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' Chapter 1
INTRODUCTION

Computer technology has evolved considerably since its onset. However,
the need for computer power has been growing at an even more rapid pacé.
Since the digital hardware technology is expected to mature, achieving further
increase in computer performance depends not only on using faster digital

devices but also on making radical improvements in computer architecture and

-

processing techniques.

-

Until recently, virtually all computers were based on the Von-Neumann
uniprocessor architecture. All advances in computer architecture were actually
elaborations of the basic layout. However, the advent of VLSI technolqu has
made 1t feasible to deploy several “central processors” In a single computer
system. This will eventually lead to the proliferation of multiprocessor
computer architecture and “para]lé] processing”.  ldeally, one would like to
exploit the resources of multiprocessor computers by employing appropriate
multiprocessor operating systems and “parallel languages” which alleviate the
programmer from explicitly targeting the specifics of the machine architecture.
Unfortunately, such tools are quite unlikely to develop in the near future, and
therefore, other techniques have'/tp be used to exploit thxe_full potential of

multiprocessor systems.

Currently, the only -feasible method to efficiently utilize a multiprocessor
architecture is to develop special \pufpose “parallel algorithms” which solve

~ various common computatibnal problems. A parallel algorithm may be created

Ny,
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by recognizing the inherent parallelism of a sequential algorithm. While this

technique in some cases is relatively easy, it usually involves considerable

restructuring of a computation i1n order to spread operations across many
processors, and thus is usually difficult to api)ly. Another technique of creating
parallel  algorithms is  problem  decomposition by  employing the
divide-and-conquer strategy [1-3|. By partitioning a computational problem into
many small and independent problems, a parallel algorithm suitable for

multiprocessor architectures may be obtained.

Recursive doubling, a powerful method of generating parallel algorithms, is
a special case of divide-and-conquer. The idea is to repeatedly partition each
computation into two independent parts of equal complexity, which are then
computed In parallel. Recursive doubling involves two steps. First, a scheme
to decompose a problem is developed. Then, the decomposition scheme is
applied to partition the original problem into two “suproblems” of comparable
complexity. Traditionally, the size of both subproblems is arbitrarily chosen to
be half thé size of the original problem [4, 5|. This heuristically 1s assumed to
generate problems of equal complexity, even though this assumption 1is, in
general, not valid. Partitioining a prdblem introduces partitioning overhead as
well as recombination overhead. These overheads dictate a specific partitioning

strategy if optimality is to be achieved.

Thus, for recursive doubling, one needs to develop a - systematic approach

to guide in the -development of parallel .algorithmﬂ_s. Clearly, the decomposition

’a]gorithm 1s highly problem dependent, and thus 1s difficult to develop in a

)




general context. | However, the partitioning strategy éan be tackled for a broad
range of computational problems. Q

In this thesis, a computational time-complexity model is developed to
describe the performance of several partitioning strategies. This study' yields
partitioning schemes which give optimal performance, and help estimate the time
complexity of the parallel algorithms which are developed using recursive
doubling. In addition, the model predicts exactly when partitioning a problem
Into twe equally sized subproblems is optimal. Partitioning types cosidered in
this thesis include constant overhead and variable overhead with a log term.

These cover a multitude of linear algorithms.

This thesis 1s organized in six chapters.  Chapter 2 introduces the

complexity model which describes partitioning, and analyses the model in the

4

case of constant overhead. Chapter 3 illustrates the application of the results

obtained in chapter 2 by dAeveloping parallel algorithms for the evaluation of
polynomials. Chapter 4 presents an analysis of model representing
decomposition schemes which generate yariab]e logarithmic overhead, and
1llustrates a triangular matrix inversion algorithm which conforms to this model.
Chapter 5 briefly describe the use of parallel algorithms to design fast processors
aedicated towards a particular class of computational problferhs, and gives
several- specific examples. The final chapter summarizes the results of this work

and suggests possible extensions.
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Chapter 2 3
RECURSIVE PARTITIONING:
MODELING AND ANALYSIS

2.1 Introduction .

An algorithm is defined as a sequence of instructions which operates on
certain input data to give specific results. In general, for reasons concerning
efficiency, algorithms must be adjusted to adapt to the architectural features of
the computing device on which they will be exeCL;ted. A broad categorization‘
of computer architecture provides two classes of of hardware configuration; a
single processor Von-Neumann architecture and architectures utilizing several
cooperating processors to achieve either a better throughput or a better time

response.

In this thesis, we are {n?irlly' concerned with the MIMD architecture.
Efficient parallel algorithms wuseful on such an architecture should take
advantage of the multiprocessor environment available to them to solve
computational -problems in less time. Parallel algorithms break down a

particular problem to several smaller independent “subproblems”, so that

different processors can work on different parts of the problem concurrently.

This chapter deals with the computational models for parallel algorithms
suitable mainly for Multiple Instruction -Multip]é Data stream (MIMD)
computers. It also presents cdmputational complexity results .of a general nature

i.e. results which are applicable to all ‘algorithms fitting the model. The




MIMD architecture is not assumed to cc;nform to a multiprocessor cofnputer,
but also includes multicomputers. Since a parallel algorithm is designed to run
on a mutiprocessor architecture, its basic design involves partitioning a given
computational problem to smaller and independant “subproblems” which can be
worked on by a group of processors simultaneously. For the purposes of this
thesis, subproblems are called independant if the result of any of them 1s not

required to solve the others.

- To quantify the complexity results, one often has to define the “size” of a
problem. Let T (n) denote the time r-'equired to solve a given problem P(n) of
size n on an m - processor machine. The ratio of T (n) to T (n) is called the
“speed-up ratio” and is often of great importance. The speed-up ratio is a
function of m and n and generally approaches a constant value as the number
of processors is increased. Thus the speed up ratio T (n)/T_(n) is commonly
used as a measure of how good the parallel algorithm performs relative to the
" best known sequential algorithm. 1t should be mentioned here that an infinite
number of processors -as in T_(n)- does not mean that a parallel algorithm
actually uses or requires an infinite number of them but, rather, that as many

.
processors are available as are needed for optimal performance‘. Most of the

results in this chapter are related to the computations of T_(n). However,

T (n) for finite m is also discussed.

(

To illustrate the terminology, ' consider the problem of matching a given

number against a list of n numbers using linear search. The “size” of the

problem is the size of the list,"n. This prbblem'can be divided into m smaller

.......




independent “subprobléms” by matching the given number against .m lists of
[n/m] numbers, such that each of m processors 1s matching the number against
a list of [n/m] numbers. The speedup ratio in this case is T (n)/T,(|n/m]) since
T (n) 1s obviously T,([n/m]). Notice that this problem can not be divided to
more than n elementary problems, which in this case, are indivisible.  The
elementary problem here is that of matching a number against exactly one
number, and is clearly indivisible. Therefore, the speedup ratio increases as,m
increases until m exceeds n, because n processors are enough to divide the
original problem to elementary subproblems. Further increase in m will not
introduce further “parallelism” and, therefore, will not improve speed. Thus,
T (n) = T,(1). The maximum speedup ratio is therefore achieved when m > n

and is equal T, (n)/T,(1). " In this example all overhead is neglected for the sake

of convenience.

The above example is illustrative but is rather trivial and simplified. The
partitioning scheme is straightforward and the overhead associated with the

partitioning as well as obtaining the final result is neglected.

Unfortunately, this, .in general, can not be‘nf;glected without sacrificing
performance. Certain operations need‘ to be carried out to combine the results
of the. subpfob]ems to achieve the final goal; these operations are referred to
here as the recombination overhead. Other operations may be generated to
achieve thé partitionipg itself; this one is called the partitioning overhead.  The

~ overhead operations not oniy Increase the‘numberlof stepst.hat are required to

solve the problem, but may complicate the partitioning scheme.  Optimal
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performance of a parallel algorithm may be achieved only if a speadific

partitioning scheme based on this overhead consideration is followed.  An

example to illustrate this terminolegy will follow In the next section.

2.2 Recursive partitioning of problems with inherent parallelism
Many computational proble;ns can be decomposed to smaller problems
because of their inherent parallel nature. Though the details of the
decomposition schemes may vary from one type of problems to another, most of
them can still be described as the decomposition of the given problem into two
“or more smaller independent problems whose solutions can be combined to give
the solution of the original problem{
The problem should be partitioned in such a-manner that the solution of
the problem can be found as quickly as possible using that particular
decomposition technique. Notice that the partitioning rule or scheme 1s not the
same as the decomposition rule. The decomposition rule takes advantage of an
inherent property of a problem to decompose it to several independent
subproblems.,. The partitioning s_cheme i1s the rule which assigns the relative

sizes of the Asubproblems'using- the_decomposition rule.

Decomposing a problem directly into a large number of subproblems is a )

rather difficult task. Therefore, in general, the decomposition is accomplished 1n
many stages. At each stage, a problem received from the preceding stage 1s
further decomposed into a fixed number of smaller problems according to a

predetermined rule.. This process is continued recursively until the subproblems

can not be decomposed further. This ensures complete exploitation of "

/ . . . ¢
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parallelism. Two particular characteristics of the partitioning scheme are of
importance: the number of children a parent may have and the sizes of the .
children subproblems. This chapter deals with the problem of finding these

parameters to achieve the best possible performance.

2.2.1 Preliminaries

Let P(n) be a problem of size n whose inherent nature allows it to be
decomposed into smaller independent subproblems using some predetermined
partitioning rule.  If the subproblems of P(n) have the same nature and
characteristics as P(n), then they are referred to as the children of P(n). Since
these “children” P(r)’s, where r < n, are similar to P(n), the same partitioning
rule can be applied to them to decompose them to even smaller subproblems.
Thus, the partitioning may be recursively applied until the problem P(n) is

decomposed into many subproblems none of which 1s larger in size than a

certain “elementary” problem.

Thus, recursive partitioning gives a “subproblem heirarchy” * which
resembles a tree. The original problem is at the root of the tree where the
recursion .level is zero. The children” of P(n) are at level 1 in the subproblem |
tree, their children are at level 2 and so on. The subproblem which is most
removed from the root determines the recursion depth. The leaves of the tree
are sﬁbproblems which are decemed to be “e]ementar}” by some design criterion.
The leaves may be degenerate or trivial forms of the original problem. For
example, i.f - P(n) 1s a; evaluation of polynomial of degree n, then the leaves may
be polynomials of degree 0 which require no comput.ati‘on. In this case the only

L]

computatiOhs which are required to solve P(n,) are the computations required to
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carry. on the partitioning and the recombination overheads. ln.genera], however,
the leaves may be computational problems in their own right and may require
some computation_ in addition to the computation required by the overhead. It
is necessary to emphasize that the elementary problem may be chosen to be

\
indivisible. Figure 2-1 shows the heirarchy of a typic;zl ‘problem.

