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Chapter 1 
INTRODUCTION 

• 

.... ... . 

• 

Computer technology has evolved considerably since its onset. However, 

the need for computer power has been growing at an even more rapid pace. 

Since the digital hardware technology is expected to mature, achieving further 

increase in computer performance depends not only on using faster digital 

devices hvt also on making radical improvements in computer architecture and 

processing techniques . 
• 

• 
Until recently, virtually all computers were based on the Von-Neumann 

uniprocessor architecture. All advances in computer architecture were actually 

elaborations of the basic layout. However, the advent of VLSI technology has 
... 

made it feasible to deploy several "central processors" in a single computer 

system. This will eventually lead to the proliferation of multiprocessor 

computer architecture and "parallel processing". Ideally, one would like to 

exploit the resources of multiprocessor computers by employing appropriate 

multiprocessor operating systems and "parallel languages" which alleviate the 

programmer from explicitly targeting the specifics of the. machine architecture. 

Unfortunately, such tools are quite unlikely to develop in the near future, and 

therefore, other techniques have tp be used to exploit the full potential of 
/ 

multiprocessor systems. 

Currently, the only -feasible method to efficiently utilize a multiprocessor 

architecture is· to develop special 'purpose "parallel algorithms" _which s~lve 
. ' 

various com-mon computational problems. A parallel algorithm may be created 

F 1 
~·. 

• 

. \ 

'· : \ . . • • ~- ..... ,. ' '"•:." ....... ,.:.~ ... ~·- ~. ~··· ... : .. •• !, ••• 

.·'. • • .. ,.:~ ~,. •' -,, I I • \'~· . . . . . . ,, .. . ., " ". 

' ' 

\ 
r . , 

"' 



•· ·' ........ < 

• 

,, 

-~__;. . . .. ,. 

.. •• 

. 
by recognizing the inhe~ent parallelism of a sequential algorithm. While this 

technique in some cases is relatively easy, it usually involves considerable 

restructuring of a computation in order to spread operations across many 

processors, and thus is usually difficult to apply. Another technique of creating 

parallel algorithms • 
IS problem decomposition by employing the 

divide-and-conquer strategy [ 1-3). By partitioning a computational problem into 

many small and independent problems, a parallel algorithm suitable for 

multiprocessor architectures may be obtained. 

Recursive doubling, a powerful method of generating parallel algorithms, is 

a special case of divide-and-conquer. The idea is to repeatedly partition each 

computation into two independent parts of equal complexity, which are then 

computed in parallel. Recursive doubling involves two steps. First, a scheme 

to decompose a problem is developed. Then, the decomposition scheme is 

applied to partition the original problem into two "suproblems" of comparable 

complexity. Traditionally, the size of both subproblems is arbitrarily chosen to 

be half the size of the original problem [4, 5). This heuristically is assumed to 

generate problems of equal complexity, even though this assumption is, in 

general, not valid. Partitioining a problem introduces partitioning overhead as 

well as· recombinatic>n overhead. These overheads dictate a specific partitioning 
., 

strategy if optimality. is to be achieved. 

Th us, for recursive doubling, one needs to develop a -systematic approach 

to gui~e in the · development of parallel algorithm~. Clearly, the decomposition 

algorithm is highly. problem dependent, and thus is difficult to · develop in a 

• 
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general context. However, the partitioning strategy can be tackled for a broad 

range of computational problems. 

In this thesis, a computational time-complexity model is developed to 

describe the performance of several partitioning strategies. This study yields 

partitioning schemes which give optimal performance, and help estimate the time 

complexity of the parallel algorithms which are developed • • using recursive 

doubling. In addition, the model predicts exactly when partitioning a problem 

into two equally sized subproblems is optimal. Partitioning types cosidered in 

this thesis include constant overhead and variable overhead with a log term. 

These cover a multitude of linear algorithms. 

This thesis is organized in six chapters. Chapter 2 introduces the 

comple'xity model which describes partitioning, and analyses the model in the 
I 

case of constant overhead. Chapter 3 illustrates the applic·ation of the results 

obtained in chapter 2 by developing parallel algorithms for the evaluation of 

polynomials. Chapter 4 presents an analysis of model representing 

decomposition schemes which generate variable logarithmic overhead, and 

il]ustrates a triangular matrix inversion algorithm which conforms to this model. 

Chapter 5 briefly describe the use. of parallel algorithms to design fast processors 

,;J 

dedicated towards a particular class of computational problems, and gives 

several r specific examples. The final chapter summarizes _the results of this work 

and suggests possible extensions . 
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Chapter 2 a 

RECURSIVE PARTITIONING: 
MODELING AND ANALYSIS 

2.1 Introduction .. 
An algorithm is defined as a sequence of instructions which operates on 

certain input data to give specific results. In general, for reasons concerning 

efficiency, algorithms must be adjusted to adapt to the architectural features of 
' 

the computing device on which they will be executed. A broad categorization 

of computer architecture provides two classes of of hardware configuration; a .. 

single processor Von-Neumann architecture and architectures utilizing several 

cooperating processors to achieve either a better throughput or a better time 

response. 

In this thesis, we are mainly concerned with the MIMD architecture. 
- --------

Efficient parallel algorithms useful on such an architecture should take 

advantage of the multiprocessor environment available to tl1em to solve 

corr1putational 1>roble111s in Jess time. Parallel algorithms break down a 

particular problem to several smaller independent "s11bproblems", so that 

different processors can Work on different parts of the problem concurrently. 

This chapter deals with the computational models for parallel algorithms 

suitable mainly for Multiple Instruction · Multiple Data stream (MIMD) 

computers. It also presents computational complexity -results .of a .general nature. 

• I.e. results . which are applicable · to all algorithms fitting _the model . The 
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MIMD ·architecture is not assumed to conform to a multiprocessor computer, 

but also includes multicomputers. Since a parallel algorithm is designed to run 

on a mutiprocessor architecture, its basic design involves partitioning a given 

. computational problem to smaller and independant "'subproblems" which can be 

worked on by a group of processors simultaneously. For the purposes of this 

thesis, subproblems are called independant if the result of any of them is not 

required to solve the others. 

· To quantify the complexity results, one often has to define the "size" of a 

problem. Let T m(n) denote the time required to solve a given problem P(n) of 

size n on an m - processor machine. The ratio of T1 (n) to T m(n) is called the 

"'speed-up ratio" and is often of great importance. The speed-up ratio is a 

function of m and n and generally approaches a constant value as the number 

of processors is increased. Thus the speed up ratio T1(n)/T00 (n) is commonly 

used as a measure of how good the parallel algorithm performs relative to the 

· best known sequential algorithm. It should be mentioned here that an infinite 

number of processors -as in T 
00

(n.)- does not mean that a parallel algorithm 

actually uses or requires an infinite number of them but, rather, that as many 
... 

processors are available as are needed for optimal performance. Most of the 

results in this chapter are related to the· computations of T 00 (n). However, 

T m(n) for finite m is also discussed. 

To illustrate the terminology, ( consider the problem of matching 
• a given 

number against list of numbers • linear search. The "size" of the a n using 
I .. 

I , .. 
problem • ihe size of the· list,, n . This problem · can be divided into smaller IS m 

.• 
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independent "subproblems" by matching the given number against .Jm lists of 

r n/m l numbers, such that each of m processors is matching the number against 

a list of f n/ ml numbers. The speedup ratic> • 
this case is T1 ( n) /T1 ( [ n/ ml) • 

Ill since 

T m(n) • obviously T1 ( r n/ ml). Notice that this problem not be divided to IS can 

than elementary problems, which • this indivisible . The more n In case, are 
.. 

• 

elementary problem here 
. 

that of matching number against ex~ctly IS a one 

number, and is clearly indivisible. Therefore, the speedup ratio increases as,,, m 

increases until m exceeds n, because n processors are enough to divide the 

original problem to elementary subproblems. Further • • 
increase 1n m will not 

introduce further "parallelism" and, therefore, will not improve speed. Thus, 

T 
00

(n) == T1 (1). The maximum speedup ratio is therefore achieved when m > n 

and is equal T1 (n)/T1 (1) ... In this example all _overhead is neglected for the sake 

of convenience. 

The above example is illustrative but is rather trivial and simplified. The 

partitioning scheme is straightforward and the overhead associated with the 

partitioning as well as obtaining. the final result is neglected . 

• Unfortunately, this, in general, can not be . neglected without sacrificing 

performance. Certain operations need to be carried out to combine· the results 

of the subproblems to achieve the final goal; these operations are referred to 

here as the recombination overhead. Other operations may be generated to 

achieve the partitioning itself; this one is called the partitioning overhead. The 

overhead operations not only increase the~ number of steps that .are required to 

solve the problem, but may complicate the partitioning · scheme." Optimal 

' . 
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.. 
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,performance of a parallel algorithm may be achieved only if a speQific 
' 

partitioning scheme based on this overhead consideration is followed. An 

example to illustrate this terminology will follow in the next section. 

2.2 Recursive partitioning of problems with inherent parallelism 

Many computational problems can be . decomposed to smaller problems 

because of their inherent parallel nature. Though the details of the 

decomposition schemes may vary from one type of problems to another, most of 

them can still be described as the decomposition of the given problem into two 

or more smaller independent problems whose solutions can be combined to give 
( 

the solution of· the original problem~ 

The problem should be partitioned in such ~-manner that the solution of 

the problem cah be found as quickly as possible • using that particular 

decompositior1 technique. Notice that the partitioning rule or scheme is not the 

same as the decomposition rule. The decomposition rule takes advantage of an 

inherent property· of a problem to decompose it to several independent 

subproblems. r The pa.rtitioning scheme is the rule which assigns the relative 

sizes of the subproblems using· th6---aecomposition rule. 

Decomposing a problem directly into a large number of subproblems is a 

rather difficult task. Therefore, in general, the decomposition is accomplished in 

many stages. At each stage, a problem received from the preceding sta.ge is .. 

further decomposed into a fixed number of smaller problems according to a 

predetermined rule.· This process is continued recursively until th~ subproblems 

can not be decomposed further. This ensures complete exploitation of 

,7 
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parallelism. Two particular characteristics of the partitioning scheme are of 

importance: the number of children a parent may have and the sizes of the 

children subproblems. This chapter deals with the problem of finding these 

parameters to achieve the best possible performance . 

.. 
2.2.1 Preliminaries 

Let P( n) be a problem of size n whose inherent nature allows it to be 

-
decomposed into smaller independent subproblems using some predetermined 

partitioning rule. If the ·subproblems of P(n) have the same nature and 

characteristics as P( n), then they are referred to as the children of P( n). Since 

these uchildren" P(r)'s, where r < n, are similar to P(n), the same partitioning 

rule can be applied to them to decompose them to even smaller subproblems. 

Thus, the partitioning may be recursively applied until the problem JJ( n) is 

decomposed into many· subproblems none of which is larger in size than a 

certain "elementary" problem. 

Thus, • recursive partitioning · gives a "subproblem heirarchy" · which 

resembles a tree. The original problem is at the root of the tree where th~ 

recursion level is zero. The children· of P( n.) are at level 1 in the subproblem 

.. 
tree, their children are at level 2 and so on. The subproblem which is most 

removed from the root determines the recursion depth. The leaves of the tree 
\ 

are subproblems which are deemed to be "elementary" by some design criterion. 

The leaves may be degenerate or trivial forms of the original problem. For 

example, if. P(n) is an evaluation of polynomial of degree_ n, then. the leaves may 

be polynomials of degree O which require no computation. In this case the only 
, .. 

' ' 

computations which are required t.o solve P(n) are the computations required to 

... , 
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carry. on the partitioning and the recombination overheads. In general, however, 

the leaves may be computational problems in their own right and may require 

some computation. in addition to the computation required by the overhead. It 

i~ necessary to emphasize that · the elementary problem may be chosen to be 
\ 

indivisible. Figure 2-1 shows the heir~rchy of a typical problem. 
I . 

Since the • main objective of parallel algorithms is to improve speed by 
.. J 

engaging all the available processors, it is important to employ elementary 

subproblems that are as small as possible. This generates smaller and more 

numerous leaves to the tree resulting in greater parallelism among smaller units 

and, conseque!ltly, a reduced execution time. 

The speed-up ratio of a parallel algorithm depends upon p, the chosen 

number of "children" of a problem according to the decompsition rule. For 

convenience, p is chosen to be equal to two throughout most of the following 

analysis. This is known as recursive doubling. The methodolgy presented, 

however, is general and can be extended to any p. 

