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Abstract

The concept of Built-In Self Test (BIST) is to have the system test itself and provide a
"g0/nogo” indication. Having a memory system test itself is becoming increasingly
important, because memory systems are now embedded within a chip, where the
memory system may not be directly controllable or observable at the chip pins. BIST
schemes for memory systems are critically analyzed in this study by assessing fault
models, memory system functional faults, test patterns/algorithms, and the various
related concepts given in the literature. Characteristics of memory test algorithms are
given, compared to each other with respect to their fault coverage, and analyzed for
their applicability to BIST. The evaluation of different BIST schemes is based on the
following: area overhead, fault coverage, test complexity, performance degradation,
and the testing of the BIST circuitry. A novel BIST scheme for memory systems is also

explored. In addition, for large memory testing and complex algorithms, parallel
techniques are discussed. Finally, a guide to help design components of BIST for

memory systems is presented.




1. Introduction

Built-In Self Test (BIST) provides a system with the capability of testing itself and gives
a "go/nogo” indication. To introduce BIST for memory systems, the following are
discussed: architecture and operation of memory systems, overview of testing, and

BIST.

1.1 Memory Systems

A memory system consists of the following: a memory address register (MAR), address
decoders, an array of memory cells, read/write logic including sense amplifiers, and a
memory data register (MDR). See Figure 1.1. The organization of the memory system is
N words, each b bits wide. When b is 1, the memory system is considered bit organized;
otherwise the memory system is said to be word organized. In a bit organized memory
system, each bit can be addressed individually, as compared to a word organized
memory system, where all the bits in a particular word have the same address.

=

f"u;urc 1.1: Overviewofa Memory System: N words by b bits

A memory system operates as follows: a read operation is performed by loading an
address into the MAR, setting the read flag, and the resulting word is returned via the
MIR; a write operation is accomplished by loading an address into the MAR, loading the
MIR with data, and setting the write flag. To understand how the hardware works, the
operation of a static CMOS memory system will be reviewed [Mukherjee '86).




A six-transistor static CMOS memory roll and sense amplifier are shown in Figure 1.2.
The memory cell is a bistable circuit in which the state of conduction or lack of
conduction of a transistor determines the contents of the stored information. Fach
memory cell contains two pairs of pmos and nmos transistors which are cruss coupled.
Each transistor pair is such that only one transistor, either the pmos or nmos, 1S closed
at a time. Since this is a bistable circuit, when one side contains a logical 0, by having
the pmos open and the nmos closed, the other side would contain a logical 1 by having
the pmos closed and the nmos open. For example, if the nmos transistor on the left side
is closed and the pmos transistor on the right side is closed, this would cause a 0(1) to be
put on the bit line B'(B) when that row is selected. In order to have a large number of
cells on a chip, each memory cell is laid out as small as possible. Since the memory cell
is small, it can only sink current, not source it, and therefore requires a sense
amplifier to sense the information stored and drive the bit lines (B'. B).
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- Figure 1.2: Six-transistor Static CMOS Memory Cell and Sense Amp

The read operation of a memory cell is as follows: the sense signal is set low to allow the
sense amplifier to float, and simultaneously the precharge signal is set low to
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precharge the bit lines. (Note, the precharge trsnsistors are made large to allow the bit
lines to charge up quickly). After precharging, the precharge signal is set high,
thereby making the bit lines behave like capacitors. The row is then selected.
Depending on the state of the memory cell, the current in one of the bit liv.es sinks
through the cell and turns on one of the pmos transistors in the sense amplifier (this
reinforces the state of the high bit line); the sense line is then set high, which
stabilizes the state of the sense amplifier. (The transistors in the sense amplifier are
larger than those in the memory cell, and have the capability to drive the bit lines).
The data on the bit lines are then selected through the column select, as will be
described below.

The write operation is as follows (refer to Figure 1.3). The bit lines (B' B) and the i/o
lines (L'.L) are precharged by setting the precharge line low; after precharging. the
precharge signal is set high which makes the bit lines and the i/0 lines behave like
capacitors. Next, the R/W' and CE' (chip enable) signals are set low to enable the input
transmission gates (T1,72); thereupon, one of the charged i/o lines discharges via one
of the transmission gates (depending on the input data), leaving one line high and the
other one low. Next, the column decoder connects one set of bit lines to the i/o lines,

which discharges one of the bit lines through the same transmission gate. Then, the
sense line of the sense amplifier is set high to help stabilize and drive the bit lines, as

discussed previously. Finally, the row decoder selects a particular row, and the data on
the bit lines is then written into the memory cell by forcing the bistable circuit to the

appropriate state.

For a read oparation, the R/W' line is set high and the CE' (chip enable) signal is set
low. This disables the input transmission gates (T1,T2) and enables the output
transmission gate (T3). For a write operation, the R/W' and CE' signals are set low to
enable the input transmission gates and disable the output transmission gate. This
control logic, the i/0 lines, and the sense amplifiers will be referred to as rzad/write
logic. Note: when reading or writing, all the memory cells in a particular row are
selected at once, but only the bit lines of a particular memory cell are connected to the
input/output data lines via the selected column decoder line.

"
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ﬁgure 1.3: Organization of a Static RAM

In almost all applications, word organized memories are used. However, word organized
memories at the circuit-board level can be formed by interconnecting bit organized
memory chips. See Figure 1.4, where msb stands for most significant bit and cs for chip

select.

Functional testing of a memory system, for the most part, can be treated the same for
both a board-levei memory system and a memory system within a chip. This is because
- the operation of the memories is the same: select an address and read(write) a word
from(into) memory. There are however, some distinctions that can bé made. For
example, in Figure 1.4, since this system is word organized with individual chips, it is
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possible to test eight bits in parallel without concern for coupling between bits in the
same word. In contrast, if this word organized memory was within a chip, then it
makes sense to examine possible coupling within a word, since this type of fault is
more likely to occur due to the layout and density of the cell array.

] 2 8
MAR Address Data

b N | 256k jout | 256K 256K Low Order

«1Bit 1 Bit s s % 1Bit Mernory
) RE
® CS 1 CS CS

N | _
256K 256K 256K ] High Qrder
x1Bit x 1Bit AL x 1Bt 1 Memoary

oo

"\ D, 165 1C5 CS

MDR

Figure 1.4: 512K x 8 Bit Memory System

In this report, the memory system is assumed to be within a single chip, so that areas of
concern such as physical layout of the cell array, decoders, etc., will be addressed. Also,
it will be quite easy to apply any of the functional chip-level testing schemes to the
board level. Keep in mind that it may be cost effective to implement some built-in
functional testing schemes at the board or module level, rather than at the chip level
(due to extra pins, area overhead, etc. required otherwise).

Abr Bttt b etimcsa sy




1.2 Overview of Testing

Testing circuits consists of three parts: generating test vectors, applying the vectors to
the circuit under test (CUT), and comparing the results. A simple block diagram is
shown below:

............................. 7777777777 7]
Pattern : \/Compareg
,Generahon;: fReﬁul*s 4

ooooooooooooooo
oooooooooooooo
---------------

V////A/H

Figure 1.5: Block Diagram of Testing

The set of test vectors is usually generated by expensive automatic test equipment (ATE)
and is applied to the CUT. The results of the input test vectors are then compared to a set
of correct vectors that is usually stored in the ATE. The generation of the test vectors as
well as handling the massive amounts of output data make testing of VLSI chips
increasingly complicated, time consuming, and very costly. As the density of memory
chips increases, testing them will be a major cost in the overall development.
Therefore, new methods need to be developed and implemented. Currently, there is a
trend to couple design together with testing, and this has led to Built-In Self Test (BIST).

1.3 Built-In Self Test (BIST)

A system containing BIST can test itself and provide a "go/nogo" indication. This is
typically done at the functional level. Most BIST techniques test offline: the system is
placed in a self-test mode, and usually a test pattern is generated internally and then

either compared to correct results or a signature analysis method is used. In either
case, the system gives a go/nogo indication. Another type of BIST is called concurrent
testing. This involves the capability of checking the circuit simultaneously with the
normal operation of the s;fstem Should a non-correctible error occur, the user wouid
be notified. The major advantage of the concurrent checking method i is the ability to
detect intermittent fauits. For built-in self test of memories, only offline checking will




be discussod here.

There are three components of BIST for memory systems: address generation, input
data generation, and evaluation circuitry. The evaluation circuitry can be divided into
two groups: direct comparison and data compression. Direct comparison is
- accomplished by comparing expected data to the actual output data. Data compression
techniques use either a linear feedback shift register (LFSR) or a multiple input
signature register (MISR) to compress the output responses into a signature via
polynomial division (refer to [Abraham '85) for more details on signature analysis).
See Figure 16. LFSR and MISR work similarly: an initial seed value is placed into the
register, the testing begins and data compression is performed on the output data. After
the test, the resulting signature left in the register is compared to a known signature
for the fault-free system.
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Figure 1.6a: Linear Feedback Shift Register Figure 1.6b: Multiple Input Signature Register

Figure 1.6: Data Compression Techniques

Both iethods, direct comparison and data compression, have advantages and

disadvantages. Direct comparison gives better fault coverage, because there is no
aliasing which is inherent in data compression methods. Also there is no need to

initialize the signaiure register with a seed value, and the signature does not have to be
shifted out and compared to results that are stored elsewhere. Data compression
techniques, however, have the advantage of testing themselves during the data
compression. This is important, since any extra BIST circuitry that is added must also be
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testod. A momory system with BIST utilizing direct comparison is shown in Figure 1.7a,
and Figure 1.7b shows a memory system using data compression.

....................... N
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Figure 1.7a: Memory BIST using Direct Comparison
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f"tqun 1.7b: Memory BIST Using Data Compression

Both approaches require some means for address generation and in put data generation.
The direct comparison method also must be such that the circuitry needed to generate
the expected output data is as simple as possible. The approach that should be used will
depend on the test algorithm implemented. Ultimately, the assessment of different BIST
schemes should be based on the following: area overhead, fault coverage, test time,
performance degradation, and testing of the BIST circuitry.




2. Memory Testing

In order to study memory testing, fault models, memory system functional faults, and
test patterns/algorithms need to be discussed. In addition, the following terms need to

be defined with respect to memery testing. Bit organized memories allow access to each

individual cell, which makes it easier to test for cell interaction: word organized

memories allow access to a word at a time, which makes testing of coupled cells within a

word more difficult since most algorithms only write a word of all 0's or all 1's. Test
complexity or test time is given in terms of the number of addressable entities or words

in a memory system (for bit organized, the word length is 1). A pseudo-random pattern

is a pattern which appears random, but can be reproduced. (In using a LFSR as an
address generator, for example, all the addresses of the memory are generated
exhaustively, but in a pseudo-random fashion). A memory system, which under some
faulty condition reads more than one cell with different values, results in the ANDing
(ORing) of the selected cells is considered AND type (OR type). Address Scrambling is
when the logical addresses do not map directly to the physical addresses.