Since the main objective of parallel algorithms is to improve speed by
engaging all the available processors, 1t is important to employ elementary
subproblems that are as small as possible. This generates smaller and more

numerous leaves to the tree resulting in greater parallelism among smaller units

and, consequently, a reduced execution time.

The speed-up ratio of a parallel algorithm depends upon p, the chosen
number of “children” of a problem according to the decompsition rule. For
convenience, p is chosen to be equal to two throughout most of the following
analysis. This is known as recursive doubling. The methodolgy presented,

however, i1s general and can be extended to any p.

2.2.2 Recursive doubling

Using recursive doubling, a computational problem P(n) of size n 1s
partitioned to two subproblems P(n-r) and P(r-p), where r is the partitioning
parameter and p is a constant dependent on the nature of P. The same rule
is applied recursively until all the tree leaves are e‘lementary problems. ‘These
leayes .a,re' then solved in parallel and their solutions are combined to produce

the required solution of the problem at the root.
) |




ros ro N

T3 Ty <N

res T'e < ra

Figure 2-1: An example showing a problem heirarchy.

An important parameter which one may vary is the method of determining

the relative sizes of the children. This is equivalent to finding the parameter r

10




at every node in the tree. If r is fixed throughout all the nodes, one gets what
may be called “statically recursive” partitioning. On the other hand, if r\ Is a
function of the order of the subproblem at éach node, one obtains é
“dynamically recursive” partitioning. Dynamic recursion is more difficult to

implement than static recursion, however, in general, it yields more optimal

results since the parameter r is not determined independently of the problem

size.

Let the problem P(n) require exactly T(n) steps to be computed. If the

problem is decomposed into two smaller problems P(n-r) and P(r—p), the time

required to solve P(n) Is

T(n) = maz{T(n—r)+k,, T(r—p)+k,} + A,

1?

where k., k, and A are the number of steps required to carry on the

2

partitioning and recombination overheads respectively and are, in general,
| dependanﬂ on n and r.

Without a loss of generality, one may assume that k, > k,. Then, letting k
stand for the smaller of the two k’s and X for A + maz{k, k,} - min{k, Icz},

the above expression can be written as
" T(n) = maz{T(n—r)+k, T(r—p)} + A. (2.1)
From now on, k would be called the partitioning overhead and X the

recombination overhead.

Typically, the two subproblems P(n-r) and P(r—p) would be “solved” by

-«

independent sets of processors working In paralvlel, thus deriving benefit from a

multiprocessor environment. The time relationship expressed by equation (2.1)

|
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space

time

P(n-r) A T(n-r)
T(r-g) | P(r-¢)
T(n) .
Pa(ti- !
Y ~ | (t)mn T

ver- |
head |
\

| “ouame =

Recombination
Overhead

Figure 2-2: Timing invfﬁolved in decomposing a problem to two problems.

is shown in figure 2-2 which shows the time and space complexity invloved in
partitioining a problem. The space comlexity refers to the number of processors

which the algorithm requires. The model above takes only the'timecomplexity

12
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into account and assumes an infinite number of processors. Since in reality the

number of processors is limited, a tradeoff between time and space méy result

6].

As an example, consider the evaluation of the polynomial P_ of degree n.

The polynomial can be expressed as

The multiplication between z" and P __ is a partitioning overhead and the
addition of the two terms is a recombination overhead. If the operations of
multiplicatiaon and addition are assumed to take the same time, then k=1=1.
A group of processors work independently to évaluate both the terms before
they can be finally combined (added) to give the final result. Note that the

Computation of z" 1s neglected for reasons which are explained in Chapter 4.

Of particular interest here are the values of r which allow the computation
to be completed in as few 'steps as possible assuming that the subproblems
themselves are computed optimally. Another parameter which 1s 1mportant to
evaluate or estimate is the nurnber of steps T(n) that are required to completely

solve the problem.

To simplify the analysis, we partition the set of problems into distinct
classes. - A problem P(n) is said to belong to a class C_ if and only if 1t
requires exactly m steps to be solved i.e. if T(n) = m. Let |C_| denote the

number of elements (cardinality) of this class. A class C_ is defined to be

L

emply if |Cm| 1s ‘zero.  This means that no problem of any ‘order requires

-
[
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‘exactly m steps to be completed.

~~

L od

One should be cautioned that the class of a problem is determined by
finding the number of steps required to evaluate the problem in the “most
general” setting. Degenerate cases of the problem can always be evaluated in a

fewer number of steps. For example, the second degree polynomial az®+ bz + ¢

can be evaluated In two steps if a =1 and b:2\/g; ( this is done by computing

z + V¢ and then squaring it ). But, as is shown later, a general second dgree
polynomial requires at least 3 steps and thus for polynomial problems P(2)

belongs to C,.

In this work, T(n) is assumed to be larger than or equal to T(n—1). This
1s true because if T(n) is smaller than T(n—1) then P(n—1) can be solved as a
degenerate case of P(n) in less time, contradicting our assumption that the

computational algorithm is optimal.

2.3 Constant overhead

The expression for T(n) can not be analysed in general. However, some
special cases are very important and illustrative. The simplest case arises when
the overhead is independent of the size of the problem, i.e. when k and A are
constants. In the next chapter, a fast algorithm to evaluate polynomials 1S

shown to generate constant overhead.

A class C_ contains all the problems‘ which require m steps. The largest
problem which belongs to this class is of particular interest. This problem 1is at

the “upper boundary” of class C . Let the size of this problem be n_. Then,

140
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from equation (2.1), one gets

T(n,) = maz{T(n_-r)+k, T(r—p)} + A | | (2.2)

2.3.1 Optimal dynamically recursive partitioning

As mentioned earlier, the relative sizes of the children at each node, are
critically important for good performance of the recursive algorithm.  The
partitioning parameter r at every partitioning level must be determined
according to an appropriate predefined rule. It can be chosen apriori as a
constant or as a simple function of the order of every subproblem at every node -
in the tree. However, In general, this is not the optimal pa;titioning scheme.
Better performance is achieved if for every subproblem of an arbitrary size, r 1s

chosen to give the best possible performance for that specific size of the

subproblem.

Intuitively, one may be tempted to assume that such an “optimal r” is
close to one half the order of the subproblem. Alt’h(')ugh this is true in some
cases, it is not true in general. For example parallel evaluation of a polynomial
'« faster for certain values of r which are not close to half the d®ree of the
polynomial; this lack of symmetry 1s due to overhead as will be shown in the

following argument.

=

\

)

The computational load of the parent problem should be equally
distributed among all its children for the best possible performance. However,
this load includes the overheads and this implies that the problem cannot be

partitioned equally. We will now formalize this statement.

15 -
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. The key' point in the analysis of equation (2.1) is to find the upper
bbundary of every class since stepping over these boundaries causes an increase
in the number of steps. Note, however, that some classes may be empty and
caution must be exercised while defining the upper boundaries of these classes.
For reasons which will be clear later, it is convenient to define the upper
boundary of an empty class to be the upper boundary of its preceding class.
Since the preceding class itself may be empty,“ the upper boundary of an empty
class 1s numerically equal to the 'upper boundary of fhe lower nonempty class
which 1s closest to it with the understanding t};at 1t corresponds to a “real”

nonempty class only 1if its boundary is greater than the boundary of its

preceding class.

As mentioned earlier, let n be the upper boundary of class C . Pn_),
the largest problem 1n class Co 1s decomposed into the two subproblems
P(n_—r(n:)) and P(r(n_)-p) where r(n ) represents any value of the parameter r
which gives an “optimal” partitioning of the problem P(n_).  The following
lemma shows that these subproblems are themselves at the’ upper boundaries of

some previous classes.

Lemma 2.1. I n 1s at the upper boundary of a class C _, then

maz(m)
Pr(n,)-p) 1s at the upper boundary of a nonempty class C__, . for the
smallest nonnegative integer ¢ and P(n_-r(n_)) is at the uppe.r boundary of a
nonempty class Cm—k—A,—j for the smallest nonnegative integer j. Further, r(n )

1s unique and has the value of N,y t.p

Proof. Assume that r(y_)—p is not at the upper boundary of the class .Cm_‘x.

16




Then r(n_)-p and r(n_)-p+t belong to the class C__, or a lower class for some

positive t. Then, r(n) can be increased by the quantity ¢ without increasing the

total number of steps required to solve P,7 ; this, however, means that n  In
m

P(n_—r(n_)) can also be increased by the same quantity without leaving class

C_, since the increase in n_ will be neutralized by the increase in r(n_) which

is a contradiction since n_ is the upper boundary of class C_ by definition.

Therefore it is clear that r(nm’f IS unique since
r('nm‘) — P = Ny

< = 1y + 0
Similarly, n_—r(n_) is at the boundary of class C_, , because, otherwise, n_
can be increased without increasing the total number of steps required to solve
P(n_) thus creating a contradiction since n is the upper boundary of class C_

and can not be increased without leaving class C_ to the next class. Q.E.D

Lemma 2.1 is useful to develop a relation between the upper boundary of
a class and the upper boundaries of previous classes. This relation, stated in

the next theorem, is important for predicting the performance of the algorithm

when applied to any problem P(n).

.Theorem 2.1. The upper boundary n_ of class C_ 1s related to the

boundaries of previous classes according to the equation

-

" = T T nm—/\-—k‘ T P (23)
Proof. Recall that .problem P(n ) is partitioned into the subproblems |
P(n_—r(n_)) and P(r(n )-p). From lemma 2.1, for optimal results, the value of

r(n_) 1s unique and given by
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Further, from the proof of the same lemma,

nm _'r("m) — ”m—k—A'

'lm — ﬂm__/\ + nm—k—) + p. Q.ED

The preceding theorem explicitly specifies the class boundaries. We can

also estimate the sizes of the classes that may be encountered through the

following theorem.

Theorem 2.2. The cardinality of any class C_ can be expressed as
IC | = [C .\ + 1C,_,_4l- (2.4)
Proof. 'The number of elements in a class C_ 1s
Ile — My 7 M

Using equation (2.3), this expi‘ession can be rewritten as

[

|C'm' — nm——/\ + nm—/\——k. TP - qm—A—l ) nm_.—A—k- - P

4

Regrouping the above terms,

€l = Mox T Mmea-t T Tk T Mmook

»>

el =1e e, . Q.E.D

Expressions (2.3) and (2.4) show the effect of overhead. The overheads &

“and A not thy increase the number of steps, but play the main role in

determining the size of a class relative to its predecessors. Since the class sizes -

18




increase rapidly, an increase in overhead by just“‘one step slows down the
algorithm immensely since it may reduce the number of members of a class in a
detrimental manner. Since a prob]ém of a high order calls on problems of
smaller orders, increasing overhead is “recursively degenerative”. Thus, a great
improvement in performance, may be achieved by decreasing the overhead by a
few steps. Figure 2-3 shows the effect of increasing ¥ and A by 2, for a
hypothetical algorithm having k=3, A=5 and p=0. As expected, increasing A

i1s more detrimental than increasing k.