2.2.2 Recursive doubling 

Using recursive doubling, a computational problem P(n) of • size • 
n IS 

.... 

partitioned to two subproblems P(n-- r) and P(r-p), where r is the partitioning 

parameter and p is a constant dependent on the nature of Pn. The same rule 

is appl_ied re.cursively until all the tree leaves are· ~lementary problems. These 

leaves are· then solved in parallel and their solutions are combined to produce 

the required solution of the problem at the root.· .. 
.. 

-· 9 • 

. . ' . . 

. . 

• 

I ' • • l. 
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P(n) 

Figure 2-1: An example showing a problem heirarchy. 

An important parameter which one may vary is the method of determining 

the relative sizes of the children. This is equivalent to finding the parameter r 
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at every node in the tree. If r is fixed throughout all the nodes, one gets what 
\ I 

I 

may be called "statically recursive" partitioning. On the other hand, if r is a 

function of the order of the subprob]em at each node, one obtains a 

"dynamica]ly recursive" partitioning. Dynamic recursion is more difficult to 

implement than static recursion, however, in general, it yields more dptimal 

results since the parameter r is not determin'ed independently of the problem 

• size. 

Let the problem P(n) require exactly T(n) steps to be computed. If the 

problem is decomposed into two smaller problems P( n- r) and P( r-p), the time 

required to solve P(n) is 

T(n) == max{T(n-r) + k1, T(r-p) + k2} + A, 

where k1, k2 and A are the number of steps required to carry on the 

partitioning and recombination 

dependant on n and r. 

overheads respectively and 
. 

are, 1n general, 

Without a loss of generality, one may assume that k1 > k2• Then, letting k 

stand for the sma.ller of the two k's and ,\ for A + max{k1, k2} - min{k1, k2}, 

the above expression car1 be written as 

T(n) == max{T(n-r) + k, T(r-p)} + A. (2.1) 

From now on, k would be called the p'artitioning overhead and the 
4 .... 

recombination overhead. 

Typically,· the two subproblems P(n-r) and P(r-p) would be "solved" by 
-~ -~ 

.. 
' ' 

independent sets of processors working in parallel, thus deriv.ing benefit from. a 

multiprocessor environment. The · time relationship expressed by equation {2.1) 

\ 
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Figure 2-2: Timing in~.olved in decomposing a problem to two problems. 
I 

is shown in figure 2-2 which sho\\'S the tirne and space complexity invloved in 

partitioining a problem. The space con1Iexity refers to the number of processors 
• 

which the a]gorith·m r~_quires. The model above takes only the time comple~ity 
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into account and assumes an infinite number of processors. Since in reality the 
.. . 

number of processors is limited, a tradeoff between time and space may result 

(6). 

As an example, consider the evaluation of the polynomial P of degree n. 
n 

The polynomial can be expressed as 

p == xr.P + pr-1" n n-r 

The multiplication between x' and P is a partitioning overhead and the n-r 

addition of the two terms is a recombination overhead. If the operations of 
,J 

multiplication and addition are assumed to take the same time, then k == A== 1. 

A group of process9rs work independently to ~valuate both the terms before 

they can be finally combined ( added) to give the final result. Note that the 

Computation of x' is neglected for reasons which are explained in Chapter 4~ 

Of particular interest here are the values of r which allow the computation 
~ 

to be completed in as few ·steps as possible assuming_ that the subproblems 

themselves are computed optimally. Another parameter which is important to 

evaluate or estimate is the nurnber of steps T( n) that are required to completely 

solve the problem . 
.. 

To simplify the ""analysis, · we partitior1 the set of problems into distinct 
' 

classes.. , A problem P( n) is · said- to belong to a class Cm if ·and only . if it 

requires exactly m steps to be solved i.e. if T( n) m. Let ICml denote the 

number of elements (cardinality) of this class. A class C is defined to be 
m 

" . . • "' 

empty if 1Cm1 This means that no problem of any 'order requires . 
• 1s zero. 
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. exactly m steps to be completed. 
• 

\(' 
'\ -

' 
One should , be· cautioned· that the class of a problem is determined by 

finding the number of steps required to evaluate the problem in the "most 

general" setting. Degenerate cases of the. problem can always be evaluated in a 

fewer number of steps. For example, the second degree polynomial ax 2 +bx+ c 

can be evaluated in two steps if a== 1 and b == 2Jc; ( this is done by computing 

x + ~ and then squaring it ). But, as is shown later, a general second dgree 

polynomial requires at least 3 steps and thus fot polynomial problems P(2) 

In this work, T(n) is assumed to be larger than or equal to T(n-1). This 

is true because if T(n) is srr1aller than T(n-1) then P(n-1) can be solved as a 

degenerate case of P(n) in less time, contradicting our assumption that the 

computational algorithm is optimal. 

2.3 Constar1t overhead 

The expression for T(n) can not be analysed in general. However, some 

special cases are very important and illustrative. The simplest case arises when 

the overhead is independent of the size of the· problem, i.e. when k and A are 

constants. In the next chapter, a fast algorithm to evaluate polynomials is 

shown to generate constant overhead. 

A class C contains all the problems which require m steps. The largest 
m 

. 

prob.lem which belongs to this class is of particular interest. This problem is at 

the "upper boundary" ·of· class C Let the • of this .problem be Then, • size '1 • m m 
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from equation (2.1 ), one gets . .. 

max{T( '1m-r) + k, T( r-p)} + ~-. (2.2} 

2.3.1 Optimal dynamically recursive partitioning 

As mentioned earlier, the relative sizes of the· children at each node, are 

critically important for good performance of the recursive algorithm. The 

partitioning parameter r at every partitioning level must be determined 

according to an appropriate predefined rule. It can be chosen apriori as a 

constant or as a simple function of the order of every subproblem at every node -· 

" 
in the tree. However, in general, this is not the optimal partitioning scheme. 

Better performance is achieved if for every subproblem of an arbitrary size, r is 

chosen to give the best possible performance for that specific 

subproblem. 

• 

• size of the 

Intuitively, one may be tempted to assume that such an "optimal r" is 

. 

close to one half the order of the subproblem. Although this is \rue in some 

cases, it is not true in general. For example parallel evaluation of a polynomial 
I 

is faster for certain values of r which are not close to half the d~ree of the 

polynomial; this lack of symmetry is ·due to overhead as will be shown in the 

following argurnent. 

' 

·-
The computational load . of the parent problem should be equally 

distributed among all its childre11 for the best possible performance. However, 

this load includes the overheads and this implies that the problem cannot be 

partitioned equally. We will now formalize this statement. 
,, 
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· The key point in the analysis of equation {2.1) is to find the upper 

boundary of every class since stepping over these boundaries causes an increase 

in the number of steps. Note, however, that some· classes may be empty and 

caution must be exercised while defining the upper boundaries of these classes. 

For reasons which will be clear later,. it is convenient to define the upper 

- boundary of an empty class to be the upper boundary of its preceding class. 

; 

Since the preceding class itself may be empty, the upper boundary of an empty 

class is numerically equal to the upper boundary of the lower nonempty class 

which is closest to it with the understanding that it corresponds to a "real" 

nonempty class only if its boundary is greater than the bou11dary of its .. 

preceding class. 

As mentioned ear lier, let '7 he the upper boundary of class C . P( '1m), 
m m 

the largest problem in class c;m, is decomposed into the two subproblems 

P(r,m-r(r,~)) and P(r(r,m)-p) where r(r,m) represents any value of the parameter r 

which gives an "optimal" partitioning of the problem P(r,m). The following 

lemma shows that these subproblems are therr1selves at the upper boundaries of 

some previous classes. 

L.emma 2.1·. If n ( ) is at the upper boundary of a class C , then max m m 

P(r(r,m)-p) is at the- upper boundary of a nonempty class Cm-A-i for the 
\ 

smallest nonnegative integer i" and P(r,m-r(r,m)) ·is at the upper boundary of a 

nonempty class Cm-k-A.-j for the smallest nonnegative integer j. Further, r('7m) 

is unique and has the value of r,m-}.. + .. p. 

Proof. Assume that r(r,m) - p is not at the upper boundary of the class Cm-A· 

. ...~, ' 
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Then r(r,m)-p and r(r,m)-p+t belong to the class Cm->.. or a lower class for some 

positive t. .Then, r(n) can be incre~sed by the quantity t without increasing the ~ 

total number of steps required to solve P ; this, however, means that '7 in 
~m m 

P(,,m-r(r,m)) can also be increased by the same quantity without leaving class 
' 

Cm' since the increase in r, m will · be neutralized by the increase in r( '1 m) which 

is a contradiction since r, is the upper boundary of class C by definition. m m 

Therefore it is clear that r( '7 mf is unique since 

r (·tJm·) - p == ,, ''m-)/ 

.' • r ( '1 m~ == '1 m - ). + P 

Similarly, '1m - r(r,m) is at the boundary of class Cm-k-).. because, otherwise, '1m 

can be increased without increasing the total number of steps required to solve 

P( '1m) thus creating a contradiction since '1m is the upper boundary of class Cm 

and can not be increased without leaving class C to the next class. 
m 

Q.E.D 

Lemma 2.1 is useful to develop a relation between the upper boundary of 

a class and the upper boundaries of previous classes. This relation, stated in 

the next theorern, is important for predicting the performance of the algorithm 

when applied .to any pro}?lcm P(n) . 

. Theorem 2.1. The upper boundary '1m of cf ass· Cm is related to the 

·boundaries of previous classes according to the equation .. 

(2.3) 
., 

Proof. Recall that . problem P( '1 m) is partitioned into the. subproblems 

P(,,m-r(r,m)) and P( r( '7m)-p). . From lemma 2.1, for optimal results, t-he value of 
;. ,.,. 

r( 'Im) 
• unique and • by IS given 
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Further, from the proof of the same lemma, 

-

Eliminations froin these two equations give 

Q.E.D 

The preceding theorem explicitly specifies the class boundaries. We can 

also estimate the sizes of the classes that may be encountered through the 

fallowing theorem. 

Proof. 

Theorem 2.2. The cardinality of any class. Cm can be expressed as 

The number of elements in a class C m 
• 
IS 

Using equation (2.3), this expression can be rewritten as 

rJ 

Regrouping th-e above terms, 
., 

'1m->. 
•. 

lc,m_ .. ,I + IC I I\ · m-..\-k" 

(2.4) 

Q.E.D 

Expressions (2.3) and (2.4) show the effect of overhead. The overheads k 

and ,\ not only increase the number of steps, but play the main role in 

determining the ·size of a class relative to its predecessors. Since the class sizes ·' 
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increase rapidly, . an increase in overhead by just one step slows down the 

algorithm immensely since it may reduce the number of members of a·· class in a 

. ' 

detrimental manner. Since a problem of a high order calls on problems of 

smaller orders, increasing overhead is "recursively degenerative". Thus, a great 

improvement in performance, may be achieved by decreasing the overhead .by a 

few steps. Figure 2-3 shows the effect of increasing k and ,\ by 2, for a 

hypothetical algorithm having k == 3, ..\ == 5 and p == 0. As expected, increasing ..\ 

is more detrimental than increasing k . 

• 

A consequence of equation (2.1) is that the nonempty classes are generated 

• 
by adding either ,\ or k + ,\ to some previous nonempty class. Let problem P( 1) 

be the elementary problem requiring T( 1) steps to be completed. Notice that p 

< r < n - 1. Thus, assuming that p == O, P(2) can be partitioned only in on 

way ( r == 1) a._pd it requires T(2) steps given by 

T( n) == ma x { T( 2 -1 J + k, T( l ) } + ..\ == T( 1) + k + ,\. 

T(3) can be found using the same method, the only difference being that more 

values of r are availab]e. Therfore, in general, T(n) can be expressed as 

T(n) == min{max{T(n-r)+k, T(r-p)} +..\} r==p,p+l, ... ,n 

Thus, T( n) can be expressed as T( l) + c 1 k + c2..\ where c 1 and c2 are integers 

which depend on n and such that c1 < c2• 
C 

t 

/ ' 

The above discussion yields following corollary. 

Corollary 2.1. If k == ,\, then -the nonempty classes are always separated by 

k. . 
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Figure 2-3: The effect _of altering k and ~ on a parallel algorithm 

The as)rmptotic behaviour of the algorithm, on the other hand, is not 

determined by the number of steps required to solve the elementary problem, 

but rather, by the overhead. This is an in1portant observation and it implies 

that: an improvement in the solution of large problems is possible only through 

.20 
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a better partitioining scheme requiring lower overhead. 