2.1 Fault Models

Fault models are logical representations of faults due to physical failures. The common
fault models used to test the functionality of a memory system (listed in the order of
increasing complexity) are the following: bridging faults, stuck-at faults, hold faults,

destructive read faults, transition faults, coupling faults, and pattern-sensitivity faults
(PSF).

Bridgin g Faults Model

There are two types of bridging faults: AND type bridging and OR type bridging. AND
type bridging results in dominant 0 while OR type bridging results in dominant 1. For
example, if two leads are shoried (a.b). in AND type bridging the value out would be a 0,
given that one of the leads wasa 0. In OR type bridging, if one of the lcads isa 1, then
the value out would be a 1. Figure 2.1 shows an AND type bridging fault.

10




Figure 2.1: AND Type Bridging Fault

Stuck-at Faults Model

The stuck-at fault model assumes that one or more logic values in a memory system
(including the address registers, decoders, etc.) cannot be changed. For example, one

or more memory cells could be stuck at eithera 1ora0.

Hold Faults Model "

A memory cell with a hold fault cannot retain either a one or zero state after some
amount of time.

Destructive Read Faults Model *

Data in a memory cell is destroyed following a read operation .

Transition Faults Mode! "

A memory cell fails to undergo a 0->1 or a 1->0 transition.

* Distinctive to memory cell array faults

11




Coupled Faults Model "

A pair of memory cells (i,j) is coupled if a writing a value into one cell of the pair
forces the logical state of the other cell. For example, if a 1 is written into cell i which
forces cell j to some logical state, say to a 0, then cell i and cell j are said to be coupled.
This does not necessarily imply that a similar transition in cell j will influence cell i in
a similar manner.

Pattern-Sensitivity Faults (PSF) Model g

The pattern-sensitivity fault model states that a memory cell is dependent on certain
patterns of zeros. ones. and/or transitions in the other cells of the memory. This model
also includes any failure of a read/write operation involving one cell caused by
certain patterns of ones or zeros in the other cells of memory. Note: Coupled faults are
a special case of PSF. Normally, for patten-sensitivity faults, one need only be
concerned with either the physically adjacent or surrounding cells due to the nature
of the physical faults. Figure 2.2 shows a diagram of adjacent and surrounding cells.

Cells 1-9 surround cell X
Cells 2, 4, 6, 8 are adjacent to cell X

Figure 2.2: Adjacent and Surrounding Cells

* Distinctive to memory cell array faults

12




2.2 Memory System Functional Faults

As was discussed earlier, a memory system consists of the following: a memory address
register (MAR), address decoders, array of memory cells, read/write logic, and a
memory data register (MDR). Refer back to Figure 1.1. The approach here will be to
examine how to test each component of the memory system and to note the equivalence
between the component faults and the memory cell array faults. The fault coverage of
each algorithm will then be discussed in Test Patterns/Algorithms.

Memory Address Register (MAR)

To test the functionality of the Memory Address Register (MAR), one need only verify
that all addresses are accessed. This is because stuck-at or bridging faults in the MAR
would cause some address or addresses to be inaccessible. One common approach for
verifying that all addresses are accessed is to leave a “trail” of 1's or 0's in each address
and then to verify that the trail was left. A trail is made by initializing the memory to
some value (say 0), then for all addresses: a) checking that we haven't already been
there by reading that value (0), and b) leaving some other value (1) behind as a trail
This method verifies that cach address exists and is unique, and it is used in several
march test patterns.

Decoders

To test the functionality of the decoders, one must detect stuck-at faults, accessing the
wrong cell or cells, and certain coupling faults in the memory cell array. With stuck-at
or bridging faults, the decoders will either access no cells (appear as memory cell
stuck-at fault), will access the wrong cell or cells (covered in MAR faults), or it will
access the correct cell as well as another cell or cells (appear as coupling faults in the
memory cell array). In the case of multiple accessing including the correct cell, two or
more decoder lines would be activated causing the same value to be written into more
than one cell (this is equivalent to coupling of cells with Ai being loaded with some
value V and Aj also being loaded with the same value V). In addition, this type of

13




failure also implies that if Ai is coupled to Aj, then Aj is coupled to Ai. Note, when a read
operation involves the selection of two cells containing different values, the result will

oither be a logical 1 or 0 depending if the memory is AND type or OR ‘ype.

Read/Write Logic (including sense-amplifiers)

To test the functionality of the read/write logic, one must detect stuck-at faults and
certain coupling faults in the memory cell array. Stuck-at faults in the read/write
logic will appear as stuck-at faults in the memory cell array. For bit organized
memories, bridging faults in the read/write logic will appear as coupling in the
memory cell array with the coupled cells being read or written the same value V. Note,
the case where a read operation involves the selection of two cells containing different
values, the result will either be a logical 1 or 0 dependir.g if the memory is AND type or
OR type. For word organized memories, bridging faults can either appear as coupling
within a word or coupling between words of the memory array. In addition, this type of
failure for either organization implies that if Ai is coupled to Aj, then Aj is coupled to Ai
with the same value being written into both cells.

Memory Data Register (MDR)

To test the functionality of the MDR, one must detect stuck-at faults and certain
coupling faults in the memory cell array. Stuck-at faults in the MDR will appear as
stuck-at faults in the memory cell array, and bridging faults in the MDR will appear as
coupling within a word of the memory cell array (for word organized). In addition, this
type of failure also implies that if Ai is coupled to Aj, then Aj is coupled to Ai, with the
same value being written into both cells.

Memory Cell Array

To test the functionality of the memory cell array, one must detect stuck-at, bridging.
transition, hold, destructive read, coupling, and pattern-sensitive faults. Stuck-at faults

14




been stored. Bridging faults can be modelled as coupling faults in the following way: Ai
is coupled to Aj also implies that Aj is coupled to Ai, and the same value is written into
both cells. Transition faults can be detected by forcing each cell to undergo both a 0->1
and a 1->0 transition and verifying each transition. Hold faults can be detected by
writing a 6 and a | into each cell, waiting some time h, and then verifying thata 0 and
8 | remain. Destructive read faults can be detected by reading each cell twice while
each cell contains both a 0 and a 1. Coupling faults can be detected by writing all the
combinations of a2 0 and a 1 into each pair of celis, and reading after each write
operation. Pattern-sensitive faulis can be detected by writing patterns into the
physical neighborhood (either adjacent or surrounding) of a target cell. and then
reading the cells of that neighborhood. Adjacent pattern-sensitive faults will be
referred to as APSFs and surrounding pattern-sensitive faults as SPSFs.

As can be seen, to detect all the possible faults within a memory system, one need only
cover the memory address register faults and the memory cell array faults. Obviously,
to test all the possible memory cell array failures is unrealistic since exhaustively
testing a memory requires 2" operations (where n s the total number of bits in the
memory). Therefore, a number of algorithms have been developed to test a memory
system based on a fault model or a combination of fault models. Most of the algorithms
described in the literaturs do not cover pallern-sensitive faults. A comparison of these
lest patterns/aigorithms is based on the coverage of the functional faults within a
memory system (See Test Patterns/Algorithms).

<
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2.3 Test Patterns/Algorithms

There are many test patterns available for testing RAMs. Each of these patterns offer
tradeoffs between test complexity and fault coverage. A memory fault simulator was
developed to help analyze the fault coverage of the algorithms. See Appendix A. The
following are some of the RAM test patterns (given in the order of increasing
complexity): Pseudo-random, MSCAN, Checkerboard, SMTP, Modified Checkerboard,

Marchl, March2, March3, March4, Marinescu, Nair et al.. GALPROCO, Walking 1's and
0's, and GALPAT. To be consistent in describing the different algorithms, unless

otherwise stated the following convention will be used:

Write

Read

Wordof all 0's

Wordof all I's

Word of mixed 0'sand 1's
Complemented X

b4 b — © W

For describing coupling faults, the following notation wll be used: Cell Ai coupled to
cell Aj implies that when cell Ai is loaded with some value V (Ai->V), then cell Aj will be
forced to some value X (Aj->X). The asteriks, in the discussion below, mark coupling
with the same value (ie; X=V).

Also for consistency, the fault coverage will be in terms of all the possible faults within
a memory system (See 2.2 Memory System Functional Fauits). Hold faults will not be
discussed explicitly since each algorithm can be modified to delay reading some amount
of time. The summary of fault coverage will be in terms of the component faults within
a bit organized memory system since the coverage of coupling faults for word
organized memories is the same for ali test algorithms. The summary of fault coverage
can easily be extended to word organized memories. A description of each of the
algorithms follow: |
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MSCAN (Memory Scan): O(4n) [Breuer '76) [Abadir '83)

Algorithm:

For all addresses in ascending order: WO, R0O. W1_R1

MAR faults are not detected.

Memory Address Register (MAR) Failure

Memory Cell Failure

Stuck-at faults are detected because both a 0 and a 1 are written into all addresses

and verified.

Transition faults are not completely detected since each cell fails to undergo a 1->0

transition .

Destructive Read faults are not detected.

Coupled Cells -

Ai -]
Ai ->]
Ai->0
Ai -0

Ai ->1
Ai -]
Ai -0
A1 -0

Al <Aj
Ai < Aj
Ai < Aj
Ai < Aj

Ai> Aj
Ai> Aj
Ai> Aj
Ai> Aj

Aiand Aj

in different words

Not Detected
Not Detected
Not Detected
Not Detected

Not Detected
Not Detected
Not Detected
Not Detected
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Aiand Aj
within a word

Not Detected
Detected
Not Detected
Detected

Not Detected
Detected
Not Detected
Detected




Summary of Fault Coverage

Memory Address Reg : Not Detected

Decoders . Stuck-at-0

Read/Write Logic  : Stuck-at ~ (/>
Memory Data Reg . Stuck-at

Memory Cell Array : Stuck-at

Checkerboard: O(4n) [Sun '84) [Breuer '76)

1. For all addresses; write a checkerboard’ pattern (in physical memory)
2. For all addresses; read checkerboard pattern

3. For ali addresses; write a complemented checkerboard pattern

4. For all addresses; read complemented checkerboard pattern

* A checkerboard pattern consists of alternating 0's and 1's in odd rows and the
complement (alternate 1's and 0's) in the even rows.

Memory Address Register (MAR) Failure

Stuck-at faults in the MAR are not detected by the checkerboard pattern. For
example, if the most significant bit of the MAR is stuck-at 0, only the low order
addresses are accessed, but these are not detected due to the symmetry of the
checkerboard pattern. MAR bridging faults are detected.

Memory Cell Failure

Stuck-at faults are detected. In step 1, a 0 and 1 is written into every other address

and verified in step 2. In step 3. a 1 and 0 is written into every other address and
verified in step 4.
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Transition faults are not necessarily detected since each cell does not undergo both

a 0->1 and a 1-50 transition.

Destructive Read faults are no»t detected.