A cons.equence of equation (2.1) is that the nonempty classes are generated
by adding either A or k+ A to some previous nonempty class. Let problem P(1)
be the elementary problem requiring T(1) steps to be completed. Notice that p
< r < n — 1. Thus, assuming that p = 0, P(2) can be partitioned only in on
way (r=1) and it requires T(2) steps given by '

T(n) = maz{T(2-1)+k, T(1)} + A = T(1) + k + A
T(3) can be found using the same method, the only difference being that more
values of r are available. Therfore, in general, T(n) can be expressed as
T(n) = min{max{é’(nfr)+k, T(r—p)} +A} r=p,ptl, .0

Thus, T(n) can be expressed as T(l) + c‘lk + ¢,A where ¢, and c, are integers

- which depend on n and such that ¢, < ey
The above discussion yields following corollary.

Corollary 2.1. If k=), then -the nonempty classes are always separated by

I
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k=3, A:]
/ k=5, A=5
40 | ' o
— / k=3, A=5
/¥ e —
30 / ﬁ/
T(n) )
20 L
10 1
0 —] | : | L t
0 5 10 15 20 25 0

Problem size (n)

Figure 2-3: The effect of altering k and A on a parallel algorithm

The asymptotic behaviour of the algorithm, on the other hand, is not
determined by the number of steps required to solve the elementary problem,
but rather, by the overhead. This is an important observation and it implies

that' an improvement in the solution of large problems is possible only through

20




a. better partitioining scheme requiring lower overhead.

e
4

This asymptotic behavior of the algorithm can also be deduced from

equation (2.3) which is a linear difference equation. Let X denote a function of

V.
z with n_as the coefficient of 2™
Equation (2.3) can then be expressed as
X = x4 Py g L
— 2
or
(zk+A+ 2 — X = —ﬁ—,
| z—1
which gives
;o p
X = k+X A '
(2 + 2" — 1)(2—-1)
Using partial fraction expansion for the last equation yields
‘1 ‘2 k4
X = - + — + ... + - —p—,
-l—,z:el l—z,.2 1—zzk+/\ 1-2

are constants which depend upon the initial conditions

where c¢.. ¢

P Cor s Cpiy

T(1), T(2), ..., T(k+A) which themselves are determined from T(1), k and J;

20y Zgy -y Ty, are the roots of the equation
KAy o1 =0 . (2.5)

"The solution to the difference equation 1is

K+ .

- ‘ - m
Ny = €7 T €2y T T C By
Figure 2-4 shows the four possible plots of equation (2.5). It can be seen that

regardless of k and A, equation (2.5) has exactly one positive root.
A

S—,

In [7], it is proven that all the roots of a polynomial having only one




k,A both even

L .
k even, ) odd ' ) evell, k odd

NN\

Figure 2-4: The four possible plots for the polynomial 25t 4 2* — 1,
where k+A and X can be even or odd.

22




positive root lie in the circle |z| .< r, where r is that positive root. Further,

all roots lie in the circle 1 + maz{fa /a Since the maximum ratio of

ealt
coefficients in equation (2.5) is unity, all the roots must lie in the circle |z| < 2.

Hence n < 2™ as m approaches infinity.

We now determine the optimal values of r which would );ield the best

possible (fastest) algorithm in the dynamic recursion under consideration.

Let r(n) represent a value of r which gives the minimum number of steps
to completely solve a problem P(n) (assuming that the subproblems themselves
have been completed optimally).

Theorem 2.3. For an%/member n in class C_, r(n) must satisfy the
inequality

() <y + s (2.6)

A\

n- ﬂm—)\—k

Proof. Since n € C., n=n_—h for some nonnegative h. T(n) may then be
m’ m .

expressed as

Thus,

m > T(n,~h-r) + k + A ' (2.7)
and -

m > T(r—p) +A. S o o | (2.8)

From equation (2.7)

' 8
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M= h-r S ok
Substituting n_ - n for h, we get
rin) 2 n-n )\

Similarly, from equation (2.8),

Rewriting this condition gives
rin) < n__, + p

Combining the two constraints on r(n) completes the proof. Q.E.D.

Table 2-1 shows the ' performance of a parallel algorithm whose
recombination overhead 1s 5, partitioning overhead is 3, p = 0 and T(1)=1.

Table 2-2 shows the performance of the same algorithm with p = 1. Notice

L
that increasing p improves the performance of the algorithm by increasing the

upper boundaries of the nonempty classes but no new nonempty classes are

generated.

Corollary 2.2. The problem P(n) with a constant A can be decomposed
optimally with r = (n+p)/2 if and only if k = 0.
Proof. Let n be!ong to class C . I k=0, then form theorem 2.1
Ny = Zr}m_A + b | (2.9)
Theorem 2.3, for this k, specifies the .rar-lge of r as
L R p.

~ Using equation (2.9) in the last equation - L o

24
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Table 2-1: A hypothetical parallel algorithm with k= 3, A =15, and p = 0.

&

n T (n) minimum Tr maxlimum T

1 1 - -
2 9 1 1
3 14 2 2
4 | 17 | 2 | 2
5 19 3 3
8 22 3 4
7 22 4 4
8 24 5 5
9 25 5 5
10 27 5 7
11 27 8 7
12 27 7 7
13 29 8 ' 8
14 30 7 9
15 30 8 9
18 30 9 9
" | 17 32 9 ) 12
18 32 10 12
19 32 , 11 12
20 32 12 12
21 33 12 12

.
; 22 34 13 13
23 35 11 | 18
//m\\ 24 35 12 18
[N 26 35 13 16
28 35 14 18
27 356 156 186
28 35 186 16
29 37 16 20
30 37 17 20
31 37 18 20
32 ‘ 37 19 ; 20
33 37 20 20

34 38 18 21 .




1 ]

Table 2-2: A hypothetical parallel algorithm with k=3, =35, and p=1.

n number of step minimum T maximum T
1 1 _ _
2 9 1 1
3 9 .2 2
4 14 | 3 3
5 14 4 4
8 17 | 3 4
7 17 | 4 4
8 ) 19 5 8
9 19 6 6
10 - 22 b 8
11 22 8 8
12 : 22 7 8
13 22 8 8
14 — 24 9 10
15 24 10 10
18 | 25 | 9 10
17 25 10 10
18 | 27 | T 9 14 | -
19 27 10 14
20 27 11 14
21 ? 27 12 14
22 27 13 14
23 27 14 14
24 - 29 B 16 18
25 20 18 16
26 '  30 13 AR 18
27 30 14 | 18
28 30 15 | 18
29 30 16 18
~~ 80 30 17 ‘- 18
o3 30 18 18
3z 32 '” 17 B 24
33 | 32 18 24
34 - 32 19 24
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2 = (2.10)

It is easy to verify that r = 2—2—-’3 does indeed lie whithin this range of optimal

r.

To prove the second (necessary) part of the corollary, note that from theorem

2.3, for any n in class C_,

Substituting (n+p)/2 for r(n) at n=1n_, gives
N, < 29 5 .t P,
which, using theorem 1 gives
N s T e TP S 20 TP

or

Clearly, this can be true only 1f k=0. Q.E.D.

Corollary 2.2 is important to determine the cases when the optimal r can

&

be chosen rather easily from n. It should be mentioned here that generally in

P

A““

“divide and conquer” strategies, r is taken as n/2. But from the above

corollary, such r’s are optimal only if both k and p are zero.
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2.3.2 -Statically recursive partitioning

A special case occurs when the partitioning parameter, r, is fixed

throughout all the recursive partitioning levels. The scheme is not optimal but

its simplicity may be advantageous under some circumstances. In particular, if
only a few processors are available, dynamically recursive partitioning does not
necessarily perfofm better or at least not significantly better. Statically
recursive partitioning - has a modular and predictable structure which is

particularly useful for direct hardware implementation.

Static recursion proceeds as follows. The elementary problem size, L, is
chosen prior to any partitioning. Then at each stage, r is chosen such that the
problem P(n) is recursively partitioned into two subproblems P(n-r) and P(r—p),
with L = r—p.  The latter 1s not be partitidned further and 1s the basic
building block of the algorithm.  P(n-r), however, is partitioned further (if

n—r > L) using the same procedure.
An analysis of this procedure gives following result.

Theorem 2.4. For static recursion with elementary problem of size L,

N
e~

n. =m1n_,,t L+ p
Proof. From equation (2.1) one gets,
T(n, ) = maz{T(n_-L-p)+k T(L)}+\
The first terrln in the above braces is greater than or eqaul to the second term.

Thus,

T(nm) = T(n,—L-p) + k + A .' | (2.11)




Since T(n_) = m (by definition), then T(n _—L-p) = m — k —A

and thus n - L — p belongs to class C_ , .

Moreover, it is at the upper boundary of this class because, otherwise
| T(n,,—L—p) = T(n,,—L-p-1)
which gives
T(n_+1) = T(n_+1-L-p) + k + A
This leads to
T(n,+1) = T(n,—L-p) + k + X = T(n,),

which contradicts the fact that n_ is at the upper boundary of class C_. Thus,

Ty = M yp + L+ 0. Q.E.D.

I

Since L is typically a small number, it is clear from a comparison -of
theorems 2.1 and 2.4 that dynamic recursion performs much better especially for
large problems if many processors are available to take full advantage of

existing parallelism. | .
~

2.3.3 Partitioning. according to a simple function of order

A partitioning scheme which falls between static and dyhamic recursive
doubling is to choose r as a simple function of the size of the subproblem under
consideration. A good guess 1Is to choose r to be half the value of n. For
many types of problems, this value may in fact belong to the range of optimal

r(n) found in section 2.3.-1.

To analyse this partitioning scheme, sustitute |n/2| for r in equation (2.1)

44 . )
N

to get
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T(n,) = maz{T(n,,~[n,/2]) +k T(ln,/2]-p)} + A
Now, since n_—|n,/2] equals [n_/2],

T(n,,) = maz{T(|n,/2]) +k T([n,/2]-p)} + A (2.12)

& -

For all nonnegative values of p, the first term in the braces of &quation (2.12)

is larger than the second term. Thus, equation (2.12) reduces to

T(n,) = T([n,/2])+k+ A

The above equation can be further simplified by observing that »n_1s even

because otherwise T(y ) = T(n_+1) which is a conradiction. This gives
T(n ) = T(n,_/2)+k+ A - - (2.13)
|
Since T(n_) = m, equation (2.13) shows that o belong to class C .

Further, it should be the maximum of that class because otherwise,
T(nm”) —= T(nm/2+l)'+ k A = T(nm/z) + k +d = T(n_),
showing that n is not' at the upper boundary of class C which 1s a

contradiction to 1ts definition.

