
Lehigh University
Lehigh Preserve

Theses and Dissertations

1987

Built-in self test for memory systems /
Steven A. Lerner
Lehigh University

Follow this and additional works at: https://preserve.lehigh.edu/etd

Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Lerner, Steven A., "Built-in self test for memory systems /" (1987). Theses and Dissertations. 4718.
https://preserve.lehigh.edu/etd/4718

https://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F4718&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F4718&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F4718&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=preserve.lehigh.edu%2Fetd%2F4718&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd/4718?utm_source=preserve.lehigh.edu%2Fetd%2F4718&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

ff

J

Built-In Self Test for Memory Systems

by

Steven A. Lerner

A Thesis

Presented to the Graduate Committee

of Lehigh University

in Candidacy for the Degree of

Master of Science
•
111

Computer Science and Electrical Bngineering

Lerugh Uruversity

1987

•'

This thesis is accepted and approved in partial fulfillment of the

requirements for the degree of Master of Science.

,2. ,ro 8&

(date)

K
Professor in Charge

I

~

Chairman of Department

·' .. .

Acknowledgments

I would like to thank Professor A.K. Susskind for his continuous
encouragement and valuable comments. I would also like to thank my
colleagues and friends for our meaningful discussions about BISI and
the memory fa.ult simulator that was developed.

ttt,

Table or Cootonts

Page

Abstr~t • • • • • • • • • • • • • t 1

I . I ntroduct ton t I • • • • I
. 2

1.1 Memory Systems

1.2 Overview of Testing

1.3 Bu11t-1n Self Test (BIST)

2. Memory Tasting . 10
2.1 Fault MOOBls

2.2 Memory System Functional Faults

2.3 Test Patterns/Al~r1thms

2.4 O>mpar1son of Al{J)r1thms

3. Built-In Sllf Tasting Mamortn . 41
3.1 Daehn & Gross (A Test 8enerator IC for Testing Large CMOS-RAMs)
3.2 Join & Stroud (Built-in Self Testing of Embectied Memories)
3.3 Sun & Wang (5elf-Test1ng of EmbeOied RAMs)

4. A New Hybrl·d Approach for f'lemory 81 ST 50

,. Speed-up Techniques: P1rallel~ts11 52
,.1 H8n & Malek (Two-D1mens1onal Mult1ple-Acam Testing Technique for RAMs)

6. Design 8u1da . . . • • • • • • O o I I I I O O o t o o I I I I I I I I 54
6.1 ~ress eeneration Un1t

6.2 Input Data Generation Unit

6.3 Ev81u8tion Circuitry
6.~ Choosing an Alo:>rithm

Table of Contents CContinuedl

References
• I I t • I t I I t I I I • I I I I • I I I I I I I I t I I I I .59

Appendix .
I I I I t I t I I I I I I I I I I I I I t I I I I I t

I I I I I . 62
A. Memory Fault Simulator: Technical Reference Manual & User's 8u1~

B 10Jrephy . 76

•

\
\

I ,r')','

J ,t,r or Fi1vre1

F1~re 1. 1: Overview of a Memory System
figure 1.2: S1x Trens1stor CMOS Memory Cell end Sense Amp .

Pqe

• • • • • 2

• • • 3
Figure 1.3: Organization of a Static RAM.
Figure 1. 4: 512K x 8 Bit Memory System

f 1gure 1.5: Block D1~ram of Test1ng

• • • • • • • • • 0 0 I O 5

• • • • • • • • • • . . . 6

• • • • • • 7
Figure 1.6: Data Compression l££hniques 8

./
1.6a) Linear FM1btEk Shift Reoister

1.6b) Multiple Input Signature Register
Figure 1. 7: Memory BIST Techniques . 9

1. 7a) Memory BIST us1ng D1rect QJmparison
1. 7b) Memory BIST using Data Compression

Figure 2. 1: AND Type Bric',ging Fault
F1gure 2.2: Adjfnlnt and Surround1ng Cells

a t I I I I I • • • . . . 11

• • • I .t I, 9 It I 12
Figure 2.3: Nair·, Thatte, Abraham Al{J)rithm 31
Figure 2. 4: Comparison Chart of Al~ithms. 40
Figure 3.1: Block Diagram of the Test Processor IC 42
Figure 3.2: Jain Scheme 1 . 45
f 1gure 3.3: Ja1n Scheme 2 46

3.38) Scheme 2 with Data Compression
3.3b) Scheme 2 with Direct Qlmperison

F1gure 3. 4: sun & Wang B look D1agram . 46
Figure 4.1: A New Hybrid Appr(&}h for Memory 81ST 49
Figure 6. 1 : Memory BI ST . 54

., . , -n:t:1:.. ... -

Abstract

The concept of Built-In Self Test (BIST) is to have the system test itself and provide a
"go/nogo" indication. Having a memory system test itself is becoming increasingly
important, because memory systems are now embedded within a chip, where the
memory system may not be djrectly controllable or observable at the chip pins. BIST
schemes for memory systems are critically analyzed in this study by assessing fault
models, memory system functional faults, test patterns/algorithms, and the various
related concepts given in the literature. Characteristics of memory test algorithms are
given. compared to each other with respect to their fault coverage. and analyzed for
their applicability to BIST. The evaluation of different BIST schemes is based on the
following: area overhead, fault coverage, te3t complexity, performance degradation.,
and the testing of the BIST circuitry. A novel BIST scheme for memory systems is also
explored. In addition, for large memory testing and complex algorithms, parallel
techniques are discussed. Finally, a guide to help design components of BIST for
memory systems is presented.

'

1

........... ,
. I

·,

1. I ntroductton

Built-In Self Test (BIST) provides a system with the capability of testing itself and gives
a "go/nogo" indication. To introduce BISI for memory systems, the following are
discussed: architecture and operation of memory systems, overview of testing, and
BIST.

1. 1 Memory Systems

A memory system consists of the following: a memory address register (MAR), address
decoders, an array of memory cells, read/write logic in.eluding sense amplifiers, and a
memory data register (MDR). See Figu.re 1.1. The organization of the memory system is
N words, each b bits wide. When bis 1, the memory system is considered bit organized;
otherwise the memory system is said to be word organized. In a bit organized memory
system, each bit can be addressed individually, as compared to a word organized
memory system. where all the bits in a particular word have the same address.

N Addr.

.
•I• I I • • e e I I• I I • e f I I I e I I •I• I• I I I e •••I•• e ' .

f f f I t I t I f ...•.........•.•........•.••....••.....
• • • I e I I e • ·:·:·:·:·,·:·:·:·:·•..•....••.•...•...•.......

. . :.L:.lfv1emor1..1 1.:.L:.
· ·:t:·/Ct? 11 Arr a1..i":t:·

I • • • I •••••••ttt•ttt•lttlt,1,ttttt••••••••••• .
I I I I I t e I I

······································· I I I I I I I I I
e e a t t t I I e t I t a I t I e I t

······································· lo I t I I t I t I
• I t t • I a I I t I t I I I I I I I b bits

\\•·ide
r-"-,

~1m11:~~~~i.::~:0.:r.~:111m1 .-. ~
f"UJIWe 1.1 : Overview of a Memory System: N words by b bits

A memory qstem operates as follows: a read operation is performed by loading an
address into the MAR, setting the read flag, and the resulting word is returned via the
MDR; a write operation is accomplished by loading an. address into the MAR. loading the
MDR with data, and setting the write flag. To understand how the hardware works, the
operation of a static CMOS memory system will be reviewed [Mukherjee '86] .

.c.:,

2

A six-transistor static CMOS memory rell and sense amplifier are shovn in Figure 1.2.
The memory cell is a bistable circuit in which the state of conduction or lacJr. of
conduction of a transistor determines the c~ntents of the stored information. Each
memory cell contains two pairs of pmos and nmos transistors which are cross coupled.
Each transistor pair is such that only one transistor, either the pmos or nmos, is closed
at a time. Since this is a bistable circuit, when one side contains a logical 0, by having
the pmos open and the nmos closed, the other side would contain a logical I by having
the pmos closed and the nmos open. For example, if the nmos transistor on the left side
is closed and the pmos transistor on the rigl1t side is closed. this would cause a 0(1) to be
put on the bit line B'(B) when that row is selected. In order to have a large number of
cells on a chip, each memory cell is laid out as small as possible. Since the memory cell
is small, it can only sink current, not source it, and therefore requires a sense
ampJjfier to sense the information stored and drive the bit lines CB'. B).

Row
Se lee~

Vdd

B'

...

. Vdd

-- . It•• I I I I I I I I I I I I I. I I I I I I•

t I It I I t •II I It I t I I I I I I It I I I I a It I I I ,o I I I I I ,0 t •

.
; Sert:e-i 1
: : , . - . . - . I I I I I I I I I I I I I I I I• I I I I I I I I I I I I It I I. I I I I I I I I

B

f'uJu,re 1.2: Six-transistor Static CMOS Memory Cell and Sense Amp
~ ,-,

The read operation of a memory cell is as follows: the sense signal is set low to allow the
sense amplifier to float, and simultaneously the precharge signal is set low to

3 (

precharge the bit lines. (Note, the prechar1e tra..nsistors are made lar1e to allow the bit
lines to charge up quickly). After precha.rging, the p.recha.rge signal is set high,

thereby making the bit lines behave like capacitors. The row is then selected.

Depending on the state of the memory cell, the current in one of the bit liLLes sinks

through the ceJJ and turns on one of the pmos transistors in the sense amplifier (this
reinforces the state of the high bit line); the sense line is then set high, which

stabilizes the state of the sense amplifier. (The tra.nsistors in the sense amplifier are

larger than those in the memory cell, and have the capability to drive the bit lines).
The data on the bit lines are then selected through the column select, as will bti
described below.

The vrire operation is as follows (refer to Figure 1.3). The bit lines (B',B) and the i/o
lines (L' .L) are precharged by setting the precharge line low: after precharging, the
precharge signal is set high which makes the bit lines and the i/o lines behave like

capacitors. Next, the R/W' and CE' (chip enable) signals are set low to enable the input

transmission gates (Tl,T2); thereupon, one of the charged i/o lines discharges via one

of the transmission gates (depending on the input data), leaving one line high and the
othe.r o.ne low. Next, the column decoder connects one set of bit li.nes to the i/ o lines,

which discharges one of the bit lines th.rough the same transmission gate. Then, the
sense line of the sense amplifier is set high to help stabilize and drive the bit lines, as

discussed previously. Finallyl the row decoder selects a particular row, and the data o.n
the bit lines is then written into the memory cell by forcing the bistable circuit to the
appropriate state.

For a .read oparation, the R/W' line is set high and the CE' (chip enable) si1nal is set
low. This disables the input transmission gates (Tl,T2) and enables the output

transmission gate (T3). For a write operation, the R/W' and CE' signals are set low to
enable tbe input transmission gates and disable the output transmission gate. This
control logic, the i/o lines, and the sense aJnplifiers will be referred to as raad/write
logic. Note: when reading or writing, all the memory cells in a particular row are
selected at once, but only the bit lines of a particular memory cell are connected to the

input/output data lines via the selected column decoder line.

\.

4

···-

~ ... r
',I\.

I.___ Cell ,_ Cell ..,__ Cell ._ Cell
L
(1)

~

_ .. " ,::, r 0 ,..._ Cell ,_ Cell .__ Cell ..,_ Cell (.)
(l)

0

~
-- B' B B' 8 B' B B' B 0
~

...!.. ::-; - ,...,. ,. , ,...,. ,. . -... , ,. ' ... , ... ,,

L . ._ ~
'ti\.

RI -vi
1r-- Jeree ~

~ A rnp.
C E nr· ~j

I l=i ~ I l=i; I I I

r.v-
I I I I I .. , L' - - -

,r

Vdd p-
Ir I +i ~ +

f-'
~ Prechct-ge

--{>
T2 ..1&.

. ~;: . L --
~ ' .. ' ~ ' I, ~I,

0 ut -<~
T3 oil

T Col uron Decoder

F"~ 1.3: Organization of a Static RAM

In almost all applications, word organized memories are used. However, word organized
memories at the circuit-board level can be formed by interconnecting bit organized
memory chips. See Figure 1.4, where msb stands for most significant bit and cs for chip
select.

Functional testing of a memory system, for the most pa.rt, ca.n be treated the same for
both a board-lel·1ei memory system and a memory system within a chip. This is because

.. the operation of the memories is the same: select an address and read(write) a word
from(into) memory. There a.J'e however, some distinctions that can be made. For
example, in Figure 1.-1, since this system is word organized with individual chips, it is

5

I

possible to test eight bits in parallel without concern for coupling between bits in the
same word. In contrast. if this word organized memory was within a chip, then it
makes sense to examine possible couplins vithin a wo.rd, since this type of fault is
more likely to occur due to the layout and density of the cell array.

t1AJ;~
msb ·· .)

' ,18

--{>:

cs

\
I)
\
' _../' -

1 2 8

Address Data
~ out 256K 256K 256K - - • -x1 Bit x1 Bit • • • x1 Bit

.. cs ~ cs - I- cs

• 256K •• 256K - - 256K
x1 Bit x1 Bit • • • xl Bit

c·-· -cc· -.('j - L.:, ••..}

t1DR

f'i9u,re 1.4: 512K 18 Bit Memory System

~
I

-

-

)
Low Order
Memory

I High OrdErr
J t'-1err,or,d

In this report. the memory system is assumed to be within a single chip, so that areas of
concern such as physical layout of the cell array, decoders, etc., will be addressed. Also,
it will be quite easy to apply any of the functional chip-level testing schemes to the
board level. Keep in mind th.at it may be cost effective to implement some built-in
functional testing schemes at the board or module level. rather than at the chii, level
(due to extra pins, area overhead, etc. required otherwise).