Coupled Cells -

*a) Ai-l Aj->l  Af <Aj
b) Ai-sl Aj->0  AicAj

*c) Ai-0 Aj-0  Ai<Aj
d) Ai-0 Aj->l A <Aj

*e) Ai->l Aj-l  Ai>Aj
f) Ai->1 Aj->0  Ai> Aj

*g) Ai-0 Aj-0 A1> Aj
h) Ai-0 Aj->1  Ai>Aj
*  For adjacent cells

** For surrounding cells
"*" Assuming the all 0 and 1 words are written/read to obtain the
checkerboard pattern. Depends on physical layout of memory.

Summary of Fault Coverage

Memory Address Reg : Bridging

Deceders

Read/Write Logic
Memory Data Reg
Memory Cell Array

Aiand Aj
in different words

Not Detected
Not Detected
Not Detected
Not Detected

Detected in 2° 4'
Detected in 2* 4**
Detected in 2° ,4*
Detected in 2" 4**

. Stuck-at & Bridging
: Stuck-at & Bridging

. Stuck-at

Aiand Aj
within a word***

Not Detected
Detected in 2.4
Not Detected
Detected in 2.4

Not Detected
Detected in 2.4
Not Detected

Detected in 2.4

;' Stuck-at, Bridging, Minimal Coupling,
Some APSFs, Some SPSFs |
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SMTP (Simple March Test Pattern): Q(3n) [Sun '8¢}

1. Initialize memory to 0

2. For all addresses in ascending order; RO, W1
3. For all addresses in ascending order; R1, W0

Memory Address Register (MAR) Failure

MAR faults are detected. Step 1 will set all addresses to 0's, and step 2 will verify the
MAR by reading the 0's and leaving a trail of 1's,

Memory Cell Failure

Stuck-at faults are detected. In step 1, 2 0 is written into all addresses and verified in
step 2. In step 2,a 1 iswritten into all addresses and verified in step 3.

Transition faults are not cempeletly detected since although each cell undergoes
both a (->1 and a 1->0 transition (steps 1-3), the 1->0 transition is not verified.

Destructive Read faults are not detected.

Coupled Cells -

*a) Ai-l Aj-l  Ai<Aj
b) Ai-1 Aj-0  Ai<Aj
*¢) Ai-0 Aj-0  Ai <Aj
d) Ai-0 Aj-1  Aic<Aj

*e) Ai-1 Aj-l  Ai> Aj
f) Ai->1 Aj-0  Ai> Aj
*g) Ai-0 Aj->0  Ai>Aj
h) Ai-0 Aj-1  Ai>Aj

Aiand Aj

in different words

Detected in step 2
Not Detected
Detected in step 3
Not Detected

Not Detected
Detected in step 3
Not Detected
Detected in step 2
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Aiand Aj
within a word

Not Detected
Detected in step 3
Not Detected
Detected in step 2

Not Detected
Detected in step 3
Not Detected
Detected in step 2



Summary of Fault Coverage

Memory Address Reg : Stuck-at & Bridging

Decoders : Stuck-at & Bridging

Read/Write Logic : Stuck-at & Bridging

Memory Data Reg . Stuck-at

Memory Cell Array : Stuck-at, Bridging, Some Traasition,
Minimal coupling

Modified Checkerboard: ((8q) [Jain '86)

In this algorithm, a checkerboard pattern is written into physical memory such
that the bit lines (B', B) of adjacent memory cells contain a checkerboard pattern.
The approach is to write the all-1 or all-0 word into the appropriate addresses to
achieve this pattern, and therefore requires knowledge of the physcial layout. (The
architecture of this memory system is described in section 3.2).

1. For all addresses in ascending order
1A. If address = (1,2,3,4),(9,10,11,12),... Then WO
Else if address = (5,6,7,8),(13,14,15,16),... Then W1
1B. Read address (either RO or R1 depending on address)
2. For all addresses in ascending order
2A. Read address
2B. If address = (1,2,3,4),(9,10,11,12),... Then W1
Else if address = (5,6,7,8),(13,14,15,16),... Then W0
3. For all addresses in ascending order
3A. Read address
3B. Read addresses descending order
4. For all addresses in descending order
4A. If address=(1.2.3.4).(9,10,11,12).... Then WO
Else if address = (5,6,7.8),(13,14,15,16),... Then W1
4B. Read address
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Memory Address Register (MAR) Failure

Stuck-at faults in the MAR are not detected due to the symmetry of the
checkerboard pattern. MAR bridging faults are detected.

Memory Cell Failure

Stuck-at faults are detected since both a 0 and a 1 are written into all addresses and

verified.

Transition favits are detected since each cell undergoes both a 0->1 and a 1->0
transition (steps 1-4 ), each followed by a read operation.

Destructive Read faults are detected since each cell is read twice after containing
botha0andal.

Coupled Cells -

++

Ai -]
Ai -]
Ai-0
Ai -0

Ai ->1
A1 -1
Ai -0
Ai -

Aj -1
Aj -0
Aj->0
Aj -1

Ai < Aj
Ai < Aj
Ai < Aj
Ai CAj

Ai> Aj
Ai> Aj
Ai)> Aj
A1 > Aj

-

Aiand Aj

in different words

Not Detected
Not Detected
Not Detected
Not Detected

Detected 2-4"
Detected 2-4**
Detected 2-4*
Detected 2-4**

Aiand Aj
within a word***

Not Detected
Detected in 1,2
Not Detected
Detected in 1,2

Not Detected
Detected in 1,2
Not Detected
Detected in 1,2

For adjacent and surrounding cells but in different rows
For cells within the same row
""" Assuming the all 0 and 1 words are written/read to obtain the

checkerboard pattern. Depends on physical layout of memory.
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Summary of Fault Coverage

Memory Address Reg : Bridging

Decoders . Stuck-at & Bridging

Read/Write Logic . Stuck-at & Bridging

Memory Data Reg . Stuck-at

Memory Cell Array : Stuck-at. Bridging. min Coupling. Destructive Read,
Transition, Some APSFs, Some SPSFs

Macch 1: O(9n) (Green '86)

of 1. Initialize memory to 0
2. For all addresses in ascending order; RO, W1
3. For all addresses in ascending order; R1, W0

4 For all addresses in descending order; RO, W1
). For all addresses in descending order; R1, W0

Memory Address Register (MAR) Failure

Steps 1-3 are idezitical to the SMTP; therefore March 1 will detect any MAR failures.

Memory Cell Failure
Stuck-at faults are detected since steps 1-3 are identical to SMTP.

Transition faults are detected since each cell undergoes both a 0->1 and a 1-)0
transition (steps 1-4), each followed by a read operation.

Destructive Read faults are not detected. -
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Coupled Cells -

*a)
b)
*c)
d)

*e)
f)

h)

Ai -1
Ai -1
A1 ->0
Ai >0

Ai -]
Ai -1
Ai -0
Ai -0

Summary of Fault Coverage

Ai < Aj
Ai < Aj
Ai < Aj
Al < Aj

Al > Aj
Ai> Aj
Ai> Aj
Ai> Aj

Ai and Aj

in different words

Detected in step 2
Detected in step 5
Detected in step 3
Not Detected

Detected in step 4
Detected in step 3
Detected in step 5

Detected in step 2

Memory Address Reg : Stuck-at & Bridging

Decoders
Read/Write Logic
Memory Data Reg

Memory Cell Array

March 2: O(11n) [Green '86)

1. Initialize memory to 0
2. For all addresses in ascending order; RO

: Stuck-at & Bridging
. Stuck-at & Bridging

. Stuck-at

Ai and Aj

within a word

Not Detected
Detected in step 3
Not Detected
Detected in step 2

Not Detected
Detected in step 3
Not Detected
Detected in step 2

: Stuck-at, Bridging, Transition, most Coupling

4. For all addresses in ascending order; R1

3. For all addresses in ascending order; RO, W1

5. For all addresses in ascending order; R1, WO
6. For a!l addresses in descending order; RO, W1
7. For all addresses in descending order: R1. WO
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Memory Address Register (MAR) Failure

MAR failures are detected because step 3 will leave a trail of 1's, and step 5 will

verify the trail of 1's.

Memory Cell Failure

Stuck-at faults are detected. In step 1, a 0 is written into all addresses and verified in
step 2. In step 3, a1 iswritten into all addresses and verified in step 4.

Transition faults are detected since each cell undergoes both a 0->1 and 1-0
transition (steps 1,3,5,6), each followed by a read operation.

Destructive Read faults are detected since each cell is read twice while containing

both a 0 anda 1 (steps 2,3.4,5).

Coupled Cells -

Ai -1
Ai -]
Ai -0
A1 -0

Ai -]
Ai -1
Ai -0
Ai-0

Aj -1
Aj -0
Aj -0
Aj -1

Aj -l
Aj -0
Aj -0
Aj -1

Ai < Aj
Ai < Aj
Al < Aj
A1 < Aj

Ai> Aj
Ai> Aj
Ai> Aj
Ai> Aj

Al and Aj

in different words

Detected in step 3
Detected in step 7
Detected in step 5
Not Detected

Detected in step 6
Detected in step 4
Detected in step 7
Detected in step 2

23

Aiand Aj
within a word

Not Detected
Detected in step 4
Not Detected
Detected in step 2

Not Detected
Detected in step 4
Not Detected
Detected in step 2




Summary of Fault Coverage

Memory Address Reg : Stuck-at & Bridging

Decoders . Stuck-at & Bridging

Read/Write Logic . Stuck-at & Bridging

Memory Data Reg . Stuck-at

Memory Cell Array : Stuck-at, Bridging, Destructive Read, Transition,
Most Coupling

March 3: O(14n) [Breuer '76]

. Initialize memory to 0

. For all addresses in ascending order; R0, W1, Rl

. For all addresses in descending order; R1. WO. R0
Initialize memory to 1

For all addresses in ascending order; R1, WO, RO
. For all addresses in descending order; RO, W1, Rl

2aBR . BT N FCRY R

Memory Address Register (MAR) Failure

MAR faults are detected. Step 1 will set all addresses to 0. Step 2 will verify the MAR
by reading the 0's and leaving a trail of 1's.

Memory Cell Failure

Stuck-at faults are detected. In step 1, a 0 is written into all addresses and verified in
step 2. In step 2, a 1 is written into all addresses and then verified.

Transition faults are detected since each cell undergoes both a 0->1 and a 1->0
transition (steps 1-3), each followed by a read operation.

Destructive Read faults are detected since each cell is read twice while containing
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both a0 anda 1 (steps2.3.5.6).