Thus, 0, = 20, ;- (2.14)

2.3.4 Relative performace of different partitiong schemes

Statically recusive partitioning is the simplest and the least adaptive
among the schemes reviewed above. It uses a fixed value of r throughout the
~ partitioning tree regardlessi of the sizes of problems at different stages. If; on
the other hand, finding the value of r at a particular stage in the tree takes
into consideration the size of the subproblem at that stage, then the recursion 1s
dynamic. Dynamic recursion_parti‘tioning can be done in several ways each of
~ which may give a different performance level. In general, performance 1mproves

as r approaches the optimal r(n) at every stage in the partition scheme. Thus,

l
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the worst performance is achieved by static recursion and the best by optimal
dynamic recursion. The choice of r=|n/2| gives and average performance but is

sometimes advantageous since the choice of r may be made fairly quickly.

~ 4

- W

-

2.4 Limitations of the chosen model

Solving any computational problem involves using operations which
manipulate operands. Usually, more than one operation is necessary to solve
any problem. For example, evaluating a polynomial requires at least addition
and multiplication; problems involving matrix inversion require addition,
multiplication as well as division. Primary and secondary memory access times
are neglected in compexity analysis but may also have to be included. This
thesls assumes that all operations require the same time, although it is often
quite unrealistic. Multiplication uspal]y takes at least twice as much time as
addition and in searching and sorting problems, access to RAM is much faster
than access to bulk memory.

The difference in the time requirements of different operations often make
a drastic change in the partitioning scheme if optimality 1s to be maintained.
In the model developed above, different operation time requirements can be
accomodated by choosing a basic unit of ti'me (generally the greatest common
divisor of all the operation time;) and then expressing each operation time as
its multiple. This affects the partitioning scheme only by cha;nging the values

of the parameters k¥ and A. This approach simple modification of the basic

model can provide accurate results in a variety of realistic problems.




.

-’ ‘ Chapter 3

~ EVALUATION OF POLYNOMIALS ON

MULTIPROCESSOR ARCHITECTURES:

" Y

3.1 Introduction

Polynomial evaluations arise in applications requiring the computation of
transcendental functions and interpolating polynomials. Parallel evaluation of
polynomials is a classical problem which has been tackled since the introduction
of the idea of multiprocessing [4,.9-13]. The evaluation of polynomials has been
investi.'gated thoroughly because 1t 1s a typical problem which 1is inherently
structrured so that extensive parallelism 1s availablé. Some existing vector
processors such as the IBM 3838 attached back-end processor include polynomial

evaluation as one of their functions [8]

3.2 Computational models for parallel polynomial evaluation
In this work, a polynomial of degree n 1s designated as P . To compute
P in optimal or near optimal time using a multiprocessor architecture, P s

split into many smaller polynomials which may be evaluated in parallel using

several processors. We start by splitting P into two polynomials as
(3.1)

Expression (3.1) shows that P may be decomposed into two independent

- polynomials which ‘can be computed in parallel. The term z" must also be

computed in parallel to with P . and P. .. The two 'po]ynomials on the right
r—1 n—r

hand side of equation (3.1) can in turn be decomposed into smaller polynomials

by applying the same or a similar rule. The ‘d_ecomposition 1s thus recursive in

naturé as was explained in chapter 3. Notice that the polynomial could have
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been split to three polynomials rather than two with minor modifications to the

model.

Ve

2

Let T(n) denote the minimum number of steps (and thus the minimum

time measured in steps) required to compute P using a parallel algorithm with

a specific partitioning scheme.

As mentioned in chapter 3, the decomposition model, expressed in equation
(3.1), can be used to partition the polynomial problem in several ways by
choosing different methods of specifying r at each recursion level. The simplest
method of static recursion fixes r apriori to some constant throughout all the
recursion levels. The optimal dynamic recursion method requires to choose at
each node in the recursion tree an r which optimizes the completion of the
subproblem associated with that specific node, i.e. an r which optimizes the
evaluation of the polynomial with the specific degree at that node. Many other
methods of choosing r are conceivable and feasible, but in this work we mainly
conentrate on the two methods mentioned above. In general, optimal dynamic
recursion has the best performance, especially on a MIMD cémpﬁter. However,

some other method may be more suitable and possibly even faster for a

dedicated hardware architecture.




3.3 Statically recursive partitioning
In this simple method, radix r is chosen to be a constant throughout the

polynomial evaluation process, leading to the computational process expressed as

-

«

+P )+ P _)+P_ ).+ P_, (3.2)
Horner’s rule is seen as a special case of static recursion with r=1. FEach step

in this evaluation 1s:

where P . collects all the P terms having a degree less than r, and P _

1 Ve

collects all the remaining terms.

Since the degree of P . is less than r, P _, can not be decomposed

further. But, P. _ can in general be decomposed further by applying the

method recursively until all the degrees involved are less than r.  When

polynomial P is completely decomposed, it has the form expressed in equation

(3.2).

The recursion depth, k, is the largest integer such_that n > kr. The r—1
degree polynomials can be evaluated using any available method. ‘The simplest -
method is to calculate them by direct evaluation. In this case, one may take
advantage of the fact that the same powers of z are used in the calculation of

each of the r—1 degree polynomials, and therefore they may be precomputed and

then used repeatedly.
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'8.3.1 Implementation of static recursion for polynomial evaluation
In static recursion, r is fixed so the polynomial P is evaluated essentially
by computingp mény P polynomials. As mentioned earlier, these polynomials.

r—1

Amay be \eyaluated uqingﬁany satisfactory method. It will be shown later 1n
chapter 5 that Horner’s rule may be used to evaluate these po]ynorﬁiéls In a
fashion that lays out a pipelined architecture to compute polynomials using
statically recursive partitioning. Horner’s rulegis the most efficient and quickest

method to compute a polynomial on a single processor Von Neuman

Architecture. But in this case the powers of z are calculated once and used for

all the P

__, polynomials, so Horner’s rule requires almost as many opérations as

the direct evaluation where each power of z is multiplied by its corresponding
coefficient, possibly in parallel. In contrast, Horher’s rule can not be
parallelized but may be chosen to reduce the hardware complexity in case of
implementation through dedicated hardware. On a MIMD computer, evaluating

the P, polynomials using direct evaluation leads to a superior performance

r—1

with only a small penalty in terms of additional overhead to compute the

powers of z. ¢

This section presents an implementation of polynomial evaluation using
static recursive partitioning with direct evaluation of P _  polynomials. It 1s
assumed that the multiplication of an z power and its corresponding coefficients

is done in parallel with other operations.

Since the powers of z involved in the calculation of each P._, polynomial

‘are precalculated, each one of the Pr_l' polynomials requires exactly r—1
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multiplications' and r—1 additions and may be done in r time slots if an infinite

number ' of processors are available. The & P . polynomials in equation (3.2)

contribute k(r —1) multiplications and the polynomial P requires n — kr

n-kr

-~

multiplications. At each~level there is also a multiplication with z7 givang k
more multiplications.  Finally, the powers of z which are ca]cul;ted prior to
completing any level require r —1 multiplications. Thus, the total number of
multiplications is n—kr+ k(r—1)+k+r—-1 = n+r—1. By a similar argument,

the total number of additions i1s found to be n. Thus this implementation

implies an additional r — 1 multiplications over Horner’s rule which require only

n multiplications.

The simplicity of this algorithm makes it particularly suitable for direct
hardware implementation, even though it does not fully exploit the potential

4

parallelism available in polynomial evaluation.

3.4 Dynamicélly recursive partitioning

If at each stage of computation, the problem is split optimally, the overall
.problem is solved in the minimum number of step.s achievable on such a model.
This -section shows that polynomials can be partitioned dynamically according to

the model presented in chapter 3.

Note that in equation (3.1), the multiplication between P and z’ is a
partitioning overhead and the addition of the two terms is a recombination
overhead. Both these overheads have the value of one since we consider that
all the operations take the same execution time. Thus, one gets the

computational model
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T|P | = maz{maz{T[z’), T[Pn-—r]}+l’,T[Pr—1]}+1' | | o (3.3)
This model does not necessarily follow thé dynamically recursive model
developed in chapter 3 since for the optimal values of r, the term‘ z” may
require more steps than could ke tolerated. To prove that the two ;nodels are
equivalent, we first prove that at least for one value of optimal r, z" should not

be the dominating term in the maz expression. The following lemma prove

that this z caculation can never be a bottleneck when partitioning dynamically.

(

A~

Lemma 3.1. L[z'] < TP _,| - L

Proof. Choose a particular r—1 degree polynomial P =a 7l y1. P

_ 1~ %1 r—1
requires m steps, then calculating the value ar_lir_l requires at most m — 1
steps.  For a particular o =z, however, this expression is z'.  Therefore,
computing z" requires one less step than computing P .. Q.E.D.

“The next theoren proves that the dynamic model of chapter 3 is a valid

model for the dynamically recursive partitioning of polynomials.

Theorem $.1. If one uses the partitioning shown in equation (3.1) with
. optimal r, then "
117 = meziTIP, ), TIF,_jJp + 1.

Proof. The .total number of steps, T|P |, required to compute P  according to

equation (3.3) is
maz{maz{T[z"] + 1, T[Pn__r]—i—l}, TP _,] }+ 1

From lemma 3.1, it is known that T[z"]+1 is at most equal to TP _,]. Thus,
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either of these two terms can be removed without changing the outcome of the

maz function. Thus, T|P | = maez{T|P |+ 1, T|P _,|} +1. Q.E.D.

Since theorem 3.1 proves that the constant overhead model of chapter 2 is-

applicable in this case, the results developed there are directly applicable in the

present case.- The following sections describe the characteristics of the

algorithm.

3.4.1 Complexity of the optimal algorithrh

As mentioned earlier, partitioniné a polynomial into two polynomials
introduces two overhead operations for each level of partitioning. The
partitioning overhead 1s a multiplic.ation with z" and the recombination overhead
is an addition of two terms. Thus, both A and k& in section 2.3.1 are equal to
unity. Notice also that p is unity. Therefore, all polynomials will be classified
according to their degrees. Let class C_ contain all the polynomial degrees
which require m steps to be evaluated in a multiprocessor environment. Let 5

 J
designate the largest member of C_. Equation (2.3) in this case gives
m

Ty = Mg T Mg + 1 (3.4)
Polynomial P will be partitioned to many polynomials of dé_g-ree 0 by optimal
par_ti't.'ion\ing. But a polynomial of degree 0 is actually a coefficient of the

original polynomial and thus the leaves in the recursion tree correspond to the

coefficients of the polynomial P .
. n

The optimal number of computational steps required to compute

polynomials of degrees less then 26 are shown in table 3-1.

