
Lehigh University
Lehigh Preserve

Theses and Dissertations

1986

Expert system software tools :
Fabio J. Urbina
Lehigh University

Follow this and additional works at: https://preserve.lehigh.edu/etd

Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Urbina, Fabio J., "Expert system software tools :" (1986). Theses and Dissertations. 4705.
https://preserve.lehigh.edu/etd/4705

https://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F4705&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F4705&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F4705&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=preserve.lehigh.edu%2Fetd%2F4705&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd/4705?utm_source=preserve.lehigh.edu%2Fetd%2F4705&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

I'

·'

Expert System Software Tools
OPS5 vs. Prolog

.'

by

Fabio J. Urbina

A Thesis

Presented to the Graduate Committee

of Lehigh Univ.ersity

in Candidacy for the Degree of

Master of Science

• In

Computer Science

Lehigh University .

1986

J

....

/J

"'\

This thesis is accepted and approved
..
1n partial fulfillment of the

requirements for the Degree of Master of Science.

~/P,e_..6eA..?, l;tr'b
(date)

Professor in

Chairman

CSEE Department Chairman

. ~.

: .. _.

ll

,,,

J, ..>

Acknowledgments

l would like to take this time to acknowledge all those who have helped

to bring about this paper and the various concepts that are expressed.

Initially,, I. would like to thank my parents for t-heir years of support,

gu._id_ance~ love, .and .understanding without which I could not have produced this

pa.pet_.: I would also. like to thank Dr. Gerhard Rayna for .his· guidance, and:

finally, :I would like<: t·o thank all my friends and fellow graduJ1t"e students: who

..

',,
I

....
111.

.I

Table of Contents

Abstract
I Introduction
2 Representing Facts
3 Syntax
4 The Knowledge Base

4.1 OPS5 Uses Forward Chaining
4.2 Prolog uses Backward Chaining

5 The Inference Engine
5.1 The Pro log Inference Engine
5.2 OPS5 Execution Cycle

5.2.1 OPS5 Top Level Commands
5.2.2 Conflict Resolution Logic

6 Adding and Deletin.g Facts
7 OPS5 Compound Data Types
8 Simulating a Prolog example in OPS5
9 _An Example of an Expert Grocery Bagging SysteJ11

9.1. The Problem Description
9.2 The System Rules
9_.3: OPS5 Implementation of BAGGER

9.3.1 The Data Items
9.3.2 Defining the Element Classes
9.3.3 Controlling the Flow of Execution

...
I

9.3.4 The OPS5 Production Rules for the Baggin··g: :Sy.sterrt
9.3.5 Execution of the OPS5 BAGGER

·9_4 Prolog Implementation of BAGGER
9.4.1 The Prolog Data Base
9.4.2 Controlling the Flow of Execution
9.4.3 The Prolog Production Rules for the- .B·ijg:!~iQg_ ·s::yster.n·
9.4.4 Execution of the Prolog BAGGER

l(J .An Additional Example
10.1 The Problem Description.
10.2 OPS5 Implementation of t·h~ :Nµ:m:per· ·C.odes. E·xample
10.3 Prolog lmplementatioit of the Nu.rrib.et ·co.des: Jtxarn;ple

11 Debugging Tools ,
J.1.1 Prolog Debugging Tools,

11.1.1 The trace an.d: notr_ace pred:icat.es
11.1. 2 The spy and. nospy predicates.
11.1.3 The debugging pregicate

11.2 OPS5 Debugging Tools
11.2.1 The run command
11.2.2 The watch command
11.2.3 The cs command
11.2.4 The pbreak command
11.2.5 The back command

\

1.
l
2
2
3
4'
:5 .
,5
9:

.10.
ll
·1.2
·13
l6. ..
-21
2.1
'23
2:6
26
2·7
:28
2·9
:l5
3:5
3:5

3..6
.3· 7,:

·•

4:2
42
44
46
51
54
54
55
55
5.6
56
S.6
56
57
57
57

1.

•

.,

12 Concluding Remarks
References
Vita

,.

'

•

V'

'I .

57

60
61

Figure 1:
Figure 2:
Figure 3:
Figure 4:

Figure 5:
Figure 6:
Figure 7:
Figure 8:

.,,.
\

List of Figures

A list of grocery items and their properties 27
Sample list of input for the OPS5 program 35
Output of the OPS5 implementation of BAGGER · 36
Pro log version of: a list of grocery i terns and their 36
properties
Sample list of input for the Prolog program 43
Output of the Prolog implementation of BAGGER 43
Binary tree depicting acceptable codes. 44
Tree With Additional Nodes 46

......

·• ,, ·v1

...

'"I"
,:

Abstract ·

This paper describes in some detail the Prolog and OPS5 languages. The

main purpose is to point out the similarities as well as the differences between

·t-he two languages. The knowledge representation characteristics as well as the

inference engines of each language are discussed. Finally, two examples and

their implementation in each language are discussed to demonstrate their

capabilities for problem solving.

1 Introduction

The programming language Prolog was invented by Alain Colmerauer at

the University of Marseilles in the early 1970s. It was a first attempt at th~

design of a language that would enable a programmer to specify his tasks in

logic, rather than in ter.ms of conventional programming constructs about what

t·he machine should do. when. This explains how the name for the language was

chosen. Prolog stands for PROgramming in LOGic [Clocksin & Mellish 84].

Even though Prolog is considered ·to be a general purpose language, it has

b·e:en widely used in Euro.pe for the implemen.tation. of e_xpert ~-Y~tems, ·especially

in t:he area of pharma~_ology [Brownston, et al.:. 8:5]~

OPS5 is one o.f the latest vers'ions. in a ·series: :of languages developed at
-~

Carnegie-Mellon U.n:i:vers{ty for: tlie '":i11odelin·g of .human cognition and memory.

It$: n:ame is· ·a1t acrort·ytn for· Official ·P.rod·uction Systent,. V.etsio.n 5. OPS5 is a

'ge~ier~:l p11rpose .knowled_g'e e.rtgin.eering la:ng11age1., :whTch .has been widely used. in
. , ·,

the area of expert systems. Ex.pert systems impl.~·IIl~I:J..t.e.d in O'PS5· includ:e·

YES/MVS, MUD, and ·xcON fW·aterman 86).

2 Representing Facts

The methods of rept~se11.ting facts in Prolog and ()pS·5 p,:r~· essentially

similar. The diff~rence :is th·at Prolog, uses the _predic·ate. logi~: ·nota:t'.iqn, while:

0-PS.:5: .uses the common t1s··p list -~1otation.. ·T·he table beldw· i~ ~n· ¢_,c.ample .. of

:h·ow some simple facts are, repte.~¢.n.ted:: iil bo't,h Prolog .and, OPS5-.

SnoopJ is a. dog.
Bill owns a. car.
The professor te~ch:Efs :in:aph t··o th·e. st-\ld-~nt.

·t.
·.A knowledge· e:n_gin.eering .]angµag~ -is a progra:tntri1ng langua·ge :Sp~clfica.Uy designed for the

developme·n.t .. of: expert sy~'tems.

·l

•

,

Prolog

dog(snoopy).

OPS&

(dog snoopy)
(owns car bill) owns(bill, car).

teaches(prof, math, student). (teaches prof math student)

Note that all statements in Prolog must end with a period .

3 Syntax

The smallest units used for constructing Prolog and OPS5 programs are

called terms. A term can be either a constant or a variable, and a constant

can be either an atom or an integer. Any one of the following is considered to

be an atom:

• a string of letters and digits that must begin with a letter (this

letter must be lower-case in Prolog). The underscore character can

be inserted inside the atom to improve legibility.

'
• a literal string. In Prolog, it must be enclosed in single quotes, in

which case the atom can begin with an upper-case letter. In OPS5,

strings are enclosed in a pair of bar symbols.

'

Variables are any combination of letters and digits, which may inclt1de the

underscore character. In Prolog, a variable name must begin with either an

upper-case letter or the underscore character. OPS5 on the other hand, does

not distinguish between upper and lower-case letters, so variables must b,.!

enclosed in angle brackets.

4 The Knowledge Base

The knowledge base of an expert system contains the domain specific

information necessary to solve a particular problem. This information is

represented in the form of IF ... THEN rules, such as the one below:

IF

THEN

0

the bug has no antennae, AND
the bug has eight legs,
the class of the bug is arachnid.

2

. _, -, .. ,-' ~ -, ~- ''

,.

Each rule is made up of a condition part, or premise, preceded by the

.
word IF, and a conclusion, or action part preceded by the word THEN.

The OPS5 knowledge base consists of a set of facts and a set of rules

called production rules which act on these facts. The facts are stored in an

area of memory referred to as working memory, while the production rules are

loaded into production memory. Pro<.luction memory resembles a read only
I

memory. Production rules can only be read and executed. They cannot be

changed during execution. Working memory, on the other hand, can be

changed constantly. This is one of the basic and essential features of OPS5.

Prolog, on the other hand, does not make any distinction between working and

production memory. All the facts and rules are stored in one global data base.

It is possible, however, to add and delete facts to the data base, as in the
'

OPS5 case.

Our main concern is how to represent rules in both Prolog and OPS5.

This is where a major difference between the two languages stands out, and

that is the fact that Prolog is inherently a backward. chaining language, whereas

OPS5 is a forward chaining one.

4.1 OPS5 Uses Forward Chaining

The forward chaining process moves frorr1 the condition parts to the action

I

parts. If all the conditions in the premise are satisfied, the rule is said to be

triggered. When the action part of a triggered r11le is executed, the rule is said

to fire. All the rules which are triggered, form a set from wl1ich only one rule

will be chosen to fire. The proce.ss of selecting which particular rule from the

set will fir~ is discussed in section 5.2.2.

In the example above, if the syst~m determines that the bug has eight legs

3

(

I

/ ..

' .
. f~., ·,~·,, ./

,,,- I ... , _.. , .
• ,· I ' '

and no antennae, and the arachnid rule is chosen to fire, then the system

concludes that the class of the bug in question is arachnid.

In OPS5 the production rules are defined by a list whose first element is

·the constant symbol "p". The second term is a unique rule name, followed by

lists of conditions and lists of actions. The lists of conditions are separated

'

from the lists of actions by the symbol "-->". The name of a rule in OPS5 is

for identification purposes only. This is because rules in OPS5 are not called

·by other rules or routines, as is the case with other computer languages

ln~l:ud_ing Prolog.

