Lehigh University
Lehigh Preserve

Theses and Dissertations

1986

Status of natural language generation and its
implementation using register vector grammar /

Marie Bettinger Wilde
Lehigh University

Follow this and additional works at: https://preservelehigh.edu/etd

b Part of the Electrical and Computer Engineering Commons

Recommended Citation

Wilde, Marie Bettinger, "Status of natural language generation and its implementation using register vector grammar /" (1986). Theses
and Dissertations. 4707.
https://preservelehigh.edu/etd /4707

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an

authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

https://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F4707&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F4707&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F4707&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=preserve.lehigh.edu%2Fetd%2F4707&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd/4707?utm_source=preserve.lehigh.edu%2Fetd%2F4707&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

STATUS OF NATURAL LANGUAGE GENERATION

AND ITS IMPLEMENTATION USING REGISTER VECTOR GRAMMAR

by

Marie Bettinger Wilde

A Thesis
Presented to the Graduate Committee
of Lehigh University
in Candidacy for the Degree of
Master of Science

Computer Science and Electrical Engineering

Lehigh University

1986

Certificate of Approval

This thesis 1s accepted and approved 1in
partial fulfillment of the requirements for the
degree of Master of Science.

Acknowledgements

I gratefully acknowledge the invaluable
assistance of Glenn Blank, an invaluable source

of interesting, challenging ideas, creative ways

to implement them, and plenty of time to discuss
them, a mentor in every sense of the word. I
would also like to thank my mentor's mentor, Art

Kunst, for his input.
Finally, I am grateful for the understanding of
my family and the tolerance of my co-workers as I

pursued this research often to the neglect of all

else.

TABLE OF CONTENTS

Chapter Page

Natural Language Generation Research

An RVG Natural Language Generator

Abstract

This thesis explores one area of artificial
intelligence research: text generation. The

topic is developed in the following way:

a. a brief review of the research, the
past, present and future of natural language

generation;

b. an explanation of Register Vector Grammar
(RVG), a formalism for parsing and generating;
and

C. a methodology for using RVG to generate text

that s coherent with respect to syntactic,

semantic and referential constraints.

Chapter 1 - Natural Language Generation Research

A. Introduction

The process by which a child learns to speak
a language 1is nothing short of miraculous.
Having personally observed two human beings
progress in just a few years from uttering little
more than a grunt to parsing and generating
highly sophisticated discourse and having
compared their capability to that of the computer
under years of tutorage by computational
linguists, I concede that this area of artificial
intelligence has yet a long way to go.

Even on a child's level of speech, the
manufacture of sentences is quite technical.

McDonald attests to the complexity of the

process:

"Even if we ... look just at
the "linguistic®™ part of the process
- selecting worus and constructions,
applying grammatical rules, and producing
the words in sequence - it is clear that
very sophisticated rules are being followed.
Somehow we select one lexical/syntactic
combination from the many possible
alternatives, managing to attend
simultaneously to the potentials of the
different constructions, our multiple
goals, and the constraints arbitrarily
imposed by our grammar. We follow
conventions of direct utility only to
our audiences and actively maintain
elaborate coherency relations across large
stretches of discourse”". [McDonald 80]

6

To expect the computer to achieve this level
of competency 1in a short period of time is
unrealistic, but research has been chipping away
at the problems, and a number of text generation
systems are in use today. Moreover, as the need
for the creation of quality text continues to
grow, we will undoubtedly see research in new
areas as well as further study of those aspects
of generation which are now under active
rnvestigation.

B. The Demand

Despite widespread use of the computer, the
user community 1is unwilling to 1live with the
inconveniences of the machine, mgstwggtab1y, the
lack of a refined man—-machine interface, A num-
ber of factors are contributing to the demand:

1. As the number of untrained users
grows, so does the need to equip computers with
the ability to communicate in natural language.:
Almost any system is greatly constricted in its
use because it cannot communicate with the ama-
teur.

2. Systems are becoming more complex.
It 4s no longer possible to predict during pro-

gramming every possible output which will be

7

required iJn such areas as process control and
expert systems. These and other systems need to
be able to generate original text.

3. Systems should be capable of gene-
rating output of many different forms, status
reports, rationales for action taken, alternative
data paths, etc.

4. The techniques of prototyping in
system analysis and design use a fourth genera-
tion Jlanguage to construct a model for user re-
view. Because of the many changes necessary
during the process, a natural language interface
would greatly improve this task.

5. Text generation used in query lan-
guages needs to be improved so that resources 1in
a data base can be fully tapped.

6. Communication in a variety of robo-
tics environments would be enhanced by capabili-
ties to generate meaningful discourse.

7. Finally, a Jlong-range goal for
natural language generation 1is well-written,
quality, multi-paragraph text for a variety of
linguistic -purposes including machine transla-

tion, synopsis, and reporting.