38




Table 3-1: The characteristics of the optimal dynamic algorithm for
polynomials of degrees 1-25. |

problem number of minimum max imum
slze | steps T r
1 2 .1 1 .
2 3 ~ 2 2
. 3 4 2 3
4 4 3 3
b ) 3 5
6 15) 4 )
7 ) 5 6
8 6 4 8
1) 6 b6 8
10 6 6 8
11 6 7 8 .
12 6 8 8
13 7 6 13
.14 7 7 13
16 7 8 13
16 7 %) 13
17 7 10 13
18 7 11 13
19 7 12 13
20 7 13 13
21 8 9 | 21
22 8 10 21
23 8 11 21
24 8 12 21
2b 8 13 21

The number of processors is assumed to be large enough so as not to be a
constraint. Sown also in table 3-1 are the values of optimal r. The range of
optimal r’s is contiguous as predicted by theorem 2.3. Notice that all c]as-ses
are nonempty and that: |Cm| is a Fibbonacci number (1,2,'3,5,8,13, etc).
Moreover, the smallest value of n in any class C_ is also a Fibbonacci number
.and 1is desigﬁated by F . .That F is a Fibbonacci number is not coincidental,
rather, (34) mimics  the well known property that a F ibbonacci number is

-_'.\
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generated by adding the two preceding Fibbonacci numbers.

-~

Applying theorem 2.3 gives the following range of optimal r.

+ 1, where n € C . (3.5)
-

3.4.2 Number of operations |

Any parallel algorithm works by partitioning the original computational
problem into smaller and independent subproblems which can be solved in
parallel. However, this can be done only at the expense of overhead which
introduces some new operations which otherwise would have been unnecessary.
Thus, the time savings are achieved at the cost of a decreased efficiency.
Dynamically recursive partitioning introduces additional operations over the
optimal serial evaluation of polynomials by Horner’s rule which requires exactly
n additions and n multiplications to evaluate a polynomial P of order n. To

assess the efficiency of a parallel computation, we now compare the number of

operations required by it with the number of operations required by Horner’s

rule.

The following theorem determines the total number of operations for the
dynamic optimal recursion excluding the operations necessary to compute the

required powers of z.

Theorem 3.2. Computing a polynor‘nial‘ P by optimal dynamically
recursive partitioning requires n additions and n multiplications if the required

powers of z are precomputed.

Proof. At every node in the recursion tree where (3.4) is applied, two
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operations, a multiplication and an addition, are encountered. The sum of the

degrees of the children polynomials is exactly one less than the degree of the

‘parent polynomial. (This~ is obvious from (3.4). The degrees of the polynomial

on® the right "are n—r and r— 1. respectively and that, on the left is n—1).
Since all.the polynomials at the leaves of the recursion tree have a degree of 0,
it is clear that equation (3.1) must have been applied n times. Thus, if the

polynomial is partitioned completely, n additions and n multiplications are
'l

~

generated. . | Q.E.D.

N

Thus, the number of operations‘ resulting from overhead operations equals
those required by Horner’s rule.  The only extra computations wh‘ich the
parallel evaluation requires are the multiplications required to compute the
necessary powers of z. The powers of z which are generated for a particular
polynomial depend on the values of r that are chosen at different stages

throughout the recursion. To identify these powers, the the values of r must be

chosen according to a consistent rule such as using either the minimum or the

maximum value of the range spéciﬁed by equation (3.5) at each node in the
recursion tree. As partitioning proceeds, new powers of =z dre generated as
required. In general, each new power of z may require several multiplications.
But as the following two theorems show, , if throughout the recursion stages r
is consistently chosen to be éither the minimum or the maximum value of the

range of r, then each new power is related rather simply to the powers already

generated.

® - -

A polynomial

Lemma 3.2. Let n_ denotes the maximum of class C . |
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P decomposes into the polynomials P , P , P , ..., P , P such that
"m M My M3 m-2  Tm-1

Nys Mgy +-s M,,_; are the maximums of all the classes which precede the class

C_. Further, all the -z powers used in the computation of an are the
Fil;bonacci numbers 1,2,,3,5,.., F_* ' | .
Proof. As shown by (3.5), the value of r used to partition P."m 1S unique such
that

r=an_-n__,
Using equation (3.4), we get

r=1__4 + 1

Notice that the first polynomial generated in this partitioning has a degree
N —T.

But n,-r=mn_-1.,-1=mn .

The other generated polynomial has a degree of r — 1 which clearly equals N1
Finally, since 5 is one less than the Fibbonacci number F_and since
r=n__,+1, the value of r 1s a Fibbonacci number F .

Thus, partitioning the polynomial an generates two polynomials whose sizes

9 . _ .
n and 7n and uses F ’th power of z. Recursive use of this argument
m—1 m-—2 m

pfoves the lemma. | Q.E.D.

Theorem 3.3. If at each node in the recursion tree the minimum optimal
r is used, the evaluation of polynomial P € C_ requires only‘ POWETS
1,2,..,F (i.e. all Fibbonacci numbers 1 through Fm—Z) of z. Further, a .
new power of z is always a product of two powers of z which have been
already computed and therefore it requires exactly one more multiplicat'ion to.be

calculated.
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~ chosen at its minimum value of n -y

Proof. Splitting P_ gives two polynomials P __ and P _,. Notice that if r is

then n—r equals n__,. Therefore by

m-—2°

lemma 3.2, its evaluation requires those powers of z which are Fibbonacci

-
] -~
L 4

numbers 1 through F_ .

Since r-1 = n - n__, - 1, it can be easily shown that r—1€ C_ or
-~

L]

Thus, P. ., will be split into two polynomials one of which is of

r—-1e€C
m r—1

_1°
degree n _, or n__, as per the above argument. Lemma 3.2 ensures that these
polynomials will not introduce any new power of z since they require

“Fibbonacci powers” which have already been generated before. Therefore, the

only possible new powers of z can be generated in the “rightmost” branch of

the recursion tree. In case (r—1)€C__., P is split according to an r, such
“m-—1 r—1 2

that ’

r = (r=1) —n_ 5 =171-F .. But power F__, was generated earlier and

therefore, z" is obtained by multiplying this power with z'2. If (r-1) € C ,

then a similar argument shows that

p=r-1-n . +1=r-F .

This again shows that z" is obtained through one multiplication.

Therefore, any power which is generated at any node in the recursion tree can

be calculated through only one multiplication and using two powers which have

already been generated before at two other nodes. Q.E.D.

Theorem 3.4. If at each node in the recursion tree the largest optimal r

s used, evaluation of a polynomial P €C_  requires only the powers

1,2,35 ... F _F.

m—1""m

Proof. As shown in equation (3.5), .the largést value of r for any n.€C_ 1is




\

’7m;1 +1, which is the Fibonacii number F_. Hence the theorem. Q.E.D.
. .

The above two theorems combined with the operation count for the

overhead operations «provide a good estimate of the amount of operations

\

~

.
required to complete polynomial evaluation on multiprocessro architectures using

optimal recursion. If neC_ (Fm < n < Fm+1)’ then evaluation of P
requires n additions and n+m -1 multiplications.' Moreover, the partitioning

scheme can take advantage of the multiprocessor and complete all the required

operations in only m = O(c log(n)) steps, where ¢ 1s a constant.




. Chapter 4 |
MATRIX OPERATIONS ON
MULTIPROCESSOR ARCHITECTURE

”
-

4.1 Introduction

One of the’ most rewarding applications of parallel processing 1s matrix
manipulation.  Matrix operations arise In application\s\ related to structural
analysis, transforms, “image processing, fluid mechanics and partial differential
equations, to name a few. Further, many of these applications require
manipulation of matrices having very large orders, sometimes up to 100000. In
.addition, 'matrices have elegant structures and their operationﬂs can be easily

decomposed.  Since matrix operations are such good candidates for parallel

processing, it is worthwhile to develop models and methods to help “parallelize”

matrix manipulation algorithms.

We haVe seen earlier that dug to decomposition overhead and various
other considerations, partitioning computational problems in equal halves may
not achieve optimal -paral.lel execution time. Ne;?ertheless,' traditionally, many
parallel algorithms are based on this heuristic approach. Parallel matrix
algorithms have not been exceptions. Fortunately, in many cases involving
matrices, dividing problems in equal halves may in fact be optimal or near
optimal. In this 'c‘hépt,er, we develop and analyse a mode] which can be directly

applied to some matrix operations, notably. matrix inversion. The main purpose

of the discussion here is not to develop a specific model, but rather to illustrate

J %

a methoddldgy to develop useful models. ~
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The model which will be analysed below is represented by the equation
T(n) = min{maz{T(n-r), T(r)} + kl[log(r)] + A}, 1< r<n-1, n22

where k£ and ) are integer constants such that A >k > 0.

Compared to the model'~ discussed in chapter 2, this equation has dariable
overhead. The reason for theﬂlog term is that many matrix operations with r
operands can be done in a binary multiprocessor tree of height proportional to
log(r). In [4], it is shown that multiplication of two matrices of sizes mxn and
nxp respectively require exactly [log(n)]+1 steps. Since decomposition of
matrix operations requires matrix multiplication In many cases, the log term

usually arises in the above context, as will be shown In the example of next

section.

4.2 Model for matrix inversion

A very important matrix operation is inversion. One of the methods to
invert matrices is the LU decomposition followed by inversion of each triangular

matrix and then their multiplication.

This and various other applications make triangular matrix inversion an
attractive problem for parallel processing. Various techniques -have been devised

to compute the inverse of a triangular matrix in parallel 4, 5, 14, 15].

The algorithm which will be modeled here uses recursive doubling. Let A

be a lower triangular matrix of order nxn which is partitioned as

A, 0 S
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where Al, 'Az and A3 are matrices of orders rxr, (n—r)xr, and (n-—r)x(n-r)

——

respectively.

Since the inverse of a triangular matrix is itself triangular, A~! can be

expressed as

B, ©
Al =

B2 B3

where B, B, and B, are matrices having the same orders as A, A, and A,

respectively. This representations leads to the following identities:

A]Bl ~ Il’ |
A2B1 -+ A3B2 = 0 and
A?)B3 —= 12,

where Il_1 and I, are 'identity matrices of appropriate order. These equations

then lead to the three-step procedure to compute Al

Bl - Al_l’
B3 = A3"1 and
B2 = —B3’A2B1.

Notice that inverting A, and A, are independent operations and thus, can be
performed in parallel. The computation of AB_IAQAI_1 can be done by solving
A,Y = A, in parallel with the inversion of A, and A, to compute A3_]A2

and then multiplying it with B, as soon as B, is computed |4]. Since the last

1
operation (multiplication with rxr dimension Bl) takes [log(r)] +1 time steps,

the total time to complete the inversion is

T(n) = min{maz{T(n—r), T(r)} + [log(r)] + 1}, = 1 < .r‘S n-1, n > 2.