The .arachnid rule in. OPS5· would. lo-c>k· like. this:

(~ ·class arachrtld
(antennae d)
.(legs 8)

.;....'."'."'".)

.(ma.ke cl~_s··a '3ir~q_h~.i·d.)
(write I Th·E! :cl·aas ,():f bug is :arach.n.l.d·. I)}

4.2 Prolog uses Backward Chaining

The backward chaining process searches the· :dat"a base. through the

con.c-lusion~ ·of the rules:. Th.~ -µ~er states a goa.1, and: -then P·rolog. attempts to

:sati:sfy t-he conditions :w.hic:h: produce that goal. In th~· i~_xample rule ab·ov·e, 'the.

goal is: .to prove t.hat. the class· of a p.;;irticlllar b.ug _i_s arachind. To satisfy this

goal, we mttst .first ·satisfy two subgoals. The first subgoal states that the bug

h·as no .. antennae;. ·a11d the: second :subgoal states that the b.ug· :ha_s· eight legs. If

t::hese: two: sub.goals can be s'ii.tisfied·, then .the tri_ai.n go.al W:111 also· be satisfied,

-q;nd' ·w.e can ·conclude that th.e class of t'he· hl1g is inde,ed' arachnid ..

. Rtiles in Prolog ·are·. writter1 "backwards", that is',. the <1ction part is

written before th·e condition part. A rule in Prolog is defined :l.n: the following

i

4

• way:

The symbol ":-" is read IF, and the commas are read as AND. Therefore,

the rule states that A is true if B1, B2, ••• , B
0

are all true. Translated into

Prolog, the arachnid rule from above would look like this:

class(arachnid) :- antennae(O),
legs(8),
print('The class of bug is arachnid.').

5 The Inference Engine

The inference engine uses the information in the knowledge base to select

and execute the appropriate production rules. If a system is being implemented

in a general purpose langauge, a considerable amount of time must be dedicated

to the design of the inference engine. The advantage of using tools such as

Prolog and OPS5 is that the inference engine is already built in.

5.1 The Prolog Inference Engine

Prolog is a language which is used to answer questions based on the facts

stored in its data base. Given a question, Prolog will search for a fact or a

rule in the data base which matches the question that w.as asked. A match

exists if- the predicates are the same, and if the number of arguments is also

the same. When Prolog attempts to match a question being asked to a fact in

the data base, we say that it is attempting to satisfy a goal.

Since Prolog, like most conventional programming languages, is sequential

in its execution, the search is conducted in a top to bottom fashion. Suppose

we have the following clauses in the data base.

5
•

..

mother(mary, tom).
~ mother(mary, dick).

mother(mary, sara).
mother(jane, harry) .

and to Prolog's prompt, we ask if Mary is the mother of Dick (user input is in

boldface type):

?- mother(mary, dick). Ask question.

Yes. Prolog answers yes, and
More? (Y/N): Y asks if we want more. We respond 7es.

No. No more matches.

Prolog begins the search by attempting to match the clause at the top of the

data base. Since the childs' names are not the same, this attempt will fail, and

Prolog proceeds to the next instance of the mother clause. At this point,

Prolog will come back with a "yes", since it found a clause in the data base

which matched the question exactly. If Prolog is not able to find a matching

clause, it comes back with a "no". This, however, does not mean that the

answer to the question is no. It sirnply means Prolog was not able to satisfy

the given goal.

In addition, we can use a variable to ask Prolog to name all of Mary's

children. The second argument is replaced with a variable name, say Child,

and the question now looks like this:

?- mother(mary, Child).

The variable is initially uninstantiated, which means that it has no value.

Prolog will then atten1pt to match the question to any clause in the data base

which has mother as a predicate, and two arguments, the first of which must

be mary. The second one can take any value, since a variable - matches

anything. When Prolog finds a match, the variable is said to be instantiated

\,
I

6

• I

•

to the value of the respective term in the matching data base fact. In response

to the above question, Prolog will come back with:

Child= tom
More? (Y/N):

The variable Child has been instantiated to tom, because Prolog matched the

question to the first instance of the mother clause. As we said .before, Prolog

is sequential and it conducts its search in a top to bottom fashion. Next,

Prolog comes back and asks if we want to see Mary's other children. This

continues until no match is found, at which point Prolog comes back with a

"no" answer. The entire run would look like this:

?-mother(mary, Child).

Child= tom
More? (Y /N): Y

Child= dick
More? {Y /N): Y

Child= sara.

More? (Y /N): Y

No.

Prolog can also handle satisfying several simulta11eous goals. Suppose that

the facts below were added to the data base.

father(bill, tom).
father{bill, sBra).
father{bill, harry).
pla.ys(tom, tennis).
pla.ys(sa.ra., soccer).
plays(ha.rry, soccer).

We now wish to know which of the children of Mary and Bill play soccer. In

other words, we want to find a person who is a child of Mary, and a child of

Bill, and also plays soccer. The question to ask would be the following:

?- mother(mary, X), father(bill, X), plays(X, soccer).

7

Prolog attempts to satisfy the goals in a conjunction in a left to right order.

Every time Prolog satisfies a goal, it marks the clause that satisfied it, then

proceeds to the next goal on the right, and attempts to satisfy it. If this goal

fails, it causes Prolog to backtrack to the previous goal. Prolog will then try

to re-satisfy this goal beginning with the clause after the one that was marked,

'

unless there isn't one, in which case the goal fails. If the goal is satisfied,

Prolog will proceed to the right, otherwise, it will backtrack to the left. H

there arP no goals to the left, the search will end in failure.

Therefore, in the question above, when the first goal is satisfied, X is

instantiated to tom, and Prolog moves to the right.

satisfied by the clause

father(bill, tom).

The second goal is

The third goal, however, fails because there is no clause indicating that Tom

plays soccer. This causes Prolog to backtrack and try to re-satisfy the second

goal. This goal fails too, because there are no more clauses that have Bill as

the father, and Tom as the child, so the first goal must be re-satisfied.

The next instance of mother causes X to be instantiated to dick. The

search then continues to the right, but it does not go past the second g<>al

because there is no father clause that has dick as the second argument (Dick's

father is unknown).

Once again, the search starts over, moving downward in the mother

clauses. X is now instantiated to sara, and this time, all the goals succeed.

Prolog comes back and asks if we want to see more. If we respond yes, it will

not even go past the first goal, since there are no mol·e mother clauses with

mary as the first argument. The run l~oks like this:

8

,.:

?- mother(mary, X), father(bill, X), plays(X, soccer).

X = sara
More (Y /N) : Y

No.

In the previous section we looked at the semantics of a Prolog rule.

Prolog goes about trying to satisfy a particular rule in much the same way that

it attempts to satisfy questions. The advantage of writing rules is that it

allows large and complicated goals to be broken down into smaller, less

complicated sub-goals. The reasoning is similar to that of writing sub-routines

in languages such as Pascal and Fortran.

It should be clear by now that the search in Prolog is conducted in an

exhaustive depth-first fashion.

5.2 OPS5 Execution Cycle

In OPS5, a rule can fire only if each one of its condition clauses succeeds.

For a clause to succeed, there has to be an element in working memory with an

equal number of terms, and each of the corresponding terms must match. For ·

example, for the arachnid rule to fire, the following facts have to be in working

memory:

(antennae 0)
(legs 8)

Therefore, the facts which reside in working memory at any point in time are

what determines which particular rule will fire. This is why OPS5 is said to be

a data driven language. The sequence of events is ·controlled by the data, not

by the order in which the rules are written.

When OPS5 is loaded into memory, it responds with the "->" prompt.

This is the point where commands can be entered for OPS5 to interpret. The

9

production rules and the initial working memory elements are then loaded, and

the run command is used begin the execution cycle. This cycle, also known as

the recognize-act cycle, consists of two phases. The first phase is the

"recognize" phase, and the second one is the "act" phase.

In the "recognize" phase, OPS5 compares the contents of working memory

with the condition parts of the production rules. It then constructs the set of

all the rules that can fire. This set is referred to as the conflict set, and the

rules it contains are called instantiations in this particular context (which differs

from the definition given in the Prolog context).

In the "act" phase, OPS5 chooses one rule from the conflict set according

to some previously established criteria. The chosen rule will be the one to

actually fire, and its action part is then executed. At this point the cycle

starts over, and continues until it meets either of the following conditions:

1. A "(halt)" clause is encountered in the action part of the production
rule being executed.

2. None of the condition parts of the rules in production memory is
completely satisfied by\ the elements in working memory, in other
words, the conflict set is empty.

3. An error is encountered, in which case execution is aborted.

5.2.1 OPS5 Top Level Commands

Commands in OPS5 have the same list format as facts. That is, they

must be enclosed in parentheses. They can be entered at the top level, after

the "-->" prompt. For example, to display the list of words in the dictionary,

the diet command is used. It is entered in the following way:

-> (diet)

No period is necessary at the end of a line.

10

..

In OPS5 each of the facts residing in working memory is represented as a

list, and there is a time tag associated with each list. This tag is an integer

used to keep track of the order in which the facts were entered into working

memory. Once a tag is assigned to a certain fact, it remains constant, so

deleting a fact from working memory does not alter the time tag of any other

fact.

5.2.2 Conflict Resolution Logic

To determine which rule from the conflict set will be the one to fire,

OPS5 uses one of two conflict resolution strategies, namely LEX and MEA.

There is only a slight difference between the two. The set of rules used in the

LEX strategy is described below:

1. Refraction: to avoid loops, no rule is chosen to fire two consecutive
times. That is, if after rule A has fired, both rule A and rule B can
fire, then rule B will take precedence over rule A.

2. Recency: the rules are ordered by comparing the time tags of the
working memory elements associated with the condition part of each
rule, using the criteria that the most recent time tag has the highest
value. If the first elements of each rule have the same tag, then the
next elements are compared until either one rule comes out ahead, or
the elements are exhausted. The chosen rule will then be the one
with the highest value, or the one whose elements have not been
exhausted.

