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Abstract 

The concept of Built-In Self Test (BIST) is to have the system test itself and provide a 
"go/nogo" indication. Having a memory system test itself is becoming increasingly 
important, because memory systems are now embedded within a chip, where the 
memory system may not be djrectly controllable or observable at the chip pins. BIST 
schemes for memory systems are critically analyzed in this study by assessing fault 
models, memory system functional faults, test patterns/algorithms, and the various 
related concepts given in the literature. Characteristics of memory test algorithms are 
given. compared to each other with respect to their fault coverage. and analyzed for 
their applicability to BIST. The evaluation of different BIST schemes is based on the 
following: area overhead, fault coverage, te3t complexity, performance degradation., 
and the testing of the BIST circuitry. A novel BIST scheme for memory systems is also 
explored. In addition, for large memory testing and complex algorithms, parallel 
techniques are discussed. Finally, a guide to help design components of BIST for 
memory systems is presented. 
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1. I ntroductton 

Built-In Self Test (BIST) provides a system with the capability of testing itself and gives 
a "go/nogo" indication. To introduce BISI for memory systems, the following are 
discussed: architecture and operation of memory systems, overview of testing, and 
BIST. 

1. 1 Memory Systems 

A memory system consists of the following: a memory address register (MAR), address 
decoders, an array of memory cells, read/write logic in.eluding sense amplifiers, and a 
memory data register (MDR). See Figu.re 1.1. The organization of the memory system is 
N words, each b bits wide. When bis 1, the memory system is considered bit organized; 
otherwise the memory system is said to be word organized. In a bit organized memory 
system, each bit can be addressed individually, as compared to a word organized 
memory system. where all the bits in a particular word have the same address. 

N Addr. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
•I• I I • • e e I I• I I • e f I I I e I I •I• I• I I I e •••I•• e . . . . ' . . . . . . . . . . . . . . . . . . . . . . . 

f f f I t I t I f ...•.........•.•........•.••....••..... 
• • • I e I I e • ·:·:·:·:·,·:·:·:·:· ............•..•....••.•...•...•....... 

. . :.L:.lfv1emor1..1 1.:.L:. . . . . . . . . . . . . . 
· ·:t:·/Ct? 11 Arr a1..i":t:· 

I • • • I •••••••ttt•ttt•lttlt,1,ttttt••••••••••• . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
I I I I I t e I I 

······································· I I I I I I I I I 
e e a t t t I I e t I t a I t I e I t . . . . . . . . . 

······································· lo I t I I t I t I 
• I t t • I a I I t I t I I I I I I I . . . . . . . . . b bits 

\\•·ide 
r-"-, 

~1m11:~~~~i.::~:0.:r.~:111m1 .-. ~ 
f"UJIWe 1.1 : Overview of a Memory System: N words by b bits 

A memory qstem operates as follows: a read operation is performed by loading an 
address into the MAR, setting the read flag, and the resulting word is returned via the 
MDR; a write operation is accomplished by loading an. address into the MAR. loading the 
MDR with data, and setting the write flag. To understand how the hardware works, the 
operation of a static CMOS memory system will be reviewed [Mukherjee '86 ] . 

.c.:, 
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A six-transistor static CMOS memory rell and sense amplifier are shovn in Figure 1.2. 
The memory cell is a bistable circuit in which the state of conduction or lacJr. of 
conduction of a transistor determines the c~ntents of the stored information. Each 
memory cell contains two pairs of pmos and nmos transistors which are cross coupled. 
Each transistor pair is such that only one transistor, either the pmos or nmos, is closed 
at a time. Since this is a bistable circuit, when one side contains a logical 0, by having 
the pmos open and the nmos closed, the other side would contain a logical I by having 
the pmos closed and the nmos open. For example, if the nmos transistor on the left side 
is closed and the pmos transistor on the rigl1t side is closed. this would cause a 0( 1) to be 
put on the bit line B'(B) when that row is selected. In order to have a large number of 
cells on a chip, each memory cell is laid out as small as possible. Since the memory cell 
is small, it can only sink current, not source it, and therefore requires a sense 
ampJjfier to sense the information stored and drive the bit lines CB'. B). 

Row 
Se lee~ 

Vdd 

B' 

................................................. 

. Vdd 

-- . I I I I I I I I I I I I I I I I I I I I I I I I It•• I I I I I I I I I I I I I. I I I I I I• 

t I It I I t •II I It I t I I I I I I It I I I I a It I I I ,o I I I I I ,0 t . . . . . . . . . . • . . . . . . . 

. . . . . . . . 
; Sert:e-i 1 
: : . . . . . . . . , . - . . - . I I I I I I I I I I I I I I I I• I I I I I I I I I I I I It I I. I I I I I I I I 

B 

f'uJu,re 1.2: Six-transistor Static CMOS Memory Cell and Sense Amp 
~ ,-, 

The read operation of a memory cell is as follows: the sense signal is set low to allow the 
sense amplifier to float, and simultaneously the precharge signal is set low to 
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precharge the bit lines. (Note, the prechar1e tra..nsistors are made lar1e to allow the bit 
lines to charge up quickly). After precha.rging, the p.recha.rge signal is set high, 

thereby making the bit lines behave like capacitors. The row is then selected. 

Depending on the state of the memory cell, the current in one of the bit liLLes sinks 

through the ceJJ and turns on one of the pmos transistors in the sense amplifier (this 
reinforces the state of the high bit line); the sense line is then set high, which 

stabilizes the state of the sense amplifier. (The tra.nsistors in the sense amplifier are 

larger than those in the memory cell, and have the capability to drive the bit lines). 
The data on the bit lines are then selected through the column select, as will bti 
described below. 

The vrire operation is as follows (refer to Figure 1.3). The bit lines (B',B) and the i/o 
lines (L' .L) are precharged by setting the precharge line low: after precharging, the 
precharge signal is set high which makes the bit lines and the i/o lines behave like 

capacitors. Next, the R/W' and CE' (chip enable) signals are set low to enable the input 

transmission gates (Tl,T2); thereupon, one of the charged i/o lines discharges via one 

of the transmission gates (depending on the input data), leaving one line high and the 
othe.r o.ne low. Next, the column decoder connects one set of bit li.nes to the i/ o lines, 

which discharges one of the bit lines th.rough the same transmission gate. Then, the 
sense line of the sense amplifier is set high to help stabilize and drive the bit lines, as 

discussed previously. Finallyl the row decoder selects a particular row, and the data o.n 
the bit lines is then written into the memory cell by forcing the bistable circuit to the 
appropriate state. 

For a .read oparation, the R/W' line is set high and the CE' (chip enable) si1nal is set 
low. This disables the input transmission gates (Tl,T2) and enables the output 

transmission gate (T3). For a write operation, the R/W' and CE' signals are set low to 
enable tbe input transmission gates and disable the output transmission gate. This 
control logic, the i/o lines, and the sense aJnplifiers will be referred to as raad/write 
logic. Note: when reading or writing, all the memory cells in a particular row are 
selected at once, but only the bit lines of a particular memory cell are connected to the 

input/output data lines via the selected column decoder line. 

\. 
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T3 oil 

T Col uron Decoder 

F"~ 1.3: Organization of a Static RAM 

In almost all applications, word organized memories are used. However, word organized 
memories at the circuit-board level can be formed by interconnecting bit organized 
memory chips. See Figure 1.4, where msb stands for most significant bit and cs for chip 
select. 

Functional testing of a memory system, for the most pa.rt, ca.n be treated the same for 
both a board-lel·1ei memory system and a memory system within a chip. This is because 

.. the operation of the memories is the same: select an address and read(write) a word 
from(into) memory. There a.J'e however, some distinctions that can be made. For 
example, in Figure 1.-1, since this system is word organized with individual chips, it is 
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possible to test eight bits in parallel without concern for coupling between bits in the 
same word. In contrast. if this word organized memory was within a chip, then it 
makes sense to examine possible couplins vithin a wo.rd, since this type of fault is 
more likely to occur due to the layout and density of the cell array. 

t1AJ;~ 
msb ·· . ) 

' ,18 

--{>: 

cs 

\ 
I ) 
\ 
' _../' -

1 2 8 

Address Data 
~ out 256K 256K 256K - - • -x1 Bit x1 Bit • • • x1 Bit 

.. cs ~ cs - I- cs 

• 256K •• 256K - - 256K 
x1 Bit x1 Bit • • • xl Bit 

c·-· -cc· -.(' ... .j - L.:, ••..} 

t1DR 

f'i9u,re 1.4: 512K 18 Bit Memory System 

~ 
I 

-

-

) 
Low Order 
Memory 

I High OrdErr 
J t'-1err,or,d 

In this report. the memory system is assumed to be within a single chip, so that areas of 
concern such as physical layout of the cell array, decoders, etc., will be addressed. Also, 
it will be quite easy to apply any of the functional chip-level testing schemes to the 
board level. Keep in mind th.at it may be cost effective to implement some built-in 
functional testing schemes at the board or module level. rather than at the chii, level 
( due to extra pins, area overhead, etc. required otherwise). 
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1.2 0Yerv1ew of Testing 

Testing circuits consists of three parts: generating test vectors, applying the vectors to 
the circuit under test (CUT), and comparing the results. A simple block diagram is 
shown below: 

. . . . . . . . . . . . . . . 
:: Pattern :: . . 
:: Gener at ion:: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
t t t t t t t t t t I t t I • 

:.\ Circuit.:. . . . . . . 
··: Llnd.:-r =· .. . . - .. • ... 
• • ,r,. • • • • . T t. . 
It t • s t t ti ltttl 

. ,.. . . 

Fuju.re 1. 5: Block Diagram. of Testing 

The set of test vectors is usually generated by expensive automatic test equipment (ATE) 
and is applied to the CUT. The results of the input test vectors are then compared to a set 
of correct vectors that is usually stored in the ATE. The generation of the test vectors as 
well as handling the massive amounts of output data make testing of VLSI chips 
increasingly complicated, time consuming, and very costly. As the density of memory 
chips increases, testing them will be a major cost in the overall development. 
Therefore, new methods need to be developed and implemented. Currently, there is a 
trend to couple design together with testing, and this has led to Built-In Self Test (BIST). 

1.3 Bui1t-,n Se1f Test ( 81ST) 

A system containing BIST can test itself and provide a "go/nogo" indication. This is 
typically done at the functional level. Most BIST techniques test offline: the system is 
placed in a self-test mode, and usually a test pattern is gene.rated internally a.ad the.n 
eith,er compared to correct results or a signature analysis method is used. In either 
case, the system gives a go/nogo indication. Another type of BIST is called concurrent 
testing. This involves the capability of checking the circuit simultaneously with the .~ 
normal ope.ration. of the system. Should a non.-co.rrectible e.r.ro.r occur, the use.r would 
be notified. ·rhe major advaD.tage of the concur.rent checking method is the ability to 

~ 

detect intermittent f a.lJlts. For built-in self test of memories, only offline checking will 
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be discussed here. 

There are three components of BIST for memory systems: address generation, input 
data generation, and evaluation circuitry. The evaluation circuitry can be divided into 
two groups: direct ~omparison and data compression. Djrect comparison is 
accomplished by comparing expected data to the actual output data. Data compression 
techniques use either a linear feedback shift register (LFSR) or a multiple input 
signature register (MISR) to compress the output responses into a signature via 
polynomial division (refer to [Abraham ·s~] for more details on signature analysis). 
See Figure 1.6. USR and MISR work similarly: an init!al seed value is placed into the 
register, the testing begins and data compression is performed on the output data. After 
the test, the resulting signature left in the register is compared to a known signature 
for the fault-free system. 

Fi1ure t .6a: Linear Feedback Shift R91i1ter Pi1ure 1.6b: Multiple Input Signature Reaiater 

F~e 1. 6: Data Compression Techniques 

Both methods, direct comparison and data compression, have advantages and 
disadvantages. Direct comparison gives better fault coverage .. because there is .no 
aliasing which is inherent in data compression methods. Also there is no .need to 
initialize the signa(ure register with a seed value, and the signature does not have to be 
shifted out and compared to results that are stored elsewhere. Data compression 
techniques. however.. have the advantage of testing themselves during the data 
compression. This is important, since any extra BIST circuitry that is added must also be 
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tested, A memory system with DIST utilizing direct comparison is shown in Figure l.7aj 
and Fisure 1.7b shows a memory system using data compression. 

I I ft t t f I I It t I If t I It If I 

/ ', 
l Address : . 
1 G~ner ation ; 
\ ...................... / 

---... 