These demands for natural language 4in a

computer environment, as well as many others
which will undoubtedly surface in the next de-
cade, have established text generation as one of
the most vital areas of Al research.
C. Text Generation Systems
A review of some of the 1important text
generation systems follows.
1. The Kafka Generator [Mauldin 84]
1.1 Purposes and Design
XCALIBUR 1is a natural language inter-
face used to extract data from and answer queries
to expert systems. The Kafka generator is imple-
mented by XCALIBUR to produce a single sentence.
The Kafka generator performs the fol-
lowing functions as part of the XCALIBUR system:
a) formulates replies to user

queries to expert systems,

b) clarifies poor input from the
user to the system, and

c) formulates system questions to
the user.

Kafka uses an interpreter written in Franz

Lisp to convert input from XCALIBUR (which 1is 1in
a case frame format) or from a relational data-

base into conceptional dependency graphs and then

9

into English, d1mplementing both semantic and
syntactic processing. Kafka receives a case
frame from XCALIBUR and uses transformational
rules to produce new case frames, with lexical
items as output in the process. Recursion is
used to instantiate subcases of the parent node
of the CD graph.
1.2 Generation Phases

Generation by Kafka is accomplished by
a number of modules, each of which performs a
sub—-process. First, preprocessing simplifies
case frame input, stripping unnecessary syntactic
information and clarifying complex frames. Then,
as required for queries, dinterrogative form is
changed to declarative with placeholders for
information 1in the reply. The database then
fills in these blanks, and a conceptual dependen-
cy graph is constructed. Next, a verb is selec-
ted for each CD primitive, then adJectives and
nouns are added. Finally the leaves of the tree

are printed.
2. Knowledge Delivery System [Mann & Moore
81]
2.1 Purpose and Des-ign

The purpose of KDS 1is to produce well-

10

written multiparagraph text. One of the major
problems 1in computer generation of text is that
there is no concrete theory of writing to explain
how people create text. In constructing KDS,
Mann and Moore set out to explore the art of
writing and, 1in so doing, add to the understan-
ding of the process of writing, as well as the
knowledge of how to simulate it by computer.
Multiparagraph text generation previous
to KDS was designed to use a Partitioning para-
digm. These systems process input via Tlarge
information structures which must be broken down
into smaller pieces suitable for single senten-
ces. Sentences are formed by traversing the data
structure. Several problems result in this pro-
cess: information pertinent for one sentence may
not be adjacent in the data structure; there may
be useless pieces of information after extracting
sentences; and the difficulty of determining good
sentence boundaries in the remaining structure is

problematic.

These deficiences caused Mann and Moore
to reject Partitioning and adopt a Fragment-and-
Compose Paradigm, which, rather than systemati-

cally biting chunks of information and forming

11

sentences i1n order from the data structure, in-
stead fragments the structure into propositional
parts and then composes meaningful sentences and
meaningful paragraphs.

2.2 Generation Modules

There are five modules involved in the
process:

a. Fragmenter, which divides the -{input
into small units;

b. Problem-Solver, which determines
style and organization of the text;

c. Knowledge-Filter, which removes
redundant information;

d. Hil11-Climber, which repeatedly
improves the quality of the protosentences, com-
bines the clauses, then compares options;

e. Surface-Sentence-Maker, which for-
mulates final sentences using a context free
grammar and semantic rules.

An important contribution of KDS re-
search is the concept of goal pursuit: the pro-
gram and the system are designed to seek the best
way of saying something, given the knowledge to
be communicated. This was the first 1implemen-

tation of revision in machine generated text, a

12

topic which is receiving much attention in to-
day's research (to be discussed later).
3. MUMBLE [McDonald 80]

3.1 Purpose and Design

McDonald's system generates immediate
speech, the conversational type in which the
party does not know what is to be said 1in subse-
quent utterances. The system operates in an on-
line framework, like conversation, generating
from "messages” that are passed to the linguistic
component . There are two transducers, one form-
ing a knowledge representation from the message,
and the second producing text from the data
structure. These transducers answer to the
Controller.

3.2 Analysis of the Generation

At any given time, the state of the
linguistic component can be viewed as a four-
dimensional array consisting of the following

information:

a. the name of the controller process
subroutine (Process-node, Process-slot, and Dis-
patch),

b. the value of the three controller

variables (current-node, current-slot, current-

13

contents),

C. the value of the grammar variables,
d. the record of the discourse
history.
4. Other Text Generators

Having reviewed three interesting systems
for text generation, I mention also the following
important systems currently in use:

a. TEXT [McKeown 82] - uses schemas to
define text regions that satisfy predicates

b. PROTEUS [Davey 79] - uses semantic nets
to describe tic-tac-toe games in multiparagraph
text

C. KAMP [Appelt 81] - generates single
sentence output

d. RACTER [reviewed by Kenner 86]- engages
in somewhat meaningless babbling with a user
D. Analysis of a Generator

On the lTowest !eve1 of generation is a ran-
dom syntactic generator. One step above canned
text, the program is supplied with a grammar of
rules which are enforced at random. If a parti-
cular rule has a lexical category attached to it,
a word of the sentence is generated from within
the program. In the next refinement, the word s

14

selected at random from a lexicon. The rules of
the grammar have provisions for wh-questions,
yvyes-no questions, clause embedding, participles,
active and passive voice.