6

,V•U..,_,_,.,_,.,.,.,., .•. ,., • iv

I•

1.2 0Yerv1ew of Testing

Testing circuits consists of three parts: generating test vectors, applying the vectors to
the circuit under test (CUT), and comparing the results. A simple block diagram is
shown below:

.
:: Pattern :: . .
:: Gener at ion:: .
t t t t t t t t t t I t t I •

:.\ Circuit.:.
··: Llnd.:-r =· - .. • ...
• • ,r,. • • • • . T t. .
It t • s t t ti ltttl

. ,.. . .

Fuju.re 1. 5: Block Diagram. of Testing

The set of test vectors is usually generated by expensive automatic test equipment (ATE)
and is applied to the CUT. The results of the input test vectors are then compared to a set
of correct vectors that is usually stored in the ATE. The generation of the test vectors as
well as handling the massive amounts of output data make testing of VLSI chips
increasingly complicated, time consuming, and very costly. As the density of memory
chips increases, testing them will be a major cost in the overall development.
Therefore, new methods need to be developed and implemented. Currently, there is a
trend to couple design together with testing, and this has led to Built-In Self Test (BIST).

1.3 Bui1t-,n Se1f Test (81ST)

A system containing BIST can test itself and provide a "go/nogo" indication. This is
typically done at the functional level. Most BIST techniques test offline: the system is
placed in a self-test mode, and usually a test pattern is gene.rated internally a.ad the.n
eith,er compared to correct results or a signature analysis method is used. In either
case, the system gives a go/nogo indication. Another type of BIST is called concurrent
testing. This involves the capability of checking the circuit simultaneously with the .~
normal ope.ration. of the system. Should a non.-co.rrectible e.r.ro.r occur, the use.r would
be notified. ·rhe major advaD.tage of the concur.rent checking method is the ability to

~

detect intermittent f a.lJlts. For built-in self test of memories, only offline checking will

7

be discussed here.

There are three components of BIST for memory systems: address generation, input
data generation, and evaluation circuitry. The evaluation circuitry can be divided into
two groups: direct ~omparison and data compression. Djrect comparison is
accomplished by comparing expected data to the actual output data. Data compression
techniques use either a linear feedback shift register (LFSR) or a multiple input
signature register (MISR) to compress the output responses into a signature via
polynomial division (refer to [Abraham ·s~] for more details on signature analysis).
See Figure 1.6. USR and MISR work similarly: an init!al seed value is placed into the
register, the testing begins and data compression is performed on the output data. After
the test, the resulting signature left in the register is compared to a known signature
for the fault-free system.

Fi1ure t .6a: Linear Feedback Shift R91i1ter Pi1ure 1.6b: Multiple Input Signature Reaiater

F~e 1. 6: Data Compression Techniques

Both methods, direct comparison and data compression, have advantages and
disadvantages. Direct comparison gives better fault coverage .. because there is .no
aliasing which is inherent in data compression methods. Also there is no .need to
initialize the signa(ure register with a seed value, and the signature does not have to be
shifted out and compared to results that are stored elsewhere. Data compression
techniques. however.. have the advantage of testing themselves during the data
compression. This is important, since any extra BIST circuitry that is added must also be

8

•

tested, A memory system with DIST utilizing direct comparison is shown in Figure l.7aj
and Fisure 1.7b shows a memory system using data compression.

I I ft t t f I I It t I If t I It If I

/ ',
l Address : .
1 G~ner ation ;
\ /

---...

Input Dat~ Reg

.
I I I I I t t I t f f t I f I t I I I

t I t t I t I t I

······································· .
I t I I I I t I I

···:···:···:···:···:···:···:···:···:···
I t I Ill I I II I t I I f I I I I I I I

I I I I t I I t I

/ '
, '

~ l Input Data 1 . '

i Generation 1
· /

/ t It f I It I It I II I It ti I ti I I'

/ '\

I MARI........ :::~::Tr·:1·erno·r~ T::~::: -
·:·(·~ Ce 11 Arr a · ·:t:·

Expected j
Output Data 1

Generation 1 , / ' '. -~
I t I I I I I f t

I I t I I I I I I t I I I I I t I I I
I I I I I I I I I a
I • • • f • I I I a .
I • • • I I I I I •

······································· . . . :.:.:.:.:.:.:.:.:. .,,.
. . • ·. · ·. i . . (.: · \ r/E·~~~·~~~ ,i I Output Data Reg f .. ~ : Comparator ?·~t . [- . \ / , Reg1ster ·

'••• /

f'~ 1. 711-: Memory BIST using Direct Comparison

/ , ..
! Address : . .
1 Gener at ion 1
.... /•.•••..•....• ---....
I MAR I I

,/''······················, / '

Input Data Reg ~ l Input Data ! + ; Gener atia:in ; . • : . : : . ' . . . : ', /
,. •ff f ••ff I• f ••I I I I.ff• f .•.•...•...........•...•...•.....•..... • • : . . . :•..............•............... ' ' : .•.•..••••.••.••...........•.•.•.......

.:.L:.11'1en;ory L:.L:. '
·:t:·j Ce 11 Arr a · ·:t:· , , ~ ' . '

I t I I I I I I I

······································· •
I I • I I I I I I I f • • f I I f f •

f I I • I I I I I

······································· : . . . : . : : . : +
...•••.•.•.....•••.•...•...••••.....•...

/ ' I I i MISR - Output ':
?utput Data Reg l Data Compression ~

'·· , ..

f'~ 1. 7fJ: Memory BIST Using Data Compression

Both approaches require some means for address generation and input data generation.
The direct comparison method also must be such that the circuitry needed to gene.rate
the expected output data is as simple as possible. The approach that should be used will
depend on the test algorithm implemented. Ultimately, the assessment of different BIST
schemes should be based on the following: area overhead, fault coverage, test time,
performance degradation, and testing of the BIST circuitry.

,,··g

2. Memory Testing

In order to study memory testing, fault models, memory system functional faults, and
test patterns/algorithms need to be discussed. In addition, the following terms need to

be defined with respect to memory testing. Bit organized memories allow access to each
individual cell, which makes it easier to test for cell interaction; word organized
memories allow access to a word at a time, which makes testing of coupled cells within a
vord more difficult since most algorithms only write a word of all O's or all 1 's. Test
complexity or test time is given in terms of the number of addressable entities or words
in a memory system (for bit organized, the word length is 1). A pseudo-random pattern.
is a pattern which appears random, but can be reproduced. (In using a USR as an
address generator, for example, all the addresses of the memo.ry are generated
exhaustively, but in a pseudo-random fashion). A memary system. which under some
faulty condition. reads more than. one cell with different values, results in the ANDin.g
(ORing) of the selected cells is considered AND type (OR type). Address Scramblin1 is
vhen the logical addresses do not map directly to the physical addresses.

2. 1 Fault Models

Fault models are logical representations of faults due to physical failures. The common
fault models used to test the functionality of a memory system (listed in the order of
increasing complexity) are the following: bridging faults, stuck-at faults, hold faults,
destructive read faults. transition faults, coupling faults, and pattern-sensitivity faults
(PSF).

Brideine Faults Model
..

There are two types of bridging faults: AND type bridging and OR type bridging. AND
type bridging results in dominant O while OR type bridging results in dom.inant 1.. For

l

em.mple. if two leads are shorted (a.b). in AND type bridging the value out would be a 0.
given that one of the leads was a 0. In OR type bridging, if one of the luads is a 1, then
the value out would be a 1. Figure 2 .1 shows an AND type bridging fault.

10
-. - I

... "'

,-,
'

0

0

fbpre 2 .1 : AND Type Brid1lll1 Fault

Stuck-at Faults Model

The stuck-at fault model assumes that one or more logic values in a memory system

(including the address registers, decoders, etc.) cannot be changed. For example, one

or more memory cells could be stuck at either a 1 or a 0.

Bold Faults Model *

A memory cell with a hold f au1t cannot retain either a one or zero state after some
&mount of time.

Destructive Read Faults Model•

Data in a memory cell is destrqyed followiJlg a read operation.

Transition Faults Model •

A memory cell fails to undergo a 0->l or a 1->0 transition.

* Distinctive to memory cell array faults

1 1

Coupled Faults Model ..

A pair of memory cells (i,j) is coupled if a writing a value into one cell of the pair

forces the logical state of the other cell. For example, if a 1 is written into cell i which

forces cell j to some logical st.ate. say to a 0. then cell i and cell j are said to be coupled.

This does not necessarily imply that a similar transition in cell j will influence cell i in

a similar manner.

Pattern-Sensitivity Faults (PSF) Model •

The pattern-sensitivity fault model states that a memory cell is dependent on certain

J)atterns of zeros. ones. and/or transitions in the other cells of the memory. This model

also includes any failure of a read/write operation involving one cell caused by

certain patterns of ones or zeros in the other cells of memory. Note: Coupled faults are

a special case of PSF. Normally, for patten-sensitivity faults, one need only be

concerned with either the physically adjacent or surrounding cells due to the nature

of the physical faults. Figure 2.2 shows a diagram of adjacent and surrounding cells.

1 2 3
4 X 6
7 8 9

,,

Cells 1-9 surround ce11 X

Celts 2, 4, 6, 8 are adjacent to cell X

FUJUre 2 .2: Adjacent and Surrounding Cells

• Distinctive to memory cell array faults

12
..

2.2 Memory System Funot1onn1 Fnults

As was discussed earlier, a memory system consi~ts of the following: a memory address
register (MAR), address decoders, array of memory cells, read/write logic, and a
memory data register (MDR). Refer back to Figure 1.1. The approach here will be to
e:ia.mine how to test each component of the memory system and to note the equivalence
between the component faults and the memory cell array faults. The fault coverage of
each algorithm will then be discussed in Test Patrerns/ Algorithms.

Memory Address Register (MAR)

To test the functionality of the Memory Address Register (MAR), one need only verify
that all addresses are accessed. This is because stuck-at or bridging faults in the MAR
would cause some address or addresses to be inaccessible. One common approach for
verifying that all addresses are accessed is to leave a "trail" of 1 ·s or o·s in each address
and then to verify that the trail was left. A trail is made by initializing the memory to
some value (say 0), then for all addresses: a) checking that we haven't al.ready been
there l,y reading that value (0), and b) leaving some other value (1) behind as a trail.
This method verifies that each address exists and is unique, a.nd it is use" in several
march test patterns.

Decoders

To test the functionality of the decoders, one must detect stuck-at faults, accessing the
wrong cell or cells, and certain coupling faults in the me11,iory cell array. With stuck-at
or bridging faults, the decoders will either access .no cells (appear as memory cell
stuck-at fault), will access the wrong cell or cells (covered in MAR faults), or it will
access the correct cell as well as another cell or cells (appear as coupling faults ia the
memory cell array). In the case of multiple accessing in.eluding the correct cell, two or
more decoder lines would be activated causi.Jlg the same value to be written into more
than one cell (this is equivalent to coupling of cells with Ai being loaded with some
value V and Aj also being loaded with the same value V). In addition, this type of

13

\

....

/,

failure also implies that if Ai is coupled to Aj, then Aj is coupled to Ai. Note, when a read
operation involves the selection of two cells containing different values, the result will
either be a logical 1 or O depending if the memory is AND type or OR type.

Read/Write Lo1ic (incluclin1 sease-amplifiers)

-
To test the ru·nctionality of the read/write logic, one must detect stuct-at faults and
certain coupling faults in the memory cell array. Stuck-at faults in the read/write
logic will appear as stuck-at faults in the memory cell array. For bit organized
memories, bridging faults in the read/write logic will appear as coupling in. the
memory cell array with the coupled cells being read or written the same value V. Note,
the case where a reM operation involves the selection of two cells containing different
values, the result will either be a logical 1 or O depending if the memory is AND type or
OR type. For word organized memories, bridging faults can either appear as coupling
within a word or coupling between words of the memory array. In addition, this type of
failure for either organization implies that if Ai is coupled to Aj, then Aj is coupled to Ai
vith the same value being written iilto both cells.

Memory Data Re1ister (MDR)

To test the functionality of the MDR, one must detect stuck-at faults and certain
coupling faults in the memory ce11 array. Stuck-at faults in the MDR will appear as
stuck-at faults in the memory cell array, and bridging faults in the MDR will appear as
coupling within a word of the memory cell array (for word organized). I.n addition, this
type of failure also implies that if Ai is coupled to Aj, the.n Aj is coupled to Ai, with the
same value being written into both cells.

Memory Cell Array

To test the functionality of the memory cell array, one must detect stuck-at, bridging.
transition, hold, destructive read., coupling, and pattern-sensitive faults. Stuck-at faults

14

I

can bt detected by writing a O and a l into each cell and verifying that a O and a 1 have been stored. Bridging faults can be modelled as coupling faults in the following way: Ai is coupled to Aj also implies that Aj is coupled to Ai, and the same value is written into both cells. Transition faults can be detected by forcing each cell to undergo both a 0->1 and a 1->0 transition and verifying each transition. Hold faults can be detected by writing a O and a 1 into each cell, waiting some time h, and then verifying that a O and a 1 remain. Destructive read faults can. be detected b·y reading ea.ch cell tvice while each cell contains both a O and a 1. Coupling faults can be detected by writing all the combinations of a O and a 1 into each pair of cells. and reading after each write operation. Pattern-sensitive faults can be detected by writing patterns into the physica.1 neighborhood (either adjacent or surrounding) of a target eel!.. and then reading, the cells of that neighborhood. Adjacent pattern-sensitive faults will be referr«~d to as APSFs and surrounding pattern-sensitive faults as SPSFs.