Coupled Cells -

A1 -]
Ai -1
A1 -0
Ai -0

Ai -1
Ai -1
A1 ->0
Ai->0

Summary of Fault Coverage

Al <Aj
Ai < Aj
Al <Aj
Ai CAj

Ai> Aj
Ai)> Aj
Ai> Aj
Ai> Aj

Aiand Aj

in different words

Detected in step 2
Not Detected

Detected in step S
Not Detected

Detected in step 6
Detected in step 3
Detected in step 3
Detected in step 2

Memory Address Reg : Stuck-at & Bridging

Decoders
Read/Write Logic

Memory Data Reg

Memory Cell Array

March 4: O(155) [Pradham '86)

1. Initialize memory to 0
2. For all addresses in ascending order; RO, W1, W0, W1
3. For all addresses in ascending order: R1. W0, W1

4. For all addresses in descending order; R1, W0, W1 W0
5. For all addresses in descending order; RO, W1, WO

. Stuck-at & Bridging
: Stuck-at & Bridging

. Stuck-at

Ai and Aj
within a word

Not Detected
Detected in step 2
Not Detected
Detected in step 2

Not Detected
Detected in step 2
Not Detected

Detected in step 2

. Stuck-at, Bridging, Destructive Read,
Transition, Some Coupling




Memory Address Register (MAR) Failure

MAR faults are detected. Step 2 will leave a trail of 1's and step 3 will verify that the

trail of 1's was left.

Memory Cell Failure

Stuck-at faults are detected. In step 1, a 0 is written into all addresses and verified in
step 2. In step 2, a 1 is written into all addresses and verified in step 3.

Transition faults are detected since each cell undergoes both a 0->1 and a 1->0
transition (steps 1-5), each followed by a read operation.

Destructive Read faults are not detected.

Coupled Cells -

Ai -1
A1 -1
A1 -0
Ai->0

Ai -1
Ai -1
Ai -0
Ai -0

Al < Aj
Ai < Aj
Ai<Aj
Al < Aj

Ai> Aj
Ai> Aj
Ai> Aj
Ai> Aj

Aiand Aj

in different words

Detected in step 2
Detected in step 3
Detected in step 3
Detected in step 2

Detected in step 5
Detected in step 3
Detected in step 3
Detected 1n step 2
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Ai and Aj

within a word

Not Detected
Detected in step 3
Not Detected
Detected in step 2

Not Detected
Detected in step 3
Not Detected
Detected in step 2




Summary of Fault Coverage

Memecry Address Reg : Stuck-at & Bridging

Decoders . Stuck-at & Bridging

Read/Write Logic . Stuck-at & Bridging

Memory Data Reg . Stuck-at

Memory Cell Array : Stuck-at, Bridging, Transition, Coupling

Marinescu: 0(17n) [Marinescu '82] [Nicolaidis '85]

1. Initialize memory to 0

2. For all eddresses in ascending order; RO, W1, W0, W1

3. For all addresses in ascending order; R1, WO, RO, W1, R
4. For all addresses in descending order; R1, WO, W1,W0

5. For all addresses in descending order: RO, W1, WO

Memory Address Register (MAR) Failure

MAR faults are detected. Step 2 will leave a trail of 1's and step 3 will verify that the
trail of 1's was left.

Memory Cell Failure

Stuck-at faults are detected. In step 1, a 0 is written into all addresses and verified in
step 2. In step 2, a 1 is written into all addresses and verified in step 3.

Traansition faults are detected since each cell undergoes both a 0->1 and a 1-50
transition (steps 1-3), each followed by a read operation.

Destructive Read faults are not completely detected: each cell is read twice after
containing a 1, but not after containing a 0.
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Coupled Cells -

*a)
b)
*c)
d)

*e)
f)

h)

Ai -]
Ai -]
Ai -0
A1 ->0

A1 -]
Ai -]
A1 ->0
Ai -0

Summary of Fault Coverage

Af <Aj
Al < Aj
Ai < Aj
Ai < Aj

Ai> Aj
Ai> Aj
Ai > Aj
Ai > Aj

Aiand Aj

in different words

Detected in step 2
Detected in step 3
Detected in step 3
Detected in step 2

Detected in step 5
Detected in step 3
Detected in step 3
Detected in step 2

Al and Aj

within a word

Not Detected
Detected in step 3
Not Detected
Detected in step 2

Not Detected
Detected in step 3
Not Detected
Detected in step 2

Memory Address Reg : Stuck-at & Bridging

Decoders . Stuck-at & Bridging

Read/Write Logic : Stuck-at & Bridging

Memory Data Reg : Stuck-at

Memory Cell Array : Stuck-at, Bridging. Some Destructive Read.

Transition, Coupling
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Nair et al: O(30n) [Nair '78)

The algorithm is shown in the figure below:

Cell

Initialize oequence 1

e Sequence 2 Sequence 3 Sequence 4
1o Rt R R R RY Ré
2 |0 R R | R R Rt R R¢ R
3 | q Rt R R R
. R . R R? R
1| 0 R R R R N
f 0 ft R? Re
— Time
Cell | Sequence 5 Sequence 6 Reset | Sequence 7 Sequence 8
#
1 |RM Rt 1 Rt Rt
2 | RN RN R | Rit R R
3 | RY R , R+t R
| . R R | . R R -
n-1 R% R RY4 R i R R RH R
. RN RN R | R4 R4
— Time
Key
ﬁﬁ:& ) Nair, Thatte, and Abraham's Testing Procedure [Nair et al. 1978]
] ‘¥rite a 0

Figure 2.3: Nair, Thatte, and Abraham's Algorithm
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Memory Address Register (MAR) Failure
MAR faults are detected in sequence 1 by leaving a trail 1's.
Memory Cell Failure

Stuck-at faults are detected. Initially, a 0 is written into all addresses, and then
verified in sequence 1. Sequence 1 also writes a 1 into all addresses and verifies it.

Transition faults are detected since each cell undergoes both a 0->1 and a 1-0
transition (initalize through sequence 2), each followed by a read operation.

. Destructive Read faults are detected since each cell is read twice while containing
both a 0 and a 1 (sequences 1-3).

Coupled Cells - Aiand Aj Aiand Aj
in different words within a word

*a) Ai->1 Aj->l  Ai<Aj Detected in Sequ. 1 Not Detected
b) Ai->1 Aj-0  Aic<Aj Detected in Sequ. 3 Detected Sequ. 1
*c¢) Ai-0 Aj-0  AicAj Detected in Sequ. 2 Not Detected
d) Ai->0 Aj->1 Al <Aj Detected in Sequ. 4 Detected Sequ. 1

*e) Ai-1 Aj->1  Ai>Aj Detected in Sequ. 3 Not Detected

f) Ai->1 Aj-0  Ai> Aj Detected in Sequ. 1 Detected Sequ. 1
*g) Ai-0 Aj-0 Ai>Aj Detected in Sequ. 4 Not Detected

h) Ai-0 Aj->1  Ai>Aj Detected in Sequ. 1 Detected Sequ. 1

Summary of Fault Coverage

Memory Address Reg : Stuck-at & Bridging
Decoders : Stuck-at & Bridging
Read/Write Logic . Stuck-at & Bridging
Memory Data Reg . Stuck-at

32




Memory Cell Array : Stuck-at, Bridging. Destructive Read, Transition.
Coupling

GALPROCO: O(4*(3n+2*n3/2)) [Daehn '86)

1. Initialize memory to 0
2. For all columns:
2. For all rows:
2a. RO
2b. W1
2c. RO for all other columns. R1 for Test bit
2d. RO for all other rows, R1 for Test bit
2e. WO
2f. RO
3. For all addresses (rows & columns) R0
4. Initialize memory to 1
3. For all columns:
3. For all rows:
5a. Rl
5b. WO
5¢. Rl for all other columns, RO for Test bit
3d. R1 for all other rows, RO for Test bit
Se. Wi
5f. Ri
6. For all addresses (rows & columns) R1

Memory Address Register (MAR) Failure

MAR faults are detected.

Memory Cell Failure
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Stuck-at faults are detected. In step 1, a 0 is written into all addresses and verified in
step 2a. In step 2b, a | is written into all addresses and verified in step 2c.

Transition faults are detected since each cell undergoes both a 0->1 and a 1->0
transition (steps 1-2f), each followed by a read operation.

Destructive Read faults are detected since each cell is read twice while containing
botha0andal (steps2c’,2d’. 3.5¢".5d".6).

Coupled Cells -

Ai -»1
Ai -»1
Ai -0
A1 -0

Ai -1
Ai -1
Ai -0
Ai->0

Aiand Aj
in different words

Aiand Aj
within a word

Ai < Aj Detected in 2a, 2¢*,2d* Not Detected
Ai <Aj Detected in 5a,5¢” 5d* Detected in 2C
Ai < Aj Detected in 5a2,5¢*,5d* Not Detected
Ai < Aj Detected in 2a. 2c¢".2d" Detected in 2F
Ai> Aj Detected in 3,2¢*,2d* Not Detected
Ai> Aj Detected in 5a,5¢*,5d* Detected in 2C
Ai> Aj Detected in 6.5¢*.5d* Not Detected
Ai> Aj Detected in 2a, 2¢*,2d* Detected in 2F

* For coupling within the same row or column.

Summary cf Fault Coverage

Memory Address Reg : Stuck-at & Bridging
Decoders
Read/Write Logic
Memory Data Reg

Memory Cell Array

. Stuck-at & Bridging

: Stuck-at & Bridging

. Stuck-at

. Stuck-at, Bridging, Destructive Read, Transition,
Coupling, Some APSFs

34




Walking I'sand 0's: O(2n2 + 6n) [Breuer '76)

1. Initialize memory to 0
2. For all addresses in ascending order:
2a. W1
2b. RO for all other addresses (Tests that no cell is disturbed)
2c. R1 (Tests that the test bit is still correct)
2d. W0
3. Initialize memory to 1
4. For all addresses in ascending order:
4. %0
4b. R1 for all other addresses (Tests that no cell is disturbed)
4c. RO (Tests that the test bit is still correct)
4d. W1

Memory Address Register (MAR) Failure

MAR failures are detected.

Memory Cell Failure

Stuck-at faults are detected since both a 0 and a 1 are written into all addresses and
then verified (steps 1-2d).

Transition faults are detected since each cell undergoes both a 0->1 and a 1->0
(ransition (steps 1-2d). each followed by a read operation.

Destructive Read faults are detected since each cell is read twice while containing
both a 0 and a 1 (steps 2b, 4b).
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Coupled Cells -

*a) Ai-1 Aj-l
b) Ai->1 Aj->0
*c) Ai-0 Aj->0
d) Ai-0 Aj-l

*e) Ai->l Aj-l
£) Ai-l Aj-0
*g) Ai-0 Aj->0
h) Ai-0 Aj-l

Summary of Fault Coverage

Ai < Aj
Al <Aj
Ai <Aj
Af < Aj

Ai> Aj
Ai> Aj
Ai> Aj
Ai> Aj

Ai and Aj
in different words

Detected in step 2b
Mostly Detected 4b
Detected in step 4b
Mostly Detected 4b

Detected in step 2b
Detected in step 4b
Detected in step 4b
Detected in step 2b

Memory Address Reg : Stuck-at & Bridging
. Stuck-at & Bridging
. Stuck-at & Bridging

Decoders
Read/Write Logic
Memory Data Reg
Memory Cell Array

. Stuck-at

Aiand Aj
within a word

Not Detected
Detected in 2¢
Not Detected
Detected in 2b

Not Detected
Detected in 2¢

Not Detected
Detected in 2b

: Stuck-at, Bridging. Destructive Read,
Transition, Most Coupling, Some APSFs, Some SPSFs
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GALPAT: 0(202 + 8n) [Breuer '76) [Pradham '86)

1. Initialize memory to 0
2. For all addresses in ascending order:
2a. W1
Zb. For all other addresses; RO and verify R1 for test address
2c. R1 (Tests that the test bit is still correct)
2d. WO
3. Initialize memory to 1
4. For all addresses:
4a. WO
4b. For all other addresses: R1 and verify RO for test address
4c. RO (Tests that the test bit is still correct)
4d. W1

Memory Address Register (MAR) Failure
MAR failures are detected.

