A tool to study dynamic phenomenon of a four bar linkage and its application in balance program verification /

Daniel R. Brooks
Lehigh University

Follow this and additional works at: https:/ / preserve.lehigh.edu/etd
Part of the Manufacturing Commons

Recommended Citation

Brooks, Daniel R., "A tool to study dynamic phenomenon of a four bar linkage and its application in balance program verification /" (1986). Theses and Dissertations. 4711.
https://preserve.lehigh.edu/etd/4711

A TOOL TO STUDY DYNAMIC PHENOMENON OF
A FOUR BAR LINKAGE AND ITS APPLICATION IN
BALANCE PROGRAM VERIFICATION

BY

DANIEL R. BROOKS

A Thesis
Presented to the Graduate Committee
of Lehigh University
in Candidacy for the Degree of Master of Science
in
Manufacturing Systems Engineering

This thesis is accepted and approved in partial fulfullment of the requirements for the Degree of Master of Science

Ci loumter 10 1986
(date)

Professor in Charge

Department Chairman Industrial Engineering

- Proaram Director Proqram Director
Manufacturing Systems Engineering

Acknowledgement

The assistance of Dr. Rūsell Benner and Dr. Richard Roberts in developing this thesis is gratefully acknowledged. My thanks to Tim Nixon and Dick Towne for their assistance and understanding. Special thanks to Sonya for her never ending support and enthusiasm which made my return to Graduate School possible

Table of Contents

Certificate of Approval. ii
Acknowledgments iii
Table of Contentsiv
List of Tables vi
List of Figures vii
List of Graphs ii
List of Appendices ix
Abstract 1
Introduction. 3
Description of the Mechanism 4
Programmable Controller 7
System Configuration for Brake Operation 9

- Encoder Configuration. 11
Programming the Controller 12
Balancing Verification 17
-Method of Testing 17
- Balance Program Inputs and Outputs 19
-Results and Interpretation 20
Effect of Cyclical Load Application on Machine Balance 23
-Results and Interpretation 24
Future Applications 26
Figures. 30
Graphs 35

Table of Contents (continued)
Appendices.
Bibliography 66
Biography 67

List of Table

Table 1. Counter Board Operating Instruction........... 14
Table 2. Mechanical Properties of Linkage................ 20
Table 3. Mechanical Linkage Balancing Program Output. . 20
Table 4. Instrumentation Settings........................... 21
Table 5. Balance Verification Results...................... 22
Table 6.. Brake Application Results......................... 24

1. Vibration Response Chassis....................... 30
2. Vibration Response Chassis Control System.... 31
3. Brake Control Circuit............................ 32
4. Encoder Wiring..................................... . . 3
5. Equipment Configuration for Frame Acceleration Measurement
6. Natural Response of the Vibration Response Chassis. 35
7. Frame Accleleration with Linkage at Rest............ 36

Frame Acceleration at 325 RPM with
Crank Counterweight Follower Counterweight Graph/Page Position

None	None	$3 / 37$
Optimal	Optimal	$4 / 38$
None	Optimal	$5 / 39$
Optimal	None	$6 / 40$
$2.00 i n$	Optimal	$7 / 41$
2.50 in	Optimal	$8 / 42$
$3.50 i n$	Optimal	$9 / 43$
4.50 in	Optimal	$10 / 44$
Optimal	2.83 in	$11 / 45$
Optimal	$3.15 i n$	$12 / 46$
Optimal	$3.45 i n$	$13 / 47$
Optimal	$4.10 i n$	$14 / 48$

15. Frame Accelerations With Change in Crank Counterweight Positions.
16. Frame Accelerations With Change in Follower Counterweight Positions.

Frame Acceleration With

Load	Counterweights	Speed	Graph/Page
On	None	325	$17 / 51$
Off	None	325	$18 / 52$
On	Optimal	325	$19 / 53$
Off	Optimal	325	$20 / 54$
On	None	195	$21 / 55$
Off	None	195	$22 / 56$
On	Optimal	195	$23 / 57$
Off	Optimal	195	$24 / 58$

A. Output Shaft Position Calculation Program 59
B. Mass Property Calculation. 62

Abstrac

This project has provided a vibration response chassis which is a powered four bar linkage that can be used to perform machine design simulations in dynamic balancing, cyclical load application and other phenomenon associated with machine dynamics. The machine was instrumented with a programmable controller to control an electric brake on the output of the linkage.

The vibration response chassis was first used to verify the accuracy of the Mechanical Linkage Balancing Program. The program generates counterweight information to optimally reduce the shaking forces of a variety of mechanical devices. To check the program's ability to balance a four bar linkage the mechanical properties of the four bar linkage in the vibration response chassis were entered in the program and counterweights were made according to the program output. To measure the relative change in shaking forces, the frame of the vibration response chassis was mounted to vibrate in one degree of freedom and the acceleration of the frame due to the shaking forces was measured. The maximum acceleration of the frame without coúnterweights was reduced by 52.2\% when the specified counterweights were installed. The acceleration responses with the counterweights in various positions indicate the computer generated locations were
optimal.
The mechanism was then used to study the affect of an applied cyclical load on the shaking forces of the linkage. The applied load to the oscillating output of the linkage had no effect on shaking forces at high speed cycle speeds (325 RPM). The frame accelerations increased 32% without counterweights and 63% with counterweights in place when the load was applied to the linkage while running at low speed (195 RPM). At low speeds the applied load caused speed variations in the machine cycle which increased the shaking forces. The rake was not able to cause speed variations in the linkage at high speed because of the higher rotational nertia of the mechanical system.