In the gray area between syntax and seman-—

tics, various morphology and agreement rules must
be enforced: agreement of the verb with its sub-
Ject, case of pronouns, plural forms, partici-
ples.

On a higher level, the generator implements
semantics. Predicative semantics accumulates
semantic infomation from the words generated and
places constraints on subsequent words. The
predicate structure thus formed assures that
arguments generated from the lexicon satisfy the
semantic requirements for the particular text
being generated. Predicative semantics operates
in much the same way as the semantic theory of
psychology [Smith et al 74], which argues that

people store semantic features 1in their mental

lexicon and use these when generating sentences.

Referential semantics increases the depth of

semantic processing by making the semantic infor-
mation part of a permanent database. This refe-

rent list can be maintained, updating with new

15

entries and adding qualities of old ones almost
indefinitely, therefore broadening the scope of
text for which the system can assure semantic
agreement. Grosz et al [83] consider this a
vital aspect of generation and implement 1t
conceptually as focusing (discussed below).
E. Issues and Problems

As mentioned above, a major problem in crea-
ting text by machine is that, despite a large
body of knowledge in linguistics, we have no
concrete theory detailing how people go about
creating text. The heuristics which are part of
writing skills and the psycholinguistics of the
process titself have been the object of {intense
research for over a decade, but it will be some
time before experts agree on the issues below and
the problems are solved to an extent where
sophisticated text generation is accomplished.

1. The Grammar

The systems discussed above, and most
others, are operating with a very limited subset
of a grammar. This 1is due, in part, to the fact
that grammars have come from the ranks of lin-
guists, who do not usually impose upon a grammar

the rigor necessary for computational processing,

16

parsing or generation. Some researchers feel
that a sophisticated and complete grammar re-
quires the work of competent linguists and cannot
be developed by computer scientists[Mann 82].
Systems operating with only a fragment of a gram-
mar cannot hope to generate text which approxi-
mates human-produced material, and, moreover,
risk creating subtle misconceptions and erroneous
images in the minds of readers.

Cn a larger scale, a restrictive grammar
1limits the applicability of the system: the
program can then generate only a very predictably
small variety of text.

The formalism used to describe the grammar
is also at issue. A recent project by Derr and
McKeown [86] uses Definite Clause Grammar, whose
rules are composed of first order predicate logic
clauses. The DCG formalism solves a number of
sticky generation problems in the following ways:

a. nonterminals have arguments which can

hold the string being analyzed
b. the parse tree representation can be

built and passed easily

c. agreement and morphology information can

be maintained easily -

17

d. encoding 18 facilitated by the ability
to carry extra conditions or flags with the gram-
mar rules.

Because DCG lends itself well to linguistic pro=
cessing, it is likely to be\hn important SQBJect
of future research.

2. The Input Representation

The way in which the knowledge required by
the generator is presented to it is critical 1in
the effectiveness of the text produced. This
knowledge representation of the deep structure
varies widely with the‘system, running the gamut
from predicate calculus to semantic nets. Many
weaknesses 1n a generator result from the defi-
ciences in the input representation, for example,
the lack of concrete symbols to signify abstrac—
tions which may be present, such as possibility
or likelihood. Future research will need to
dpama;ica11y improve the knowledge representation
to sojvéfthese kinds of problems.

3. Discourse Coherence

When correct syntax and semantics are a-
chieved, text 14s successfully produced. But
there are many ways by which one can JudgeQ the
quality of that text and there is general agree-

18

ment that systems must aim for better-written,
more polished, smoother text with variety of
expression, the kind created by people. The
natural Jlanguage generators of the future must do
more than answer queries; they must write manuals
and generate reports, translate effectively and
completely, and perform the entire gamut of human
writing functions, except perhaps on the most
creative level.

The dimension added to syntax and semantics
to elevate text to the level of discourse is
pragmatics. Rosenchien [81] summarizes discourse
theory as the process of studying "how linguitic
events .are interpreted and initiated for pragma-
tic effect". Discourse, then, can be seen as a
90a1~pursuing activity when a person engages +n
it, since words are chosen with the belief that
one will accomplish the purpose one has in mind.

Grosz et al [83] identify two types of dis-
course coherence: global, which interconnects
large segments of discourse to yield the general
purpose of the text, and local, by which senten-—
ces contribute to the larger segments. Text
generation needs to consider these separately.

