
Lehigh University
Lehigh Preserve

Theses and Dissertations

1986

Referential semantics for a register vector grammar
natural language processing system /
Brian J. Murphy
Lehigh University

Follow this and additional works at: https://preserve.lehigh.edu/etd

Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Murphy, Brian J., "Referential semantics for a register vector grammar natural language processing system /" (1986). Theses and
Dissertations. 4695.
https://preserve.lehigh.edu/etd/4695

https://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F4695&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F4695&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F4695&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=preserve.lehigh.edu%2Fetd%2F4695&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd/4695?utm_source=preserve.lehigh.edu%2Fetd%2F4695&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

..

I I

Referential Semantics For A
Register Vector Grammar

Natural Language Processing
System

by

Bryan J. Murphy

A Thesis

Presented to the Graduate Committee

of Lehigh University

in Candidacy for the Degree of

Master of Science

.
lil

Computer Science

Lehigh University

1986

This thesis is accepted and approved in partial fulfillment of the require

ments for the Degree of Master of Science.

(date)

;c(
Professor in Charge

•. I

••
11

Acknowledgments

I would like to thank the following people for their help in the work lead

ing to and comprising this paper: Prof. Glenn Blank for explication of RV G and

much editorial criticism, Nancy Solderitsch for much dialog on semantic theory,

John Stevens for the extensive research and design effort in his own thesis -

which my work proceeds from, Pat Salley for a lot of help with Scribe, Keith

Werkman for useful shells and information regarding Emacs commands, all the

people at work who have made that less of a hinderance these last two months,

and my wife Cynthia for constant support on the home front.

•••
111

.,

I I

...

Table of Contents

Abstract
1. The Issues of Referential Semantics

1.1 The Referential Component
1.2 Reference for Proper Nouns
1.3 Quantification

1.3.1 A: a robot fell.
1.3.2 THE: the robot fell.
1.3.3 EVERY: every robot fell.
1.3.4 NO: no robot fell.

1.4 Scope: Priority Among Quantifiers
1.5 Parse-Time Referencing
1.6 Updating the Database

2. RVG Structures and Mechanisms

2.1 Introduction
2.2 Ternary Vectors
2.3 Match3 and Refine3
2.4 The Entry

3. The Parse

3.1 A Simple Parse
3.2 Handling Postmodifiers
3.3 The Locality of Negation

4. Constructing the Scope List

4.1 Three Hypotheses for Ordering Quantification
4 .1.1 Hypothesis 1
4.1.2 Hypothesis 2
4.1.3 Hypothesis 3

4.2 Replacing Hypotheses 2, 3 and 2'
4.3 Embedding Local Dominance Rules

5. · Using the Scope List

5.1 Referential Processing
5.2 Match~, AsymMatch3, and DBMatch3
5.3 Recursive Instantiation

5.3.1 PRED
5.3.2 MOD
5.3.3 ZERO
5.3.4 A
5.3.5 rfHE
5.3.6 EVERY
5.3. 7 NO

5.4 Updating the Database

(\

5.4.1 Processing an Instantiated Node
5.4.2 Processing for a Failed Instantiation

..
IV

1

2

2
3
3
4
4
4
5
5
6
8

9

9
10
11
12

13

13
16
18

20

20
20
21
24
24
29

31

31
32
34
34
35
36
37
37
38
39
39
40
40

•

..

5.4.3 Processing an Untried Node

6. Conclusion

References

Vita

V

41

42

45

46

Abstract

The referential component of a language processing system trys to establish

which members of· a database of known entities are intended by the noun

phrases and clauses of parsed statements. This thesis outlines procedural defini

tions for unquantified reference as represented by proper nouns, and quantified

reference as indicated by the quantifiers "every" and "no" and the determiners

"a" and "the." The significant structures and processes of a natural language

system - a Register Vector Grammar (RVG) production system - are described

in terms of their impact on reference. Referential processing is ordered by a

Scope List. Actions that construct and order the Scope List follow the flow of

the RVG parsing process, resulting in a solitary, preferred interpretation for

most sentences. The hypotheses of Colmeraurer [4] and Stevens [IO] for es-

. tablishing the relative scope of quantifiers are examined and improved. The

referential component identifies the Scope List objects and predicates with

database i terns, and handles failed references by polling the user and updating:

the knowledge database .

•

1

Chapter 1

The Issues of Referential Semantics

1.1 The Referential Component

The Referential Component of a natural language processing system has

the task of identifying the lexical objects and relations derived from input text

with objects and events in the world. For our purposes "the world" will be un

derstood to consist of a database of objects and predicates that the system
J

knows about and that it can use for evaluating and responding to natural lan

guage state1nents.

