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Abstract 

This thesis presents the mathematical theory and the software design for · 

an autonomous guided vehicle. The mathematical theory and algorithms enable 

the autonomous vehicle to determine its location accurately in a known world. 

The vehicle has two navigation systems, 1) the optical navigation system is 

based on a goniometer that emits an infrared beam. This is reflected from 

retroreflectors (beacons) scattered in the constant environment (factory floor). 

Angular displacement of the vehicles heading relative to each beacon is recorded 

by the rotating goniometer, and the actual position of the vehicle and bearing . is 

then computed using trigonometry. 2) The ground navigation system consists of 

a gyroscope to measure the vehicles bearing, and the wheel encoder {odometer) 

to measure the distance traveled by the front wheel. The bearing and the dis-

tance traveled is used to determine the vehicles position frequently. The two 

navigation systems complement each other, since the ground navigation system 

can compute the vehicles position more frequently but less accurately, whereas 

the optical navigation system produces more accurate results but can compute 

the vehicles position only every 0.5 seconds 

The system software is written in PLM/86 for the 8086 micro processor 

and operates in conjunction with a 8087 math processor, except for the ground 

navigator progtam, which is written in 8086 assembly language. This thesis 

describes the algorithm and software used to compute the vehicle position and 

bearing via the optical systems and the ground navigation system. It also in

cludes the drive routine that drives the vehicle from the current point to the 

next point along the prescribed path. Finally, the overall · systems and their in

teractions are described. 
2 
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Chapter 1 

Introduction 

The correct determination of the· location of an autonomous vehicle is of 

great importance to manufacturing and material handling systems. In par-

ticular, robots that navigate and perform., more autonomous roles are becoming 

more and more necessary in today's and tomorrows factories. Path planning, 

obstacle avoidance, and replanning are necessary for an autonomous robot to 

achieve a goal. The more autonomous the robot becomes the more it will need 

to rely on sensors to ascertain its environment. One important task in the 

overall perception of the environment is the det_ermination of its position. Pre

vious researchers employed various methods for robot self~location such as com

puter vision, artificial markers, and an angular optical scanning sensor to detect 

signals from three or four transmitters placed in strategic locations in the area 

of navigation [ 1]. 

This thesis describes the mathematical theory and the software design that 

will enable an autonomous guided vehicle A GV to determine its x-_y position 

and bearing within a known world. Figure 1-1 Shows the "Cyclopion" the test 

bed vehicle for this project. The vehicle is equipped with two navigation sys

tems: an "Optical" navigation system that consists of a goniometer that emits 

an infrared laser beam towards "retroreflectors (beacons) tpat are scattered in the 

plant environment, and measures the angles under which the individual beacons 

are sighted. By determining the angles at which three beacons are sighted, the 

on board computer can calculate the position of the vehicle accurately. The 

vehicle uses another navigation system called the "Ground" navigation system. 
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The ground navigation system consists of a wheel encoder ( odometer ) that 

measures the travel of the front wheel, and a gyroscope that measures the 

vehicle bearing. With this data the on-board computer can compute the vehicle 

position and bearing less accurately. Therefore, the two navigation systems sup

port each other to allow the vehicle to travel along its prescribed path as ac

curate as possible. The optical supplies the ground navigator with an accurate 

vehicle position every 0.5 seconds. The ground navigation computes the vehicle 

position every 0.005 seconds. The thesis describes the derivation of the equa

tions used for guiding this vehicle and describes the algorithms that are used to 

determine the flow and the logic of each procedure . The program written for 

the algorithms were run on an 8086 micro processo.r in conjunction with an In

tel 8087 numeric coprocessor. 

Figure 1-2 on page 6 shows a block diagram of the overall functional 

diagram of the entire system. A summary of each procedure is given below: 

• Tl1e Goniometer Procedure. Reads the beacon angles from the 
specified ports, the beacon identification process is executed to deter
mine the right beacons, and to omit anonymous objects. The beacons 
selection process is then followed to select the best three beacons 
that are needed for triangulation. Finally, it computes the vehicle 
position and bearing. 

• The Grou11d Navigation Procedure. With the rea.dings of the 
wheel encoder ( odometer ) and the reading of the gyroscope, a set 
of equations are obtained to compute the vehicle position for every 
0.005 seconds. 

• The Drive Routine. Requests position of vehicle and bearing when 
needed and computes the double arcs and steering angle of the 
vehicle for each arc. This is then translated to the drive ro11tine as a 
command . 
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• The Overall System. Describes the sequence of events for comput
ing the vehicle position arid bearing, and when the double arcs are to 
be computed. The full design of the overall system and the simplified 
design that has been imp le men ted successfully by the vehicle are also 
described. 

The software described in this thesis is designed for the Cyclopion navigation 

system, but the theory and the concepts can be very well applied to any 

autonomous vehicle of this kind. Other approaches to non wire guided vehicles 

can be found in [1] and [2]. 
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Chapter 2 

Optical Navigation System 

The optical system consists of a goniometer, a device designed to emit a 

horizon tally· sweeping infrared laser beam. This beam detects retro reflecting sur

faces, called beacons and measures the angles under which the individual 

beacons are sighted. 

The goniometer is mounted on the vehicle at the midpoint of the rear axle 

as shown in Figure 1-1 on page 4. Figure 2-1, page 9, depicts the device in 

more detail. It consists of an Amprex Corporation CQL16 diod laser called a 

collimator pen. This pen produces a well collimated beam that is about five 

millimeters in diameter and is directed upwards so as to strike a front surface 

mirror. The mirror is situated at a 45 ° angle to the beam so that it reflects 

the laser beam in a direction 90 ° to its incidence. This mirror is connected to 

a synchronous motor which rotates the mirror at two revolutions per second. 

Mounted on top of the motor is a Hewlett Packard HEDS-6000 series shaft en

coder that produces one thousand pulses and an index pulse for each revolution 

of the mirror. The index pulse is used as a zero reference angle for the 

goniometer and also initiates readout and computation of vehicle position and 

bearing. 

Whenever the laser beam strikes a retroreflecting tape { a beacon) the 

beam is reflected back onto itself. Since the reflected beam is larger in 

diameter than the incidence beam, it is focused on arrival by a mirror lens into 

the photodetector. The resulting output is a pulse which indicates the sighted 
\\. 
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beacon angle and the angular width of the beacon. A description of the man

ner in which the angle is measured follows. 

Once the encoder produces an index pulse, an internal counter starts 

counting the number of pulses generated by a clock synchronized with the mir

ror rotation. Every time a beacon is sighted, the current count is stored in 

RAM. The angles are read through the 1/0 ports and are scaled since they are 

produced in binary numbers ranging from zero to 50,000, where the 50,000 

represents 360 °. In addition to storing the beacon sighted angle, the system 

also stores the beacon width. The actual beacons are all of the same width, 

but their widths appear smaller to the goniometer as the distance from 

goniometr to beacon increases. The apparent width is measured by the dura

tion of the received optical pulse. At present, the system stores up to fifteen 

beacon angles and widths per revolution. Also part of the optical system is an 

electronic circuitry and computer interface board. 

Calcu]ations of position may be performed only once every half second-. 

This is one reason why the navigation of the vehicle cannot depend on the op~ 

tical system alone. Another navigation system, the ground navigation, almost 

continuously keeps track of the vehicle's position and bearing using inputs from· 

an odometer and a gyroscope. This system, however, constantly accumulates er

rors generated by the ground navigation system and these have to be corrected 

by the optical navigation system every time a position "fix becomes available. 

\ 10 
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The computer software of the optical navigation system is designed to .,. 

compute the vehicle position and bearing once the beacon has been sighted. 

The index pulse activates the goniometer program. Once an index pulse is 

generated and beacon angles and widths have been read into the buffer through 

1/0 ports, an interrupt is generated masking all interrupt service routines ex

cepting the goniometer routine. Also, once the beacons angles have been read 

in, the system prohibits further reading in of beacon angles and widths during 

the time of computation. 
• I~ • 

Once they have been read in, the beacons angles are calibrated and stored 

in an array of dimension M, where M is the number of beacons sighted. With 

an approximate vehicle position and bearing, and a map of beacon coordinates 

and expected angles as input, the goniometer procedure goes through the follow

ing steps in the order stated, to produce an accurate vehicle position and bear-
-. 

• 1ng as output: 

1. It identifies the beacon, determining if the angles read in represent 
valid beacons, since the goniometer can encounter other reflecting ob
jects like mirror or glass. The algorithm is described in Section 2.1, 
page 12. 

2. It selects the most desirable set of beacons from the set of identified 
beacons. This should not be less then three beacons, the minimum 
numbers needed for a position fix. 

3. Finally, it computes the vehicle's position and bearing using the tri
angulation routine as described in Section 2.3, page 25. 

The index pulse can not be deactivated by the software but can be ig

nored whenever not needed. Once the accurate vehicle position is calculated, 

the ground navigation system utilizes the computed vehicle position to correct 

11 



the vehicle's position and bearing. The correct vehicle position will be used as 

input to the drive • routine, thus driving the vehicle towards the next 

programmed point. 

Shown on page 13, Figure 2-2 describes the overall design for the software 

used in the optical system. If the vehicle fails to find enough beacons to cal

culate its position after several attempts, the ground navigation system will stop 

the vehicle. The distance the vehicle will be permitted to travel without optical 

position fixes depends on the accuracy of the ground navigation system. Such a 

distance has yet to be determined. 

2.1 Beacon Identification 

Beacon identification involves matching a beacon sighted through th.e 

goniometer against the beacons stored in the map-if they match then that 

beacon has been identified. Therefore, the beacon identification process intel

ligently takes care of invalid objects such as mirrors and glass windows scat

tered in the factory or the lab. Since they are objects that do not retroreflect, 

such occurrences are rare, yet possible. The identification program takes care of 

ambiguous objects by rejecting them from the set of sighted beacons. Varying 

degrees of refinement for identifying the correct beacons can be applied to such 

vehicles and what follows is a description of these refinements. 

2.1.1 Identification Via Angle Range 

Vehicle position and bearing is only approximately known, therefore a 

given beacon will not appear exactly in the expected direction '11 i as computed 

from the beacon map, but in a vicinity of w. ± 6. A threshold !). t/J can be 
1 
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selected such that if the sighted angle falls within the interval t/J. ± llt/J, the ' . 

beacon is considered to be identified as the ith beacon. Otherwise, the ith 

beacon is rejected. Rejection also occurs if two or more beacons are sighted 

within one angle range, or if adjacent ranges overlap. In these cases beacons i 

and i + 1 could be accidently interchanged and therefore must be rejected. 

Figure 2-3, page 15, describes the computation of expected angles. (X0,Y0) 

is the vehicle position, (Xi,Yi) are the beacon coordinates, ¢ is the bearing and 

t/J. is the expected angle. At this point o can be computed from the triangle 
t 

Cl = 180 ° - /3. 

Therefore, t/Ji is ( a - <j,). In this algorithm several cases have to be distinguished 

due to the modulo 360 ° nature of angles and the multivaluedness of tan - 1• 

The idea behind this process is to compute the expected beacon angle \JI k-

for k = 1 ... L, where L is the number of beacons in the map-using the ap

proximate vehicle position and the X and Y coordin·at~s of beacons stored in the 

map. The expected angles are subtracted from each of the sighted angles 0 i' 

ascertaining if the difference is less then a certain threshold fl t/J. If so then the 

kth beacon has been identified, unless a second match has been obtained in the 

same angular range. In this case the two beacons will be rejected. If a beacon 

has matched then it is added to that set of matched beacons. This process has 

been successfully applied to the vehicle, but for safer and more reliable results 

other refinements will be discussed in t~~ following sections. 

• 
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In order to identify the right beacons, let us assume that the inputs to 

the "Identify_ beacon" procedure are as follows: 

• X a' Ya is the approximate coordinate of the vehicle position as given 
by the ground navigator; 

• ~ is the approximate vehicle bearing supplied by the gyroscope; 

• X k' Yk are the beacon coordinates stored in a map, where k = 1 ... L, 
and L is the number of beacons stored in the map; 

• e . are the sighted beacon angles, where i == 1 ... M and M is the ' number of beacons sighted. fl.t/; is the selected threshold. 

The following algorithm is applied to identify the right beacons: 

l. If M < 3, then stop. 

2. Compute the expected beacon angle Wk from Xa,Ya and Xk,Yk for 
each k, where k = 1 ... L. 

3. Starting with i .= 1 ... M for a sighting e i' compute It k - 0 ii fl.k 
for- k + I ... L. 

4. If /:ik < ~w, then the kth beacon has been identified, unless a second 
match occurs for a different k. If no positive identification occurs, 
go to the next i in Step 3. If there is a match, record X k'yk and 
0 i in a set that contains the matched beacons. Repeat Step 3 until 

·i == M. If the number of matched beacons is less then three, in
crease the threshold by a computed constant, and repeat Step 3 until 
enough beacons have been identified. 

Figure 2--4, page 17, illustrates the· results of the identification process. 

2.1.2 Distance Thresholding 

This is a first order improvement upon the previous approach. It may 

happen that in a given floorplan and beacon map .too many beacons are sighted, 

for instance, exceeding the maximum number of fifteen; or, so much crowding 

16 
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exists that too often more than one sighting occurs in a given angle range plus 

or minus a. In this case one can use the measured apparent beacon width in 

order to eliminate sightings that indicate a beacon beyond a certain threshold, 

T, in distance. 