Introduction

The purpose of this project is to provide a flexible tool to carry out machine design simulation experiments and use the tool to verify the results of the mechanical linkage balancing program. The four bar linkage was chosen as the simulation mechanism because of its wide application in design. The project required the design of a motorized four bar linkage which could be instrumented to measure a variety of phenomena characteristic of dynamic motion. The machine was nitially configured to measure shaking forces caused by he inherent unbalance of the linkage. An electric hysteresis brake was mounted on the oscillating output haft of the linkage to simulate loading conditions. Th brake was used to study the effects of cyclical loading on the shaking forces of the linkage. Other simulations which could be conducted on the machine will be reviewed at the end of this report

The mechanical linkage balance program assists the machine designer by providing counterbalance weights and positions to optimally reduce the shaking forces of any single input cam mechanism, slider crank linkage or four bar linkage. This project verified the program's ability to balance a four bar linkage. An experiment was designed to measure the difference in shaking forces
generated by the linkage without counter weights and then with the specified counter weights in place. This was done by mounting the frame of the four bar linkage süch that it could move, or vibrate in one degree of freedom. The acceleration of the frame due to the shaking forces could then be measured to determine the relative unbalance.

Description of the Mechanism

The mechanical device for this project had to provide the flexibility to measure many parameters of dynamic motion accurately. A motor driven four bar linkage mounted in a rigid frame was selected as the best device to carry out the machine simulations because of the various balance, friction and dynamic elasticity it demonstrates. It is also used widely in design as a common way to convert rotational motion into oscillating motion.

The supporting frame is made of 2 x 6 inch steel channel with $5 / \mathbf{1 6 " ~}^{\prime \prime}$ plate welded on the ends to insure rigidity. The crank and follower are each formed by two 3/4 inch by 2 inch steel plates while the connecting rod is more slender in design. The connecting rod is easily replaceable so connecting rods of different materials and design can easily be made and installed. A split journal bearing is used on the ends of the connecting rod. Self
aligning pillow block ball bearings are used on the input and output shafts. Threaded shafts in the pivot ends of the crank and follower allow easy placement and change of counterbalance weights. (see figure 1)

The basic dimensions of the initial linkage are as follows.
$a 15$ inches
$b=2$ inches
$c=15.125$ inches
$d=4$ inches

One complete revolution of the input shaft results in a 60.76 degree oscillation of the output shaft. The Newton-Raphson method was used to calculate the output shaft position at various input shaft positions. A BASIC program to perform the position calculations and its output appear in appendix A.

Gearbelts are used to transfer mechanical power from the drive motor to input shaft and from the output shaft to brake. Gearbelts provide smooth power with zero slip at low tension. This minimizes the cantilever forces on the drive shafts

The drive motor is a Woods, $1 / 3$ horsepower, $A C$, synchronous model. The E-Trol SCR controller permits infinite speed adjustment between zero and 2400 RPM in either direction. Analog speed and load meters are also part of the system and provide instant speed and load
readings. See figure 2 for drive system layout. The drive gearbelt pulleys were configured to provide a three to one speed reduction from the motor to the input shaft for a top input shaft speed of 800 RPM.

An electric brake is mounted to the end of the frame and is driven by gearbelt from the oscillating output shaft. A Deltran hysteresis brake was selected to simulate the loading of the machine. Hysteresis brakes use the magnetic field generated by an energized coil to retard motion. A permanent magnet rotor spins inside the coil field in the same manner as an electric motor, only the applied voltage produces a stopping torque.

The hysteresis brake is good for experimental work for a number of reasons. The torque generated is always constant for a given applied voltage. Conventional brake loads generally vary with speed and run time due to changes in the coefficient of friction of the brake surfaces with temperature. The Deltran hysteresis brake applies a constant torque over the entire speed range and is not affected by run time. The load is infinitely variable and linear with applied voltage, and the load is applied instantaneously which is important for this application as the on/off cycle time is as low as a tenth of a second. The Deltran HB-420 applies 120 ounce inches at 24 volts $D C$

Programmable Controller

External instrumentation and devices such as the electric brake can be controlled with the programmable controller. The controller takes position information off the input or output shafts through an incremental encoder and, according to the user written program, operates outputs to perform functions such as turn on and off relays or trigger an oscilloscope. The programmable encoder used in this machine is the Encoder Products Company 7252 Motion Controller equipped with the main processor and two counter boards

The 7252 Motion Controller is primarily designed to control the position, velocity or torque of D.C. motors. he servo system operates as a closed loop system receiving its feedback from an incremental shaft encoder with two channels in quadrature. However the system is modular in design so that it can be customized to perform most any control application. The main system processor occupies one of six available slots in the 7252 housing. The remaining slots can be used for servo control boards or any other control board. Optional boards include digital and analog $I / O^{\prime} s, ~ h i g h ~ s p e e d ~ c o u n t e r s ; ~ d i g i t a l ~$ displays, preset thumbwheels and serial communication boards.

The programming language for the 7252 controller is 7

Intel's MCS BASIC-52 which was specifically designed for control systems. There are specialized commands for each board which allows sophisticated control routines with a minimum of programming skills. The system has 8 K of RAM to accommodate user defined programs.

The processor can be programmed with any RS-232C ASCII terminal. The terminal plugs into the port on the front of the processor. A personal computer with a terminal emulation package can also be used if it is set for an 8 bit structure, no parity, no auto line feed, full duplex and upper case. A standard 25 pin RS-232C connector is used between the terminal and processor although only pins two, three and seven are used for communication.

There are two methods of storing an inputed program. For program development and short term storage the RAM is maintained when the power is turned off by a board mounted battery. To enable the battery back up jumper H1 must be moved to the right most two pins as viewed from the board's front panel. The battery will maintain the program and internal clock for about six months and therefore should be disconnected if the unit is not used for an extended period. Once a "production" program has been developed, it can be burned into permanent EPROM or EEPROM on the processor board by simply using the PROG
command. The EPROM is mounted in quick release sockets for easy exchange

Physical connections of encoders and other input and output devices is made through the back panel. A row of 36 terminals is available for each board. There are also connections for line power and a user power supply which provides twelve aṇ five volt DC power for external device operation.