There are a number of factors which affect

19

local discourse coherence. A ma jor consideration
is definite reference, 1ncluding deixis and ana-
phora, to be discussed below. This referencing
brings cohesion to the text, as does ellipsis and
coreferences (use of the same item twice).

In addition, other linguistic constructions
need to be correctly and frequently applied, as
they contributed centinuity to text. These 1in-
clude the following connectives:

a. subordinate and coordinate conjunctions,
such as "while”, “"because”, and "but” ;

b. adverbials, such as "therefore", "ob-
viously", and "accordingly” ;

C. sentential adjuncts , such as "first of
all®, "for example”, and "that is”

By connecting two segments of discourse explicit-
ly, these <constructs force increased understan-—
ding of the text.

some of the theoretical aspects of discourse
coherence which are being studied have interes-—
ting ramifications both linguistically and compu-
tationally. The given/new strategy, for example,
deals with that aspect of discourse which pur-
ports that there is "shared knowledge," a set of

propositions which the speaker and listener be—

20

ijfeve they have in common [Clark & Marshall 81].
certainly this theory needs to be extended into
generation. Another important theoretical issue
is focusing, discussed below.

4. Focus and Definite Reference

Definite reference can be classified 1in
various ways. Two important types are deixis and
anaphora. Deixis concerns the use of declara-
tives such as "this" and “that". Anaphora consi-
ders all other cases of pronouns and definite
desgniptﬁOn. Until recently, the interpretation
of an anaphoric expression relied completely upon
determining and analyzing it antecedent. Current
research exposes this totally syntactic
interpretation as insufficient to handle semantic
and pragmatic factors. In language generation, a
more cqmprehe%giveunﬁenstahding.of referents 1is
vital, one which considers syntactic, semantic,
and discourse constraints (see Sidner [81],
Linde [79], and Grosz et al [83]).

The concept of fogus provides a first step

toward a solution to the problems of anaphora 1in

generation. The focusing process affects local

coherence, in the following way: the speaker, at

any time in a discourse, focuses attention on a

21

cartain +dtem in a context space, and indicates
what Jﬁat item is by his language; the listener

must follow the speaker, choosing a new focus as
the speaker introduces one, and establishing its
validity from subsequent rhetoric. In machine
generation, a semantic process must be conducted
as foci change and are updated. This presents a
number of problems, particularly when there are
multiple foci, as in the following:

My daughters, Lisa and Genny, are as

different as night and day. They each

have many talents, but it is obvious

they will use them in different ways.

Lisa is very creative and literate. She

will undoubtedly perform in the theatre

or critique it, whereas Genny will design

it or build it, since she is an analyti-

cal and mechanical thinker. Yet it's true

that 1 think they are both delightful.

The extensive use of anaphora and constant
shifting of focus, while natural in discourse,
will be demanding for computer generation.

5. Revision in Written Text

Discourse coherence in written text will be
sub_ject to more stringent demands, since the text
is on a much higher level than single sentences
or éven multiple sentences in dialogue. The most

recent thinking in this area is the rejection of

a single~pass generator in deference to a more

22

natural approach imitating the way people write,

o
that is, with repeated revision. This introduces

multiple opportunities for recognizing coherence
difficulties on different levels and correcting
them 1in a multi-phase approach. The KDS system
uses a Hill-Climber module to generate with revi-
sfon. The Penman system [Mann 83] represents the
most recent technology in this theory, using a
wider variety of methods of refinement at each
stage of revision, such as paring down sentence
length and 1limiting clause embedding, two
traditional methods of revision in writing.

6. Text Organization

The effectiveness of generated text is
strongly affected by the way in which it was
planned. One facet of this planning 1is text
organization: the structure of the text is clear-
ly composed of well-defined parts, all of which
are combined to form a unit.

Mann's Rhetorical Structure Theory [Mahn 84]
is one of the few studies which specifically

explores this aspect of text planning. RST re-

search has divided the study of text organization
into descriptive theory, used to study naturally

occuring text, and constructive theory, for the

23

process of machine generated text. Mann uses
goal—-pursuit and a number of schemas as the means
to accomplish quality text generation.

There will likely be other theories of text
organization in the future, striving for Mann’'s
characteristics:

a. comprehensiveness: usefulness for all
types of text,

b. scale insensitivity: usefulness for any
size text,

C. functionality: success in achieving the
intended effect of the writer,

d. definiteness: adaptability to formaliza-
tion,

e. generativity: applicability to both

descriptive and constructive text.

24

Chapter 2 - An RVG Natural Language Generator

A. Introduction

Register Vector Grammar is a natural lan-
guage processing system which represents syntac-
tic and semantic content by using ternary ?eature
vectors. Currently in place at Lehigh University
is an RVG parser developed by Glenn Blank and
written in Turbo Pascal, and this generator dis an
extension of that natural language system.