In this equation, T(n—r) and T(r) are the times required to evaluate the inverses

A3-1 and Al'"l; the time ré'qui'red to solve A, Y=A, is not indicated sinc‘e it
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is less than T(r). The values of T(n) and optimal r for this case are shown:in

(%]

table 4-1
Table 4-1: The time and optimal r values for parallel
' triangular matrix inversion.
n T(n) r
2 2 1
3 3 1
4 4 1, 2
5 5 1, 2
6 8 1, 2, 3
7 7 1, 2, 3, 4
8 7 4
9 8 1, 4
10 9 1, 2, 4, b
11 10 1, 2, 3, 4, 5, 6
12 10 4, 8
13 11 1, 4, 56, 6, 7, 8
14 11 8, 7, 8
, 15 11 7, 8
16 11 8
17 12 1, 8
18 13 1, 2, 8, 9
19 14 1, 2, 3, 4, 7, 8, 9, 10
20 14 4, 8, 10 "
21 15 1, 4, 56, 6, 7, 8, 9, 10, 11, 12
22 15 6, 7, 8, 10, 11, 12
23 15 7, 8, 11, 12 |
24 15 8, 12
26 16 i, 8, 9, 10, 11, 12, 13, 14, 15, 186
26 18 i0, 11, 12, 13, 14, 15, 16 |
27 186 11, 12, 13, 14, 15, 18
28 16 12, 13, 14, 15, 16
. 29 16 13, 14, 15, 16
- 30 16 14, 15, 16
31 16 16, 16
32 16 16
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4.3 Analysis of variable overhead models
The computational complexity model of section 4.2 can be generalized to

the following form:

o’

T(n) = min{maz{T(n—r), T(r)} + k[log(r)] + A}, 1<r<n-1, n> 2.(4.1)

In this thesis we only consider cases where A > k > 0

K
We first show that T(n) is a monotonically increasing function for all

values of n.

Theorem 4.1. For all n, T(n+1) > T(n).
Proof.  We use mathematical induction over n to prove this result. First,
assume that the function T(n) is monotonically increasing for all values of
n < u, 1.e:

T(n+1) > T(n), n < u.
We now prove that T(u+1) > T(u).

Let 1 < r <wu denote the r used to evaluate T(u+1). Then

T(u+1) = maz{T(u+1—r1),T(rl)} + kllog(r )] + A | (4.2)
fr =1, theﬁ equation (4.2) becomes
T(u+1) = maz{T(uv),T(1)} + A.
But since T(n) 1s assumed to be monotonically increasing till w, T(v) > T(1) and
thus .
.T(u-Fl) = T(u) + X > T(u). | ;
Ifr, # l,uthen 2<ry<ugiving 1<r,—1<u-1 Thus, r, —1 is one of the r
values used in the'optimization, of T(u) in equation (4.2). Therefore,

—
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T(u) < maz{T(u—(rl—l)),ﬁfl‘—l)} + k[log(r —1)] + A. | ' (4.3)

" But since r.—1 < u, our assumption gives T(r,) > T(r,—1). Keeping this in

1

mind, a comparison of the terms of equations (4.2) and (4.3) gives

S

3 !

T(u+1) > T(u).
Thus, the theorem 1is true for n = u if it is true for n < u. From equation

(4.2), we have T(2) = T(1) + A > T(1) showing that the theorem is true for

n=2. Thus, the proof is complete by induction. Q.E.D.

We will show later that |n/2| is an optimal value of r for all n. But

first, we obtain a few properties of T(n) assuming that optimal r=|n/2]|.

Define a new function such that
To(n) = maz{T,(n—r), To(r)} + kllog(r)] + A, r=[n/2]. (4.4)
Notice that if r=[n/2| is optimal, then T(n) = T (n). The expression for Ty(n)

can be simplified to either one of the two following equations, depending on

whether n 1s even or odd,

.

To(n) = Tb(m+1) + kllog(m)| + A, n = 2m + 1, and | (4.5)
Ty(n) = Ty(m) + k[log(m)] + X, n = 2m. | (4.6)

Following three theorems describe the jumps in T, (n) as n increases and

enable us to obtain an expression for T (n).

Theorem 4.2. If n = 2, where ¢ is a positive integer, then

T (n+1) = Ty(n) + X
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Proof.‘ The theorem would be proved by mathematical induction over i. It is
clearly true for ¢ =1 since equation (4.6) gives

To(2) = To(1) + A
Assume that it is true for all 1 < I. To show that it is true for i =1, note

that equation (4.6) gives

, T,(2) = T,(2"Y) + (1-1) + A

—

However, since we assumed that the theorem statement is true for ¢ < I, we

T(2)) = T0(21‘1+1) + (I-1) + A = A (from the above assumption)

= T0(21+1) — X (from equation (4.5)).

This shows that the relation is valid for :=1. Q.L.D.
of
Theorem 4.3. For all the values of n which are expressible as n = 2' +

27 where ¢ and j are two distinct nonnegative integers,
To(n+1) = Ty(n) + k.
Proof. We prove this theorem using mathematical induction over n.  The

relationship stated above is true for n=3 since

T6(4) = T,(2) + A + k from equation (4.6),

which gives using equation (4.5),

T (4) = Ty(3) + k.

We now assume that the theorem statement is true for all n < u and prove it

>

for n = u.

Let w = 28 + 2, ¢ # 5 If neither ¢ nor j is zero, then u is even and thus,

J
from equation (4.6), T,(u) can be expressed as/
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v - T - N . .
AR Wty ST E 6 e b e 0
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Ty(v) = T(2"71+2771) + kflog(2~1+271)] + M.

Our assumption gives

T,(2 7 1+277Y) = Ty(27'+277'+1) ~ k, which gives

v N

To(u) = T0(2i—1+2j—1+1) + k[log(Zi—1+2j_l)] + A — k.
The first three terms on the right hand side can be combined using equation
(4.5) to give the value of T (u+1).
Thus, T (u+1) = Ty(u) + k.
On the other hand, if (say) i =0, then « = 27 + 1 and using equation (4.5), we

get

To(u) = To(27'+1) + k(7-1) + A,

and from equation (4.6)
To(ut+1) = Ty(27'+1) + k(5) + A
Clearly, in this casg¢ also

To(u+1) = To(u) + k. | Q.E.D.

Theorem 4.4. 1f n # 2° + 2/, for any two nonnegative integers ¢ and j,
then
To(ut1) = Tglu).

Proof. The theorem is true for n=7 (the first such n value) since from
equations (4.5) and (46), T,(7) = T,(8) = Ty4) + 2k + A M the theorem 1s

true for all n < wu, then it can be shown to be true for n = u, and by

{

mathematical induction, the proof would be complete.

If uis even (u = 2m), then from equations (4.6) and (4.5), we have

%

.

T,(u) = Ty(m) + k[log(m)] + A, dnd
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To(utl) = Ty(m+1) + k[log(m)] + A
. But T (m+1) = T,(m) since m is not a sum of two powers of 2 and m < .

Thus,

T(d+1) = T(u). s
If wis odd (v = 2m+ 1), then from equations (4.5) and (4.6),
T)(w) = Ty(m) + kflog(m)] + A, and

T (ut1) = T, (m+1) + k[log(m+1)] + A.

Clearly, [log(m)] = [log(m+1)], else m is a power of 2, say 2!, This is not
possible since it implies that u = 9!l¥1 4+ 29 which is a contradiction since

u # 24 2J for any 1 and j. ' Q.E.D.

The last three theorems are of paramount importance in predicting T (n)
for any n. They show that jumps of known magnitude in T,(n) occur only at
n’s of the form 2° + 2. T,(n) can thus be found by examining all the integers

which have the form 2° + 27 and are strictly smaller than n. In particular, the

following corollary gives an exact expression for T (n).

Corollary 4.1. For all n,

I

([log(n)] + 1)A + k|log(n)|(llog(n)| — 1)/2 + k[log(n—2e™))]  (4.7)
+ T(1), n # 2"

Ty(n)

= |log(n)|A + kllog(n)|(|log(n)] -~ 1)/2 + z’(l), n=21>1. (4.8)
Proof. To find Ty(n), one can examine the jumps which are encountered by the

function T (m) as m increases from -say- 1 to n. Theorem 4.2 states that at

any value of n which can be expressed as 2, T(n) encounters a jump of
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magnitude ). Similarly, theorem 4.3 states that at any n having the form
9t + 90§ £ 3, T,(n) encounters a'jump of magnitude k. On the other hand,
theorem 4.4 states that no jumps occur at those n’s which do not have the
form 2' or 2'+ 2% This sugges'f;s that one can compute T,(n), by finding the
number of jumps caused by the integers having the form 9 and 2° + 2,
multiplyirig them with' A a;nd k respectively and adding them to -say- T (1).

Let I = llog(n)]. Define S as the set of integers which are strictly less than n
and have the form 2. Similarly, define Z as the set of integers which are

strictly less then n and have the form 2 + 20, ¢ # 5. Then,
T(n) = A|S | + k|Z | + T(1).
Notice that

S| = (I+1), n # 2

n

I

- [, n = 2",
Finding |Z | invelves finding the number of all the possible weight-2 vectors

among a vector with | components. Thus, .

2, = X, 17+ [logn=2)], n # 2°

-1 . ' |
N Z:J':1-7'/‘ n = 2. /k

Substituting I(l-1)/2 for 21:1 7 and |log(n for I completes the proof. Q.L.D.
7=1 -

4.4 Optimal partitioning- for variablé-everhead

We now show how to optimally patition the problem, ’.which 1s achieved
by determining th‘e values of optimal r’s. In particular, it is. shown that
optimal partitioning is achieved by choosing r at any stage of computétion as

r=|n/2| where n is the size of the problem at that particular stage.
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Theorem 4.5. For T(n) defined in equation (4.1), |[n/2] is an optimal
valu‘e of r, le. l
T(n) = Ty(n).
Proof. ' The theorem would be proved by mathematical induction over n.
Notice that for n=2, the optimal value of r is 1. Assume that the theorem
statement is true for all n < wu. Next, we prove that this infers that it 1s

valid for all n < wu+1.

Since we assume that T(n) = T,(n) for all n < wu, theorems 2, 3 and 4 are
valid for T(n) if n < wu.

First, consider the case when u is even, and let u = 2m. Using equation (4.6),
T(u) is expressed as
T(u) = T(m)-+ k[log(m)] + A.
On the other hand, equation (4.5) gives for
To(utl) = T(m+1) + k[log(m)| + A.

To compare the above two equations, three distinct cases must be identified;
m 2"'%27', m=2" and m=2"+2’, when 1 # j.
Case 1. If m # 2°+ 2/, then according to theorem 4, T(m) = T(m+1). This.
clearly means that T, (u+1) = T(u), which implies. that T(u+1) = T, (u+1) since
T(u+1) can not be less than T(u).
Case 2. If m=2", then according to theorem 2, T(m+1) = T(m) + A. Thus,
the elx,pression for T,(u+1) becomes /
To(u+1) = T(m) + k[log(m)]| + 2A.

= T(u) + A

If T(u+1) > T(u) + A, then T(u+1) = T, (u+1). | Since u+1 = 2m+1, we have
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T(u+1) = T(2'+1-r) + k[log(r)] + A
We want to prove that for any r, T(u+1) > T (u+1) since this implies that
r=|n/2] is optimal.