System Configuration for Brake Operation
The electric brake is mounted on the output shaft of the vibration response chassis to simulate machine loading of an oscillating output. The motion controller can be programmed to accurately turn on and off the brake at any point in the machine cycle. The following is a description of the configuration and program which controls the brake application.

Controller Configuration
To switch the brake on and off, two high speed
counter boards and the main processor are used. One counter board turns the brake on and the other turns it off. The counter boards can accept bi-directional counts up to 250 KHz from the encoder. With a 720 pulse per revolution encoder, such as the Encoder Products model 715, the counter can keep up with. speeds up to 20,800 RPM. Each counter also has a preset register feature
which accepts a preset count. When the count from the encoder reaches the preset value, an auxiliary output on the counter board activates. This is useful for time critical events and can provide either a latched or pulsed (100 ms) output. A status word can be read to determine if the count is less than, greater than, or equal to the preset value.

In this application both counters were set to provide a latched auxiliary output. This is done by setting the left microswitch of the two switch set on the counter board to the closed position. This setting will cause the output to go on when the preset is reached and stay on until it is reset by a command from the user defined program. The counter boards were also set to accept an interrupt signal from the main processor board. The interrupt signal allows instant counter and output reset from an external signal and is accepted by the counter board only when the second microswitch of the two switch set is in the open position.

As stated earlier, one counter board is used to turn on the brake and the other is used to turn it off. To accomplish this the switching transistor in the "turn off" board was rewired to operate in a normally closed manner. This means the auxiliary output will be on until the preset count is reached and then turn off once the
count equals the preset. The auxiliary outputs on the counter board can switch up to 30 VDC at 250 milliamps. Since the brake may draw more than the switching capacity, a relay is used to switch the brake. The power from a 9 volt battery is switched in series through the two counter boards and powers the relay coil. A diode and 47 f capacitor are required across the relay coil to arrest spikes and noise which tend to disrupt the microprocessor. (fig 3)
-Encoder Configuration
To control the brake, the motion controller must know the exact position of the input shaft. This is done by counting the pulses from the encoder which is attached to the input shaft. The encoder consists of a shaft on which a disc with clear and opaque segments around its circumference is mounted. An optical switch goes on and off as the clear and opaque segments pass between the switch and internal light source. The number of segments on the disc determines the number of pulses per revolution and thus the accuracy of the encoder.

The encoder used in this application is an Encoder Products Model 715-1 accu-coder. This model generates 720 pulses per revolution. The encoder is wired to the controller as shown in figure 4.

The encoder is mounted to the side of the chassis
frame and is attached to the input shaft with a W. M Berg bellows shaft coupler. This type of shaft coupler permits both axial and angular misalignment with no backlash and therefore no loss in resolution. A clockwise rotation of the encoder shaft produces an increasing count and a counter clockwise rotation decreases the programmer count.

To operate the brake both counter boards must have the same count and therefore the count signal to both boards must come from one encoder. To accomplish this the encoder is wired to one board and then jumpers run to the second counter board as shown in figure 3 .

Programming the Controller

In addition to the common BASIC programming statements, MCS BASIC-52 has been enhanced by using a group of ROM resident subroutines called EXTENDED BASIC ROUTINES (EBR's). These routines allow simple programming of the special functions associated with the various optional boards. There are four such routines which interact with the counter board. The routines use a PUSH statement to load the parameters into a stack, and
a CALL statement to transfer control to the EBR. Any parameter returned from the EBR can be assigned to a variable with a POP statement.

The four counter board EBR's are outlined below.

For more detail see chapters four and five of the 7252 Motion Controller Instruction Manual.
-The following statements would obtain the actual count from a counter board and assign the value to variable A.

PUSH BD\#, 10
CALL 4000 H
POP A
Where $B D \#$ is the slot where the counter board is located.
-To load a value into a counter board's preset
register, only two statements are required.
PUSH BD\#, N, 11
CALL 4000 H
Where N is the counter value to be loaded.
-The following statements send operating
instructions to the counter board. Such instructions tell the counter to:

> Start - enables the counter
> Stop - disables counter
> Clear - sets counter registers to zero
> Load - loads value of preset to counter register

The statements to send the instructions are

$$
\text { PUSH BN\#, CN, } 12
$$

CALL 4000 H
Where $C N$ is the command number which defines which
instructions are to be sent to the counter board according to the following table.

The following statements call the fourth EBR which reads the status register of the counter board in binary, converts it to decimal and assigns the value to variable A.

```
PUSH BN#, 13
CALL 4000H
POP A
```

Where A is the decimal equivalent of a four digit binary number in which the bits represent the following

$X(1) \quad X(2) \quad X(3) \quad X(4)$

(1) Latched high when count reaches preset, must be reset
(2) Low when count = preset
(3) Low when count $>$ preset
(4) Low when count < preset

These routines can be used with common basic
statements to control any rotating equipment
Another important feature of the 7252 Motion Controller is the interrupt enable. This feature allows the control of the program to instantly shift to any designated line upon instruction from the program or an external trigger. In this particular application the interrupt was used to reset the counters to zero at the start of each shaft revolution. This is accomplished with the a limit switch which is tripped once per revolution by a set screw on the input shaft. The switch is wired to apply 5 VDC across backpanel connections $A 2(+)$ and $A 1(-)$ on the main processor board. This causes the program control to shift to a section of the program which resets the counters to zero. Each time the interrupt is used it must be reset with the RETI command. Sample program to run brake

The following is a simple program which will turn on and of the electric brake at any point in the machin cycle. The program first requests the user to input the desired brake on and off positions. The input can be between zero and 720 as the encoder produces 720 counts per revolution. The starting point of the count can be set by adjusting the position of the set screw which trips the interrupt switch.