This asymptotic behavior of the algorithm can also be deduced from 

equation (2.3) which is a linear difference equation. Let X denote a function of 

z with '7 as the coefficient of zm. 
m 

Equation (2.3) can then be expressed as 

or 

which gives 

p 

l-z 

p 

z-1' 

p 
X == • 

(zk+A + zA - l)(z-1) 

• 

Using partial fraction expansion for the last equation yields 

X 
1- zz . . 1 

+ + ... + 
1- zz2 } - ZZ k+). 

p 

' l-z 

where c1, c2, ... , ck+.\ are constants which depend upon the initial conditions 

T(l), T(2), ... , T(k+,\) which themselves are determined from T(l), k and ,\; 

z1, z2, ... , zk+). are the roots of the equation 

(2.5) 

--· The solution to the difference equation is 

Figure ·2-4 shows the four possible plots of equation (2.5).. It can be seen that 

regardless of k and ,\, equation (2.-5) has exactly one positive root. 

'-'-, 

In [7], it is proven that all the roots · of a polynomial liaving only one 

I 
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• 

Figure -2-4: The four possible plots· for the polynomial zk+A + z.\ - 1, 
where k+,\ and ,\ can be even or odd . ... 
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positive root lie in the circle lzl .< r, where r is that positive root. Further, 

all rbots lie in the circle 1 + max{lai/ak+.xl}. Since the maximum ratio of 

coefficients in equation {2.5) is unity, all the roots must lie in the circle I zl < 2. 

Hence r,m < 2m as m approaches infinity. 

' We now determine the optimal values of r which would yield the best 

possible (fastest) algorithm in the dynamic recursion under consideration. 

Let r(n) represent a value of r which gives the minimum number of steps 

to completely solve a problem P(n) (assuming that the subproblems themselves 

have been completed optimally). 

. L 
Theorem 2.3. For any rr1ember n in class Cm, r(n) must satisfy the 

inequality 

n - '7 m - >..---: k < r ( n) < '7 m - >.. + p. (2.6) 

Proof. Since n E C , n == r, - h for some nonnegative h. m m 
T( n) may then be 

ex pressed as 

m max{T(,,m-.h-r) + k, T(,:-p)} + A, 

Thus, 

m > T('1m-h-r) + k + A (2.7) 

and 

m > T(r-p) +A. (2.8} 

From equation ( 2. 7), · 
#&) 

T(']m-h) < m -k -,\ or 
' 
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• 

· 'I -h-r < r, m - m-:A-k. 

Substituting t'/ - n for h, we get m • 

r(n) > n - '1m- :A-k· 

Similarly, from equation (2.8), · 

T(r-p) < m - ,\, or 

r - P < '1m-). • 

Rewriting this condition gives 

r(n) < '1m->.. + p. 

Combining the two constraints on r( n) completes the proof. Q.E.D . 

... 
Table 2-1 shows the· · performance of a parallel algorithm whose 

recombination overhead is 5, partitioning overhead is 3, p 0 and T(l) == 1. 

Table 2-2 shows the perform-ance of the same algorithm with p == 1. Notice 
.. 

that increasing p improves the performance of the algorithm by increasing the 

upper boundaries of the nonempty classes but no new nonempty classes are 

generated. 

Corollary 2.2. The problem P(n) with a constant ,\ can be decomposed 

' I optimally with r == (n+p)/2 if -and only if k == 0. 

Proof. Let n belong to class Cm· If k == O, then form theorem 2.1 
. \ 

n == 2n , + p. 
•1m ·1 m-"' 

(2.9) 

Theorem 2.3, for this k, specifies the range of r as 
.,J. 

I 
. i 

n - '1m->. < r <. '1m->.. + ·p. 

Using equation {2.9) in the last equation 
" 
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Table 2-1: 

n 

1 

2 

3 

4 

5 

6 

7 

8 

g 

10 

11 
12 

13 

14 

15 
16 

17 
18 
19 

20 

21 

22 

23 
24 
25 
26 
27 

28 

29 
30 

31 
32 
33 

34 

• 

, . 

• 

A hypothetical para]]e] algc>rithrr1 with k ~-- 3, ,,\ ·=-· 5, and p =· 0. 

T(n) 

1 

9 

14 

17 

19 

22 
22 

24 

25 

27 
27 
27 

29 

30 

30 

30 

32 
32 
32 
32 

33 

34 

35 
35 
35 
35 
35 
35 

37 
37 
37 
37 
37 

38 

• 

• • minimum r 

1 

2 

2 

3 

3 

4 

5 

5 

5 

6 

7 

8 

7 
8 

9 

g 

10 

11 
12 

12 

13 

11 
12 
13 
14 
15 
16 

18 
17 
18 
19 

20 

18 

25 

I 

• maximum r 

1 

2 

2 

3 

4 

4 

5 

5 

7 
7 
7 

8 

g 
g 
g 

12 
12 
12 
12 

12 

13 

18 
16 
18 
16 
16 
18 

20 
20 
20 
20 
20 

21 
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Table 2-2: A hypothetical parallel algo"rithm with k = 3,. ,\ = 5, and p = 1. 

n 

1 

2 
3 

4 
6 

6 
7 

8 
g 

10 
11 
12 
13 

14 
16 

16 
17 

18 
lQ 
20 
21 
22 
23 

24 
26 

26 
27 
28 
29 
30 
31 

32 
33 
34 

number of step 

' ••• • ~- 1 • : 

1 

9 
9 

14 
14 

17 
17 

19 
19 

22 
22 
22 
22 

24 
24 

26 
26 

27 
27 
27 
27 
27 
27 

29 
29 

30 
30 
30 
30 
30 
30 

32 .. 
32 
32 

• 
• 1· 

• • minimum r 

. 

1 
2 

3 

4 

3 

4 

6 
6 

6 
6 

7 
8 

g 

10 

g 

10 

9 
10 
11 . 
12 
13 
14 

16 
16 

13 
14 
16 
16 
17 
18 

17 
18 
19 

26 

• 

• maximum r 

1 
2 

3 
4 

4 
4 

6 
6 

8 
8 

8 

8 

10 
10 

10 
10 

14 
14 
14 
14 
14 
14 

16 
16 

18 
18 
18 
18 
18 
18 

24 

24 
24 

. . .... .. ,, ...... . 

• 

, 
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n -
,, - p m 

2 
< r < 

... 

'Im+ P 

2 

.. 

. , 

• (2.10) 

It is easy to verify that r -
n+p 

does indeed lie whithin this range nf optimal 
2 

r. 

To prove the second (necessary) part of the corollary, note that from theorem 

2.3, for any n in class Cm' 

n - 'Im->. < r(n). 

Substituting (n+p)/2 for r(n} at n == '1m, gives 

'1m < 2'1m->.-k + p. ' 

which, using theorem 1 gives 

or 

'Im->. < '1m->.-k" 

Clearly, this can be true only if k == 0. 

J· 
Q.E.D. 

Coroll~ry 2.2 is important to determine the c.ases when the optimal r can 

be chosen rather easily from n. It should be mentioned l1ere that generally in 

"divide and conquer" strategies, r is taken as n/2~ But from the above 

,,.....__ 

corollary, such r's are optimal only if both k and p are zero. 
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2.3.2 ·Statically recursive partitioning 

A special case occurs when the • • • part1t1on1ng parameter, r, is fixed 

throughout all the recursive partitioning levels. The scheme is not optimal but 

its simplicity may be advantageous under some circumstances. In particular, if 

only a few processors are availa~le, dynamically recursive partitioning does not 

necessarily perform better or at least not significantly better. Statically 

recursive partitioning ·· has a modular and predictable structure which 

particularly useful for direct hardware implementation. 

• 
IS 

Static recursion proceed.s as follows. The elementary problem size, L, is 

chosen prior to any partitioning. Then at each stage, r is chosen such that the 

problem P(n) is recursively partitioned into two subproblems P(n-r) and P(r-p), 

with L = r-p. The latter is not be partitioned further and is the basic 

building block of the algorithm. P(n-r), however, is partitioned further (if 

ri - r > L) using the same pro(:edure. 

An analysis of this procedure gives following result. 
... 

Theorem 2.4. For static recursion with elementary problem of size L, 

-----~-~ 

'1m = f'/m-).-k + L + p. 

Proof. From equation (2. 1) one gets, 

.. 

The first term in the above braces is greater than or eqaul to the second term. 

Thus, 

T(,,m-L-p) + k + A ( 2.11) 

--
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Since T( '1 m) == m ( by definition), then T( '1 m - L- p) 

and thus '1m - L - p belongs to class C m-k-).. 

... 

m - k -,\ 

Moreover, it is at the upper boundary of this class because, otherwise 

l 

l 

which gives 

T(r,m +1-L-p) + k + ,\. 

This leads to 

which contradicts the fact that '1m is at the upper boundary of class Cm. Thus, 

.... 

'1m == '1m->.-k + L + p. Q.E.D .. 

I,. 

Since L is typically a small number, it is clear from a comparison -of 

theorems 2.1 and 2.4 that dynamic recursion performs much better especially for 

large problems if many processors are available to take full advantage of 

existing parallelism. 

' 2.3.3 Partitioning according to a simple function of order 

-

A partitio11ing scheme which falls between static and dynamic 
• recursive 

doubling is to choose r as a simple function of the size of the subproblem under 

" 

consideration. A good guess is to choose r to b~ half the value of n. .For 

many types of problems, this .value may in fact belong to the range of optimal 

• 

r(n) .. found in section 2.3.1. 

,. 

To analyse this 
• • • scheme, sustitute l 'I /2 J for in ,equation (2.1) part1 t1on1ng r 

.,,., --- :1 

to g~t 
• 

. 
.., 

~ ·, 
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Now, since r,m-l'1m/2J equals [r,m/21, 

(2.12) 
,. 

.. 
For all nonnegative values of p, the first term in the braces of Equation (2.12) 

I 

is larger than the second term. Thus, equation (2.12) reduces to· 

• 
The above equation can be . further simplified by observing that '1 1s even 

m 

because otherwise T(17m) == T(17m +1) which is a conradiction. This gives 

' Since T(rJm) == m, equation {2.13) shows that 'lm/2 belong to class _Cm-k->.: 

Further, it should be the maximum of that class because otherwise, 

showing that '1m is not· at the upper boundary of class Cm which 

contradiction to its definition. 

• 
IS a 

Thus, '7 m 2,,"t_ ).-k" 
(2.14) I -

2.3.4 Relative performace of different partitiong schemes 

Statically recusive partitioning is the simplest and the least adaptive 

among the schemes reviewed above. It uses a fixed value of r throughout the 
t 

partitioning tree regardless of the sizes of problems at different stages. If, on 

the other hand, finding the value of r at a particular stage in the tree takes 
I 

into consideration the size of the subproblem at that stage, then the recursion is 

dynamic. Dynamic recursion partitioning can be done in several ways each of 

·_ which -may gjve a different performance level. In general, performance .irnpr.oves 

as r ,approaches the optimal r(n) at every stage in the partition scheme. 'Phus, 
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the worst performance is achieved h-y static recursion and the best by optimal 
• 

J • dynamic recursion. The choice of r ==. l n/2 J givesA and average performance but is 

.. 

• 

• • ... ,,-, 
&Ometimes advantageous since the choice of r may be made fairly quickly. 

.... 

2\,4 Limitati9ns of the chosen model 

Solving any computational problem involves • using operations which 

manipulate operands. Usually, more than one operation is necessary to solve 

any problem. For example, evaluating a polynomial requires at least addition 

and multiplication; problems involving matrix • • 1nvers1on require addition, 

multiplication as well as division. Primary and secondary memory access times 

are neglected in compexity analysis but may -also have to be included. This 

thesis assumes that all operations require the same time, although it is -0ften 

quite unrealistic. Multiplication usually takes at least twice as much time as 

addition and in searching and sorting problems, access to RAM is much faster 
• 

than access to bulk memory. , 
~ - . 

The difference in the time requirements of different operations often make 

a drastic change in the partitioning scheme if optimality is to be maintained. 