The sentence "John loves Mary" involves the interaction of three semantic

entities: John, Mary, and the predicate "love." The latter is constrained to

take John as its subject and Mary as its object; or, using conventional predicate

calculus notation: loves(John,Mary). If the system is able to identify the

structures representing John and Mary with objects Objl and Obj2 of the

database, and finds a predicate Pl(Objl,Obj2) in the database that entails

loves(Obj 1,0bj2), then the system can verify the original statement as being

true. A failure to match any of the three semantic constructs with database

entities would signify that the statement was not true in the current state of

the knowledge database.

I will describe the matching process used for instantiation - identifying a

lexical construct with a specific database item - in the next chapter when I dis

cuss reference mechanisms in RV G. That will be ·foil owed by an explanation of

the RVG parse process and its role in building semantic entities to be instan

tiated. The fourth chapter will examine strategies for ordering the instantiation

2

of such entities so as to derive valid interpretations, and the fifth will detail the

instantiation process itself. The sixth chapter recaps the salient features of

RVG referential semantics, and discusses requirements for expanding its

coverage. First, however, I'll introduce some issues and complications inherent

to referential semantics with which the current implementation deals.

1. 2 Reference for Proper Nouns

In our example "John loves Mary," both the subject and direct object are

proper nouns. For these to be matched with database objects correctly it is

necessary that there be only one possible match for each, else the interpretation

may be invalid. The referential component will not only need to find a

database object which represents John; it will also have to determine that there

is no other match to be found. Humans, of course, can determine from context

which of several entities is intended. The current system can be expanded to

do likewise via some mechanism for focusing reference on a subset of the

database [5]. At present though, the system's domain of disc.ourse is always the

entire knowledge database, which is sufficient for demonstrating our approach ~o

reference handling.

1.3 Quantification

The matching· of lexical with database entities is constrained by any deter-

miners and quantifiers that modify the lexical object. The current system

recognizes the universal quantifier "every" and the negative quantifier "no"

alon_g with the determiners "a" and "the" as quantifiers of the objects they

precede in text. Reference for each is handled differently from the others and.

from that used for proper nouns. I will illustrate the special treatment each re-

.3

quires by analysing the process for suitable variations on the simple sentence "a

robot fell."
?

1.3.1 A: a robot fell.

Evaluating "a robot fell" involves:

1) matching "robot" with an object in the database
2) matching "fell(robot)" with a predicate in the

database

In this case it does not matter if there are multiple matches for "robot" in the

database: the sentence is true so long as the system knows of at least one ob

ject matching "robot" such that some database predicate verifies that the object

fell.

1.3.2 THE: the robot fell.

"the" quantification imposes the same "one and only one" restriction that

constrains reference for a proper noun. "The robot fell" is true only if there is

exactly one robot in the domain of discourse. Verifying this sentence therefore

• requires:

1) matching "robot" with an object in the data.base
2) matching "fell(robot)" with a predicate in the

data.base
3) verifying that there is no other match for "robot"

in the database

1.3.3 EVERY: every robot fell.

The evaluation of "every robot fell" is handled like "a robot fell," but it

is carried out for all database objects matching the universally quantified object

"robot." If processing continues until no more database matches can be found

for "r-0bot" then the statement is true. ·. Failure to instantiate "fell(robot }" for

4

I '

.i

any instance of robot signifies the existence of a counterexample to the sentence,

namely a robot that did not fall, and the statement is concluded to be false.

1.8.4 NO: no robot fell.

We have chosen to interpret "no" as though it were a combination of the

universal quantifier with a negative particle. The negative particle reverses the

truth value of the predicate occurring on the same· clause level. Thus the sen

tence "no robot fell" and its equivalent, "every robot did-not-fall," are true only

if the predicate "fell (robot)" is not true. In Chapter 3 we will address the sig

nificance of negation for evaluation of a predicate. To test a negative quan~

tification, we will search the database for a counterexample; e.g.: a "robot"

such that "fell (robot)" is true.

1.4 Scope: Priority Among Quantifiers

When more than one quantifier occurs in a phrase there is a potential for

ambiguity in the interpretation, depending on the relative scope accorded the

quan.tifiers. For example, the noun phrase (NP) "a man on the horse" must be

interpreted with respect to two quantifiers, the "a" quantifying the head-noun

"man" and the "the" which modifies the object of the postmodifying phrase

"horse." By giving precedence to one or the other quantifier, we can arrive at

two interpretations:

(1) any man on a horse b~ himself.
(2) any man on a specific horse.