Input Dat~ Reg 

. . . . . . . . . 
I I I I I t t I t f f t I f I t I I I 

t I t t I t I t I 

······································· . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
I t I I I I t I I 

···:···:···:···:···:···:···:···:···:··· 
I t I Ill I I II I t I I f I I I I I I I 

I I I I t I I t I 

/ ........................ ' 
, ' 

~ .... l Input Data 1 . ' 

i Generation 1 
· .............................. / 

/ t It f I It I It I II I It ti I ti I I' 

/ '\ 

I MARI........ :::~::Tr·:1·erno·r~ .... T::~::: . . . . - .... 
·:·(·~ Ce 11 Arr a · ·:t:· 

Expected j 
Output Data 1 

Generation 1 , .......................... / ' .......................... '. -~ ...... . 
I t I I I I I f t 

I I t I I I I I I t I I I I I t I I I 
I I I I I I I I I a ....................................... 
I • • • f • I I I a . . . . . . . . . . . . . . . . . . . . 
I • • • I I I I I • 

······································· . . . :.:.:.:.:.:.:.:.:. .,,. 
. . • .... ·. · ·. i . . (.: ....... · .............. \ r/E·~~~·~~~ ....... ,i I Output Data Reg f .. ~ : Comparator ?·~t . [ - . \ ........................ / , Reg1ster · 

'••• ................ / 

f'~ 1. 711-: Memory BIST using Direct Comparison 

/ ...................... , .. 
! Address : . . 
1 Gener at ion 1 
.... / .........•.•••..•....• ---.... 
I MAR I I 

,/''······················, / ' 

Input Data Reg ~ .... l Input Data ! . . .. .. . . . + ; Gener atia:in ; . • . . . . . . . : . : . . . . : . ' . . . : . . . . . . . . ', / 
,. •ff f ••ff I• f ••I I I I.ff• f .•.•...•...........•...•...•.....•..... . . . . . . . • • . . . . . . . . . . . : . . . : . . . . . . . . . . ........•..............•............... . . . . . . ' . . . . . . . . ' : . . . . . . . . . . . . . . . . . . . .•.•..••••.••.••...........•.•.•....... 

.:.L:.11'1en;ory L:.L:. . . . . ... ' .... 
·:t:·j Ce 11 Arr a · ·:t:· ........... , ..... , ............ ~ ....... . . . . . . . . . . . . . . . . . . . ' . ' ...... 

I t I I I I I I I 

······································· • . . . . . . . . 
I I • I I I I I I I f • • f I I f f • 

f I I • I I I I I 

······································· . . . . . . . . . . : . . . : . : . . . . . . . : . : . . . . . .. .. . . . + 
...•••.•.•.....•••.•...•...••••.....•... 

/ ' I I i MISR - Output ': 
?utput Data Reg ..... l Data Compression ~ 

'········································ , .. 

f'~ 1. 7fJ: Memory BIST Using Data Compression 

Both approaches require some means for address generation and input data generation. 
The direct comparison method also must be such that the circuitry needed to gene.rate 
the expected output data is as simple as possible. The approach that should be used will 
depend on the test algorithm implemented. Ultimately, the assessment of different BIST 
schemes should be based on the following: area overhead, fault coverage, test time, 
performance degradation, and testing of the BIST circuitry. 
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2. Memory Testing 

In order to study memory testing, fault models, memory system functional faults, and 
test patterns/algorithms need to be discussed. In addition, the following terms need to 

be defined with respect to memory testing. Bit organized memories allow access to each 
individual cell, which makes it easier to test for cell interaction; word organized 
memories allow access to a word at a time, which makes testing of coupled cells within a 
vord more difficult since most algorithms only write a word of all O's or all 1 's. Test 
complexity or test time is given in terms of the number of addressable entities or words 
in a memory system (for bit organized, the word length is 1). A pseudo-random pattern. 
is a pattern which appears random, but can be reproduced. (In using a USR as an 
address generator, for example, all the addresses of the memo.ry are generated 
exhaustively, but in a pseudo-random fashion). A memary system. which under some 
faulty condition. reads more than. one cell with different values, results in the ANDin.g 
(ORing) of the selected cells is considered AND type (OR type). Address Scramblin1 is 
vhen the logical addresses do not map directly to the physical addresses. 

2. 1 Fault Models 

Fault models are logical representations of faults due to physical failures. The common 
fault models used to test the functionality of a memory system (listed in the order of 
increasing complexity) are the following: bridging faults, stuck-at faults, hold faults, 
destructive read faults. transition faults, coupling faults, and pattern-sensitivity faults 
(PSF). 

Brideine Faults Model 
.. 

There are two types of bridging faults: AND type bridging and OR type bridging. AND 
type bridging results in dominant O while OR type bridging results in dom.inant 1.. For 

l 

em.mple. if two leads are shorted (a.b). in AND type bridging the value out would be a 0. 
given that one of the leads was a 0. In OR type bridging, if one of the luads is a 1, then 
the value out would be a 1. Figure 2 .1 shows an AND type bridging fault. 
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fbpre 2 .1 : AND Type Brid1lll1 Fault 

Stuck-at Faults Model 

The stuck-at fault model assumes that one or more logic values in a memory system 

(including the address registers, decoders, etc.) cannot be changed. For example, one 

or more memory cells could be stuck at either a 1 or a 0. 

Bold Faults Model * 

A memory cell with a hold f au1t cannot retain either a one or zero state after some 
&mount of time. 

Destructive Read Faults Model• 

Data in a memory cell is destrqyed followiJlg a read operation. 

Transition Faults Model • 

A memory cell fails to undergo a 0->l or a 1->0 transition. 

* Distinctive to memory cell array faults 

1 1 



Coupled Faults Model .. 

A pair of memory cells (i,j) is coupled if a writing a value into one cell of the pair 

forces the logical state of the other cell. For example, if a 1 is written into cell i which 

forces cell j to some logical st.ate. say to a 0. then cell i and cell j are said to be coupled. 

This does not necessarily imply that a similar transition in cell j will influence cell i in 

a similar manner. 

Pattern-Sensitivity Faults (PSF) Model • 

The pattern-sensitivity fault model states that a memory cell is dependent on certain 

J)atterns of zeros. ones. and/or transitions in the other cells of the memory. This model 

also includes any failure of a read/write operation involving one cell caused by 

certain patterns of ones or zeros in the other cells of memory. Note: Coupled faults are 

a special case of PSF. Normally, for patten-sensitivity faults, one need only be 

concerned with either the physically adjacent or surrounding cells due to the nature 

of the physical faults. Figure 2.2 shows a diagram of adjacent and surrounding cells. 

1 2 3 
4 X 6 
7 8 9 

,, 

Cells 1-9 surround ce11 X 

Celts 2, 4, 6, 8 are adjacent to cell X 

FUJUre 2 .2: Adjacent and Surrounding Cells 

• Distinctive to memory cell array faults 
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2.2 Memory System Funot1onn1 Fnults 

As was discussed earlier, a memory system consi~ts of the following: a memory address 
register (MAR), address decoders, array of memory cells, read/write logic, and a 
memory data register (MDR). Refer back to Figure 1.1. The approach here will be to 
e:ia.mine how to test each component of the memory system and to note the equivalence 
between the component faults and the memory cell array faults. The fault coverage of 
each algorithm will then be discussed in Test Patrerns/ Algorithms. 

Memory Address Register (MAR) 

To test the functionality of the Memory Address Register (MAR), one need only verify 
that all addresses are accessed. This is because stuck-at or bridging faults in the MAR 
would cause some address or addresses to be inaccessible. One common approach for 
verifying that all addresses are accessed is to leave a "trail" of 1 ·s or o·s in each address 
and then to verify that the trail was left. A trail is made by initializing the memory to 
some value (say 0), then for all addresses: a) checking that we haven't al.ready been 
there l,y reading that value (0), and b) leaving some other value ( 1) behind as a trail. 
This method verifies that each address exists and is unique, a.nd it is use" in several 
march test patterns. 

Decoders 

To test the functionality of the decoders, one must detect stuck-at faults, accessing the 
wrong cell or cells, and certain coupling faults in the me11,iory cell array. With stuck-at 
or bridging faults, the decoders will either access .no cells (appear as memory cell 
stuck-at fault), will access the wrong cell or cells (covered in MAR faults), or it will 
access the correct cell as well as another cell or cells (appear as coupling faults ia the 
memory cell array). In the case of multiple accessing in.eluding the correct cell, two or 
more decoder lines would be activated causi.Jlg the same value to be written into more 
than one cell (this is equivalent to coupling of cells with Ai being loaded with some 
value V and Aj also being loaded with the same value V). In addition, this type of 
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failure also implies that if Ai is coupled to Aj, then Aj is coupled to Ai. Note, when a read 
operation involves the selection of two cells containing different values, the result will 
either be a logical 1 or O depending if the memory is AND type or OR type. 

Read/Write Lo1ic (incluclin1 sease-amplifiers) 

-
To test the ru·nctionality of the read/write logic, one must detect stuct-at faults and 
certain coupling faults in the memory cell array. Stuck-at faults in the read/write 
logic will appear as stuck-at faults in the memory cell array. For bit organized 
memories, bridging faults in the read/write logic will appear as coupling in. the 
memory cell array with the coupled cells being read or written the same value V. Note, 
the case where a reM operation involves the selection of two cells containing different 
values, the result will either be a logical 1 or O depending if the memory is AND type or 
OR type. For word organized memories, bridging faults can either appear as coupling 
within a word or coupling between words of the memory array. In addition, this type of 
failure for either organization implies that if Ai is coupled to Aj, then Aj is coupled to Ai 
vith the same value being written iilto both cells. 

Memory Data Re1ister (MDR) 

To test the functionality of the MDR, one must detect stuck-at faults and certain 
coupling faults in the memory ce11 array. Stuck-at faults in the MDR will appear as 
stuck-at faults in the memory cell array, and bridging faults in the MDR will appear as 
coupling within a word of the memory cell array (for word organized). I.n addition, this 
type of failure also implies that if Ai is coupled to Aj, the.n Aj is coupled to Ai, with the 
same value being written into both cells. 

Memory Cell Array 

To test the functionality of the memory cell array, one must detect stuck-at, bridging. 
transition, hold, destructive read., coupling, and pattern-sensitive faults. Stuck-at faults 
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can bt detected by writing a O and a l into each cell and verifying that a O and a 1 have been stored. Bridging faults can be modelled as coupling faults in the following way: Ai is coupled to Aj also implies that Aj is coupled to Ai, and the same value is written into both cells. Transition faults can be detected by forcing each cell to undergo both a 0->1 and a 1->0 transition and verifying each transition. Hold faults can be detected by writing a O and a 1 into each cell, waiting some time h, and then verifying that a O and a 1 remain. Destructive read faults can. be detected b·y reading ea.ch cell tvice while each cell contains both a O and a 1. Coupling faults can be detected by writing all the combinations of a O and a 1 into each pair of cells. and reading after each write operation. Pattern-sensitive faults can be detected by writing patterns into the physica.1 neighborhood ( either adjacent or surrounding) of a target eel!.. and then reading, the cells of that neighborhood. Adjacent pattern-sensitive faults will be referr«~d to as APSFs and surrounding pattern-sensitive faults as SPSFs. 

As can be seen, to detect all the possible faults within a memory system, one need only cover the memory address register faults and the memory cell array faults. Obviously~ to test all the possible memory cell array failures is unrealistic since exhaustively testing a memory requires 2° operations (where n is the total .number of bits in the memory). Therefore, a number of algorithms have been developed to test a memory system based on a fault model or a combination of fault models. Most of the algorithms described in the literatur~ do not cover pattern-sensitive faults. A comparison of these test patterns/algo.rithms is based on the coverage of the functional faults within a memory system (See Test Patterns/ Algorithms). 
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2.3 Test Pntterns/Algor1thms 

There are many test patterns available for testing RAMs. Each of these patterns off er 
tradeoffs between test comple1ity and fault coverage. A memory fault sjmulator was 
developed to help analyze the fault coverage of the algorithms. See Appendj1 A. The 
following are some of the RAM test patterns (given in the order of increasing 
complexity): Pseudo-random, MSCAN, Checkerboard, SMTP, Modified Checkerboard, 
Marchi, March2, March3. March4, Marinescu. Nair et al., GALPROCO, Walking l's and 
O's, and GALPAT. To be consistent in describing the different algorithms, unless 
otherwise s~d the following convention will be used: 

w Write 

R Read 

0 Word of all O's 

1 Word of all I's 
I Word of mi1ed o·s and l's 
I' Complemented X 

For describing coupling faults. the following notation wll be used: Cell Ai coupled to 
cell Aj implies that when cell Ai is loaded with some value V (Ai->V), then cell Aj will be 
forced to some value X (Aj->X). The asteriks, in the discussion below. mark coupling 
with the same value (ie; X-V). 