10 ONEX 200
REM: Shift control to line 200 upon interrupt signal
20 INPUT "INPUT BRAKE ON POSITION", N
REM: Assigns ON value to variable N
30 INPUT "INPUT BRAKE OFF POSITION", F
REM: Assigns OFF value to variable F
40 PUSH 1,5,12
REM: Starts, clears and resets counter board \#1
50 CALL 4000 H
REM: Go to counter command routine
60 PUSH 2,5,12
REM: Starts, clears and resets counter board \#2
70 CALL 4000 H
RUEM: Go to counter command routine
80 PUSH 1,N, 11
REM: Assigns N to preset of counter board \#1
0 CALL 4000H
REM: Go to preset counter routine
100 PUSH 2,F,11
REM: Assigns F to preset of counter board \#2
110 CALL 4000 H
REM: Go to preset counter routine
120 PUSH 1,10
REM: Read count on board \#1
130 CALL 4000 H
REM: Go to read counter routine
140 POP A
REM: Assigns count to variable A
150 PUSH 2,10
REM: Read count on board \#2
160 CALL 4000 H
REM: Go to read counter routine
70 POP B
REM: Assigns count to variable B
PRINT A," ", B
90 GOTO 120
REM: Read next count
0 PUSH 1,5,12
REM: Start, clear, reset counter \#1
210 CALL 4000 H
REM: Go to counter command routine
220 PUSH 2,5,12
REM: Start, clear, reset counter \#2
230 CALL 4000 H
REM: Go to counter command routine
240 RETI
REM: Resets interrupt
250 GOTO 80

Balancing Verification

Method of Testing

The first experiment performed on the vibration response chassis was to verify the Mechanical Linkage Balancing Program. The program provides counter balance masses and locations to optimally balance a variety of mechanical devices. To verify the program's ability to reduce shaking forces in the vibration response chassis, the frame was mounted so it could vibrate in one degree of freedom. The acceleration of the machine frame due to the shaking forces caused by the machine imbalance, could then be measured without and with the specified counterweights in place

The motion of the chassis was restricted to one degree of freedom to simplify the instrumentation and insure accuracy. With a single degree of motion, a single accelerometer could be used to measure the entire motion of the frame. The signal from the accelerometer could then be sent to an oscilloscope to determine maximum acceleration of the frame.

The chassis was mounted to pivot at the base of th motor end of the frame and was supported by industrial machine mounts at the other end. The mounts acted as springs which flexed in response to the shaking forces of the machine. The accelerometer was mounted on the frame
such that it was in line with the motion of the frame (i.e. perpendicular to a line from the pivot point). See figure 5.

To insure the frame absorbed all the shaking forces generated, the chassis frame was mounted on a 600 lbf iron table with a 300 lbf steel plate placed across the legs. This weight kept the chassis from lifting the table but a small amount of wobble was noted when the machine was run at certain speeds

To obtain a usable signal from the accelerometer, the signal is first amplified and then put through a low pass filter. The filter smooths the signal by eliminating the high frequency mechanical and electrical noise. The signal then goes to the oscilloscope, which traces the voltage output over time

The machine mounts used for the balancing experiments were Tech Products model number 52062. The mounts are rated for 40 lbf and four were used in parallel to support the free end of the frame. With these mounts in place the natural frequency of the motion was 31.1 Hz . (see graph 1) Since operation of the machine near any multiple of the resonance frequency would tend to distort the results, a speed was selected that was not a multiple of the natural resonance. It was found that 325 RPM provided enough vibration amplitude to
generate a clear signal from the accelerometer and did not allow the frame to vibrate at its natural frequency. All runs were done at 325 rpm . The proper speed was assured with a stroboscope

A plot of the frame acceleration was taken first without counterweights and then with the specified weights in place. The acceleration was then recorded with the counter weights in other positions to insure the specified location was optimal. If the positions were incorrect, the shaking forces and corresponding accelerations would continue to decrease as the true optimal positions were approached.

- Balance Program Inputs and Outputs

The mechanical linkage balancing program requires three properties of each rigid member of the linkage (i.e. crank, connecting rod, follower) to generate optimal counterweight size and location. The properties are mass, location of mass center, and rotational moment of inertia about the mass center. These values are calculated in appendix B and listed below.

Table 2. Mechanical Properties of Linkage

Rigid Member	Mass	Center of Mass Location $($ in)	Rotational Moment of Inertia $(1 \mathrm{bm}$ in2
Crank	.028620	.212305	.022946
Follower	.020633	1.18742	.083118
Con Rod	.010312	7.56250	.432258

For the crank and follower, the center of mass
location is measured from the centerline of the
respective shafts. The center of mass location for the connecting rod is measured from the center of a pivot hole.

The machine configuration and properties were
entered into the program and the following results were generated as the optimal locations for the given
counterweights.
Table 3. Mechanical Linkage Balancing Program Output
Total Distance fro Shaft Center

	Total	Shaft Center
	Counterweight Mass	to Mass Center
Crank	.0030141 lbm	1.3806 in
Follower	.0104272 lbm	3.7673 in

-Results and Interpretation
Graphs three through 14 are traces of the output voltage from the accelerometer versus time. All traces were graphed with the instrumentation at the following settings.

Table 4. Instrumentation Settings for Acceleration Measurement

Accelerometer Amplifier	100 X
Signal Filter, Low Pass	50 Hz
Oscilloscope, scan time	$.050 \mathrm{sec} / \mathrm{div}$.
Oscilloscope, amplitude scale	.050 volts/div.