People generally adopt a single interpretation, preferring one over alternatives:

thus (2) seems. a more natural reading for "a .man on the horse~ than does (1).
j"

The scope of "a" is in this case dominated by that of ·"the."

We represent the pref erred ordering of quantifier scope by means of a

5

11- .

Scope List, with elements to the left dominating those to the right. We will

adopt the notational convention that quanti/ier(noun) indicates that the seman

tic object noun has the referential constraints indicated by quantifier, which

may be "a," "the," "every" or "no." By treating postmodifiers such as "on" as

predicates relating the subject of the modifying phrase to the object, we can ex

press (1) and (2) with the fallowing Scope Lists:

(ls) a(man)the(horse)on(man,horse)
(2s) the(horse)a(man)on(man,horse)

Resolving the quantifications as ordered in (2s} will yield the preferred inter

pretation for "a man on the horse," whereas (ls) coincides with something like:

"the horse that some man is on."

The previous example dealt with the simple case of a head-noun with a

·single postmodifying phrase. The objects of postmodifying phrases can have

modifying phrases of their own, so the referential component must also be

capable of handling constructions of the type: "every woman in a boat on the

lake under every " Instead of 1! readings, where , is the number of q~an

tifiers, we hope to get just one preferred reading, avoiding ambiguity as much

as possible.

1.5 Parse-Time Referencing

An issue of referential semantics which the current implementation does

not (yet) realize is the resolution of definite references (proper nouns and quan

tification indicated ·by "the"} (:oncurrent with parsing.

Given that the NP "the robot" with no postmod,ifying p.h.rase is discovered

during the parse, there is no reason that the reference should not be resolved

during or prior to subsequent parsing. In fact there are at least two reasons

6

that recommend parse-time instantiation:

1) Psychological reality. Humans appear to·resolve
definite references well before the end of utterances.

2) Computational efficiency of disambiguation. Paths for
subsequent parsing might be constrained by referential
context.

1
On the other hand, indefinite references (e.g.: "a ro.bot") should await the

end of the parse of an utterance. It seems more likely that, upon hearing the

phrase " " a car ... , people wait for further input rather than immediately attempt-

ing to identify referents. Thus psychological reality seems to counterindicate the

parse-time resolution of indefinite references. Moreover, the multiplicity of pos

sible database matches can only be reduced by strictures entailed by later predi

cates. For example, there may be only one block such that "a block is on the

table" is true, but the qualifying "on" relation, unknown while we are parsing

the subject NP, may well be crucial for this identification. Th.us computational

efficiency also argues against parse-time resolution of ·indefinite reference.

The processing of "every robot ... " or "no robot ... " could begin during the

parse., but would then consist of assembling a list of matches for "robot" which

would have to be maintained until the parse constructed some structure to· util'."'

ize or test them. This does not seem to be a psychologically realistic approach,

and also lacks the tractability gains promised by parse-time handling of definite
....)..J.A. ... •'

reference.

The current system was designed to handle defi.nite reference during the

parse, but does not actually perform that way at this time. All references are

currently resolved after the parse has term-inated.

7

1.6 Updating the Database

A final issue worth consideration in constructing the referential component

is the need to update the knowledge database with new or altered facts. A
.

sentence might not be accepted, either for incorporating objects and predicates

unknown to the system, or for contradicting previously known data. The

referential component will query the user when it encounters an unknown refer

ence. The user may agree that the proposition should be rejected, or specify

that it be made true by inserting the unknown objects and predicates into the

database. The system will therefore need to keep track of the status of refer

ence for semantic entities throughout the referential process .

..

..

8

1)

J

')

Chapter 2

RVG Structures and Mechanisms

2.1 Introduction

To understand the referential process that has been implemented, it will

help to first look at those aspects of an RVG system pertinent to referential

semantics. I will cover only those porti·ons that directly influence the referential

component, but a full treatment· of the overall system can be found in [2] and

[3].

An RVG system undertakes to produce a single preferred parse of a

natural language input, corresponding to typical human parsing performance. It

uses syntax to order a set of actions which construct and refine the semantic

structures that are eventually matched against or incorporated into the

database. Semantic information is used to constrain the parse by restricting the

set of legitimate continuations at each step of the process.