Also for consistency, the fault coverage will be in terms of all the possible faults within 
a memory system (See 2.2 Memory System Functional Faults). Hold faults will not be 
discussed explicitly since each algorithm can be modified to delay reading some amount 
of time. The summary of fault coverage will be in terms of the component faults within 
a bit orga.nized memory system siace the coverage of coupling faults for word 
organized memories is the same for all test algorithms. The summary of fault coverage 
can easily be eltended to word organized memories. A description of each of the 
algorithms follow: 
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MSCAN (Memory Scan); 0(1n) [Breuer '76) [Abadjr '831 

Algorithm: 

For all addresses in ascending order; WO. RO. Wl. Rt 

Memory Address Register (MAR) Failure 

MAR faults are not detected. 

Memory Cell Failure 

Stuck-at faults are detected because both a O and a 1 are written into all addresses 
and verified. 

Transition faults are not completely detected since each cell fails to undergo a 1->0 
transition. 

Destructive Read faults are not detected. 

Coupled Cells - Ai and Aj Ai and Aj 

in different words within a word 

*a) Ai->l Aj ->1 Ai< Aj Not Detected Not Detected 
b) Ai->1 Aj ->O Ai< Aj Not Detected Detected 

*c) Ai ->0 Aj ->0 Ai< Aj Not Detected Not Detected 
d) Ai->0 Aj ->l Ai< Aj Not Detected Detected 

*e) Ai->1 Aj ->1 Ai> Aj Not Detected Not Detected 
f) Ai->l Aj ->0 Ai> Aj Not Detected Detected 

*g) Ai->O Aj ->0 Ai> Aj Not Detected Not Detected 
h) Ai->O Aj ->1 Ai >Aj Not Detected Detected 

,r 
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Summary of Fault Coverqe 

Memory Address Reg : Not Detected 
Decoders : St11ck-at-O 
Read/Write Logic : Stuck-at 

Memory Data Reg : Stuck-at 

Memory Cell Array : Stuck-at 

Checkerboard: 0(:fn) [Sun '8.j) [Breuer '76) 

1. For all addresses: write a checkerboard" pattern (in physical memory) 
2. For all addresses; read checkerboard pattern 

3. For all addresses; write a complemented checkerboard pattern 
~- For all addresses; read complemented checkerboard pattern 

t) 

• A checkerboard pattern consists of alternating O's and 1·s in odd rows and the 
complement (alternate 1 ·sand O's) in the even rows. 

Memory Address Register (MAR) Failure 

Stuck-at faults in the MAR are not detected by the checkerboard pattern. For 
example, if the most significant bit of the MAR is stuck-at 0, only the low order 
addresses are accessed, but these a.re not detected due to the symmetry of the 
checkerboard pattern. MAR bridging faults are detected. 

Memory Cell Failure 

Stuck-at faults are d~tected. In step 1, a O and 1 is written into every other address 
and verified in step 2. In step 3, a 1 and O is written i.Jlto every other address and 
verified in step 4. 

... 
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Transition faults are not necets1rily detected siace each cell does .not under10 both 
a 0->1 and a 1->0 transition. 

Destructive Read faults are not detected. 

Coupled Cells - Ai and Aj Ai and Aj 

in different words within a wont+++ 

*a) Ai->l Aj ->1 Ai< Aj Not Detected Not Detected 
b) Ai ->1 Aj ->O Ai< Aj Not Detected Detected in 2,4 

*c) Ai->0 Aj ->0 Ai< Aj Not Detected Not Detected 
d) Ai->0 Aj ->1 Ai <Aj Not Detected Detected in 2,.C 

*e) Ai->1 Aj ->1 Ai >Aj Detected in 2+ ,4+ Not Detected 
f) Ai ->l Aj ->0 Ai> Aj Detected in 2• ,4+ + Detected in 2,4 

*g) Ai->0 Aj ->0 Ai> Aj Detected in z+ .~+ Not Detected 
h) Ai ->0 Aj ->1 Ai> Aj Detected in 2"' . .i++ Detected in 2,4 

+ For adjacent cells 

++ Fo.r surrounding cells 

+++ Assuming the all O and 1 words are written/read to obtain the 

checkerboard pattern. Depends on physical layout of memory. 

Summary of Fault Coverage 

Memory Address Reg : Bridging 

Decoders : Stuck-at & Bridging 

Read/Write Logic : Stuck-at & Bridging 

Memory Data Reg 

Memory Cell Array 

: Stuck-at 

: , Stuck-at, Bridging, Mininlal Coupllil1, 

Some APSFs, Some SPSFs 
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SMTP (Simple March Test Pattern): Q(ln) [Sun ·s.cJ 

1. Initial iu memory to O 

2. For all addresses in ascending order; RO, Wl 

3. For all addresses in ascending order; Rl, WO 

Memory Address Register (MAR) Failure 

MAR faults a.re detected. Step 1 will set all addresses to O's, and step 2 will verify the 

MAR by reading the O's and leaving a trail of 1 's. 

Memory Cell Failure 

Stuck-at faults are detected. In step 1, a O is written into all addresses and verified in. 

step 2. In step 2, a 1 is written into all addresses and verified in step 3. 

Transition faults are not ccmpeleUy detected since although each cell undergoes 

both aO->l and a 1->0 transition (steps 1-3), the 1->0 tra.nsitio11 is not verified. 

Destructive Read faults are not detected. 

Cou pied Cells - Ai and Aj Ai and Aj 

in different words within a word 

*a) Ai->1 Aj->1 Ai <Aj Detected in step 2 Not Detected 
b) Ai->1 Aj ->0 Ai <Aj Not Detected Detected in step 3 

* c) Ai->0 Aj ->0 Ai< Aj Detected in step 3 Not Detected 
d) Ai->0 Aj ->l Ai< Aj Not Detected Detected in step 2 

*e) Ai->1 Aj->1 Ai >Aj Not Detected Not Detected 
f) Ai->l Aj ->0 Ai >Aj Detected in step 3 Detected in step 3 

*1) Ai ->0 Aj->0 Ai> Aj Not Detected Not. Derected 
h) Ai ->O Aj ->1 Ai >Aj Detected in step 2 Detected in step 2 
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Summary of Fault Covera,e 
., 

Memory Address Re1 : Stuct-at & Bridging 
Decoders 

Read/Write Logic 

Memory Data Reg 

Memory Cell Array 

: Stuck-at & Bridgine 
: Stuck-at & Bridging 

: Stuck-at 

: Stuck-at, Bridging, Some Transition, 

Minimal couplina 

Modified Checkerboard: 0(8n) (Jain '86) 

In this algorithm, a checkerboard pattern is written into physical memory such 

that the bit lines (B', B) of adjacent memory cells contain a checkerboard pattern. 

The approach is to write the all-1 or all-0 word into the appropriate addresses to 

achieve this pattern, and therefore requires knowledge of the physcial layout. (The 
architecture of this memory system is described in section 3.2). 

1. For all addresses in ascending order 

1A. If address• (1,2,3,4),(9,10,11,12), ... Then WO 

Else if address z (5,6,7,8),( l 3,l.f,15.16), ... Then Wt 

1B. Read address (either RO or Rt depending on address) 

2. For all addresses in ascending order 
2A. Read address 

2B. If address= (l,2,3.-4),(9,10,11,12), ... Then Wl 

Else if address• (l,6,7,8),( 13,1.i,ll,16), ... Then l'O 
3. For all addresses in ascending order 

3A. Read address 

3B. Read addresses descending order 

.f. For all addresses i.n descending order 

,.,, .... , ... ,.. 

4A. If address· (1.2,3,4),(9,10,l l,l2), ... Then WO 

Else if address - (5,6,7,8),( 13,14.1,.16), ... Then Wt 
.fB. Read address 
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Memory Address Re1ister (MAR) Failure 

Stuck-at faults in the MAR are not detected due to the symmetry of the 
checkerboard pattern. MAR bridging faults are detected. 

Memo.ry Cell Failure 

Stuck-at faults are detected since both a O and a 1 are written into all addresses and 
verified. 

Transition f&t!!ts are detected sjnce each cell undergoes both a 0->1 and a 1->0 
,. 

transition (steps 1-~ ), each followed by a read operation. 

Destructive Read faults are detected since each cell is read Wice afte.r containing 
both a O and a 1. 

Coupled Cells - Ai and Aj Ai and Aj 

in. different words within a word+++ 

*a) Ai->1 Aj ->1 Ai <Aj Not Detected Not Detected 
b) Ai->l Aj ->O Ai< Aj Not Detected Detected in 1,2 

*c) Ai->0 Aj ->0 Ai< Aj Not Detected Not Detected 
d) Ai->0 Aj ->l Ai< Aj Not Detected Detected in 1,2 

*e) Ai->l Aj ->l Ai >Aj Detected 2-4+ Not Detected 
f) Ai->1 Aj ->0 Ai >Aj Detected 2--4+ + Detected in 1,2 

*g) Ai->O Aj->0 Ai >Aj Detected 2-4+ Not Detected 
h) Ai->0 Aj ->l Ai >Aj Detected 2-..i+ + Detected in 1,2 

+ For adjacent u.d surrounding cells but in differeat rows 
++ For cells within the sam.e row 

+++ Assuming the all O and 1 words are written/read to obtain the 

checkerboard pattern. Depends on physical layout of memory. 
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Summary of Fault Coverage 

Memory Address Re1 : Brid1in1 
Decoders 

Read/Write Logic 

Memory Data. Reg 

Memory Cell Array 

March 1: 0(9n) [Green '861 

1. Initialize memory to 0 

: Stuck-at & Bridging 

: Stuck-at & Bridging 

: Stuck-at 

: Stuck-at. Bridein1. min Couplin1. Destructive React 
Transition, Some APSFs, Some SPSFs 

2. For all addresses in ascending order; RO. Wl 

3. For all addresses in ascending order; Rt, WO 
. 

. ~. For aJl addresses in descending order; RO, Wt 

:,. For all addresses in descending order; Rt, WO 

Memory Address Register (MAR) Failure 

Steps 1-3 are ide~tical to the SMTP; therefore March 1 will detect any MAR failures. 

Memory Cell Failure 

Stuck-at faults are detected since steps 1-3 are identical to SMTP. 

Transition faults are detected since each cell undergoes both a 0->1 and a 1->0 

transition (steps 1-~), each followed by a read operation. 

Destructive Read faults a.re aot detected. -
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Coupled Cells - Ai and Aj Ai and Aj 
in different words within a word 

*a) Ai->1 Aj ->1 Ai< Aj Detected in step 2 
b) Ai ->l Aj ->O Ai< Aj Detected in step ~ 

•c) Ai->O Aj ->O Ai< Aj Detected in step 3 
d) Ai ->0 Aj ->1 Ai< Aj Not Detected 

•e) Ai ->l Aj ->1 Ai> Aj Detected in step ~ 
f) Ai ->1 Aj ->O Ai> Aj Detected in step 3 

*g) Ai->O Aj ->0 Ai> Aj Detected in step ~ 
h) Ai->0 Aj ->1 Ai> Aj Detected in step 2 

Summary of Fault Coverage 

Memory Address Rei : Stuck-at & Bridging 
: Stuck-at&: Bridging 

: Stuck-at & Bridging 

: Stuck-at 

Not Detected 

Detected in step 3 
Not Detected 

Detected in step 2 

Not Detected 

Detected in step 3 
Not Detected 

Detected iJl step 2 

Decoders 

Read/Write Logic 

Memory Data Reg 
Memory Cell Array : Stuck-at, Bridging, Transition, most Coupling 

March 2: 0(11n) [Green '86) 

1. Initialize memory to 0 
Z. For all addresses in ascending order; RO 
3. For all addresses in ascending o.rder; RO. WI 
4. For all addresses in ascending order; Rl 
~. For all addresses in. ~ce.ndi.nJ order; Rl, WO 

6. For a!l addresses in descending order; RO, Wt 
7. For all addresses iJl descending order; RI. WO 
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Memory Address Register (MAR) Failure 

MAR failures are detected because step 3 will leave a trail of 1 's, and step ~ will 
verify the t.rajJ of 1 's. 

Memory Cell Failure 

Stuck-at faults are detected. In step 1, a O is written into all addresses and verified in 
step 2. In step 3. a 1 is written into all addresses and verified in step 4f. 

Transition faults are detected since each cell undergoes both a 0->1 and 1->0 
transition (steps 1,3,,,6), each followed by a read operation. 

Destructive Read faults are detected since each cell is read twice while containing 
both a O and a 1 (steps 2,3.~,,). 