In the· model developed above, different operation time requirements can be 

accomodated by choosi11g a basic unit of time (generally the greatest common 

divisor of all the operation times) and then expressing each operation time as 

its multiple. This affects the partitioning scheme only by changing the values 
'1 

of the parameters k ~nd ,\. This approach simple modification of the basic 

model can provide accurate results in a variety of realistic problems. 
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r Chapter 3 

EVALUA~ION OF POLYNOMIALS ON 
MULTIPROCESSOR ARCHITECTURES· 

-... 

3.1 Introduction 

Polynomial evaluations arise in applications requiring the computation of 

transcendental functions and interpolating polynomials. Parallel evaluation of 

polynomials is a classical problem which has been tackled since the introduction 

of the idea of multiprocessing [4,. 9-13]. The evaluation of polynomials has been 
• 

investigated thoroughly because it is a typical problem which is inherently 

structrure~ so that extensive parallelism is available. 
~ 

Some existing vector 

.. 
processors such as the IBM 3838 attached back-end processor include polynomial 

... 
ev al11ation as one of their functions [ 8]. 

3.2 Con1putational models for parallel polynomial evaluation 
• 

In this work, a polynomial of degree n is- designated as P . To compute 
n 

Pn in optimal or near optimal time using a multiprocessor ~rchitecture, Pn is 

split into · many smaller polynomials which may be evaluated in parallel using 

several processor~. We start by splitting Pn into two polyno.mials .as 

p == xr.P + pr-1 n n-r (3.1) 

Expression (3.1) shows that P may be decomposed into two independent 
n 

polynomials which can be computed in parallel. The term xr must also be 

computed in parallel to with Pr-I and Pn-r· The two polynomials on the right 
,. 

hand side of equation (3.1) can in turn be decomposed into smaller polynomials 

"by applying the same or a similar rule. The d_ecomposition is thus recursive in 
I I 

nature as was · explained in chapter 3. Notice that the polynomial could have 
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• 

been split to three polynomials rather than two with' minor modifi·cations to the 

model. 

/ 

') 

Let T(n) denote the minimum number of steps (and thus the minimum 

time measured in steps) required to compute Pn using a parallel algorithm with 

a specific partitioning scheme. 

As mentioned in chapter 3, the decomposition model, expressed in equation 

(3.1 ), can be used to partition the polynomial problem in several ways by 

choosing different methods of specifying r at each recursion level. The simplest 

method of static recursion fixes r apriori to some constant throughout all the 

recursion levels. The optimal dynamic recursion method requires to choose at 

each node in the 
• recursion tree an r which optimizes the completion of the 

subproblem associated with that specific node, i.e. an r which optimizes the 

evaluation of the polynomial with the specific degree. at that node. Many other 

methods of choosing r are conceivable and feasible, but in this work we mainly 

conentrate on the two methods mentioned above. In general, optimal dynamic 

recursion has the best performance, especially on a MIMD computer. However, 

some other method may be more suitable and possibly even faster for a 

dedicated hardware architecture. 
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S.3 Statically recursive partitioning 

In this simple method, radix r is c·hosen to be a constant throughout the 

polynomial evaluation process, leading to the computational process expressed as 

~-. ""' (""' 

pn == xr(xr(xr(.: .. (xr.Pn-kr + pr-I) + pr-1) + pr-1) ... + pr-1· (3.2) 

Horner 's rule is seen as a special case of static recursion with r == I. Each step 

in this evaluation is: 

p == xr.P + pr-1' n n-r 

where Pr- I collects all the Pn terms having a degree less than r, and Pn-rt 

collects all the remaining terms. 

Since the degree of Pr- I is less than . r, Pr- I can not be decomposed 

further. But, P can in general be decomposed further l?Y applying the n-r 

method recursively until all the degrees involved are less than r. When 

polynomial P is completely decomposed, it has the form expressed in equation 
n 

(3.2). 

The recursion depth, k, is the largest integer such __ that n > kr. The r-+-1 . . 

degree polynomials can be eva.luated using any available method. ·Tl1e simplest 

method is to calculate them by direct evaluation. In this case, one may take 

advantage of the fact that the same powers of x are used in the calculation of 

each of the r-1 degree polynomials, and therefore they may be precomputed and 

then used repeatedly. 
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. 3.3.1 Implemen.tation of static recursion for. polynomial evaluation 

In static r~cursion, r is fixed so the p·oly nomial P is evaluated essentially 
n 

-· 

, 

by computing~ many Pr- I polynomials. As mentioned earlier, these polynomials 

may be ·eyaluated u~ing any satisfactory method. ltr, will be shown later in 
~ 

chapter 5 ·'that Horner's rule may be . used to evaluate these polynorni~ls in a 

• 

fashion tlrat lays out a pipelined architecture to compute polynomials using 

statically recursive partitioning. Horner's rule tis the most efficient and quickest 

method to compute a polynomial on a single processor Von Neuman 

Architecture. But in this case the powers of x are calculated once and used for 

all the Pr- I polynomials,. so Horner 's rule requires almost as many op~rations as 

the direct evaluation where each power of x is multiplied by its corresponding 

coefficient, possibly in parallel. In contrast, Horner's rule can not be 

parallelized but may be chosen to reduce the hardware complexity in case of 

.implementation through dedicated hardware. On a MIMD computer, evaluating 

the Pr-I polynomials using direct evaluation leads to a superior performance 

with only a small pen'alty in terms of additional overhead to compute the 

powers of x. 
I 

This section presents an implementation of polynomial evaluation using 

static recursive partitioning with direct evaluation of Pr-I polynomials. It is 

assumed that the .multiplication of an x power and its corresponding coefficients 

is done in paral]e] with other operations. 

Since the powers of x involved in the calculation of each P,._ 1 polynomial 

· are precalculated, each one of the Pr- I polynomials requires exactly r-1 

• 

' ' 

• 
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multiplications' 'and r-1 additions and may be done in r time slots if an infinite 
' ~ 

\ 

number' of processors are available. The k P,_ 1 polynomials in equation (3.2) 

contribute k(r - ~i) multiplications and the polynomial Pn-kr requires n - kr 

multiplications. Art each1
"' level there is also a multiplication with xr gi~ng k 

more multiplications. finally, the powers of x which are calculated prior to 

completing any level require r - 1 multiplications. Thus, the total number of 

multiplications is n-kr+k(r-l)+k+r-1 == n+r-1. By a similar argument, 

the total number of additions is found to be n. Thus this implementation 

implies an additional r - 1 multiplications over Horner's rule which require only 

n muJtiplications. 

The ·simplicity of this algorithm makes it particularly suitable for direct 

hardware implementation, even though it does not fully exploit the potential 
l 

parallelism available in polynomial evaluation. 

3.4 Dynamically recursive partitioning 

If at each stage of computation, the problem is split opti,mally, the overall 

problem is solved in the minimum number of steps achievable on such a model. 

This· section shows that polynomials can be partitioned dynamically according to 

the n1odel presented in chapter 3. 

Note that in equation (3.1), the multiplication between Pn-r and xr is a 

partitioning overhead and the addition of the two terms is a recombination 

overhead. Both these overheads have the value of one since we consider that 

all the operations take the same execution time. 

computatjonal model 
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(3.3) 

This model does not necessarily follow the dynamically recursive model 

developed in chapter 3 since for the optimal values of r, the term xr may 
• 

~ 

require more steps than ,coulcl ~ tolerated. To prove that the two models are 
) 

equivalent, we first prove that at least for one value of optimal r, xr should not 
I 

be the dominating term in the max 
• expression . The following lemma prove 

• that this xr caculation can never be a bottleneck when partitioning dynamically. 
> 

Lemma 9.1. .C [ xr] < T[ Pr-l] - 1. 

Proof. Choose a particular r - 1 degre·e polynomial Pr- l == ar-l xr-l + 1. If Pr-l 

-
requires m steps, then calculating the value a r- l ;r- I requires at most m - 1 

steps. For a particular ar-I == x, however, this expression is xr. Therefore, 

computing xr requires one less step than computing Pr_ 1. Q.E.D. 

'-The next theorem prove~ _ .. that the ~ynamic model of chapter 3 is a valid 
• 

model for the dynamically recursive partitioning of polynomials. 

Theorem 3.1. .If one uses the partitioning shown in equation (3.1) with 

. optimal · r, then·. 

TIPn] = ma{{TIPn_r], T1Pr_ 1]} + 1. . 

Proof. The total number of steps, T[Pn], required to compute Pn according to 

equation (3.3) is 

max{ max{ T[ xr] + 1, T(Pn_rJ + 1 }, T[Pr_ 1] }+ 1. 

From lemma 3.1, it is known that T[xrJ + 1 is at most equal to T[P,_ 1]. Thus, 
• 

.. 
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either of these two terms can be removed without changing the outcome of the 

max function. Th us, Tl P n] == max { Tl P n I + 1, T[ P, _ 1 J} + 1. Q.E.D. 

Since theorem 3.1 proves that the constant overhead model of chapter 2 is . 

--
applicable in this case, the results developed there are directly applicable in the 

present case. · The following sections describe the characteristics of the 

algorithm. 

3.4.1 Complexity of the optimal algorithm 

As mentioned earlier, partitjoning a polynomial into two polynomials 

introduces two overhead operations for each level of partitioning. The 

• partitioning overhead is a multiplication with x' and the recombination overhead 

is an addition of two terms. Thus, both A and k in section 2.3.1 are equal to 

unity. Notice also that p is unity. Therefore, all polynomials will be classified 

according to their degrees. Let class G" contain all the polynomial degrees 
m 

which require m steps to be evaluated in a multiprocessor environment. Let r, 
m 

designate the largest member of Cm. Equation {2.3) in this case gives 

t') - t') + t'). + 1 
' 1 m ·- ''m-1 ''m-2 · {3.4) 

Polynomial ·pn will be partitioned to many polynomials of degree O by optimal 

• 

partitioning. But a polynomial of degree O is actually a coefficient of the 

original polynomial arid. thus the leaves in the recursion tree correspond to the 

' 

coefficients of the polynomial P . n 
I • 

The optimal number of computational steps required to compute 

polynomials of degrees less then 26 are shown in table 3-1 . .. 

' I 
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Table 3-1: 

problem 
• size 

1 

2 

.. 3 
4 

6 
6 
7 

8 
g 

10 
11 
12 

13 
.14 
16 
16 
17 
18 
lQ 

20 

21 
22 
23 
24 
26 

" 

..... 

,, 

The characteristics of the optimal dynamic algorithm for 

polynomials of degrees 1-25. 

number of 
steps 

2 

3 

4 
4 

6 
6 
6 

6 
6 
6 
6 
6 

7 
7 
7 
7 
7 
7 
7 
7 

8 
8 
8 
8 
8 

.. 

• • minimum 
r 

1 

2 

2 
3 

3 
4 
5 

4 
5 
6 
7 
8 

6 
7 
8 
g 

10 
11 
12 
13 

g 

10. 
11 
12 
13 

., 

' 

• maximum 
r 

1 

2 

3 
3 

6 
6 
6 

8 
8 

8 
8 

8 

13 
13 
13 
13 
13 
13 
13 
13 

21 
21 
21 
21 
21 

.. 

The number of processors is assumed to be large enougl1 so as not to be a 

constraint. Sown also in table 3-1 are the values of optimal r. The range of 

optimal r's is contiguous as predicted by theorem 2.3. ·Notice that all classes 
.. 

are nonempty and that· IC ml is a Fibbonacci number (1, 2, 3,5, 8,-13, etc). 

Moreover, the smallest value of n in any class Cm is also a Fibbonacci number 

.,. and is designated by F . That F is a Fibbonacci number is not coincidental, 
m m 

rather; (3.4) • • the well known property that a Fibbonacci number is m1m1cs 

... 

--
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generated by adding the two preceding Fibbonacci numbers. 

Applying theorem 2.3 give~ the following range of optimal r . 

. 
n - '1 m - f' < r < '1 m - 1 + l, where n E C . 

m 
(3.5) 

I 

I 
I 

' 3.4.2 Number of operations 

Any parallel algorithm works by partitioning the original computational 

problem into smaller and independent subproblems which can be solved in 

parallel. However, this can be done only at the expense of overhead which 

introduces some 'new operations which otherwise would have been unnecessary. 

Thus, the tirne savings are achieved at the cost of a decreased efficiency. 

Dynamically recursive partitioning introduces additional operations over the 

optirri'al serial evaluation of polynomials by Horner's rule which requires exactly 

n additions and n multiplications to evaluate a polynomial P of order n. To n 

assess the efficiency of a parallel computation, we pow compare the number of 

operatio11s required by it with the number of operations required by Horner's 

rule. 