3. Specificity: if no selection can be made by the previous rule, then
other factors are taken iPto consideration, for example the number of
condition clauses in the rules. The rule with the most condition
clauses is then chosen, the reasoning behind this being that the
greater the number of conditions, the more specicific the rule is.

4. Finally, if all else fails, an arbitrary selection is made.

In the MEA strategy a rule is inserted in the above rule set, after the

Refraction rule. This new rule compares the time tags of the working memory

elements associated with the first condition of every rule in the conflict set, and

11

i

selects the one with the highest (most recent) time tag. This strategy is

supposed to simulate the Means-Ends Analysis method of problem solving in the

sense that it makes the orderly handling of subgoals easier. The first condition

of the rules can then be set to be a goal, since the conflict resolution logic will

always select a working memory element which matches a goal condition,

instead of a more recent working memory element which does not match a goal

condition.

6 Adding and Deleting Facts

In OPS5 facts are added to working memory by way of the make

command. For example, typing the following line into the system

(make legs spider 8)

would enter the fact that spiders have eight legs into working memory with a

time tag of 1. The next element entered would have a time tag of 2, and so

on. The higher the value of the time tag, the more recent the element is

considered to be. It is possible to enter the same fact into working memory

more than once. This may be useful and deliberate in some cases, but usually

it is a source, or consequence, of error.

To view the contents of working memory, the wm command is used. To

delete an element from working memory, we use the remove command, along

with the time tag of the fact to be deleted. For example,

(remove n)

deletes the element which has a time tag of n from working memory. This

command can also be used in the action part of a production rule, in which

case the n refers to the working memory element which matched the nth clause

12

/

..

in the condition part of the rule.

Similarly, it is possible to add and delete facts to the Prolog data base by

using several built-in predicates. To add facts to the data base, the asserta or

assertz predicates can be used. The difference is that asserta adds the fact to

the top, or beginning, of the data base, whereas assertz adds it to the bottom,

or end, of the data base. For example,

asserta(mother(mary, tom)).

adds the fact that Mary is the mother of Tom to the top of the data base .
.

To remove facts from the Prolog data base, the retract predicate is used.

This predicate, if it succeeds, will retract any fact which matches its argument.

For example, by typing a "Y" at the "More" prompt, we can delete all of

Mary's children from the data base as follows:

?- retract(mother(mary, Child)).

Child = tom
More? (Y /N): Y

Child = dick
More? (Y /N): Y

Child = sara
More? (Y/N): Y

No.

7 OPS5 Compou11d Data Types

OPS5 programs, in general, contain a declaration section, where compound

data structures can be declared. The compound data structure definable in

OPS5 is called an element class. It is a list preceded by the keyword

literalize, and it is composed of a class name, followed by any number of

attributes. The general form is:

13

I

(literalize class-name attribute 1
attribute2

•
•

•
attributen)

The number of attributes allowed in an element class depends on the

particular implementation of OPS5. All attributes are initially set to the value

"nil". This means that nothing is known about the value of the attributes.

An example of an element class is:

(literalize Person
name

; Element class representing a person
; proper name of the person

mother
father
age

)

; name of the person's mother
; name of the person's father
; age of the person

To reference attributes in an element class, the prefix operator "A" is used

in front of the attribute name. If a value follows, it is taken to be the

attribute value. Otherwise, the attribute value becomes "nil" the default.
'

With the use of the """, the attributes can be referenced by name regardless of

order. For example, the condition

(Person Aname sara Afather bill Amother mary)

would match the working memory element

• (Person Aname sara Amother mary Afather bill)

Even if one of the attributes is absent in the condition, the working memory

element would still match. For example, the condition

(Person A name sara ,..,:father bill)

would also match the above working memory element.

If the element class contains only one attribute, it is not necessary to

specify the attribute name. For example, if the above element class ·contained

14

- -

r

•
only the name attribute of the person, then the condition

(Person sara)

would match the working memory element·

(Person Aname sara)

It is not necessary to specify the attribute name in working memory either, but

it is done in this case for demonstration purposes. Note also that it is not

necessary to capitalize element class names since, as we stated before, most

implementations of OPS5 do not differentiate between upper and lower case.

There is a special type of attribute, called a vector-attribute, which can be
..

included in an element class. The only restriction is that each element class

can contain at most one vector-attribute. The function of a vector-attribute is

to allow a particular attribute to have more than one value. As is the case

with an element class, a vector-attribute must also be defined in the declaration

section. The general form is:

(vector-attribute attribute 1
attribute2

•

•

•

For example, suppose w~ have the following element class declaration:

(literalize Room name contents)

If we want the attribute contents to represent a list of the contents of the

room, we can declare it as a vector-attribute, as follows:

(vector-attribute contents)

We can then use the make command to define the bedroom and its contents:

I

15

_J

,1 '

(m~. l.ce Room
""'name bed room
""'contents bed chair table lamp dresser window)

8 Simulating a Prolog example in OPS5

Unlike Prolog, OPS5 does not have a built i11 question answering ability,

and therefore it must be simulated. Consider the example which was used in

section 5.1. The wm command is used to view the contents of working

memory:

-> (wm)
4 (mother • harry) Jane
3 (mother mary sara)
2 (mother mary dick)
1 (mother mary tom)

The numbers on the left are the time tag of each element.

A production rule is necessary to list all of Mary's children. The first

attempt to write such a rule is the following:

(p mother_mary

-->
(mother mary (child>)

(write !Mary is the mother ofl)
(write (child>)
(write (crlf)))

Notice the use of varia.bles in OPS5. In the rule above, the condition

clause will match any three term element in working memory whose first and

second terms are mother and mary respectively. A variable matches any

term, but this causes the variable to become bound to the value of the term.

Suppose the above rule is loaded, and the run comn1and is entered to

begin execution. The condition clause

(mother mary (child>)

matches the working memory element with the highest time tag, which in this

' 16
,f

case is 3. The variable <child>, hence, becomes bound to sara. The rule fires

and prints out:

Mary is the mother of SARA

The execution cycle continues since there remain elements in working memory

which match the condition clause. The next time, the element with the second

highest time tag is chosen, and <child> gets the value dick. The third time it

would be expected that the element chosen would be the one with the next

lowest time tag. This is not the case, however. Instead, the element with the

highest tag is chosen once again. The system goes into an infinite loop. If the

rule were allowed to fire four times, execution would look like this:

Mary • the mother of SARA 18

Mary • the mother of DICK 18

Mary • the mother of SARA 18

Mary • the mother of DICK 1S

OPS5 matches the rule condition to the working memory element with the

highest, or most recent time tag. The next time, however, it seems to

remember not to use the same element two times consecutively, so it selects the

element with the next highest time tag. However, because it cannot remember

more than one element, the third time it goes back and selects the first element

once again. OPS5 continues, alternating between the first and second elements,

as long as there are elements which match the condition. This is the reason

for the infinite loop.

Therefore, to avoid running into infinite loops, working memory must be

modified every time the rule fires. More specifically, the element which caused

the rule to fire must be removed from worki11g memory. Ex~cution will now

terminate when there are no more facts which match the condition clause. 1"'he

rule must be modified as follows:

17

J

(p mother_mary

-->

)

(mother mary (child>)

(remove 1)
(write !Mary is the mother off)
(write (child>)
(write {crl:£))

Notice how the remove command is used to delete the element which matched

the condition clause.

'
Execution looks like this:

-> (run)
Mary • the mother of SARA 1.B

Mary
. the mother of DICK 1.B

Mary • the mother of TOM 1.B

The loop has be~n eliminated, but there is a drawback, and that is that

the facts have been deleted from the data base, and there is no way to recover

them. To eliminate this problem, we can add a fourth attribute to each

element that would specify initially, that the element has not been printed.

Then after the element is printed, the attribute value can be modified to

indicate that the action has taken place. The modify command can be used to

change one or more attribute values in a working memory element. Obviously,

the same task could be accomplished by removing the element from working

memory, and then creating a new one with the appropriate changes, but

modify provides two advantages. The first and most apparent, is that by this

being a single built-in command, it is more efficient. The second is ttat when

modify is used, the time tag of the working memory element which 1s being

modified remains unaltered. This may be useful in some applications where

preservation of time tags is imperative, for example, when using the MEA

corrflict resolution strategy .
. .I

With the addition of the fourth attribute, the elements in working memory

18

now look · like this:

4 (mother • harry not_printed) Jane
3 (mother mary sara not_printed)
2 (.mother mary dick not_printed)
1 (mother mary tom not_printed)

and the new rule looks like this:

(p mother_mary

-->

)

mother mary (child> not_printed)

(modify 1 A4 printed)
(write !Mary is the mother ofl)
(write (child> (crlf))

The first condition clause must now check that the value of the fourth

attribute is "not-printed." This means that the message which indicates that

Mary is the mother of this particular child has not yet been printed.

->

The numbers in the first action clause translate to the following:

• The. number 1 specifies that the working memory element to be
modified is the one which matched the first condition clause in the
production rule.

• The number 4 preceded by the caret character indicates that the
value of the fourth attribute of the working memory element is the
one to be modified. In this case, the value is changed to "printed."

The result of the execution of this rule is then:

(run)
Mary • tl1e mother of SARA 1S

Mary • the mother of DICK 1S

Mary • the mother of TOM 1.S

In much the same way as. above,. a production rule can be written in

OPS5 which simulates Prolog's ability to satisfy simultaneous goals. The result

is the foil owing rule:

19

(p sport

-->

)

(mother mary (child>)
(father bill (child>)
(plays (child> soccer)

(remove 3)
(write <child>)
(write I plays soccer. I)
(write (c:.rlf))

To avoid loops, we choose the method of removing working memory

elements. It is necessary to eliminate one, and only one, of the elements which

caused the rule to fire. In this case the one which matches the third clause is

chosen arbitrarily.

Suppose working memory contains the following facts:

10 (plays harry soccer)
g (plays sara soccer)
8 (plays tom tennis)
7 (father bill harry)
6 (father bill sara)
6 (father bill tom)
4 (mother jane harry)
3 (mother mary tom)
2 (mother mary dick)
1 (mother mary sara)

When the rule is executed, OPS5 attempts to match the first condition to one

of the elements in working memory. The one with the highest time tag is 3,

and the value of .<child> becomes tom. Once a variable in a particular rule

has been bound to ·a certain value, it will retain that binding in all subsequent

condition and action clauses of the rule. Therefore, OPS5 will try to satisfy the

second condition as if it were·

(father bill tom)

and will succeed.