AN a ]
Consider the case when r < m, such that r=m-=p, p > 0. Then

T(u+1) = T(Z+p+1) + k[log(2i~p)] + A. o (4.9)
For p=0, we clearly have r=m. If we want to find an r which yields a value
of T(u+1) which is less than T(u) + X, then p must be increased sufficiently to
decrease the log term in equation (4.9). However, as p increases, the decrease
in the log term is achieved at the possible expense of an increase in T(2'+p+1),
the first term in the right hand side of equation (4.9). We intend to prove
that the decrease in the log term is more than offset by an increase in the first

term, so that T(u+1) can never d%crease below T(u) + A. Decreasing the log

term by [, requires that we half its argument [ times. . This can be achieved

with a p having the form ‘
po= 271 47?4 4o
Thus, the expression for T(2'+p+1) becomes
T(2'4p+1)) = T(242' 14224 427,
For ythe value of p above, corollary 4.1 and equation (4.9) give
T(u+1) - (i+1)A + ki(i+1)/2 + T() + k(i=1) + X, 1 <i (4.10)
= (¢+2)A + ki(e4+1)/2 + T(1) + A, 1= - ' (4.11)
Since u = 2', corollary 4.1 can be easily applied to find the value of T(u) as
T(u) = (+1)X + ki(i+1)/2 + T(1)." | | (4.12)

Comparing equation (4.12) against equations (4'.10) and .(4.11) show that
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T(u+1) > T(u) + A, and therefore that T(u#1) = Ty(u+1).
- Case 3. If m=2"+2. i+# 5, then according to theorem 3, we have
T(m+1) = T(m) = k. Thus, the expression for T, (u+1) becomes
T,(u+1) = T(m). + k{log(m)| + k + A. |
= T(u) + k.
If T(u+1) > T(u) + k, then T(u+1) = T (u+1). Since u+1 = 2m+1, we have
T(u+1) = T(2'4+1-r) + E[log(r)] + 'A.
We want to prove that for any r, T,(u+1) > T,(u+1) since this implies that
r=|n/2] is optimal. |
Consider the case when r < m, such that r=m—-p, p > 0. Proceed as In
case 2 above, with the exception that we intend to reduce the log term in
‘equation (4.9) by I+1, so we add 27 to p. Therefore, p is expressed as
p =271 4 27t 4 4ol
Thus, the expression for T(2'+27+p+1) becomes
T(2+p+1) = T(2+207 142724 422t (4.13)
For the value of p above, corollary 4.1 and equatioﬁ (4.9) give
T(u+1) = (i+1)A + ki(s+1)/2 + T(1) + k(z=1) + A, (5+1) < (=) (4.14)
= (i+2)A + ke(i+1)/2 + T(1) + k(1) + A, (3’+-1):(ifl) (4.15)
= (i42)A + ki(i+1)/2 + k5 + T(1) + k(i-1) + A, (5+1) > (i-1) (4.16)

Notice that when j+1>17-I, the term 9771 is repeated twice in the equation

(4.13); this means that the two terms add and produce a “carry”, which-

“propagates” so that all the two powers 27t1 through 2' add up to 2'*!. Since

u = 2 + 27, corollary-4.1 can be easily applied to find the value of T(u) as

 T(w) = (G+2)A + ki(i+1)/2 + b+ T(1). | - (4.17)
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Comparing equation (4.17) against equations (4.14) through (4.16) show that
T(u+1) can not be less than T(u) + k. Notice that dropping the term 27 from

the expression for p, would not affect the above argument or its conclusion.

This implies that T(u+1) =T (u+1). A similar argument can be used to show

~ that the same result is infered for any r > m.
Thus, in all three cases, the assumption that T(ri)'f}: Ty(n) for all n < u, where

™.

u is even leads to the conclusion that T(u+1) = Ty(u). " A similar argument can
be employed for an odd u to reach the same conclusion.

Therefore, by mathematical induction, T(n) = T,(n). Q.E.D.

The above theorem is very important in that 1t shows that a fairly simple
partitioning scheme is optimal for the variable recombination overhead of the
form k[log(r)] +X when X > k > 0 (if A=0, then optimal partitioning is achieved
with r=1. This result is not vald if & > A but a similar discussion in this

case 1s beyond the scope of this thesis. This result should be compared with

corollary 2.2.

Theorems 4.4 and 4.5 together imply that the optimal complexity in most

matrix problems would be O(klogzz(n)).

y
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g - Chapter 5
HARDWARE IMPLEMENTATION OF
PARALLEL ALGORITHMS

5.1 Introduction

The rapid advent of Very-Large-Scale-Integrated (VLSI) technology has

created new architectural possibilities in implementing parallel algorithms directly

in hardware. The current technology has made possible the fabrication of more
than 250000 transistors on a single chip. Such a technology can be used
effectively in designing high-perfqrmance processors dedicated towards one type
of computational problems. Such dedicated hardwares “functional units” usually
run under a more general-purpose processing or control unit which acts as a

task arbiter.

The design of functional units poses some challenges. The hardware must
be modular and cost effective. A functiona]. unit implements in hardware an
algorithm which solves the computational problem to which it is dedicated.
Careful consideration must be given to the algorithm used since it determines
the hardware complexity, speed and iptercdnnectivity of the hardware unmt. It

generaliy results.in a trade off between hardware complexity and speed.

When implementing parallel algorithms directly in hardware, it is

important to differentiate between temporal parallelism and spatial parallelism.

&
- Let a Progessor be defined as hardware unit which performs a certain process

vx;hich essentially is a group of sequential operations on some ihput operands.. A
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process frame is the process pertaining to a specific input.

- | Temporal parallelism is achieved by decomposing the process into
sequential “subprocesses”. In this case, a hardware “subprocessor” is assigned to
every subprocess.  Subprocessors are actually specialized hardware segments
controlled in such a manner that several segments may be busy simultaneously.
One subprocessor may 'be assigned to more than one subprocess if their
structures are the sarge. The subprocessors are then pipelined with possible
feedback and feedforward paths, so that a subprocessor may be engaged In a
subprocess without necessarily waiting for the whole processf)'r to complete the
execution of a process frame. Thus, a subprocessor may start working  on
subprocess as soon as it completes the previous one independently of the whole
process. In practice, a subprocessor may not be completely engaged at all times
because of timing and synchronization constraints,: nevertheless, its throughput is
usually significantly 1mproved. Thus, essentially temporal parallelism 1s
pipelining consecutive modules 0} hardware rather than duplicating them, so that
a process flows from segment to segment in a lock-step synchronous manner.
On the other hand, spatial parallelism is achieved by duplicating hardware such
that several processors run distinct process frames concu’rrently. Obviously, each
processor in the spool of available processors may be internally pipelined, as

well as being able to function in a pipeline. Henceforth, parallelism 1s used to

“indicate spatial ‘parallelism.

Kdl P <4

If pipelining alone can not achieve the required performance level, use of

A
A

spatial parallelism 1is indicated. = However, it is _importént to use temporal
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parallelism as often as possible, since pipelining - 1s a technique which

significantly increases hardware throughput at little or no extra cost.

In this chapter, a processor dedicated for polynomial evaluation will be
developed. The processor will implement in hardware the statically recursive

parallel algorithm described earlier.

5.2 Polynomial evaluation by statically recursive doubling

In the case of polynomial evaluation, Horner’s rule poses itself as the mast
suitable algorithm for hardware implementation because of its simplicity and
modularity. However, Horner’s rule is sequential. If high performance 1s a
premium, a parallel algorithm must be used even though it will result in loss of

efficiency and will increase ‘the hardware complexity.  Any of the parallel

algorithms described in the previous sections can be used. Dynamically

recursive parallel algorithms demand extreme flexiblity and are rather
cumbersome to implement in hardware. On the other hand, statically recursive

parallel polynomial evaluation is as modular as Horner’s rule since 1t 1s a

generalization of 1t.

This chapter starts with a hardware implementation of Horner’s rule not

only because it 1s useful in its own right for direct polynomial evaluation, but

-~

|

—~p -

‘also because it is the building block for a parallel pipelined proce.ssor for |

polynomial evaluation.

A polynomial P_ can be expressed as
z(z(...(ﬁnzz—i-an_1)+an_2)+...+a1)+a0.
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Horner’s rule evaluates a polynomial by computing the value of each term in
~ the expression above starting with the innermost term ‘and subsequently the
next expression and so on until the polynomial P_is evaluated. Thus, Horner’s
rule can be viewed as a sequenc; of first degree polynomial evalué,tions where
the first degree coefficient of any polyn;mial (except the innermost one) is a
result of the preceding polynomial evaluation. In hardware, this translates into

a highly modular design, where each module evaluates a first degree polynomial

using a result computed by the preceding module.

Evaluation of first degree polynomials involves one multiplication and one
addition. Thus, a hardware module which evaluates a first degree polynomial
az+b, consists of processing elements which can do both operations. The
mﬁltip]ication operation 1s, of course, far more complicated than the addition
operation and 1t will dominate the hardware. Any known word-oriented
multiplier can be used. Let' P, designate a hardware module which computés a
first degree polynomial. "Let the delay of a P, module be d,, and ¢, be a delay

oprator with a delay of i.d,.

Figure 5-1 shows the basic ou;cline of a processor which evaluates a
polynomial of degree n using Horner’s rule. Ngwce that throughout the
processor, only one type of hardware module ié used, namely P,. The modules
can be easily pipelined for higher throughput. A more careful consideration of
the \circuit reveals.,j that only one P, " module 1s needed, since we can easily

feedback its output to its input. Such a  processor use only one P, module

| C 1 : ]
rather than n modules. Any polynomial P of an arbitrary degree p can be

. * ‘ ‘
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Figure 5-1: A direct implementation of Horner’s rule
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evaluated . simply by clocking the module p times. Such a processor 1is

designated by Pp. Figure 5-2 shows such a processor with the proper sequence

of inputs.

- . |

\im'tia] value = 0

Figure 5-2: A processor which evaluates a polynomial Pp using

Horner’s rule. Notice the input sequence at every
initialization of the module.

»

Th'(.z evaluation of a polynomial of degree p requires dp:pd1 time units
regardless of the number of the P, modules in the processor. However, a multi-
module processor can achieve a better average throughput if many polynomials
are to be evaluated. If the application requires the evaluation of a large
number polynomials :in a - burst-like fashion, then many P processors  can be

used in parallel, each evaluating a different polynomial. = For this reéson,

‘Horner’s rule is best implemented using one P, module.
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Since the use of several processors independently does not speed up the

evaluation of a single polynomial, one may have to use a parallel polynomial

evaluation algorithm.

»
As shown in (3.2), a polynomial P _can be expressed as

P = z"(z"(z"(....(z".P

.+ P )+ P_ )+ P_)..+P_,

Thus, a polynomial of degree n can be evaluated by evaluating in pa\frallel
k=|n/r| polynomials each of degree r-1, and combining the results of these
calculations in the right sequence. Figure 5-3 shows the outline of a processor

which performs these steps. The processor has k stages, where each stage has

one P, module and one P _ module except the first stage which has two P |

1
modules. Straightforward use of this processor . allows the evaluation of
polynomials having a degree up to (k+1)r—1. The modules which constitute the

processor are pipelined, so that eath module may be used as soon as 1t

completes one evaluation to work on the next polynomial.