As can be seen, to detect all the possible faults within a memory system, one need only cover the memory address register faults and the memory cell array faults. Obviously~ to test all the possible memory cell array failures is unrealistic since exhaustively testing a memory requires 2° operations (where n is the total .number of bits in the memory). Therefore, a number of algorithms have been developed to test a memory system based on a fault model or a combination of fault models. Most of the algorithms described in the literatur~ do not cover pattern-sensitive faults. A comparison of these test patterns/algo.rithms is based on the coverage of the functional faults within a memory system (See Test Patterns/ Algorithms).

15

r

2.3 Test Pntterns/Algor1thms

There are many test patterns available for testing RAMs. Each of these patterns off er
tradeoffs between test comple1ity and fault coverage. A memory fault sjmulator was
developed to help analyze the fault coverage of the algorithms. See Appendj1 A. The
following are some of the RAM test patterns (given in the order of increasing
complexity): Pseudo-random, MSCAN, Checkerboard, SMTP, Modified Checkerboard,
Marchi, March2, March3. March4, Marinescu. Nair et al., GALPROCO, Walking l's and
O's, and GALPAT. To be consistent in describing the different algorithms, unless
otherwise s~d the following convention will be used:

w Write

R Read

0 Word of all O's

1 Word of all I's
I Word of mi1ed o·s and l's
I' Complemented X

For describing coupling faults. the following notation wll be used: Cell Ai coupled to
cell Aj implies that when cell Ai is loaded with some value V (Ai->V), then cell Aj will be
forced to some value X (Aj->X). The asteriks, in the discussion below. mark coupling
with the same value (ie; X-V).

Also for consistency, the fault coverage will be in terms of all the possible faults within
a memory system (See 2.2 Memory System Functional Faults). Hold faults will not be
discussed explicitly since each algorithm can be modified to delay reading some amount
of time. The summary of fault coverage will be in terms of the component faults within
a bit orga.nized memory system siace the coverage of coupling faults for word
organized memories is the same for all test algorithms. The summary of fault coverage
can easily be eltended to word organized memories. A description of each of the
algorithms follow:

16

MSCAN (Memory Scan); 0(1n) [Breuer '76) [Abadjr '831

Algorithm:

For all addresses in ascending order; WO. RO. Wl. Rt

Memory Address Register (MAR) Failure

MAR faults are not detected.

Memory Cell Failure

Stuck-at faults are detected because both a O and a 1 are written into all addresses
and verified.

Transition faults are not completely detected since each cell fails to undergo a 1->0
transition.

Destructive Read faults are not detected.

Coupled Cells - Ai and Aj Ai and Aj

in different words within a word

*a) Ai->l Aj ->1 Ai< Aj Not Detected Not Detected
b) Ai->1 Aj ->O Ai< Aj Not Detected Detected

*c) Ai ->0 Aj ->0 Ai< Aj Not Detected Not Detected
d) Ai->0 Aj ->l Ai< Aj Not Detected Detected

*e) Ai->1 Aj ->1 Ai> Aj Not Detected Not Detected
f) Ai->l Aj ->0 Ai> Aj Not Detected Detected

*g) Ai->O Aj ->0 Ai> Aj Not Detected Not Detected
h) Ai->O Aj ->1 Ai >Aj Not Detected Detected

,r

17

,,

Summary of Fault Coverqe

Memory Address Reg : Not Detected
Decoders : St11ck-at-O
Read/Write Logic : Stuck-at

Memory Data Reg : Stuck-at

Memory Cell Array : Stuck-at

Checkerboard: 0(:fn) [Sun '8.j) [Breuer '76)

1. For all addresses: write a checkerboard" pattern (in physical memory)
2. For all addresses; read checkerboard pattern

3. For all addresses; write a complemented checkerboard pattern
~- For all addresses; read complemented checkerboard pattern

t)

• A checkerboard pattern consists of alternating O's and 1·s in odd rows and the
complement (alternate 1 ·sand O's) in the even rows.

Memory Address Register (MAR) Failure

Stuck-at faults in the MAR are not detected by the checkerboard pattern. For
example, if the most significant bit of the MAR is stuck-at 0, only the low order
addresses are accessed, but these a.re not detected due to the symmetry of the
checkerboard pattern. MAR bridging faults are detected.

Memory Cell Failure

Stuck-at faults are d~tected. In step 1, a O and 1 is written into every other address
and verified in step 2. In step 3, a 1 and O is written i.Jlto every other address and
verified in step 4.

...

16

.,

.....

Transition faults are not necets1rily detected siace each cell does .not under10 both
a 0->1 and a 1->0 transition.

Destructive Read faults are not detected.

Coupled Cells - Ai and Aj Ai and Aj

in different words within a wont+++

*a) Ai->l Aj ->1 Ai< Aj Not Detected Not Detected
b) Ai ->1 Aj ->O Ai< Aj Not Detected Detected in 2,4

*c) Ai->0 Aj ->0 Ai< Aj Not Detected Not Detected
d) Ai->0 Aj ->1 Ai <Aj Not Detected Detected in 2,.C

*e) Ai->1 Aj ->1 Ai >Aj Detected in 2+ ,4+ Not Detected
f) Ai ->l Aj ->0 Ai> Aj Detected in 2• ,4+ + Detected in 2,4

*g) Ai->0 Aj ->0 Ai> Aj Detected in z+ .~+ Not Detected
h) Ai ->0 Aj ->1 Ai> Aj Detected in 2"' . .i++ Detected in 2,4

+ For adjacent cells

++ Fo.r surrounding cells

+++ Assuming the all O and 1 words are written/read to obtain the

checkerboard pattern. Depends on physical layout of memory.

Summary of Fault Coverage

Memory Address Reg : Bridging

Decoders : Stuck-at & Bridging

Read/Write Logic : Stuck-at & Bridging

Memory Data Reg

Memory Cell Array

: Stuck-at

: , Stuck-at, Bridging, Mininlal Coupllil1,

Some APSFs, Some SPSFs

19

.-

'"

SMTP (Simple March Test Pattern): Q(ln) [Sun ·s.cJ

1. Initial iu memory to O

2. For all addresses in ascending order; RO, Wl

3. For all addresses in ascending order; Rl, WO

Memory Address Register (MAR) Failure

MAR faults a.re detected. Step 1 will set all addresses to O's, and step 2 will verify the

MAR by reading the O's and leaving a trail of 1 's.

Memory Cell Failure

Stuck-at faults are detected. In step 1, a O is written into all addresses and verified in.

step 2. In step 2, a 1 is written into all addresses and verified in step 3.

Transition faults are not ccmpeleUy detected since although each cell undergoes

both aO->l and a 1->0 transition (steps 1-3), the 1->0 tra.nsitio11 is not verified.

Destructive Read faults are not detected.

Cou pied Cells - Ai and Aj Ai and Aj

in different words within a word

*a) Ai->1 Aj->1 Ai <Aj Detected in step 2 Not Detected
b) Ai->1 Aj ->0 Ai <Aj Not Detected Detected in step 3

* c) Ai->0 Aj ->0 Ai< Aj Detected in step 3 Not Detected
d) Ai->0 Aj ->l Ai< Aj Not Detected Detected in step 2

*e) Ai->1 Aj->1 Ai >Aj Not Detected Not Detected
f) Ai->l Aj ->0 Ai >Aj Detected in step 3 Detected in step 3

*1) Ai ->0 Aj->0 Ai> Aj Not Detected Not. Derected
h) Ai ->O Aj ->1 Ai >Aj Detected in step 2 Detected in step 2

20

Summary of Fault Covera,e
.,

Memory Address Re1 : Stuct-at & Bridging
Decoders

Read/Write Logic

Memory Data Reg

Memory Cell Array

: Stuck-at & Bridgine
: Stuck-at & Bridging

: Stuck-at

: Stuck-at, Bridging, Some Transition,

Minimal couplina

Modified Checkerboard: 0(8n) (Jain '86)

In this algorithm, a checkerboard pattern is written into physical memory such

that the bit lines (B', B) of adjacent memory cells contain a checkerboard pattern.

The approach is to write the all-1 or all-0 word into the appropriate addresses to

achieve this pattern, and therefore requires knowledge of the physcial layout. (The
architecture of this memory system is described in section 3.2).

1. For all addresses in ascending order

1A. If address• (1,2,3,4),(9,10,11,12), ... Then WO

Else if address z (5,6,7,8),(l 3,l.f,15.16), ... Then Wt

1B. Read address (either RO or Rt depending on address)

2. For all addresses in ascending order
2A. Read address

2B. If address= (l,2,3.-4),(9,10,11,12), ... Then Wl

Else if address• (l,6,7,8),(13,1.i,ll,16), ... Then l'O
3. For all addresses in ascending order

3A. Read address

3B. Read addresses descending order

.f. For all addresses i.n descending order

,.,, , ... ,..

4A. If address· (1.2,3,4),(9,10,l l,l2), ... Then WO

Else if address - (5,6,7,8),(13,14.1,.16), ... Then Wt
.fB. Read address

21

~

(..

' .

.,

Memory Address Re1ister (MAR) Failure

Stuck-at faults in the MAR are not detected due to the symmetry of the
checkerboard pattern. MAR bridging faults are detected.

Memo.ry Cell Failure

Stuck-at faults are detected since both a O and a 1 are written into all addresses and
verified.

Transition f&t!!ts are detected sjnce each cell undergoes both a 0->1 and a 1->0
,.

transition (steps 1-~), each followed by a read operation.

Destructive Read faults are detected since each cell is read Wice afte.r containing
both a O and a 1.

Coupled Cells - Ai and Aj Ai and Aj

in. different words within a word+++

*a) Ai->1 Aj ->1 Ai <Aj Not Detected Not Detected
b) Ai->l Aj ->O Ai< Aj Not Detected Detected in 1,2

*c) Ai->0 Aj ->0 Ai< Aj Not Detected Not Detected
d) Ai->0 Aj ->l Ai< Aj Not Detected Detected in 1,2

*e) Ai->l Aj ->l Ai >Aj Detected 2-4+ Not Detected
f) Ai->1 Aj ->0 Ai >Aj Detected 2--4+ + Detected in 1,2

*g) Ai->O Aj->0 Ai >Aj Detected 2-4+ Not Detected
h) Ai->0 Aj ->l Ai >Aj Detected 2-..i+ + Detected in 1,2

+ For adjacent u.d surrounding cells but in differeat rows
++ For cells within the sam.e row

+++ Assuming the all O and 1 words are written/read to obtain the

checkerboard pattern. Depends on physical layout of memory.

22
•

..

Summary of Fault Coverage

Memory Address Re1 : Brid1in1
Decoders

Read/Write Logic

Memory Data. Reg

Memory Cell Array

March 1: 0(9n) [Green '861

1. Initialize memory to 0

: Stuck-at & Bridging

: Stuck-at & Bridging

: Stuck-at

: Stuck-at. Bridein1. min Couplin1. Destructive React
Transition, Some APSFs, Some SPSFs

2. For all addresses in ascending order; RO. Wl

3. For all addresses in ascending order; Rt, WO
.

. ~. For aJl addresses in descending order; RO, Wt

:,. For all addresses in descending order; Rt, WO

Memory Address Register (MAR) Failure

Steps 1-3 are ide~tical to the SMTP; therefore March 1 will detect any MAR failures.

Memory Cell Failure

Stuck-at faults are detected since steps 1-3 are identical to SMTP.

Transition faults are detected since each cell undergoes both a 0->1 and a 1->0

transition (steps 1-~), each followed by a read operation.

Destructive Read faults a.re aot detected. -

23

•)o-

Coupled Cells - Ai and Aj Ai and Aj
in different words within a word

*a) Ai->1 Aj ->1 Ai< Aj Detected in step 2
b) Ai ->l Aj ->O Ai< Aj Detected in step ~

•c) Ai->O Aj ->O Ai< Aj Detected in step 3
d) Ai ->0 Aj ->1 Ai< Aj Not Detected

•e) Ai ->l Aj ->1 Ai> Aj Detected in step ~
f) Ai ->1 Aj ->O Ai> Aj Detected in step 3

*g) Ai->O Aj ->0 Ai> Aj Detected in step ~
h) Ai->0 Aj ->1 Ai> Aj Detected in step 2

Summary of Fault Coverage

Memory Address Rei : Stuck-at & Bridging
: Stuck-at&: Bridging

: Stuck-at & Bridging

: Stuck-at

Not Detected

Detected in step 3
Not Detected

Detected in step 2

Not Detected

Detected in step 3
Not Detected

Detected iJl step 2

Decoders

Read/Write Logic

Memory Data Reg
Memory Cell Array : Stuck-at, Bridging, Transition, most Coupling

March 2: 0(11n) [Green '86)

1. Initialize memory to 0
Z. For all addresses in ascending order; RO
3. For all addresses in ascending o.rder; RO. WI
4. For all addresses in ascending order; Rl
~. For all addresses in. ~ce.ndi.nJ order; Rl, WO

6. For a!l addresses in descending order; RO, Wt
7. For all addresses iJl descending order; RI. WO

24

Memory Address Register (MAR) Failure

MAR failures are detected because step 3 will leave a trail of 1 's, and step ~ will
verify the t.rajJ of 1 's.