However, since there is no element which matches the condition,

(plays tom soccer)
I I·,•.•

20

'\

•

OPS5 starts over by attempting to find another match for the first condition.

This is very similar to the way in which Prolog goes about attempting to

satisfy goals. The difference is that Prolog marks a clause once it has matched,

and "remembers" not to use it again. That is why it is not necessary to

remove facts from the data base, as is the case with OPS5. OPS5 will keep

firing a rule as long as there are elements in working memory which match its

conditions, regardless of whether the results it produces are identical or not.

The result of the execution is then:

--> (run)
SARA plays soccer.

9 An Example of an Expert Grocery Bagging System

In this section, we develop a rule-based system, which performs the task of

solving a simple problem. The system is then implemented in both OPS5 and

Prolog. The problem is based on a simplified version of the BAGGER example

discussed in Chapter 6 of [Winston 84].

9.1 The Problem Description

The program is supposed to simulate a check-out clerk at a grocery store.

The program will start the process by bagging large. items, taking care to put

large bottles in first. Every time a bag becomes full, the program restarts with

a fresh bag. When it is done bagging the large items, the program will start a

fresh bag,. and begin bagging the small items. This process is similar to that of

bagging large items except that frozen items muf;,t be placed in individual freezer

bags. The process continues until there are no more items to be bagged.

In the original example, grocery items come in three different sizes, namely

small, medium, and large. In this example we have restricted the sizes to be

21

I

only small or large. There are two reasons for this. The first reason is that

the program keeps no record of what is in each bag. Small items in the

original example are put in partially filled bags wherever there is room, but

since our program is not able to determine where there is room, we make the

small class of our example include the small and medium classes of the original

example. The second reason is that, even if the program did keep track of

what is in each bag, the number of combinations of small, medium, and large

items which make up a full bag is relatively large, and it would be considerably

difficult to determine when exactly a bag becomes full. Each bag, therefore, is

considered to be full when it contains six, either large or small, items.

The grocery bagging task has been subdivided into three major steps. The

first step merely initiates the bagging process. The second step bags the large

items, and finally, the third step bags the small items. The original example

also includes a check-order step which has been omitted here, although it would

not be difficult to incorporate.

The example, as stated originally, is very well suited for implementation in

OPS5 for two reasons. The first reason is that BAGGER. is based on

IF ... THEN rules which support forward chaining. The second reason is that,

from the rules, it builds a conflict set, and then uses conflict resolution to select

a rule to fire.

There are two conflict resolution methods used by BAGGER. The first

method is referred to as context limiting. With this method, the likelihood of

conflict is reduced by separating the rules into groups. Only one group will be

active at any point in time, and groups can be activated and deactivated. This

can be done on OPS5, by setting goals, and it will be discussed in more detail

22

in section 9.3.3. The second method, however, is specificity, and cannot be

properly implemented in OPS5. The reason is that, even though OPS5 uses

specificity in conflict resolution, recency always takes priority, and this cannot

be changed. It is therefore necessary to modify the original rules to overcome

this minor difficulty.

9.2 The System Rules

The first step in the process commands the program to begin the bagging

process. Context limiting is achieved by making the first condition clause of

each rule limit the rule to the step being executed. As we stated before, the

bagging process is divided into three steps, namely begin-bagging,

bag-large-items, and bag-small-items. Initially, the step wilr be

begin-bagging, and all the rules included in this step must check for it in

their first condition clause.

There are three rules for the first step:

begin-bagging-1
If the step is begin-bagging

there is a large item to be bagged
then discontinue the begin-bagging step

start the bag-large-items step

begin-bagging-2
If the step is begin-bagging

there are no large items to be bagged
there is a small item to be bagged

then discontinue the begin-bagging step
start the bag-small-items step

begin-bagging-3
If the step is begin-bagging

there are no large items to be bagged
there are no small items to be bagged

then discontinue the begin-bagging step
halt execution

The first rule, begin-bagging-I, checks if there are any large items to ,be

bagged, and if so, changes the step to bag-large-items. In other \11ords, it

23
q

I

\·

/

)

initiates the bag largr. items process. The second rule executes if there are no

large items to be bagged, but there are unbagged small items. In this case, it

will change the step to bag-small-items. Finally, begin-bagging-3 executes

only if there are no items to be bagged, and terminates execution.

The second step, bag-large-items, consists of five rules. The first rule

'
checks if there are any bottles among the large items to be bagged, and ensures

that they are put in first. It also checks that each bag has less than six items

before putting another item into a bag. The second rule checks that there are

no more large bot ties in the order, and if there are any remaining large items

to be bagged, it bags them, again checking that no more than six items go into

any one bag. The first two rules are listed below:

bag-large-items-1
If the step is bag-large-items

there is a large bottle to be bagged
the bag contains< 6 large items

then put the large bottle in the bag

bag-large-items-2
If the step is bag-large-items

there are no large bottles to be bagged
there is a large item to be bagged
the bag contains< 6 large items

then put the large item in the bag

Rule bag-large-items-3 deals with starting a new bag after the current

one has been filled. There is one consideration to take before opening a new

bag, however. The system must check if there are more large items still

unbagged. If there are, then a new bag can be started, and the process

continues. Rule bag-large-items-3 is listed below:

bag-large-items-3
If the step is bag-large-items

there is a large item to be bagged
the bag is full

then start a fresh bag

When there are no more large items remaining, but there are small items

24

'/

0

\

I

to be bagged, rule bag-large-items-4 takes over. It changes the step to

bag-small-items, and starts a new bag regardless of whether or not the

current bag was full. The reasoning for this is that large items are bagged in

large bags, and small items are bagged in small bags. Rule bag-large-items-4

looks like this:

bag-large-items-4
If the step is bag-large-items

there are no large items to be bagged
there is a small item to be bagged

then disconti~ue the bag-large-it~ms step
start the bag-small-items step
start a fresh bag

The last of this set of five rules executes when there are no more items to

be bagged, either large or small. In this case execution is terminated. The

rule is listed below:

bag-large-items-6
If the step is bag-large-items

there are no large items to be bagged
there are no small items to be bagged

then discontinue the bag-large-items step
halt execution

The bag-small-items step is very similar to the previous step. Items a.re

bagged one by one in any order, starting new bags when necessary. The only

special case is that of frozen items which must be enclosed in insulated freezer

bags. When no more items remain unbagged, the process terminates. The

rules are listed below:

bag-small-items-1
If the step is bag-small-items

there is a small item to be bagged
the item is not frozen
the bag contains< 6 small items

then put the small item in the bag

25

•,.
I• ,

bag-small-items-2
If the step is bag-small-items

there is a small item to be bagged
the item is frozen
the bag contains< 6 small items

then put the small item in an insulated freezer bag
put the small item in the bag

bag-small-items-3
If the step is bag-small-items

I>

there is a small item to be bagged
the bag is full

then start a fresh bag

bag-small-items-4
I£ the step is bag-small-items

there are no items to be bagged
then discontinue the bag-small-items step

halt execution

9.3 OPS5 Implementation of BAGGER

9.3.1 The Data Items

The original bagger contains two sets of information. The first one is a

list of all the items, with their respective properties, which are available in the

supermarket. The second set is a list of the items included in a particular

customer order. For the OPS5 program, the two sets have been combined.

That is, every time an item is included in an order, it is listed with all its

properties. This may seem to be wasteful and redundant. However, it does

help to keep the production rules simple, especially when negated conditions

have to be used.

in figure 1.

A list of all the available items and their properties is shown

In addition to the information about the items in the order, we also

require information about the bags being filled. We made the decision not to

keep a record of what specific items are in each bag. It is necessary, however,

to keep track of the number of items in the bag which is being filled at any

26

"'

Item Container Size Frozen Status

Bread Plastic bag Small No Unbagged

Peanut butter Jar Small No Bagged

Granola Box Large No Unbagged

Ice cream Carton Small Yes Unbagged
,

Soda Bottle Large No Bagged

Potato chips Plastic bag Small No Unbagged

TV dinner Box Small Yes Bagged

Figure 1: A list of grocery items and their properties

point in time. Each bag is referenced by an integer index which is incremented

every time a fresh bag is started. With each bag, we also associate another

integer which is used to count the number of items in the bag. This counter is

incremented every time a new item is put in the bag, and reset to zero every

time a fresh bag is started.

attributes:

The bag class then, contains the following

• bag-index: refers to the bag currently being filled

• num-items: refers to the number of grocery items which are in the
bag currently being filled

9.3.2 Defining the Element Classes

We must define an element class to represent the physical objects that the

problem deals with. The first element class defines grocery items as follows:

27

'

..._

(literalize item
name
container

)

• size
frozen
status

I

; Element class to represent a grocery item
; name of the item
; type of container the item comes in
; either large or small
; either yes or no
; either bagged or unbagged

The second element class defines the bag being filled in the following way:

(literalize bags

bag_index
num items

)

; Element class to represent the
; bag being filled
; index used to refer to the bag
; number of items in the bag

9.3.3 Controlling the Flow of Execution

The prograrri to solve this problem uses a goal-driven strategy. As we

stated before, the process of bagging groceries can be divided into three steps,

which must be executed in a prespecified order. By setting goals, it is possible

to control the flow of execution. The program starts with a goal to complete a

particular step. When that step is completed, a new goal is set to complete

the next step, and the process continues until the final state is reached. For

this problem, the initial goal is to get the bagging process started. After this

goal has been achieved, the next goal is to bag the large items, and finally, the

last goal is to bag the small items.

Only one goal can be active at any point in time, and the first condition

clause in every production rule test which step is active at that time. This

ensures that when the step is bag-large-items, for example, only the rules

which deal with bagging large items are able to fire.

To represent the goals, we must define yet another element class. The

definition follows:

28

•

(literalime step
atep_name)

)

J Element class to represent a step or goal
J name of the step. Can be one of:
; begin-bagging, bag-large-items, or
; bag-small-items

9.3.4 The OPS5 Production Rules for the Bagging System

In this section, we attempt to draw the analogy between the rules

discussed in the previous section, and the rules written specifically in OPS5.