The process involves computing di, the sighted beacon distance. Figure 

2-5 on page 19 represents the geometry of the beacons made into cylindrical 

posts. The distance di is inversely proportional to the angle wi. Therefore, 

d. = Wtan -I w.. Once the distance d. is computed for i = 1 ... M, where M is t t t 

the number of beacons sighted, the distance is checked to see if it falls within 

within the chosen threshold T. If it does fall within, then that beacon is ac

cepted, otherwise it is rejected. Furthermore, if not enough beilchns were iden

tified (for example, less than three beacons) one can increase the threshold by a 

certain constant, repeating the previous process until enough beacons have been 

identified. 

This process will also help in preventing misidentification due to spurious 

reflections from objects other than beacons, for such reflections have the ten

dency to be narrow in angle. In addition if two or more beacons fall within 

the same angular width after distance thresholding then the vehicle should dis

card those beacons. 

2.1.3 Identification Via Distance Range 

Further safety against misidentification can be incorporated if the measured 

distance di, as computed above in Section 2.1.2, is compared to the distance Di, 

as computed from the beacon map. Then, if /Di-· dil > ~d, the sighting shou]d 

18 
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be rejected. Ad can not be made too small, since the distance measurement via 

the beacon width is not very accurate. Nevertheless, this procedure reduces the 

occurrence of further misidentification. 

2.1.4 Final Checking 

After the computation of position and bearing other checks of the results's 

validity may be made: 

• If in making computations more than one triplet of beacons is used, 
where each gives an independent position fix, the results should be 
all within the same vicinity. If a large variance exists, one or more 

beacons may have been misidentified. -

• If only one triplet is used and the computed position or bearing has 
significantly deviated from the estimated values, misidentification 

quite likely occurred. 

2.2 Beacon Selection 

Once the beacons have been correctly identified, the beacon selection 

process is applied to select the most feasible set of triplets for use in calculating 

the vehicle's position and bearing. One approach is to find all sets of triplets 

using permutation, catculating the vehicle position from each set of triplets, then 

averaging the results. This approach can generate very accurate results, but 

one disadvantage is that the approach will generate a great amount of computer 
' 

time. And, reducing computation time is a goal within a real time system. 

A different approach would be to select one best set of triplets that will 

give the most accurate results. Through theorizing we intend prove that the 

best set of beacon triplets is the one in which the spacing of the three adjacent 

beacons is closest to 90 ° each. To prove that, let us consider the angle a be-
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Figure 2-6: Distance Error. 
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tween beacons one and two as shown on page 21 in Figure 2-6. D is half the 

distance b~een the two beacons, while , is the distance between the midpoint 
/ 

/ 

between beacons one and two and the vehicle position. From this figure one 

obtains: 

D 
- = tan a: ; and, then 
8 

s = D cot a:. 

Taking the derivative of this equation produces 

ds 
-D (cota: + 1) . --

do: 

A distance error 6.s may now be stated in terms of an angle error, Lia: 

!is -D (cot o: + 1) 6.o:, and 

6.s -D [ 
1 

] Lia. 
sin 2a 

6.-s will increase when a decreases, implying that with a larger angle o: the 

vehicle estimation will be more accurate. The minimum error will occur with 

an angle o: of 90 ° • 

Obviously, the above geometry represents a special case, however, it serves 

as an illustration. A general error analysis is difficult to generate since the er

ro-r will depend on too many parameters, making a reasonable general discussion 

• evasive. 

I 
I 
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2'~.1 Beacon Selection Algorithm 

As flowcharted in Figure 2-7, page 24, the beacon selection algorithm is 

used to select the three most feasible beacons which are then used to calculate 

the vehicle position. Let us assume that the sighted angles of the matched 

beacons are e ., where i = 1 ... N, and N is the number of beacons matched. 
' 

1. If N = 3, then those are the beacons used to calculate the vehicle 
position. 

2. If N > 3, then find the difference between two angles of adjacent 
beacons for every beacon in the set of matched beacons. For ex-
ample: 

Dif [ i] == 0 i + 1 - 0 i' i - 1 ... N-1 , and, 

This is the pair that includes a zero degree in between. If the dif
ference between two angles is less then zero, then the angle difference 
should be complemented by adding an angle of 360 ° to it. 

3. Find the minimum of the angle differences where 

I 

Min == Dif [ k] , for some k, such that 1 < k < N. 

Next, begin omitting un\\ranted beacons from the set of matched 
beacons using the following algorithm: 

a. First case: If 1 < k < N. 

i. If Dif [k - 1] < Dif [k + 1], omit beacon k by setting 
Dif [k - 1} == Dif [k - 1} + Dif [k]. 

ii. If Dif [k - 1] > Dif [k + 1], omit beacon k + 1 by. setting 
Dif [k] == Dif [k + 1} + Dif [k]. 

b. Second case: If k = 1. 

i. If Dif [ N] < Dif [ k + 1], omit beacon k from the set of 
matched beacons and set Dif [ NJ = Dif [ NJ + Dif [ k]. 
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l>tIT BE~ON K+ I 0411 I( !EACt>I 

Figure 2-7: The Beacon Selection Algorithm. 
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ii. If Dif [ N] > Dif [ k + 1 J, omit beacon k + 1 from the set of 
matched beacons and set Dif[k] == Dif[k + 1] + Dif[k]. 

c. Third case: If k = N. 

i. If Dif [ N - 1 J > Dif [ 1}, omit beacon 1 from the set of 
matched beacons and set Dif [N- 1] == Dif [N] + Dif [1]. 

ii. If Dif [ N - 1] < Dif [ 1], omit beacon N from the set of 
matched beacons and set Dif[N-1] == Dif [N-1] + Dif[N]. 

Decrement the number of matched beacons by 1. If N == 3, then 
stop, otherwise go to Step 3. 

This algorithm has been very successful in choosing the proper beacons. 

2.3 The Mathematical Theory For Obtaining The Vehicle Posi

tion 

After appropriate beacons are identified and selected, the vehicle position 

and bearing may be computated. To compute the vehicle position X0 ,Y0 , let 

the cartesian coordinates of the three selected beacons be denoted by ( X 1, Y 1), 

{X2,Y2), (X3,Y3), and let the angle between beacons 1 and .2 be o 1, the angle 

between beacons 2 and 3 be a 2, and the angle between beacons 1 and 3 be a 3• 

2.3.1 Vehicle Position 

Let us assume a circle, A, is drawn through the points of beacons 1 and 

2, and the as yet unknown vehicle position X0 , Y0• Circle B is drawn through 

the points of beacons 2 and 3 and X0,Y0• Circle C is drawn through the points 

of beacons I and 3 and X0 ,Y0 as shown in Figure 2-8, page 26. 

Each of the circles is determined through a theorem of geometry stating 

that from each point on a circle, say A, the distance between beacons 1 and 2 

appears under the same angle. This angle is a 1 and serves to find the center 
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Figure 2-8: The Three Circles A, B and C. 
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of circle A. Intersections between the circles provide the vehicle coordinates. 

The centers of circles A, B and C a.re calculated as shown in the following 

paragraphs. 

As in Figute 2-9, Circle A will be an example for the calculating the cen-

~ ter of a circle given the coordinates of the beacons that fall on the same circle. 

Let line a be the line between beacons 1 and 2, line b be the line drawn 

through the center of the circle ( X c' Ye), and let X m' Y m be the middle of line a 

where 

X == m 
, y 

m 

Let l be half t·he distance between beacons 1 and 2, where 

The slope of line a is· 

and, since line a is perpendicular to line b, the slope of line b is 

-1 
m = - or 2 ' 

ml 

m = 2 
• 

The equation of line b through ( X c' Ye) is 

x1 - x2 
Y = Y + (X - X ) . 

c m y -Y c m 
2 1 

27 
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Figure 2-9: The Calculation of the Center of a Circle. 
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And, referring to Figure ·2-9, 

(2.5) 

From Equation 2.5 the following is generated: 

(2.6) 

Substituting (Xe - Xm) into Equation 2.4 results in 

From Equation 2.6 we can generate thLf ollowing: 

{2.7) 

Then, substitute (Ye - Y m) in Equation 2.4 so that 

And, having substituted the value of Xm, the center of circl~ A is 

Similarly, the center of circle B is 

and the center of circle C is 
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Having found the centers of the circles, one next calculates the intersection 

points in the manner shown in Figure 2-10, page 31. Intersections are com

puted between every pair of unique circles and each intersection point serves as 

the computed vehicle position. The average of the three intersection points 

provides an accurate vehicle position. 

Let us take the two circles A and B, where X01 ,Y01 and X02 ,Y02 are the 

center of the circles respectively-see Figure 2-10, page 31. And, letting the 

common beacon coordinates between the two circles be X ,Y, and X ,Y be the c c m m 

midpoint between the vehicle position and the point X ,Y, then the slope of line 
C C 

• 
a IS 

m ----· 
X02 - XOl, 

and, the slope of line b is 

,. 
m 

m 

Thus, the equation of line a through points (Xm,Ym) and (X01 ,Y01 ) is 

and the equation of line b through (Xm,Y m) and the common point (Xc,Yc) is 

Y - Y == (X - X ) m' . m c m c 

With these two equations one calculates the intersection of lines a and b: 

(Xm-Xo1)m+Yo1 == (Xm-Xc)m'+Yc; 

(Xm-XOl)m = (Xm-Xc)m'+Yc-Yo1· 

30 
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Figure 2-10: Computation of the Vehicle's Point. 
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Thus, 

m-m , • (2.9) X m 

As shown in Figure 2-10, one may find the vehicle position (X0,Y0), since 

X • m 2 

As a result, 

X0 = 2X - X . m C 
(2.10) 

And, one substitutes the values of (Xm,Ym) in Equation 2.10 so that the com

puted vehicle position is 

[
Ye - YOl - Yem, + XOl m] 

2 -X. 
m - m' c 

Similarly, 

y 
m 2 ' 

and as a result, 

Y = 2Y - Y . (2.11) 0 . m C 

By substituting the value of Y from Equation 2.8 into the resulting Y coor-m 

dinate of the vehicle's position in Equation 2.11 one gets 

Assuming that the vehicle positions obtained using circles A and B, B and 

vehicle position will be 
32 
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xab + xbc + xac xo = ___ s ___ , 
• s 

Problems occur if all three beacons and the vehicle lie on the same circle, 

then it will be impossible to calculate the vehicle position. Near such a situa

tion, calculations will produce large errors, and thus safeguards have to be built 

into the program to identify such an event. 

2.3.2 Vehicle Bearing 

Figure 2-11, page 34, shows the vehicle bearing </,, the beacon sighted 

angle (), and the angle ,, as referred to the x-axis. Given pqth the beacon 

coordinate (X1,Y1) and the exact vehicle coordinates (X0,Y0) from the previous 

section one may compute the following: 

tan, 

' 
Since () is known and , is computed, the vehicle bearing is ¢ , - 0. 
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Figure 2-11: Vehicle Bearing. 
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2~4 The Optical Navigation System Software 

This section describes the subroutines written for the optical system. Each 

coming section will describe each subroutine what it does and, and what are the 

inputs outputs for that particular routine a flow chart will be associated with 

each routine to explain the algorithms used. See Appendix A for the code 

programs used for the Cyclopion. 

2.4.1 The gonimeter procedure 

This procedure goes through the foil owing steps 

1. Checks if the vehicle is in reverse or forward mode, to determine 
the vehicle starting point and bearing. 

2. Call "ldentify_beacons" procedure to identify the right beacons. 

3. Then calls the procedure "Compute_Vehicle_Pos" to compute 
the accurate vehicle position. 

4. Finally, computes the vehicle bearing. 

Inputs: 

1. THETA(!) :Sighted beacon angles Oi, 
For i - 1 ... N, where N is 
the Number of sighted beacons. 

2. (XP, YP) • 

3. (APRX, APRY) 

4. BEA 

Outputs: 

:The Beacons coordinate map 
.. 

:The approximate vehicle position 

:The prescribed bearing 

1. (VEH_POS_X, VEH_POS_Y) :The accurate vehicle position 

2. BEARING :The computed Bearing 

Figure 2-2 on page 13 describes the goniometer procedure. 
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2.4.2 Identify beacons Procedure 

This procedure identifies the correct beacons using via angular range algo

rithm described in section 2.1 on page 12. Figure 2-12 on page 37 represents 

this procedure. 

1. Computes the expected beacon angle by calling the "Expected angle" 
• routine 

2. Identifies the right beacons using the method described in section 2.1. 

3. Once a beacons has been identified the corresponding beacon coordinate 
and angles are stored in a array of matched beacons. 

Inputs: 

1. THETA(I) 

2. (XP,Y.P). 

Outputs: 

1. (XPOINTS, YPOINTS) 

2. THEATS. 

:Sighted beacon angles 8. 
1. 

for i == 1 ... N, where N 
is the number of sighted beacons. 

:The Beacon coordinates. 

:An array of matched beacon 
coordinates 

:The matched beacon sightings 

,,--.-
. < /· 
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J ll 0: 
~TCHE:O :Q . . 

COM'UTE EXPECTED 

AfG...E:S ( Ii: XANG ) 

.J : .J • I · 1<: I · 
CJ.£0< = o. . . 