The vertical scale shows major divisions as defined by the oscilloscope; each division equivalent to . 04883 g 's. The time scale shows ten divisions of time which is equal to 2.71 revolutions of the crank. As shown on graph 2 there is background drift in the signal. To reduce the uncertainty caused by this drift, the maximum change in acceleration during one cycle was used as the imbalance measure
-Error Analysis
To determine the uncertainty of the acceleration change measurements, a plot was made of the accelerometer output when the machine was at rest. (see graph 2) The noise and drift are from floor vibrations and electrical ground noise. The maximum uncertainty the noise may have generated in any low point to high point measurement is determined by the maximum change in amplitude of the background noise over the time it takes the acceleration curve to go from a minimum to a maximum. This time interval for 325 RPM is .0219 seconds from graph 3. The maximum amplitude change over this time interval on the background noise plot is . 00626 g 's. Therefore the
maximum error in any peak to peak acceleration measurement is . 00626 g s.

All trials were done with the counterweights specified by the computer. Positions are in inches and measured from the center of the respective shafts
Table 5. Balance Verification Results

Graph Number	Crank C-weight Position	Follower C-weight Position	Max. Change $\text { in } \mathrm{G}^{\prime} \mathrm{s}$
3	None	None	. 1541
4	Optimal	Optimal	. 07357
5	None	Optimal	. 09333
6	Optimal-	None	. 1455
7	2.00	Optimal	. 08687
8	2.50	Optimal	. 08942
9	3.50	Optimal	. 09036
10	4.50	Optimal	. 1091
11	Optimal	2.83	. 08994
12	Optimal	3.15	. 08232
13	Optimal	3.45	. 07832
14	Optimal	4.10	. 08291

The accelerations caused by the shaking forces of the mechanism were reduced by 52.2% with the addition of the optimally placed counterweights. It is clear from the data that the counterweight positions generated by the balancing program are optimal. Graphs 15 and 16 show the measured acceleration of the frame with the counterweights in various positions. For each graph the opposite weight was placed in the optimal position (i.e. for the follower graph, the crank counterweights were set at 1.38 inches). The optimal position for the crank
counterweights was as close to the shaft center as the machine configuration would permit so it was impossible to obtain data with the weights closer to the shaft.

> Graphs nine and ten show that the follower counterweights reduced the machine imbalance far more than the crank counterweights. This is because the follower is more out of balance than the crank as indicated by the center of mass calculations. The follower shaft will also generate a larger moment about the pivot than the crank for a given force because it is farther from the pivot point.

Effect of Cyclical Load Application on Machine Balance
This experiment investigated the effect, on machine balance, of applying a cyclical load to the output shaft of the vibration response chassis. The machine frame accelerations were measured and interpreted in the same manner as for the balance verification part of this project.

The machine was first run at 325 RPM with the optimal counterweights in place and its acceleration response was recorded. The electric brake was then programed to apply a load through 180 degrees of the out stroke motion and the acceleration response was again recorded. This process was repeated without any counterweights in place.

The machine was then run at 195 RPM and the above combination of counter weights and loads were applied. To obtain a usable response from the frame at this speed, the four 52062 springs mounted in parallel were replaced with two pairs of softer 52061 springs mounted in series which reduced the spring rate by more than 50\%.

The instrumentation settings used for the balance verification part of this project were used again for the data taken at 325 RPM. However the oscilloscope time scale was changed to . 1 second/division for the data recorded at 195 RPM.

The results of this experiment are shown below. Table 6. Brake Application Results

Graph Number	Counterweight Positions	Brake Status	Max. Change in G's	Speed RPM
17	None	On	.1246	325
18	None	0 ff	.1336	325
19	Optimal	$0 n$.05513	325
20	Optimal	Off	.05551	325
21	None	On	.2292	195
22	None	Off	.1731	195
23	Optimal	On	.1238	195
24	Optimal	Off	.07640	195

At 325 RPM the application of the brake had no
significant effect on the frame acceleration with and
without the counterweights in place. The acceleration
response of the frame is reduced from the balance
verification portion of this project because the original
output shaft pulley was replaced with a larger pulley to
provide a greater braking torque. There was a measurable increase in frame acceleration when the cyclical load was applied to the output shaft at 195 RPM in both the unbalanced and optimally balanced conditions. The frame accelerations increased 32% without counterbalance weights in place, and 62% with optimal counterbalance weights in place.

While the linkage cycled at 325 RPM, the brake was unable to overcome the rotational inertia of the motor and linkage, so there was no change in speed of the linkage through the cycle. The linkage therefore generated the same shaking forces and resulting frame accelerations with and without the applied load. The brake was able to affect the rotational speed of the linkage at the lower speed (195 RPM). These variations in speed through the rotational cycle generated the increased shaking forces. The optimally balanced linkage was effected more because any changes to the system would tend to increase the imbalance whereas this may not be the case with the unbalanced linkage.

These results indicate predictable shaking forces can only be assured when the inertia or power of the linkage maintains a constant speed through the cycle. If an applied cyclical load causes variation in velocity through the cycle, these variations should be accounted
for when using computer aided design tools such as the Mechanical Linkage Balancing Program

/ Future Applications

The vibration response chassis was designed with the flexibility to study many aspects of machine dynamics. In addition to machine balancing and applied load simulation, the machine can be used to study elastodynamic phenomena. The deflection of machine parts in motion becomes an important aspect of machine design
as speeds and required accuracies increase

- A Method to Measure Dynamic Deflection

The following is a possible approach to actually measure the deflection of linkage in motion. The connecting rod of the machine can easily be replaced with a more slender design of a less rigid material such as aluminum. With a such a connecting rod, the crank and follower members could be considered rigid and all of the deflection in the linkage could be assumed to be in the connecting rod

To actually determine the amount of flex in the linkage, the angular position of the output shaft with respect to the input shaft would be measured at various points in its oscillatory motion while the machine is cycled at a very slow speed. This would provide a position profile of the output shaft without any flex in
the linkage. The machine would then be run at a speed where the connecting rod could be expected to flex due to inertial forces. The positions of the output shaft could then be measured and the difference between the positions at slow speed and positions at high speed would indicate the amount of flex in the connecting rod.