Let us consider the first three rules to introduce some new concepts:

(p begin_bagging_l

-->

)

{ {step begin_bagging) (stepO)}
(item Asize large Astatus unbagged)

{remove (stepO>)
{make step Astep_name bag_large_items)
(make bags Abag_index 1 Anum items O)
{write (crlf) I Bag 1 I)

(p begin_bagging_2

-->

)

{ (step begin_bagging) (stepO>}
-(item Asize large Astatus unbagged)
(item Asize small Astatus unbagged)

{remove (stepO>)
{make step Astep_name bag_small_items)
(make bags Abag_index 1 Anum items O)
(write (crlf) IBag 11)

(p begin_bagging_3

-->

)

{ (step begin_bagging) (stepO)}
-(item Asize large Astatus unbagged)
-(item Asize small Astatus unbagged)

(remove (stepO>)
(write (crlf) I There are no items to be bagged. I)
(halt)

The previous rules are the ones used to initiate the bagging process. Note

that the first condition clause of each rule tests for the step name to be

begin-bagging. Note also that in the first condition clause, there is a variable

named stepO. This variable is an instance of what is referred to as an element

29

I

variable. An element variable, denoted like any other variable, is a label for .

the condition element which is associated with it. The association is made by

enclosing the condition element and the element variable in curly brackets.

Once an element variable has been associated with a condition element, it can

be used in the action part of the rule to refer to the working inemory element

'

which matches the condition element. Working memory elements can thus be

removed or modified.

A particular element variable may appear only once in the condition part

of a rule. However, OPS5 permits an ordinary variable to have the same name

as an element variable in the same rule. The scope of an element variable is a

single rule.

The only requirement for this program to execute properly is that the

element

(step begin_bagging)

be in working memory before the "run" command is entered, since all the rules

capable of initiating the process test for this elerr1ent. In all the rules, the

element variable stepO is associated with this working memory element.

Note that the element class step is used for reasons of formality more

·· than anything else. We could have just as well replaced the clause

{remove (stepO>)

with

(remove 1)

to remove the working memory element which matches the first condition, and

we would not have had the need for an element variable. 'l'he· first condition

in the rule would have then simply been

30

•·

(•tep begin bagging) -
,

This is also true for all subsequent rules.

The purpose of the first rule is to initiate the bag large items step, so the

second condition clause checks that there are indeed large items in the customer

order: in other words, that there is an element in working memory of class

item, whose value for the attribute size is large, and whose value for the

attribute status is unbagged. If the rule fires, the first action clause will delete

the working memory element associated with stepO. The second clause will

then change the step name to be bag-large-items. It does this by creating a

working memory element whose class is step, and whose value for the attribute

step-name is bag-large-items. 'fhis action is intended to make possible the

triggering of all the rules which deal with bagging large items, i.e. the following

set of rules, in the next execution cycle. The next action simply creates an

element which indicates that the first bag has been started, and that it contains

no grocery items. Finally, the last clause prints a message which informs the

user that the first bag is being filled with groceries.

The second rule introduces the concept of negation. · Any condition

element can be negated except for the first one. A negated condition succeeds

if there is no element in working memory which matches the condition element.

In this case, the second condition clause will succeed if there are no items of

size large, whose status is unbagged.

The action part of the second rule is very similar to that of the first,

with the only exception of the second action clause. In this case, since there

are no large items to be bagged, the rule initiates the bag small items step.

Note that the rule does check that there are small items to be bagged.

31

I

Finally, the third rule in this group fires when the step is begin-bagging,

and there are no items to be bagged. It removes the step element from

working memory, and prints out an appropriate message.

The rules for the second step, bag-large-items, are listed below:
bag_large_items_l

-->

{ (step bag_large_items) (stepl)}
{ (item Aname (name) Asize large Acontainer bottle

Astatus unbagged) (groc_item)}
{ (bags Anum_items {(num) < 6}) (this_bag)}

{modify (groc item) Astatus bagged)
(modify <this_bag> Anum_items (compute (num> + l))

)
{write (crlf) I I (name))

(p bag_large_items_2
{ (step bag_large_items) (stepl)}
-(item Asize large Acontainer bottle Astatus unbagged)

-->

{ (item Aname (name) Asize large Astatus unbagged) <groc_item)}
{ (bags Anum_items {<num> < 6}) (this_bag>}

(modify (groc_item) Astatus bagged)
(modify (this_bag> Anum_items (compute (num> + 1))
(write {crlf) I I <name))

)

(p bag_large_items_3
{ (step bag_large_items) (stepl)}
(item Asize large Astatus unbagged)
{ (bags Abag_index (numl) Anum_items {(num2) >= 6}) <this_bag>}

-->

)

(modify (this_bag> Abag_index (compute (numl) + 1) Anum items O)
(write (crlf) (crlf) I Bag I (compute <numl) + 1))

(p bag_large_items_4

)

{ (step bag_large_items) (stepl)}
-(item Asize large Astatus unbagged)
(item Asize small -status unbagged)
{ (bags Abag_index (numl>) <this_bag>} -->
(remove (stepl))
(make step bag_small_iteme)
(modify (this_bag) Abag_index (compute (numl> + 1) Anum items O)
(write (crlf) (crlf) IBagl (compute <numl> + 1))

32

)

(p bag_large_items_6

-->

)

{ (step bag_large_items) (stepl>}
-(item Asize large Astatus unbagged)
-(item Asize small Astatus unbagged)

(remove (stepl>)
(write (crlf) (crlf) I Bagging completed! I)
(halt)

In the first action clause of the first rule, the status of the item is

changed to bagged by means of the modify command, to indicate that the

item has been put in the bag. The second action clause uses the modify

command in combination with the compute command. The latter command is

used to perform arithmetic computations in OPS5. In this case it is being used

to replace the value of the attribute num-items with the result of the

computation. This attribute represents the number of items in the bag

currently being filled, and it is incremented by one to indicate that a new item

has been placed in the bag. The compute command can also be used inside a

write command, as is the case •
In the last action claube of the rule

bag-large-items-3.

It is important to note that commands such as make, remove, modify, and

write can be used in production rules, but only in the action part of the rules.

The reason for this is that, if they were included in the condition part, they

would not match any working memory elements, and would cause the rule to

always fail.

The last group of rules is listed below. The rules are very similar in

purpose and fun.ction to those of the first group.

33

..

(p bag_small_items_l
{ (step bag_small_items) (step2)}
{ (item Aname (name) Asize small Astatus unbagged) (groc item>} -
{ (bags Anum_items {<num> < 6}) (this_bag)}

-->
(modify (groc_item) Astatus bagged)
(modify <this_bag) Anum_items (compute (num> + 1))
(write (crlf) I I (name))

)

(p bag_small_items_2

-->

)

{ (step bag_small_items) <step2>}
{ (item Aname (name) Asize small Afrozen yes

Astatus unbagged) (groc_item)}
{ (bags Anum_items {(num> < 6}) <this_bag)}

(modify (groc item) Astatus bagged)
(modify (this_bag) Anum_items (compute (num) + 1))
(write (crlf) I I <name) lin insulated freezer bagl)

(p bag_small_items_3

-->

)

{ (step bag_small_items' (step2)}
(item Asize small Astatus unbagged)
{ (bags Abag_index (numl) Anum items {(num2) >= 6}) (this_bag)}

(modify <this_bag) Abag_index (compute (numl) + 1) Anum items O)
(write (crlf) (crlf) !Bagi (compute (numl) + 1))

(p bag_small_items_4

-->

)

{ (step bag_small_items) (step2)}
-(item Astatus unbagged)

(remove (step2))
(write (crlf) (crlf) !Bagging completed! I)
(halt)

Note that the rule bag-small-items-I ~ould bag small frozen items, if the

rule bag-small-items-2 were not present. Whenever there is a frozen item to

·bag, the conflict set includes both rules. However, because of specificity,

conflict resolution always selects bag-smal1-items-2. Even for a sample of

input which contains only frozen items, bag-small-items-I will never fire.

34

)

•

9.3.5 Execution of the f.)PS5 BAGGER

Figure 3 shows the results of a run of the OPS5 version of BAGGER

• the sample input shown in figure 2 . using

(step begin_bagging)

(item • carton small unbag~ed) ice cream yes -
(item peanut_butter • small unbagged) Jar no
(item soda bottle large no unbagged)
(item tv dinne~ box small yes unbagged) -
(item soda bottle large no unbagged)
(item granola box large no unbagged)
(item soda bottle large no unbagged)
(item potato_chips plastic_bag small no unbagged)
(item soda bottle large no unbagged)
(item granola box large no unbagged)
(item bread plastic_bag small no unbagged)
(item soda bottle large no unbagged)
(item • carton small unbagged) ice cream yes -
(item peanut_butter • small unbagged) Jar no
(item granola box large no unbagged)

•

Figure 2: Sample list of input for the OPS5 program

9.4 Prolog Implementation of BAGGER

9.4.1 The Prolog Data Base

The Prolog data base, like the original example, contains two lists of

information. Tl1ere are two reasons for this. First, since the bagged clause

contains only one attribute, it is easier to retract an item from the data base

once it has been bagged, and second, using two different lists doesn't make the

rules overly complicated. The Prolog version of the list of available items and

their properties is shown in figure 4.

35

:f

Bag 1
SODA
SODA
SODA
SODA
SODA
GRANOLA

Bag 2
GRANOLA
GRANOLA

Bag 3
ICE CREAM in insulated freezer bag
PEANUT BUTTER
TV DINNER in insulated freezer bag
POTATO CHIPS
BREAD
ICE CREAM in insulated freezer bag

Bag 4
PEANUT BUTTER

Bagging completed!

Figure 3: Output of the OPS5 implementation of BAGGER

item(granola, box, large, no) .
item(peanut_butter, • small,) . Jar, no
item(ice cream, carton, small, yes).

-
it.em(soda, bottle, large, no) .
item(bread, plastic_bag, small, no) .
item(potato_chips, plastic_bag, small, no) .
item(tv_dinner, box, small, yes).