D-£CK=C:1-ECK-t I · . 
TEM>x : XP ( I< ) • 

'TD9Y : YX (I<) • 

TE)f>AAC=THCTA (K • 

~ MAP C XP. yp J • SIGHTED 6.1.~L£S ,.,,~ CT~AJ 
NMS£EN AND Nl.JleEACOIS 

BEA~ J HAS BEEN 
IDENTIFIED. ACX) TEMPX 
TEI-PY A NO T'DiP ANG 
TO S~T CF MAT D-E: D 

9EACONS 

FALSE 

BEAC~ J HAS 

BEEN 

HISIDENTIFI 

Figure 2-12: Identify Beacons Procedure 
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2.4.3 The Expected Angle Procedure 

The procedure computes the expected beacons angles of all beacons in the 

map relative to the vehicle position. Figure 2-13 on page 38 display the flow of 

the computation, of the expected angle. 

Inputs: 

1. (APRX, APRY) • 

2. BEA. 

3. (XP,YP). 

Outputs: 

1. EXANG(I) 

NG.E = 
1AN (AR~/~GI l-t 
160 - BEARlNi 

FALSE 

C(M>UTE 

:The approximate vehicle positions. 

:The prescribed bearing. 

:The actual coordinates of the beacon 

:The expected beacon angle~ .. 1 

INPUT 
A?PROXlMAl[ VD4. POSJTIO,I (.&.PRX, APRV). 

&£ARIN:.. At-0 n-E BEACON POINT [XP, '<P) 

ARG I : XP- APRX . 

ARG2 = YP - APR't 

lR\J: 

ANGLE = 

FALSE 

FALSE 

NG-E = 
lAN !ARG:2/~G I) 

....-.::,,:-_ja..-ING -t 360 . 

lAN (ARG/AR'GI) -
BEARING. 

~: 270. ANGLE= 0.0 . 

Figure 2-13: Expected Angle Procedure 
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2.4.4 Compute Vehicle Position procedure 

The Fallowing steps describe the flow of this procedure 

1. Check if the number of identified beacons are equal to three, if so 
compute the vehicle position, using those beacons. 

2. If not, the "Triplet procedure is called to select the most feasible 
triplet's using the beacons selection algorithm described in section 
2.2. 

2. Procedure "Suffpoints" is called to shuffle the beacon points if 
needed. 

3. Then the Procedure "Cale-points" is called to determine the accurate 
vehicle position. 

Inputs: 

1 . (XPOINTS, YPOINTS) 

2. THEA TS. 

3 . NUMMA TCHED • 

Outputs: 

1. (VEH_POS_X, ~EH_POS_Y) 

:An array of matched beacon 
coordinates. 

:The matched beacon sightings. 

:The numbe~ of matched beacons. 

:The accurat~ vehicle position . 

J 
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Figure 2-14: 

" 

INPUT 

FALSE 
SELECT T~EE: KlS T 

F~L E: B~o--lS 

IC04PUTE ALPHA I , ALPH~ 

N-0 ALPHA3, lt£N 

SH..ff'El... E T t-E BEACO.S 

CAL.Cl.LA TE Tt-£ VEHICLE 

POSITION 

(YEtLPOS_x. VEtt_POS_Y I 

Nl. ~ MAlO-fi:D BtACCNi(N...M4Al~D) 

ARRAY or M~Tc....:o e,ACONS L SJGHTINl 
(XPOINTS, YPDINTS, Tl-ETAS) 

TRUE 

• 

Compute Vehicle Position Procedure 
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2.4.5 Calculate vehicle points procedure 

The procedure, first, computes the the center of circle, A, Then the center 

of circle, B, finally the center of circle C. The next step, it computes the coor

dinates of the vehicle using circles A and B, A and C, and B and C. then 

I averages the three vehicle points to produce the accurate vehicle position. 

Inputs: 

1 • (Xl, Yl) , (X2, Y2) 
and (X3, Y3) 

:The coordinates of the three 
selected beacons 

Outputs: 

1. (VEH_POS_X, VEH_POS_Y) :The accurate vehicle position. 

C04PUTE: CE NTE: R OF C IRQ..£ A 

C(:M)UTE CE:NITR OF' CIRLC B 

co.PUTE CENTER OF CIRCLE C 

CCMNTE: VE H POS . ( XA8 , y Aa) 

USil"G CE:NlERS CF CIRCLES 

A AKl B, At-0 ALPHA I 

CCMlUTE VEH. POS. (XBC. YBC) 

USI~ CE:NlERS CF CIRCLES 

B N-0 C, At£> APL~ 

CXM>UTE VEH. PCS. (XAC, YAC) 
USit-13 CENlERS CF CIRCLES 

A AKJ C. At-0 ALPHAJ 

C09UTE Tl1E ACCURA1E VEH. 

POS. B'Y AVERAGING Tt£ 3 
C()4)1.JTED VEHl Cl.£ POSITIONS 

Tl-£ COOROINTES OF' T~EE SELECTED BEACONS. 

ALP~I. ALPHA2 AfiO ""-PHAJ 

Figure 2-15: Compute Vehicle Points Procedure 

41 

' l 



2.4.6 Find Center Procedure 

The procedure computes the center of a given circle, section 2.3 on page 

256. describe the algorithms of that procedure 

Inputs: 

1. (PXl, PYl) , (PX2, PY2) . 

2. ALPHA 

Outputs: 

1. (CENTERX, CENTERY) 

:The coordinates of the 
two beacons that pass through 
the circle. 

:The angle o between 
the two beacons. 

:The center of the circle 

2.4. 7 Find Vehicle Coordinates Procedure 

The procedure computes the vehicle coordinates. 

Inputs: 

1. (CXI, CYI) ,. (CX2, CY2) 

2. (XC, YC) 

Outputs: 

1. (XCORD, YCORD) • 

:The center coordinates of the 
two circles 

:The common beacon coordinates 
that passes through the two 
circles. 

:The computed vehicle coordinates 
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~ = XC 

'YCDRO = 2 • CYI - YC 

FALSE 

CENTER CF TWO CIRCt.£S (CXI • cY I) AND (C>Q .CY:,!) , 

ANJ TI-E COfff)N BEACtN COCR)INATES 
(CX. YC) 

YCCR) : YC 

XCCRO = 2 • ex, - XC 

SL.OPE or Tt£ LINE M = (CY2-CYl)/(CX2-CXI) 
XC~: (~•(YC-CYl+(XC/M)+CX~(M+I/M))-XC 

YC04) = { (XC - Xl:mO) / M) ~ YC 

RET 

Figure 2-16: Find Vehicle Coordinates Procedure 
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2.4.8 Beacon Selection Procedure 

This procedure selects the right sets of beacons to compute, the vehicle 

position, the algorithm was describes in section 2.2 on page 20 

inputs: 

1. (XPOINTS, YPOINTS) • 

2. THETAS 

Outputs: 

1 • (X , Y ) , (X , Y ) . 
1 1 2 2 

and (X
3

, Y 
3

) 

2.4.9 Shuffpoints Procedure 

.. 

:An array of matched beacons 
coordinates. 

:The matched beacon sightings 

:The coordinates of the 

three beacons selected 

This procedure ALPHA!, APLHA2, AND ALPHA3 and rearanges the numbering 

of the tree selected beacons according to angle difference between them. 

inputs: 

1 • (X , Y ) , (X , Y ) 
1 1 2 2 

(X3,Y 3) 

2. THEA TS. 

Outputs: 

1. (X1,Y i)' (X2, y 2) 

(X3,Y 3) 

2. ALPHAl, APLHA2, ALPifA3. 

:The coordinates of the 

three beacons selected 

:The matched beacon 
sightings 

:The coordinates of the 

three shuffeled beacons 

:The angles a 1 ,a2 , o 3 
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COt4'\Jlli ALP HA I :2 

1HILTA(3) - ~ETA(I); 

ALPHA2= 
lt-£TAIJ)-Tt-£1A(~); 

ALPHAl=TI-£TA(l)-Tt£TA(J) • 
360: 

Pt1A2:=THETA(~)-n-£TA(I); 
PLACE (XI .YI l BY (X2.Y~); 

REPLACE (X2,Y2) BY (XI.YI); 
L..ACf: (X3.Y3) !Y (X:2.Y~). 

11£ACON CXXlRO]NA.TCS (><I.YI). ()Q, v:z, »fl (XS, Yl) 

N-0 n-£ RE em RES P0i0Ip..(; SIIHTED AAGLES 

(THiTA) 

ALPHAl=THl:TA(3)-Tl-£TA(1); 
HA2=T..-ETA(l)-Tl-£TAC31+36 

(XI ,YI) BY (X2.Y:2) 
(X2. 'f21 BY (X3.'f3); 

~, (X3.Y3) BY (XI.YI) 

360 - ALPH'-3; 

Figure 2-17: Shuffpoints Procedure 
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Chapter 3 
The Ground Navigation System 

The ground navigation system is the second navigation system for this 

vehicle, and is needed for three reasons: 1) the vehicle might not be able to 

calculate its position using the optical system when the beacons are not visible 

due to dust accumulation or objects in the factory environment, 2) the optical 

navigation system can determine the vehicle location only once every half 

second, and therefore the ground navigation will have to be used to locate the 

vehicle position between fixes. The ground navigation system computes the 

position every 0.005 of a second, which for all practical purpose is continuous. 

3) frequent computation of the vehicle position is needed, the ground navigator 

board (processor) was introduced to reduce the burden on the 86/85 computer. 

The constituents of the ground navigation system are a gyroscope that 

measures the angle ~¢, a wheel encoder (odometer) for measuring the distance 

!il traveled by the front wheel of the vehicle, and a ground navigation processor 

that uses the angle ~¢ and 111 · to calculate the vehicle position and bearing. 

Although, the system allows the vehicle to travel a long· distance without 

relying on the optical system, an error may result in determining the vehicle 

position and bearing, therefore, the position coordinates of the ground navigation 

system are updated and corrected using the actual position and bearing cal

culated by the optical system. 

' 
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The error originates from two devices, the gyroscope and the wheel en

coder odometer. The effect of the earths rotation causes the gyroscope to drift 

over time ( approximately 1 / 4 of a degree per minute). In addition, the resolu

tion of the gyroscope is of one quarter of a degree and therefore, the vehicle 

bearing is measured by units of quarter of a degree. The effect of tire wear or 

wheel slippage will effect the accuracy of the wheel encoder (odometer) in deter

mining the distance traveled. Only a very small error will be due to the 

resolution of the wheel encoder which issues a pulse for every 0.01 inches of the 

front wheel travel. 

3.1 The Ground Navigation System 

As the vehicle travels, at regular distance intervals, lll, a pulse is 

generated from the drive board, and the vehicle position is recalculated. 

Changes in X-Y coordinates are computed and added to the previous XP-YP 

coordinates to provide the current vehicle position. At full speed the positions 

are recalculated at a rate of once every 0.005 of a second. If an accurate posi

tion is determined by the optical system, the ground navigation board corrects 

the current ground navigator reading. 

3.2 Tl1e Mathematical Theory For G1·ound Navigation System 

The vehicle travel geometry is shown in Figure 3-1 on page 48, where !ls 

is the distance traveled and D.<f, is the change of angle for <f, 1 to <t, 2• Vehicle 

coordinates refer to the point, V, the center of the rear axle. 

Ill is the increment of the front wheel travel. This is generally not the 

distance traveled by the vehicle, except if the vehicle is traveling on a straight 

line. For each lll, increments of llx and ~Y are calculated and added to the 
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Figure 3-1: The geometry of the vehicle 
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previous X -Y cartesian coordinates of the vehicle position. To provide the cur-
P p 

rent vehicle position the approximate change is determined as follows: 

ll.y = ll.s sin (a) (3.1) 

fl X = ~ 8 COS (er) (3.2) 

Where, 

er 

The arc Jength 

~a == R ~</> {3.3) 

Where R is the radius of the circle, and ll</> is the change in angle cf, (i.e. 

fl</> == <J, 2 - <p 1). From the geometry, 

r2 == L2 + R2, 

where., L is a constant representing the distance bet\\1een the front wheel and 

the rear axle of the vehicle. Hence, 

and from Figure 3-2 on page 51, 

Substitute R and r Equation 3.3 

2 
- ,1:11 . 2 
v·--L 

ll cf,2 
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Substituting LlS and o in equation. 3.1 and Equation 3.2 on page 49, then the 

increments are: 

• 
/ 

There are three different situations when calculating the vehicle position: 

1. When the steering angle, a, is 90 °, as in Figure 3-2 on page 51 
shows, the front wheel will travel: 

6-L == L 6-<f> == 30 X 0.25 ° == 01.308 

Since lll 
be 

AL 
- == 
Al 

0.01 inches., the count, n, of the odometer pulses will 

13.08. 

Hence, the minimum number of odometer counts n n·eeded to com
pute !ls of Equation 3.4 on page 50 cannot become imaginary. But 
due to accidental events, such as startup conditions we have to in
sure that a count n < 14 will not lead to errors. Therefore, If 
n < 14, the vehicle has not changed its position, but the values of n 

in this particu]ar situation reflects the steering angle a of being 90 °. 

In this case the current vehicle position (X, Y) equals the previous 
vehicle coordinates ( X , Y ) . p p 

3. As long as there are no changes of Ll<p, reported by the gyroscope, 
the angle used to calculate the vehicle position will be the previous 
angle ¢,, (i.e. </, 1 of the current interval will be c/, 2 of the previous 

interval). In this case the path is estimated to be continues on a 
straight line. Therefore, Llx and Lly will be: 
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Figure 3-2: The minimum number of n counts .. 