Actions ordered and invoked by the parse arrange the semantic objects and

predicates for instantiation by constructing the Scope List. The Scope List is

implemented as a linked list, the nodes of which associate a semantic entity·

with the appropriate mode of quantification. Predicate nodes are marked either

'pred' or 'pmod' to distinguish a main predicate and· modifier-predicates from

each other and from quantified objects. As mentioned in the previous chapter.,

nodes are put on the Scope List, front to back, in the order of their priority or

dominance for the clause. Thus by following the order of the Scope List the

referential component is able to, like the parse itself, seek a single preferred in

terpretation in an efficient manhet.

9

Consider the sentence "the owner of every car has a license." The parser

produces the Scope List:

every(car)the(owner)of(owner,car)a(license)has(owner,license)

Wherein the node for of(owner,car) will be marked 'pmod' while

has(owner,Iicense) will be marked 'pred'.

2. 2 Ternary Vectors

RVG maintains syntactic and semantic data in ternary vectors: fixed

length sequences of the values -, + and ? . For a specific vector type (e.g.: a

syntax vector) each position in a vector represents a specific binary attribute

(e.g.: "NOUN" or "'LIVING"), and ·its value reveals whether that attribute is

applicable, inapplicable or undefined/unknown with respect to the entity or state

the vector represents. A value of + indicates that the feature applies, e.g.:

+LIVING; a - that it does not, e.g.: -LIVING; and .a ·? means that the feature

is unknown or irrelevant (?LIVING). To consider a very simple example, below

are vectors distinguishing entities by means of five features.

entity vector

features: 1) SUBSTANTIAL (12346)

2) MOBILE mouse: +++-?

3) LIVING Mary • +++++ •

4) HUMAN robot: ++---

6) FEMALE idea • -----•

Note that mouse is ?FEMALE: a mouse may be either female or not, but that

fact is not significant to its identification as a mouse .

. 10·

.j

2.3 Match3 and Refine3

In constructing a semantic profile of an entity during the parse, the

·entity's current vector characterization is compared to any ternary vectors

representing potential modifiers. If the two are consistent with each other, the

entity's vector is refined by that of the modifier, becoming more tightly con

strained in the process.

The simplest match between vectors, Match3, compares the values in all

corresponding positions of two vectors, and succeeds so long as the value of +

in one vector never corresponds to a - in the other. A - will match with - or

? , a + will match with + or ? , and a ? will match with anything.

e.g. : ???+++--- VS

?+-?+-?+-
x x fails

???+++--- vs
?+-??+?--

succeeds

Match3 therefore tests for compatibility between two ternary vectors.

Refinement of a vector A by a vector B is effected by the ternary opera

tion Refine3 as follows:

1) for every position of vector B such that the value is a -
or+, the corresponding value of vector A is set to that
of B.

2) for all positions of vector B with a value of?, the
corresponding value of vector A is left unchanged.

e.g. : ???+++-·-- refined by
?+-?+-?+- yields
?+-++--+-

A Match3 generally precedes a Refine3, so as to ensure that successive

refinements of parse structures maintain consistency with previously derived con-

strain ts.

11

...

2.4 The Entry

The basic unit for semantic structures in RVG is the entry. This struc

ture is composed of a small set of dedicated slots that constrain and/ or identify

an entity and its connections to other structures. in the text or database. The

slots applicable to the current discussion inc]ude LABeJ, the word or morpheme

that identifies the lexical information represented by the entry; INTRinsic, a

ternary vector representing the semantic attributes that characterize and con

strain the entry; an INSTance slot which prior to instantiation identifies the

mode of quantification to be used, and afterwards indicates the matching

database entity; a REASon slot which holds status and failure codes for the

reference search; and a fixed number of ARG slots which specify constraints for

the arguments of predicate entries. The ARG slots most commonly in use are

ARGl ar:J ARG2. ARGl constrains the direct object for transitive verbs and

the subject for intransitives, while ARG2 constrains the subject for transitive

verbs. The ARG slots will point to terna~y sema~tic vectors or to entries.

.. . ,,. •~ ...

"-- - - ;-·. -- -- -
12

....
'

I ,

3.1 A Simple Parse

Chapter 3

The Parse

The following example will illustrate the interactions of ternary vectors,

entries, Match3 and Refine3 in the production of semantic structures during a

RVG parse. For the purpose of illustration, we will use relatively short ternary

vectors, and assume that

1) SINGULAR
4) CONCAVE

they represent the

2) ACTION
6) ANIMATE

following features:

3) SUBSTANTIAL
6) LIVING

For enhanced readability the vectors will be masked with the format:

We will follow the parse of the sentence:. "the robot kicked a block."