Memory Cell Failure

Stuck-at faults are detected. In step 1, a O is written into all addresses and verified in
step 2. In step 3. a 1 is written into all addresses and verified in step 4f.

Transition faults are detected since each cell undergoes both a 0->1 and 1->0
transition (steps 1,3,,,6), each followed by a read operation.

Destructive Read faults are detected since each cell is read twice while containing
both a O and a 1 (steps 2,3.~,,).

Coupled Cells - Ai and Aj Ai and Aj
in different words within a word

*a) Ai->1 Aj ->1 Ai< Aj Detected in step 3 Not Detected
b) Ai->l Aj ->O Ai< Aj Detected in step 7 Detected in step 4

*c) Ai->O Aj ->O Ai< Aj Detected in step 5 Not Detected
d) Ai ->0 Aj ->1 Ai< Aj Not Detected Detected in step 2

*e) Ai->l Aj ->l Ai> Aj Detected in step 6 Not Detected
f) Ai->1 Aj ->O Ai> Aj Detected in step 4 Detected in step 4

*g) Ai->0 Aj ->0 Ai> Aj Detected in step 7 Not Detected
h) Ai->0 Aj ->1 Ai> Aj Detected in step 2 Detected in step 2

25

Summary of Fault Coverqe

Memory Address Reg : Stuck-at & Brid1ing

Decoders : Stuck-at & Bridaing

Read/Write Logic : Stuck-at & Bridging
Memory Data Reg

Memory Cell Array

March 3: 0(14n) [Breuer '76]

1. Initialize memory to 0

: Stuck-at

: Stuck-at, Bridging, Destructive Read, Transition,
Most Coupljng

2. For all addresses in ascending order; RO, Wl, Rt

3. For all addresses in descending order; RI, WO, RO
4. Initialize memory to 1

~. For all addresses in ascending order; Rl, WO, RO

6. For a11 addresses in descending order; RO, Wt, Rl

Memory Address Register (MAR) Failure

MAR faults are detected. Step 1 will set all addresses to 0. Step 2 will verify the MAR
by reading the O's and leaving a tra,jJ of 1 ·s.

Memory Cell Failure

Stuck-at faults are detected. In step l, a O is written into all addresses and verified in

step 2. In step 2, a 1 is written in.to all addresses and then verified.

Transition faults are detected since each cell undergoes both a 0->1 and a 1->0
transition (steps 1-3), each followed by a .read ope.ration.

Destructive Read faults are detected since each cell is read twice while containing

26

both a O and a 1 (steps 2#3#~.6).

Coupled Cells - Ai and Aj Ai and Aj

in different words within a word

*a) Ai->1 Aj ->1 Ai< Aj Detected in step 2
b) Ai->1 Aj ->0 Ai< Aj Not Detected

*c) Ai->O Aj ->0 Ai< Aj Detected in step ~
d) Ai->O Aj ->1 Ai< Aj Not Detected

*e) Ai->1 Aj ->1 Ai> Aj Detected in step 6

f) Ai->1 Aj ->O Ai> Aj Detected in step 3
*s) Ai->O Aj ->O Ai> Aj Detected in step 3
h) Ai ->0 Aj ->l Ai> Aj Detected in step 2

Summary of Fault Cove.rage

Memory Address Reg : Stuck-at & Bridging

Decoders : Stuck-at & Bridging

: Stuck-at~ Bridging

: Stuck-at

Not Detected

Detected in step 2

Not Detected

Detected in step 2

Not Detected

Detected in step 2

Not Detected

Detected in step 2

Read/Write Logic

Memory Data Reg

Memory Cell Array : Stuck-at, Bridaing, Destructive Read,
·-

Transition, Some Couplin1

March 4: 0(1:,A). [Pradham 186)

1. Initialize memory to 0

2. For all addresses in ascending order; RO, Wl, WO, \Vl

3. For atl addresses in ascendine order; Rt, WO. Wt
4. For all addresses in descendins order; RI, \VO, Wl,WO

5. For all addresses in descending order; RO, Wl, WO

27

Memory Address Register (MAR) Failure

MAR faults are detected. Step 2 will leave a trail of 1 'sand step 3 will verify that th,
trail of 1 's was left.

Memory Cell Failure

Stuck-at faults are detected. In step 1, a O is written into all addresses and verified in

step 2. In step 2, a 1 is written into all addresses and verified in step 3.

Transition faults are detected since each cell undergoes both a 0->l and a 1->0

transition (steps 1-5), each followed by a read operation.

Destructive Read faults are not detected.

Coupled Cells - Ai and Aj Ai and Aj

in different words within a word

*a) Ai->l Aj ->l Ai< Aj Detected in step 2 Not Detected

b) Ai->1 Aj ->O Ai< Aj Detected in step 3 Detected in step 3

*c) Ai->() Aj ->0 Ai< Aj Detected in step 3 Not Detected

d) Ai->O Aj ->l Ai< Aj Detected in step 2 Detected in step 2

*e) Ai->1 Aj ->l Ai> Aj Detected in step ~ Not Detected

f) Ai->1 Aj ->0 Ai> Aj Detected in step 3 Detected in. step 3

*g) Ai->O Aj ->0 Ai >Aj Detected in step 3 Not Detected

h) Ai ->O Aj ->1 Ai> Aj Detected in step 2 Detected in step 2

28

Summary of Fault Coverage

Memc,r.y Address Reg : Stuck-at & Bridging

Decoders : Stuck-at & Bridging
Read/Write Logic : Stuck-at & Brideina
Memory Data Reg : Stuck-at

Memory Cell Array : Stuck-at, Bridging, Transition, Coupling

Marinescu: 0(17n) (Marinescu '82] [Nicolaidis ·s~]

1. Initialize memory to 0

2. For all e.ddresses in ascending order; RO, Wl, WO, Wl
3. For all addresses in ascending order; Rl, WO, RO, Wl, Rl
4. For all addresses in descending order: Rl. WO, Wl,WO
~. For all addresses i.n descending order; RO. WI. WO

Memory Address Register (MAR) Failure

MAR faults are detected. Step 2 will leave a trail of 1 'sand step 3 will verify that the
trail of 1 's was left.

Memory Cell Failure

Stuck-at faults are detected. In step 1, a O is written into all addresses and verified in
step 2. In step Z, a 1 is written into all addresses and verified in step 3.

Transition faults are detected since each cell undergoes both a 0->1 a.nd a 1->0
transition (steps 1-3), each followed by a read operation.

Destructive Read faults are not completely detected: each cell is read twice after
containing a 1, but .not after containing a 0.

29

w'

,,

..

Coupled Cells - Ai and Aj AJ ud Aj
ia djff ere at wo.rcll within a word

*a) Aj ->1 Aj ->l A.i < Aj Detected in step 2 Not Detected
b) Ai->l Aj ->O Ai< Aj Detected .in step 3 Detected in step 3

*c) Ai->O Aj ->O Ai< Aj Detected in step 3 Not Detected
d) Ai->O Aj ->1 Ai< Aj Detected in step 2 Detected in step 2

*e) Ai ->1 Aj ->1 Ai> Aj Detected in step ~ Not Detected
f) Ai->1 Aj ->O Ai> Aj Detected in step 3 Detected in step 3

*1) Ai->0 Aj ->0 Ai> Aj Detected in step 3 Not Detected
h) Ai->0 Aj ->1 Ai> Aj Detected in step 2 Detected iJl step 2

Summary of Fault Coverqe

Memory Address Ree : Stuck-at & Brideine
Decoders

Read/Write Logic

Memory Data Reg

Memory Cell Array

: Stuck-at & Bridging

: Stuck-at & Bridging

: Stuck-at

: Stuck-at, Bridging, Some Destructive Rea,I.
Transition, Couplins

30

n

'

Nairotat: 0(30n)[N&ir'781

The al1orithm is shown in the fi1ure below:

Cell lnitializE Sequence 1 Sequence 2 Sequence 3 Sequence 4 •
1 0 Rt R R' R Rt R'
2 0 Rt R R' R Rt R R' R
3 0 Rt . R' . . R . R

.
.
. R . . . R Rt . R' .

n-1 0 Rf R R' R Rf R R' R
n 0 Rt R' Rt R R' R

---,- Ti me

Cell Sequence 5 Sequence 6 Reset Sequence 7 Sequence 8 •
1 Rt' R Rt' 1 R't R R't
2 Rf' R R'' R 1 R't R R'' R
3 Rt' . . R 1 R't . . R

.
.
. R Rf' . . R R'' . . .

n-1 Rt' R Rt' R 1 R't R R't R
n Rf' Rt, R 1 R'f R'' R

-4 Ti rne

R Read
t "N'rit~ a 1

Nair, Thatte, and Abraham's Testing Procedure [Nair et al. 1978)
; ' 'vlrite a 0

FUJI'", 2.3: Nair, Thatte, and Abraham's AJ1orithm

31

() .

Memory Address Register (MAR) Failure

MAR faults are detected in sequence 1 by leaving a trail l's.

Memory Cell Failure

Stuck-at faults are detected. Initially, a O is written into all addresses, and then

verified in sequence 1. Sequence 1 also writes a 1 into all addresses and verifies it.

Transition faults are detected since each cell undergoes both a 0->1 and a 1->0

transition (initalize through sequence 2), each followed by a read operation.

Destructive Read faults are detected since each cell is read twice while containina

both a O and a 1 (sequences 1-3).

Coupled Cells - Ai and Aj

in different words

*a) Ai->1 Aj ->1 Ai< Aj Detected in Sequ. 1
b) Ai ->1 Aj ->0 Ai< Aj Detected in Sequ. 3

*c) Ai->O Aj ->O Ai< Aj Detected in Sequ. 2
d) Ai ->O Aj ->1 Ai< Aj Detected in Sequ. "

*e) Ai->1 Aj ->1 Ai> Aj Detected in Sequ. 3
f) Ai->l Aj ->0 Ai >Aj Detected in Sequ. 1

*g) Ai->O Aj ->O Ai> Aj Detected in Sequ. -4
h) Ai ->0 Aj ->1 Ai> Aj Detected in Sequ. 1

Summary of Fault Coverage

Memory Address Reg : Stuck-at & Bridging

Decoders

Read/W ritd Logic

Memory Data Reg

: Stuck-at & Bridging

: Stuck-at & Bridging

: Stuck-at

32

Ai and Aj

within a word

Not Detected

Detected Sequ. 1

Not Detected

Dete_cted Sequ. 1

Not Detected

Detected Sequ. 1

Not Detected

Detected Sequ. 1

Memory Cell Array : Stuck-at, Brid1in1. Destructive Read. Transitioa.
CoupliJlg

GAi.PROCO: 0C~*C3n•2*n312>> (Daehn '861

1. Initialize memory to 0

2. For all columns:
2. For all rows:

2a. RO

2b. Wl

2c. RO for aJl other columns~ RI for Test bit
2d. RO for all other rows, Rt for Test bit

2e. WO

2f. RO

3. For all addresses (rows & columns) RO
4. Initialize memory to 1

,. Fo.r all colum.ns:

,. For all rows:

~a. RI
~b. WO

~c. Rl for all other columns, RO for Test bit
,d. Rl for all other rows, RO for Test bit

~e. Wl

~f. RI
6. For all addresses (rows & columns) RI

Memory Address Re1ister (MAR) Failure

MAR f au1ts are detected.

Memory Cell Failure

33

..

Stuck-at faults are detected. In step 1, a O is written into all addresses and verified in

step 2a. In step 2b, a 1 is vritten into all addresses and verified in step 2c.

Transition .faults are detected since each cell under1oes both a 0->1 and a 1->0
tra!lsition (steps 1-2f), each followed by a read operation.

Destructive Read faults are detected since each cell is read twice while containin1
both a O and a 1 (steps 2c+. 2d+ .. 3. 5c+, ~d+, 6).

Coupled Cells -

*a.) Ai->1 Aj ->1

b) Ai ->1 Aj ->0

*c) Ai->0 Aj ->0

d) Ai->{) Aj ->1

*e) Ai->1 Aj ->1
.. f) Ai->1 Aj ->0

*1) Ai ->O Aj ->O

h) Ai ->O Aj ->1

Ai a.nd Aj

in different words

Ai (Aj Detected in 2a, 2c + ,2d+

Ai< Aj Detected in ~a.~c + ,5d+

Ai< Aj Detected in ~a.'.5c + .,d.
Ai< Aj Detected in 2a. 2c + .2d+

Ai> Aj Detected in 3, 2c• ,2d+

Ai> Aj Detected in ,a,,c + ,,d+

Ai> Aj Detected in 6.5c + .5d+

Ai> Aj Detected in 2a, 2c + ,2d+

Ai and Aj

within a word

Not Detected

Detected in 2C

Not Detected

Detected in 2F

Not Detected
(l,

Detected in ZC

Not Detected

Detected .iJl 2F

+ For coupling within the same row or column.

Summary of Fault Coverase

"

Memory Address Reg : Stuck-at & Bridging

Decoders
Read/Write Logic

Memory Data Reg

Memory Cell Array

: Stuck-at&: Bridging

: Stuck-at & Bridging

: Stuck-at

: Stuck-at, Bridging, Destructive React Transition,

Coupli11g, Some APSFs

34

• I

WaJtina 1 'sand O's: 0(2n2 • 6n) [Breuer '761

1. Initialize memory to 0

2. For all addresses in ascendine order:

2a. Wt

2b. RO for all other addresses (Tests that no cell is disturbed)

2c. Rl (Tests that the test bit is still correct)

2d. WO

3. Initialize memory to 1

4. For all addresses in ascending order:

.fa. WO

4b. Rl for all other addresses (Tests that no cell is disturbed)

4c .. RO (Tests that the test bit is still correct)

4d. Wl

Memory Address Register (MAR) Failure

MAR failures are detected.