( LA</>) 
Ay == Al VI - 2 sin (</>.1) 

n Al · 
p 

Where n is the n increments of wheel travel ll.l during the previous 
p 

interval. Therefore the computed vehicle position will be: 

X == X + n Ax 
p 

Y = Y + n fly p 
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3. Figure 3-3: The geometry of the vehicle 
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where, X , Y are the computed vehicle coordinates during the pre-p p 

vious change in fl</>. 

4. Finally, if a change in the direction by fl</> == 0.25° is indicated by 
the gyroscope , it becomes possible to compute the accurate coor
dinates from the circular arc in Figure 3-3 on page 52. The incre
ments flx and fly are: 

(
Lfl<f,) (</>1 + 'P2) 

flY = nlllVl- ntil 2 sin 2 

Then the computed vehicle position is: 

X == X + flx p 

y = y + fly 
p 

where X and Y are the previous by computed vehicle position at p p 

the end of the previous fl</> interval. 

(3.7) 

(3.8) 

The sin and cos values are determined by a look up table stored in the com

puter. Once the vehicle position is computed using the third situation the pre

vious point (XP, YP) are set to· ·the current point (X, Y), the counter n is set to 

zero for the next computing interval, and the angle <J, 1 is set to <J, 2 for the next 

interval. 

3.3 The Ground Navigation Software 

The soft\\rare for the grour1d navigation program is written in assembly 

language for the 8085 micro processor. The ground navigator program the 

program has been debugged , but has not yet been implemented by the vehicle. 
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The program consists of four interrupt procedures. Since the 8085 will 

function on an interrupt driven basis, all interrupts will be serviced on first 

come first serve basis, except for the 'Coordinate Request interrupt that is 

unmask able [ 5]. 

The 'Beacon Sighted' interrupt service routine, is activated by an interrupt 

that is generated when a beacon is sighted. The routine outputs the current 

X-Y coordinates and bearing to the address latched in the RAM and therefore, 

the coordinates are stored in memory. 

The 'Buffer Full' interrupt service routine, is activated by a interrupt in

dicating that the on board computer has located a set of updated X and Y 

coordinates from the optical navigation system. The routine handles replacing 

the current X-Y coordinates by the updated X-Y coordinates, computed by the 

optical system. 

The 'coordinate Request' interrupt service routine is generated when the on 

board computer requests the current position coordinates. The service routine, 

allows the X-Y coordinates to remain in memory unchanged long enough to al

low the on board computer read the data. 

The '6.l' interrupt service routine, is activated every 0.01 inches. of travel 

by the front wheel. The vehicle position will be calculated using the algorithm 

described in the previous section. The routine starts by reading the bearing ¢ 

from ports and checks to see if any changes have occurred, if no change in ¢ 
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has occurred then Equations 3.5 and Equations 3.6 are used, if there was a 

change, then Equations 3. 7 and Equations 3.8 are used. In addition the routine 

also checks if the number of fixed interval n is less then 14, in order to avoid 

computing the square root of a negative number. Therefore, the current vehicle 

position will equal the previous vehicle position. The cos and sin of the angle </> 

are obtained from a look up table which will reside in the ROM. Presently this 

table has increments of 0.5 ° between points. Only the first quadrant (0 - 90 °) 

is stored. Figure 3-4 on page 56 Displays the flow of l:l.l signal service routine. 
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ll z = fl I ../ 1 - 2 cos ( 'P ) (
Llltp) 

n Ill l , 

~v = ~l../1- 2 sin (,p) ( Llltp) 
n lll 1 p 

X : XP + h 6-X 

Y = VP +nbi. Y 

RET 

.. 

FALSE 

• 

START 

I 

1RUE 

(
Lflef,) ('P1 + 'P2) A Y = n !ll Vl - n fll 2 sin 2 

x·=XP1Ax 
Y : YP -t ~ Y 

XP = Xi YP = Y 
NP : Ni N :O 

RET 

.. 

FALSE 

Figure 3-4: Ill Signal service routine 
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Chapter 4 
The Drive Routine 

The drive routine controls the driving and steering system of the vehicle. 

It is activated whenever the !lS pulse is generated by the drive board signaling 

the on-boa.rd computer that the present path segment distance is almost com

pletely traversed so that the computer can compute the steering angle, the 

velocity and the length of the next path segment to travel. 

The computation of next path segment has to be finished before the 

completion of the previous path, in order to guarantee that a drive instruction 

will always be obtainable in time. The vehicle travels from one point to another 

within a segment consisting of two circular arcs with two turning radii. The 

radii are adjusted to be equal in magnitude for smoothness of movement but of 

opposite signs, where, the sign indicates right or left turns. Since the vehicle 
\ 

travels upon two arcs, the vehicle trajectory is approximated by a sequence of 

circles. The length of each double arc is of the order of 1.0 meter. 

As a result, the following 'Strategy' [3] can be derived which will direct 

the vehicle towards the ideal path: 

a. At the end of each section, the computed vehicle coordinates and bearing 
are taken from the ground navigator. Then, the next section is computed 
in such a way that it will bring the vehicle to the next point on the 
prescribed path. 

b. Due to the deviation of trajectory, as mentioned above, this point will 
never be reached, but the true position will again be determined and a 
new section computed, and so on. 
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4.1 The Mathematical Theory of The Drive Routine 

Figure 4-1 on page 61 shows the geometry of the vehicle traveling from 

point (X
1
,Y

1
) to the desired position (X2,Y2), following two circular arcs S1 and 

S
2

• Where the initial vector at point (X1,Y1) is A, and its destination vector at 

point (X
2
,Y

2
) is B. The vector D reflects the straight line between the current 

vehicle point and the destination point. It turns out that the computation of 

the two double arcs S
1 

and S
2, and their radii, r, depends on three parameters. 

They are: the change of the vehicle bearing {J, the angle ¢, between the vectors 

A and the vector D itself. This results in five different cases of double arc, each 

having different equations and the mirror image of each. Three of these cases 

reflect a trajectory of the vehicle traveling along two circular arcs, where as the 

other two cases reflect a trajectory of the vehicle traveling consecutively along 

an arc and a straight line. The drive routine computes the following values: 

1. The parameters that are needed to select the trajectory. 

2. The double arcs lengths S1 and S2, and radius r. 

3. The steering angle o: 1 and a: 2 • 

4.1.1 Computation of Parameters 

As mentioned previously, some derived parameters are needed to compute 

the double arcs and the turning radius of th.e vehicle. The parameter, T, 

(translation) is computed to determine whether the target point (X2,Y2) is to 

the left of the vector A or to the right. Similarly, the rotation , C, is to deter-

-mine whether the vector B causes the vehicle to ·rotate clockwise, CW, or 

counter clockwise, CCW. The following are definitions of the needed paran1eters: 

1. The translation of the vehicle: 
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If the sign of T is positive then the vehicle is translated to 
the left, otherwise it is translated to the right. 

2. The parameter P is computed to determine the range of /3, where 

If the sign of P is positive then the range of /3 is within 
± 90 °, otherwise /3 is outside of ± 90 ° 

3. 1 The rotation of the vehicle is determined by the parameter, C, where 

If the sign of C is positive then the rotation of the vehicle is 
counter clock wise (CCW), otherwise rotation is clock wise (CW) 

4. S is computed to determine the range of </, where: 

If t"he sign of S is positive then <f> is within ± 90 °, otherwise 
<f, is outside of ± 90 °. 

5. A number of other desired parameters are needed for the computation of 
the double arcs. Theses are: 

cos ( </>) 
- -
IAI IBI 

sin ( <,h) 
- -
IAI IBI 

', 
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d =· _P-_IT_I _ISI_I I_CI 

and, 

ITI 
a=-; 

-IAI 

-
IAI 

h = ITI IBI 
ICI I 

4.1.2 The Computation of Double Arcs And Radius 

Since the computation of the double arc and turning radius depend on the 

values of <J, and /3 and a minimum permissible turning radius. There are five 

different cases of computing these arcs and their radii. 

describe each case in detail. 

This section will 

1. Case (1): If O < <J, < 2 {3. and the rotation of the vehicle and the trans

lation are in the same direction. Then, in order to compute the length of the 

two arcs S
1 and S2, one needs to analyze the geometry of Figure 4-1 on page 

61. The parametric equations of circle CA are obtained as follows: 

X - X01 == -r cos (t/JA). ( 4.1) 

{4.2) 

Where (X01 ,Y01 ) is the center of circle CA Since t/; A at point (X1, Y1) is 

zero then the parametric equation for circle CA through point (X1,Y1) must 

have: 
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Figure 4-1: Case (1) of Double Arc 
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By substituting X01 and Y01 into equation 4.1 and 4.2 respectively, the 

parametric equation of any point on circle CA will be: 

Similarly, the general parametric equation for circle CB will be: 

(4.3) 

(4.4) 

Since t/;8 at point ( X 2 , Y2) is equal to </,, the parametric equations through point 

X02 == - r cos ( </,) + X 2. r sin(</,)+ Y2 

By substituting X02 and Y02 into Equation. 4.3 and 4.4 respectively, the 

parametric equation of any point on circle CB will be: 

Th.e Two circles CA and CB intersect at a point where, 

Hence, 
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- r cos ( tp) + r + X 1 = r cos ( tp) ..:. r cos ( <P) + X 2. 

Simi~-arly, 

Hence 

r sin (,t,) + Y1 = - r sin (,t,) + r sin (ti>)+ Y2 

By rearranging Equation 4.5, one can obtain the following: 

-2 r cos ( t/;) + r cos ( ¢) + r = X 2 - X 1. 

and 

(X2-X1) a 
-2 cos ( ¢) + cos ( ¢>) + == --------· - - • 

r r 

From Equation 4.6. one can obtain the following: 

( y 2 - y 1 l a cot ( q,) + d 
2 sin (1/J) + sin (ef,) - ---

r r 
• 

Then, 

a cot (q,) + d 
r == 

2 sin ( t/;) + sin ( tj,) · 

Substitute r in Equation 4. 7, to solve for 1/;: 

where 

a 2 sin ( 1/J) + a sin ( </,) 
-2cos (t/J) +cos(¢)+ 1 =------

. a cot(¢)+ d 

-2 cos ( tp) + cos (,fl) + 1 = a (2 sin ( t/;) + sin ( </, )) . 
a cot (ef,) + d 
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and 

2 a sin ( t/,) a sin ( ¢,) 
2 cos ( t/,) + ( ) = + cos ( ¢,) + 1. 

d + a cot ¢, d + a cot ( ¢,) 

By trigonometric identity 

2 VI+ [ a ]2 cos(.;, - tan -l [--a--]) 
d+acot(¢,) d+acot(¢,) 

(4.8) 

a 
=cos(¢,)+ ( sin(¢,)+I. 

d + a cot ¢,) 

Define 

a 
K == == tan (,B) 

d+acot(<,h) . 

Substitute K, in Equation. 4.8 

2 VI+ K2 cos (t/J - tan- 1(K)) ==cos(</>)+ K sin(¢)+ 1. 

Then, 

_ 1 (cos ( </>) + K sin ( ¢,) + 1) 
tp == cos . + ,B. 

2 Vl + K 2 

From Equ·ation 4. 7 one can obtain r where, 

a 
r=-------

cos ( ¢,) - 2 cos ( tp) + 1 

Since t/J and r ·are kno~n, the equations for the lengths of the double arcs 

S = r •1• • 1 ff/ , 
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Figure 4-2: Case (2) of Double Arc 

2. Case (2): If <P > 2/3, and the rotation and translation of the vehicle are in 

the same direction. Then by looking at Figure 4-2 on page 65, the following set 

of equations can be derived similarly to case (1): 

_ 1 (K cos(¢)+ sin (<P) + 1) 
t/J .:_ cos - (3 

2 J1 + K2 

The radius will be: 

a 
r =--------

2 cqs ( t/J) - cos ( <P) - 1 

and the equations for the lengths of the double arcs are: 

S = r •1•• 1 't', 

0 
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Figure 4-3: Case (3) of Doubl~ ~~re 

3. Case (3): If O <if,< 90 °, and the translation and rotation of the 

vehicle are in opposite direction, then from Figure 4-3 on page 66, one obtains: 

_ 1 (K sin(¢,) - cos (4>) - 1) 
'P = cos - {3. 

2 v'1 + K 2 

The radius will be: 
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-
a 

r = --------
2 cos ( t/J) + cos ( ¢,) + 1 

The equations of the length of the two arcs S1 and S2 are : 

sl = r (,r - t/J); S2 == r (1r - t/J + </, ). 

A 
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~----" 

Figure 4-4: Case (4) of Double Arc 
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I 
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! 