This chapter will describe the syntactic
part of the generator RVGGEN and suggest direc-
tions for semantic processing via RVG. Extensive
system documentation is available for RVG and no
attempt will be made to reiterate that dinfor-
mation.

B. Foundations of RVG

As noted above, RVG processes natural lan=
guage using ternary vectors. These vectors,
implemented in Pascal using sets, are ordered n-
tuples of a fixed length, each element of which
takes on a value of 0,1, or 2. Position in the
vector is a placeholder for a certain syntactic
or semantic characteristic; the value which

stands in the placeholder represents, in general,

absence (0), presence (1), or neutrality (2).
25

Ternary vectors are involved in both syntactic
and semantic processing. The Current Syntactic
State Register (CSSR) is a ternary vector which
controls the order of syntactic productions; the
Current Predication State Register (CPSR); con-
trols generation of entries which in turn are
composed of ternary vectors representing semant-ic
properties.
C. Nature and Purpose

The (current) purpose of RVGGEN is to gene-
rate single sentence output uginQ‘Register Vector
Grammar and a Jlexicon. Syﬁt;étic generation
proceeds as follows: An initial state value 1s
placed in the CSSR. Subsequent iteration of the
following process occurs until the final state is
accepted: a production rule from the grammar
whose condition vector matches the CSSR is ap-
p1ied,'ﬁhe,state-of the CSSR is advanced based on
the result vector of the production rule.

Thé generator curnentﬂy operates in one of
two modes:

Brief — prints a single sentence
Trace - follows the generation of the

sentence, printing CSSR values as they change.
D. Design

The program is written in Turbo Pascal using

26

various 1input files. A1l but one of these files
are converted from text to record format by a
utility program, also in Pascal.
The main module is procedure Generate as
follows:
Initialize variables and registers
Repeat
form a linked 1ist of all produc-
tions whose condition vector matches the CSSR
choose one of these at random (to
be discussed below)
if it ds a lexical production,
print a random item of the appropriate Texical
category
change the CSSR according to the
result vector of the production

Until the final state is reached.

It should be noted that at any given point
in the generaton process there may be mény, one,

or no productions which may apply. If none are
possible as a next state, the generation process
fails. If only one applies, that step is taken.
In most dnstances, the linked list SynQ will

contain a number of possible productions whose

27

condition vectors match the CSSR. In this case,
a weight for each production (from an input file)
is compared to a random number: dJf the weight
exceeds the random number, the production suc-
ceeds; otherwise the next potential production 1is
tested. If no production succeeds, a function
chooses the highest weighted production in SynQ.
The weights file 1is sensitive to the
frequency of English constructions. Thus when
the syntactic state is conducive to a number of

different possible productions, the determination

will be made based on dts J1ikelihood dn
discourse. For example, the generation of a

pronoun will occur with a higher frequency than a
definite description.
E. Input
RVGGEN requires the following input files:
1. SynFile - This 1s a file of racords
converted by a utility program from a text file.
Each record in the file consists of a grammati-
cal label; two ternary vectors, a condition and a
result; a register +indicating if the production
is a Texical one, one which requires morphologi-
cal processing, or neither; a register marking
that passage to a new clause level is 1indicated

28

by this production; a field to store the number
of non-lexical productions which can precede this
production; for non-lexical productions, the num-
ber of contraints; an array of indices to produc-
tions which can precede this one.

2. LexFile - Also converted from text to
record format by the preprocessor, each lexical
record consists of the alphabetic representation
of the lexeme, an array of indices to lexical
productions of the lexeme's category, and the
number of grammatical categories to which this
lexeme belongs.

3. MaxVecFile - This is a text file con-
taining the length of the ternary’vectorsb

4. WeightFile - As explained above, this s
a text file assigning a weight to each production
rule. In a random generator, adjusting these
waights will determine when one suitable natural
language construct will be chosen over another.

5. LookupFile - This is a file of records
produced 1in processing the lexicon file by the

converting utility. The text file for the lexi-

con contains morphological forms for lexemes;

this information 18 stored in LookupFile.

29

F. Output

Currently all output is dnteractive. The
program prompts for a mode of operation as noted
above. Additionally, the user 1is asked for the
number of sentences to be generated. If Brief
mode is selected, output consists of the number
of sentences requested; if Trace mode is selec-
ted, the progression through the generation pro-
cess is traced, including state changes, produc-
tions chosen by matching, and resultant effect
upon the CSSR.
G. Future Directions

1. Predicative Semantics

1.1 Introduction

RVGGEN will next implement predicative

semantics. Semantic information will be a part
of the lexicon in the form of ternary semantic
vectors. The process of predication will be
accomp lished by.a generalized routine Pred3,which
Té'rough1y'the semantic counterpart of the match-
change process in the syntactic component, with
the change procedure "refining" an entry by accu=
mulating of semantic features. Pred3 allows
semantic constraints to further restrict the

words to be generated.