The following theorem determines the total number of operations for the 

clynamic optimal recursion excluding the operations necessary to compute the 

required powers of x. 

Theorem 3.2. Computing a polynomial Pn by optimal dynamically 

recursive partitioning requires n additions and n multiplications if the required 

powers of x are precomputed. 

Proof. At every node in the · recursion tree where {3.4) is applied, two 

40 
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operations, a multiplication and an addition, are encountered. The sum of the 

degrees of the children polynomials is exactly one less than the degree of the 

- ~ 

. parent polynomial. (This is obvious from (3.4). The degrees of the polynomial 

on 1> the right · are n - r and r - 1 ... res pee ti v ely and that, on the left is n - 1). '") 

Since all. the polynomials at the leaves of the recursion tree have a degree of O, 

it is clear that equation (3.1) must ha.ve been applied· n times. Thus, if the · 

polynomial is partitioned completely, n additions and n multiplications are 
/ 

/· 
/ 

' 

.... generated. Q.E.D . 

" 

• 

.__ 

Thus., the number of operations resulting from overhead operations equals 

those required by Horner's rule. Tit only extra computations which the 
' 

parallel evaluation requires are the multiplications required to compute the 

necessary powers of x. The powers of x which are generated for a particular 

polynomial depend on the values of r that are chosen at different stages 

throughout the recursion. To identify these powers, the the values of r must be 

chosen according to a consistent rule such as using either the minimum or the 

maximum value of the range specified by equation (3.5) at each node in the 

recur~zon tree. As partitior1ing proceeds, new powers of x are generated as 

required. In general, each new power of x may require several multiplications. 

But as the following two· theorems show, , if throughout the recursion stages r 

is consistently chosen to be either the minimum or the maximum value of the 

range of r, then each new power is related ratner simply to the powers already 
.. 

generated. 

. . . 

Lemma 9~2. Let '1m denotes the maximum of class Cm. A. .. polynomial 

.... .. 
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p such that 
11m-2 '1m-1 

P decomposes into the polynomials P , P , P , ...• , "m '11 "2 '13 
. 

r, 1, r, 2, •.• , '7m-l are the maximurns of· all the classes which ·precede the class 

C. 
m Further, all the · x powers used in the computation of P are the 

'1m 

Fitibonacci numbers 1, 2,, 3, 5, ... , F ..... 
m 

Proof. 

that 

As shown by (3.5), the value of r used to partition P is unique such 
!'Im 

r 

Using equation (3.4), we get 

·r == '7 + 1. m-1 

Notice that the first polynomial generated in this partitioning has a degree 

rJ - r. m 

But ,-, - r == rJ - rJ - 1 == rJ 2. m m m-1 m-

The other generated polynomial has a degree of r - 1 which clearly equals r,m_ 1. 

Finally, since "m-l is one less than the Fibbonacci number Fm and 

r == r, 1 + I, the value of r is a Fibbonacci number F . m- m 

Thus, partitioning the polynomial P 
"m 

generates two polynomials whose 

• since 

• sizes 

'1m-I and ,-,m_ 2 and uses 

proves the lemma. 

4ili 

F 'th power of x. 
m 

Recursive use of this argument 

Q.E.D. 

Theorem 9.9. If at each node in the recursion tree the minimum optimal 

r is used, the evaluation ·of polynomial P E C requires only p.owers n m 

1, 2, ~--, F m- 2· (i.e. all Fibbonacci numbers 1 . through F m- 2) of x. -Further, a 

new power of x is always a product of two powers of x which have been 

already computed and therefore it requires exactly one more multiplication to. be 

calculated. 
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Proof. Splitting Pn gives two polynomials Pn-r and Pr_ 1. Notice that if r is 

chosen at its minimum value of n - '1m_ 2, then n - r equals '1m_ 2• Therefore by 

lemma 3.2, its evaluation requires those powers of x which are Fibbonacci 

- • 
numbers 1 through F m- 2• 

Since r - 1 1, it can be easily shown that r - 1 E C m or = n - '1m-2 -

-
r - I E Cm- t · Thus, Pr- I will be split into two polynomials· one of which is of 

degree '1m_ 3 or '1m_ 4 as per the above argument. .-1emma 3.2 ensures that these 

polynomials will not introduce any new power of x since they • require 

"Fibbonacci powers" which have already been generated before. Therefore, the 

only possible new powers of x can be generated in the "rightmost" branch of 

the recursion tree. In case ( r - 1) E Cm- I' Pr- I is split according to an r 2 such 

that • 

r 2 == ( r - 1) -. '1m_ 3 == r - F m-2. But power F m- 2 was generated earlier and 

. therefore, xr is obtained by multiplying this power with xr2. If (r - 1) E Cm, 

,. "' . . • ""I' 

then a similar argument shows that 

This again shows that xr is obtained through one multiplication. 

Therefore, any power which is generated at any node in the recursion tree can 

be calculated through only one multiplication and using two powers which have 

already been generated before at two other nodes. Q.E.D . 

... 

Theorem S.4. 1f at each node in the recursion tree the _largest optimal r 

• used, evaluation of polynomial p EC 
• only the IS a requires powers 

n m -
, 

1,2,3,5, ... ,F 1,F. m- m . 
, 

Proof. As shown • equation {3.5), .the largest value of r for n ·,EC • 
In any IS m 
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'1m-I + 1, which is the Fibonacii number Fm· Hence the theorem. Q.E.D. 

Q 

The above two theorems com~ined with the operation count for the 

overhead operations ~rovide a good estimate of the amount of operations 
\ 

' 

' required to complete polynomial evaluation on multiprotessro architectures using 

optimal 
• recursion. If n E Cm (Fm < n < 

requires n additions and n + m - 1 multiplications. Moreover, the partitioning 

i 

scheme can take advantage of the multiprocessor and complete all the required 

operations in only m == O(c log(n)) steps, where c is a constant . 
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Chapter 4 

MA TRIX OPERA TIO NS ON 
MULTIPROCESSOR ARCHITECTURE 

• 

4.1 Introduction 

One of the most rewarding applications of parallel processing is matrix 

\. 

manipulation. Matrix operations 
• arise in applications\ related to structural 

analysis, transforms, ')image processing, fluid mechanics and partial differential 

equations, to name a few. Further, many of these applications require 

manipulation of matrices having very large orders, sometimes up to 100 .000. In 

, . 
addition., matrices have elegant structures and their operations can be easily 

decomposed. Since matrix operations are such good candidates for parallel 

processing, it is worthwhile to develop models and methods to help "parallelize" 

matrix manipulation algorithms. 

We have seen earlier that due to decomposition overhead and 
• various 

other considerations, partitioning computational problems in equal halves may 

not achieve optin1al parallel execution tirr1e. Nevertheless, traditionally, many 

' 
parallel algorithms are based on this l1euristic approach. Parallel 1natrix 

algorithms ha.ve not been exceptions. Fortunately, in many cases involving 

matrices, dividing problems in equal hLalves may in fact be optimal or near 

optimal. In this ~.hapter, we _develop and analyse ·a model which can be directly 

applied to some matrix operations, notably. matrix inversion. The main purpose 

of the discussion here is not to develop a specific model, but rather to illustrate 
ii .'l, 

a methodology to develop useful models . 
</ 
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The inodel which will be analysed below is represented by the equation 

T( n) == min { ma X { T( n - r) , T( r) } + k r / 0 g ( r) l + A } , 1 < r < n-1, n > 2, 

where k and A are integer constants such that A > k > 0. 

" 
Compared to the model discussed in chapter 2, th"is equation · has variable 

... 
overhead. The reason for the log term is that many matrix operations with r 

operands .can be done in a binary multiprocessor tree of height proportional to 

log(r). In [4], it is shown that multiplication of two matrices of sizes mxn and 

n X p respectively require exactly r log( n) l + 1 steps. Since decomposition of 

matrix operations requires matrix multiplication in many cases, the log term 

usually arises in the above context, as will be shown in the example of next 

section. 

4.2 Model for matrix inversion 

A very important matrix operation is inversion. One of the methods to 

invert matrices is the LU decomposition followed by inversion of each triangular 

matrix and then their multiplication. 

This and vari(>Us other applications -make triangular matrix 
• • 1nvers1on an 

' 

attractive problem for parallel processing. Various techniques -have been devised' 
<, 

to compute the inverse of a triangular matrix in parallel [4, 5,. 14, 15]. 

The algorithm which will ·be modeled here uses recursive doubling. Lat A 
• . 

be a lower triangular matrix of order nx n which·· is partitioned as 

0 

A 

,, ............. . ,;!. . 

·,. 
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where A 1, A 2 and A 3 a-re matrices of orders rxr, (n-r)xr, and (n-r)x(n--r) 

respectively. 

Since the inverse of a triangular matrix is itself triangular, A -l can be 

expressed as 

where B 1, B 2 and B3 are matrices having the same orders as A 1, A 2 and A
3 

respectively. This representations leads to the following identities: 

where 11 - I and 12 are identity matrices of appropriate order. These equations 

then lead to the three-step procedure to compute A - 1. 

B1 A1 
-1 

' 

B3 - A3 -1 and -

B2 - -B3A2B1. -

Notice that inverting A 1 and A 2 are independent operations and thus, can be 

performed in parallel. The computation of A 3 -l A 2A 1 -I can be done by solving 

A 3Y = A 2 in parallel with the inversion of A 1 and A 3 to compute A 3 -l A 2 

and then ml1ltiplying it with B 1 as soon as B 1 is computed [4]. Since the last 

' 

operation ( multiplication with r x r dimension Bl) takes r log(r) l + 1 time st.eps, 

the total time to comp1ete the inversion is 

T(n) == min{max{T(n-r), T(r)} + flog(r)l + I}, · 1 < r < n-1, n > 2. 

In this equation, T(n-r) and T(r) are the times required to evaluate the inverses 

A 3 -I a.nd A 1 -
1; the time required to solve A3Y == A 2 is not indicated since it 

·' I . 
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is less than T(r). The. values of T(n) and optimal r for this case are shown· in 

table 4-1 

Table 4-1: 

n T(n) 

2 2 
3 3 
4 4 
5 5 
6 6 
7 7 
8 7 
g 8 
10 g 

11 10 
12 10 
13 11 
14 11 

• 15 11 
16 11 
17 12 
18 13 
lQ 14 
20 14 
21 15 
22 15 
23 16 
24 15 
25 16 
26 16 
27 16 
28 16 

I 2Q 16 
,. 30 ·16 

31 16 
32 16 

• I 

The time and optimal r values for parallel 
triangular matrix inversion . 

r 

1 
1 

1 ' 2 

1 ' 2 

1 ' 2, 3 

1 ' 2, 3, 4 
4 

1 ' 4 

1 ' 2, 4, 5 

1 ' 2, 3, 4, 5, 6 
4, 6 

1' 4, 5, 6, 7, 8 

6, 7, 8 
7, 8 
8 

1 ' 8 

1' 2, 8, g 

1 ' 2, 3, 4, 7, 8, g, 10 
4, 8, 10 

.,. 

1 ' 4, 5, 6, 7, 8, g, 10, 11, 12 
6, 7, 8, 10, 11, 12 
7, 8, 11, J.2 

~ 

8, 12 

1 ' 8, g, 10, 11, 12, 13, 14, 16, 
-

10, 11, 12, 13, 14, 15, 16 
11, 12, .13, 14, 16, 16 
12, 13, 14, 16, 16 
13, 14, 15, 16 
14, 15, 16 
16·, 16 
16 

48 
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4.3 Analy·sis of variable overhead models 
.. 

The computational complexity model of section 4.2 can be generalized to 

the following form: 

V 

T(n) - min{max{T(n-r), T(r)} + kflog(r)l + ..\}, 1 < r < n-1, n > 2.(4.1) 

In this thesis we only consider cases where ,\ > k 2 0 

' We first show that T( n) is a monotonically increasing function for all 

v a)ues of n. 

Theorem 4.1. For all n, T(n+l) > T(n). 

· Proof. We use mathematical induction over n to prove this result. First, 

assume that the function T( n) is monotonically increasing for all values of 

• 
n < u, 1.e: 

T( n+ 1) > T( n), n < u. 

We now prove that T(u+l) > T(u). 

Let 1 < r1 < u denote the r used to evaluate T(u+l). Then 

T(u+l) == max{T{u+l-r1), T(r1)} + kf log(r1)l + ..\. {4.2) 

If r 1 == 1, then equation (4.2) becomes 

T( u + 1 ) == max { T( u) , T( 1 ) } + ,,\. 