Figure 4: Prolog version of a list of grocery items and their properties

9.4.2 Controlling the Flow of Execution

The flow of execution in Prolog is controlled by a main rule which calls

other rules in the appropriate order. In this program, it is essential that all

the rules be excuted, so it is necessary to prevent any rule in the program from

failing. Otherwise, the entiJ e program will fail. We must therefore make sure

that there is no set of input which will ca11se any particular rule to fail. For

36

', .

example, we must ensure that the rule bag-large-items succeeds every time, even

if there are no large items to be bagged.

The main rule, bag, is shown below:

bag : - ini t_bag,
bag_large_items,
start_new_bag,
bag_smal l_i tems,
completed_bagging,

' • •

The character "!" is a Prolog predicate referred to as the "cut". As a

goal, it always succeeds, and its purpose is to ensure that once it has been

satisfied, Prolog will not attempt to resatisfy any of the rules to the left of the

"cut". For a more detailed explanation of the "cut", see (Clocksin & Mellish

84].

The rules invoked by bag are discussed subsequently.

9.4.3 The Prolog Production Rules for the Bagging System

The rule init-bag is used to initialize the bag index, and the item

counter. Both are asserted as facts to the data base, so that they can be

accessed by other rules. The first condition in init-bag makes use of what is

known as the anonymous variable, represented by the underscore character. The

anonymous variable, like all variables, will match anything, but it does not

become instant~ated. It is used when the variable will not be used elsewhere in

the clause, and the programmer does not want to come up with a creative

name. The first condition will, therefore succeed if there is at least one item to

be bagged. If there are no unbagged items, the first clause will fail. Prolog

will attempt to resatisfy the goal, and the second clause executes. This clause

will always succeed. It asserts the fact thc> .. t there were no items to be . bagged

in the data base, and it prints out an appropriate message. The ,rule is shown

37

\
\

below:

init_bag 1- unbagged(_),
aaserta{bag_index(l)),
asserta{num_items(O)),
print ('Bag 1 '), nl. ·,

init_bag :- asserta{no_items),
print('There are no items to be bagged.'), nl.

The rule bag-status is called before an item is put in a bag. In the first

condition of the first clause, the variable N will be instantiated to the number

of items in the bag currently being filled. If that number is strictly less than

six, the first rlause will succeed. Otherwise, it will fail, and the second caluse

will execute. The bag index is incremented, and the nun1ber of items in the

bag is reset to zero. Note that the second clause will never fail. The rule is

shown below:

bag_status :- num_items(N),
N < 6.

bag_status :- retract(bag_index(I)),
retract(num_items(N)),
J is I+ 1,
asserta(bag_index(J)),
asserta(num_items{O)),
nl, print('Bag ', J), nl.

The next step in the process is to bag the large items. As we already

know, large bottles must be bagged before anything else. The rule

bag-large-items takes care of bagging large items in the appropriate order. It

is listed below:

38

bag_large_item• 1- unbagged{Name),
item(Name, bottle, large,_),

bag_status,
retract(num_items(N)),

M = N + 1,
asserta(num_items(M)),

retract(unbagged(Name)),

write(" ", Name), nl,

bag_large_items.

bag_large_items :- unbagged(Name),
item(Name, _,large,_),

bag_status,
retract(num_items(N)),

bag_large_items.

M = N + 1,
asserta(num_items(M)),

retract(unbagged(Name)),

write(" ", Name), nl,

bag_large_items.

Let us consider the first clause only. The first condition checks that there

is indeed an item to be bagged, and the variable Name becomes instantiated to

the name of that item. The second condition will succeed only if the item is a

large bottle. Otherwise, Prolog will attempt to resatisfy the first condition, and

the variable will be reinstantiated to the new item that matched. Note that

the fourth attribute, whether the item is frozen or not, is irrelevant at this

point. The third condition is a call to bag-status, which prevents us from

putting too many items in one bag. The fourth, fifth, and. sixth conditions are

used to increment the number of items currently in the bag. Since the item

has now been placed in the bag, the seventh condition retracts from the data

base the fact that the item is unbagged. Finally, the last condition is used to

perform tail recursion. The rule will call itself recursively until there are no

more large bottles to be bagged.

The second clause is exactly like the first, except for the fact that it does

not check for the container to be a bottle. In this case, the second condition

simply checks for a large item regardless of the container type. Note that the

39

,,

second clause will execute only after there are no more large bottles to be

bagged. This is because of the order in which the clauses are written. As long

as there are unbagged large bottles, the first clause will succeed. When there

are no more large bottles, the first clause will fail. Prolog will then attempt to

resatisfy the goal by satisfying the conditions in the second clause, and it will

succed as long as there are unbagged large items.

The third clause in bag-large-items is what is referred to as a catchall

clause. In case both the first and the second clause of the rule fail, this clause

ensures that\\he rule will succeed, since it matches any call to this rule. The

first two clauses will fail when there are no items to be bagged, either because

there were none initially, or because they have already been bagged by

BAGGER. The. catchall clause has a different purpose in each case. In the

case where initially there were no items to be bagged, its only purpose is to

ensure that the rule will not fail. In the caee where the items have been

bagged by the program, its purpose is first, to ensure success, and second, to

stop the recursion, and initiate the backtracking process.

The rule start-new-bag is used to start a fresh bag after all the large

items have been bagged. The first clause will succeed if there is an unbagged

small item. However, we must prevent the rule from starting a fresh bag if

there were no large items in the grocery list (remember that init-bag started a

fresh bag). If the bag index is greater than one, this means that there were

large items, and the first clause succeeds, but if the bag index is equal to one,

then we must make sure that the number of items in the bag is not zero. The

second clause takes care of this. If there was at least one large item bagged,

and there is at least one small item to be bagged, then one of the first two

40

,/,!•

clauses should succeed. The third clause should execute only if there were no

large items bagged, or if there are no small items to be bagged. The rule is

shown below:

start_new_bag :- item(Name, _,small,_),
unbagged(Name),
bag_index(I),
I\= 1,
retract(bag_index(I)),
retract(num_items(N)),
J is I+ 1,
asserta(bag_index(J)),
asserta(num_items{O)),
nl, print('Bag ', J), nl.

start_new_bag :- item(Name, , small,_),
unbagged(Name),
num_items(N),

st,art_new_bag.

N \= o,
retract(bag_index(I)),
retract(num_items(N)),
J is I+ 1,
asserta(bag_index(J)),
asserta(num_items(O)),
nl, print('Bag ', J), nl.

The rule bag-small-items is similar to bag-large-items. The variable

Yes-no will be instantiated to either yes or no, depending on whether the item

is frozen or not. This variable will then be used by the rule print-small for

printout purposes. If the item is frozen, then the rule prints out the name of

the item a11d a message indicating that the item must be put in an insulated

freezer bag. Otherwise, the rule will simply print out the name of the item.

Both rules are listed below:

0

41

f,

/

bag_emall_itema i- unbagged(Name),

bag_ small_ items .

item(Name, _, small, Yes_no),
bag_status,
retract(num_items(N)),
M = N + 1,
asserta(num_iteme(M)),
retract(unbagged(Name)),
print_small(Name, Yes_no),
bag_small_items.

print_smal ~. (Name, no) : - write ("
print_small(Name, yes) :- write("

ft

", Name), nl.
", Name,

in insulated freezer bag"), nl.

The final rule, completed-bagging, is shown below:

completed_bagging :- not(no_items),
retract(bag_index(I)),
retract(num_items(N)),
nl, print('Bagging completed!'), nl.

completed_bagging.

The first condition in the first clause checks that there were indeed items

to be bagged at one point. If the grocery list was empty, the clause will fail,

and the second one will execute. The second and third conditions in the first

clause retract information which is no longer necessary from the data base, and

the fourth condition prints the final message.

9.4.4 Execution of the Prolog BAGGER

Figure 5 shows a sample list of groceries used as input to the Prolog

program, and figure 6 shows the output generated by the prograr11.

10 An Additional Example

In this section, we develop a simple program which hel.rJs a person to

guess a sequence of numbers. The problem itself seems pretty useless, but it is

intended to demonstrate at least some aspects of a problem for which OPS5

would be better suited than Prolog.

42

unbagged(granola).
unbagged(peanut_butter).
unbagged(ice_cream).
unbagged(soda).
unbagged(bread).
unbagged(granola).
unbagged(soda).
unbagged(potato_chips).
unbagged(soda).
unbagged(granola).
unbagged(soda).
unbagged(tv_dinner).
unbagged(soda).
unbagged(peanut_butter).
unbagged(ice_cream).

Figure 5: Sample list of input for the Prolog program

Bag 1
soda
soda
soda
s~da
soda
granola

Bag 2
granola
granola

Bag 3

peanut_butter
5.ce cream in insulated freezer bag
bread
potato_chips
tv dinner in insulated freezer bag
peanut_butter

Bag 4

ice cream in insulated freezer bag

Bagging completed!

Figure 6: Output of the Prolog implementation of BAGGER

43

...

10.1 The Problem Description

The objective of the program \is to aid the user in guessing a correct

sequence of three one digit numbers. Figure 7 shows a tree which depicts all

the possible correct sequences. A sequence is considered to be correct if there

exists a path from the root to a leaf which follows that sequence.

1
1

2
1

3
2

4

start
6

3
6

2
7

q

4
8

Figure 7: Binary tree depicting acceptable codes.

The program begins by printing the line

Please enter a 1 or a 2:

The user can then choose to type in the number 1, or the number 2. If he

makes a mistake, and types in any other number, the program will inform him

of his error, and prompt him for the number again. Once a correct entry has

been made, the program will prompt the user for the next number in the

sequence, always giving him a choice of correct numbers to select from. The

't
program continues until the user has typed in a correct sequence of numbers;

This little program may seem trivial, and useless, but its main objective is

analogous to that of an expert system: to guide the user through the search

space, so as to make it easier for him to find a solution to his specific problem.

The problem is also intended to simulate a real life problem which possesses

44

I

similar characteristics, namely a fan out situation, where we have one initial

state, and numerous final and uncertain goals. We begin solving the problem in

the initial situation, where we have a number of options to choose from. The

option we choose will take us to a new situation, where we will then have a

whole new set of different options. The process continues until we reach one of

the goal situations. Note that, in any situation, we could have any number of

decisions to make. The fact that, in this case, the tree is binary is a

completely arbitrary decision.