Memory Cell Failure

Stuck-at faults are detected since both a O and a 1 are written into all addresses a.nd

then verified (steps 1-2d).

Transition faults are detected since each cell undergoes both a 0->1 and a 1->0

transition (steps 1-2d). each followed by a read operation.

Destructive Read faults are detected since each cell is read twice while containing

both a O and a 1 (steps 2b, ,tb).

'·

35

1

Coupled Cells - Ai and Aj Ai and Aj
itl different words withiA a word

*a) Ai->1 Aj ->1 Ai< Aj
\

Detected in step 2b Not Detected
b) Ai->l Aj ->O Ai< Aj Mostly Detected .f b Detected in 2c

*c) Ai ->O Aj ->O Ai< Aj Detected in step .fb Not Detected
d) Ai->0 Aj ->1 Ai< Aj Mosily Detected .fb Detected in 2b

•e) Ai->1 Aj ->1 Ai> Aj Detected in step 2b Not Detected
f) Ai->1 Aj ->O Ai> Aj Detected in step 4b Detected in 2c

*1) Ai->O Aj ->O Ai> Aj Detected in step .fb Not Detected
h) Ai->0 Aj ->1 Ai> Aj Detected in step 2b Detected in 2b

Summary of Fault Coverage

Memory Address Re1 : Stuck-at & Bridging
Decode.rs

Read/W .rite Logic

Memory Data Reg

Memory Cell Array

: Stuck-at & Bridging

: Stuck-at & Bridging

: Stuck-at

: Stuck-at, Bridging. Destructive Read.
Transition, Most Coupling, Some APSFs, Some SPSFs

36

GALPAI: 0(2n2 • Sn) (Breuer '761 [Pradham '861

1. Initialize memory to O
2. For all addresses in ascendin1 order:

2a. Wt

2b. For all other addresses; RO and verify RI for test address
2c. Rl (Tests that the test bit is still correct)
2d. WO

3. Initialize memory to 1

-f. For all addresses:

~a. WO

.ifb. For all other addresses; RI and verify RO for test address
4c. RO (Tests that the test bit is still correct)
~d. Wt

Memory Address Register (MAR) Failure

MAR failures are detected.

I Memory Cell Failure

Stuck-at faults are detected. Both a O and a l is written into all addresses and
verified (steps 1-Zd).

Transition faults are detected since each cell under1oes both a 0->l and a 1->0
tran.sition (steps 1-Zd).

Destructive Read faults are detected since each cell is read twice while containia1
both a O and a 1 (steps 2b, 2c, 4b, 4c).

37

..

Coupled Cells - Ai and Aj Ai and Aj

in different wo.rds within a wo.rd

4a) Ai ->1 Aj ->1 Ai< Aj Detected in step 2b Not Detected
b) Ai ->l Aj ->0 Ai< Aj Mostly detected ~b Detected in 2b

*c) Ai ->O Aj ->O Ai< Aj Detected in step .fb Not Detected
d) Af ->() Aj ->l Ai< Aj Mostly detected 2b Detected in 2b

*e) Ai->l Aj ->l Ai> Aj Detected in step 2b Not Detected
f) Ai->1 Aj ->O Ai> Aj Detected in step 4b Detected .in 2b

*g) Ai->O Aj ->0 Ai> Aj Detected in step -fb Not Detected
h) Ai ->0 Aj ->l Ai> Aj Detected in step 2b Detected in 2b

Summary of Fault Coverage

Memory Address Reg : Stuck-at & Bridging
Decoders

Read/Write Logic

Memory Data Reg

Memory Cell Array

: Stuck-at & Bridging

: Stuck-at & Bridging

: Stuck-at

: Stuck-at, Bridging. Destructive Read,

Transition, Most Coupling, Some APSFs, Some SPSFs

38

2.4 Comparison of Algorithms

The chart shown in Figure 2.~ compares the algorithms previously discussed in Test

Patterns/ Algorithms. This chart summarizes the follo•ing for each algorithm: the test

complexity in terms of the number of words in memory, the memory cell array fault

coverage, an estimate of the area overhead required for BISI circuitry, the estimated

time to test a 2~6:K RAM with 200ns access time, and miscellaneous comments. 1Jnless

otherwise stated, MAR faults are covered by the algorithms. As can be seen, there are

tradeoffs between the fault coverage, the test complexity, and the overhead in terms of

BISI circuitry. Typically, to obtain better fault coverage, the tradeoff is increased test

complexity and a.rea overhead. The estimated time column shows which tests run in a

reasonable amount of time. To reduce the test time for complex algorithms, such as

GALPAT, parallel techniques can be implemented (See Speed-up Techniques:

Parallelism). Note: for other memory sizes, for example 8K, the test time would simply

be .reduced by a factor of 32. Analyzing the tradeoffs betweep. algorithms, the following

observations a.re made.

In order to cover stuck-at, bridging, transition, destructive read, and coupling faults

only O(n) algorithms are required. For pattern sensitive faults (PSFs), O(n312) o.r O(n 2)

algorithms a.re recommended when the mapping of logical to physical addresses is not

available or practical. The test times with these algorithms are too long for large

memories, and the ref ore need to be implemented using parallel techniques. The

problems associated with algorithms that require knowledge of the physical layout are

due to address scrambling and row/column replacement. To handle address

scrambling, extra circuitry is needed to map the logical addresses to the physical

addresses. During the manufacturing process, some faulty rows and/or columns maybe

logically replaced by spare rows or columns. This makes testing the interaction of cells

within the physical layout nearly impossible. When knowledge of the logical to

physical addresses is available, and the test time requirement is low, then a modified

theckerboard approach is recommended.

39

• ·, j

,.

* Test Patterns Comotexltv Fault Coverage °:er. head** Es Ti • * * ~ . __ _t,me Comments

Pseudo-Random 4n A.B.E.f.y Smalt .21S

MSCAN 4n A Small .2 lS

Checkerboard 4n A. B. b E. E Medium .2 lS . '
SMTP 5n A, B, b g Small .26S

Modified Checkerboard 8n A.B.C.D.f;.f.~ Medium .42S

Marchi 9n A,B,C.~ Small .47S

March2 I In A,B,C.D.t Small .58S

March3 14n A.B.C.D.~ Small .73S

March4 15n A.B.C.E Small .79S

Marinescu 17n A. B. C, n_, E Small .89S

Nair et at. 30n A.B.C,D.E Medium 1.57S

GALPROCO 12n+8n312 A,B,C,D,E.f Large 3.59M
Waiting I's/O's 2n2 + 6n A, B. C. D. & f. G Large 7.64H

GALPAT 2n2 • 8n A. B. C, D, ~. E, Q Large 7.64H

A-Stuck-at B-Bridging C• Transition D•Destructive Read &-Coupling f•APSF G-SPSF

_ Not completely detected

Memory Celt Array Fault Coverage (bit organized)

** Estimated overhead or 81ST circuitry

~ ~ ~ Based on 256K with 200ns access time

Comments

1.2

2

2.3

2.3

5

5

1 Don't know bow many patterns are necessary to obtain indicated coverage. Coverage is estimated.

2 MAR faults are not completely detected.

3 Knowledge of how physical positions map to their logical addresses is required.
4 Must have capability to specify row and column addresses separately .

.5 Test complexity too large for BIST of large memories without using parallel techniques.

fi9ure 2 .4: Comparison Chart of Algorithms

40

3. Built-In Self Testtng Memories

To understand built-in self test for memories, memory fault models along with memory
test patterns/algorithms needed to be discussed. To evaluate the current state of built-in
self test for memories, it will be necessary to study and analyze the approaches
currently being suggested ILn the literature [Bardell ·s~] [Daehn '86) [Jain '86)
[Kinoshita '86] [Nicolaidis '8~] [Sun '84] [Westcott '81 J [You '84]. The following
approaches with their advantages and disadvantages are discussed: Daehn & Gross
[Daehn '86), Jain & Stroud·[Ja.in '86), and Sun & Wang [Sun '841.

3. 1 Daehn, W ilgried & Gross, Josef: A Test Generator IC for Testin& Large CMOS-RAlM

Overview

A test generator IC for testing large CMOS-RAMs utilizing the GALPROCO O(n 1-5)
algorithm is discussed. The paper analyzes the effects of physical defects on RAM
behavior, discusses existing test algorithms, proposes an algorithm which is
independent of the physical layout of the RAM, and presents the implementation in
silicon. The implemented test concept is applicable to both board and chip level testing.

Approach

The RAM is assumed to have the organization of Figure 1.1, except that there are two
address registers: a separate row and column address register. The physical defects
within all the functional blocks of the RAM transform themselves to logical fault
models in the following way:

Physical Defects
opens

short to GND

short to VDD

bridges

Loeical Fault Model
CMOS stuck-open

stuck-at-0

stuck-at-1

asymetrically vired AND, OR
forced level

41

....

These logical fault models are then transformed into the following funtional level
model for a RAM:

Cells can be s-a-0, s-a-1

Simple decoding error: a given address I selects a ce11~1
Sequential decoding error: an address x selects a cell x, a following

arbitrary address y selects a cell~y (effects

of a CMOS stuck open fault ir. the decoder)
Pattern sensitivity in a column or row
Pattern sensitivity in a physical neighborhood (not in a column o.r .row)

(Not cove.red in this approach)

Pattern sensitivity between any other cell pair (Not covered in this
approach)

'

A test procedure was developed to meet the above requirements plus the following:
independence of row/column arrangement of the cell array, refresh of dynamic RAMs
during test execution without additional cycles. and acceptable execution time. Below is
a block diagram of the test processor IC .

... ._

~1i,::ropro9r ~rri ..
,-. r .:iequenc:er
... ' . I

:fio . -
t

I
I

: ,-·t
. ·-· . op Clk

Tin·,in9
-. l L,ener ator .

. _.
L
r

L

Ri?s

Addre_
Genera

-- Row Address
tion -- Colurirrt Address _ __.q :

'w'R• ,r
L

-· : .

RD ·
Er.:p. D.:1ta : T i?St

· ~~·~ Good/Bad ,ri9 4,· = ~ Data r

T Erst Data Un1t 8 [
L. ·· ··· l·l ·· l···· ····· ···· · ···· ····· ·· ····· · · ·· · · ··· · · · ··· · ····l··f ! ~~

Clk F~t:s Go /Stop

F~ 3 .1 : Block Diagram 9f the Test Processor IC

The timing generator organizes the timing and controls the start/stop logic of the chip.
The execution of the test procedure is controlled by a finite state machine, which acts
as a microprogram seque.ucer. The address generating unit consists of four linear
feedback (9-bit) shift registers (USR) because they require less silicon area than

42

I). ..

("
\

conventional counting circuits. These are designed such that they generate muimum
length sequences for both row and column addresses including address 0. The testing
unit compares incoming data from the RAM under test with expected data, generated by
the control unit. This is done for eight bits in parallel.

Advan.tages

At the board level there is little overhead. This approach is also independent of the
physical layout while providing good coverage.

Disadvantages
.,

Requires separate rov and column address registers. The test time in the future maybe
a problem since the test complexity is O(n 312). Also, this approach covers a limited
amount of PSFs. Estimate high overhead for BIST within a chip.

Comments

This approach is designed for a separate test processor chip. The GALPROCO algorithm
covers more faults than stated in the proposed fault model. For example, destructive
read faults. See Test Patterns/ Algorithms and Comparison Chart for a description of the
coverage.

43

3.2 Jaia. Sunil &Stroud. Charles: BuiJt-io Selfiestio1 of Embedded Memories

Overview

Two test schemes, using the pseudo-random and checkerboard algorithm, are presented
as a built-in self test (BIST) method for testing embedded memories. The fault model
used in both test schemes can be summarized as follows: memory cell array faults
(stuck-at, transition, hold. destructive read. adjacent bridging, adjacent coupling),
decoder stuck-at faults, and adjacent data input/output line coupling. The adjacent
faults largely depend on the physical layout of the memory cell array. The RAM used in
this illustrative example is 32 words, accessed with , address bits, each word containing
four data bits. The paper also discusses the test pattern require1nents, data compression
techniques, implementation, 8.Jld an evaluation of both test schemes.

Approach

Approach 1: Pseudo-random algorithm

In this scheme, the input stimulus to supply the address to the RAM is also used as the
input data, such that each memory word contains a unique data word (pseudo-.random).
The algorithm is shown below:

l. For ~Jl addresses in ascending order, W1 (where x=address)
2. r·or all addresses in ascending order, Rx (where 1=address)
3. For all addresses in ascending order, W1'
4. For all addresses in ascending order, R1'

5. For all addresses in descending order, R1'
6. For all addresses in ~iScendi.og order, W1
7. Fo.r aAl addresses in ascending order, Rx
8. For all addresses in descending order. RI

Implementation of this scheme consists of a binary counter to supply the address, input

44 •
: I - y ,r•

data, and three control signals to direct the test sequence. The output data is compreSHd
via a multiple input signature register (MISR). The signature register is
enabled(disabled) during a read(write) operation and is controlled by the same signal
that controls the read/write to the RAM. When the self-testing is initiated, the binary
counter is initialized to zero and the MISR is initialized to a seed value. A MISR is used to
compress the output because with a comparison method all the expected data inputs
would have to be routed to the output for comparison, which would increase area
overhead. Below is an overview of this scheme:

Biri.jr1~
CountE-r

2-bi~ t··1od if ied t···1odif ied +- TE~;T ctr·, rE"g R/'w' reg Addr reg

ri, _~ .. ·Arn-Al ,r , .. ,, , ..