4. Case ( 4): If </> < 2/3, translation and rotation of the vehicle are in the 

same direction, but the vehicle first travels in an arc then travels on a straight 

line. Figure 4-4 on page 67 The following are a set of equations that should be 

used: The turning radius r will be: 

d 
r = ----

tan (<I>/ 2) 

The equations of the two lengths of arcs S1 and S2 are: 
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Figure 4-5: Case (5) of Double Arc 
• 

5. Case ( 5): If cf, > 2(3, and the translation and rotation of the vehicle 

are in the same direction. The vehicle first will travel in a straight lir1e, then 

on an arc Figure 4-5 on page 68. The following set of equations should be 

used. • 

The turning radius r is: 

h 
r = ----

tan(¢,/ 2) 

The equations of the length of the two arcs are: 

s = d-h 1 

\ 
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4.2 The Computation of the Steering Angle 

Once S1 and S2, and the turning radius have been computed, the com

mands to the drive controller are determined by computing the length of the 

arcs /1 and /2 that are covered by the front wheel, and the steering angle Q 

where, 

\ 
'• 

Where, L, is the length of the vehicle from the front wheel to the rear axle. L 

in this case is 30.0 inches. r, is the computed turning radius, and the factor 

( 4.4) is used to convert the arc length from units of /:J./ increments of travel, to 

inches. The steering angles, a
1 

and a
2 

are: 

Where r 1 and r 2 are equal in magnitude but of opposite directions. For back-

ward travel, the signs of the all prescribed vectors B and measured vectors A -

are changed and the left and right turns are reversed. The direction of vectors 

A and B are used in this routine, therefore one simply can use the prescribed 
u -

vectors B to compute the velocity of the vehicle at each prescribed point. 

4.3 The Drive Routine Software 

The drive program was written to assist the vehicle in traveling from one 

point to another using double arcs with a constant turning radius. This program 

provides the vehicle with intelligence, by allowing it to select the the correct 

path it should traverse. 
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Figure 4-6 on page 71, describes the flow of the different procedures to 

compute the length of the arcs and the turning radius of the vehicle. The 

, 

procedures are executed after the measured vehicle coordinates are received from 

the ground navigator and the bearing from the gyroscope. Once the drive 

routine is activated, it follows a sequence of steps to compute the length of 

double arcs and turning radius. The steps that it follows are described below: 

1. Compute parameters T, C, and S, and the angles </> and {3. 

2. Check if the sign of the translation, T, is positive. If so, then the 
translation of the vehicle is to the left and the flag is set to true, 
otherwise the translation of the vehicle is to the right and the flag is 
set to false. 

3. Check if the sign of the rotation, C, is positive. If so, then the rota
tion of the vehicle is to the left CCW, otherwise the rotation of the 
vehicle is to the right, CW . 

4. If the rotation and the translation are of opposite directions, then 
Case (3) is selected and the following steps are executed: 

a. Compute the double arcs S1 and S2 and the turning radius, r. 

b. If the flag is set to true then the vehicle first turns to the left 
then turns to the right. Otherwise the vehicle first turns to the 
right then turns to the left. 

c. Go to step (7). 

5. If the rotation and the translation are in the same direction, and 
cp > 2/3 then. 

a. Compute the turning radius r. 

b. If the radius, r, is less then the permitted radius then Case 
(2) of double arcs is selected, and the following steps are ex
ecuted: 

i. Compute the lengths of the double arcs S1, S2 and turning 

radius, r. If the flag is set to true, then the vehicle first 
turns to the right and then turns to the left. Otherwise 
the vehicle first turns to the left then to the right. 
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C(),,f)UTE T.C. P.D 

TRL£ (LEFT) 

FLAG = F" AL S£ !=LAG : TRUE 

(LEFT) 

TRLE 

ONECI 

R :0/T.A.N(PHI/~) 

GHT ROT. LEF'T 

TR\.E'. 

(Ot-EC2) 

R=H/TAN(PHI/~) 

FALSE 

RIGH'l 

T~N2 = LEF"T 

R' .SI.~, (TWO::l) 
CASE (J) 

TURNI = LETT 
TURH2 = RlGHT 

R, SI ,S2 (TWOC:2) FALSE 
::,-----IE .S (CASE(.&.)) s:>---t!ILASE I :2) I\ 

fALSE 

TURN I = RlGH1 
TLR~ = LEFT 

R. SI .S~ (T'wOC.I 

CASE{!) 

TLRNI = LErT 

1URN2: RIGHT 
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lURNI = LEF"T 
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TURN I =LEFT 
TURN2=RlGHT 

~N:2 = LEFT 

ii. Figure 4-6: The Drive Routines 
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ii. Go to step (7). 

c. If the turning radius, r, is greater than the permitted radius the 
Case ( 5) of double arcs is selected, and the following steps are 
executed.: 

i. Compute the length of the straight line, e, and the length 
of the arc. 

ii. If the flag is set to true, then the vehicle first travels in a 
straight line then turns to the left. Otherwise the vehicle 
first travels in a straight line then turns to the right. 

iii. Go to step (7). 

6. If the rotation and translation are in the same direction and </, < 2 /3 
then: 

a. If </, < f3 then the go to step (6.b ), otherwise the following steps 
are executed. 

i." Compute the turning radius, r. 

ii. If the computed radius, r, is less than the permitted 
radius then go to step (6.b ). Otherwise Case ( 4) of 
double arcs is selected. 

iii. compute the length of the first arc, e, which in this case 
is a straight line and the length of the second arc. 

iv. If the flag is set to true then the vehicle first turns to the 
left then along a straight line. Otherwise the vehicle turns 
to the right then travels along a straight line. 

v. Co to step (7). 

b. Case (1) of double arts is selected, and the following steps are 
executed.: 

i. Compute the length of the double arcs S1 and S2 , and 

the radius r. 

ii. If the flag set to true then the vehicle first travels to the 
left then to the right. Otherwise the vehicle first travels 
to the right then to the left. 

/ 
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8. Return to main the program. 

4.3.1 Compute Parameters and Angles Procedure 

This procedure is responsible of computing the parameters such as the 

rotation and translation of the vehicle and the angles <j, and {3. The program 

assumes that the vehicle is traveling from the measured point ( X 1, Y1) to the 

prescribed point (X2,Y2) the following inputs are needed to to compute those 

parameters: 

Inputs 

1. (VEH_DIR_XA, VEH_DIR_Y A) • The direction at point A. • 

2. (VEH_DIR_XB, VEH_DIR_YB) • The direction at point B • • 

3. (VEH_POS_X , VEH_POS_Y) • The coordinates of the vehicle • 

point A 

4. (POINTSX, POINTSY) : The prescribed point B. 

Outputs 

1. d and h 

2. PHI : The angle¢ 

cos ( </>) sin ( ~) 3. CPHI AND SPHI • and • 

4. BETA • The angle {3 • 

6. TRA·NS • The translation o:f the vehicle • 

• T 
6. C • The Rotation of the vehicle. • 

7. s • Its value determines the range • 
of <I> 

8. p • Its value determines the range • 
of /3 
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4.3.2 One Arc and Straight Line ONECl Procedure 

This procedure is executed, whenever <J, < 2 f3 and the translation and rota

tion of the vehicle are in the same direction. If the computed radius is less 

than the minimum radius of turning the procedure TWOCl is called resulting 

in double arcs computation. Figure 4-7 on page 75 describes the flow of 

ONECl procedure. 

Inputs 

1. d and h 

2. PHI 

3 • CPHI AND SPHI 

4. BETA 

6. MIN RADIUS 

Outputs 

1. RADIUS!, RADIUS2 

2. ARCI, ARC2 

: The angle</, 

: cos(</>) and sin(</,) 

: The angle /3 

: The minimum constant radius. 

: The radius of the arc 

: The length of the two arcs ARCI & ARC2 

where ARC2 represents a straight line. 

4.3.3 A Straight Line and One Arc ONEC2 Procedure 

This procedure is executed, whenever ¢ > 2 f3 , and the translation and the 

rotation of the vehicle are in the same Ji rections. In this case the vehicle first 

travels on a straight line then along an arc resulting in Case ( 5) of double 

arcs, unless the computed radius is less than the minimum permitted radius of 

turning. In this case select Case (2) of double arcs by calling procedure 

TWOC2. 

ONECl. 

This procedure has the same inputs and outputs of procedure 
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TLRNI = LEFT lRLE 

> Figure 4-7: 

• 

INPllT 

RADJUSI = D/lAN(PHI/) 

FALSE: 

ARCI = RADIUS! • PHI 

ARC2 = H - D 

RADUS2 = 999.0 

FALSE 

T~NI = RlGHT 

TRUE 

FALSE 

TRLE 

DlUS I =-RI-.DIUS I 

RET 

D.H. PHI. COS(PHI) I SIN(PHI) 

B£TA t..fl MIN.._RMlIUS .FLAG 

CALL DOUBLE ARCS 

PROCECtJRE (TWOCI) 

CASE ( I) 

One circle and straight line procedure 
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4.3.4 Double arc TWOCl Procedure 

This procedure is executed under two conditions, 1) if the radius computed 

in procedure ONECl is smaller than the permitted radius or, 2) </, < {3. As a 

result the vehicle will travel along two circular arcs. Figure 4-8 on page 77 

describes that procedure. Below is a description of the inputs and outputs to 

that procedure. 

Inputs 

1. d e.nd h 
• 

2. PHI 

3. CPHI and SPHI 

4. BETA 

6. MIN RADIUS 

6. FLAG 

Outputs 

1. RADIUS!, RADIUS2 

2. ARCI, ARC2 

: The angle</, 

: cos ( tp) and sin ( 4>) 

: The angle /3 

: The minimum constant radius. 

: The flag. 

: The radius of the circular a.re. 

: The length of the two arcs ARCl 

and ARC2. 

4.3.5 Double arc TWOC2 Procedure 

This procedure is executed if the radius computed in procedure ONEC2 is 

smaller than the permitted minimum radius. Therefore, the vehicle will travel 

through t\\ro double arcs. The inputs, outputs, and flow chart are similar to 

procedure TWOCl. 
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TLRNI = L.EF"T 

1URN2 = RIGH1 

TRLE 

INPUT 
4' 

COvPUTE PSI, ARCI 

ARC2 AND RADlI 

FAL~ 

TlRN I = R!GH1 

lURN2: LEFT 

FALSE 

RADJUS~ = RADIUSI 

RADlUSI = - RADIUSI 

RET 

PHI. COS(PHI). SIN(PHI) Af\D BETA 

FALG 

TRUE 
RADJUS~ = -RADIUSI 

RADIUSI= - RADIUSI 

Figure 4-8: Double Arcs Procedure 
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4.3.6 Double arc TWOCS Procedure 

This procedure is executed, whenever O > ~ < 90 °, and the translation and 

the rotation of the vehicle are of opposite directions. The procedure's inputs, 

outputs and flow chart are similar to procedures TWOCl and TWOC2. 
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Chapter 5 
The Overall System Design 

This chapter describes the overall system design, and the overall timing of 

events for the vehicle Cyclopion. At the present time the ground navigation 

program has not yet been in operation. Nevertheless, this chapter will describe 

the full travel sequence of events. Including the ground navigation system. Then 

a simplified method of travel will be described which has been successfully im

plemented on this test bed vehicle. 

5.1 The Full Travel 

Figure 1-1 on page 4 [3], sh-ows the diagram of the complete system, 

where o_ne can distinguish two separate u-nits the drive software on the left hand 

side, and the goniometer and locating vehicle position software to the right. 

These two units communicate through "the request for position and bearing" 

and the "position and bearing response". Before the vehicle starts, the path 

vectors with their speeds are down loaded 

to the computer from tl1e base station, to be used by the path refitting 

routine. The routine also accepts the "nominal radius" which the vehicle ,viii 

normally use at every corner of the path. The radius is selected big enough to 

produce a smooth ride and small enough to avoid obstacles. The vehicle accepts 

the initial steering angle and the direction. 

Before the vehicle starts its run, the path fitting routine will compute 

suitable secondary path vectors, filling in between the primary points in such a 
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way, that the distance corresponds to the desired double arc length of the drive 

routine as explained in [4]. The vehicle then issues a ready signal to start com

puting and traveling along its prescribed path. The sequence of events for the 

complete system of a vehicle of this kind is shown below: 

• 

It«X PULSE: 

lRIAI\GJLATION 

ll'OEX PU..SE: 

0.5 SEC 

ORlVE ROJ1INE 

READ GROUND 
NAVlGATOR 

BOARD 

NEW OOJBLE 

Figure 5-1: The Full Travel 

If\OEX PULSE: 

I .0 SEC 

At t
0

, at the second index pulse, the approximate vehicle position and bearin·g 

are read from the ground navigator, with the approximate vehicle position and 

bearing, and the beacon map. The accurate vehicle position and bearing are 

computed by the goniometer routine using triangulation. The vehicle position 

computed by the ground navigator is corrected. Then the drive routine requests 

the vehicle position and bearing from the .ground navigation and computes the 
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double arcs and steering angle which will be completed at t1 + at1, noting, if 

the prescribed vector B is the last vector in the prescribed path, then the com

puter must be aware in order to stop the vehicle once it reaches that point. 

Once the double arcs have been computed they are sent to the drive board at 

the time t 1 + Llt 1. At the next index pulse the entire sequence is repeated. Read

ing last point on the path it will stop and wait for orders. 

In more detail, one can summarize the sequence of events for the full drive 

as follows: 

1. In order for the vehicle to start functioning the f~Jlowing inputs are 
loaded: ~ 

a. The path vectors with their associated speed. 

b. The initial vector. 

c. The selected nominal radius. 

d. The direction of travel: forward / backward. 

e. The secondary path points are computed and the ready sign 

issued by the vehicle if path acceptable. 

f. First selected target vector and its speed. 

g. First double arc computed and loaded into drive controller, this 

starts the run. 