A deflection of . O20in. in the connecting rod corresponds to only a .3 degree change in the position of the output shaft. To measure the output angle to this accuracy while the machine is running will require a rotary variable differential transformer (RVDT). This device is similar to the more common linear variable differential transformer only the RVDT outputs a voltage proportional to its angular position rather than its linear position. The resolution of the position measurement is determined by the method used to measure the output voltage. To obtain the output shaft angles at the predetermined input shaft positions the motion controller would be programmed to send an electrical pulse when the input shaft reached the desired position This pulse would trigger the oscilloscope which would read and store the output voltage of the RVDT at the desired instant. This procedure may require additional refinement as actual deflection predictions become available and the RVDT is mounted on the machine.

- A Method to Measure Frictional Losses

The frequency response chassis can also easily be used to measure frictional losses in a mechanical
linkage. The method would require the generation of a current versus torque curve for the drive motor and the instrumentation needed to measure the current draw of the motor while it runs on the machine. With such a configuration, the amount of torque being applied to overcome friction could be calculated from the measured current draw of the motor. The frictional characteristics of various materials could be examined by simply replacing the bronze bushings used in the crankconnecting rod joint and connecting rod-follower joint with the desired material. The ball bearings used on the crank and follower shafts are also simple to replace with other types of bearings

There are other areas where the vibration response chassis may provide experimental information. The variation in rotational velocity due to applied loads through the cycle can be measured and the affect of various flywheels on the velocity variation could be analyzed. The machine can also be used to study motion associated with slider crank mechanisms by replacing the follower assembly with a sliding surface. Similar balance, friction and elasticity investigations could

then be performed

This project has shown that the mechanical linkage balance program can optimally position counterweights to reduce the shaking forces of a four bar linkage. It has also shown that applied cyclical loads to the output shaft of a four bar linkage which cause variation in speed through the machine cycle increases shaking forces The vibration response chassis is a useful tool in the study of machine dynamics with potential applications in elastodynamics, friction loss and rotational inertia studies.

Brake Control Circuit
Figure 3

32

motion controller back panel
Encoder Wiring
Figure 4

Equipment Configuration for Frame Acceleration Measurement
Figure 5

Frame Acceleration With
Linkage at Rest
Graph 2

$\underset{\omega}{\omega}$

Frame Acceleration
Graph 5

Frame Acceleration
Graph 9

$\stackrel{\rightharpoonup}{v}$

Counterweight Positions
Crank-Optimal Follower-3.45in
Frame Acceleration
Graph 13

Frame Acceleration at Various Crank Counterweight Locations

Frame Acceleration at Various Follower Counterweight Locations

Graph 16
50

Graph 21

Frame Acceleration
Graph 22

Appendix
Output Shaft Position Calculation Program
This program uses the Newton-Raphson method to find the roots of the equations of position of any four bar linkage. The link lengths and angles are defined as follows

The sum of the x components and the y components yield the equations

$$
\begin{aligned}
& \mathrm{b}(\cos \beta)-\mathrm{c}(\cos \phi)+\mathrm{d}+\mathrm{a}(\cos \theta)=0 \\
& \mathrm{~b}(\sin \beta)-\mathrm{c}(\sin \phi)+\mathrm{a}(\sin \theta)=0
\end{aligned}
$$

Solving these equations for $b(\cos \beta)$ and $b(\sin \beta)$, then squaring both sides and summing the result yields. $b^{2}=c^{2}+d^{2}+a^{2}-2 d c(\cos \phi)-2 c a(\cos \phi)(\cos \theta)$ - $2 \mathrm{ca}(\sin \phi)(\sin \theta)+2 d a(\cos \theta)$

Dividing both sides by $2 a c$ and letting
$R_{1}=d / c$
$R_{2}=d / a$
$R_{3}=\left(d^{2}+a^{2}-b^{2}+c^{2}\right) / 2 c a$
the above equation can be rewritten as

$$
\mathrm{R}_{1}(\cos \theta)-\mathrm{R}_{2}(\cos \phi)+\mathrm{R}_{3}-\cos (\theta-\phi)=0
$$

This is known as Freudenstein's equation and can be
used to find the relation between the input and output
angles of any four bar linkage. It can not be solved for
for a given value of so a program was written to solve for interatively using the Newton-Raphson method. The following program solves for output positions at five
degree increments of input but could be easily changed to solve for any increment.

Variable Definftions:

A	length of input crank a, inches
B	length of connecting rod b, inches
C	length of follower c, inches
D	length of fixed link d, inches
DELTH	increment of input angle , dergrees
TH	value of input angle, degrees
thmX	maximum value of input angle, degrees
R1, R2, R3	constants calculated from link lengths
PHI	value of output angle, degrees
PHI1	improved value of output angle, degrees
FOFPH	Freudenstein's equation
DFOFPH	derivative of Freudenstein's respect to
EPSI	accuracy check, radians
10 REM FOUR BAR LINKAGE POSITIONS	
20 PRINT "FOUR BAR LINKAGE POSITIONS"	
30 READ A, B, C, D	
70 READ TH,THMAX, PHI, DELTH, EPSI	
80 R1=D/C	
$90 \mathrm{R} 2=\mathrm{D} / \mathrm{A}$	
$100 \mathrm{R} 3=(\mathrm{D} * \mathrm{D}+\mathrm{A} * \mathrm{~A}-\mathrm{B} * \mathrm{~B}+\mathrm{C} * \mathrm{C}) /(2 * C * A)$	
$10 \mathrm{TH}=\mathrm{TH} * 1.74$	5329E-2

