.DAT)
$INCLUDE{:Fl:PATH.DAT)
NUMBEACONS = 9;
If REV= 1 THEN DOi

BEARING= BEA(II + 1);
APRX = POINTSX(II + 1);
APRY = POINTSY(II + 1);

END;
IF REV= 0 THEN DO,

BEARING= BEA(II - 1);
APRX = POINTSX(II - 1)~
APRY = POINTSY(II - 1);

/• File that contains
I* at each point
I* Beacon coordinates
I* Prescribed points

END;
CALL I DENT I FY _BEACON (NUMBEACONS, NUMSEEN);
CALL COMPUTE_VEH_POSITION(NUMMATCHED, 120.0);
AP R X • V E H _p O S X :

APRY = VfH -POS-Y ·
SUMS I = 0. 0; - '

GAMA= EXPECTED_GAMA(XP0INTS(1), YPOINTS(l))·
BEARING= (GAMA - THETAS(l)) • (PI/180.0)· '
IF BEARING< 0.0 THEN 1

BEARING= BEARING+ (2.0 * PI);

END GONIOMETER·
'

I

98

the bearing•/
•I

map •/
•I

...

•

•

•

•

Appendix B

The Drive Routine

99

•

/•********************** COMPUTE PARAMETERS***************** ~

* The procedure computes the parameters needed for
• for double arc computaions. It also computes the
• angles Phi and Beta
**'

COMPUTE_PARAMETERS: PROCEDURE(PX1,PY1,PX2,PY2,0X1,0Y1 1 DX2,DY2);

DECLARE (PX1,PY1,PX2,PY2,DX1,DY1,DX2,DY2) REALi
DECLARE (C,S,P,PP,ALPHA) REAL;

FAIL= FALSE,
TRANS= CROSS(DX1,DY1,PX2-PX1,PY2-PY1); /• T =VECTOR AX VECTOR D

O•/
IF TRANS<= 0.0

THEN TRANSLATION = RIGHT;
ELSE TRANSLATION = LEFT,

P = OOT(DX1,DY1,PX2-PX1,PY2-PY1);
IF P < 0.0

THEN FAIL= TRUEi /• Beta out of range *I
ALPHA = ABS(TRANS) / (MAG(DX1,0Y1) * MAG(PX2-PX1,PY2-PY1));
IF TRANS = 0.0 THEN TRANS= 0.81;
BIGA = ABS{TRANS) / P;
BETA = mqerATN(BIGA);
C = CROSS(OX1,DY1,DX2,DY2);
IF C < e.e

THEN ROTATION= RIGHTi
ELSE ROTATION= LEFT;

S = OOT(OX1,0Y1,DX2,DY2);
IF ABS(S) < THRESH

THENS= 8.0;
If S < 8.0

THEN FAIL= TRUE;
IF FAIL= FALSE THEN DO;

/• ARCTAN OF A•/

/• PHI OUT Of RANGE•/

CPHI = S/(MAG{DX1,DY1) • MAG(DX2,DY2))i
SPHI = ABS(C) / (MAG(DX1,DY1) • MAG(DX2,DY2));
IF S = 8.8

THEN PHI = Pl/2.8i
ELSE PHI = aqerATN(ABS{C)/S);

A = ABS(TRANS) / MAG(DX1,DY1);
If C <> 8.8 THEN

DO= (P - ABS(TRANS) * S /ABS(C))/ MAG(DX1,DY1);
If SPHI <> 0.8 THEN

H = A /SPHI;
END;

END COMPUTE_PARAMETERSi

-~

100

" (

•

/••••••••••••••••••••••••• TWOC1•••••••••••••••••••••••••••••••••
• The procedure coaputes Case (1) of double arcs • -----------------~~~--~~-~~~~~~~~~~~~

. ------------------·······--'
TWOC1: PROCEDURE(PHI,CPHI,SPHI,A 1 b1gA,8£TA,FLA61)i

· DECLARE (PHI,CPHl,SPHI,A,DigA,BETA) REALi
DECLARE (FLAG1) BYTE;
DECLARE (PSI,ALPHA) REAL;

ALPHA = (CPHI + b1gA•SPHI + 1.0) /

IF ALPHA
PSI

ELSE

(2.8 • mqerY2X(1.0 + (b1gA•b1gA),&.5
= 0.8 THEN

= PI / 2.0;