'
-. 2 ,-.. -) c.· 1 _ . ._, -·~
i l i Address
----- -•• - I• ' -•• ;· R ... ,

I / II \ • I i--,- R •'\.,' "' '"·r..-.r·t1··r · 1 11 F.' At·-·1 "\. IJf::'11,::- ~ , IJ f,I ... -· _ --· -----

Data-out

t-··1odif ied
TEST--+ Output ri?g
Enab lE' -+ (t· .. 1 ISR)

, rr
. .

Data-in

~ 3 .2: Test Scheme 1

Approach 2: Checkerboard algorithm

c:2 r:1 . ,-.. .

C :i··-......... 0 0 0 1 1 1 1 0

0

1

(I 1

1 0

1 - Read

1 0

1 1

In this scheme, a checkerboard pattern is written into physical memory such that the
bit lines (B', B) of adjacent memory cells contain a checkerboard pattern. The
approach is to write the all-1 or the all-0 word in.to the appropriate addresses to achieve
this pattern. The algorithm is discussed in section 2.3 Test Patterns/ Algorithms
(modified checkerboard algorithm.) using the architecture of the memory system
described previously.

45

\

lmplem.e.atation of this scheme is very similar to the one previously discussed e1cept
that the binary couater is modified to 1eaerate the checkerboard pattern. The output
response ca.a be either compressed or compared to e1pected data. See below:

Binary
Counter

2-b;t Modified
otrl reg Addr reg

I

' ' . + ,-
C3 C:t c·

Modified -t- TEST
Rl'w reg

I

•m ~Am-·, . , n
Address J l ! Data-in Data-in

0

1

R/'w \ ~
C:ener at;o~ R /'vi

RAM ___
00 01 11 10
0 1 0
1 1 1

0- n'rili!-
1 - ~d

1

0

Daia-out

Modified
TEST--t Ouiput reg
Enable -t (t-'1 ISR)

RAM

Data-out
n

Output reg
I

Enable -+ ... Comparator 7

F'UJUfe ~ .~: Scheme 2 with a) Data Compression aad b) Direct Comparison

Upon initiating the test sequence. the binary counter would be set to zero and the MISR
(error .register) would be i11itialaed to a seed value (zero). Note, since either all O's or
all 1 ·s is written into the memory at any given time, only one data input needs to be
generated (all inputs needed to be generated in Scheme 1). Also, the e1pected output
sig.na.l (o.ne si1.naJ) ca.a be 1e.nerated from the control bits a.ad address bit A3. The

.,

comparison result can then be compressed into an error register.

·•

46

Advantq11

Short test time, good coverage. With direct comparison method, only one e1pected
output line needs to be routed to actual output since only a word of a11 O's or 1 's is
written.

Disadvan ta.ges

Mapping from logical to physical addresses due to address scrambling could increase
circuitry. Row/ column replacement of faulty rows or columns could be a problem to
maintain the same fault coverage.

Comments

Dependent on the physical layout of the memory system. MAR faults are not completely ·'

detected. Could be extended to handle surround.uig PSFs.

..

r

47

,

. .

3.3 Sun, z. & Wan1. L: Self-Iestio1 of Embedded RAMs

Overview

This method combines both self-test and scan techniques to test embedded RAMs (See
Figure 3.4). The self-test utilizes the Simple March Test Pattern (SMTP) to detect hard
failures in the RAM, while the scan technique is used to detect stuck-at and bridging
faults in the comparator and data lines, and to diagnose single stuck-at faults in the
RAM. The memory is organized n words by b bits wide.

Approach
\

The Simple March Test Pattern (SMTP) is built into the hardware by modifying the R/W
control circuit, the address register, the input data register, and the output data
register. The comparison circuit consists of XOR gates between the output register and
the complement of the input register which are then Ored together. There are four
modes of operation: normal, scan, single-step, and self-test. The single-step mode
performs a read or write operation defined by the scanned-in test pattern. The self-test
mode executes the SMTP for detecting faults in the embedded RAM array.

\
\

Rl'tl ! Con~rol

t,_J Input
~~[:•at.a

t···1i:idifi€-d
t·1od --Input D~t:1 ~
R I/\,,,.. ~·. r.::. g_~

Sc.:1n-ln

Tiri-iing
C··,ntro l

r:... PE'gi:::tE-r
81)82_2_·~,.___~--~----t~~~~--~

bl t· .. lod
Ai ~> ~ Addr r ··

Input Reg
Address:__

Embed,jed
Mer11ory

Con·,par .ator

t .. 1odif iErd Control
----- Output [) at.:j t--+--_,. FF · s

~:e,~istt?r
..

Output
Data

Scan-Out

'

B 1 8 2 0p€'r at ion
r··1odt?

0 1 Norm.;sl
0 0 Sc.an
1 1 Sing le-Step
1 0 Self-Test

f'uJure 3.4: Block Diagram of Sun & Waag Self-Testing Embedded RAM

48

Advantages

The SMTP is easily implemented, requires short test time O(~n), physical positions of

the cells do not have to map to their logical addresses, scan design allows flexibility.

Disadvantqes

Scan technique to aid in self-test is slow (ie; serially scanning each pattern), SMTP is a

minimal functional test (See Test Patterns/ Algorithms). All the input lines need to be

routed to the output lines for comparison.

..

49

4. A New Hybrid Approach For Memory 81ST
f

Figure 4.1 shows a new approach using Multiple MISRs (MMISRs) for memory BIST.
This method is a hybrid aJ)J)roach that combines direct comparison anci data
compression techniques. The concept is to l'lgically divide the memory into two equal
parts, providing a MISR for each part. Due to the regular structure of a memory system,
the resulting signatures in each partition will be the same, assuming that no fault
occurs simultaneously in both partitions. Thus, rather than comparing the resulting
signature elsewhere, the signatures can be compared to each other. In order to provide
high fault coverage with this approach, all the components that a.re shared between
the MISRs must be isolated so that they can be tested independently (ie; the row
decoder). Otherwise, an error in a common component could manifest itself into
identical errors in each memory partition, and thus, the two MISRs signatures would be
the same. To provide the means for isolation, the memory is logically divided into ~
partitions as shown below.

•-..-'

N Addr.

fv1ernory Ce 11 Array
.

Test Seguence

Operations - > P .art 1
Operation:; - } P art4
Compare r·11SRs

Operations - > P .art2
Operations -> Part3
CornparEt r--·11s~~s

E hl "10d · r·iDF.'. t··11S~:2 ._ Enab 1 na... e -+ t .. 1,s~~ 1

Error
Re9

Compare

!="'9"-'"e 4 .1 : A New Hybrid Apptoach for Memory BIST

The operation of this approach is as follows: The MISRs are only active in a test mode
during a read operation. The enable level is high while reading from partitions 1&3

f . ;

, ..

50

I ;: ,,

and lov vhen readinR from partitions 2&4. Therefore, the MISRs will contain the
compre~~d output data from their ~~cica.ted partition,. Verification of the re,ult£ is
accomplished by shifting and comparing the contents of the MISRs to each other. In
order to isolate the row decoder, the test algorithm should be run on partitions 1&4,
compare the results, and then run on partitions 2&3 and compare the results. This
method of isolation allows faults such as s-a-0 in the row decoder to be detected.

The hybrid approach has the followin1 charar.teristics:

1) Resulting signatures need not be compared elsewhere, they can be compared
to themselves.

2) The comparison can be one line wide by simply shifting and comparing all
bits in the MMISRs. This method reduces circuitry but increases time to compare.
The comparison could be done in. parallel to reduce time, but the added
circuitry would increase.

3) Reduction of aliasing can be accomplished by more frequent checking of the
signatures.

~) Limited diagnostic capabilities: checking the signatures more often tells when
an error occurs; having more than 2 partitions results in a voting system,
the ref ore allowing a faulty partition to be detected and located. Note: the more
partitions, the more MISRs, an.d therefore higher BIST overhead.

~) No additional circuitry for generating expect output data is required.
6) This approach, like the other approaches, can be used with parallel techniques.

The parallel operations need to be within each partition.
7) This approach does not fully cover MAR faults (ie; if the MAR only accessed one

address).
,

51

5. Speed-up Techniques: Parnlleltsm

This section is concerned with speeding up the test application time via parallelism.
The concept of parallel testing of memory systems is to internally increase the word
size beyond the normal word size while in a test mode. Parallel signature analyzers
(PS"\s), also known as MISRs, are used to monitor read data in parallel. In addition, PSAs
can be loaded with write data to write into the memory in parallel, as long as the
signature is shifted out and compared to known results before being loaded ,;ith data to
avoid losing the signature. (This is unnecessary if there are two PSAs, one for an input
data register and one for an output data register or if extra logic is provided to translate
the signature to write data without changing the signature register). The approaches
suggested are algorithm independent and are described below:

5. 1 Han, Sang & Malek, Miroslaw: Tyo-Dimensional Multiple-Access Testin& Technique
For Random-Access Memories

Overview

A new type of memory organization using multiple accessing techiques for testing is
proposed. This architecture is used to speed-up test time via parallelism while
preserving the fault coverage. A k-stage USR parallel signature analyzer (PSA) is
used to compact read data and can also be used to write k-bits in parallel.

Approach

There are three accessing modes:

Mode-0: A single cell is accessed as in normal operation
Mode-1: k memory cells within one row are selected at a time
Mode-2: k memory cells within k rows are selected at a time

k cells are selected at a time by using multiple select decoders. Mode-2 is restricted to

52

-
write cycles only. The read data is compressed via a PSA. The data in the PSA can be
shifted out for comparison, or data can be shifted in or modified for writing. This
allows k cells to be accessed in parallel. The maximum speed-up is 2k2/(k+ 1), so, the
speed-up increases with k, but the larger the k, the Jargr,r the PSA required, and thus,
the larger the overhead.

Advantages

This approach has the flexibility of using the different modes of accessing within an
algorithm. For example, to detect coupling within a k-bit word, set to mode-0 (normal
mode) for writing and read using mode-1 (in parallel). The disadvantage with mixing
modes is that the speed-up factor is reduced.

Disadvantages

Two pins are required to set modes: normal, mode-1, mode-2. and scan. Due to having
multiple write modes, larger line drivers are required to minimize the increase of the
access time. Note: this is only applicable in the test mode, since in the normal mode
only a single cell is accessed. but nonetheless. having larger line drivers would
increase the area overhead.

Comments

The fault coverage in the peripherals (MAR, MDR, and decoder) may be higher without
using multiple accessing techniques. This is because with multiple accessing
techniques these components are not being tested in their normal mode of operation.
For example, a fault in the c,ecoder could occur such that multiple lines are selected but
these might have already been selected due to the multiple accessing technique.

53

6. Desi1a Gulde

To summarize the methods and approaches of the BIST schemes discussed earlier, the
following individual components of memory BIST are reviewed and analyzed: address
generation unit. input data generation unit, and evaluation circuitry. In addition.
choosing an algorithm and design goals are discussed. A diagram. of memory BIST is
shown below:

-------.... .,---:-: --~ (.- Input Data\
(Address J" J , ... Gener .at ion " Generation ,, ---- __ ..,.
~~ - / - -- -- -- / ' r -..., "

-.......... (Input D.ata)
\. Ri?gi;ti?r /

~MAR (,

-·-, R At-1 '-
'\ ... , ...
),

Expected Output (Output Data)
Data Generation \... Reqister _,

fErrorj • /Compa:ato~/-4 _:,. ~tR ~·---~ r::;::;:-i C~rrtpare ~ ~ S1gnature

Direct Comparison

t1ethod
__ Data Corr,pression

t1ethod

~e 6 .1: Memory BIST

6.1 Address Geaeratioa Unit

The address generation unit generates the needed addresses for the algorithm
ir.tplemented. There are three methods used to generate these addresses: a USR, a
binary counter. a.nd a translation unit. The LFSR is the simplest hardware to implement.
This approach geaera.tes pseudo-ta.Adom addresses (a.11 the addresses a.re generated, but
i.n a pseudo-ra.ndom fashion). The LFSR must be modified to intlude address 0. A bio.ary
counter permits addresses to be generated in a sequential manner in either ascending
or descending order. A translation unit maps the logical addresses to their physical
addresses. The address generation. unit should be implemented as a modification to the

54

MAR with the least amount of enra hardware. Below are the advantqes ud
disadvantages of each approach:

Method

USR

Binary Counter

Translation Unit

Advanta,es Disadavanta,es

Easy to implement Pseudo-random addresses

No way to ascend & descend *
No mapping to physical addresses

Sequ. ascend&cdescend No mapping to physical addresses
Moderate overhead

Map to phys. addresses High overhead
Sequ.ascend&descend

• A modified up-down USR is presented in [Nicolaidis ·s~J .
. ..

6.2 laput Data Geaeratioa Unit

The input data generation unit is responsible for loading the input data register (or the
MDR) with the correct input according to the implemented algorithm. The hardware to
implement the input data generator can be reduced if the algorithm only writes the all
O's or the all 1 'sword since only one line needs to be used. The advantage of only using
one line is the reduction of hardware, but this approach lacks the flexibility of writing
different data within the input data register. The input data generation unit should be
implemented as a modification to the input data register with the least amount of extra
hardware.

55

•

6.3 E.-aluation Circuitry

The purpose of the evaluation circuitry is to detect an error between the circuit under
test and known fault-free results. There are two main approaches for evaluation
circuitry: Direct comparison and Data compression.