Coupled Cells - Ai and Aj Ai and Aj 
in different words within a word 

*a) Ai->1 Aj ->1 Ai< Aj Detected in step 3 Not Detected 
b) Ai->l Aj ->O Ai< Aj Detected in step 7 Detected in step 4 

*c) Ai->O Aj ->O Ai< Aj Detected in step 5 Not Detected 
d) Ai ->0 Aj ->1 Ai< Aj Not Detected Detected in step 2 

*e) Ai->l Aj ->l Ai> Aj Detected in step 6 Not Detected 
f) Ai->1 Aj ->O Ai> Aj Detected in step 4 Detected in step 4 

*g) Ai->0 Aj ->0 Ai> Aj Detected in step 7 Not Detected 
h) Ai->0 Aj ->1 Ai> Aj Detected in step 2 Detected in step 2 
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Summary of Fault Coverqe 

Memory Address Reg : Stuck-at & Brid1ing 

Decoders : Stuck-at & Bridaing 

Read/Write Logic : Stuck-at & Bridging 
Memory Data Reg 

Memory Cell Array 

March 3: 0(14n) [Breuer '76] 

1. Initialize memory to 0 

: Stuck-at 

: Stuck-at, Bridging, Destructive Read, Transition, 
Most Coupljng 

2. For all addresses in ascending order; RO, Wl, Rt 

3. For all addresses in descending order; RI, WO, RO 
4. Initialize memory to 1 

~. For all addresses in ascending order; Rl, WO, RO 

6. For a11 addresses in descending order; RO, Wt, Rl 

Memory Address Register (MAR) Failure 

MAR faults are detected. Step 1 will set all addresses to 0. Step 2 will verify the MAR 
by reading the O's and leaving a tra,jJ of 1 ·s. 

Memory Cell Failure 

Stuck-at faults are detected. In step l, a O is written into all addresses and verified in 

step 2. In step 2, a 1 is written in.to all addresses and then verified. 

Transition faults are detected since each cell undergoes both a 0->1 and a 1->0 
transition (steps 1-3), each followed by a .read ope.ration. 

Destructive Read faults are detected since each cell is read twice while containing 
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both a O and a 1 (steps 2#3#~.6). 

Coupled Cells - Ai and Aj Ai and Aj 

in different words within a word 

*a) Ai->1 Aj ->1 Ai< Aj Detected in step 2 
b) Ai->1 Aj ->0 Ai< Aj Not Detected 

*c) Ai->O Aj ->0 Ai< Aj Detected in step ~ 
d) Ai->O Aj ->1 Ai< Aj Not Detected 

*e) Ai->1 Aj ->1 Ai> Aj Detected in step 6 

f) Ai->1 Aj ->O Ai> Aj Detected in step 3 
*s) Ai->O Aj ->O Ai> Aj Detected in step 3 
h) Ai ->0 Aj ->l Ai> Aj Detected in step 2 

Summary of Fault Cove.rage 

Memory Address Reg : Stuck-at & Bridging 

Decoders : Stuck-at & Bridging 

: Stuck-at~ Bridging 

: Stuck-at 

Not Detected 

Detected in step 2 

Not Detected 

Detected in step 2 

Not Detected 

Detected in step 2 

Not Detected 

Detected in step 2 

Read/Write Logic 

Memory Data Reg 

Memory Cell Array : Stuck-at, Bridaing, Destructive Read, 
·-

Transition, Some Couplin1 

March 4: 0(1:,A). [Pradham 186) 

1. Initialize memory to 0 

2. For all addresses in ascending order; RO, Wl, WO, \Vl 

3. For atl addresses in ascendine order; Rt, WO. Wt 
4. For all addresses in descendins order; RI, \VO, Wl,WO 

5. For all addresses in descending order; RO, Wl, WO 
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Memory Address Register (MAR) Failure 

MAR faults are detected. Step 2 will leave a trail of 1 'sand step 3 will verify that th, 
trail of 1 's was left. 

Memory Cell Failure 

Stuck-at faults are detected. In step 1, a O is written into all addresses and verified in 

step 2. In step 2, a 1 is written into all addresses and verified in step 3. 

Transition faults are detected since each cell undergoes both a 0->l and a 1->0 

transition (steps 1-5), each followed by a read operation. 

Destructive Read faults are not detected. 

Coupled Cells - Ai and Aj Ai and Aj 

in different words within a word 

*a) Ai->l Aj ->l Ai< Aj Detected in step 2 Not Detected 

b) Ai->1 Aj ->O Ai< Aj Detected in step 3 Detected in step 3 

*c) Ai->() Aj ->0 Ai< Aj Detected in step 3 Not Detected 

d) Ai->O Aj ->l Ai< Aj Detected in step 2 Detected in step 2 

*e) Ai->1 Aj ->l Ai> Aj Detected in step ~ Not Detected 

f) Ai->1 Aj ->0 Ai> Aj Detected in step 3 Detected in. step 3 

*g) Ai->O Aj ->0 Ai >Aj Detected in step 3 Not Detected 

h) Ai ->O Aj ->1 Ai> Aj Detected in step 2 Detected in step 2 
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Summary of Fault Coverage 

Memc,r.y Address Reg : Stuck-at & Bridging 

Decoders : Stuck-at & Bridging 
Read/Write Logic : Stuck-at & Brideina 
Memory Data Reg : Stuck-at 

Memory Cell Array : Stuck-at, Bridging, Transition, Coupling 

Marinescu: 0(17n) (Marinescu '82] [Nicolaidis ·s~] 

1. Initialize memory to 0 

2. For all e.ddresses in ascending order; RO, Wl, WO, Wl 
3. For all addresses in ascending order; Rl, WO, RO, Wl, Rl 
4. For all addresses in descending order: Rl. WO, Wl,WO 
~. For all addresses i.n descending order; RO. WI. WO 

Memory Address Register (MAR) Failure 

MAR faults are detected. Step 2 will leave a trail of 1 'sand step 3 will verify that the 
trail of 1 's was left. 

Memory Cell Failure 

Stuck-at faults are detected. In step 1, a O is written into all addresses and verified in 
step 2. In step Z, a 1 is written into all addresses and verified in step 3. 

Transition faults are detected since each cell undergoes both a 0->1 a.nd a 1->0 
transition (steps 1-3), each followed by a read operation. 

Destructive Read faults are not completely detected: each cell is read twice after 
containing a 1, but .not after containing a 0. 
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Coupled Cells - Ai and Aj AJ ud Aj 
ia djff ere at wo.rcll within a word 

*a) Aj ->1 Aj ->l A.i < Aj Detected in step 2 Not Detected 
b) Ai->l Aj ->O Ai< Aj Detected .in step 3 Detected in step 3 

*c) Ai->O Aj ->O Ai< Aj Detected in step 3 Not Detected 
d) Ai->O Aj ->1 Ai< Aj Detected in step 2 Detected in step 2 

*e) Ai ->1 Aj ->1 Ai> Aj Detected in step ~ Not Detected 
f) Ai->1 Aj ->O Ai> Aj Detected in step 3 Detected in step 3 

*1) Ai->0 Aj ->0 Ai> Aj Detected in step 3 Not Detected 
h) Ai->0 Aj ->1 Ai> Aj Detected in step 2 Detected iJl step 2 

Summary of Fault Coverqe 

Memory Address Ree : Stuck-at & Brideine 
Decoders 

Read/Write Logic 

Memory Data Reg 

Memory Cell Array 

: Stuck-at & Bridging 

: Stuck-at & Bridging 

: Stuck-at 

: Stuck-at, Bridging, Some Destructive Rea,I. 
Transition, Couplins 

30 

n 



' 

Nairotat: 0(30n)[N&ir'781 

The al1orithm is shown in the fi1ure below: 

Cell lnitializE Sequence 1 Sequence 2 Sequence 3 Sequence 4 • 
1 0 Rt R R' R Rt R' 
2 0 Rt R R' R Rt R R' R 
3 0 Rt . R' . . R . R 

. . . . . . . . . . 
. . . . . . . . . 
. R . . . R Rt . R' . 

n-1 0 Rf R R' R Rf R R' R 
n 0 Rt R' Rt R R' R 

---,- Ti me 

Cell Sequence 5 Sequence 6 Reset Sequence 7 Sequence 8 • 
1 Rt' R Rt' 1 R't R R't 
2 Rf' R R'' R 1 R't R R'' R 
3 Rt' . . R 1 R't . . R 

. . . . . . . . . . 
. . . . . . . . . . 
. R Rf' . . R R'' . . . 

n-1 Rt' R Rt' R 1 R't R R't R 
n Rf' Rt, R 1 R'f R'' R 

-4 Ti rne 

R Read 
t "N'rit~ a 1 

Nair, Thatte, and Abraham's Testing Procedure [Nair et al. 1978) 
; ' 'vlrite a 0 

FUJI'", 2.3: Nair, Thatte, and Abraham's AJ1orithm 
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Memory Address Register (MAR) Failure 

MAR faults are detected in sequence 1 by leaving a trail l's. 

Memory Cell Failure 

Stuck-at faults are detected. Initially, a O is written into all addresses, and then 

verified in sequence 1. Sequence 1 also writes a 1 into all addresses and verifies it. 

Transition faults are detected since each cell undergoes both a 0->1 and a 1->0 

transition (initalize through sequence 2), each followed by a read operation. 

Destructive Read faults are detected since each cell is read twice while containina 

both a O and a 1 (sequences 1-3). 

Coupled Cells - Ai and Aj 

in different words 

*a) Ai->1 Aj ->1 Ai< Aj Detected in Sequ. 1 
b) Ai ->1 Aj ->0 Ai< Aj Detected in Sequ. 3 

*c) Ai->O Aj ->O Ai< Aj Detected in Sequ. 2 
d) Ai ->O Aj ->1 Ai< Aj Detected in Sequ. " 

*e) Ai->1 Aj ->1 Ai> Aj Detected in Sequ. 3 
f) Ai->l Aj ->0 Ai >Aj Detected in Sequ. 1 

*g) Ai->O Aj ->O Ai> Aj Detected in Sequ. -4 
h) Ai ->0 Aj ->1 Ai> Aj Detected in Sequ. 1 

Summary of Fault Coverage 

Memory Address Reg : Stuck-at & Bridging 

Decoders 

Read/W ritd Logic 

Memory Data Reg 

: Stuck-at & Bridging 

: Stuck-at & Bridging 

: Stuck-at 
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Ai and Aj 

within a word 

Not Detected 

Detected Sequ. 1 

Not Detected 

Dete_cted Sequ. 1 

Not Detected 

Detected Sequ. 1 

Not Detected 

Detected Sequ. 1 



Memory Cell Array : Stuck-at, Brid1in1. Destructive Read. Transitioa. 
CoupliJlg 

GAi.PROCO: 0C~*C3n•2*n312>> (Daehn '861 

1. Initialize memory to 0 

2. For all columns: 
2. For all rows: 

2a. RO 

2b. Wl 

2c. RO for aJl other columns~ RI for Test bit 
2d. RO for all other rows, Rt for Test bit 

2e. WO 

2f. RO 

3. For all addresses (rows & columns) RO 
4. Initialize memory to 1 

,. Fo.r all colum.ns: 

,. For all rows: 

~a. RI 
~b. WO 

~c. Rl for all other columns, RO for Test bit 
,d. Rl for all other rows, RO for Test bit 

~e. Wl 

~f. RI 
6. For all addresses (rows & columns) RI 

Memory Address Re1ister (MAR) Failure 

MAR f au1ts are detected. 

Memory Cell Failure 
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Stuck-at faults are detected. In step 1, a O is written into all addresses and verified in 

step 2a. In step 2b, a 1 is vritten into all addresses and verified in step 2c. 

Transition .faults are detected since each cell under1oes both a 0->1 and a 1->0 
tra!lsition (steps 1-2f), each followed by a read operation. 

Destructive Read faults are detected since each cell is read twice while containin1 
both a O and a 1 (steps 2c+. 2d+ .. 3. 5c+, ~d+, 6). 

Coupled Cells -

*a.) Ai->1 Aj ->1 

b) Ai ->1 Aj ->0 

*c) Ai->0 Aj ->0 

d) Ai->{) Aj ->1 

*e) Ai->1 Aj ->1 
.. f) Ai->1 Aj ->0 

*1) Ai ->O Aj ->O 

h) Ai ->O Aj ->1 

Ai a.nd Aj 

in different words 

Ai ( Aj Detected in 2a, 2c + ,2d+ 

Ai< Aj Detected in ~a.~c + ,5d+ 

Ai< Aj Detected in ~a.'.5c + .,d. 
Ai< Aj Detected in 2a. 2c + .2d+ 

Ai> Aj Detected in 3, 2c• ,2d+ 

Ai> Aj Detected in ,a,,c + ,,d+ 

Ai> Aj Detected in 6.5c + .5d+ 

Ai> Aj Detected in 2a, 2c + ,2d+ 

Ai and Aj 

within a word 

Not Detected 

Detected in 2C 

Not Detected 

Detected in 2F 

Not Detected 
(l, 

Detected in ZC 

Not Detected 

Detected .iJl 2F 

+ For coupling within the same row or column. 