PSI = mqerACS(ALPHA) + BETAi
RADIUS1 = A/(CPHI - 2.8 • mqerCOS(PSI)
RADIUS2 = RADIUS1;
ARC1 = RADIUS1 • PSI;
ARC2 = RADIUS1
IF fLAGl = TRUE THEN

• {PSI - PHI);
DO· J

TURNl = LEFT;
TURN2 - RIGHT;
RA0IUS1 = -RADIUS1;

END;
ELS[DO;

TURNl
TURN2
RADIUS2 =

RIGHT;
LEFT;

-RADIUS1·
'

+ 1.8);

END;
END TWOCl;

/••*********************** TWOC2 *********************************
• The procedure computes Case (2) of double arcs •
***************************************~************************'

TWOC2: PROCEDURE(PHI,CPHI,SPHI,A,BIGA,BETA,FLAG1)i

•

END

DECLARE
DECLARE
DECLARE

(PHI,CPHI,SPHI,A,BIGA,BETA) REAL;
(FLAGl) BYTE;
(PSI,ALPHA) REAL,

ALPHA = (CPHI + BIGA•SPHI+l.8)/

IF ALPHA
PSI

ELSE

(2.0• mqerY2X(1.0 +(BIGA•BIGA),8.S))i
= 8.8 THEN

= Pl/2.0;

PSI
RADIUS!
RA0IUS2
ARC1
ARC2

= aqerACS(ALPHA) - BETA;
= A/(2.8• mqerCOS(PSI) -
= RAOIUS1;
= RADIUSl * PSI;
= RADIUS1 •(PSI+ PHI);

IF FLAG1
TURN!
TURN2
RADIUS1

= FALSE THEN ooi

ENO;

= LEFT;
= RIGHTi
= -RADIUS!;

RIGHTi
LEFTi

ELSE ooi
TURN1
TURN2
RA0IUS2 = - RADIUS1· I

ENO;
TWOC2;

•

101

CPHI - 1.8);

/

.
,I

/••••••••••••••••••••••••• TWOC3 •••••••••••••••••••••••••••••••••
• The procedure computes Case (3) of double arcs •
**'

TWOC3: PROCEDURE(PHI,CPHI,SPHI,A,BIGA,BETA,FLAG1);
DECLARE (PHI,SPHI,CPHI,A,BIGA,BETA) REAL;
DECLARE (PSI,ALPHA) REAL;
DECLARE (FLAGl) BYTE;

ALPHA = (-1.0•CPHI+BIGA•SPHI-1.0)/
(2.0•mqerY2X(1.0+(8IGA•BIGA),0.5));

IF ALPHA= 0.0 THEN
PSI= PI/2.0;

ELSE
PSI= mqerACS(ALPHA) - BETA;

RADIUS1 = A/(2.0• mqerCOS(PSI) + CPHI + 1.8);
RADIUS2 = RADIUS!;
ARCl =RADIUS!•
ARC2 = RADIUSl •
IF fLAGl = TRUE THEN

{PI - PSI);
{PI+ PHI - PSI);

DO·
'

END·

TURN! = LEFT;
TURN2 = RIGHT;
RADIUS!= -RADIUS1;

' ELSE DO;
TURN1 =
TURN2 =
RADIUS2

END;

END TWOC3;

RIGHT;
LEFT;~.
= - RADIUS1;

/•************************ ONECl *********************************
• The procedure computes Case (4) of double arcs •
• and The anle PHI < 2 Beta •
***' . l .

ONECl: PROCEDURE(MIN_R,A,O,H,PHI,FL,CP,SP,BA,BETA);
DECLARE {MIN_R,A,D,H,PHI,SP,CP,BA,BETA) REAL;
DECLARE TPHI2 REAL;
DECLARE (fl) BYTE;

TPHI2 = mqerTAN(PHl/2.8);
IF TPHI2 = 0.0 THEN

ELSE
RADIUS1 = MAX NUM·

- I

RADIUS1 = D / TPHI2;
If RADIUS! < MIN RADIUS THEN

CALL TWOCl(PHI,CP 1 SP,A,BA,BETA,FL);
ELSE DO;

ARCl
ARC2

RAOIUS2
IF FL

TURNl

= RAOIUSl * PHI;
= H - D;
= MAX_NUM;
= TRUE THEN DO;

= LEFTi
RADIUS! = -RADIUS1i

ENO,
ELSE

END·
' ENO ONEC1;