2. At t0, when the second index pulse is generated, the following steps 

are executed: 

a. Read the approximate vehicle position from the ground naviga
tion board. 

b. Compute the accurate vehicle position and bearing. 
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a. From the deviation between the approximate vehicle position 
and bearing, and the computed vehicle position , correct the 
ground navigator state, and set the gyroscope. 

b. Estimate future vehicle position and bearing at t1 + ~t 1• 

c. Determine next target vector B. 

d. Compute the next double arcs leading from e·xpected position at 

a. Load double arcs into drive controller. If the vector B was the 
last point, go to stopping routine, step(5). 

b. Wait for a period of tlt 2, to make sure the servo has stabilized. 

c. At the next index pulse go to 2a. 

5. The stopping Routine has the following steps: 

a. Reduce the speed of the vehicle at end of the first 
arc segment. 

b. At the end of the second arc, stop the vehicle .. 

5. 2 The Simplified Travel 

( 

Due to the uncompleted ground navigator, a simplified design \\'as intro

duced to test the performance of the optical .. navigation system, and the drive 

routine. The Figure 5-2 on pa.ge 83 describes the sequence of events _pf_ the 

simplified • version: The procedures that are activated by the index pulse 

generated by the gonio1neter, and the !!,.S pulse generated by the drive board 

are interrupt cl.riven procedures. By software the program ignores the first index 

pulse indicating a revolution of the goniometer. At the end of the second index 

pulse all the interrupt procedures are masked except for the goniometer proce-
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Dax PLLSE: If\aX Pll..SE: 

TRIANGULATION 

( 17 .0) HSEC 

S1DP 

VEHICLE 

COPUTE DOUBLE 

ARCS AND RADII 

( I 8 .0) MSEC 

Figure 5-2: The Simplified Travel 

, 

D"lEX PLLSE 

dure that reads the beacon sighting from the ports. Once that is done the index 

pulse is disabled to prevent any other readings from the goniometer while com

puting the vehicle position and bearing, which is computed in a period of 17.0 

msec. Once the computation of the vehicle position a11d bearing is completed, 

the length of the double arcs and steering angle is calculated, the length of the 

double arcs and steering angles is calculated within a period of 18.0 msec. Once 

they are completed they are down loaded to the drive controller. This starts the 

drive motor. The vehicle then moves towards the next point. At the end of the 

first circular arc a fl.S pulse is generated by the drive board, signaling the 

completion of the first arc. No action is taken. At the end of the second arc a 

• 
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second 6. S pulse is generated signalling the completion of second arc. Now zeros 

speed is loaded into the drive board. This stops the drive motor. At the second 

index pulse, the cycle is repeated all over again. 

The program does not handle the situation, where the second circular arc 

may be too small to generate a second ~S pulse, which can obscure the se

quence of events. We overcome this problem by checking to see if the length 

of the second arcs is less than a minimum length that will be needed to 

generate a clear ~ S pulse. 

One can describe the simplified sequence of events as follows: 

1. Stop the vehicle in order to start computation after the second index 

and ~s pulses. 

\ 

J 2. Enable the routine that handles the reading of the goniometer. 

3. Read beacon sighted from the specified ports. 

4. Disable the index pulse in order to prevent any further reading 
from the goniometer during computation of the vehicle position. 

5. Compute the vehicle position and bearing 

6. Compute the length of the double arcs and steering angle. 

7. Down load the length of the arcs, steering a angle and the speed 
of the vehicle to the drive board. This starts the drive motor 

8. At the second ~S p11lse generated by the drive board 
Signaling the completion of the second double arc, load zero 

velocity. 

' 9. Select next target vector B.lf the vehicle has reached the last point 
in the prescribed path, stop. Otherwise go to step (2) . 

... 
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Chapter 6 

Conclusions 

-

The test bed vehicle Cyclopion described in this thesis, is a demonstration 

of an optically based au to mated guided vehicle. As in any experiment, there are 

observations and suggestions to be added for future work . 

As mentioned previously the procedures that were used for the vehicle 

software are interrupt driven procedures. During experimentation, the vehicle 

sometimes acted unpredictable due to noise on the bus lines. One might over

come this problem by using "State Table Control Systems", \\i·hich allows the 

vehicle to act by matching the state in a state table and firing the next action 

according to a matching condition state without having to rely on any inter

rupts coming from the vehicle's circuitry. The National Bureau of Standards 

(NBS) have adopted "State Table Control Systems" for the under water 

vehicles very successfully [8]. Careful attention should be given to quieting the 
-

circuitry in a finalized design. 

In the beacon identification process, the vehicle currently uses one beacons 

identification algorithm. In the future one should consider using all the iden

tification methods mentioned in this thesis. For that and other reasons one 

should use a faster .compute~. The present clock rate is only 4 MI-IZ. 

In addition, further research should be done in selecting the best three sets 

of beacons. A simulation program was written using C-Terp interfaced with 

HALO graphics for experimenting on different beacon selection algorithms. This 

package will be used for further beacon 
8
ielection experi1nentation. 

. ... 
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Finally, due to accumulation of error in the vehicle position by the ground 

navigator one would like to determine the maximum accumulated error allowed, 

to keep the vehicle on the its correct path. . 

For the typical results of vehicle runs, please refer to Table 6-1 on page 

87. Note that with careful adjustment of the steering system much better ac

curacy has been achieved. 

• 
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PRESCRIBED MEASURED ACTUAL 

X y Phi X y Phi X y 

36.0 142.0 270.0 34.71 144.12 270.0 36.00 142.0 

42.0 108.0 300.0 45.68 106.88 294.0 40.50 107.5 

36.0 60.0 270.0 30.80 61.50 264.9 31.00 62.50 

48.0 36.0 315.0 44.95 31.45 308.40 46.00 33.50 

72.0 30.0 o.o 77.82 29.96 358.56 77.50 27.0 

108.0 30.0 0.0 108.34 29.45 356.04 107.25 28.5 

144.0 30.0 0.0 141.15 27.35 356.6 141.50 28.5 
. 

Table 6-1: The Result of A Typical \'ehic]e Run 
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·••••••••••••••••••••DIST•••••••••••••••••••••••••••••••••••••••••••• 
'he procedure coaputes the distance between beacon pofnts 
Xt,Yl) and (X2, Y2). 

~••****************************************··························••/ 

DIST: PROCEDURE(X1,Y1,X2,Y2) REAL; 
DECLARE (Xl,Y1,X2,Y2) REAL; 
RETURN(mqerY2X((X2-Xl)•(X2-X1) + ((Y2-Y1)•(Y2-Y1)),8.S)); 

£ND DISTi 

••••••••••••••••••••••• CROSS ••••••••••••••••••••••••••••••••••••••••• 
The procedure coaputes the cross product of tvo vectors . 

........................................................................ , 
CROSS: PROCEOURE(X1,Y1,X2,Y2) REAL; 

DECLARE(Xl, Y1,X2, Y2) REAL; 
RETURN((Xl•Y2) - (Y1•X2)); 

END CROSS; 

/•••••••••••••••••••••••DOT••••••••••••••*•••••••••••••••••••••••••• 

The procedure coaputes thP. DOT product of two vectors. 

···················································*···············••/ 
DOT: PROCEDURE(X1,Yl,X2,Y2) REALr 

DECLARE (Xl,Yl,X2,Y2) REAL; 
RETURN((Xl•X2) + (Y1•Y2)); 

ENO DOT; 

-

/•••••••••••••••••••••••MAG•••••••••••*••••••••••••••••••••••••••••• 
The procedure computes the MAGNITUDE of a vector. 

********************************************************************' 

MAG: PROCEDURE(X,Y) REAL; 
DECLARE (X 1 Y) REAL; 
RETURN(aqerY2X((X•X + Y•Y),8.5))i 

[Nil MA<i; 

\ ... 
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/••••••••••••••••••••• SHlJ •. fPOJNI~ ••--••••••••••••••••••••••••••••••••• 
The procedure co•putes the angles, alphat, aplpha2, aplha3, 
and exchanges the beacons coordinates 1f neccessary 

··································••***********·····················•••/ 

SHUFFPOINTS: PROCEDURE(ANG1,ANG2,ANG3); 
DECLARE (ANG1,AN62,ANG3) REAL; 
DECLARE (TY,TX) REAL; 

ANGLEl = AN62 - ANGl; 
If ANGLE! >= 180.8 

:: ANG3 - ANG2; 
\ . 

THEN DO; 
ANGLEl 
ANGLE2 
TX 

= ANGl - ANG3 + 368.8i 
= Xl; 

TY C Yl; 
Xl = X2i 
Yl = Y21 
X2 = X3; 
Y2 = Y3, 
X3 = TX; 
Y3 = TY; 

ENO· I 
ELSE 00; 

ANGLE2 = ANG3 - AN62; 
If ANGLE2 >= 188.9 

THEN DO; 
ANGLE1 
ANGLE2 
TX 

- ANGl 
= AN62 
= Xl; 

- ANG3 + 368.8; 

TY 
Xl 
Yl 
X3 
Y3 
X2 
Y2 

END; 
END; 

ANGLE3 = ANGLE2 + ANGLEl; 

END SHUFFPOINTS; 

= Yl; 
= X3i 
= Y3; 
= X2; 
= Y2; 
= TXi 
= TYi 
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!••••••••••••••••••• EXPECTED_ANGLE••••••••••••••••••••••••••••••••• 

The procedure calculates the expected angle. 

******************************************************************••/ 

EXP[CTED_ANGLE: PROCEDURE(POSX,POSY) REAL, 

DECLARE(POSX,POSY) REAL; 
D£CLAR£(ARG1,ARG2,ANGLE,BEAR) REALi 

\ 

BEAR =BEARING* (Pl / 188.8)i 
ARGl = POSX - APRX; 
ARG2 = POSY - APRY, 
If ARGl = 0.0 

THEN DO; 
If ARG2 > 0.0 

THEN ANGLE= PI /2.0; 
ELSE IF ARG2 < 0.0 

THEN ANGLE= 1.5 * PI; 
ELSE IF ARG2 = 0.0 

END; 
ELSE DO; 

THEN ANGLE= 0.0; 

END; 

IF ARGl > 0.0 THEN DO; 
IF ARG2 >= 0.0 THEN 

ANGLE= mqerATN(ARG2 /ARGl) - BEAR; 
ELSE 

END; 
ELSE 

ANGLE= mqerATN(ARG2 / ARGl) -BEAR+ 
(2.0 * PI); 

ANGLE= PI+ mqerATN(ARG2 /ARGl) - BEAR; 

If ANGLE< 0.0 
THEN 

RETURN((2.0 *PI+ ANGLE)* 180.0 / PI); 
ELSE 

RETURN(ANGLE * (180.0/PI)); 

END EXPECTED_ANGLE; 

'*********************** COMPUTE YEH POSITION *************************** 
The procedure gdoes the ·foll owf ng steps: 

1- Checks if the number of identified beacons are equal to 
three if so, it use those beacon for traingulation by 
going to step3. 

2- Otherewise it selects the three best beacons by callling 
procedure 'TRIPLET·. 

3- Then ft calls procedure shu~fpoints . 
. 

4- Call procedure "CALACPOINTS" to determine the vehicle position. 

************************************************************************' 

,·· 

~. 

,· .... 
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COMPUTE VEH POSITION, PROCEOURE(N, LIMIT)1 
- DECLARE N INTEGER; 

DECLARE(ANG1,ANG2,AN63) REAL1 

THEN DO; If N = 3 
Xl 
X2 

= XPOINTS(l); Yl = YPOINTS(l); 
= XP0INTS(2); Y2 = YP0INTS{2); 

X3 
CALL 
CALL 

= XP0INTS(3); Y3 = YP0INTS(3); 
SHUffP0INTS(THETAS(1),THETAS(2), THETAS(3)); 
CALCP0INTS(ANGLE1,ANGLE2); 

END; 
ELSE DO; 

CALL TRIPLET(N, LIMIT); 
Xl = XX(l); X2 = XX(2); 

Yl = YY(l); Y2 = YY(2); 
AN61 = AG(l); ANG2 = AG(2); 
CALL SHUFfPOINTS{ANG1,ANG2,ANG3); 
CALL CALCP0INTS(ANGLE1,ANGLE2); 

£ND; 
END COMPUTE_VEH_POSITION; 

X3 = XX(3); 
YJ = YY(3); 
ANGJ c AG(3); 

/•••••••••••••••••••••••TRIPLET************************************ 
The procedure finds the a set of triplet beacon points to deterafne 
the coordinates of the vehicle. 
*********************************************************************' 

TRIPLETr PROCfDURE(N,LIMIT); 
DECLARE(N,HATCH,I,J,K,LL) INTEGER; 
DECLARf(ANG1,AN62,ANG3,LIMIT,MIN) REAL; 
DfCLARE(XX, YY,AG,Dlff) (20) REAL; 

( 

' 

MATCH = 0· I 
DO I= 1 TON· 

. ' XX(I) = XPOINTS(I), 
YY(I) = YPOINTS(I); 
AG(I) • THETAS(I)i 

END· 
' DO I:: 1 TO Ni 
DIFF(I) = AG(l+l) - AG(I)1 
If I= N THEN DO; 

DIFf(I) = AG(l) - AG(I); 
IF DIFf(I) < 8.8 THEN 

END; 
END; 

Dlff(I) = Dlff(I) + 368.8; 

00 LL = 1 TO N; 
I = 1; 

·MIN = DIFF(I), 
J = I; 
DO I= 2 TON; 

If Dlff(I) < MIN THEN DO; 
MIN= Diff(I); 
J = I; 

END; 
END; 

DO I= 1 TON; 
If I= J THEN DO; 