120. PHI-PHI*1.745329E-2
$130 \mathrm{FOFPH}=\mathrm{R} 1 * \operatorname{COS}(\mathrm{TH})-\mathrm{R} 2 * \operatorname{COS}(\mathrm{PHI})+\mathrm{R} 3-\mathrm{COS}(\mathrm{TH}-\mathrm{PHI})$
140 DFOFPH-R2*SIN(PHI)-SIN(TH-PHI)
150 PHI $=$ PHI-FOFPH/DFOFPH
160 IF ABS (PHI1-PHI) >EPSI THEN GOTO 180
170 IF ABS (PHI1-PHI)<=EPSI THEN GOTO 200
$190 \mathrm{PHI=PHI}$
$200 \mathrm{TH}=\mathrm{CINT}(\mathrm{TH} / 1.745329 \mathrm{E}-2)$
$210 \mathrm{PHIl}=\mathrm{PHI1} / 1.745329 \mathrm{E}-2)$
210 PHI1=PHII/1.745329E-2)
230 TH=TH+DELTH
240 IF (TH-THMAX)>0 THEN GOTO 280
$\begin{array}{lll}240 & \text { IF } \\ 250 \text { IF }(\text { TH-THMAX })>0 \text { THMAX })<=0 \text { THEN GOTO } 280 \\ 260\end{array}$
250 IF (TH-THMAX)<-0 THEN GOTO 260
$260 \mathrm{PHI}=\mathrm{PHII}$
280 END
290 DATA 2,15.125,4,15
300 DATA $0,360,50,5, .00001$
Output: Modified to fit on page
FOUR BAR LINKAGE POSITION POSITIONS FOR A=2 B=15.125 C=4 D=15

TH	PHII	TH
5	56.44124	185
10	57.28826	190
15	58.32881	200
20	59.55316	205
25	60.95411	210
30	62.52011	215
35	64.23924	220
40	66.09867	225
45	68.08500	230
50	70.18447	235
55	72.38317	240
60	74.66717	245
65	77.02255	250
70	81.43950	255
75	84.37917	260
80	86.88237	265
85	89.38794	270
90	91.88159	275
95	94.34863	280
100	99.77374	285
105	101.4084	290
110	103.6320	295
115		300
120		305

PHII 114.1718
113.0060 113.0060 109.8424 107.8973 105.7516
103.4387 103.4387
100.9922 100.9922
98.44452 98.44452
95.82644 95.82644
93.16609 93.16609
90.48899 87.81773 85.17233 82.57016 80.02646 77.55441 75.16565 72.87044 70.67804 68.59693 66.63507 64.80012 63.09954 61.54077

125	105.7187	310	60.13131
130	107.6725	315	58.87868
135	109.4719	320	57.79046
140	111.0939	325	56.87412
145	112.5150	330	56.13693
150	113.7115	335	55.58572
155	114.6598	340	55.22660
160	115.3382	345	55.58572
165	115.7274	350	55.10394
170	115.8120	355	55.34648
175	115.5821	360	
180	115.0342		

Mass Property Calculations
The machine balance program requires the calculation of the mass, center of mass location and rotational moment of inertia about its mass center of each rigid member of the linkage (i.e. crank assembly, connecting rod assembly, follower assembly).

General equations for the three mechanical parameters are first developed for the crank and follower since they only differ in one dimension

Density of steel $=.00073321 \mathrm{bm} /$ in 3
Acceleration of gravity $=386 \mathrm{in} / \mathrm{sec}^{2}$
Mass of Crank and Follower
a = length of members between centers
$b=$ total length of member

```
Mass = \rho[2 x 2.0in x .75in x b + (\pi/4) x . 52in x .75in +
```


$(\pi / 4) \times .125^{2}$ in $\times .5 \ln +4 \times(\pi / 4) \times .375^{2}$ in $\times 3.5 \ln +4$
$x(\pi / 4) x(5 / 8)^{2}$ in $\left.x .4 i n\right]+$ mass of pulley

Equation for center of mass for crank and follower with counter weight shafts in place. The baseline for the calculation is the centerline of the shaft center.
$\operatorname{Rcm}=(\pi /$ mass $) \times\left[3.0^{2}\right.$ in $x b(b / 2-1 i n)+a(\pi / 4) \times .5^{2}$ in $\mathrm{x} .75 \mathrm{in}+\mathrm{a}(\pi / 4) \mathrm{x} 2 \mathrm{x} 1.5^{2}$ in $\mathrm{x} .125 \mathrm{in}-\mathrm{a}(\pi / 4) \mathrm{x} 4 \mathrm{x}$ 125^{2} in $x .5$ in - 1.2 in $x 4 x(\pi / 4) x .625^{2}$ in $x .4$ in -
2.75 in $x 4 \times(\pi / 4) \times .375^{2}$ in $\left.x 3.5 i n\right]$
simplified
$\mathrm{Rcm}=\left[3.0 \mathrm{in}^{2} \mathrm{x} \mathrm{b}(\mathrm{b} / 2-1)+\mathrm{a}\left(.56451 \mathrm{in}^{3}\right)\right.$
$4.84124 i n] /[3 b+7.7681+p u l l e y$ weight/ $\rho]$