TURN!= RIGHTi
TURN2 = STRAIGHTi

102

.• .,

•

/•••••••****************** ONEC2 *********************************
• The procedure computes Case (5) of double arcs *
• and The anle PHI > 2 Beta •
---·-··········••/ ----

ONEC2: PROCEDURE(MIN_R,A,D,H,PHl,fl,CP,SP,BA,BETA);
DECLARE (MIN_R,A,D,PHl,CP,SP,BA,BETA) REAL;
DECLARE (FL) . BYTfi
DECLARE (TPHI2,H) REAL;

TPHI2 = mqerTAN{PHI/2.8)i
IF TPHI2 = 0.0 THEN

RADIUS2 = MAX_NUM;
ELSE

RADIUS2 = H/TPHI2;
If RA0IUS2 < MIN RADIUS THEN

CALL TWOC2(PHI~CP,SP,A,BA,BETA,FL)i
ELSE DO;

ARC1 = D - H;
RADIUS1 = MAX_NUM;
TURN1 = STRAIGHT;
ARC2 = RADIUS2• PHI;
If FL = TRUE THEN DO;

TURN2 = LEFT;
RADIUS2 = -RADIUS2;

END;
ELSE

TURN2 = RIGHTi
ENO· t

END ONEC2;

/••********************** DRIVE ******************************
• The procedure does the followinfg steps:
*
• 1- Call the procedure COMPUTE_PARAMETERS.

~ * 2- It select the correct case of double arcs.
• 3- Computes the steering angles
***'

DRIVE: PROCEDURE(MIN_RAD,PX1,PY1,PX2,PY2,DX1,DY1,DX2,DY2);
DECLARE (MIN_RAD,PX1,PY1,PX2,PY2,0X1,DY1,DX2,DY2) REALi
DECLARE (RTOO) REALi

FLAG = f ALSE;
RTOO = 180.8 / PI;

CALL COMPUTE_PARAMETERS(PX1,PY1,PX2,PY2,DX1,DY1,DX2,DY2)i
If PHI> PI/2.0 THEN

PHI = Pl/2.8;
If (PHI < THRESH) AND (BETA< THRESH) THEN DO;

RADIUSl= MAX_NUM;
ARCl = MAG(PX2-PX1,PY2-PY1)/2.8;
ARC2 = ARC1;
TURN1 = STRAIGHT;
TURN2 = STRAIGHT;

END·
ELSE DO;

If NOT FAIL THEN DO;
IF TRANSLATION = LEFT THEN

FLAG = TRUE;
ELSE

FLAG = FALSE;
If ((TRANSLATION= LEFT) AND (ROTATION= RIGHT))

((TRANSLATION= RJGHT) AND (ROTATION= LEFT))
CALL TWOC3{PHl 1 CPHI 1 SPHI 1 A1 8IGA,BETA,FLAG)i

OR
THEN

•

-· ___ LL.S_LDO; __ _
103

.,

•

END;

ENDi

--if'- A.BS(PHI.) < ABS.(2. 8 • BETA) THEN

ENO;

CALL ONECl{MIN_RAD,A 1 DD,H,PHI,FLAG,CPHl,SPHI 1

BIGA,BETA);
ELSE

CALL ONEC2{MIN_RAD,A,DD,H,PHl,FLAG,CPHI
,SPHI,BIGA,BETA)i

If REV= 1 THEN DO;
RADIUSl = -RA0IUS1;
RADIUS2 = -RADIUS2;

END;

IF RAOIUS1 = ABS(MAX_NUM) THEN
STEERING AN6LE1 = 128;

ELSE -
STEERING_AN6LE1 = FIX(81.49 ••qerATN(38.8/RADIUS1) + 128.8);

If RADIUS2 ~ ABS(MAX_NUM) THEN
STEERING_ANGLE2 = 128;

ELSE
STEERING_ANGLE2 = FIX(81.49 ••qerATN(30.8/RAOIUS2) + 128.8);

I•• 256/ PI= 81.49 ••/
ARC LENGTH! cf1X(4.4•ARC1•mqerY2X(l.0+(900.8/(RAOIUS1•RADIUS1)),8.5));
ARC_LENGTH2 =FIX(4.4•ARC2•~qerY2X(l.0+(900.8/(RADIUS2•RADIUS2)),8.5));

END DRIVE;

/••••••••••••••••• OUTPUT TO PORTS********************** - -
• The procedure outputs the length of the double arcs
• , steering angles, and speed to the drive board.