Summary of Fault Coverase 

" 

Memory Address Reg : Stuck-at & Bridging 

Decoders 
Read/Write Logic 

Memory Data Reg 

Memory Cell Array 

: Stuck-at&: Bridging 

: Stuck-at & Bridging 

: Stuck-at 

: Stuck-at, Bridging, Destructive React Transition, 

Coupli11g, Some APSFs 
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WaJtina 1 'sand O's: 0(2n2 • 6n) [Breuer '761 

1. Initialize memory to 0 

2. For all addresses in ascendine order: 

2a. Wt 

2b. RO for all other addresses (Tests that no cell is disturbed) 

2c. Rl (Tests that the test bit is still correct) 

2d. WO 

3. Initialize memory to 1 

4. For all addresses in ascending order: 

.fa. WO 

4b. Rl for all other addresses (Tests that no cell is disturbed) 

4c .. RO (Tests that the test bit is still correct) 

4d. Wl 

Memory Address Register (MAR) Failure 

MAR failures are detected. 

Memory Cell Failure 

Stuck-at faults are detected since both a O and a 1 are written into all addresses a.nd 

then verified (steps 1-2d). 

Transition faults are detected since each cell undergoes both a 0->1 and a 1->0 

transition (steps 1-2d). each followed by a read operation. 

Destructive Read faults are detected since each cell is read twice while containing 

both a O and a 1 (steps 2b, ,tb). 

'· 
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Coupled Cells - Ai and Aj Ai and Aj 
itl different words withiA a word 

*a) Ai->1 Aj ->1 Ai< Aj 
\ 

Detected in step 2b Not Detected 
b) Ai->l Aj ->O Ai< Aj Mostly Detected .f b Detected in 2c 

*c) Ai ->O Aj ->O Ai< Aj Detected in step .fb Not Detected 
d) Ai->0 Aj ->1 Ai< Aj Mosily Detected .fb Detected in 2b 

•e) Ai->1 Aj ->1 Ai> Aj Detected in step 2b Not Detected 
f) Ai->1 Aj ->O Ai> Aj Detected in step 4b Detected in 2c 

*1) Ai->O Aj ->O Ai> Aj Detected in step .fb Not Detected 
h) Ai->0 Aj ->1 Ai> Aj Detected in step 2b Detected in 2b 

Summary of Fault Coverage 

Memory Address Re1 : Stuck-at & Bridging 
Decode.rs 

Read/W .rite Logic 

Memory Data Reg 

Memory Cell Array 

: Stuck-at & Bridging 

: Stuck-at & Bridging 

: Stuck-at 

: Stuck-at, Bridging. Destructive Read. 
Transition, Most Coupling, Some APSFs, Some SPSFs 
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GALPAI: 0(2n2 • Sn) (Breuer '761 [Pradham '861 

1. Initialize memory to O 
2. For all addresses in ascendin1 order: 

2a. Wt 

2b. For all other addresses; RO and verify RI for test address 
2c. Rl (Tests that the test bit is still correct) 
2d. WO 

3. Initialize memory to 1 

-f. For all addresses: 

~a. WO 

.ifb. For all other addresses; RI and verify RO for test address 
4c. RO (Tests that the test bit is still correct) 
~d. Wt 

Memory Address Register (MAR) Failure 

MAR failures are detected. 

I Memory Cell Failure 

Stuck-at faults are detected. Both a O and a l is written into all addresses and 
verified (steps 1-Zd). 

Transition faults are detected since each cell under1oes both a 0->l and a 1->0 
tran.sition (steps 1-Zd). 

Destructive Read faults are detected since each cell is read twice while containia1 
both a O and a 1 (steps 2b, 2c, 4b, 4c). 
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Coupled Cells - Ai and Aj Ai and Aj 

in different wo.rds within a wo.rd 

4a) Ai ->1 Aj ->1 Ai< Aj Detected in step 2b Not Detected 
b) Ai ->l Aj ->0 Ai< Aj Mostly detected ~b Detected in 2b 

*c) Ai ->O Aj ->O Ai< Aj Detected in step .fb Not Detected 
d) Af ->() Aj ->l Ai< Aj Mostly detected 2b Detected in 2b 

*e) Ai->l Aj ->l Ai> Aj Detected in step 2b Not Detected 
f) Ai->1 Aj ->O Ai> Aj Detected in step 4b Detected .in 2b 

*g) Ai->O Aj ->0 Ai> Aj Detected in step -fb Not Detected 
h) Ai ->0 Aj ->l Ai> Aj Detected in step 2b Detected in 2b 

Summary of Fault Coverage 

Memory Address Reg : Stuck-at & Bridging 
Decoders 

Read/Write Logic 

Memory Data Reg 

Memory Cell Array 

: Stuck-at & Bridging 

: Stuck-at & Bridging 

: Stuck-at 

: Stuck-at, Bridging. Destructive Read, 

Transition, Most Coupling, Some APSFs, Some SPSFs 
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2.4 Comparison of Algorithms 

The chart shown in Figure 2.~ compares the algorithms previously discussed in Test 

Patterns/ Algorithms. This chart summarizes the follo•ing for each algorithm: the test 

complexity in terms of the number of words in memory, the memory cell array fault 

coverage, an estimate of the area overhead required for BISI circuitry, the estimated 

time to test a 2~6:K RAM with 200ns access time, and miscellaneous comments. 1Jnless 

otherwise stated, MAR faults are covered by the algorithms. As can be seen, there are 

tradeoffs between the fault coverage, the test complexity, and the overhead in terms of 

BISI circuitry. Typically, to obtain better fault coverage, the tradeoff is increased test 

complexity and a.rea overhead. The estimated time column shows which tests run in a 

reasonable amount of time. To reduce the test time for complex algorithms, such as 

GALPAT, parallel techniques can be implemented (See Speed-up Techniques: 

Parallelism). Note: for other memory sizes, for example 8K, the test time would simply 

be .reduced by a factor of 32. Analyzing the tradeoffs betweep. algorithms, the following 

observations a.re made. 

In order to cover stuck-at, bridging, transition, destructive read, and coupling faults 

only O(n) algorithms are required. For pattern sensitive faults (PSFs), O(n312) o.r O(n 2) 

algorithms a.re recommended when the mapping of logical to physical addresses is not 

available or practical. The test times with these algorithms are too long for large 

memories, and the ref ore need to be implemented using parallel techniques. The 

problems associated with algorithms that require knowledge of the physical layout are 

due to address scrambling and row/column replacement. To handle address 

scrambling, extra circuitry is needed to map the logical addresses to the physical 

addresses. During the manufacturing process, some faulty rows and/or columns maybe 

logically replaced by spare rows or columns. This makes testing the interaction of cells 

within the physical layout nearly impossible. When knowledge of the logical to 

physical addresses is available, and the test time requirement is low, then a modified 

theckerboard approach is recommended. 
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* Test Patterns Comotexltv Fault Coverage °:er. head** Es Ti • * * ~ . __ _t,me Comments 

Pseudo-Random 4n A.B.E.f.y Smalt .21S 

MSCAN 4n A Small .2 lS 

Checkerboard 4n A. B. b E. E Medium .2 lS . ' 
SMTP 5n A, B, b g Small .26S 

Modified Checkerboard 8n A.B.C.D.f;.f.~ Medium .42S 

Marchi 9n A,B,C.~ Small .47S 

March2 I In A,B,C.D.t Small .58S 

March3 14n A.B.C.D.~ Small .73S 

March4 15n A.B.C.E Small .79S 

Marinescu 17n A. B. C, n_, E Small .89S 

Nair et at. 30n A.B.C,D.E Medium 1.57S 

GALPROCO 12n+8n312 A,B,C,D,E.f Large 3.59M 
Waiting I's/O's 2n2 + 6n A, B. C. D. & f. G Large 7.64H 

GALPAT 2n2 • 8n A. B. C, D, ~. E, Q Large 7.64H 

A-Stuck-at B-Bridging C• Transition D•Destructive Read &-Coupling f•APSF G-SPSF 

_ Not completely detected 

Memory Celt Array Fault Coverage (bit organized) 

** Estimated overhead or 81ST circuitry 

~ ~ ~ Based on 256K with 200ns access time 

Comments 

1.2 

2 

2.3 

2.3 

5 

5 

1 Don't know bow many patterns are necessary to obtain indicated coverage. Coverage is estimated. 

2 MAR faults are not completely detected. 

3 Knowledge of how physical positions map to their logical addresses is required. 
4 Must have capability to specify row and column addresses separately . 

.5 Test complexity too large for BIST of large memories without using parallel techniques. 

fi9ure 2 .4: Comparison Chart of Algorithms 
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3. Built-In Self Testtng Memories 

To understand built-in self test for memories, memory fault models along with memory 
test patterns/algorithms needed to be discussed. To evaluate the current state of built-in 
self test for memories, it will be necessary to study and analyze the approaches 
currently being suggested ILn the literature [Bardell ·s~] [Daehn '86) [Jain '86) 
[Kinoshita '86] [Nicolaidis '8~] [Sun '84] [Westcott '81 J [You '84]. The following 
approaches with their advantages and disadvantages are discussed: Daehn & Gross 
[Daehn '86), Jain & Stroud·[Ja.in '86), and Sun & Wang [Sun '841. 

3. 1 Daehn, W ilgried & Gross, Josef: A Test Generator IC for Testin& Large CMOS-RAlM 

Overview 

A test generator IC for testing large CMOS-RAMs utilizing the GALPROCO O(n 1-5) 
algorithm is discussed. The paper analyzes the effects of physical defects on RAM 
behavior, discusses existing test algorithms, proposes an algorithm which is 
independent of the physical layout of the RAM, and presents the implementation in 
silicon. The implemented test concept is applicable to both board and chip level testing. 

Approach 

The RAM is assumed to have the organization of Figure 1.1, except that there are two 
address registers: a separate row and column address register. The physical defects 
within all the functional blocks of the RAM transform themselves to logical fault 
models in the following way: 

Physical Defects 
opens 

short to GND 

short to VDD 

bridges 

Loeical Fault Model 
CMOS stuck-open 

stuck-at-0 

stuck-at-1 

asymetrically vired AND, OR 
forced level 
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These logical fault models are then transformed into the following funtional level 
model for a RAM: 

Cells can be s-a-0, s-a-1 

Simple decoding error: a given address I selects a ce11~1 
Sequential decoding error: an address x selects a cell x, a following 

arbitrary address y selects a cell~y (effects 

of a CMOS stuck open fault ir. the decoder) 
Pattern sensitivity in a column or row 
Pattern sensitivity in a physical neighborhood (not in a column o.r .row) 

(Not cove.red in this approach) 

Pattern sensitivity between any other cell pair (Not covered in this 
approach) 

' 

A test procedure was developed to meet the above requirements plus the following: 
independence of row/column arrangement of the cell array, refresh of dynamic RAMs 
during test execution without additional cycles. and acceptable execution time. Below is 
a block diagram of the test processor IC . 

................................................................................................................... ._ 

~1i,::ropro9r ~rri .. 
,-. r .:iequenc:er 
... ' . I 

:fio . -
t 

I 
I 

: ,-·t 
. ·-· . op Clk 

Tin·,in9 
-. l L,ener ator . 

. _. 
L 
r 

L 

Ri?s 

Addre_ 
Genera 

-- Row Address 
tion -- Colurirrt Address _ __.q : 

'w'R• ,r 
L 

-· : . 

RD · 
Er.:p. D.:1ta : T i?St 

· ~~·~ Good/Bad ,ri9 4,· = ~ Data r 

T Erst Data Un1t 8 [ 
L. ·· ··· l·l ·· l···· ····· ···· · ···· ····· ·· ····· ....... · · ·· · · ··· · · · ··· · ····l··f ............... ! ~~ 

Clk F~t:s Go /Stop 

F~ 3 .1 : Block Diagram 9f the Test Processor IC 

The timing generator organizes the timing and controls the start/stop logic of the chip. 
The execution of the test procedure is controlled by a finite state machine, which acts 
as a microprogram seque.ucer. The address generating unit consists of four linear 
feedback (9-bit) shift registers (USR) because they require less silicon area than 
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conventional counting circuits. These are designed such that they generate muimum 
length sequences for both row and column addresses including address 0. The testing 
unit compares incoming data from the RAM under test with expected data, generated by 
the control unit. This is done for eight bits in parallel. 

Advan.tages 

At the board level there is little overhead. This approach is also independent of the 
physical layout while providing good coverage. 

Disadvantages 
., 

Requires separate rov and column address registers. The test time in the future maybe 
a problem since the test complexity is O(n 312 ). Also, this approach covers a limited 
amount of PSFs. Estimate high overhead for BIST within a chip. 