’ Memory Cell Failure

Stuck-at faults are detected. Both a 0 and a 1 is written into all addresses and
verified (steps 1-2d).

Transition faults are detected since each cell undergoes both a 0->1 and a 1->0
transition (steps 1-2d). |

Destructive Read faults are detected since each cell is read twice while containing
both a 0 and a 1 (steps 2b, 2¢, 4b, 4c).
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Coupled Cells - Aiand Aj Aiand Aj

in different words within a word

*a) Ai-l Aj-l A <Aj Detected in step2b  Not Detected
b) Ai->1 Aj-0  Ai<Aj Mostly detected 4b Detected in 2b

*c) Ai-0 Aj->0  Ai <Aj Detected in step 4b  Not Detected
d) Ai-0 Aj->1  Ai<Aj Mostly detected 2b Detected in 2b

*e) Ai-l Aj-l  Ai>Aj Detected in step2b  Not Detected
f) Ai->1 Aj->0  Ai>Aj Detected in step 4b  Detected in 2b

*g) Ai-0 Aj->0  Ai>Aj Detected in step 4b  Not Detected
h) Ai-0 Aj->1  Ai>Aj Detected in step2b  Detected in 2b

Summary of Fault Coverage

Memory Address Reg : Stuck-at & Bridging
Decoders . Stuck-at & Bridging
Read/Write Logic . Stuck-at & Bridging
Memory Data Reg : Stuck-at
Memory Cell Array : Stuck-at. Bridging. Destructive Read.
Transition, Most Coupling, Some APSFs, Some SPSFs
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2.4 Comparison of Algorithms

The chart shown in Figure 2.4 compares the algorithms previously discussed in Test
Patterns/Algorithms. This chart summarizes the following for each algorithm: the test
complexity in terms of the number of words in memory, the memory cell array fault
coverage, an estimate of the area overhead required for BIST circuitry, the estimated
time to test a 256K RAM with 200ns access time, and miscellaneous comments. 'nless
otherwise stated, MAR faults are covered by the algorithms. As can be seen, there are
tradeoffs between the fault coverage, the test complexity, and the overhead in terms of
BIST circuitry. Typically, to obtain better fault coverage, the tradeoff is increased test
complexity and area overhead. The estimated time column shows which tests run in a
reasonable amount of time. To reduce the test time for complex algorithms, such as
GALPAT, parallel techniques can be implemented (See Speed-up Techniques:
Parallelism). Note: for other memory sizes, for example 8K, the test time would simply
be reduced by a factor of 32. Analyzing the tradeoffs between algorithms, the following

observations are made.

In order to cover stuck-at, bridging, transition, destructive read, and coupling faults
only O(n) algorithms are required. For pattern seasitive faults (PSFs), 0(n3/2) or 0(n?)
algorithms are recommended when the mapping of logical to physical addresses is not
available or practical. The test times with these algorithms are too long for large
memories, and therefore need to be implemented using parallel techniques. The
problems associated with algorithms that require knowledge of the physical layout are
due to address scrambling and row/column replacement. To handle address
scrambling, extra circuitry is needed to map the logical addresses to the physical
addresses. During the manufacturing process, some faulty rows and/or columns maybe
logically replaced by spare rows or columns. This makes testing the interaction of cells
within the physical layout nearly impossible. When knowledge of the logical to
physical addresses is available, and the test time requirement is low, then a modified

checkerboard approach is recommended.
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”® % L KK

TestPatterns  Comolexity  Fault Coverage™  Overhead””™ Est.Time""" Comments

Pseudo-Random 4n A.BEFG Small 218 1.2
MSCAN 4n A Small 218 2
Checkerboard 4n A,BCEF Medium y 218 2,3
SMTP 5n A B CE Small 265

Modified Checkerboard 8n A.B.C.D,EF.G Medium 428 2,3
Marchl 9n A.B CE Small 478

March2 I1n A,B,CDE Small 58S

March3 14n A BCDE Small 738

March4 15n A B.CE Small 798

Marinescu - 17n A, B, CDE Small 89§

Nair et al. 30n A BCDE Medium 1.57§

GALPROCO 12n+8n3/2 A,B,C,D,EF Large 3.59M 4
Walking 1's/0’s 2n%+6n A.B.CDEF.G Large 7.64H 5
GALPAT 20%+80 A,B,C.D.EF.G  Large 7.64H 5

A=-Stuck-at B-Bridging C-Transition D-Destructive Read E-Coupling F=-APSF G-SPSF
— Not completely detected

Memory Cell Array Fault Coverage (bit organized)
Estimated overhead of BIST circuitry
“*" Based on 256K with 200ns access time

Comments

I Don't know how many patterns are necessary to obtain indicated coverage. Coverage is estimated.
2 MAR faults are not completely detected.

3 Knowledge of how physical positions map to their logical addresses is required.

4 Must have capability to specily row and column addresses separately.

3 Test complexity too large for BIST of large memories without using parallel techniques.

Figure 2.4: Comparison Chart of Algorithms
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3. Bullt-In Self Testing Memories

To understand built-in self test for memories, memory {ault models along with memory
test patterns/algorithms needed to be discussed. To evaluate the current state of built-1n
self test for memories, it will be necessary to study and analyze the approaches
currently being suggested in the literature [Bardell '85] [Daehn '86] [Jain '86]
[Kinoshita '86] [Nicolaidis '85] [Sun '84] [Westcott '81] [You '84]. The following
approaches with their advantages and disadvantages are discussed: Daehn & Gross
[Daehn '86], Jain & Stroud{Jain '86], and Sun & Wang [Sun '84]

3.1 Daehn, Wilgried & Gross, Josef: A Test Generator IC for Testing Large CMOS-RAMs

Overview

A test generator IC for testing large CMOS-RAMs utilizing the GALPROCO 0(nl-3)
algorithm is discussed. The paper analyzes the effects of physical defects on RAM
behavior, discusses existing test algorithms, proposes an algorithm which is
independent of the physical layout of the RAM. and presents the implementation in
silicon. The implemented test concept is applicable to both board and chip level testing.

Approach

The RAM is assumed to have the organization of Figure 1.1, except that there are two
address registers: a separate row and column address register. The physical defects
within all the functional blocks of the RAM transform themselves to logical fault
models in the following way:

Physical Defects Logical Fault Model

opens CMOS stuck-open

short to GND stuck-at-0

short to VDD stuck-at-1

bridges asymetrically wired AND, OR

forced level
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These logical fault models are then transformed into the following funtional level
model for a RAM:

Cells can be s-a-0, s-a-1

Simple decoding error: a given address x selects a cell=x

Sequential decoding error: an address x selects a cell x, a following
arbitrary address y selects a cell=y (effects
of a CMOS stuck open fault ir. the decoder)

Pattern sensitivity in a column or row

Pattern sensitivity in a physical neighborhood (not in a column or row)
(Not covered in this approach)

Pattern sensitivity between any other cell pair (Not covered in this
approach)

A test procedure w\as developed to meet the above requirements plus the following:
independence of row/column arrangement of the cell array, refresh of dynamic RAMs
during test execution without additional cycles, and acceptable execution time. Below is
a block diagram of the test processor IC.

------------------------------------------------------------------------------------------------------------------

Clk g |

Micr opragrarn [ —+ | Address *-:-——+ Fow Addressz
Sequencer ’ F:gs Leneration "__“""'* Colurnn Address

RN ) |

. |Timing —Oata [Testin —+ Good/Ba

i |Generat Exp. Data | hesting ==+ Dats

. [Enerator Test Daty  (Umt 8

; ‘[ ‘[ I s D

” .................. = R

Clk Res GodStop CS FlagRD

Figure 3.1: Block Diagram of the Test Processor IC

The timing generator organizes the timing and controls the start/stop logic of the chip.
The execution of the test procedure is controlled by a finite state machine which acts
as a microprogram sequeucer. The address generating unit consists of four linear
feedback (9-bit) shift registers (LFSR) because they require less silicon area than
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conventional counting circuits. These are designed such that they generate maximum
length sequences for both row and column addresses including address 0. The testing
unit compares incoming data from the RAM under test with expected data, generated by
the control unit. This is done for eight bits in parallel.

Advantages

At the board level there is little overhead. This approach is also independent of the
physical layout while providing good coverage.

Disadvantages

Requires separate row and column address registers. The test time in the future maybe
a problem since the test complexity is 0(n3/2). Also, this approach covers a limited
amount of PSFs. Estimate high overhead for BIST within a chip.

4

Comments

This approach is designed for a separate test processor chip. The GALPROCO algorithm
covers more faults than stated in the proposed fault model. For example, destructive
read faults. See Test Patterns/Algorithms and Comparison Chart for a description of the
coverage.
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3.2 Jain, Sunil & Stroud, Charles: Built-in Self Testing of Embedded Memories

Overview

Two test schemes, using the pseudo-random and checkerboard algorithm, are presented
as a built-in self test (BIST) method for testing embedded memories. The fault model
used in both test schemes can be summarized as follows: memory cell array faults
(stuck-at, transition, hold, destructive read adjacent bridging, adjacent coupling),
decoder stuck-at faults, and adjacent data input/output line coupling. The adjacent
faults largely depend on the physical layout of the memory cell array. The RAM used in
this illustrative example is 32 words, accessed with 5 address bits, each word cor:taining
four data bits. The paper also discusses the test pattern requirements, data compression
techniques, implementation, and an evaluation of both test schemes.

Approach

Approachl: Pseudo-random algorithm

In this scheme, the input stimulus to supply the address to the RAM is also used as the
input data, such that each memory word contains a unique data word (pseudo-random).
The algorithm is shown below:

For all addresses in ascending order, Wx (where x-address)
. For all addresses in ascending order, Rx (where x=address)
. For all addresses in ascending order, Wx'
. For all addresses in ascending order, Rx'

. For all addresses in »scendin g order, Wx

1.