30

1.2 Data Structures
The following data structures implemert the

semantic component of the system.

a. EntrySlots = (Cat, Lab, Instance,
Intr, Argl, Arg2, Locus, Goal, Group);

b. EntryType = array [EntrySlots] of
integer:;

c. Entry: EntryType;

Entry therefore consists of an ordered array
of 1dintegers indexing elements in other arrays.
The Cat slot indexes a set with information for
each syntactic category (described below). The
Lab slot indexes a label in the array of lexical
éategory~1abe1s. The other slots in the declara-
tion of EntrySlots index either a ternary vector
in SemVecs (described below, and indicated by a
negative subscript) or another entry in the Dis-
courseDatabase (described below, and indicated by
a positive subscript).

Entry is the molecule of the lexicon and the
discourse database.

d. Lexicon: array [) of EntryType;
e. LabelType = string[10];

f. LexLabels: array [] of LabelType;

31

g. LexisSpace = array [0 ..a)] of Entry-
Type;

h. DatabaseSpace = array [a+1 ..b] of
EntryType;

i. CPSRrefsSpace = array [b+1 ..c] of
Entrytype;

The preceding three type declarations are
below used with pointer structures. The three
declarations deal with large data sturctures,
hence the space allocation is done with pointers.

J. SemVecsSpace = array [=800 ..0] of
TernaryVector;

k. SemFreeType = array [-800 ..0] of
boolean;

1. DatabaseType = record

E: "DatabaseSpace:;

Enum:a ..b;(as defined above)

end;
m. DiscourseDatabase: DatabaseType;

As the generator produces new referents,
they are added to the database. Pointers are
established from the CPSR to old referents in the
database as predication proceeds. Thus the text

that is generated will obey lexically encoded and

32

database accumulated semantic constraints.

The discourse database concentrates on glo-
bal focusing, maintaining a list of permanent
entities and relations.

n. CPSRrefsType = record
E: "CPSRrefsSpace;
Enum:b ..c; (as above)
end;

This is used for local focusing, as tempor-

ary entities are built up by the sentence.
o. SemVecOrfFree = record
V: TernaryVector;
Free: boolean;
end;
p. SemVecs: ariray of SemVecOrFree;

Free 1dindicates whether the corresponding
vector (by subscript) is used or free.

q. CPSRrange = (pred, subj, obj, iobj,
topic, NPhead, NPmod);

r. CPSR : array [CPSRrange] of inte-
ger;

This array indexes database entries. The

slots are grammatical roles. Predicative seman-
tics accesses the discourse database entries via
the CPSR.

33

1.3 Some Additional Modules Necessary

a. Function NewSemanticVector creates
a new vector in SemVecs in the process of refi-
ning or altering an existing semantic vector.

b. Procedure Pred3, given two entries,
checks for a match of the vectors and refines the
first by the second if a match occurs. Since
database entries may point at other entries,
Pred3 first ensures that match and refine always
get vectors.

Main predicate actions (VTRANS, VINTRANS,
PREP and CADJ) and auxiliary actions (TENSE,
PROG, PASSIVE, etc) typically map CPSR roles
(suBJ, 0BJ, 10BJ, NPHEAD) onto arguments of
CPSR[PRED] and call Pred3 to combine CPSR[PRED]
with the lexical predicate. Again weights deter-
mine the 1iklihood of categories to be generated.

Pred3 performs the following semantic
actions in generating, for example,

"The little girl smiled."

1. In the semantic action associated with
the syntactic production NADJ, “little” is gen-—
eratecd, and CPSR[NPhead] is refined to "little".

2. In the semantic actions for the syntactic

productions NUMBER and N, "“girl®" is generated,

34

and CPSR[NPhead] d4s refined to -PLUR and HUMAN.
3. In the semantic actions for syntactic
productions TENSE and VINTRANS, subject-tense
agreement is checked, "smiled" is generated, and
CPSR[NPhead] 4is checked as a possible subject of
smiled, that dis, 495 CPSR[NPhead] HUMAN?
| ¢c. Procedure MakeNewRef produces a new
database entry and returns the address (sub-
script) of that entry.
2. Referential semantics

2.1 Introduction

A Given/New strategy can be implemented
as an additional constraint on main predicates,
that is, clausal predicates should not only match
the arguments, they should say something new
about them. This involves the use of assymmetric
matching of whole predicate structures, to avoid
generating "The little girl smiled, grinning from
ear to ear'.

2.2 New Data Structures

a. Prons = a record for pronoun main=
tenance consisting of a Lex field, an array of
subscripts for lexical pronouns; Curr and Prev

fields, arrays of subscripts for database en-

tries, mentioned in current and previous clause.