Comments 

This approach is designed for a separate test processor chip. The GALPROCO algorithm 
covers more faults than stated in the proposed fault model. For example, destructive 
read faults. See Test Patterns/ Algorithms and Comparison Chart for a description of the 
coverage. 
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3.2 Jaia. Sunil &Stroud. Charles: BuiJt-io Selfiestio1 of Embedded Memories 

Overview 

Two test schemes, using the pseudo-random and checkerboard algorithm, are presented 
as a built-in self test (BIST) method for testing embedded memories. The fault model 
used in both test schemes can be summarized as follows: memory cell array faults 
(stuck-at, transition, hold. destructive read. adjacent bridging, adjacent coupling), 
decoder stuck-at faults, and adjacent data input/output line coupling. The adjacent 
faults largely depend on the physical layout of the memory cell array. The RAM used in 
this illustrative example is 32 words, accessed with , address bits, each word containing 
four data bits. The paper also discusses the test pattern require1nents, data compression 
techniques, implementation, 8.Jld an evaluation of both test schemes. 

Approach 

Approach 1: Pseudo-random algorithm 

In this scheme, the input stimulus to supply the address to the RAM is also used as the 
input data, such that each memory word contains a unique data word (pseudo-.random). 
The algorithm is shown below: 

l. For ~Jl addresses in ascending order, W1 (where x=address) 
2. r·or all addresses in ascending order, Rx (where 1=address) 
3. For all addresses in ascending order, W1' 
4. For all addresses in ascending order, R1' 

5. For all addresses in descending order, R1' 
6. For all addresses in ~iScendi.og order, W1 
7. Fo.r aAl addresses in ascending order, Rx 
8. For all addresses in descending order. RI 

Implementation of this scheme consists of a binary counter to supply the address, input 

44 • 
: I - y ,r• 



data, and three control signals to direct the test sequence. The output data is compreSHd 
via a multiple input signature register (MISR). The signature register is 
enabled(disabled) during a read(write) operation and is controlled by the same signal 
that controls the read/write to the RAM. When the self-testing is initiated, the binary 
counter is initialized to zero and the MISR is initialized to a seed value. A MISR is used to 
compress the output because with a comparison method all the expected data inputs 
would have to be routed to the output for comparison, which would increase area 
overhead. Below is an overview of this scheme: 

Biri.jr1~ 
CountE-r 

2-bi~ t··1od if ied t···1odif ied +- TE~;T ctr·, rE"g R/'w' reg Addr reg 

ri, _~ .. ·Arn-Al ,r , .. ,, , .. 

'
-. 2 ,-.. -) c.· 1 _ . ._, -·~ 
i l i Address 
----- -•• - I• ' -•• ;· R ... , 

I / II \ • I i--,- R •'\.,' "' '"·r..-.r·t1··r · 1 11 F.' At·-·1 "\. IJf::'11,::- ~ , IJ f,I ... -· .... _ --· -----

Data-out 

t-··1odif ied 
TEST--+ Output ri?g 
Enab lE' -+ (t· .. 1 ISR) 

, rr 
. . 

Data-in 

~ 3 .2: Test Scheme 1 

Approach 2: Checkerboard algorithm 

c:2 r:1 . ,-.. . 

C :i··-......... 0 0 0 1 1 1 1 0 

0 

1 

(I 1 

1 0 

1 - Read 

1 0 

1 1 

In this scheme, a checkerboard pattern is written into physical memory such that the 
bit lines (B', B) of adjacent memory cells contain a checkerboard pattern. The 
approach is to write the all-1 or the all-0 word in.to the appropriate addresses to achieve 
this pattern. The algorithm is discussed in section 2.3 Test Patterns/ Algorithms 
(modified checkerboard algorithm.) using the architecture of the memory system 
described previously. 
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lmplem.e.atation of this scheme is very similar to the one previously discussed e1cept 
that the binary couater is modified to 1eaerate the checkerboard pattern. The output 
response ca.a be either compressed or compared to e1pected data. See below: 

Binary 
Counter 

2-b;t Modified 
otrl reg Addr reg 

I 

' ' . + ,-
C3 C:t c· 

Modified -t- TEST 
Rl'w reg 

I 

•m ~Am-·, . , n 
Address J l ! Data-in Data-in 

0 

1 

R/'w \ ~ 
C:ener at;o~ R /'vi 

RAM ___ ...... 
00 01 11 10 
0 1 0 
1 1 1 

0- n'rili!-
1 - ~d 

1 

0 

Daia-out 

Modified 
TEST--t Ouiput reg 
Enable -t (t-'1 ISR) 

RAM 

Data-out 
n 

Output reg 
I 

Enable -+ ... Comparator 7 

F'UJUfe ~ .~: Scheme 2 with a) Data Compression aad b) Direct Comparison 

Upon initiating the test sequence. the binary counter would be set to zero and the MISR 
(error .register) would be i11itialaed to a seed value (zero). Note, since either all O's or 
all 1 ·s is written into the memory at any given time, only one data input needs to be 
generated (all inputs needed to be generated in Scheme 1). Also, the e1pected output 
sig.na.l (o.ne si1.naJ) ca.a be 1e.nerated from the control bits a.ad address bit A3. The 

., 

comparison result can then be compressed into an error register. 

·• 
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Advantq11 

Short test time, good coverage. With direct comparison method, only one e1pected 
output line needs to be routed to actual output since only a word of a11 O's or 1 's is 
written. 

Disadvan ta.ges 

Mapping from logical to physical addresses due to address scrambling could increase 
circuitry. Row/ column replacement of faulty rows or columns could be a problem to 
maintain the same fault coverage. 

Comments 

Dependent on the physical layout of the memory system. MAR faults are not completely ·' 

detected. Could be extended to handle surround.uig PSFs. 

.. 

r 
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3.3 Sun, z. & Wan1. L: Self-Iestio1 of Embedded RAMs 

Overview 

This method combines both self-test and scan techniques to test embedded RAMs (See 
Figure 3.4). The self-test utilizes the Simple March Test Pattern (SMTP) to detect hard 
failures in the RAM, while the scan technique is used to detect stuck-at and bridging 
faults in the comparator and data lines, and to diagnose single stuck-at faults in the 
RAM. The memory is organized n words by b bits wide. 

Approach 
\ 

The Simple March Test Pattern (SMTP) is built into the hardware by modifying the R/W 
control circuit, the address register, the input data register, and the output data 
register. The comparison circuit consists of XOR gates between the output register and 
the complement of the input register which are then Ored together. There are four 
modes of operation: normal, scan, single-step, and self-test. The single-step mode 
performs a read or write operation defined by the scanned-in test pattern. The self-test 
mode executes the SMTP for detecting faults in the embedded RAM array. 

\ 
\ 

Rl'tl ! Con~rol 

t,_J Input 
~~[:•at.a 

t···1i:idifi€-d 
t·1od --Input D~t:1 ~ 
R I/\,,,.. ~·. r.::. g ....._~ 

Sc.:1n-ln 

Tiri-iing 
C··,ntro l 

r:... PE'gi:::tE-r 
81)82_2_·~,.___~--~----t~~~~--~ 

bl t· .. lod 
Ai ~> ~ Addr r ·· 

Input Reg 
Address: .....__ ....... 

Embed,jed 
Mer11ory 

Con·,par .ator 

t .. 1odif iErd Control 
----- Output [) at.:j t--+--_,. FF · s 

~:e,~istt?r 
.. 

Output 
Data 

Scan-Out 

' 

B 1 8 2 0p€'r at ion 
r··1odt? 

0 1 Norm.;sl 
0 0 Sc.an 
1 1 Sing le-Step 
1 0 Self-Test 

f'uJure 3.4: Block Diagram of Sun & Waag Self-Testing Embedded RAM 
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Advantages 

The SMTP is easily implemented, requires short test time O(~n), physical positions of 

the cells do not have to map to their logical addresses, scan design allows flexibility. 

Disadvantqes 

Scan technique to aid in self-test is slow (ie; serially scanning each pattern), SMTP is a 

minimal functional test (See Test Patterns/ Algorithms). All the input lines need to be 

routed to the output lines for comparison. 

.. 
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4. A New Hybrid Approach For Memory 81ST 
f 

Figure 4.1 shows a new approach using Multiple MISRs (MMISRs) for memory BIST. 
This method is a hybrid aJ)J)roach that combines direct comparison anci data 
compression techniques. The concept is to l'lgically divide the memory into two equal 
parts, providing a MISR for each part. Due to the regular structure of a memory system, 
the resulting signatures in each partition will be the same, assuming that no fault 
occurs simultaneously in both partitions. Thus, rather than comparing the resulting 
signature elsewhere, the signatures can be compared to each other. In order to provide 
high fault coverage with this approach, all the components that a.re shared between 
the MISRs must be isolated so that they can be tested independently (ie; the row 
decoder). Otherwise, an error in a common component could manifest itself into 
identical errors in each memory partition, and thus, the two MISRs signatures would be 
the same. To provide the means for isolation, the memory is logically divided into ~ 
partitions as shown below. 

•-..-' 

N Addr. 

fv1ernory Ce 11 Array 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Test Seguence 

Operations - > P .art 1 
Operation:; - } P art4 
Compare r·11SRs 

Operations - > P .art2 
Operations -> Part3 
CornparEt r--·11s~~s 

E hl "10d · r·iDF.'. t··11S~:2 ._ Enab 1 na... e -+ t .. 1,s~~ 1 

Error 
Re9 

Compare 

!="'9"-'"e 4 .1 : A New Hybrid Apptoach for Memory BIST 

The operation of this approach is as follows: The MISRs are only active in a test mode 
during a read operation. The enable level is high while reading from partitions 1&3 

f . ; 

, .. 
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and lov vhen readinR from partitions 2&4. Therefore, the MISRs will contain the 
compre~~d output data from their ~~cica.ted partition,. Verification of the re,ult£ is 
accomplished by shifting and comparing the contents of the MISRs to each other. In 
order to isolate the row decoder, the test algorithm should be run on partitions 1&4, 
compare the results, and then run on partitions 2&3 and compare the results. This 
method of isolation allows faults such as s-a-0 in the row decoder to be detected. 

The hybrid approach has the followin1 charar.teristics: 

1) Resulting signatures need not be compared elsewhere, they can be compared 
to themselves. 

2) The comparison can be one line wide by simply shifting and comparing all 
bits in the MMISRs. This method reduces circuitry but increases time to compare. 
The comparison could be done in. parallel to reduce time, but the added 
circuitry would increase. 

3) Reduction of aliasing can be accomplished by more frequent checking of the 
signatures. 

~) Limited diagnostic capabilities: checking the signatures more often tells when 
an error occurs; having more than 2 partitions results in a voting system, 
the ref ore allowing a faulty partition to be detected and located. Note: the more 
partitions, the more MISRs, an.d therefore higher BIST overhead. 

~) No additional circuitry for generating expect output data is required. 
6) This approach, like the other approaches, can be used with parallel techniques. 

The parallel operations need to be within each partition. 
7) This approach does not fully cover MAR faults (ie; if the MAR only accessed one 

address). 
, 
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5. Speed-up Techniques: Parnlleltsm 

This section is concerned with speeding up the test application time via parallelism. 
The concept of parallel testing of memory systems is to internally increase the word 
size beyond the normal word size while in a test mode. Parallel signature analyzers 
(PS"\s), also known as MISRs, are used to monitor read data in parallel. In addition, PSAs 
can be loaded with write data to write into the memory in parallel, as long as the 
signature is shifted out and compared to known results before being loaded ,;ith data to 
avoid losing the signature. (This is unnecessary if there are two PSAs, one for an input 
data register and one for an output data register or if extra logic is provided to translate 
the signature to write data without changing the signature register). The approaches 
suggested are algorithm independent and are described below: 

5. 1 Han, Sang & Malek, Miroslaw: Tyo-Dimensional Multiple-Access Testin& Technique 
For Random-Access Memories 

Overview 

A new type of memory organization using multiple accessing techiques for testing is 
proposed. This architecture is used to speed-up test time via parallelism while 
preserving the fault coverage. A k-stage USR parallel signature analyzer (PSA) is 
used to compact read data and can also be used to write k-bits in parallel. 

Approach 

There are three accessing modes: 

Mode-0: A single cell is accessed as in normal operation 
Mode-1: k memory cells within one row are selected at a time 
Mode-2: k memory cells within k rows are selected at a time 

k cells are selected at a time by using multiple select decoders. Mode-2 is restricted to 
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write cycles only. The read data is compressed via a PSA. The data in the PSA can be 
shifted out for comparison, or data can be shifted in or modified for writing. This 
allows k cells to be accessed in parallel. The maximum speed-up is 2k2/(k+ 1 ), so, the 
speed-up increases with k, but the larger the k, the Jargr,r the PSA required, and thus, 
the larger the overhead. 