2

3

4

5. For all addresses in descending order, Rx'

6

7. For all addresses in ascending order, Rx >
8

. For all addresses in descending order, Rx

Implementation of this scheme consists of a binary counter to supply the address, in put
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data, and three control signals to direct the test sequence. The output data is compressed
via a multiple input signature register (MISR). The signature register is
enabled(disabled) during a read(write) operation and is controlled by the same signal
that controls the read/write to the RAM. When the self-testing is initiated, the binary
counter 1s initialized to zero and the MISR is initialized to a seed value. A MISR is used to
compress the output because with a comparison method all the expected data inputs -

would have to be routed to the output for comparison, which would increase area
overhead. Below is an overview of this scheme:

02,01

Binary | 2-bit | Madified | Modified +— TEST sz 00 01 1110

Counter [ctr)req| Ry req| Addr req

— ol 1110
r" * -
[ l + il .{n AN ERE
CE& L2 1
I | Address [rata-in 0 - Write
TN ! - Read
‘\‘_ Generatio_r_n,/}_’ R Al
[rata-out
in
. Modified
TEST — Dutput req
Enable 4 (MISR)

Figure 3.2: Test Scheme 1

Approach 2: Checkerboard algorithm

In this scheme, a checkerboard pattern is written into physical memory such that the
bit lines (B', B) of adjacent memory cells contain a checkerboard pattern. The
approach is to write the all-1 or the all-0 word into the appropriate addresses to achieve
this pattern. The algorithm is discussed in section 2.3 Test Patterns/Algorithms
(modified checkerboard algorithm) using the architecture of the memory system
described previously.
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Implementation of this scheme is very similar to the one previously discussed except
that the binary counter is modified to generate the checkerboard pattern. The output
response can be either compressed or compared to expected data. See below:

Binary [2-bit | Modified | Modified |, 1pqt N
Counter [ctrlreq | Addr reg | R/ reg v - e A3 g]:::rgtait:r
[T~ — B '
; myAm-Al I
L3tz ¢ Address : 6240 xpectad N\
I l Data-in C Output Data-in
R/W RAM ' RAM
Ceneration R/
—_— {3-
Data-out Data-out
cas O | A {n
CINU001 11 10 | Modified
olo]1]o] 1 TEST — Output reg Output reg
Hi/1[1]0 Enable + | (MSR) , J
0- Write , + ln
1= Pead Enable + Comparator
d I 7 Error_]
keg

f"u;ure 8.8: Scheme 2 with a) Data Compression and b) Direct Comparison

Upon initiating the test sequence, the binary counter would be set to zero and the MISR
(error register) would be initialized to a seed value (zero). Note, since either all 0's or
all 1's is written into the memory at any given time, only one data input needs to be
generated (all inputs needed to be generated in Scheme 1). Also. the expected output
signal (one signal) can be generated from the control bits and address bit A3. The
comparison result can then be compressed into an error register.
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Advantages

4\‘
-

Short test time, good coverage. With direct comparison method, only one expected

output line needs to be routed to actual output since only a word of all 0's or 1's js
written.

Disadvantages

Mapping from logical to physical addresses due to address scrambling could increase
circuitry. Row/column replacement of faulty rows or columns could be a problem to

maintain the same fault coverage.
Comments

Dependent on the physical layout of the memory system. MAR faults are not completely
detected. Could be extended to handle surrounding PSFs.
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3.3 Sun.Z & Wang, L: Self-Testing of Embedded RAMs

Overview

This method combines both self-test and scan techniques to test embedded RAMs (See
Figure 3.4). The self-test utilizes the Simple March Test Pattern (SMTP) to detect hard
failures in the RAM, while the scan technique is used to detect stuck-at and bridging
faults in the comparator and data lines, and to diagnose single stuck-ai faults in the
RAM. The memory is organized n words by b bits wide.

Approach

\

The Simple March Test Pattern (SMTP) is built into the hardware by modifying the R/W
control circuit, the address register, the input data register, and the output data
register. The comparison circuit consists of XOR gates between the output register and
the complement of the input register which are then Ored together. There are four
modes of operation: normal, scan, single-step, and self-test. The single-step mode
performs a read or write operation defined by the scanned-in test pattern. The self-test
mode executes the SMTP for detecting faults in the embedded RAM array.

. Input
'_'E & b«i[;. ata Scan-In
LContral
Fadified —
A Tirmin
M“d' +—lnput Data | ,-:_,.,nh-g,
R/ Feg Fegister - :
B, ,8, S = 1
Mod | |
A'I __;...".._} Addr _;,_* Ernbedged l:jomp,gratgr 0 O Scan
?S;':e__s Feg Memary T ] 11 Single-Step
\ ) ¥ bt | 0 Self-Test
. ma v
Maditied ‘ Coarto]
¥l Output Data MFF's |
Register
b-f lScan-Dut
Giutput
Data

Yigure 3.4: Block Disgram of Sun & Wang Self-Testing Embedded RAM
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Advantages

The SMTP is easily implemented, requires short test time O(5n), physical positions of

the cells do not have to map to their logical addresses, scan design allows flexibility.

Disadvantages

Scan technique to aid in self-test is slow (ie; serially scanning each pattern), SMTP is a
minimal functional test (See Test Patterns/Algorithms). All the input lines need to be
routed to the output lines for comparison.
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4. A New Hybrid Approach For Memory BIST ¢

Figure 4.1 shows a new approach using Multiple MISRs (MMISRs) for memory BIST.
- This method is a hybrid approach that combines direct comparison and data
compression techniques. The concept is to logically divide the memory into two equal
parts, providing a MISR for each part. Due to the regular structure of a memory system,
the resulting signatures in each partition will be the same, assuming that no fault
occurs simultaneously in both partitions. Thus, rather than comparing the resulting
signature elsewhere, the signatures can be compared to each other. In order to provide
high fault coverage with this approach, ali the components that are shared between
the MISRs must be isolated so that they can be tested independently (ie; the row
decoder). Otherwise, an error in a common component could manifest itself into
identical errors in each memory partition, and thus, the two MISRs signatures would be
the same. To provide the means for isolation, the memory 1s logically divided into 4
partitions as shown below.

Mernory Cell Array Test Sequence

Operations -»> Fartl
Operations -> Partd
Compare MISKs

Operations -» Part2
Operations -» Part3
Cornpate MISEs

R (Il =enss Arnps

LILLAARR L R eataqlgnyesg

! 1

Muad. MDE

b FMISkZ
Enahle — MISR + Enable
U

Ervor
Keg
Compare

}'iquﬂa 4.1: A New Hybrid Approach for Memory BIST

The operation of this approach is as follows: The MISRs are only active in a test mode
during a read operation. The enable level is high while reading from partitions 1&3
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and low when reading from partitions 2&4. Therefore, the MISRs will contain the
compressed output data from their associated partitions. Verification of the results is
accomplished by shifting and comparing the contents of the MISRs to each other In
order to isolate the row decoder, the test algorithm should be run on partitions 1&4,
compare the results, and then run on partitions 2&3 and compare the results. This
method of isolation allows faults such as s-a-0 in the row decoder to be detected.

The hybrid approach has the following chararteristics:

1) Resulting signatures need not be compared elsewhere, they can be compared
to themselves.

2) The comparison can be one line wide by simply shifting and comparing all
bits in the MMISRs. This method reduces circuitry but increases time to compare.
The comparison could be done in parallel to reduce time but the added
circuitry would increase.

3) Reduction of aliasing can be accomplished by more frequent checking of the
signatures.

4) Limited diagnostic capabilities: checking the signatures more often tells when
an error occurs; having more than 2 partitions results in a voting system,
therefore allowing a faulty partition to be detected and located. Note: the more
partitions, the more MISRs, and therefore higher BIST overhead.

5) No additional circuitry for generating expect output data is required.

6) Thisapproach, like the other approaches, can be used with parallel techniques.
The parallel operations need to be within each partition.

7) Thisapproach does not fully cover MAR faults (ie: if the MAR only accessed one
address).
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. Speed-up Techniques: Parallelism

This section is concerned with speeding up the test application time via parallelism.
The concept of parallel testing of memory systems is to internally increase the word
size beyond the normal word size while in a test mode. Parallel signature analyzers
(PSAs), also known as MISRs, are used to monitor read data in parallel. In addition, PSAs
can be loaded with write data to write into the memory in parallel, as long as the
signature is shifted out and compared to known results before being loaded ~/ith data to
avoid losing the signature. (This is unnecessary if there are two PSAs. one for an input
data register and one for an outpui data register or if extra logic is provided to translate
the signature to write data without changing the signature register). The approaches
suggested are algorithm independent and are described below:

9.1 Han, Sang & Malek, Miroslaw: Two-Dimensional Multj ple-Access Testing Technique

Overview

A new type of memory organization using multiple accessing techiques for testing is
proposed. This architecture is used to speed-up test time via parallelism while
preserving the fault coverage. A k-stage LFSR parallel signature analyzer (PSA) is
used to compact read data and can also be used to write k-bits in parallel.

Approach
There are three accessing modes:
Mode-0: A single cell is accessed as in normal operation
Mode-1: k memory cells within one row are selected at a time

Mode-2: k memory cells within k rows are selected at a time

k cells are selected at a time by using multiple select decoders. Mode-2 is restricted to
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write cycles only. The read data is compressed via a PSA. The data in the PSA can be
shifted out for comparison, or data can be shifted in or modified for writing. This
allows k cells to be accessed in parallel. The maximum speed-up is 2k2/(k+1), so, the
speed-up increases with k, but the larger the k, the larger the PSA required, and thus,
the larger the overhead.

Advantages

This approach has the flexibility of using the different modes of accessing within an
algorithm. For example, to detect coupling within a k-bit word, set to mode-0 (normal
mode) for writing and read using mode-1 (in parallel). The disadvantage with mixing
modes is that the speed-up factor is reduced.

Disadvantages

Two pins are required to set modes: normal, mode-1, mode-2, and scan. Due to having
multiple write modes, larger line drivers are required to minimize the increase of the
access time. Note: this is only applicable in the test mode, since in the normal mode
only a single cell is accessed, but nonetheless, having larger line drivers would
increase the area overhead.