35

At startup, the PRONS l1ist is dJnitialized to
contain "you" and "I1". Both Prev and Curr are
cleared to all zeros. Upon firing NPCLOSE, the
database address 1in CPSR[NPHEAD] is copied into
the last unused slot of Curr. At CCLOSE. Prev is
cleared, Curr is copied into Prev, and Curr is
cleared for another cycle.

b. Names - an array of record pairs of
subscripts, one indexing a name string in LexLa-=
bels, the other indexing a database entry.

c. SpeciallLex - an array of subscripts
of lexical entries to be specifically examined by
the SemanticActions procedure. The subscripts
for SpeciallLex are themselves constants (such as
INT, DEF, INDEF). For example, Lexicon[Special-
Lex[Def]] will index the lexical entry "the".

2.3 Des-ign

At startup, the initial impetus for the type
of text to be generated is certainly an area for
future consideration. For example, the topic to
be discussed may be determined by a query to a
database, or the subject of a manual being

The design discussed below is that of a

random generator. At the beginning of the

36

generation process, the first referent generated
will be a new referent; subsequently, the
generator will be able to choose whether to gen-
erate text pertaining to a new referent or one
which exists already.

Once immersed 1n generating a sentence, the
program will decide whether the noun phrase gen-—
erated will be an old (NPO1d) or new (NPNew)
referent. Both NPO1d and NPNew will have the same
condition wvectors; choosing will be decided by
ordering (01d before New) and randomness of O07d
(New &Jways succeeds). Their result vectors,
however, differ: NPOld (+DEF) will rule out pro=-
duction INDEF, and NPNew (-DEF) will rule out

DEF, NAME, PRON, and PRONREFLEX (described be-

Tow). The semantic action called by NPNew will
invoke MakeNewRef, storing the result in

CPSR[NPHEAD]. NPOld, on the c¢ontrary, will ran-
domly pick a referent from the database.

Order will be important for phrasal produc-
tions, and will be enforced by the weights file

as described above. In addition, the generator

will generate text pertaining to an old referent

in preference to producing a new one. The fol-
lowing order 49s a natural one for the

37

generation process:

a. PRONREFLEX - Reflexives are pronouns
specifically used to re-reference the head of a
noun clause within the same clause. If
CPSR[NPHEAD] 1is the same referent as CPSR[SUBJ],
then the reflexive form (herself, themselves,
etc.) should be used. The syntactic condition
vector of PRONREFLEX should rule itself out be-
fore SUBJ and PRED, so that a reflexive pronoun
will not be used as the subject.

b. PRON (Non]eXTGGT) - This action first checks
the Current and Previous fields of PRONS to
determine 1if there is a pointer to the database
entry of CPSR[NPhead]. If so, AsymmetricMatch3
is called to match the INTR field of CPSR[NPhead]
with INTR of an arbitrary pronoun. If the match
succeeds, the pronoun form will be used.

c. PRONOBJ (Lexical) - executes if PRON succeeds
and syntactic generation has progressed beyond
SUBJ and PRED. This requires that an o©bjective
form be generated (her, them, etc.).

od. PRONSUBJ (Lexical) - executes +if PRON suc-—
ceeds and syntactic generation is at a point
previous to SUBJ and PRED. Then a subjective

form is produced (for example, she, they).

38

e. NAME -~ 4f CPSR[NPHEAD] 1is on the Names list

then a proper name will be generated.
f. DEF - will generate “"the".
g. INDEF - randomly decide whether to produce a
singular or plural phrase; +if singular, refine
NPHEAD by "a" (-PLUR).
h. NOUN - a referent is in the Current or Pre-
vious field of PRONS, but a pronoun or proper
name could not be used, then a premodifier 1s
needed, so NOUN will fail. i. NADJ,
NVING - will randomly choose a lexical predicate
that matches the CPSR[NPHEAD].INTR and refine it.
The Jlexical predicate thus adds descriptive {in-
formation that will distinguish it from other
referents in Prons.Curr or Prons.Prev.
H. Demonstration

Predicative and referential semantics will

be 1implemented as described above to generate

sentences. Referential semantic actions are
described below for some typical sentences
generated (predicative actions are not

described):

1st sentence generated:

Did you make the statements?

Referential semantic actions taken:

39

1. PRON <~ PRONSUBJ : PRONS contains

you" at dinitialization; AsymetricMatch3 of

CPSR[NPhead] and'“you“ succeeds; "you" generated.
2. DEF : "the" generated.
3. NOUN : "statements" generated.
2nd sentence generated:
Lisa herself made them.
Referential semantic actions taken:

1. NAME : "Lisa" generated.

2. PRONREFLEX : CPSR[NPhead] =
CPSR[SUBJ]; "herself" generated.

3. PRON — PRONOBJ : PRONS . PREV
contains reference to “statements" ;

AsymmetricMatch3 of CPSR[NPhead] and "them"

succeeds; "them" generated.