**'

OUTPUT_TO_PORTS: PROCEDURE;
.,

OUTPUT{PORTC) - 002H;
OUTPUT{C8255) = 080H;

OUTPUT{PORTA)

OUTPUT(PORTB)
OUTPUT(PORTB)

= LOW(UNSIGN(~TEERING_ANGLEl)) XOR 0FFH;
'*** OUTPUT STEERING ANGLE ***'

= 40H;
= 00H;

OUTPUT(PORTA) = LOW(UNSIGN(ARC_LENGTHl)) XOR 0FFH;
/•• OUTPUT ARC LENGTH •••/

OUTPUT(PORTB) = 20H;
OUTPUT(PORTB) = 00H;

OUTPUT(PORTA) = LOW(UNSIGN(STEERING_ANGLE2)) XOR 0FFH;
I*** OUTPUT STEERING ANGLE ***'

OUTPUT(PORTB) = 50H;
OUTPUT(PORTB) = 00H;

OUTPUT(PORTA)

OUTPUT(PORTB)
OUTPUT(PORTB)

O.BUFF(2)
OUTPUT(PORTA)
OUTPUT(PORTB)

= LOW(UNSIGN(ARC_LENGTH2)) XOR 0FfH;
I*• OUTPUT ARC LENGTH. ***I

= 30H;
= 00H;

= 28H; /••* SPEED VARIABLE MUST BE DECLARED 40 •••/
= O.BUFF(2) XOR 0FFH-;
= 60Hi

104

..

OUTPUT(C8255) = 90Hi
OUTPUT(PORTC) = 82H;

END OUTPUT_TO_PORTS;

J

/• b~gin drr •/
ORR: PROCEDUREi
NUMPOINTS = 7;
ff2 C 1; /• Set the flag for the delts s pulse•/

I• Cpmute the direction of the vehicle at the distenation point •/

DIRJ(II)
DIR_Y(II)

= 40.0 * mqerCOS(BEA(II) • PI/180.0);
= 40.0 * mqerSIN{BEA(II) • PI/180.0);

MIN RADIUS= 10.0;
PRED DIR= CALCANGLE(PRED_DX,PREO_DY);

/• Cpmute the direction of the vehicle at the current point •/
VEH_DI_X = 40.0•mqerCOS(BEARING);
VEH_DIR_Y = 40.0*mqerSIN(BEARING);
IF REV= 0 THEN DO;

SPl
SPEED

= fIX(MAG(DIR_X(II), DIR_Y(II)));
= LOW(UNSIGN(SPl));

CALL DRIVE(MIN_RADIUS,VEH_POS_X,VEH_POS_Y,POINTSX(Il),POINTSY(II),
VEH_DIR_X,VEH_DIR_Y,OIR_x(II),DIR_Y(II))i

CALL OUTPUT_TO_PORTS;

END;
ELSE DO;

SP 1 = f I X { MAG (V EH _DI R _ X , V EH _D I R _ Y)) ;
SPEED = LOW(UNSIGN(SP1));
CALL ORIVE(MIN_RADIUS,VEH_pos_X,VEH_POS_Y,POINTSX(II),POINTSY(II),

-VEH_OIR_X,-VEH_DIR_Y,-DIR_X{II),-DIR_Y(II));
CALL OUTPUT_TO_PORTS;

ENO;
END ORR;

I

I

105

' I ,

• "

Biography

The author, Mona Ahmad Elgayar, was born on November 05, 1956 to Mr.

Ahamad Elgayar and Mrs. Wedad Abdel Aziz Nada. Her undergraduate work

was done at Kuwait University where she received a B.S in Corpputer Science in

1978. She, then worked at Kuwait Institute for Scientific Research for five years

as a computer programmer, where she developed software for different applica

tions, among them software for an industrial project and helped in designing a

database system for OAPEC (Organization of Arabic Petroleum Countries). Her

graduate work was completed at Lehigh University where she was involved in

research to develop the software for an optically based, automated guided

vehicle navigation system. She will receive a M.S. from Lehigh University in

Computer Science in 198 7.

106

I

I

(

•

I~-

	Lehigh University
	Lehigh Preserve
	1987

	Software design and theory for a mobile robot /
	Mona Ahmad Elgayar
	Recommended Citation

	tmp.1551116526.pdf.CpZYO