IF (J > l) AND (J < N) THEN 00; 
If DIFF(J-1) < D1ff(J+1) THEN DO; 

DIFF(J-1) = DIFF(J-1) + DIFF(J}; 
DOK= I TO N-1 i 

Dlff(K) = DIFF(K+l); 
XX(K) = XX(K+l); 
YY(K) = YY{K+l); 
AG(K) s AG(K+l); 
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END; 
END TRIPLET; 

END· . . 
• END1 

ELSE DO, 
DlfF(J) = DIFF(J) + Dlff(J+ 1); 
DOK c I+ 1 TO N-1; 

OIFF(K) = D1Ff(K+1); 
XX(K) = XX(K+l); 
YY(K) = YY(k+1); 
AG{K) = AG(K+l)i 

END; 
END; 
I - N· - ' 

END; 
ELSE 
If J = 1 THEN DO; 

_, _ _J F O I F F { N ) > DI f F LJ + -1--~ -l-H_[_N . DO i __ - _ 
--- -- ------ - -- ----~ ------ ---- -- --. - -··- ----- -- --- -

Dlff(J) = DIFF(J) + DIFF(J + 1); 
DOK= 2 TO N-1; 

Dlff(K) C DIFF(K+l); 
XX(K) = XX(K+l); 
YY(K) = YY(K+l); 
AG(K) = AG(K+l); 

ENO; 
END; 

ELSE DO; 

END; 

Olff(N) = Dlff(J) + OIFF(N)i 
DOK= 1 TO N-1, 

ENDi 

DIFf(K) = D1Ff(K+1); 
XX(K) = XX(K+1); 
YY(K) = YY(K+l); 
AG(K) = AG(K+l); 

I = N; 
END; 

ELSE 
IF J = N THEN DO; 

IF DIFF{N-1) > 0Iff(1) THEN DO; 
Dlff(N-1) = DIFF(l) + 0Iff(N}; 
DOK= 1 TO N-1; 

END; 
END; 
ELSE 

Dlff(K) = DIFF(K+l); 
XX(K) = XX(K+l); 
YY(K) = YY{K+l); 
AG(K) = A6(K+l); 

DIFF(J-1) = Dlff(J-1) + DIFF(l)i 

I = N· 
' END; 

END; 
END; 

N = N-1 i 
If N = 3 THEN 

_LL = N; 
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/•••**************** EXPECTED GAMA•••••••••••••••••······-·········--
The procedure calculates the expected GAMA. 

********************************************************************' 

EXPECTED GAMA: PROCEDURE{POSX,POSY) REAL; 
DECLARE(POSX,POSY) REAL; 
DECLARE{ARG1,ARG2,ANGLE,BEAR) REAL; 

BEAR 
ARGl 
ARG2 
If ARG1 

THEN 

=BEARING* (PI / 180.0); 
= POSX - APRX; 
= POSY - APRY; 
= 0.0 
DO; 
If ARG2 > 0.0 

THEN ANGLE= PI /2.0; 
ELSE IF ARG2 < 0.0 

END; 
ELSE DOi 

THEN ANGLE= 1.5 • PI; 
ELSE IF ARG2 = 0.0 

THEN ANGLE= 0.0; 

END; 

IF ARGl > 0.0 THEN DO; 
If ARG2 >= 0.0 THEN 

ANGLE= mqerATN(ARG2 /ARGl); 
ELSE 

END; 
ELSE 

ANGLE= mqerATN(ARG2 / ARGl) + 
(2.0 • PI); 

ANGLE= PI+ mqerATN(ARG2 /ARGl); 

IF ANGLE< 0.0 
THEN 

END EXPECTED_GAMA; 

RETURN((2.0 •PI+ ANGLE)• 180.0 / PI); 
ELSE 

RETURN(ANGLE • (180.0/PI)); 

/••******************* FINDCORD•••••••••••••••••••••••••••••••• 
The procedure findS the coordinates of the position of the 

vehicle. 
****************************************************************' 

FINDCORD: PROCEDURE(CX1,CX2,CY1,CY2,XC,YC); 
DECLARE(CX1,CX2,CY1,CY2,XC,YC) REAL; 
DECLARE(R1,R2 ,N) REAL; 

Rl = D1ST(CX1,CY1 1 Xl 1 Y1); 
R2 =Rt• R1; 
IF R2 < 5.8 THEN DO; 

XCORD = 8.8; 
YCORD = 8.8; 

END-
• • 

ELSE If A8S{CX2 - CXl) < 8.81 
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THEN 

END; 
ELSE 

001 
YCORD = YC1 
XCORD C 2.8 

IF A8S(CY2 
THEN 00; 

YCORO 
XCORD 

END; 
ELSE DO; 

• ext - XC; 

- CYl) < 8.81 

- 2.8 • CY1 - YC1 -- XC· - ' 

M = (CY2 -CY1) / (CX2 - CXl); 
XCORD = (2.8 •(YC -CY1 + XC•(t.8/M) + CXl 

• M)/ (M + (1.8 /M))) - XC; 
YCORD = {(XC - XCORD) • (1.0/M)) + YC; 

END1 
END FINDCORD; 

/•******************** FINDCENTER *****************•••••••••••••••• 

The procedure finds the center of a circle. 
********************************************************************' 

FINDCENTER: PROCEDURE{PX1,PY1,PX2,PY2,ANGLE); 
DECLARE(PX1,PY1,PX2,PY2,ANGLE) REAL; 
DECLARE(MIOX,MIOY,U,LEGl,SLOPE) REAL; 

MIDX = (PX1 + PX2) / 2.0; 
MIDY = (PYl + PY2) / 2.0; 
U = mqerCOS{DTOR • ANGLE) / mqerSIN(DTOR • ANGLE); 
CENTERX = MIDX + (PY1 - PY2) • (U /2.8); 
CENTERY = MIDY - (PX1 - PX2) • (U /2.0); 

fND fINOCENTER; 

/••***************** CALCPOINTS ************************************ 

The procedure goes through the following steps: 

1- coaputes the center of the 3 cfrcles. 

2- for every two circles, it computes the vehicle position 

and bering, resulting 1n 3 vehicle coordinates. 

*******************************************************************' 

CALCPOINTS: PROCEDURE(ANGLE1,ANGLE2)i 
DECLARE(ANGLE1,ANGLE2) REAL; 
DfCLARE(CX1,CX2,CX3,CY1,CY2,CY3) REAL; 

I• Compute the center of circle A using 
of beacons 1 & 2 

CALL f1J4DCENTER(X1,Y1,X2,Y2,ANGLE1), 
CXl = CENTERX; 
CY1 = CENTERY· I 

'* Compute the center of circle 8 using 
of beacons 2 & 3 

CALL FINDCENTER(X2,Y2,X3,Y3,ANGLE2); 
CX2 = CENTERX; 
CY2 = CENTERY· I 

the coordinates 

the coordinates 

•I 

•I 

I* Compute the center of circle c using the coordinates 

of beacons 1 & 3 •/ 

I 
I 

I 
' 
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IF ANGLE3 > 180.0 THEN DO; 
ANGLE3 = 360.0 - ANGLE3; 

. CALL FINOCfNTfR(X3, Y3,X1,Y1,ANGLf3)· 
END· ' 

' ELSE 
CALL FINOCfNTfR(Xl, Y1,X3,Y3,ANGLfJ), 

CXJ = CENTERX; ' 
CYJ = CENTERY; 

'*** Find the vehicle coordinates using circle A & e ***/ 

CALL FINDCORO(CX1,CX2,CY1,CY2,X2 Y2)· 
XCORD1 = XCORD; ' ' 
YCORD1 = YCORD; 

'*** Find the vehicle coordinates using circle A & c ***/ 

CALL FINOCORD(CX1,CX3,CY1,CY3,X1,Yl)· 
XCORD2 = XCORD; ' 
YCORD2 = YCORD, 

'*** Find the vehicle coordinates using circle B & c ***/ 
CALL FINDCORD(CX2,CX3,CY2,CY3,X3 YJ)· 
XCORD3 = XCORD; ' ' 
YCORD3 = YCORD; 

VEH POS X 
VEH-POS'( 

ENO CALCPOINTS;-
= (XCOROl + XCORD2 + XCORD3) / 3.0; 
= (YCOROl + YCORD2 + YCORD3) / 3.8; 

'*********************** IOENTifY_BEACON ***************************** 

The procedure identifies beacon within a certain angle and distance 
limit 

********************************************************************' 

IOENTifY_BEACON: PROCEOURE(NUMB,NUMBS); 
DECLARE(NUMB,NUMBS,I,CHECK) INTEGER; 
DECLARE(X,Y,ANG) REAL; 
DECLARE EXANG(20) REAL; 

NUMMATCHED = 8; 
DO I= 1 TO NUMB; 

EXANG(I) = EXPECTEO_ANGLE(XP(I),YP(I)); 
DO I= 1 TO NUMBS; 

CHECK= 0; 
DOK= 1 TO NUMB; 

If ABS(EXANG(K) - THETA(I)) <= THRESH! THEN DO; 
CHECK= CHECK+ 1; 
X = XP{K); 
Y = YP(K); 
ANG = THETA(!); 

ENO; 
END; 
If CHECK= 1 THEN DO; 

NUMMATCHED = NUMMATCHED + 1; 
XPOINTS(NUMMATCHED) = X; 
YPOINTS(NUMMATCHED) = Y; 
THETAS(NUMMATCHED) = ANG; 

END; 
END; 

0 

END IP.£NTIFY_BEACONi 
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GONIOMETER: PROCEDURE; 
COUNTERl = 8.8; 
RTOO = 180.8 /Pl; 
DTOR = Pl /188.li 

$INCLUDE(:f1:BEARING.DAT} 

$INCLUDE{:f1:MAP.DAT) 
$INCLUDE{:Fl:PATH.DAT) 
NUMBEACONS = 9; 
If REV= 1 THEN DOi 

BEARING= BEA(II + 1); 
APRX = POINTSX(II + 1); 
APRY = POINTSY(II + 1); 

END; 
IF REV= 0 THEN DO, 

BEARING= BEA(II - 1); 
APRX = POINTSX(II - 1)~ 
APRY = POINTSY(II - 1); 

/• File that contains 
I* at each point 
I* Beacon coordinates 
I* Prescribed points 

END; 
CALL I DENT I FY _BEACON ( NUMBEACONS, NUMSEEN); 
CALL COMPUTE_VEH_POSITION(NUMMATCHED, 120.0); 
AP R X • V E H _p O S X : 

APRY = VfH -POS-Y · 
SUMS I = 0. 0; - ' 

GAMA= EXPECTED_GAMA(XP0INTS(1), YPOINTS(l))· 
BEARING= (GAMA - THETAS(l)) • (PI/180.0)· ' 
IF BEARING< 0.0 THEN 1 

BEARING= BEARING+ (2.0 * PI); 

END GONIOMETER· 
' 

I 
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/•********************** COMPUTE PARAMETERS***************** ~ 

* The procedure computes the parameters needed for 
• for double arc computaions. It also computes the 
• angles Phi and Beta 
************************************************************' 

COMPUTE_PARAMETERS: PROCEDURE(PX1,PY1,PX2,PY2,0X1,0Y1 1 DX2,DY2); 

DECLARE (PX1,PY1,PX2,PY2,DX1,DY1,DX2,DY2) REALi 
DECLARE (C,S,P,PP,ALPHA) REAL; 

FAIL= FALSE, 
TRANS= CROSS(DX1,DY1,PX2-PX1,PY2-PY1); /• T =VECTOR AX VECTOR D 

O•/ 
IF TRANS<= 0.0 

THEN TRANSLATION = RIGHT; 
ELSE TRANSLATION = LEFT, 

P = OOT(DX1,DY1,PX2-PX1,PY2-PY1); 
IF P < 0.0 

THEN FAIL= TRUEi /• Beta out of range *I 
ALPHA = ABS(TRANS) / (MAG(DX1,0Y1) * MAG(PX2-PX1,PY2-PY1)); 
IF TRANS = 0.0 THEN TRANS= 0.81; 
BIGA = ABS{TRANS) / P; 
BETA = mqerATN(BIGA); 
C = CROSS(OX1,DY1,DX2,DY2); 
IF C < e.e 

THEN ROTATION= RIGHTi 
ELSE ROTATION= LEFT; 

S = OOT(OX1,0Y1,DX2,DY2); 
IF ABS(S) < THRESH 

THENS= 8.0; 
If S < 8.0 

THEN FAIL= TRUE; 
IF FAIL= FALSE THEN DO; 

/• ARCTAN OF A•/ 

/• PHI OUT Of RANGE•/ 

CPHI = S/(MAG{DX1,DY1) • MAG(DX2,DY2))i 
SPHI = ABS(C) / (MAG(DX1,DY1) • MAG(DX2,DY2)); 
IF S = 8.8 

THEN PHI = Pl/2.8i 
ELSE PHI = aqerATN(ABS{C)/S); 

A = ABS(TRANS) / MAG(DX1,DY1); 
If C <> 8.8 THEN 

DO= (P - ABS(TRANS) * S /ABS(C))/ MAG(DX1,DY1); 
If SPHI <> 0.8 THEN 

H = A /SPHI; 
END; 

END COMPUTE_PARAMETERSi 

-~ 
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/••••••••••••••••••••••••• TWOC1••••••••••••••••••••••••••••••••• 
• The procedure coaputes Case (1) of double arcs • -----------------~~~--~~-~~~~~~~~~~~~ 