Advantages 

This approach has the flexibility of using the different modes of accessing within an 
algorithm. For example, to detect coupling within a k-bit word, set to mode-0 (normal 
mode) for writing and read using mode-1 (in parallel). The disadvantage with mixing 
modes is that the speed-up factor is reduced. 

Disadvantages 

Two pins are required to set modes: normal, mode-1, mode-2. and scan. Due to having 
multiple write modes, larger line drivers are required to minimize the increase of the 
access time. Note: this is only applicable in the test mode, since in the normal mode 
only a single cell is accessed. but nonetheless. having larger line drivers would 
increase the area overhead. 

Comments 

The fault coverage in the peripherals (MAR, MDR, and decoder) may be higher without 
using multiple accessing techniques. This is because with multiple accessing 
techniques these components are not being tested in their normal mode of operation. 
For example, a fault in the c,ecoder could occur such that multiple lines are selected but 
these might have already been selected due to the multiple accessing technique. 
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6. Desi1a Gulde 

To summarize the methods and approaches of the BIST schemes discussed earlier, the 
following individual components of memory BIST are reviewed and analyzed: address 
generation unit. input data generation unit, and evaluation circuitry. In addition. 
choosing an algorithm and design goals are discussed. A diagram. of memory BIST is 
shown below: 

-------.... .,---:-: --~ (.- Input Data\ 
( Address J" J , ... Gener .at ion " Generation ... .... ,, ---- __ ..,. 
~~ - / - -- -- -- / ' r -..., " 

-.......... ( Input D.ata ) 
\. Ri?gi;ti?r / 

~MAR (, 

-·-, R At-1 '-
'\ ... , ... 
) . ..., 

Expected Output ( Output Data) 
Data Generation \... Reqister _, 

fErrorj • /Compa:ato~/-4 _:,. ~tR ~·---~ r::;::;:-i ...... C~rrtpare ~ ~ S1gnature 

Direct Comparison 

t1ethod 
__ Data Corr,pression 

t1ethod 

~e 6 .1: Memory BIST 

6.1 Address Geaeratioa Unit 

The address generation unit generates the needed addresses for the algorithm 
ir.tplemented. There are three methods used to generate these addresses: a USR, a 
binary counter. a.nd a translation unit. The LFSR is the simplest hardware to implement. 
This approach geaera.tes pseudo-ta.Adom addresses (a.11 the addresses a.re generated, but 
i.n a pseudo-ra.ndom fashion). The LFSR must be modified to intlude address 0. A bio.ary 
counter permits addresses to be generated in a sequential manner in either ascending 
or descending order. A translation unit maps the logical addresses to their physical 
addresses. The address generation. unit should be implemented as a modification to the 
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MAR with the least amount of enra hardware. Below are the advantqes ud 
disadvantages of each approach: 

Method 

USR 

Binary Counter 

Translation Unit 

Advanta,es Disadavanta,es 

Easy to implement Pseudo-random addresses 

No way to ascend & descend * 
No mapping to physical addresses 

Sequ. ascend&cdescend No mapping to physical addresses 
Moderate overhead 

Map to phys. addresses High overhead 
Sequ.ascend&descend 

• A modified up-down USR is presented in [Nicolaidis ·s~J . 
. .. 

6.2 laput Data Geaeratioa Unit 

The input data generation unit is responsible for loading the input data register (or the 
MDR) with the correct input according to the implemented algorithm. The hardware to 
implement the input data generator can be reduced if the algorithm only writes the all 
O's or the all 1 'sword since only one line needs to be used. The advantage of only using 
one line is the reduction of hardware, but this approach lacks the flexibility of writing 
different data within the input data register. The input data generation unit should be 
implemented as a modification to the input data register with the least amount of extra 
hardware. 

55 



• 

6.3 E.-aluation Circuitry 

The purpose of the evaluation circuitry is to detect an error between the circuit under 
test and known fault-free results. There are two main approaches for evaluation 
circuitry: Direct comparison and Data compression. 

Direct Comparison 

The direct comparison method is accomplished by comparing expected data to the actual 
output data. This approach has better fault coverage than data compression techniques 
but may require more circuitry to implement because of the following two reasons: 
circuitry needed to generate the expected data and the routing circuitry between the 
expected data and the actual data .. One way to reduce the routing circuitry is to have 
only one line to route: this can be accomplished for certain algorithms where only the 
all O's and the aJl 1 'swords are written/react, and also for bit organized memories. 

Data Compression 

The data compression method utilizes either USRs or MISRs to compress output data 
into a signature during the test (refer ta Figure 1.6: Data Compression Techniques). 
When the test is complete, the resulting signature is compared to a known correct 
signature. Data compression techniques may require less circuitry than direct 
comparison methods since no circuitry is required to generate expected data output. 
Also, this technique may have less cove.rage than direct comparison techniques due to 

aliasing. Aliasing occurs when a..n error or errors mask themselves in such a way that 
the resulting signature is the sam~ as the correct signature: thus the error is .not 
detected. The other problem with this technique is that the signature must be shifted 
out and compared elsewhere. This requires either ROM or additional test equipment, 
which should be avoided if possible. Signature analysis does have the advantage of 
testing itself during data compression. Note: data compression requires two separate 
data registers (input and output) or some other means to maintain the signature during 
a write cycle (loading the memo.ry data register and writing into memory). 
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6.4 Choosing an Algorithm 

Analyzing the tradeoffs between algorithms, the following observations are made: 

For test compJe1ity of O(.n): 

1) Test time is not an issue; therefore, parallel approaches need not 
be implemented. 

2) Major concern is to reduce overhead of BISI circuitry. 

3) Inherently the fault coverage is not as comprehensive as O(n 3/2) or O(n 2), 

but the test times and overhead are small enough for any size memories. 

For test complexity of O(n312): 

1) Test times may be acceptable; if not, reduce test time via parallel approaches. 

2) Since complex algorithmsJ major concern is to reduce the BISI overhead. 
3) Fault coverage is good. 

For test complexity of O(n 2): 

1) Test times are unacceptable; the ref ore, the first concern is to 

reduce test time via. parallel approac~es. 

2) The next concern is to reduce overhead of BIST circuitry. 

3) If BIST overhead is low enough, these algorithms might be well 

suited for small memories without using speed-up techniques. 

4) Fault cove.rage is good. 

In order to cover stuck-at, bridging, transition, destructive read, and coupling faults 

only O(n) algorithms are required. For pattern sensitive faults (PSFs), O(n312) or O(n2) 

are recom.mended when mapping of the logical to physical addresses is not available or 

practical. The test times with these algorithms a.re too lo.ng for large memories~ a.nd 

the ref ore should be implementated using parallel techniques. In addition, these 

algorithms are relatively comple~, and may require a high BIST area overhead. When 
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knowledRe of how the logical addresses map to the physical addresses is available, and 
the test time requirement is low, then a modified checkerboard approach is 
recommended. 

In choosin1 an al1orithm, havin1 good fault coverage and short test times are 
important, but the BIST overhead must also be considered. To reduce the BISI overhead 
a.nd increase the fault coverage at the expense of a small increase in the test time, 
combining or modifying some of the algorithms previously discussed in section 2.3 may 
prove fruitful. For example. the march4 algorithm could be modified such that in step 3 
an extra Rl is inserted before the WO, and in step 5 an extra RO inserted before the W 1. 
This modification would increase the fault coverage and reduce the BISI overhead. The 
reduction of the BISI overhead is due to the symmetry of the modified algorithm which 
would make the implementation of the control circuitry simpler. 

. ' 
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Overviey 

The Memory Fault Simulator was developed to aid in the analysis of memory test 
algorithms used for built-in self test (BIST) of memory systems. Although most of the 
algorithms used to test memory systems are not that comple1, to analyze the fault 
coverage in terms of memory subsystems (ie; address registers, decoders, data registers, 
etc.) is much harder. The Memory Fault Simulator has the following features: 
flexibility of injecting many different types of faults into any of the memory 
subsystems, user definable memory system parameters, common test algorithms, user 
definable test algorithms, graphics capabilities, and trace facilities. An overview of the 
system is shown in the figure below: 

Overview of Memory Fault Simulator 

The memory system parameters are contained in the MEMPARAM.H file. The standard 
test sequence file is TESTSEQ.TST, but users may create their own. Each of the test 

* algorithms are stored in their own file. The simulator was developed in C using C-terp , 
an interpretive C environment, on an IBM compatible PC. This technical ref e.rence 
manual is divided into the following sections: Memory System Model, Memory System 
Parameters, Fault Models, Memory Fault Simulator Routines, and Test Algorithm 
Modules. 

• C-terp is a trademark of Gimpel Software 
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Memory System Model 

The Memory Fault Simulator uses a 16 bit memory system with the followiJl1 
architecture: 

MAR .......... 
I I -.-

N Addr. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . 
• I I I It • I I It 
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. . b b;ts 

\•tide 
_._ 

I I 

Figure 2: Memory System Architecture 

The Memory Address Register (MAR) is 4 bits wide, both the Row and Column. Decoders 
are 2 to 4 line decoders, the Memory Cell Array is 4 X 4, and the Memory Data Register 
(MDR) is a single bit. For graphics capability, the memory system must be 16 bits 
organized 4 X 4. Accessing the memory system is accomplished by a subroutine call to 
memory. The general form is memory(address, R/W, word). Shown belov are two 
e1amples: 

memory(9, "write", O); 
read it-memory(~," read",) 

Meroorv System Parameters 

Write a O to address 9 
Read address~, result is returned in readit. 

The following memory system parameters are user definable: 

Name Default Com.men.t 

MEMSIZE 16 
MAXSTUCK 3 
MAXRFAULT 3 
MAXCOUPLED 3 
MAXDECSTUCK 3 
COLDECSIZE 2 
MAXACTIVE 3 
MEMANDTYPE 1 

Size of the memory cell array 
Maximum number of stuck-ats in cell array 
Maximum number of destructive read faults 
Maximum number of coupled cells in cell array 
Maximum number of stuck-ats in decoders 
Size of the column decoder (number· of bits) 
Maximum number of decoder lines active at once 
1(0) AND-TYPE (OR-TYPE) for memory cell array 

Mustuck, maxrfault, maxcoupled, and maxdecstuck should be as small as possible for 
increased performance. There is no error checking in terms of the relationship 
between memsize and coldecsize. These parameters maybe modified and are located in 
the MEMPARAM.H file. 
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Fault Models 

The common fault models used to test the functionality of a memory system that a.re 
implemented in the Memory Fault Simulator are the following: Stuck-at faults, 
Bridging faults, Destructive Read faults, and Coupling faults. Stuck-at and bridging 
faults can occur in any of the memory subsystems. Destructive read faults and 
coupling faults can occur only in the memory cell array. A short description of these 
fault models follow. 

The stuck-at faults model assumes that one or more logic values in a memory system 
cannot be changed. For example, one or more memory cells could be stuck at 1 or 0. 

A destructive read fault assumes that the data in a memory cell is destroyed f ollowin.1 a " 
read operation. 

Bridging faults are either AND type or OR type. AND(OR) type bridging results in 
dominant 0(1). For example, if two leads are shorted, in AND(OR) type bridging the 
value out would be a 0( 1) given that one of the leads was a 1 ( 0). 

A pair of memory cells (i,j) is coupled if writing a value V into a cell, say cell i, forces 
cell j to change state. This does not necessarily imply that a similar transition in cell j 
will influence cell i in the same way. 

A list of subroutines that are used to inject faults into a memory system are shown 
below: 

setmarstu C kat0 (bits) 
setmarstuckatl (bits) 
setmarbridge(kind,bits) 
setm.arbridge(kind,bits) 

MAR Faults 

Set bits in MAR stuck-at O (ie; bits~. bit 3 s-a-0) 
Set bits in MAR stuck-at l(ie; bits=~, 1&3 s-a-1) 
Set MAR AND-Type bridging (kind=A) 
Set MAR OR-Type bridging (kind=O) 

Decoder Faults 

setrowdecstuck(line,value) Set line in row decoder to be stuck-at value (1/0) 
setcoldecstuck(line,value) Set line in column decoder stuck-at value ( 1/0) 

Memory Cell Faults 

setstuckat(address,value) 
setreadf ault( address, value) 
setcoup1ed(addrl,addr2, 

value l ,va1ue2) 

Set memo1;r address to be stuck-at value ( 1 /0) 
The value in address is destroyed f ollowin.g a read 
Address2 is coupled to addressl such that when 
value 1 is written into add.ressl, add.ress 2 is 
forced to va1ue2 
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setmdrstuctO(bits) 
setmdrstu c.tatl (bits) 
setmdrbridse(kind,bits) 
setmdrbridge(kind,bits) 

Valid parameters are bits 

kind 

line 

value 

address 

Memory Data Faults 

Set bits in MDR to be stuck-at 0 
Set bits in MDR to be stuck-at 1 
Set MDR AND-Type bridging (kind-A) 
Set MDR OR-Type bridging (.tind-0) 

A decimal number used to represent bits 
ie; , would mean bits 1 & 3 

Either A for AND Type, or O for OR Type 

Refers to lines of a decoder: range 1 to zn lines, 
where n-# bits in the decoder. ie; 2 to 4 line 
decoder has lines 1 through 4 

Either I or 0 

Currently only addresses 0-9 are available. 
See Limitations. 