Every node in the tree represents a state in a search space. At every

state, we can choose different paths to follow which will take us to a state

deeper in the space. Since we have a fan out situation, the proble1n solving

method to be used is forward chaining. In t.his case, it would be feasible to use

backward chaining because there are only eight goal states, but in other

situations, the fan out could be much too large, or the goals too uncertain, to

even consider using backward chaining.

Although the situation does not arise here, it is possible that two or more

different paths could lead to the same state. In other words, two or more

nodes in the trf;e actually represent the same node. The search which emanates

from those nodes is exactly the same, and will be duplicated in the tree. A

program, however, should be smart enough to detect this. All the nodes which

represent the sa1ne situation, should be merged, so that the search can continue

from that point, thus avoiding the need for repetitious code.

Since, as we said before, the above situation does not arise, we must

create it artificially. We arbitrarily c!toose node 123 to be the same ·as node 2.

In other words, if the user types in the sequence 1-2-3, it is just as if had

45

•

typed only the number 2 as the first number, and the search must continue

from that point. The program must then prompt the user for the second and

third numbers once again. Figure 8 shows the tree with this addition.

1
1

2 5
1 a 8

3
2 4 7

4 8
start

6
3

6
2

7
4

8

Figure 8: Tree With Additional Nodes

10.2 OPS5 Implementation of the Number Codes Example

The OPS5 program consists of four groups of rules. The first group

contains only one rule whose purpose is merely to initiate execution. We begin

with working memory containing the following element:

(step get_lst_number)

Rule get-1st-number, which is the rule which must fire first, checks for this

element, and then prompts the user for the first number in the sequence. The

third action clause demonstrates the way in which OPS5 accepts input

interactively. The accept command causes a prompt to be displayed at the

screen, and will wait for an atom to be entered. The bind command will bind

the variable <numl> to the value of the atom just entered. The last action

clause inserts into the database the fact that the first number entered was the

value of the variable <numl>. The rule is shown below:

46

\

(p get_lat_number
(step get_lst_number)

-->
(remove 1)
(write (crlf) (crlf) !First number: please enter a 1 or a 21)
(bind (numl> (accept))
(make number 1 <numl))

)

The second group contains all the rules whose name is only one

alphanumeric character in length. Rule 1 will fire if the first number entered

was a 1. By looking at the tree, we know that a 1 can be followed only by

another 1, or a 2, so the rule prompts the user for either of these two numbers.

The rule, however cannot check that the user will actually type in one of these

numbers. At this point the program can only accept any number that the user

wishes to type. Verification of correct input will be performed later on by

another rule. The number that the user entered is stored in the data base as

the second number in the sequence. The rule follows:

(p 1
(number 1 1)

-->
(write (crlf) {crlf) !Second number: please enter a 1 or a 21)
(bind (num2) (accept))
{make number 2 (num2))

)

Rule 2 will fire if the first number in the sequence was a 2. It prompts

the user for either a 3 or a 4. Then it stores the number entered by the user

into the data base.

(p 2
(number 1 2)

-->
(write (crlf) (crlf) !Second number: please enter a 3 or a 41)
(bind (num2) (accept))
(make number 2 <num2>)

)

If the first number entered was neither a 1 nor a 2, then rule X fires. It

47

'

"

,

deletes the first number from the data base, since it is not a correct entry. It

then prints a message informing the user that his entry v,as in error, and

finally, it makes an entry to working memory which will enable the rule

get-1st-number to fire again. After this rule fires, the elements in working

memory are exactly the same as they were initially. The rule follows:

(p X
(number 1 (num>)

-->
(remove 1)
(write I Sorry, bad start. Try again. I)
(make step get_lst_number)

)

The third group contains all the rules whose name is two alphanumeric

characters in length. Their role is to verify that the second number entered is

allowed to follow the first, and then to prompt the user for the appropriate

third number. For example, Rule 28 will fire if the first number entered was a

2, and the second number entered was a 3. From the tree, we know that the

only two numbers which can follow are 5 and 6, so the user is prompted to

enter one of them. The rules in the group are shown below:

(p 11
(number 1 1)
(number 2 1)

-->
(write (crlf) (crlf) !Third number: please enter a 1 or a 21)
(bind (num3) (accept))
(make number 3 (num3))

)

{p 12
(number 1 1)
(number 2 2)

-->
{write {crlf) (crlf) IThird number: please enter a 3 or a 41)
(bind (num3) (accept))
(make number 3 (num3))

)

48

.

(p 23
(number 1 2)
(number 2 3)

-->
(write (crlf) (crlf) !Third numbers please enter a 5 or a 81)
(bind (num3) (accept))
(make number 3 (num3))

)

(p 24
(number 1 2)
(number 2 4)

-->
(write (crlf) (crlf) !Third number: please enter a 7 or an 81)
(bind (num3) (accept))
(make number 3 (num3))

)

(p xx
(number 1 (numl))
(number 2 (num2))

-->
(remove 2)
(write I Sorry, that number does not follow. Try again. I)

)

Rule XX, above is like a catchall rule, which will fire if none of the other

rules in the group was able to fire. At this point, we know that the first

number entered was correct (otherwise we wouldn't be this far down), so the

rule removes the second number entered from working memory. After this rule

fires, it will enable one of the rules in the second group to fire. The user will

be prompted for the second number once again, and execution will proceed.

Production rule 128 is contained in the fourth group, but it is different

from the rest because it deals with the special case where one node is the same

as another. Since node 123 is the same as node 2, and rule 2 fires when the

search is at node 2, we must create all the conditions necessary for rule 2 to

fire. This is a simple thing to do, given the data driven nature of OPS5. By

changing the appropriate working memory elements, it is possible for one

production rule to enable another rule. This is exactly what rule 123 does. It

creates all the necessary conditions for rule 2 · to fire. It modifies the first

49

I

number in the sequence to be 2, and it deletes the other two entries. It is

listed below:

(p 123
(number 1 1)
(number 2 2)
(number 3 3)

-->

)

(modify 1 "'3 2)
(remove 2)
(remove 3)
(write (crlf) (crlf) !The code is one-two-three, I)
(write I but you must return to node 2. I)

The rest of the rules in the fourth group should require no further -
explanation:

(p 111
(number 1 1)
(number 2 1)
(number 3 1)

-->
(write (crlf) (crlf) !The code • one-one-one. I) 1S
(halt)

)

(p 112
(number 1 1)
(number 2 1)
{number 3 2)

-->
(write {crlf) (crlf) !The code • one-one-two. I) 1S
{halt)

)

(p 124
(number 1 1)
(number 2 2)
(number 3 4)

-->
(write (crlf) {crlf) !The code • one-two-four. I) 1S
(halt)

)

(p 236
(number 1 2)
{number 2 3)
(number 3 6)

-->
{write (crlf) (crlf) !The code • two-three-five. I) 1S
(halt)

)

50

,.

(

(p 236
(number 1 2)
(number 2 3) -·

(number 3 6) .
-->

(write (crlf) (crlf) IThe code • two-three-six. I) 18

(halt)
)

(p 247
(number 1 2)
(number 2 4)
(number 3 7)

-->
(write (crlf) (crlf) IThe code • two-four-seven. I) 18

(halt)
)

(p 248 ('

(number 1 2)
(number 2 4)
(number 3 8)

-->
(write (crlf) (crlf) IThe code • two-four-eight. I) 1S

(halt)
)

(p XXX
(number 1 (numl))

(number 2 (num2))
(number 3 (num3))

-->
(remove 3)
(write I Sorry, no code available. Try a.gain. I)

)

10.3 Prolog Implementation of the Number Codes Example

In this section we discuss the Prolog implementation of the number codes

problem. The Prolog program consists of three groups of rules. TI1e first

group contains only the main rule, which is used to initiate execution, and as

the program driver. It is listed below:

start:- readfirst(X), readsecond(X, Y), readthird(X, Y, Z), !.

The second group contains three rules. Their purpose is mainly to read in

the number that the user inputs, and then to check that the number follows in

the sequence. The auxiliary rule • mess 1s used to print out a message

51

prompting the user for the next number in the sequence, and then to read the

number input by the user. It is shown below:

mess(S,T,U) :- print('Please enter a', S, 'or a', T, ' '),
read(U).

The first rule in the second group reads in the first number and checks

that it is either a 1 or a 2. It is shown below:

readfirst(X) :- repeat, mess(l,2,X), check(X).

If the user enters a number other than 1 or 2, check(X) will fail, and

Prolog will backtrack to the repeat predicate. This is a built in predicate

which is used to prevent Prolog from backtracking out of a clause until all the

goals to the right of the repeat have been satisfied. In this case, it will not

let the program backtrack out until the user types in a 1 or a 2. The

definition of the repeat predicate follows. For a more detailed explanation, see
...

[Clocksin & Mellish 84].

repeat.
repeat :- repeat.

The rules in the third group check that the input entered by the user is

valid. The rule readfirst calls the rule check with only one argument. The

rule will check for either a 1 or a 2. If this was indeed the input, one of the

first two clauses succeeds. Otherwise the third clause, which is a catchall,

executes an,J causes the rule to fail.

check(l).
check(2).
check(X) :- print(X, ' is a bad input, please try again.'),

nl, :fail.

The remaining rules in the second group are readsecond and readthird.

After readfirst succeeds (which means that the first number entered by the

user was valid), the main rule will call readsecond. The purpose of

52

\

I

readsecond is to check that the second number is valid. Similarly, the

purpose of readthird is to check that the third number is valid. They are

listed below:

readsecond(l,Y) : - print ('Okay. ') , nl, repeat, mess(l,2,Y),
check(l,Y).

readsecond(2,Y) : - print ('Okay. ') , nl, repeat, mess(3,4,Y),
check(2,Y).

readthird(l,1,Z) :- print ('Okay. ') , nl, repeat, mess(l, 2, Y),
check(l, 1, Y).

readthird(l,2,Z) . - print ('Okay. ') ' nl, repeat, mess(3, 4, Y)' •
check(l, 2, Y).

readthird(2,3,Z) :- print('Okay. ') , nl, repeat, mess(6, 6, Y)'
check(2, 3, Y).

readthird(2,4,Z) . - print ('Okay. ') ' nl, repeat, mess(7, 8) Y)' •

check(2, 4, Y).