. --
But since T(n) is assumed to be monotonically increasing till u, T(u) > T(l) and 

thus 

T( u-+ 1) == T( u) + ..\ > T( u). 

If r 1 i- 1, then 2 < r 1 < u giving 1 < r 1 - 1 < u - 1. Thu~, r 1 - 1 is one of the r 
.. 

values used in the optimization_ of T( u) in equation ( 4.2). Therefore, 

-
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T(u) < max{T(u-(r1-1)), 1ftt·1*-1)} + kflog(r 1-t)l + ,\, · {4.3) 

But since r 1 - 1 < u, our assumption gives T( r 1) > T( r 1-1). Keeping this in 

mind, a cony>arison of the terms of equations ( 4.2) and ( 4.3) gives 

J . .. 
T( u + 1 ) > T( u) . 

Thus, the theorem is true for n - u if it is true for n < u. From equation 

( 4. 2), we have T( 2) == T( 1) + ,\ > T( 1) showing that the theorem is true for 

n == 2. Thus, the proof is complete by induction. Q.E.D. 

We will show later that l n/2 J is an optimal value of r for all n. But 

first, we obtain a few properties of T(n) assuming that optimal r == ln/2J. 

Define a new function such that 

( 4.4) 

Notice that if r == ln/QJ is optimal, then T(n) == T0 (n). The expression for T0 (n) 

can be simplified to either one of the two following equations, depending on 

whether n is even or odd, 

T0 (m+1) + k1log(m)l + A, n == 2m + 1, and (4.5) 

(4.6) 

Following three theorems describe the jumps in T0 (n) as n increases and 

enable us to obtain an expression for T0(n) . 

... F I~ 1 ..... 

Theorem 4.2. If n - 2i, where i is a positive integer, then 
V 
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Proof. The theorem would be proved by mathematical induction. over i. It is 

clearly true for i == 1 since equation ( 4 .6) gives 

Assume that it is true for all i < I. To show that it is true for i = l, note 

that equation ( 4.6) gives 

' 

However, ,since we assumed that the theorem statement is true for i < · 1, we 

get 

T(21) - T0(21- 1+1) + (l - 1) + A - --\ (from the above assumption) 

- T0(2 1+1) - A (from equation (4.5)). 

This shows that the relation is valid for i == l. Q.E.D. 

Theorem 4.3. · For all the values of n which are expressible as n - 21 + 

21, where i and j are two distinct nonnegative integers, 

Proof. We prove this theorem using mathematical induction over n. The 

relationship stated above is true for n == 3 since 

T0 (4) == T0(2) + A + k from equation ( 4.6}, 

which gives using equation ( 4.5), 

We now assume that the theorem statement is true for all n < u and prove it 

for n == tt. 

. 
Let u == 21 + 21, -i -:j:. j. If neither i nor· j is zero, then u is even and thus, 

) 

from equation (4.6), T0(u) can be expressed as/ 

• 
. . . . .... ,.' ' . ....... 

. ,. · ~ .... '>·, .. ·~ r .. , ~",. _., .. , .. ·.• ••. ,· .. 
!'- . 
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Our assumption gives 

9' '\ 

T
0
(u) == T

0
(2i- 1+2j- 1+1) + krlog(2i-t+2j-l)l + l - k. 

The first three terms on the right hand side can be combined using equation 

(4.5) to give the value of T0 (u+l). 

Thus, T0(u+l) == T0 (u) + k. 

On the other hand, if (say) i == O, then u - 23 + 1 and using equation ( 4.-5), we 

get 

and from equation ( 4.6) 

Clearly, in this cas~ also 

Q.E.D . 

.. 

Theorem 4 .4. · If n -::/- 2i + 21, for any two nonnegative integers i and j, 

then 

Proof. The theorem is true for n = 7 ( the first such n value) since from 
0, 

. . 
equations (4.5) and (4.6), T0 (7) == T0 (8) == T0 (4) + 2k + l. If the theorem is . 

true for all n < u, then it can be shown to be true for ri == u, and by_ 

mathematical induction, the proof would be complete. 
" 

If u is even ( u == 2m ), then from equations ( 4.6) and ( 4.5), we have 

., 

TO ( u). == TO ( m) + k flog( m) l + ;\, and 

• 52 
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, But T0(m+l) - T0(m) since m is not a sum of two powers of 2 and m < u • 

Thus, 

T( tf + 1) - T( u) . 

If u is odd ( u - 2m + 1 ), then from equations ( 4.5) and ( 4.6), 

TO ( u) == TO ( m) + k flog ( m) l + ,\, and . 

T0(u+l) == T0(m+l) + kf log(m+l)l + ,\. 

Clearly, flog( m) l - flog( m+ I) l, else m is a power of 2, say 21• This is not 

possible 
. 

since it implies that u == 21+ 1 + 2°, which is a contradiction since 

. . 
u -/ 2i + 21 for any i and j . Q.E.D. 

The last three theorems are of param'ount importance in predicting T0(n) 

for any n. They show that jumps of known magnitude in T0 (n) occur only at 

n's of the form 2i + 21. T0 (n) can thus be found by examining all the integers 

. . 

which have the form 2i + 21 and are strictly smaller than n. In particular, the 

following corollary gives an exact expression for T0(n). 

Corollary 4 .1. For all n, 

T
O 

( n) - ( l log ( n) J + 1) ,\ + k l lo g ( n) J ( l log ( n) J - 1 ) / 2 + k f log ( n - 2 l 1 ° g( n) J ) l ( 4. 7) 
·1 

- llog(n)J..\ + kllog(n)J(llog(n)J .~ 1)/2 + T(l), n = 2i, i > 1. (4.8) ., -
Proof. To find T

0
( n), one c;.an exan;iine the jumps which are encountered by the 

function T
0
(m) as m increases frnm -say- 1 to n. Theorem 4.2 states that at 

any value of n which can be expressed 

• ... _., '' > 

, t. I • 

I 
' ,\ 

\ 
/ 
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magnitude A. Similarly, theorem 4.3 states that at any n having the form 

2i + 2i, i 'f j, T
0
(n) encounters a jump of magnitude k. On the other hand, 

~ 

theorem 4.4 states that • at those n's which do not have the no Jumps occur , 

.. . 
form 2t or 2t + 21. This suggests that one can compute T0(nl" by finding the 

. 
number of • caused by ·the integers having the form 2t and 2i 21 Jumps + ' 
multiplying them with A and k respectively and adding them to -say- T0 ( 1). 

Let l == llog(n)J. Define S as the set of integers which are strictly less than n 
n 

and have the form 21 • Similarly, define Z as the set of integers which are n 

strictly less then n and have the form 21 + 2i, i ¥- j. Then, 

Notice that 

Finding IZ I involves finding the number of all the possible weight-2 vectors 
. n 

•, 

among a vector with l components. Thus, 

"'l-1 . l l I Zn I - L.., j= 1 J + I log ( n- 2 ) , 

[- 1 . 
""' n == 27

• - ~j=l J, 

[-1 
Substituting l(l--1)/2 for Lj~I j an<] llog(n)J for l completes. the proof. Q.E.D. 

4.4 Optimal partitioning· for varinble--6V~rhead 

We now show how to optimally patition the problem, which is achieved 

by determining the values· of optimal r's. In particular, it is shown that 
,, . 

optimal partitioning is achieved by choosing r at any stage of computation as 
,., 

r == l n/2 J where n is the size .of the problem at that particular stage. 
\' . . . 

• 

I' 
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Theorem 4.s. For T(n) defined in equation (4.1), ln/2j is an optimal 

value of r, i.e. 

Proof. · The theorem would be proved by mathematical induction over n. 

Notice that for n == 2, the optimal value of r is 1. Assume that the theorem 

statement is true for all n < u. Next, we prove that this infers that it is 

valid for all n < u+ 1. 

Since we assume that T(n) - T0 (n) for all n < u, theorems 2, 3 and 4 are 

valid for T(n) if n < u. 

First, consider the case when u is even, and let u - 2m. Using equation (4.6), 

T( u) is expressed as 

T(u) == T(m)"+ kflog(m)l + A . 

On the other hand, equation ( 4.·5) gives for 

TO ( u + 1) == T( m + 1) + k I log ( m) l + A. 

To compare the above two equations, three distinct cases m.ust be identified; 

. . . . . 

m =/ 2 i + 2 J, m == 2 2 and m = 2 i -+- 21, when i ¥ j. 

G1ase 1. 1f m ¥ 2i + 2i, then according to theorem 4, T( m) = T( m+ 1). This 

clearly means that T0(u+l) == T(u), which implies that T(u+l) == T0(u+l) 
. 

since 

T( u+ 1) can not be less than T( u). i· 

Case 2. If m == 22 , then accordi:µg to theorern 2, T(m+l) - T(m) + ,\. Thus, 

the expression for T0 ( u+ 1) becomes ) 
T0(u+l) - T( m) + k flog ( m) l + 2A. -

- T(u) + A. -

If T(u+l) > T(u) + ,\' then T( u + 1) , == TO ( u + 1) . Since u+l 2m + 1, we have 
- , . _, 

,I 

. _;. 
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T(u+l) - T(21+l-r) + krl.og(r)l .+ ,\. 

We want to prove that for any r, T( u+ 1) · > T0 ( u+ 1) since this implies that 

r = l n/2 J is optimal. 
-, .:•_. ... 

Consider the case when r < m, such that r == m ~ p, p >. 0. Then 

. . 
T(u+l) == T(21 +p+l) + kf log(2i-p)l + ,\. (4.9) 

For p == o, we clearly have r == m. If we want to find an r which yields a value 

of T( u+ l) which is less than T( u) + A, then p must be increased sufficiently to 

decrease the log term in equation ( 4.9). However, as p increases, the decrease 

in the log term is achieved at the possible expense of an increase in T(2i+p+l), 

the first term in the right hand side of equation (4.9). We intend to prove 

that the decrease in the Log term is more than offset by an increase in the first 

term, so that T( u+ 1) can never decrease below T( u) + ,\. Decreasing the log 
'If 

term by l, requires that we half its argument l times. . This can be achieved 

with a p having the form 

Thus, the expression for T(22+ p-t- l) becomes 

T(2i+p+1)) - T(2i+2i-1+2i-2+ ... +2i-t). 

for the value of p above, corollary 4.1 and equation (4.9) give 

T(u+l) == (i+l),\ + ki(i-tl)/2 + T(l) + k(i-l) + A, l < i 

- ( i-t- 2) ,\ + k i ( i + 1 ) / 2 + T( 1) + A, l == i 

• 

(4.10) 

(4.11) 

Since u == 2i, corollary 4.1 can be easily applied to find the value of T( u) as 

T( u) == ( i + 1) A + k i ( i + 1) / 2 + T( 1). _'1 
(4.12) 

,r 

Comparing equation (4.12) against equations (4.10) and .. (4.11) show that 

., 
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T(u+l) > T(u) + l, and therefore that T(u+l) - T0(u+l). 

Case 3. If m = 21 + 21, i 1 i, then according to theorem 3, we have 

T(m+l) == T(m) == k. Thus, the expression for T0(u+l) becomes 

T0(u+l) - T(m). + kflog(m)l + k + ,\. 

- T( u) + k. · 

If T(u+l) > T(u) + k, then T(u+l) == T0(u+l). Since u + 1 - 2m + 1, we have 

• 

T(u+l) == T(2'+1-r) + krlog(r)l + ,\. 

We want to prove that for any r, T0(u+l) > T0(u+l) since this implies that 

r == l n/2 J is optimal. 

Consider the case when r < m, such that r == m - p, p > 0. Proceed as in 

case 2 above, with the exception that we intend to reduce the log term in 

equation (4.9) by l+l, so we add 21 to p. Therefore, p is expressed as 

P == 2i- l + 2i-2 + 2i-l 2i . . . + + . 

. . 

Thus, the expression for T(2i+21+p+1) becomes 

For the value of p above, corollary 4.1 and equation (4.9) give 

T(u+l) - (i+l),\ + ki(i+l)/2 + T(l) + k(i-l) + .A, (j+l) < (i-l) 

- ( i + 2) ,\ + k i ( i + 1 ) / 2 + T(l) + k ( i- l) + ,\,. (j+ 1) == ( i- l) 
.... 