Comments

The fault coverage in the peripherals (MAR, MDR, and decoder) may be higher without
using multiple accessing techniques. This is because with multiple accessing
techniques these components are not being tested in their normal mode of operation.
For example, a fault in the decoder could occur such that multiple lines are selected but
these might have already been selected due to the multiple accessing technique.
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6. Design Gulde

To summarize the methods and approaches of the BIST schemes discussed earlier, the
following individual components of memory BIST are reviewed and analyzed: address
generation unit, input data generation unit, and evaluation circuitry. In addition,
choosing an algorithm and design goals are discussed. A diagram of memory BIST is
shown below:

N e

— - .
(f;;dress A [';pUt Df.t a>
\__Generatirin) \ irlﬁf-ic_rfn

—— ~ S
N / Input Data)
p Reqister |
| MAR /
x. (
.'\\ K aM %
\ .
Expected Dutput r) Output Data)
Dats Gerlerahu:-n " Efg_if’ff'i:_f-’
érr'or +—~ Cornparator./. 4.___-/. (R \"‘-——-p MISR |- Cornpate
9 ]« | ) Sk Signature
Direct Compatison _ Data Cornpression
Method Method
f‘lqurc 6.1: Memory BIST

6.1 Address Generation Unit

The address generation unit generates the needed addresses for the algorithm
iriplemented. There are three methods used to generate these addresses: a LFSR, a
binary counter, and a translation unit. The LFSR is the simplest hardware to implement.
This approach generates pseudo-random addresses (all the addresses are generated, but
in a pseudo-random fashion). The LFSR must be modified to include address 0. A binary
counter permits addresses to be generated in a sequential manner in either ascending
or descending order. A translation unit maps the logical addresses to their physical
addresses. The address generation unit should be implemented as a modification to the
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MAR with the least amount of extra hardware. Below are the advantages and
disadvantages of each approach:

Method Advantages Disadavantages

LFSR Easy to implement Pseudo-random addresses
No way to ascend & descend”
No mapping to physical addresses

Binary Counter Sequ. ascendddescend No mapping to physical addresses
Moderate overhead

Translation Unit Map to phys. addresses High overhead
Sequ. ascend&descend

" A modified up-down LFSR is presented in [Nicolaidis '85).

6.2 Input Data Generation Unit

The input data generation unit is responsible for loading the input data register (or the
MDR) with the correct input according to the implemented algorithm. The hardware to
implement the input data generator can be reduced if the algorithm only writes the all
0's or the all 1's word since only one line needs to be used. The advantage of only using
one line is the reduction of hardware, but this approach lacks the flexibility of writing
different data within the input data register. The in put data generation unit should be
implemented as a modification to the input data register with the least amount of extra
hardware.
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6.3 Evaluation Circuitry

The purpose of the evaluation circuitry is to detect an error between the circuit under
test and known fault-free results. There are two main approaches for evaluation
circuitry: Direct comparison and Data compression .

T
Direct Comparison

The direct comparison method is accomplished by comparing expected data to the actual
output data. This approach has better fault coverage than data compression techniques
but may require more circuitry to implement because of the following two reasons:
circuitry needed to generate the expected data and the routing circuitry between the
expected data and the actual data. One way to reduce the routing circuitry is to have
only one line to route: this can be accomplished for certain algorithms where only the
all 0's and the all I's words are written/read, and also for bit organized memories.

Data Compression

The data compression method utilizes either LFSRs or MISRs to compress output data
into a signature during the test (refer to Figure 1.6: Data Compression Techniques).
When the test is complete, the resulting signature is compared io a known correct
signature. Data compression techniques may require less circuitry than direct
comparison methods since ne circuitry is required to generate expected data output.
Also, this technique may have less coverage than direct comparison techniques due to
aliasing. Aliasing occurs when an error or errors mask themselves in such a way that
the resulting signature is the same as the correct signature: thus the error is not
detected. The other problem with this technique is that the signature must be shifted
out and compared elsewhere. This requires either ROM or additional test equipment,
which should be avoided if possible. Signature analysis does have the advantage of
testing itself during data compression. Note: data compression requires two separate
data registers (input and output) or some other means to maintain the signature during
a write cycle (loading the memory data register and writing into memory).
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6.4 Choosing an Algorithm
Analyzing the tradeoffs between algorithms, the following observations are made:

For test complexity of O(n):

1) Test time is not an issue; therefore, parallel approaches need not
be implemented.

2) Major concern is to reduce overhead of BIST circuitry.

3) Inherently the fault coverage is not as comprehensive as 0(n3/2) or 0(n2),
but the test times and overhead are small enough for any size memories.

For test complexity of 0(n3/2).

1) Test times may be acceptable; if not, reduce test time via parallel approaches.
2) Since complex algorithms, major concern is to reduce the BIST overhead.
3) Fault coverage is good.

For test complexity of 0(n?):

1) Test times are unacceptable; therefore, the first concern is to
reduce test time via parallel approaches.

2) The next concern is to reduce overhead of BIST circuitry.

3) If BIST overhead is low enough, these algorithms might be well
suited for small memories without using speed-up techniques.

4) Fault coverage is good.

In order to cover stuck-at, bridging, transition, destructive read, and coupling faults
only O(n) algorithms are required. For pattern sensitive faults (PSFs), 0(n3/2) or 0(n2)
are recoramended when mapping of the logical to physical addresses is not available or
practical. The test times with these algorithms are too long for large memories, and
therefore should be implementated using parallel techniques. In addition, these
algorithms are relatively complex, and may require a high BIST area overhead. When

¥




knowledge of how the logical addresses map to the physical addresses is available, and

the test time requirement is low, then a modified checkerboard approach is

recommended.

In choosing an algorithm, having good fault coverage and short test times are
important, but the BIST overhead must also be considered. To reduce the BIST overhead
and increase the fault coverage at the expense of a small increase in the test time,
combining or modifying some of the algorithms previously discussed in section 2.3 may
prove fruitful. For example, the march4 algorithm could be modified such that in step 3
an extra Rl is inserted before the W0, and in step 5 an extra RO inserted before the W1
This modification would increase the fault coverage and reduce the BIST overhead. The
reduction of the BIST overhead is due to the symmetry of the modified algorithm which
would make the implementation of the control circuitry simpler.
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Overview

The Memory Fault Simulator was developed to aid in the analysis of memory test
algorithms used for built-in self test (BIST) of memory systems. Although most of the
algorithms used to test memory systems are not that complex, to analyze the fault
coverage in terms of memory subsystems (ie: address registers, decoders, data registers,
etc.) is much harder. The Memory Fault Simulator has the following features:
flexibility of injecting many different types of faults into any of the memory
subsystems, user definable memory system parameters, common test algorithms, user

definable test algorithms, graphics capabilities, and trace facilities. An overview of the
system is shown in the figure below:

Mernary System

Pararmeters . L - .
Mernory Tezt Sequeniae File
w1 Made] — . . . )
, at AR ect ditferent faglts
Test Algorithrns — '

!

...............
--------------------

F.
BRI, [or i
Trace F dmhtg,
"I
Er SN YA A A e

et | Log File

Overview of Memory Fault Simulator

The memory system parameters are contained in the MEMPARAM H file. The standard
test sequence file is TESTSEQ.TST, but users may create their own. Each of the test

algorithms are stored in their own file. The simulator was developed in C using C~t»erp*,
an interpretive C environment, on an IBM compatible PC. This technical reference
manual is divided into the following sections: Memory System Model, Memory System

Parameters, Fault Models, Memory Fault Simulator Routines, and Test Algorithm
Modules.

y C-terp is a trademark of Gimpel Software

| Memory Fault Simulator
December 15, 1986 Technical Reference Manual v1.0 Appendix A

65




Memory System Model

The Memory Fault Simulator uses a8 16 bit memory system with the following
architecture:

---------
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Figure 2: Memory System Architecture

The Memory Address Register (MAR) is 4 bits wide, both the Row and Column Decoders
are 2 to 4 line decoders, the Memory Cell Array is 4 X 4, and the Memory Data Register
(MDR) is a single bit. For graphics capability, the memory system must be 16 bits
organized 4X 4. Accessing the memory system is accomplished by a subroutine call to
memory. The general form is memory(address, R/W, word). Shown below are two
examples:

memory(9, "write",0): Write a 0 to address 9
readit-memory(5,"read”,) Read address S, result is returned in readit.

Memory System Parameters

The following memory system parameters are user definable:

Name Default Comment

MEMSIZE 16 Size of the memory cell array

MAXSTUCK 3 Maximum number of stuck-ats in cell array
MAXRFAULT 3 Maximum number of destructive read faults
MAXCOUPLED 3 Maximum number of coupled cells in cell array
MAXDECSTUCK 3 Maximum number of stuck-ats in decoders
COLDECSIZE 2 Size of the column decoder (number of bits)
MAXACTIVE 3 Maximum number of decoder lines active at once
MEMANDTYPE 1 1(0) AND-TYPE (OR-TYPE) for memory cell array

Maxstuck, maxrfault, maxcoupled, and maxdecstuck should be as small as possible for
increased performance. There is no error checking in terms of the relationship
between memsize and coldecsize. These parameters maybe modified and are located in
the MEMPARAM H file.

Memory Fault Simulator
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Fault Models

The common fault models used to test the functionality of a memory system that are
implemented in the Memory Fault Simulator are the following: Stuck-at faults,
Bridging faults, Destructive Read faults, and Coupling faults. Stuck-at and bridging
faults can occur in any of the memory subsystems. Destructive read faults and
coupling faults can occur only in the memory cell array. A short description of these
fault models follow.

The stuck-at faults model assumes that one or more logic values in a memory system
cannot be changed. For example, one or more memory cells could be stuck at 1 or 0.

A destructive read fault assumes that the data in a memory cell is destroyed following a ~

read operation.

Bridging faults are either AND type or OR type. AND(OR) type bridging results in
dominant 0(1). For example, if two leads are shorted, in AND(OR) type bridging the
value out would be a 0(1) given that one of the leads wasa 1(0).

A pair of memory cells (i,j) is coupled if writing a value V into a cell, say cell i, forces
cell j to change state. This does not necessarily imply that a similar transition in cell f
will influence cell i in the same way.

A list of subroutines that are used to inject faults into a memory system are shown
below:

MAR Faults
setmarstuckatO(bits) Set bits in MAR stuck-at 0 (ie; bits=4, bit 3 s-a-0)
setmarstuckatl(bits) Set bits in MAR stuck-at 1(ie; bits=5, 1&3 s-a-1)

setmarbridge(kind, bits) Set MAR AND-Type bridging (kind=A)
setmarbridge(kind bits) Set MAR OR-Type bridging (kind=0)

Decoder Faults

setrowdecstuck(line,value) Set line in row decoder to be stuck-at value (1/0)
setcoldecstuck(line,value) Seiline in column decoder stuck-at value (1/0)

Memory Cell Faults

setstuckat(address,value)  Set memory address to be stuck-at value (1/0)

setreadfault(address,value) The value in address is destroyed following a read

setcoupled(addri,addr2, Address2 is coupled to address! such that when
valuel value2) valuel is written into addressl, address 2 is

forced to value2

Memory Fault Simulator
December 15, 1986 Technical Reference Manual v1.0 Appendix A

67




Memory Data Faults

setmdrstuck0(bits) Set bits in MDR to be stuck-at 0
setmdrstuckat1(bits) Set bits in MDR to be stuck-at 1
setmdrbridge(kind,bits) Set MDR AND-Type bridging (kind=A)
setmdrbridge(kind,bits) Set MDR OR-Type bridging (kind=0)

Valid parameters are bits A decimal number used to represent bits
ie; S would mean bits 1 & 3
kind Either A for AND Type, or O for OR Type
line Refers to lines of a decoder: range 1 to 2" lines,

where n-* bits in the decoder. ie: 2 to 4 line
decoder has lines 1 through 4

value Either 1 or 0

address Currently only addresses 0-9 are available.
See Limitations.