40

SUMMARY

McCorduck [79] points out that "ours is a
history of self-imitation,” now in its climax,
the chapter which "attempts toO reproduce the

quintessence of our humanity, our faculty for

reason.” We should not then expect this to be a
trivial effort. There are some weighty fissues

and problems which we have only begun to study.
Natural language generation 1is an active area of
research, boasting a number of interesting sys-—
tems currently in operation and undoubtedly these
will be QXPéhdédzand others will be developed in
the next decade.

The RVG formalism could be a powerful one
for natural language generation, and the prece-
ding suggests some avenues for exploiting that

a1

REFERENCES

Appelt, D. "Planning natural language utterances
to satisfy multiple goals.” Ph.D. thesis, Stan-
ford University, 1981.

Collins, A.M., and Quillian, M.R. "How to Make a
Language User". In E. Tulving and W. Donaldson,
eds. Organization and Memory. New York: Academic
Press, 1972.

Clark,Herbert H., and Marshall, Catherine R.
"Definite Reference and Mutual Knowledge”". In
Joshi, A., et al, Eds. Elements of Discourse
Understanding: Proceedings of a Workshop on Com-
putational Aspects of Linguistic Structure and
Discourse Setting, Cambridge: Cambridge Universi-
ty Press,1981.

Davey, A. Discourse Production, Edinburg Univer-—
sity Press, Edinburgh, 1979.

Derr, Marcia A. and McKeown, Kathleen R. ™“Using
Focus to Generate Complex and Simple Sentences".
1986.

Grosz, Barbara J. “"Focusing and Description in
Natural Language Dialogues" . In Joshi, A. et
al., Eds., Elements of Discourse Understanding:
Froceedings of a Workshop on Computational As-
pects of Linguistic Structure and Discourse Set-

ting. Cambridge University Press, Cambridge,
1981.

Grosz, Barbara J., Joshi, Aravind K., and Wein-
stein, Scott. "Providing a Unified Account of
Definite Noun Phrases 1n Discourse”. In

Proceedings of the 21st Annual Meeting of the
Association for Computational Linguistics, 1983.

Kenner, H. "Racter". Byte 11(5), 1986.

Linde, Charlotte. "Focus of Attention and the
Choice of Pronouns 1in Discourse" in Syntax and
Semantics, Volume 12: Discourse and Syntax, Talmy
Givon, ed., New York: Academic Press, 1979,

42

Mann, William C., and Moore, James A. "Computer
Generation of Multiparagraph English Text". Ame-
rican Journal of Computational Linguistics, 7(1),
1981.

Mann,. Willdiam C. “Text Generation". American
Journal of Computational Linguistics, 8(2), 1982.

Mann, William C. "An Overview of the Penman Text
Generation System, USC/ISI Technical Report RR-
83-114, 1983.

Mann, William C. “Discourse Structures for Text
Generation". In Proceedings of the 22nd Annual
Meeting of the Association for Computational
Linguistics, 1984.

Mauldin, Michael L. "Semantic Rule Bassed Text
Generation”. In Proceedings of the 22nd Annual
Meeting of the Association for Computational
Linguistics, 1984.

McCorduck, Pamela. Machines Who Think. San
Francisco: W. H. Freeman & Co., 1979.

McDonald, David D. "Natural Language Generation
as a Computational Problem: an Introduction" from
"“Natural Language Production as a Process of
Decision-Making Under Constraints. Ph.D. thesis,
Massachusetts Institute of Technology. 1980.

McDonald, David D. and Vaughn, M.M. "A Model of
Revision in Natural Language Generation". In
Proceedings of the 24th Annual Meeting of the
Association for Computational Linguistics, 1986.

Rosenschein, Stanley J. "Abstract theories of
discourse and the formal specification of pro-
grams that converse". In Joshi et al, Eds., Ele-

ments of Discourse Understanding: Proceedings of
a Workshop on Computational Aspects of Linguistic

Structure and Discourse Setting, Cambridge: Cam-
bridge University Press, 1981.

Sidner, Candace L. "Focusing for Interpretation
of Pronouns". American Journal of Computational

Linguistics, Volume 7, Number 4, 1981.

43

Smith, E.E., Shoben, E.J., and Rips, L.J. "Com-
parison Processes in Semantic Memory" Psychologi-
cal Review (81), 1974.

Woods, William A. "Procedural Semantics". In
Joshi, A., et al, Eds., Elements of Discourse
Understanding: Proceedings of a Workshop on Com-

putational Aspects of Linguistic Structure and
Discourse Setting, 1981.

VITA

Marie Bettinger Wilde is Assistant Professor of
Mathematics and Computer Science at Cedar Crest
College, Allentown, Pennsylvania, and holds
bachelor's and master's degrees in mathematics.
She resides near Bethlehem with her husband and
two daughters.

45

	Lehigh University
	Lehigh Preserve
	1986

	Status of natural language generation and its implementation using register vector grammar /
	Marie Bettinger Wilde
	Recommended Citation

	tmp.1551116526.pdf.xItso