For examples of how to set faults within a memory system, ref er to the Memory Fault 
Simulator User's Guide section 011 Creating Test Sequence Files. 

Memory Fault Simulator Routines 

A listing of each of the routines in the Memory Fault Simulator follow: 

Name 

initialize 

Parameters 

() 

Description 

Initialize all variables except memory 

----------------------------- Set Faults in Memory System----------------------------------
setmarstuckO (bits) Set stuck-at O in MAR 
setmarstuckl (bits) Set stuck-at 1 in MAR 
setmarbrjdge (kind,bits) Set bridging faults in MAR 
setrowdecstuck (line.value) Set r,.>w decoder stuck-at 
setco1decstuck (line.value) Set column decoder stuck-at 
setstuckat {address.value) Set stuck-at in memory cell array 
setreadf au1t (address.value) Set destructive read faults in memory 
setcoupled (addrl,addr2.valuel.value2) Set cou.oling faults in memory cell 

setmdrstuckO 
setm.drstu ck 1 

. setmdrbridge 

(bits) 
(bits) 
(kind.bits) 

Mny 
Set stuck-at O in MDR 
Set stuck-at 1 in MDR 
Set bridging faults in MDR 
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Name Parameters Description 

---------------------------- Simulate Memory System with Faults --------------------------
memory (address,rw,word) Simulate memory system with faults 

---------------------------------- Memory System Faults ------------------------------------
marfault (address) 
mdrf ault (outdata) 
decfault (decoder.line) 
stuck (addr) 
cou pledwrite (address,value) 

Return address under faulty condition 
Return data under faulty condition 
Setup decoders under faulty condition 
Returns 1 if addr is stu c.k 
If coupled fault, write to cou pied cell 

-------------------------------------- Error Routine ----------------------------------------
errmsg (addr) Displays error message 

------------------------------------ Display Routines ----------------------------------------
display (r,c,value) Displays on 4 X 4 grid 
initdisplay () Initialjzes 4 X 4 gid display 

----------------------------------- Library Routines ----------------------------------------
getline (s,lim,fname) Reads line from specify filename 
inde1 (s,t) Returns index oft in s, -1 if none 
strcopy (s,t) Copies t to s 
strcmp (s,t) Return <O if s<t, 0 if s•t, >O if s>t 

Test Algorithm Modules 

Currently, there are eleven algorithms implemented in the Memory Fault Simulator: 
MSCAN, Checkerboard, SMTP, 4 March test patterns, Marinescu, Nair, Walking l's and 
O's, and GALPAT. Each algorithm is contained in its own file, and references are made to 
the memory model by memory system parameters and the fallowing routines: memory 
and errmsg. Each algorithm is a routine written in C and is currently included in the 
Memory Fault Simulator. Below is an e1ample of the SMTP test algorithm written in 
pseudo-code and in C: 

Pseudo-Code 

smtp 

Initialize memory to 0 
For all addresses 

RO 
Wl 

For all addresses 
Rl 
WO 

December 15, 1986 

C 

smtp() 
(inti; 
fo.r (i=O;i<MEMSIZE;i++) memo.ry(i,"w.rite" ,O); 
for (i=O;i<MEMSIZE;i++) ( 

if (memory(i,"read" ,)1=0) {e.rrmsg(i),return) 
memory(i,"write" ,1 )} 

for (i=O;i<MEMSIZE;i++) ( 

) 

if (memory(i,"read" ,)1=1) (errmsg(i),return) 
memory(i,"write" ,0)) 
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Each test algorithm subroutine must have an unique name. In addition, to implement 
new algorithms, the following needs to be modified in the Memory Fault Simulator: In 
the user interface, under available test algorithms, include the algorithm name; In the 
section that runs the algorithm, modify the compound if statement to include the new 
algorithm, ie; add: else if (strcmp(algo,"newname") == 0) newname( ), this tells the 
simulator to run the new algorithm if selected; In the section where algorithms a.re 
included, add 11 include "filename" to tell the simulator where the algorithm .ts stored. 

Li . . rnatauons 

The major limitation of the Memory Fault Simulator is the lack of speed and the fault 
models. Future recommendations to fault models would be to include hold faults, 
transition faults, and pattern sensitive faults. Currently there is a limitation when 
setting faults using the memory test sequence file: due to the Memory Fault Simulator 
interpreter, only addresses 0-9 can be used in setting faults such as stuck-at, 
destructive read, and coupling within the memory cell array. Also bridging faults in 
the decoders and the memory cell array are not yet available . 

.. 
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Gettina Started 

The Memory Fault Simulator vas developed using C-terp •, and the.ref ore, it is recommended to use C-terp when running the simulator. C-terp is an interpretive C 
environment with a full screen text editor and debugging facilities. To get started, the 
files ct.exe and stdio.h as well as all the Memory Fault Simulator files should be copied 
into a convenient directory. C-terp should then be executed by typing "ct". The 
following menu should be displayed: 

Compile 
Edit 
File list 
Global search 
Load 
Options 

Command: 

C-terp 

Pre-Process 
Quit 
Run 
System 
Unload 
Write 

Now, load in the Memory Fault Simulator by typing "L". The user will be prompted for a 
file name. Type in "mem.c" and press carriage return <CR>. To run the Memory Fault 
Simulator, press "R" followed by a <CR>. All the files that the simulator require will 
automatically be loaded. The Memory Fault Simulator should now be running. After an 
algorithm is run, C-terp will ask the user to press any key. After pressing a key, the 
main C-terp menu will be displayed (see above). To quit, simply press "Q". To run the 
simulator again, press "R" f o11owed by a <CR>. 

The C-terp editor will allow the user to easily create and modify test sequence files, 
algorithms, etc. To use the on-line help, press the alt key and the "h" key 
simultaneously. 

Refer to the C-terp reference manual for more details on using C-terp and its facilities. 

• C-terp is a trademark of Gimpel Software. 

December 15. 1986 
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The Memory Fault Simulator 

The user interface to the Memory Fault Simulator is a menu driven system which 
prompts the user for needed information to run the simulator. Shown below are the 
menu system prompts vith ei:planations (italics are default values): 

Analysis of Memory Test Algorithms 

Enter Test Sequence Filename: testseq.tst 
Enter Test Algorithm Name 
Store Results in <filename> : J111otest.t/M 
List Each Transaction : DO 
Display Graphically : DO 

Is Input Correct : yes 

The test sequence file consists of a list of tests using different types of injected faults. 
For example, one may wish to run a series of tests on the memory cell array with 
different faults: ie; stuc.k-at-0, stuck-at-1, coupling, etc. See Creating Test Sequence 
Files. 

The test algorithm name is the name of the algorithm that is to be run. If a carriage 
return <CR> is pressed, a Jist of the available algorithms with their test complexity will 
be displayed like the following: 

Available algorithms: mscan, checker, smtp, marcha, marchb, march, march2, 
0(4n.) 0( 'in) 0( 'in) 0(9n) 0( 1 ln) 0( 14n) 0( 1,n) 

mari, nair, walk 1 's, galpat 
0( 17n) 0(30n) O(n "2) O(n "2) 

The results of the simulation is stored in a log file. The form of the filename is 
filename.ext. The maxjmum length allowed is 1, characters. The file will be stored in 
the current default directory. 

Listing each transaction is equivalent to a trace facility. Every transaction to the 
memory model within the algorithm will be displayed on the screen and listed in the 
log file. 

The graphic display allows the user to "see" the algorithm running. A 414 grid is 
displayed along with either the name of ilie test running or each transaction listed 
depending on what option was selected. 

The user has the chance to verify the input. If an error is made, the user can type no 
to the prompt, and the me.nu system will start over. Otherwise, upon correct input, the 
Memory Fault Simulator will begin. 

... 
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Creatin& Test Seguence Files 

Teet eequence files allows the ueer to run .many tests u1ms the same a.J.sorithm with many different type, of injected faults. The 1eneral form of a test sequence file is shown below: 

/----------------- Form of Test Sequence File-------------/ 
Test lA Dummy 

setstuckat(2,0 ); 
End of Test 

Test lB Stuck-at-I 
setstuckat(Z, l ); 

End of Test 
/------------------------------------------------------------/ 

J test begins with the word Test and ends with End of Test. The line beginning with the word Test will be displayed on the screen during execution. There can be different type of faults as well as multiple faults injected into the memory model within each test. Comments are enclosed between /- and -/. Blank lines are also allowed. Refer to the Memory Fault Simulator Technical Reference section on Fault Models for a complete list of the available routines used to inject faults into the memory model. 

Creating the test sequence file should be done with a text editor and then saved to disk. It is recommended that C-terp is used. The test sequence file can then be accessed in the Memory Fault Simulator via tJ1e menu system prompt: Enter Test Sequence File.name. 

Modifying Memory System Parameters 

Refer to the Memory Fault Simulator Technical Reference section on Memory System Parameters for a complete list of user modifiable memory system parameters. To 
actually modify these parameters, one needs to edit the MEMPARAM.H file, make the modifications, and save the results. Then, the Memory Fault Simulator should be loaded 
and executed via C-terp. 

Adding New Test Algorithms 

Ref er to the Memory Fault Simulator Technical Reference section o.n Test A11orithm. Modules. 

D~moer 15, 1986 
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Sample Session 

Analysis of Memory Test Algorithms 

Enter Test Sequence Filename: sampleseq.tst 
Enter Test Algorithm Name : smtp 
Store Results in <filename> : sample.log 
List Each Transaction : .ao 
Display Graphically : yes 

Is Input Correct : J'8S 

• 

• I t I I I I I I I I 

Test 1 Sample Test 

TestiD.1 Memory 

I I I 
f_J f_J_J 
I I I I I 
f_J_J_J_J 
I I I I I 
f_J_J_J_J 
I I I I I 
f_J_J_J_J 

Sample Test Algorithm 

,. . 

• • • .. . . •- . . . ·-

Below is the Simple March Test Pattern (SMTP) in both pseudo-code and in C. 

Pseudo-Code 

smtp 

Initialize memory to 0 
For all addresses 

RO 
WI 

For all addresses 
RI 
WO 

December 15, 1986 
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C 

smtp() 
(inti; 
for (i-O;i<MEMSIZE;i++) memory(i,"vrite",O); 
for (i=O;i<MEMSIZE;i++) ( 

if (memo.ry(i,"read",)t-0) (errmsg(i),return) 
memory(i,"write" ,I)) 

for (i-O;i<MEMSIZE;i++) ( 

) 

if (memory(i,"read" ,)1=1) (errmsg(i),return) 
memory(i,"vrite" ,0 )} 

Memory Fault Simulator 
User's Gu1de v 1.0 Append1x A 

74 



8ample Test Sequence 

/--------------------Sample Test Sequence-------------------/ 
Test 1 Sample Test 

setstu c.kat( ~ ,0); 
End of Test 

Test2 Samp1e2Iest 
setcoup1ed(2,3,0,1 ); 
setstuc.tat(~.1 ); 

End of Test 
/---------------------------------------------------------------/ 

.. 
Sample Log File 

* * * ** * *** * * * * * * * * * ****Testing smtp Algorithm****************** 
/--------------------Sample ·rest Sequence-------------------/ 
Test 1 Sample Test 

-> Memory Error Detected 1.n Address: , <-

Test 2 Sample2 Test 
-> Memory Error Detected in Address: 3 <-

/---------------------------------------------------------------/ 
** * ** * * ** ********End Of Test For smtp Algorithm ** ** * ** * *** *** ** * 

Sample Trace File 

** * * * * * ** * ** * *********Testing smtp Algorithm****************** 
/--------------------Sample Test Sequence-------------------/ 
Test 1 Sample Test 

Writing Oto memory loc 1,1 Address: 1 Logical Address: 0 
Writing Oto memory loc 1,2 Address: 2 Logical Address: 1 
Writing Oto memory loc 1,3 Address: 3 Logical Address: 2 

Read O from memory loc 2,1 Address: , Logical Address: 4 
-> Memory Error Detected in Address: , <-

• 

/---------------------------------------------------------------/ 
***************** End Of Test For smtp Algorithm***************** 
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