. ------------------·······--' 
TWOC1: PROCEDURE(PHI,CPHI,SPHI,A 1 b1gA,8£TA,FLA61)i 

· DECLARE (PHI,CPHl,SPHI,A,DigA,BETA) REALi 
DECLARE ( FLAG1) BYTE; 
DECLARE (PSI,ALPHA) REAL; 

ALPHA = (CPHI + b1gA•SPHI + 1.0) / 

IF ALPHA 
PSI 

ELSE 

(2.8 • mqerY2X(1.0 + (b1gA•b1gA),&.5 
= 0.8 THEN 

= PI / 2.0; 

PSI = mqerACS(ALPHA) + BETAi 
RADIUS1 = A/(CPHI - 2.8 • mqerCOS(PSI) 
RADIUS2 = RADIUS1; 
ARC1 = RADIUS1 • PSI; 
ARC2 = RADIUS1 
IF fLAGl = TRUE THEN 

• {PSI - PHI); 
DO· J 

TURNl = LEFT; 
TURN2 - RIGHT; 
RA0IUS1 = -RADIUS1; 

END; 
ELS[ DO; 

TURNl 
TURN2 
RADIUS2 = 

----
RIGHT; 
LEFT; 

-RADIUS1· 
' 

+ 1.8); 

END; 
END TWOCl; 

/••*********************** TWOC2 ********************************* 
• The procedure computes Case (2) of double arcs • 
***************************************~************************' 

TWOC2: PROCEDURE(PHI,CPHI,SPHI,A,BIGA,BETA,FLAG1)i 

• 

END 

DECLARE 
DECLARE 
DECLARE 

(PHI,CPHI,SPHI,A,BIGA,BETA) REAL; 
(FLAGl) BYTE; 
(PSI,ALPHA) REAL, 

ALPHA = (CPHI + BIGA•SPHI+l.8)/ 

IF ALPHA 
PSI 

ELSE 

(2.0• mqerY2X(1.0 +(BIGA•BIGA),8.S))i 
= 8.8 THEN 

= Pl/2.0; 

PSI 
RADIUS! 
RA0IUS2 
ARC1 
ARC2 

= aqerACS(ALPHA) - BETA; 
= A/(2.8• mqerCOS(PSI) -
= RAOIUS1; 
= RADIUSl * PSI; 
= RADIUS1 •(PSI+ PHI); 

IF FLAG1 
TURN! 
TURN2 
RADIUS1 

= FALSE THEN ooi 

ENO; 

= LEFT; 
= RIGHTi 
= -RADIUS!; 

----
RIGHTi 
LEFTi 

ELSE ooi 
TURN1 
TURN2 
RA0IUS2 = - RADIUS1· I 

ENO; 
TWOC2; 

• 
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/••••••••••••••••••••••••• TWOC3 ••••••••••••••••••••••••••••••••• 
• The procedure computes Case (3) of double arcs • 
****************************************************************' 

TWOC3: PROCEDURE(PHI,CPHI,SPHI,A,BIGA,BETA,FLAG1); 
DECLARE (PHI,SPHI,CPHI,A,BIGA,BETA) REAL; 
DECLARE (PSI,ALPHA) REAL; 
DECLARE (FLAGl) BYTE; 

ALPHA = (-1.0•CPHI+BIGA•SPHI-1.0)/ 
(2.0•mqerY2X(1.0+(8IGA•BIGA),0.5)); 

IF ALPHA= 0.0 THEN 
PSI= PI/2.0; 

ELSE 
PSI= mqerACS(ALPHA) - BETA; 

RADIUS1 = A/(2.0• mqerCOS(PSI) + CPHI + 1.8); 
RADIUS2 = RADIUS!; 
ARCl =RADIUS!• 
ARC2 = RADIUSl • 
IF fLAGl = TRUE THEN 

{PI - PSI); 
{PI+ PHI - PSI); 

DO· 
' 

END· 

TURN! = LEFT; 
TURN2 = RIGHT; 
RADIUS!= -RADIUS1; 

' ELSE DO; 
TURN1 = 
TURN2 = 
RADIUS2 

END; 

END TWOC3; 

RIGHT; 
LEFT;~. 
= - RADIUS1; 

/•************************ ONECl ********************************* 
• The procedure computes Case (4) of double arcs • 
• and The anle PHI < 2 Beta • 
*****************************************************************' . l . 

ONECl: PROCEDURE(MIN_R,A,O,H,PHI,FL,CP,SP,BA,BETA); 
DECLARE {MIN_R,A,D,H,PHI,SP,CP,BA,BETA) REAL; 
DECLARE TPHI2 REAL; 
DECLARE (fl) BYTE; 

TPHI2 = mqerTAN(PHl/2.8); 
IF TPHI2 = 0.0 THEN 

ELSE 
RADIUS1 = MAX NUM· 

- I 

RADIUS1 = D / TPHI2; 
If RADIUS! < MIN RADIUS THEN 

CALL TWOCl(PHI,CP 1 SP,A,BA,BETA,FL); 
ELSE DO; 

ARCl 
ARC2 

RAOIUS2 
IF FL 

TURNl 

= RAOIUSl * PHI; 
= H - D; 
= MAX_NUM; 
= TRUE THEN DO; 

= LEFTi 
RADIUS! = -RADIUS1i 

ENO, 
ELSE 

END· 
' ENO ONEC1; 

TURN!= RIGHTi 
TURN2 = STRAIGHTi 
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/•••••••****************** ONEC2 ********************************* 
• The procedure computes Case (5) of double arcs * 
• and The anle PHI > 2 Beta • 
---------------------------------------------------·-··········••/ ----

ONEC2: PROCEDURE(MIN_R,A,D,H,PHl,fl,CP,SP,BA,BETA); 
DECLARE (MIN_R,A,D,PHl,CP,SP,BA,BETA) REAL; 
DECLARE (FL) . BYTfi 
DECLARE (TPHI2,H) REAL; 

TPHI2 = mqerTAN{PHI/2.8)i 
IF TPHI2 = 0.0 THEN 

RADIUS2 = MAX_NUM; 
ELSE 

RADIUS2 = H/TPHI2; 
If RA0IUS2 < MIN RADIUS THEN 

CALL TWOC2(PHI~CP,SP,A,BA,BETA,FL)i 
ELSE DO; 

ARC1 = D - H; 
RADIUS1 = MAX_NUM; 
TURN1 = STRAIGHT; 
ARC2 = RADIUS2• PHI; 
If FL = TRUE THEN DO; 

TURN2 = LEFT; 
RADIUS2 = -RADIUS2; 

END; 
ELSE 

TURN2 = RIGHTi 
ENO· t 

END ONEC2; 

/••********************** DRIVE ****************************** 
• The procedure does the followinfg steps: 
* 
• 1- Call the procedure COMPUTE_PARAMETERS. 

~ * 2- It select the correct case of double arcs. 
• 3- Computes the steering angles 
***************************************************************' 

DRIVE: PROCEDURE(MIN_RAD,PX1,PY1,PX2,PY2,DX1,DY1,DX2,DY2); 
DECLARE (MIN_RAD,PX1,PY1,PX2,PY2,0X1,DY1,DX2,DY2) REALi 
DECLARE (RTOO) REALi 

FLAG = f ALSE; 
RTOO = 180.8 / PI; 

CALL COMPUTE_PARAMETERS(PX1,PY1,PX2,PY2,DX1,DY1,DX2,DY2)i 
If PHI> PI/2.0 THEN 

PHI = Pl/2.8; 
If (PHI < THRESH) AND (BETA< THRESH) THEN DO; 

RADIUSl= MAX_NUM; 
ARCl = MAG(PX2-PX1,PY2-PY1)/2.8; 
ARC2 = ARC1; 
TURN1 = STRAIGHT; 
TURN2 = STRAIGHT; 

END· 
ELSE DO; 

If NOT FAIL THEN DO; 
IF TRANSLATION = LEFT THEN 

FLAG = TRUE; 
ELSE 

FLAG = FALSE; 
If ((TRANSLATION= LEFT) AND (ROTATION= RIGHT)) 

((TRANSLATION= RJGHT) AND (ROTATION= LEFT)) 
CALL TWOC3{PHl 1 CPHI 1 SPHI 1 A1 8IGA,BETA,FLAG)i 

OR 
THEN 

• 

-· ___ LL.S_LDO; __ _ 
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END; 

ENDi 

--if'- A.BS(PHI.) < ABS.(2. 8 • BETA) THEN 

ENO; 

CALL ONECl{MIN_RAD,A 1 DD,H,PHI,FLAG,CPHl,SPHI 1 

BIGA,BETA); 
ELSE 

CALL ONEC2{MIN_RAD,A,DD,H,PHl,FLAG,CPHI 
,SPHI,BIGA,BETA)i 

If REV= 1 THEN DO; 
RADIUSl = -RA0IUS1; 
RADIUS2 = -RADIUS2; 

END; 

IF RAOIUS1 = ABS(MAX_NUM) THEN 
STEERING AN6LE1 = 128; 

ELSE -
STEERING_AN6LE1 = FIX(81.49 ••qerATN(38.8/RADIUS1) + 128.8); 

If RADIUS2 ~ ABS(MAX_NUM) THEN 
STEERING_ANGLE2 = 128; 

ELSE 
STEERING_ANGLE2 = FIX(81.49 ••qerATN(30.8/RAOIUS2) + 128.8); 

I•• 256/ PI= 81.49 ••/ 
ARC LENGTH! cf1X(4.4•ARC1•mqerY2X(l.0+(900.8/(RAOIUS1•RADIUS1)),8.5)); 
ARC_LENGTH2 =FIX(4.4•ARC2•~qerY2X(l.0+(900.8/(RADIUS2•RADIUS2)),8.5)); 

END DRIVE; 

/••••••••••••••••• OUTPUT TO PORTS********************** - -
• The procedure outputs the length of the double arcs 
• , steering angles, and speed to the drive board. 

**********************************************************' 

OUTPUT_TO_PORTS: PROCEDURE; 
., 

OUTPUT{PORTC) - 002H; 
OUTPUT{C8255) = 080H; 

OUTPUT{PORTA) 

OUTPUT(PORTB) 
OUTPUT(PORTB) 

= LOW(UNSIGN(~TEERING_ANGLEl)) XOR 0FFH; 
'*** OUTPUT STEERING ANGLE ***' 

= 40H; 
= 00H; 

OUTPUT(PORTA) = LOW(UNSIGN(ARC_LENGTHl)) XOR 0FFH; 
/•• OUTPUT ARC LENGTH •••/ 

OUTPUT(PORTB) = 20H; 
OUTPUT(PORTB) = 00H; 

OUTPUT(PORTA) = LOW(UNSIGN(STEERING_ANGLE2)) XOR 0FFH; 
I*** OUTPUT STEERING ANGLE ***' 

OUTPUT(PORTB) = 50H; 
OUTPUT(PORTB) = 00H; 

OUTPUT(PORTA) 

OUTPUT(PORTB) 
OUTPUT(PORTB) 

O.BUFF(2) 
OUTPUT(PORTA) 
OUTPUT(PORTB) 

= LOW(UNSIGN(ARC_LENGTH2)) XOR 0FfH; 
I*• OUTPUT ARC LENGTH. ***I 

= 30H; 
= 00H; 

= 28H; /••* SPEED VARIABLE MUST BE DECLARED 40 •••/ 
= O.BUFF(2) XOR 0FFH-; 
= 60Hi 
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OUTPUT(C8255) = 90Hi 
OUTPUT(PORTC) = 82H; 

END OUTPUT_TO_PORTS; 

J 

/• b~gin drr •/ 
ORR: PROCEDUREi 
NUMPOINTS = 7; 
ff2 C 1; /• Set the flag for the delts s pulse•/ 

I• Cpmute the direction of the vehicle at the distenation point •/ 

DIRJ(II) 
DIR_Y(II) 

= 40.0 * mqerCOS(BEA(II) • PI/180.0); 
= 40.0 * mqerSIN{BEA(II) • PI/180.0); 

MIN RADIUS= 10.0; 
PRED DIR= CALCANGLE(PRED_DX,PREO_DY); 

/• Cpmute the direction of the vehicle at the current point •/ 
VEH_DI_X = 40.0•mqerCOS(BEARING); 
VEH_DIR_Y = 40.0*mqerSIN(BEARING); 
IF REV= 0 THEN DO; 

SPl 
SPEED 

= fIX(MAG(DIR_X(II), DIR_Y(II))); 
= LOW(UNSIGN(SPl)); 

CALL DRIVE(MIN_RADIUS,VEH_POS_X,VEH_POS_Y,POINTSX(Il),POINTSY(II), 
VEH_DIR_X,VEH_DIR_Y,OIR_x(II),DIR_Y(II))i 

CALL OUTPUT_TO_PORTS; 

END; 
ELSE DO; 

SP 1 = f I X { MAG ( V EH _DI R _ X , V EH _D I R _ Y ) ) ; 
SPEED = LOW(UNSIGN(SP1)); 
CALL ORIVE(MIN_RADIUS,VEH_pos_X,VEH_POS_Y,POINTSX(II),POINTSY(II), 

-VEH_OIR_X,-VEH_DIR_Y,-DIR_X{II),-DIR_Y(II)); 
CALL OUTPUT_TO_PORTS; 

ENO; 
END ORR; 

I 

I 
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