A general equation for the rotational moment of inertia for the crank and follower about the mass center is calculated below. Listed are the rotational moment of inertias for each component of the crank/follower then the transfer function to move it to the center of mass of the assembly.
Main Shaft: $\mathrm{Icm}+\mathrm{md}^{2}=.5(\pi / 4) \times .75^{2} \mathrm{in} \mathrm{x}$
10.75 in(.75in/2) ${ }^{2}+$
$(\pi / 4) \times .75^{2}$ in $\times 10.75$ in $\times \mathrm{Rcm}^{2}$
Thrust washers: $\operatorname{Icm}+\mathrm{md}^{2}=4 \mathrm{x} .5(\pi / 4) \times 1.5^{2}$ in x .125 in $x .75^{2}$ in $+2(\pi / 4) \times 1.5^{2}$ in $x .125$ in $x \operatorname{Rcm}^{2}$
$+2(\pi / 4) \times 1.5^{2}$ in $x .125 \operatorname{in}(a-\operatorname{Rcm})^{2}$
Sides: $\operatorname{Icm}+\mathrm{md}^{2}=(1 / 12) 3^{2} \ln \mathrm{x} b\left(\mathrm{~b}^{2}+2^{2} \mathrm{in}\right)+3^{2} \operatorname{in} \mathrm{x}$ $\mathrm{b}(\mathrm{b} / 2-1-\mathrm{Rcm})^{2}$
Rod Journal: Icm $+\mathrm{md}^{2}=.5(\pi / 4) \times .5^{2}$ in x .75 in $\mathrm{x} .25^{2}$ in
$+(\pi / 4) \times .5^{2}$ in x .75 in($\left.\mathrm{a}-\mathrm{Rcm}\right)^{2}$
Pin Holes in Sides: Icm $+\mathrm{md}^{2}=-4\left[.25(\pi / 4) \mathrm{x} .125^{2}\right.$ in x $.5 \operatorname{nn}(.125 / 2)^{2}+1 / 12 \times(\pi / 4) \times .125^{2}$ in $x .5$ in $x .5^{2}$ in]
$4(\pi / 4) .125^{2}$ in $x .5 i n\left(R c m^{2}+.75^{2}\right.$ in $)-4(\pi / 4) .125^{2}$ in x
$.5 \operatorname{in}\left((\mathrm{a}-\mathrm{Rcm})^{2}+.75^{2} \mathrm{in}\right)$
Counter Weight Shafts: Icm $+\mathrm{md}^{2}=4\left[.25(\pi / 4) .375^{2}\right.$ in x $3.5 \operatorname{in}(.375 / 2)^{2}+(1 / 12)(\pi / 4) .375^{2}$ in x 3.5 in $x 3.5^{2}$ in] + $.375^{2}$ in 3.5 in $\left((2.75 \mathrm{in}+\mathrm{Rcm})^{2}+(5 / 8)^{2} \mathrm{in}\right)$
Jam Nuts: Icm $+\mathrm{md}^{2}=4\left[.25(\pi / 4) .625^{2}\right.$ in $\mathrm{x} .4 \mathrm{in}(.625 / 2)^{2}$ in
$+(1 / 12)(\pi / 4) .625^{2}$ in $\left.x .4 \operatorname{in}(.4 / 2)^{2}\right]+4(\pi / 4) .625^{2}$ in x $4 i n\left((\operatorname{Rcm}+1.2 i n)^{2}+(5 / 8)^{2} \mathrm{in}\right)$

Large Pulley (used only for crank calculation): Icm + md ${ }^{2}$
$=.5\left(5.4531 \mathrm{bf} / 386 \mathrm{in} / \mathrm{sec}^{2}\right) \mathrm{x} .3^{2} \mathrm{in}+\left(5.453 \mathrm{lbf} / 386 \mathrm{in} / \mathrm{sec}^{2}\right)$
$\mathrm{x} \mathrm{Rcm}{ }^{2}$
Small Pulley (used only for follower calculation):
. $5\left(.67191 b f / 386 i n / \mathrm{s}^{2}\right) \times 1^{2} \mathrm{in}+\left(.67191 \mathrm{bf} / 386 \mathrm{in} / \mathrm{s}^{2}\right) \times \mathrm{Rcm}{ }^{2}$ Simplifying and summing the components yields $\mathrm{Icm} / \rho=2.192176+5.190991 \mathrm{x} \mathrm{Rcm}^{2}+.589048(\mathrm{a}-\mathrm{Rcm})^{2}+$ $.25\left(b^{2}+4\right)+3 b(b / 2-1-R c m)^{2}-.0245436\left(R c m^{2}+.5625\right)$ $-.0245437\left((\mathrm{a}-\mathrm{Rcm})^{2}+.5625\right)+1.546252\left((2.75+\mathrm{Rcm})^{2}+\right.$
$.39062)+.490874\left((\mathrm{Rcm}+1.2)^{2}+.39062\right)$
for crank only add: . $04238+: 014127 \mathrm{Rcm}^{2}$
for follower only add: . $00087034+.0017407 \mathrm{Rcm}^{2}$

Crank Calculations: $a=2 i n \quad b=4 i n$
Mass $=.028621 \mathrm{bm}$
Crank Center of Mass - . 212304 in
Rotational Moment of Inertia about Center of Mass Icm $=.2294671 b f *$ in 2

Follower Calculation: $a=4 i n \quad b=6 i n$
Mass = . 02063281 bf
Center of Mass from shaft centerline = 1.18742in
Rotational Moment of Inertia about Center of Mass $\mathrm{Icm}=.0831175 \mathrm{lbf} * \mathrm{in}^{2}$

Connecting Rod Calculations:
Mass $=(2 \times 2.5 i n x 2 i n x .5 i n)-2(\pi / 4) .5^{2}$ in $x .5 i n+2$
x 3.5 in x in x .5 in +10.13 in x . 2 in x .25 in $+8(\pi$
/4). 5625^{2} in $x .35 i n$
Mass $=.01031151 \mathrm{bf}$
Center of Mass from shaft centerline $=7.5625$ in (by symetry)
Rotational Moment of Inertia about Center of Mass = $\mathrm{Icm}=.4322571 \mathrm{bf} * \mathrm{in}^{2}$

Bibliography

Cannon, Robert H., Dynamics of Physical Systems, New York: McGraw-Hili Book Co., 19.67
Encoder Products Co., 7252 Motion Controller Instruction Manual: Sandpoint, Idaho
James, M. L.; et al, Applied Numerical Methods for Digital Computation with FORTRAN and CSMP, New York Harper \& Row Inc., 1977

Mabie, Hamilton H., Mechanisms and Dynamics of Machinery, New York: John Wiley \& Sons, 1975

Meriam, J. L., Dynamics, New York: John Wiley \& Sons Inc., 1975