Direct Comparison

The direct comparison method is accomplished by comparing expected data to the actual
output data. This approach has better fault coverage than data compression techniques
but may require more circuitry to implement because of the following two reasons:
circuitry needed to generate the expected data and the routing circuitry between the
expected data and the actual data .. One way to reduce the routing circuitry is to have
only one line to route: this can be accomplished for certain algorithms where only the
all O's and the aJl 1 'swords are written/react, and also for bit organized memories.

Data Compression

The data compression method utilizes either USRs or MISRs to compress output data
into a signature during the test (refer ta Figure 1.6: Data Compression Techniques).
When the test is complete, the resulting signature is compared to a known correct
signature. Data compression techniques may require less circuitry than direct
comparison methods since no circuitry is required to generate expected data output.
Also, this technique may have less cove.rage than direct comparison techniques due to

aliasing. Aliasing occurs when a..n error or errors mask themselves in such a way that
the resulting signature is the sam~ as the correct signature: thus the error is .not
detected. The other problem with this technique is that the signature must be shifted
out and compared elsewhere. This requires either ROM or additional test equipment,
which should be avoided if possible. Signature analysis does have the advantage of
testing itself during data compression. Note: data compression requires two separate
data registers (input and output) or some other means to maintain the signature during
a write cycle (loading the memo.ry data register and writing into memory).

56

6.4 Choosing an Algorithm

Analyzing the tradeoffs between algorithms, the following observations are made:

For test compJe1ity of O(.n):

1) Test time is not an issue; therefore, parallel approaches need not
be implemented.

2) Major concern is to reduce overhead of BISI circuitry.

3) Inherently the fault coverage is not as comprehensive as O(n 3/2) or O(n 2),

but the test times and overhead are small enough for any size memories.

For test complexity of O(n312):

1) Test times may be acceptable; if not, reduce test time via parallel approaches.

2) Since complex algorithmsJ major concern is to reduce the BISI overhead.
3) Fault coverage is good.

For test complexity of O(n 2):

1) Test times are unacceptable; the ref ore, the first concern is to

reduce test time via. parallel approac~es.

2) The next concern is to reduce overhead of BIST circuitry.

3) If BIST overhead is low enough, these algorithms might be well

suited for small memories without using speed-up techniques.

4) Fault cove.rage is good.

In order to cover stuck-at, bridging, transition, destructive read, and coupling faults

only O(n) algorithms are required. For pattern sensitive faults (PSFs), O(n312) or O(n2)

are recom.mended when mapping of the logical to physical addresses is not available or

practical. The test times with these algorithms a.re too lo.ng for large memories~ a.nd

the ref ore should be implementated using parallel techniques. In addition, these

algorithms are relatively comple~, and may require a high BIST area overhead. When

57

(

'·

knowledRe of how the logical addresses map to the physical addresses is available, and
the test time requirement is low, then a modified checkerboard approach is
recommended.

In choosin1 an al1orithm, havin1 good fault coverage and short test times are
important, but the BIST overhead must also be considered. To reduce the BISI overhead
a.nd increase the fault coverage at the expense of a small increase in the test time,
combining or modifying some of the algorithms previously discussed in section 2.3 may
prove fruitful. For example. the march4 algorithm could be modified such that in step 3
an extra Rl is inserted before the WO, and in step 5 an extra RO inserted before the W 1.
This modification would increase the fault coverage and reduce the BISI overhead. The
reduction of the BISI overhead is due to the symmetry of the modified algorithm which
would make the implementation of the control circuitry simpler.

. '

58

. \<.

[Abadir '83]

References

Abadir, M. S., Reghbati, H. [., "Functional Testing of Semiconductor
Random Access Memories", Computing Surveys, Vol. 15, No. 3.
September 1983, PP. 17'-198.

(Abraham ·s~J Abraham, Bardell, McAnney, Savir, .. Built-In Test: Theory and
Implementations", 198~.

[Booth '8-1)

[Breuer 1761

[Daehn ·s6l

[Green '86)

[Jain '86)

[Jones '86)

Bardell, McAnney,"Self-Test of Random Access Memories" ,1985 lf;f:E
Test Conference.pp. 352-355.

Bartee, Thomas C., Digital Computer Fundamentals, McGraw Hill 1985.
pp. 28.f-291.

Booth, Introduction to Computer Engineering Hardware & Software
Design, Wiley 1984, pp. 391-394.

Breuer, M. A., Friedman, A.D., Diagnosis & Reliable Desian of Di&itial
Systems, Computer Science Press. 1976, PP. 156-161.

Daehn, W ,, Gross, J,, 11A Test Generator IC for Testina Laree
CMOS-RAMs", 1986 International Test Conference, pp. 18-24.

Green, C.W ., Personal Communication, 1986.

Jain, S., Stroud, C., "Built-in Self Testing of Em.bedded Memories", IEEE
Design &:Testof Computers, October 1986.

Jones, Larry D., Principles & Applications of Di1ita1 Electrqnics.
Macmillaa 1986, pp. 412-417.

59

I

\...

_ _,,,

References (ConUnu,d)

(IiJloshita '86) Kinoshita, K ., Saluja, K ., "Built-In Testing of Memory Using an On-Chip
Compact Testing Scheme", IEEE Transactions on Coml)uters, Vol. C-3~.
No. 10. October 1986. pp. 862-870.

(Mukherjee '86) Mukherjee, Introduction to nMos & CMOS VLSI Systems Desi&A,
Prentice-Hall 1986, pp. 262-2n.

[Nair '78)

[Nair '791

Nair ,Thatte ,Abraham,"Efficient Algorithms for Testing Semiconductor
RAMs", 1978 1.nternational Test Conf., PP. ~72-~76.

Nair~ R .. "Comments on 'An Optimal Algorithm for Testing Stuck-at
Faults in Random Access Memories'", IEEE Transactions on Computers,
Vol. c-28, no. 3, March 1979, PP. 2~8-261.

[Nicolaidis ·s~J Nicolaidis. M.~ "An Efficient Built-In Self Test Scheme For Functional
Test of Em.bedded RAMs", 198l Fault-Tolerant Computing, pp.118-123.

[Pradham '86) Pradham, D.K., Fault-Tolerant Computing Theorv & Techniques Vol I.
Prentice Halt~ 1986.

[Sridhar '86) Sridha.r, T., "A New Parallel Test Approach for Large Memories", m
Design & Test of Computers, August 1986, pp. 1~-22.

[Suk '811 Suk, D. S., Reddy, S. M., "A March test for Functional Faults in
Semiconductor Random Access Memories", IEE,t T.ra.nsactio.ns on
Computers, C-30, 12, December 1981, PP. 982-98,.

[Sun '84) Sun, Z.,Wang, L.,"Self-TestiJlg of Em.bedded Ra.ms", 198• Iateraatioaal
TestConf.,PP. 148-1,6.

lWestcoU '811 Westcott. D. "The Self-Assist Test Approach to Embedded Arrays", 1981
International TestConf.,PP. 203-207.

60

[You ·s ..)

References <Continued)

You, Y., Hayes, John P., "A Self-Testing Dynamic RAM Chip".1981
Conference on Advanced Research in VLSI, M.I.T., January, 198.f, PP.
1,9-168.

•

' .~

•

...

\

Appendix

62 ·

\

[;£(:8mber 15> 1986

Memory Fault Simulator

Developed By Steve Lerner

August 1986

Technical Reference Manual vl.O

User's Guide vl.O

,,

..

Memory Fault S1 rn u lator

63

..

•

•

Append1x A

\

•

Table or Contents

Page

I. Technical Reference Manual

A. O v e rv 1 e w . 6 5

B. Memory System Mode 1 . 66

C. Memory System Parameters . 66
.,i

D. Fault Models . 67

E. Memory F au 1 t S 1 mul ator Routines 68

F. Test Al gor1 thm Modules . 69

G. Limitations 70

II. User's Guide

A. Getting Started .. I I I • I I e I I I I I I I I t t I I I 71

B. Memory Fault S1mulator --Menu, Log File, Trace, Graphics. . . 72

C. Creat 1 ng Test Sequence F 11 es 73

D. Mod1fy1ng Memory System Parameters 73
E. Adding New Test Algorithms . 73

F. Examples 74

1) Sample Session

2) Sample Test Algorithm

3) Sample Test Sequence File

4) Sample Log File

S) Sample Trace File

December 15, 1986 Memory Fault S1mulator

64

Appendix A

'· '••''

Overviey

The Memory Fault Simulator was developed to aid in the analysis of memory test
algorithms used for built-in self test (BIST) of memory systems. Although most of the
algorithms used to test memory systems are not that comple1, to analyze the fault
coverage in terms of memory subsystems (ie; address registers, decoders, data registers,
etc.) is much harder. The Memory Fault Simulator has the following features:
flexibility of injecting many different types of faults into any of the memory
subsystems, user definable memory system parameters, common test algorithms, user
definable test algorithms, graphics capabilities, and trace facilities. An overview of the
system is shown in the figure below:

Overview of Memory Fault Simulator

The memory system parameters are contained in the MEMPARAM.H file. The standard
test sequence file is TESTSEQ.TST, but users may create their own. Each of the test

* algorithms are stored in their own file. The simulator was developed in C using C-terp ,
an interpretive C environment, on an IBM compatible PC. This technical ref e.rence
manual is divided into the following sections: Memory System Model, Memory System
Parameters, Fault Models, Memory Fault Simulator Routines, and Test Algorithm
Modules.

• C-terp is a trademark of Gimpel Software

December 15, 1986
Memory Fault S1mu1ator

Technical Reference Manual v 1.0

65

"

Appendix A

Memory System Model

The Memory Fault Simulator uses a 16 bit memory system with the followiJl1
architecture:

MAR
I I -.-

N Addr.

.
• I I I It • I I It

I I I I• I I• It I I I I I I I I• If
• I I I I I I I • I I I I I I I I I I

• • • • I • I I I
• • • I • t • t • • •II I I I • I • I • • t I o • • ••I I I I I I I I I I .

.
. . b b;ts

\•tide
.

I I

Figure 2: Memory System Architecture

The Memory Address Register (MAR) is 4 bits wide, both the Row and Column. Decoders
are 2 to 4 line decoders, the Memory Cell Array is 4 X 4, and the Memory Data Register
(MDR) is a single bit. For graphics capability, the memory system must be 16 bits
organized 4 X 4. Accessing the memory system is accomplished by a subroutine call to
memory. The general form is memory(address, R/W, word). Shown belov are two
e1amples:

memory(9, "write", O);
read it-memory(~," read",)

Meroorv System Parameters

Write a O to address 9
Read address~, result is returned in readit.

The following memory system parameters are user definable:

Name Default Com.men.t

MEMSIZE 16
MAXSTUCK 3
MAXRFAULT 3
MAXCOUPLED 3
MAXDECSTUCK 3
COLDECSIZE 2
MAXACTIVE 3
MEMANDTYPE 1

Size of the memory cell array
Maximum number of stuck-ats in cell array
Maximum number of destructive read faults
Maximum number of coupled cells in cell array
Maximum number of stuck-ats in decoders
Size of the column decoder (number· of bits)
Maximum number of decoder lines active at once
1(0) AND-TYPE (OR-TYPE) for memory cell array

Mustuck, maxrfault, maxcoupled, and maxdecstuck should be as small as possible for
increased performance. There is no error checking in terms of the relationship
between memsize and coldecsize. These parameters maybe modified and are located in
the MEMPARAM.H file.

December 15, 1986
Memory Fault Simulator

Technical Reference Manual v 1.0

66

Append1xA

"

Fault Models

The common fault models used to test the functionality of a memory system that a.re
implemented in the Memory Fault Simulator are the following: Stuck-at faults,
Bridging faults, Destructive Read faults, and Coupling faults. Stuck-at and bridging
faults can occur in any of the memory subsystems. Destructive read faults and
coupling faults can occur only in the memory cell array. A short description of these
fault models follow.

The stuck-at faults model assumes that one or more logic values in a memory system
cannot be changed. For example, one or more memory cells could be stuck at 1 or 0.

A destructive read fault assumes that the data in a memory cell is destroyed f ollowin.1 a "
read operation.

Bridging faults are either AND type or OR type. AND(OR) type bridging results in
dominant 0(1). For example, if two leads are shorted, in AND(OR) type bridging the
value out would be a 0(1) given that one of the leads was a 1 (0).

A pair of memory cells (i,j) is coupled if writing a value V into a cell, say cell i, forces
cell j to change state. This does not necessarily imply that a similar transition in cell j
will influence cell i in the same way.