To check that the second number is valid, the check rule \\-ith two

arguments is used. They are shown below:

check(l, 1).
check(l, 2).
check(2, 3).
check(2, 4).
check(_, Y) :- print(Y, 'is a bad input, please try again.'),

nl, fail.

Finally, to check that the third numb~r is valid the check rule with three

arguments is used. With two exceptions, they all print out the sequence of

numbers that the user just entered, if the sequence was a valid one. The first

exception is the clause that checks for the input 1-2-3. If this was the input, . .
then rules readsecond and readthird are called once again. The second

exception is the last clause which will execute if the third number did not

follow in the sequence, and cause the rule to fail.

53

check(l, 1, 1) print('The code • 1-1-1. '). &- 1S

check(l, 1, 2) print ('The code • 1-1-2. ') . :- 1S

check(l, 2, 3) print ('The code • 1-2-3 ') nl, :- 1S ' ,
print ('but you must return to node 2,), nl.,
readsecond(2, YY)' readthird(2, YY, ZZ).

check(l, 2, 4) print ('The code • 1-1-1. '). :- 1B

check(2, a, 6) print ('The code • 1-1-1. '). ·- 1B •

check(2, a, 6) print('The code • 1-1-1. '). . - 1B •

check(2, 4, 7) print ('The code • 1-1-1. '). . - 1B •

check(2, 4, 8) print ('The code • 1-1-1. '). . - 1B •

check(Z) print(Z,
, • bad input, please try again'), _, _, :- 1B a

nl, fail.

11 Debugging Tools

An important factor which should be taken into consideration before

choosing a software tool is the environment that the tool provides for writing,

debugging, and executing programs. Debugging tools play an important part in

simplifying the process of writing and debugging programs. If used effectively,

they can save the programmer a considerable amount of time in this process.

Both Prolog and OPS5 provide a standard set of debugging features. However,

bear in mind that, in general, the commands available depend on the particular

implementation, and may differ slightly from the ones described in this section.

11.1 Prolog Debugging Tools

Prolog has a set of built-in predicates which allow the programmer to

watch the program as it executes. These predicates are discussed in this

section.

54

check(l, 1, 1) print('The code • 1-1-1. '). i- l.S

check(l, 1, 2) print('The code • 1-1-2. '). :- l.S

check(l, 2, 3) print('The code • 1-2-3, ') , nl, i- l.S

print ('but you must return to node 2')' nl,
readsecond(2, YY)' ree.dthird(2, YY, ZZ).

check(l, 2, 4) print('The code • 1-1-1. '). :- l.S

check(2, a, 6) print ('The code • 1-1-1. ') . . - l.S •

check(2, a, 6) print ('The code • 1-1-1. '). ·- l.B •
check(2, 4, 7) print('The code • 1-1-1. '). . - l.B •

check(2, 4, 8) print ('The code • 1-1-1. '). . - l.S •

check(_, Z) print(Z,
, • bad input, please try again'), . - l.S e.

-' •
nl, fail.

11 Debugging Tools

An important factor which should be taken into consideration before

choosing a software tool is the environment that the tool provides for writing,

debugging, and executing programs. Debugging tools play an important part in

simplifying the process of writing and debugging programs. If used effectively,

they can save the programmer a considerable amount of time in this process.

Both Prolog and OPS5 provide a standard set of debugging features. However,

bear in mind that, in general, the commands available depend on the particular

implementation, and may differ slightly from the ones described in this section.

11.1 Prolog Debugging Tools

Prolog has a set of built-in predicates which allow the programmer to

watch the program as it executes.

section.

These predicates are discussed in this

54

..

11.1.1 The trace and notrace predicates · • l

The trace predicate is an exhaustive tracing feature. When this feature is

set, every time Prolog attempts to satisfy a goal, it prints out information

which allows the programmer to trace the execution of the program. The

following messages are displayed as program execution progresses:

• CALL (<goal name>). This means that Prolog is currently trying

to satisfy a god.I whose name is <goal name>.

• EXIT (<goal na1ne>).
satisfied <goal name>.

This message means that Prolog hM

• REDO (<goal name>). This message is displayed when Prolog is

attempting to resatisfy <goal name> immediateiy after it failed, or

after backtracking from another goal which also failed.

• FAIL (<goal name>). When Prolog is unable to satisfy <goal

name>, this message is displayed.

To turn off exhaustive tracing, the notrace predicate is used. This,

however will not turn off spy points set by the spy predicate which is discussed

subsequently.

11.1.2 The spy and nospy predicates

The spy predicate is used to trace the execution the particular predicates

which the programmer is interested • In. It is invoked by typing

spy(<predicate name>), group, where <predicate name> can be either of

the fallowing:

• An atom. A spy point is put on all predicates with this atom,

regardless of the number of arguments.

• A structure if the form <name>/ <num>, where <name> is the

name of the predicate to be spied, and <num> is the number of

arguments that the predicate has. Spy points are set only on clauses

whose name is <name> and which contain <num> arguments.

55

' '

• A list of the form:

To remove spy points, the nospy predicate is used with an argument of

the same form.

11.1.3 The debugging predicate

The debugging predicate allows the programmer to see the spy points

which are currently set.

11.2 OPS5 Debugging Tools

In this section the standard debugging features of OPS5 are described.

11.2.1 The run command

The run command can be used as a debugging aid by giving it an

argument. The argument is an integer n, where n is the number of rules which

will be allowed to fire before execution halts. Obviously, execution will halt

before the n rules are fired if any of the conditions for terminating program

execution are met.
-~

\
11.2.2 The watch command

The watch command, in general, is used with an argument which is an

integer from zero to two. The possible codes are:

• (watch 0): this is the default code. The system does not report any
rule firings or changes to working memory.

• (watch 1): when this code is used, the system prints out the name of
each production rule as it is being fired. It also prints out the time
tags of the working memory elements associated with the fired rules.

• (watch 2): in addition to the information in level 1, the system
prints a message every time a working memory element is added,
modified, or deleted.

56

If the watch command is entered without an argument, the current watch

code is displayed.

11.2.3 The cs command

The cs command is used to examine the contents of the conflict set. A

list of all the triggered rules is displayed, along with the dominant instantiation.

This is the rule which will be chosen to fire, unless production memory, working

memory, or the conflict resolution strategy are modified.

11.2.4 The pbreak command

The pbreak command is used with a rule name as an argument, to set a

break point at that rule. Whenever that rule fires, execution halts, and control

is returned to the top level. The command will accept any number of rule

names as arguments, including zero. In case the command is entered with no

arguments, the system displays the break points which are currently set.

11.2.5 The back command

The back command takes an integer number less than 32 as an argument,

and undoes the effects of that number of rule firings.

12 Concluding Remarks

We saw that in the two]anguages the methods for representing facts are

very similar. The major differences are:

• the representation of the rules

• forward vs. backward chaining rules

• sequential vs. data driven execution

The I/0 and arithmetic capabilities of bot.h languages are fairly limited,

but it seems like this depends more on the particular implementation of the

57

. '

'

language than on the language itself.

For small scale systems, where the problem domain is well defined or well

structured, there are no significant differences in performance between OPS5 and

Prolog. The choice of one over the other would be based more on personal

preference. If the problem requires, or is better solved by a backward chaining

'

search, then Prolog would probably be a better choice. Although OPS5 is

capable of performing backward chaining by setting goals (in much the same

way as in the BAGGER example), Prolog can do it more naturally. It would

seem that OPS5 would excel in the case where forward chaining is required, but

for most small systems, Prolog can handle forward chaining just as well. For a

case such as the one described in the number codes example of section 10,

where the search requires node jumps in the search tree, the Prolog program

cannot avoid the need for repetitive code. In a situation where the number of

node jumps is large, or if after a node jump the search is long, OPS5 would be

a better choice.

[Brownston, et al. 85) state that:
The power of OPS5 is usually hidden when it

is used for small system applications. This power
is most evident when it is applied to large, ill­
structured problems. OPS5, then, should be used
when the problem-solving environment is complex
(that is, when there are many independent states in
the domain, and variations are large and
important), and when responses to it must be
diverse and based on attention to many factors.
Also, because of its data-driven nature, OPS5 is
well suited for applications where the data change
during the execution of the program, and it is
essential that the program respond appropriately to
these changes. The new data immediately become
part of working memory, which is what controls the
firing of the rules in production memory. This
allows OPS5 programs to shift attention quickly,
and react to the data in an apparently intelligent

58

••

' .

fashion.

On the other hand, when the problem-solving environment is complex, but

well defined, and there exist specific algorithms to handle the problem-solving

task, then a sequential language, such as Prolog, is preferable.

Sometimes, a particular problem may be ill-defined at first. In this case,

the programmer may want to use OPS5 primarily to gain some insight, on the

problem. This will help him develop the appropriate algorithms to solve the \

problem. Once the algorithms have been developed, it may turn out that they

can be processed much more efficiently by a sequential or procedural type

language. The program can then be rewritten in the procedural language.

59

•

References

(Brownston, et al. 85)
Brownston, Lee, Farrell, Robert, Kant, Elaine, and Martin,
Nancy.
Programming Expert Sytems in OPS5.
Addison- Wesley, Reading, MA, 1985.

(Clocksin & Mellish 84]
Clock sin, W .F ., and Mellish, C.S.
Programming in Prolog.
Springer- Verlag, Berlin, Heidelberg, New York, Tokyo, 1984.

(Waterman 86] Waterman, Donald A.

[Winston 84}

A Guide to Expert Systems.
Addison-Wesley, Reading, MA, 1986.

Winston, Patrick H.
Artificial Intelligence.
Addison-Wesley, Reading, MA, 1984.

60

··'

..

Vita

Fabio Jose Urbina, the son of Fabio and Flora Urbina was born on

. November 6, 1962 in San Jose, Costa Rica. For his secondary education he

attended the Lycee Franco-Costaricien, graduating in 1979. After attending the

University of Costa Rica for one year, he came to Lehigh University, where he

received his Bachelor of Science Degree in Computer Engineering in June of

1984. He began his graduate studies in Computer Science in the Fall of the

same year.

61

	Lehigh University
	Lehigh Preserve
	1986

	Expert system software tools :
	Fabio J. Urbina
	Recommended Citation

	tmp.1551116526.pdf.ctge2