(4.13) 

(4.14) 

( 4.15) 

- (i+2),\ + ki(i+l)/2 + kj + T(l) + k(i-l) + ,\, (j+l) > (i-l) (4.16) 

Notice that when j+l > i-l, the term 2i+I is repeated twice in the equation 

( 4.13); this means that the two terms add and produce a "carry", w·hich · 
' ' 

"propagates" so that all the two powers 2i+ 1 through 2i add up to 2i+t. Since .. 

. . 
u = 2i + 2_',_ corollary~ 4.1 can be ~asily applied to find the value of T(u) as 

T( u) == -ri + 2) ,\ + ki ( i + 1) / 2 + ki + T( 1) . 
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Comparing equation (4.17) against equations (4.14) through {4.16) show that 

T( u+ 1) can not be less than T( u) + k. Notice that dropping the term 21 from 

the expression for p, would not affect th·e above argument or its conclusion . 
.. 

This implies that T(u+l) == T0 (u+l). 
) 

A similar argument can be used to show 

that the same result is infered for any r > m. 

' ,l 

Thus, in all three cases, the assumption that T(n) == T0(n) for all n < u, where 
~ \ 

u is even leads to the conclusion that T( u+ 1) == T0( u ). A similar argument can 

be employed for an odd u to reach the same conclusion. 

Therefore, by mathematical induction, T( n) == T0 ( n). Q.E.D. 

The above theorem is very important in that it shows that a fairly simple 
• 

partitioning scheme is optimal for the variable recombination overhead of the 

form k r log(r) l + .,\ when A > k > 0 (if .,\ == O, then optimal partitioning is achieved 

with r == 1. This result is not valid if k > A but a similar discussion in this 
(] 

case ·is beyond the scope of this thesis. This result should be compared with 

corollary 2. 2. 

. . 

Theorems 4.4 and 4.5 together imply that the optimal complexity in most 

matrix problems would be 0( k log2 
2( n)). . 
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Chapter 5 

... 
,· 

.. ' 

HARDWARE IMPLEMENTATION OF 
PARALLEL ALGORITHMS 

• 

5.1 Introduction 

The rapid advent of Very-Large.-Scale-lntegrated (VLSI) technology has 

created new architectural possibilities in implementing parallel algorithms directly 

in hardware. The current technology has made possible the fabrication of more 

than 250 000 transistors on a single chip. Such a technology can be used 

effectively in designing high-performance processors dedicated towards one type 
• 

of computational problems. Such dedicated hardware, "functional units" usually 

run under a more general-purpose processing or control unit which acts as ~ 

task arbiter. 

The design of functional units poses some challenges. The hardware must 

be modular and cost effective. A functional unit implements in hardware an 

algorit11m which solves the computational problem to which it is dedicated. 

Careful consideration must be given to the algorithm used since it determines 

the hardware complexity, speed and interconnectivity of the hardware unit. It 
., 

generally results .. in a trade off between hardware complexity and speed. 

When implementing parallel algorithms directly • 
Ill hardware, it • 

IS 

.... 

important to differentiate .between temporal parallelism and spatial parallelism. , 

.. Let a p~ssor be defined as hardware unit which performs . a certain process 
/ ./ 

t 

which essentially is a. group of sequential. o.perations on some input operands .. - A 
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process frame is the process pertaining to a specific input. 

Temporal paraJlelism • 
IS achieved by decomposing the process intc> 

sequential "subprocesses". In this case, a hardware "subprocessor" is assigned to 

every subprocess. Subprocessors are actually specialized hardware segments 

controlled in such a manner that several segments may be busy simultaneously. 

One subprocessor may be assigned to more than one subprocess if their 

P') .. 
structures are the same. The subprocessors are then pipelined with possible 

feedback and feedforward paths, so that a subprocessor may be engaged in a 
.. 

subprocess without necessarily waiting for the whole processor to complete the 

execution of a process frame. Thus, a subprocessor may start working- on 
• 

subprocess as soon as it completes the previous one independently of the whole 

process. In practice, a su bprocessor may not be completely engaged at all times 

-because of timing and synchronization constraints,, nevertheless, its throughput is 

usually significantly improved. Thus, essentially temporal parallelism • 
IS 

pipelining consecutive modules of hardware rather than duplicating them, so that 

a process flow~ from segment to segment in a lock-step synchronous manner. 

On the other hand, spatial parallelism is achieved by duplicating hardware such 

that several processors run distinct process frames concurrently. Obviously, each 

processor in the spool of available processors · may be internally pipelined, as 

well as being able to function in a pipeline. lle_nceforth, parallelism is used to 

indicate spatial parallelism. 

If pipelining alone can not achieve the required performance level, use of 
> 

\" 

sp;rtial parallelism is indicated. However, it is _important to use temporal 

60 

.. 
.. 

.. 

,. 

• 

. 
" ~ • iJ""tJ 1 '• , ' • ' ·• ' J ~ "J, ., , • .µ·,. • •·, 

/~""''~•'."J ,• .... ! .. ' ·, •. , :'.....:, -,' .;...J.1 \ .. ~.k'Jf • t-1'., ,., ,".v I,•.,..: "'~•· 
' ,, . : • • J;, , . , ' "•' ,, "'· ,, .. ,, .,- .. '· ~ ,, •' . ', ;,: :' '! /.._ .~ .. ~ .. j, ·;'),~-~·11 ·:.:;A·•'·! ·~, . .", ·. ,•.·.,,....-.: ~·! .' . ,-, ",, •. ,~~~ . . .· ·.· · .. ·•.· ·.·~·.···.~, •, ~ .. I·.·--',••.: :•.• •.:,:,_,~ .:7_i.~;; .~ ' .• : .. "";·:;·_;-/t: ·•:~~~:~ ,-~~::., 1' .··1.,;;.~'-fr ·--f-~r..}-"-'4,·1'1 "1 . 

:"'.~··,·.·· .. :'r .•. , ... .'.'!' .... ,, .......... :;" ,.;."?!.. ":!.""·. '-·f .. .... ·• -~· ..... -._ . ,",, •' .•. ~!:· .. ;.,"::4·.-·, ~ .. .9\,~ 



, 

-,. 

-• 

• ·, . --- - .,, - ------ .. -- -

I ., 'I,' • ,' ' 

"· 

... __ - -- '"', .. ', 

I' • 

.. 

---~· .•. 

parallelism as 

• 

often as possible, • since 

\ 
\ 

pipelining . is a technique which 

. 
significantly increases hardware throughput at little or no extra cost. 

In this chapter, a processor dedicated for polynomial evaluation will be 

developed. The processor will implement in hardware the statically recursive 

parallel algorithm described earlier. \ 
• 

5.2 Polynomial evBluation by statically recursive doubling 

In the case of polynomial evaluation, Horner's rule poses itself as the most 

suitable algorithm for hardware implementation because of its simplicity and 

modularity. However, Horner's rule is sequential. If high performance is a 

premium., a parallel algorithm must be used even though it will result in loss of 

efficiency and will increase ·the hardware complexity. Any of the parallel 

algorithms described 
• 
1n the 

• prev1011s sections can be used. Dynamically 

recursive parallel algorithms demand extreme flexiblity and are rather ' 

cumbersome to implement in hardware. On the other hand, statically recursive 

parallel polynomial evaluation 

generalization of it. 

• 1s .as modular as Horner's rule since it is a 

., 

1 

• 

I . --1· 
This chapter starts with a hardware implementation of Horner's rule not ! 

., .. 

only because it is useful in its own right for direct polynomial evaluation, but 

also because it is the building block for a parallel pipelined processor for 
" 

polynomial evaluation. 

A polynomial P can be expressed as 
n • 
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Horner's rule evaluates a polynomial by computing the value of each term in 

the expression above starting with the innermost term ·and subsequently the 

next expression and so on until the polynomial P is evaluated. Thus, Horner's 
n 

r 

rule can be viewed as a sequence of first degree polynomial evaluations where 

the first degree coeffi~ient of any polynomial ( except the innermost one) is a , 
result of the preceding polynomial evaluation. In hardware, this translates into 

a highly modular design, where each module evaluates a first degree polynomial 

using a result computed by the preceding module. 

Evaluation of first degree polynomials involves one multiplication and one 

addition. Thus, a hardware module which evaluates a first degree polynomial 

ax+b, consists of processing elements which can do both operations. The 

multiplication operation is, of course, fa~ more complicated than the addition 

operation and it will dominate the hardware. Any known word-oriented 

multiplier can be used. Let P1 designate a hardware module which computes a 

first degree polynomial. · Let the delay of a P1 module be d1, and bi be a delay 

oprator with a delay of i.d1• 

Figure 5-1 sho\vs the basic outline of a processor which evaluates a 

polynomial of degree n using Horner's r11Je. 
JI>'., 

N.oitce that throughout the 

processor, only one type of hardware module is used, namely P1• The modules 
, 

can be easily pipelined for· higher throughput. A more careful· consideration of 

the circuit reveals that only one P1 · module is needed, since we can easily. 

· feedback its output to its input. Such a . processor use only one P1 module 

rather than n ·modules . 
·1 

Any polynomial PP of an arbitrary degree p can be 
• 
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Figure 5-1: A direct implementation of Horner's rule 
t I t. p n n-1 o ev a ua e = a x + a 1 x + ... + a0 n n n-
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evaluated . simply by clocking the module p times. Such a processor is 

designated by P. Figure 5-2 shows such a processor with the proper sequence 
p 

of inputs. 

Figure 5-2: 

pl --

~initial value - O 

A processor which evaluates a polynomial P p 

Horner's rule. Notice the input sequence at 
initialization of the module. 

• using 

every 

The evaluation of a polynomial of degree p requires d P == pd1 time units 

regardless of the number of the P1 modules in the processor. However, a multi­

module processor can achieve a better average throughput if many polynomials 

are to be evaluated. If the application requires the evaluation of a large 

number polynomials in a· burst-like fashion, then many P processors can be p 

used in parallel, each evaluating a different polynomial. For this reason, 

· Horner's rule is best implemented using one P1 module. 
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Since the use of several processors independently does not-· speed up the 

.. 
evaluation of a single polynomial, one may have to use a parallel polynomial 

evaluation algorithm. 

) 

As shown in (3.2), a polynomial Pn can be expressed as 

'-.II 

Thus, a polynomial of degree n can be evaluated by evaluating in parallel 

k == l n/r J polynomials each of degree r-1, and combining the results of these 

calculations ip the right sequence. Figure 5-3 shows the outline of a processor 
I 

which performs these steps. The processor has k stages, where each stage has 

one P
1 

module and one Pr- I module except the first stage which has two Pr-l 

modules . Straightforward use of this processor . allows the evaluation of 

. polynomials having a degree up to (k-+-l)r-1. The modules which constitute the 

processor are pipelined, so that each module may be used as soon as it 

completes one evaluatior1 to work on the next polynomial. 

Since all stages of the processor shown in figure 5-3 are basically the 

same, it is also possible to feedback the output of the processor to its input, to 

increase the effective number of processor stages without increasing them 

• 

physically. To ensure collisio11 free scheduling, the output can not· be fed· back 
·, 

\ _..,,-.:' 
to tne input unless the first stage is free. But since the very first . P1 block 

starts processing at time dr-l and the first Pr-I is free at that time, the output 

of the first P
1 

may be fed to the input of the ~rst P,_ 1• Thus, static recursion 

does not yield a highly parallel architecture. 

• 
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Figure 5-3: Direct hardware implementation of static parallel polynomial 

. ,; • 

evaluation. The timing for each module is shown in the 2--tuple 
written besides each module. The first parameter shows the time 
when the input to the module imust · be presented and the second 

parameter shows the time when the ouput is avai]able. 
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5.3. Implementation of dynamically recursive p8rtitioning · 

Dynamically recursive partitioning typically produces algorithrr1s whjch 

require a high level of interprocessor corr1munication. f.,or example, in parallel 

I 

evaluation of polynomials, if protessors are assigned tc> specific operations, they 

oft.en· need operand.s computed by other processors. If the time required to fetch 

an operand from another processor is significant, then parallelizing the 

computation may not achieve any benefits. Thus, high bandwidth 

communication must be used in order to avoid communication bottlenecks in 

these architectures. 