For examples of how to set faults within a memory system, refer to the Memory Fault
Simulator User's Guide section on Creating Test Sequence Files.

M Fault Simulator Routi

A listing of each of the routines in the Memory Fault Simulator follow:

Name Parameters Description
initialize 0 Initialize all variables except memory
----------------------------- Set Faults in Memory System -----~---c-m oo
setmarstuck0 (bits) Set stuck-at 0 in MAR
setmarstuckl (bits) Set stuck-at 1 in MAR
setmarbridge (kind bits) Set bridging faults in MAR
setrowdecstuck (line,value) Set row decoder stuck-at
setcoldecstuck (line,value) Set column decoder stuck-at
setstuckat <address,value) Set stuck-at in memory cell array
setreadfault (address,value) Set destructive read faults in memory
setcoupled (addrl.addr2,valuel value2) Set coupling faults in memory cell
ALray

setmdrstuck0 (bits) Set stuck-at 0 in MDR
setmdrstuckl (bits) Set stuck-at 1 in MDR

setmdrbridge (kind,bits) Set bridging faults in MDR

Memory Fault Simulator
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Name Parameters Description

---------------------------- Simulate Memory System with Faults ----------ccceeemeeeeo__.
memory (address,rw,word) Simulate memory system with faults
---------------------------------- Memory System Faults ---------------cocooeme___
marfault (address) Return address under faulty condition
mdrfault (outdata) Return data under faulty condition
decrault (decoder line) Setup decoders under faulty condition
stuck (addr) Returns 1 if addr is stuck

coupledwrite (address,value) If coupled fault, write to coupled cell
-------------------------------------- Error Routine ------------mcmmmomee
errmsg (addr) Displays error message
------------------------------------ Display Routines ---------=--moooemmmmm e
display (r.c.value) Displays on 4X 4 grid

initdisplay 0 Initializes 4 X 4 gid display
----------------------------------- Library Routines ---------=----oomoemm oo
getline (s.lim,fname) Reads line from specify filename
index (s.t) Returns index of tin s, -1 if none
strcopy (s.t) Copiesttos

stremp (s,t) Return @ if s<t, 0 if s=t, >0 if s>t

Test Algorithm Modules

Currently, there are eleven algorithms implemented in the Memory Fault Simulator:
MSCAN, Checkerboard, SMTP, 4 March test patterns, Marinescu, Nair, Walking 1's and
0's, and GALPAT. Each algorithm is contained in its own file, and references are made to
the memory model by memory system parameters and the following routines: memory
and errmsg. Fach algorithm is a routine written in C and is currently included in the
Memory Fault Simulator. Below is an example of the SMTP test algorithm written in
pseudo-code and in C:

Pseudo-Code C
smtp smtp()
(int i;
Initialize memory to 0 for (1=0;i<(MEMSIZE;i++) memory(i,"write",0);
For all addresses for (i=0;i<MEMSIZE:i++) (
RO if (memory(i,"read",)=0) (errmsg(i).return)
Wi memory(i,"write",1))
For all addresses for (i=0;i<MEMSIZE:i++) {
R1 if (memory(i,"read",)!=1) (errmsg(i),return)
Wwo \ memory(i,"write",0))
Memory Fault Simulator
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Each test algorithm subroutine must have an unique name. In addition, to implement
new algorithms, the following needs to be modified in the Memory Fauli Simulator: In
the user interface, under available test algorithms, include the algorithm name; In the
section that runs the algorithm, modify the compound if statement to include the new
algorithm, ie; add: else if (strcmp(algo,'newname”) == 0) newname(), this tells the
simulator to run the new algorithm if selected: In the section where algorithms are
included, add *include "filename" to tell the simulator where the algorithm is stored.

Limitat

The major limitation of the Memory Fault Simulator is the lack of speed and the fault
models. Future recommendations to fault models would be to include hold faults,
transition faults, and pattern sensitive faults. Currently there is a limitation when
setting faults using the memory test sequence file: due to the Memory Fault Simulator
interpreter, only addresses 0-9 can be used in setting faults such as stuck-at,
destructive read, and coupling within the memory cell array. Also bridging faults in
the decoders and the memory cell array are not yet available.

. Memory Fault Simulator |
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Getling Started

The Memory Fault Simulator was developed using C-terp’, and therefore, it is
recommended to use C-terp when running the simulator. C-terp is an interpretive C
environment with a full screen text editor and debugging facilities. To get started, the
files ct.exe and stdio.h as well as all the Memory Fault Simulator files should be copied
into a convenient directory. C-terp should then be executed by typing "ct". The
following menu should be displayed:

C-terp
Compile Pre-Process
Edit Quit
File list Run
Global search System
Load Unload
Options Write

Command:

Now, load in the Memory Fault Simulator by typing "L". The user will be prompted for a
file name. Type in "mem.c" and press carriage return «CR>. To run the Memory Fault
Simulator, press "R followed by a «CR>. All the files that the simulator require will
automatically be loaded. The Memory Fault Simulator should now be running. After an
algorithm is run, C-terp will ask the user to press any key. After pressing a key, the

main C-terp menu will be displayed (see above). To quit, simply press “Q". To run the
simulator again, press "R" followed by a <«CR>.

The C-terp editor will allow the user to easily create and modify test sequence files,

algorithms, etc. To use the on-line help, press the alt key and the "h" key
simultaneously.

Refer to the C-terp reference manual for more details on using C-terp and its facilities.

g C-terp is a trademark of Gimpel Software.
Memory Fault Simulator
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The user interface to the Memory Fault Simulator is a menu driven system which
prompts the user for needed information to run the simulator. Shown below are the
menu system prompts with explanations (italics are default values):

Analysis of Memory Test Algorithms

Enter Test Sequence Filename: testseg. st
Enter Test Algorithm Name

Store Results in filename> : algotestdat
List Each Transaction . 20

Display Graphically YV

Is Input Correct : pes

The test sequence file consists of a list of tests using different types of injected faults.
For example, one may wish to run a series of tests on the memory cell array with

different faults: ie; stuck-at-0, stuck-at-1, coupling, etc. See Creating Test Sequence
Files.

The test algorithm name is the name of the algorithm that is to be run. If a carriage
return <CR> is pressed, a list of the available algorithms with their test complexity will
be displayed like the following:

Available algorithms: mscan, checker, smtp, marcha, marchb, march. march?2,
0(4n) O(4n) O(4n) 0(9n) O(11n) O(l14n) O(15a)

mari, nair, walkl's, galpat
0(17n) 0(30n) 0(n*2) 0O(n*2)

The results of the simulation is stored in a log file. The form of the filename is

filename.ext. The maximum length allowed is 15 characters. The file will be stored in
the current defauli directory.

Listing each transaction is equivalent to a trace facility. Every transaction to the

memory model within the algorithm will be displayed on the screen and listed in the
log file.

The graphic display allows the user to "see” the algorithm running. A 4X4 grid is
displayed along with either the name of iae test running or each transaction listed
depending on what option was selected.

The user has the chance to verify the input. If an error is made, the user can type no

lo the prompt, and the menu system will start over. Otherwise, upon correct input, the
Memory Fault Simulator will begin.

Memory Fault Simulator
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Croating TostS i

Test sequence files allows the user to run many tests using the same algorithm with

many different types of injected faults, The general form of a test sequence file is
shown below:

Test 1A Dummy
setstuckat(2.0):
End of Test

Test 1B Stuck-at-1
setstuckat(2.1):
End of Test

Atest begins with the word Test and ends with End of Test. The line beginning with the
word Test will be displayed on the screen during execution. There can be different type
of faults as well as multiple faults injected into the memory model within each test.
Comments are enclosed between /- and -/. Blank lines are also allowed. Refer to the
Memory Fault Simulator Technical Reference section on Fault Models for a complete list
of the available routines used to inject faults into the memory model.

Creating the test sequence file should be done with a text editor and then saved to disk.
It is recommended that C-terp is used. The test sequence file can then be accessed in
the Memory Fault Simulator via the menu system prompt. Enter Test Sequence
Filename.

Modifying Memory System Parameters

Refer to the Memory Fault Simulator Technical Reference section on Memory System
Parameters for a complete list of user modifiable memory system parameters. To
actually modify these parameters, one needs to edit the MEMPARAM H file, make the
modifications, and save the results. Then, the Memory F ault Simulator should be loaded
and executed via C-terp.

- Adding New Test Algorithms

Refer to the Memory Fault Simulator Technical Reference section on Test Algorithm
Modules. |

Memory Fault Simulator
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Sample Session

Analysis of Memory Test Algorithms

Y

Enter Test Sequence Filename: sampleseq.tst
Enter Test Algorithm Name : smtp

Store Results in «filename> : sample log
List Each Transaction . 20

Display Graphically . yes

Is Input Correct : pws

. Testing Memory .

Test 1 Sample Test

Sample Test Algorithm

Below is the Simple March Test Pattern (SMTP) in both pseudo-code and in C.

Pseudo-Code C
smtp smtp()
(int i;
Initialize memory to 0 for (i=0;i<MEMSIZE;i++) memory(i,"write",0):
Fer all addresses for (i=0;i¢MEMSIZE:i++) (
RO if (memory(i,"read",)!=0) (errmsg(i).return)
Wi memory(i,"write”,1)}
For all addresses for (i=0;i<MEMSIZE:1++) (
Rl if (memory(i,"read”,)!=1) (errmsg(i),return)
wo memory(i,"write",0))
)
Memory Fault Simulator -
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Sample Test Sequence

Test 1 Sample Test
setstuckat(5.0):
End of Test

Test 2 Sample2 Test
setcoupled(2,3,0,1);
setstuckat(5,1);

End of Test

Sample Log File

AR EEEEEIEEESEEEEEERERE R X TeSting Smtp Algorithm 3 3 3% 3¢ 3 I % % % H # ¥ * ¥ % % * ¥
[mmmmmmmmm e Sample Test Sequence------------------- /

Test 1 Sample Test
-> Memory Error Detected in Address: 5 <«

Test 2 Sample2 Test
-> Memory Error Detected in Address: 3 «

A EEEEEREEEREERE KX EEX. End OfTBStFOI‘ smtp Algorithm 3 3 3 3% 3 % % W W H % * ¥ % * * %

Sample Trace File

A A EEAEEEREZEEEEEREEEE X R N X Testing smtp Algorithm L A XXX EEZEREEEREREE R R R R
[mmmmmm e Sample Test Sequence------------------- /
Test 1 Sample Test

Writing 0 to memory loc 1,1 Address: 1 Logical Address: 0
Writing 0 to memory loc 1,2 Address: 2 Logical Address: 1
Writing 0 to memory loc 1,3 Address: 3 Logical Address: 2

Read 0 from memory loc 2,1 Aﬂdress: 5 Logical Address: 4
-> Memory Error Detected in Address: S5 «

A EE L EEEEE XSS R XX End OfTestFor smtp Algorimm 3 % 3% % I I Bk H A K ¥ X * * ¥

Memory Fault Simulator
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