A list of subroutines that are used to inject faults into a memory system are shown
below:

setmarstu C kat0 (bits)
setmarstuckatl (bits)
setmarbridge(kind,bits)
setm.arbridge(kind,bits)

MAR Faults

Set bits in MAR stuck-at O (ie; bits~. bit 3 s-a-0)
Set bits in MAR stuck-at l(ie; bits=~, 1&3 s-a-1)
Set MAR AND-Type bridging (kind=A)
Set MAR OR-Type bridging (kind=O)

Decoder Faults

setrowdecstuck(line,value) Set line in row decoder to be stuck-at value (1/0)
setcoldecstuck(line,value) Set line in column decoder stuck-at value (1/0)

Memory Cell Faults

setstuckat(address,value)
setreadf ault(address, value)
setcoup1ed(addrl,addr2,

value l ,va1ue2)

Set memo1;r address to be stuck-at value (1 /0)
The value in address is destroyed f ollowin.g a read
Address2 is coupled to addressl such that when
value 1 is written into add.ressl, add.ress 2 is
forced to va1ue2

December 15, 1986
Memory Fault Simulator

TechniC81 Reference Man~al v 1.0 Appendix A

67

...

setmdrstuctO(bits)
setmdrstu c.tatl (bits)
setmdrbridse(kind,bits)
setmdrbridge(kind,bits)

Valid parameters are bits

kind

line

value

address

Memory Data Faults

Set bits in MDR to be stuck-at 0
Set bits in MDR to be stuck-at 1
Set MDR AND-Type bridging (kind-A)
Set MDR OR-Type bridging (.tind-0)

A decimal number used to represent bits
ie; , would mean bits 1 & 3

Either A for AND Type, or O for OR Type

Refers to lines of a decoder: range 1 to zn lines,
where n-# bits in the decoder. ie; 2 to 4 line
decoder has lines 1 through 4

Either I or 0

Currently only addresses 0-9 are available.
See Limitations.

For examples of how to set faults within a memory system, ref er to the Memory Fault
Simulator User's Guide section 011 Creating Test Sequence Files.

Memory Fault Simulator Routines

A listing of each of the routines in the Memory Fault Simulator follow:

Name

initialize

Parameters

()

Description

Initialize all variables except memory

----------------------------- Set Faults in Memory System----------------------------------
setmarstuckO (bits) Set stuck-at O in MAR
setmarstuckl (bits) Set stuck-at 1 in MAR
setmarbrjdge (kind,bits) Set bridging faults in MAR
setrowdecstuck (line.value) Set r,.>w decoder stuck-at
setco1decstuck (line.value) Set column decoder stuck-at
setstuckat {address.value) Set stuck-at in memory cell array
setreadf au1t (address.value) Set destructive read faults in memory
setcoupled (addrl,addr2.valuel.value2) Set cou.oling faults in memory cell

setmdrstuckO
setm.drstu ck 1

. setmdrbridge

(bits)
(bits)
(kind.bits)

Mny
Set stuck-at O in MDR
Set stuck-at 1 in MDR
Set bridging faults in MDR

December 15, 1986
Memory Fault S1mu1ator

Technical Reference Manual v 1.0 Append1x A

68

•

Name Parameters Description

---------------------------- Simulate Memory System with Faults --------------------------
memory (address,rw,word) Simulate memory system with faults

---------------------------------- Memory System Faults ------------------------------------
marfault (address)
mdrf ault (outdata)
decfault (decoder.line)
stuck (addr)
cou pledwrite (address,value)

Return address under faulty condition
Return data under faulty condition
Setup decoders under faulty condition
Returns 1 if addr is stu c.k
If coupled fault, write to cou pied cell

-------------------------------------- Error Routine --
errmsg (addr) Displays error message

------------------------------------ Display Routines --
display (r,c,value) Displays on 4 X 4 grid
initdisplay () Initialjzes 4 X 4 gid display

----------------------------------- Library Routines --
getline (s,lim,fname) Reads line from specify filename
inde1 (s,t) Returns index oft in s, -1 if none
strcopy (s,t) Copies t to s
strcmp (s,t) Return <O if s<t, 0 if s•t, >O if s>t

Test Algorithm Modules

Currently, there are eleven algorithms implemented in the Memory Fault Simulator:
MSCAN, Checkerboard, SMTP, 4 March test patterns, Marinescu, Nair, Walking l's and
O's, and GALPAT. Each algorithm is contained in its own file, and references are made to
the memory model by memory system parameters and the fallowing routines: memory
and errmsg. Each algorithm is a routine written in C and is currently included in the
Memory Fault Simulator. Below is an e1ample of the SMTP test algorithm written in
pseudo-code and in C:

Pseudo-Code

smtp

Initialize memory to 0
For all addresses

RO
Wl

For all addresses
Rl
WO

December 15, 1986

C

smtp()
(inti;
fo.r (i=O;i<MEMSIZE;i++) memo.ry(i,"w.rite" ,O);
for (i=O;i<MEMSIZE;i++) (

if (memory(i,"read" ,)1=0) {e.rrmsg(i),return)
memory(i,"write" ,1)}

for (i=O;i<MEMSIZE;i++) (

)

if (memory(i,"read" ,)1=1) (errmsg(i),return)
memory(i,"write" ,0))

Memory Fault S1mu1ator
Technical Reference Manual v 1.0 Appendix A

69

I

Each test algorithm subroutine must have an unique name. In addition, to implement
new algorithms, the following needs to be modified in the Memory Fault Simulator: In
the user interface, under available test algorithms, include the algorithm name; In the
section that runs the algorithm, modify the compound if statement to include the new
algorithm, ie; add: else if (strcmp(algo,"newname") == 0) newname(), this tells the
simulator to run the new algorithm if selected; In the section where algorithms a.re
included, add 11 include "filename" to tell the simulator where the algorithm .ts stored.

Li . . rnatauons

The major limitation of the Memory Fault Simulator is the lack of speed and the fault
models. Future recommendations to fault models would be to include hold faults,
transition faults, and pattern sensitive faults. Currently there is a limitation when
setting faults using the memory test sequence file: due to the Memory Fault Simulator
interpreter, only addresses 0-9 can be used in setting faults such as stuck-at,
destructive read, and coupling within the memory cell array. Also bridging faults in
the decoders and the memory cell array are not yet available .

..

D8C9mbar 15. 1986

•

Memory Fault S1mulator
Techn1cal Reference Manual v 1.0

70

Appendix A

t

•

Gettina Started

The Memory Fault Simulator vas developed using C-terp •, and the.ref ore, it is recommended to use C-terp when running the simulator. C-terp is an interpretive C
environment with a full screen text editor and debugging facilities. To get started, the
files ct.exe and stdio.h as well as all the Memory Fault Simulator files should be copied
into a convenient directory. C-terp should then be executed by typing "ct". The
following menu should be displayed:

Compile
Edit
File list
Global search
Load
Options

Command:

C-terp

Pre-Process
Quit
Run
System
Unload
Write

Now, load in the Memory Fault Simulator by typing "L". The user will be prompted for a
file name. Type in "mem.c" and press carriage return <CR>. To run the Memory Fault
Simulator, press "R" followed by a <CR>. All the files that the simulator require will
automatically be loaded. The Memory Fault Simulator should now be running. After an
algorithm is run, C-terp will ask the user to press any key. After pressing a key, the
main C-terp menu will be displayed (see above). To quit, simply press "Q". To run the
simulator again, press "R" f o11owed by a <CR>.

The C-terp editor will allow the user to easily create and modify test sequence files,
algorithms, etc. To use the on-line help, press the alt key and the "h" key
simultaneously.

Refer to the C-terp reference manual for more details on using C-terp and its facilities.

• C-terp is a trademark of Gimpel Software.

December 15. 1986

,,
:,

' ,I

Memory Fault Simulator
User's Gui~ v 1.0

71

Appendii< A

The Memory Fault Simulator

The user interface to the Memory Fault Simulator is a menu driven system which
prompts the user for needed information to run the simulator. Shown below are the
menu system prompts vith ei:planations (italics are default values):

Analysis of Memory Test Algorithms

Enter Test Sequence Filename: testseq.tst
Enter Test Algorithm Name
Store Results in <filename> : J111otest.t/M
List Each Transaction : DO
Display Graphically : DO

Is Input Correct : yes

The test sequence file consists of a list of tests using different types of injected faults.
For example, one may wish to run a series of tests on the memory cell array with
different faults: ie; stuc.k-at-0, stuck-at-1, coupling, etc. See Creating Test Sequence
Files.

The test algorithm name is the name of the algorithm that is to be run. If a carriage
return <CR> is pressed, a Jist of the available algorithms with their test complexity will
be displayed like the following:

Available algorithms: mscan, checker, smtp, marcha, marchb, march, march2,
0(4n.) 0('in) 0('in) 0(9n) 0(1 ln) 0(14n) 0(1,n)

mari, nair, walk 1 's, galpat
0(17n) 0(30n) O(n "2) O(n "2)

The results of the simulation is stored in a log file. The form of the filename is
filename.ext. The maxjmum length allowed is 1, characters. The file will be stored in
the current default directory.

Listing each transaction is equivalent to a trace facility. Every transaction to the
memory model within the algorithm will be displayed on the screen and listed in the
log file.

The graphic display allows the user to "see" the algorithm running. A 414 grid is
displayed along with either the name of ilie test running or each transaction listed
depending on what option was selected.

The user has the chance to verify the input. If an error is made, the user can type no
to the prompt, and the me.nu system will start over. Otherwise, upon correct input, the
Memory Fault Simulator will begin.

...

December 15, 1986
Memory Fault Simulator

User·s euioo v 1.0 Appendix A .. , ...

72

_

••

Creatin& Test Seguence Files

Teet eequence files allows the ueer to run .many tests u1ms the same a.J.sorithm with many different type, of injected faults. The 1eneral form of a test sequence file is shown below:

/----------------- Form of Test Sequence File-------------/
Test lA Dummy

setstuckat(2,0);
End of Test

Test lB Stuck-at-I
setstuckat(Z, l);

End of Test
/--/

J test begins with the word Test and ends with End of Test. The line beginning with the word Test will be displayed on the screen during execution. There can be different type of faults as well as multiple faults injected into the memory model within each test. Comments are enclosed between /- and -/. Blank lines are also allowed. Refer to the Memory Fault Simulator Technical Reference section on Fault Models for a complete list of the available routines used to inject faults into the memory model.

Creating the test sequence file should be done with a text editor and then saved to disk. It is recommended that C-terp is used. The test sequence file can then be accessed in the Memory Fault Simulator via tJ1e menu system prompt: Enter Test Sequence File.name.

Modifying Memory System Parameters

Refer to the Memory Fault Simulator Technical Reference section on Memory System Parameters for a complete list of user modifiable memory system parameters. To
actually modify these parameters, one needs to edit the MEMPARAM.H file, make the modifications, and save the results. Then, the Memory Fault Simulator should be loaded
and executed via C-terp.

Adding New Test Algorithms

Ref er to the Memory Fault Simulator Technical Reference section o.n Test A11orithm. Modules.

D~moer 15, 1986
Memory Fault Simulator

User's 6uici3 v 1.0

73

Appendix A

E1amole1

.,

Sample Session

Analysis of Memory Test Algorithms

Enter Test Sequence Filename: sampleseq.tst
Enter Test Algorithm Name : smtp
Store Results in <filename> : sample.log
List Each Transaction : .ao
Display Graphically : yes

Is Input Correct : J'8S

•

• I t I I I I I I I I

Test 1 Sample Test

TestiD.1 Memory

I I I
f_J f_J_J
I I I I I
f_J_J_J_J
I I I I I
f_J_J_J_J
I I I I I
f_J_J_J_J

Sample Test Algorithm

,. .

• • • •- . . . ·-

Below is the Simple March Test Pattern (SMTP) in both pseudo-code and in C.

Pseudo-Code

smtp

Initialize memory to 0
For all addresses

RO
WI

For all addresses
RI
WO

December 15, 1986

,)

C

smtp()
(inti;
for (i-O;i<MEMSIZE;i++) memory(i,"vrite",O);
for (i=O;i<MEMSIZE;i++) (

if (memo.ry(i,"read",)t-0) (errmsg(i),return)
memory(i,"write" ,I))

for (i-O;i<MEMSIZE;i++) (

)

if (memory(i,"read" ,)1=1) (errmsg(i),return)
memory(i,"vrite" ,0)}

Memory Fault Simulator
User's Gu1de v 1.0 Append1x A

74

8ample Test Sequence

/--------------------Sample Test Sequence-------------------/
Test 1 Sample Test

setstu c.kat(~ ,0);
End of Test

Test2 Samp1e2Iest
setcoup1ed(2,3,0,1);
setstuc.tat(~.1);

End of Test
/---/

..
Sample Log File

* * * ** * *** * * * * * * * * * ****Testing smtp Algorithm******************
/--------------------Sample ·rest Sequence-------------------/
Test 1 Sample Test

-> Memory Error Detected 1.n Address: , <-

Test 2 Sample2 Test
-> Memory Error Detected in Address: 3 <-

/---/
** * ** * * ** ********End Of Test For smtp Algorithm ** ** * ** * *** *** ** *

Sample Trace File

** * * * * * ** * ** * *********Testing smtp Algorithm******************
/--------------------Sample Test Sequence-------------------/
Test 1 Sample Test

Writing Oto memory loc 1,1 Address: 1 Logical Address: 0
Writing Oto memory loc 1,2 Address: 2 Logical Address: 1
Writing Oto memory loc 1,3 Address: 3 Logical Address: 2

Read O from memory loc 2,1 Address: , Logical Address: 4
-> Memory Error Detected in Address: , <-

•

/---/
***************** End Of Test For smtp Algorithm*****************

December 15, 1986
Memory Fau1t Simu1ator

User's Guide v 1.0

75

Appendix A

:•

Biography

Steve Lerner was born in Lexington, Massachusetts in 1961. He graduated
from Lexington High School in 1979 and rece~ved his BS from Lehigh
University jn Computer Engineering in 1983. He worked for Texas
Instruments as an Electrical Design Engineer/Systems Analyst. Steve
anticipates receiving his MS in Electrical Engineering from Lehigh
University as of January 1987.

I

76

	Lehigh University
	Lehigh Preserve
	1987

	Built-in self test for memory systems /
	Steven A. Lerner
	Recommended Citation

	tmp.1551116526.pdf.oHwDm