Figure 5-4 sl1ows an outlinP of an architecture suitable for dynamically 

recursive parallel computing. Interprocessor communication can be achieved 

using common memory modules, a high bandwidth bus with some arbiter or a 

cross switch. Any communication scheme is likely to be complex because of the 

performance rates required. Notice that such a system, with its high speed and 

flexible communication, is essentially a MIMD computer. Since the 

comrriunication scheme constitutes 
• 

a rnaJor part of the system hardware, 

~ 
I 

dedicating the whole system to one type of applicatior1 is not economically 

justifiable. Such an architecture is inherently flexible a.nd thus, it may as well 

be used for several applications. 

Nevertl1eless, for sorr1e applicatioi:is, it may be feasible to implement some 

complex parallel algorithms in hardware. Hwang has proposed a parallel VLSI 

architecture to invert matrices based on LU decomposition and triangular · matrix 

inversion, as a major hardware extension to surercomputers [15] which the 
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Interprocessor Communication Link 

The layout of an architecture suitable for dyanamically 
recursive parallel algorithms. 

readers will find ~n teresting. 
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,, 5.4 Bit~Seque11tial polynomial evaluatio11 

Bit-sequential processing can be used to further increase the throughput 
, . ~ 

' . ' 

without increasing the hardware complexity. Pipelining Bit-sequential modules 

means that a module does not have to ,vait for a previous module to complete 

its task, but rather, can immediately start \\'orking using each. input bit as it 

comes out from the previous module. • 

.... ~ ..... --· 

68 

' 0 ·-·" ,oOL 0 

. . 
,..,,., - •-•·,1,- ........ • -•~- ---,1 H ·••-,-•• •••-.-,.,_..,.,,~,·-·-·•• • ' ''\' o- ";.-,,--.... •·• . •, 

.. . 
' . . .. ~· >.. ·, - ......... , ... _,. ... 

~ ... ,,u•-,,, ,,,·, "1: ,, ,~~•,.l.'o!;.'I',,,,_,.,"..,·'"'•" ~., • .,,.I,••""''"'"·'·'• , .. , 

' . -
,,;~ .'.< .. tt-••• ~, '!•";"'=..,...,. ••-1•, ... ""L .~ •••. ~ ........ "',,•'~~.:~.:-~~ ... :... .... 1;..~.,;;r\~/:(~,\,"11(l>/r1:,y,' ,,,,,0 ,,•••,,,·,,•.. .. < • ~ ...,. --. ,·;ir-~f' -,~ ... l""'"-il,'",,\•' -···~•.., ..... ,,~·,1 .. ~" • >t..•'• .Jt,.Pilt't.\'-. ... ,. ..... _~~."'-·• .... ~>."''"',;J-;., ... ..,. ...... --. •. ,'"~' .... ~ • , .. - ~.,,,,,, ,,,.. .. h, ~~·~...,, ........ -..... 11!1. ., ..... -.- .............. ~ _ -, ' .,~,., --- , ·-"--"; ("'~"'·;· . ..... ' ·• 

·.~ ' , . 
• 

• 3 

. .. 

' I 



,· 

• 

•• 

5.4.1 A Hardware implem~ntation of Horner's rule 
°I'-· - . 

As mentioned earlier, the basic block of Horner's rule. evaluation is simply 

the computation of ax+ b. The coefficient a is, in general, another polynomial 

of the same form, and thus it is available one bit at a time. 
' 

Figure 5-5 shows a bit sequential circuit which computes ax+. b. The 

multiplication of a and x dominates the hardware. The first row of full adders 

implement a multiplier which takes two inputs. The first input is a vector 

representing x and the second is a bit sequential input ai which represents the 

first coefficient of the polynomial P1. In general, a. comes from ·a previous 
t 

module as is explained above. The product comes out from the first adder, one 

bit every clock period, starting with the least significant bit. 

This multiplier has as many adders as the number of significant bits of x 

(which henceforth will ·be -referred to as the multiplicand), and can process an 

arbitrarily long multiplier. 

Let us assume that both the multiplier and the multiplicand are numbers 

represented in two's compliment using 1J bits. For correct multiplication of 

negative n:umbers, the operands ·have to be sign extended to as rnany bits as 

the number significant bits of the product. This will almost double the 

hardware complexity. of the multiplier, since the number of full adders · are 

determined by the number of bits of the mu]tiplicand, x. However, since x is 
.. 

known in advance, its sign can be used to derive the compliment of the product 

as it computed one . bit every clock period, removing the 
1
necessity · of 

'I-~ 
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accomodating a negative multiplicand. This solution cuts the number of adders · . 
' 

in half. The multiplicand, x, is originally represented in v bits, however, since 

only the absolute value of x is used, we need only v-1 bits to represent x and 
" 

therefore, v-1 adders. The multiplier has v significant bits, thus, the product 

has 2v- l significant bits. Since negative operands need to be sign extended to 

as many bits as the number of significant bits in the product, the multiplier 

must be sign extended to 2v-1 bits. The previous solution can not be used to 

avoid sign extending the multiplier, since its sign will not be known until v 

clocks would have elapsed. Extending the multiplier does not incur any 

additional hardware, but it causes the multiplication to require twice as many 

clock periods. 

Sir1ce inverting the sign of a binary number in two's compliment can be 

done by complimenting each bit and adding one, the sign bit of x is used to 

determine whether . to compliment the product bits as they come out of the 
' .~ 

multiplier; this is accomplished by XORing the product bit with the sign bit of 

x. If the sign bit of x is 1, the product must also be incremented. This can 

be dor1e in ar1 additional full adder after the XOR gate. Fortur1ately, the last 

adder serves another purpose as well. If the sign of x is used to set ( or reset) 

the. carry Flip-flop "of the last adder, tl1is full adder is quite sufficient to add b, 
, 

. 
the second coefficient of the polynomial, to the product ax. The second 

coefficient is· input bit-sequentially delayed one clock period relative to the first 

bit of the first coefficient. In order to synchronize a . and b, the second 

coefficient b is latched. The input b must be sign extended to 2v-1 bits to be. 

compatible with the product ax. The output of the last adder is the two's 

' 
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compliment binary representation of ax+b expressed in 2v bits coming one at a 

clock period. 

Table 5-1: 

Clock Adder 

0 • 0000 0000 • 

1 • 0000 0000 • 

2 • 0000 0000 • 

3 • 0000 0000 • 

4 • 0000 0111 • 

6 • 0000 0100 • 

6 • 0000 0110 • 

7 • 0000 0111 • 

8 • 0000 0000 • ·r5 10 • 0000· o_· 11 • / 

11 • 0000-'0001 • 
12 • 0000 0000 • 

13 • 0000 0000 • 

A simulation of the module P1, with x==-7, 

b==-8 and v==4. -

a. b. Output 
1 1 

0 0 0 
0 0 0 
0 0 0 First bit of 
1 1 0 " 

1 1 0 

1 1 0 
1 1 0 
0 0 0 
0 0 1 
0 0 1 Last bit of . 
0 0 1 
0 0 1 
0 0 0 

a==-8 . ' 

output 

output 

. . 

Since this multiplier will be used as a module in a pipelined circuit, ·it is 

important to deterrnine the timir1g relationships. between the input and the 

output. Let the clock period when the the first bit of a enters the circuit be a 

r_eference point in time. The circuit timing can be ~na:lysed by referring all'i--. 

other occurances in time as an offset to that period. The first bit of the 
.. . . 

polynomial comes out at- an offset of 2 ancl the last at an offset·· of -~v+ 1. 

-; 

In order not to let the number of bits grow geometrically, the precision of 

the output has to be limited to v bits. Thus, the least significant v bits of the 

output representing ax+b must be truncated, so_ (?Illy v bits are used and fed to 
) 

the next and identical module. Let the circuit which produces such an·· output 

..... ~ 
... 72 .. 

/ 
I ..• 

• 
I 

.. ,- . .. _ . ..., . ·-· ,, . .. 
~ ~ . ,, .. ,,: -. -·. ·- .,. ..... I 

I 

, .. 

:i 
.I 



-- -- -~-- --...- --
• 

• 

- . 

' . - --- ___ , ---- -=,-- - --- ~----~·· ---· -- -

· be designated as module P1• Notice that if the output of a module is to be 

used as an input to another module, the result must be treated as if it is the 

'' 
first coefficient of the next first degree polynomial to be evaluated, and so it 

must be sign extended from v to 2v-1 bits. 

I 

Figure 5-6 shows a pipeline connecting several P1 modules. The same 

figure also shows the timing relationships between various signals. It may be 

observed that the output of the second module starts coming at a time when 

the first module is available for another computation. Thus, a pipeline of more 

than two P1 modules is redundant. A pipeline of two P1 modules can be used 

. 
· to evaluate polynomials of an arbitrary degree by feeding back its output to its 

input a certain number of times. Actually, a controller can be used to 

determine the necessary number of feedback instances around the pipeline, 

depending on the degree of the polynomial which is to be evaluated. 

A module composed of two P1 modules computes a second degree 

polynomial ax 2+bx+ c without feedback. 
4 

Such a '"P2" module rece~ves four 

inputs; a. vector representing x, arid three bit-sequential inputs representing ·a, b 

and c. The inputs a and b are synchronous, while c is delayed v+2 clock 

p_eriods. 

As is explained in the previous section, only P1 modules are enough to 

implement statically recusive evaluation of polynomials. Thus, the above 

observation shows _·that only two P1 modules are ne·eded to implement the Pr-1. 
. 

-

modules for any value of r by employing proper feedback . 
. , 
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Figure 5-6: 

-, 
' 

The 

I'' J '--•( 

.• .. l 

(0, 2 \l-2) 
I f 

pl • 

( 2, 2 ))) ;-

TSE 

( ~ + 1 , 3 ))- 1 ) 

(1+3, 3~1) 

, , 
TSE 

~ , ( 2~+ 2 , 4))) 

--·. 

A pipe containing segments of P1 modules. 

two-tuple numbers shows tl1e time when the first 
last bits of different rnodules are available. 

The module "TSE" truncates the 2 11 - 1 

bit result to most significant v bits and 
sign extends it to 2 v - 1 bits. 
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Chapter 6 

CONCLUSION 

\ 

.. 

This thesis discusses the · importance of partitioning in thr development of 

.. 
parallel algorithms using recursive dc>ubling. It is shown that partitioining a 

problem into two equal halfs is not optimal except under certain conditions. A 

model to study the complexity of a parallel algorithm using recursive doubling 

' 

is developed and used to study the effects of various partitioning schemes. 

Since partitioining introduces overhead whose exact form depends on the 

nature of. the problem, the model could not be studied in complete generality. 
t, 

This thesis considers important classes of overhead, namely constant overhead 

and variable logarithmic overhead. These two cases cover a large segment of 

practical problems. 

In the case of constant overhead, expressions are developed to ·describe· the 

performance, and the partition range which give optimal performace is specified. 

It is shown that partitioning-by-half is optimal only when there is no 

partitioning overhead and the sizes of the subproblems add up to the size of the 

original problem . 

The. res·u]ts of the constant overhead model are used to develop a parallel 

algorithm for the evaluation of ·polynomials. It is shown that decomposing a 
~. 

polynomial according to the golden numb~rs (Fibonacci numbers) yields an 

optimal partitioning scheme with the order of complexity equal to O(c log(n)). 
,/ 
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In the case· of variable. overhead, a model containing a logarithmic term in 

the form of krlog(r)l +,\, where k and~ are constant integers and,\> k > o, is 

used since it is typical of ·parallel· algorithms for matrix manipul~tion. In 

particular, triangular matrix inversion is shown to conform t.o such a model. It 

1s shown that in this case, partitioning a problem into two equal ( or near 

equal) problems is optimal. An exact expression is developed to give the 

computational complexity of th·e algorithm in this general case. It is shown 

that the optimal computational complexity is of the order of log2(n). 

Some possible applications of parallel algorithms include high throughput 

dedicated processors. In chapter 5, parallel processors dedicated to polynomial 

evaluation are developed. A parallel bit-sequential processor pipelined at the bit 

level is shown and its performance is analysed. 

The results developed in this thesis have significant applicability . 
.. 

Neverthelss, because of the problem depender1cy of partitioning, only few types 

of problerr1s are described. However, it should be stressed that the methodology 

used is quite general and is_ applicable to many different classes of problems. )'h. 

addition, it is possible to accomadate operations· requiring different execution 

times without any change in the model. • 

/ 

This work. assumes that algorithms are targeted towards computers having 

as many processors as required. As an extension of this work, it would be 

) 

useful to develop a model to relate the performance of a parallel algorithm to 

the number of available processors as well as to t~artitioning scheme. 
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