Since all stages of the processor shown in figure 5-3 are basically the
same, it is also possible to feedback the output of the processor to its input, to
increase the effective number of processor ;tageé without increasing them
physically. To ensure collision free scheduling, the output can not be fed-.back
to.\t\ﬁg‘input unless the first stage 1s free. But since the very first P, block
starts processing at time d__. and the first P _, is free at that time, the -o‘utpﬁ”t

of the first P, may be fed to the input of the first ‘Pr'_l. Thus, static recursion

does not yield a highly parallel architecture.
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(r+Ln/rJ-1, r+Ln/rJ) } ‘ | | ([_n/rj ’ Y‘+Ln/fj_-1)

r-1

. | Ar+ Ln/rj Pn

Figure 5-3: Direct hardware implementation of static parallel polynomial
evaluation. The timing for each module is shown in the 2-tuple
written besides each module. The first parameter shows the time
when the input to the module must be presented and the second

parameter shows the time when the ouput is available.
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5.3 Implementation of dynamically recursive partitioning -
Dynamically recursive partitioning typically produces algorithms which
require a high level of interprocessor communication. For example, 1n parallel
evaluation of polynomials, if protessors are assigned to specific operations, they
often need operands computed by other processors. If the time required to fetch
an operand from another processor is significant, then parallelizing the
computation may not achieve any benefits. Thus, high bandwidth

communication must be used in order to avoid communication bottlenecks in

these architectures.

Figure 5-4 shows an outline of an architecture suitable for dynamically
recursive parallel computing.  Interprocessor communication can be achieved
using common memory modules, a high bandwidth bus with some arbiter or a
cross switch. Any communication scheme is likely to be complex because of the
performance rates required. Notice that such a system, with its high speed and
flexible communication, 1is essentia]ly a MIMD computer. Since the

communication scheme constitutes a major part of the system hardware,

)

1
i

dedicating the whole system to one type of application is not economically

justifiable. Such an architecture is inherently flexible and thus, 1t may as well

be used for several applications.

Nevertheless, for some applications, it may be feasible to implement some
complex parallel algorithms in hardware. Hwang has proposed a parallel VLSI
architecture to invert matrices based on LU decomposition and triangular matrix

inversion, as a major hardware extension to supercomputers 115] which the
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Figure 5-4: The layout of an architecture suitable for dyanamically
| recursive parallel algorithms.

readers will find interesting.

5.4 Bit-Sequential polynomial evaluation

Bit-sequential processing can be used to further increase the throughput

"

without increasing the hardware complexity. Pipelining Bit-sequential modules

means that a module does not have to wait for a previous module to complete

‘jts task, but rather, can immediately start working using each.input bit as it

comes out from the previous module.
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5.4.1 A Hard;ware implementation pf Horner’s rule

As mentioned earlier, the l;ééic block of Horner’s rule evaluation 1s simply
the computation of az+b. The coefficient a is, in general, another polynomial
of the same form, a.nd thus it is available one bit at a time. ~/\B

Figure 5-5 shows a bit sequential circuit which computes az +b. The
multiplication of @ and z dominates the hardware. The first row of full adders
implement a multiplier which takes two inputs. The first input is a vector
representing z and the second is a bit Secjuential input e, which represents the
first coefficient of the polynomiél P. In general, e, comes from a previous

module as 1s explained above. The product comes out from the first adder, one

bit every clock period, starting with the least significant bit.

This multiplier has as many adders as the number of significant bits of z
(which henceforth will ‘be referred to as the multiplicand), and can process an

arbitrarily long multiplier.

Let us assume thiat both the multiplief and the multiplicand are numbers
“represented in two’s compliment using v bits. For correct multipli.cation of
negative numbers, the operands ‘have to be sign.extended to as many bits as
the number significant bits of the product.  This 'will' almost double the
hardware complexity. of the multiplier, since the number of full adders are
deter.mined by the number of bits -of the mu]tiplicaﬁd, z. However, since z .is |
known 1in édvance, its sign can be used to derive the (;ornpliment of the product

as it 'comp‘uted one  bit every clock "period, removing the necessity °of
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output
bits

Figure 5-5: A bit-sequential processor for the
| “computation of first degree polynomials
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accomodating a negative multiplicand. This solution cuts the number of adders -

in half. The multiplicand, a:,'is originall‘y represented in v bits, however, since
only the absolute value .of z 1s used, we need only v—1 bits to represent z and
therefore, v—1 adders. Th.e multiplier has v significant bits, thus, the product
has 2v—-1 significant bits. Since negative operands need to be sign extended to
as many bits as the number of significant bits in the product, the 'multiplier
must be sign extended to 2v—1 bits. The previous solution can not be used to
avold sign extending the multiplier, since its sign will not be known until »
clocks would have elapsed. Extending the multiplier does not incur any
additional hardware, but i1t causes the multiplication to require twice as many

clock periods.

Since inverting the sign of a binary number in two’s compliment can be
done by complimenting each bit and adding one, the sign bit of z 1s used to
determine whether to compliment the product bits as they come out of the
multiplier; this is accomplisned by XORing the product bit with the sign‘bit of
z. If the sign bit of z 1s 1, the product must also be incremented. This can
be done in an additional full adder after the XOR gate. Fortunately, the last
adder serves another purpose as well. If the sign of z is used to set (or reset)

the carry Flip-flop .of the last adder, this full adder is quite sufficient to add b,

the second coefficient of the polynomial, to the product ar. The second -

coefficient 1s input bit-sequentially delayed one clock period relative to the first
bit of the first coefficient. In order to synchronize a. and b, the second
coefficient b is latched. The input & must be sign extended to 2v-1 bits to be

compatible with the product az. The output of the last adder is the two’s

P
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compliment binary representation of az+b expressed in 2v bits coming one at a

clock period.
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Table 5-1:

Adder

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

0000

0000
0000

0000
0000
0000
0000
0111
0100
0110
0111
0000

‘§%11
0001

0000
0000
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A simulation of the module P, with x=7, a=-8,
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Po
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b=-8 and v=4.
Output
O
O
o) First bit of output
O
O
O
0O
(o)
1
1 Last bit of output
1
1
O

Since this multiplier will be used as a module in a pipelined circuit, ‘it is

important to determine the timing relationships between the input and the

output.

Let the clock period when the the first bit of a enters the circuit be a

reference point in time. The circuit timing can be -analysed by referring all .

other occurances in time as an offset to that period. The first bit of the

polynomial comes out at an offset of 2 and the last at an offlse‘t"'()f_’f‘z:\/vtl.

In order not to let the number of bits grow geometrically, the precision of

i

the output has to be limited to v bits. Thus, the least significant v bits of the

output representing az+b must be truncated, so only v bits are used and fed to

)

the next and identical module. Let the circuit which produces such an:output
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"be designated as module P.. Notice that if the output of a module is to be

used as an input to another module, the result must be treated as 1if it is the
first coefficient of the next first degree polynomial to be evaluated, and so it

must be sign extended from v to 2v—1 bits.

Figure 5-6 shows a pipeline connecting several P, modules. ~The same
figure also shows the timing relatidnships between various signals. It may be
observed that the output of the second module starts coming at a time when
the first module is available for another computation. Thus, a pipeline of more

than two P, modules is redundant. A pipeline of two P, modules can be used

‘to evaluate polynomials of an arbitrary degree ioy feeding back its output to its

input a certain number of times.  Actually, a controller can be used to
determine the necessary number of feedback instances around the pipeline,

depending on the degree of the polynomial which is to be evaluated.

A module composed of two P, modules computés a second degree
polynomial az’+bz+c without feedback. Such a “P,” module receives four
. :

inputs; a vector representing z, and three bit-sequential inputs representing ‘a, b

and ¢. The inputs a and b are synchronous, while ¢ is delayed v+2 clock

periods.

As is explained in the previous section, only P, modules are enough to
implement statically recusive evaluation of polynomials. = Thus, the above
observation shows that only two P, modules are needed to implement the P _;

modules for any value of r by employing proper feedback.

3




NY: @

TSE

(?"‘1 s 3\7-1)

R | | Figure 5-6: A pipe containing segments of P, modules. .
The two-tuple numbers shows the time when the first and
last bits of different modules are available.
The module “TSE” truncates the 2v—1
bit result to most significant v bits and
sign extends it to 2v—1 bits.
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Chapter 6 = -
CONCLUSION

This thesis discusses the importance of partitioning in thg development of
parallel algorithms using recursive doubling. It 1is shown that partitioining a
problem into two equal halfs is not optimal except under certain conditions. A
model to study the complexity of a parallel algorithm using recursive doubling

1s developed and used to study the effects of various partitioning schemes.

Since partitioining introduces overhead whose exact form depends on the
nature€ of the problem, the model could not be studied in complete generality.

This thesis considers important classes of overhead, namely constant overhead

and variable logarithmic overhead. These two cases cover a large segment of

practical problems.

In the case of constant overhead, expressions are developed to ‘describe the
performance, and the partition range which give optimal performace is specified.
It 1s shown that partitioning-by-half is optimal only when there is no

partitioning overhead and the sizes of the subproblems add up to the size of the

L]

original problem.

The results of the constant overhead model are used to develop a parallel
algorithm for the ev-al_ixation of polynomials. It is shown that decomposing a
polynomial according to the golden numbers (Fibonacci numbers) yields an

optimal partitioning scheme with the order of complexity equal to O(clog(n)).




————n,

In the case of variable overhead, a model containing a logarithmic term in

the form of k[log(r)] + A, where k and A are constant integers and X > k > 0, is

used since 1t is typical of 'parallelh algorithms for matrix manipulation. In

particular, triangular matrix inversion is shown to conform to such a model. It
Js shown that in this case, partitioning a problem into two equal (or near
equal) problems is optimal. An exact expression 1s developed to give the

computational complexity of the algorithm in this general case. It is shown

that the optimal computational complexity is of the order of log*(n).

Some possible applications of parallel algorithms include high throughput
dedicated processors. In chapter 5, parallel processors dedicated to polynomial
evaluation are developed. A parallel bit-sequential processor pipelined at the bit

level 1s shown and its performance is analysed.

The results developed 1n this thesis have significant applicability.
Neverthelss, because of the problem dependency of partitioning, only few types

of problems are described. However, it should be stressed that the méthodology

used is quite general and is applicable to many dz'fferen.t classes of problems. )/n

addition, it is possible to accomadate operations  requiring different execution

times without any change in the model.

£

This work. assumes that algorithms are targeted towards computers having
as many processors as required. As an extension of this work, 1t would be
useful to develop a model to relate the performance of a parallel algorithm to

the number of available processors as well as to the\partitioning scheme.
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