The Current Predicative State Register (CPSR) is a set of registers

representing semantic roles such as PREDicate, SUBJect and direct OBJect,

each of which can contain pointers to semantic entries fullfilling the associated

roles. At the start of a parse the PRED slot of the CPSR is initialized with

an amorphous entry whose vectors consist entirely of ?'s. As the first word,

. . - .

"the," introduces a noun phrase, the parser will create a semantic entry, and

place a pojnter to it in the SUBJ slot. STEPl shows the structure built up in

the CPSR so far:

STEP 1 : Remaining text: the robot kicked a block.
entry #1 (PRED) entry #2 (SUBJ)
LAB: LAB:
INTR: "??? ??? INTR: ??? ??? • • •

INST: INST:
REAS: REAS:
ARGI: ??? ???

• • • ., . .
ARG2: ?.?? ??? • • •

The parser responds to the first lexerr1e "the" by updating the INST slot of the

13

"

NP entry currently under consideration, which in this case is that pointed at by

the SUBJ slot. (The INST value will be used by thC referential system, later.)

Below, STEP2 shows the INST slot of entry #2 marked with 'the':

STEP 2: Remaining text: robot kicked a block.

entry #1 (PRED) entry #2 (SUBJ)

LAB: LAB:
INTR: ??? ??? INTR: ??? ???

• • • • • • • • • • • •

INST: INST: the •

REAS: REAS:
ARGl: ??? ???

• • • • • •

ARG2: ??? ???
• • • • • •

The system looks up the noun "robot" in its lexicon, finding a lexical

entry with semantic constraints:

lexical entry: LAB: robot
INTR: +-+ -+-

This structure is compared to the SUBJ entry by running Match3 against

\

the INTR slots. Failure would indicate a failure in this branch of the parse.

In this instance the Match3 trivially succeeds against the amorphous SUBJ vec

tor, so the SUBJ slot is Refine3-ed by the lexical vector; Also, the LAB of the

current NP entry is filled with the lexical entry's LAB value. After parsing the

NP, the CPSR entries look like this:

STEP 3:
entry #1 (PRED)
LAB:
INTR: ??? ???

• • • • • •

INST:
REAS:
ARGl: ??? ??? . . . ~ .• .
ARG2: ??? ??? • • • • • •

Remaining text: kicked a block.
entry #2 (SUBJ)
LAB: robot
INTR: +-+ -+-
INST: the
REAS:

Next, the parser retrieves the lexical entry "look":

lexical entry: LAB: kick
INTR: ?+-

;...... __
ARGl: ?-+ ???

• • •

ARG2: ?~+ ?+?

The semantic constraints of the predicate must be matched against the

(currently amorph@s} entry_J>ointed at by the CPSR's PRED slot. The lexical

14

- --.~

en try will look like this:

Since a SUBJ entry has been established, the ARG2 slot of the lexical

entry is matched against the INTR slot~ of the SUBJ entry (entry #2) as well

as the ARG2 of the PRED entry (entry #1). Upon success, the INTR vector

of the SUBJ entry is Refine3-ed with the lexical entry's ARG.2 vector, and the

PRED entry is explicitly linked to the SUBJ entry via a pointer set in PRED's
•

~.\RG2 slot. STEP 4a shows the resulting CPSR entries:

STEP 4a:
entry #1 (PRED)
LAB: kick
INTR: ? +- --
INST:
REAS:
ARGl: ??? ???

• • • • • •

ARG2: entry #2

Remaining text: a block.
entry #2 (SUBJ)
LAB: robot

INTR: +-+ -+-
INST: the
REAS:

Furthermore, the ARG 1 slot for "kicked" provides constraints for a direct

object via a Match3 and Refine3 of the ARG 1 vector of the entry PRED points

at. The direct object is now required to be -ACTION and +SUBSTANTIAL.

The parser creates a new entry (entry #3) to represent a direct object, and sets

a pointer to it in the OBJ slot of the CPSR and in PRED's ARG 1 slot.

Having finished processing the main predicate, the CPSR entries look like this:

STEP 4b:
entry #1 (PRED)
LAB: kick
INTR: ?+- ---

INST:
REAS:
ARGl: entry #3
ARG2: entry #2

'

Remaining text: a block.
entry #2 (SUBJ) entry #3
LAB: robot LAB:

(OBJ)

INTR:
INST:

+-+ -+
the

INTR : ? -+ ? ? ?
INST:

REAS: REAS:

Th-e parser reacts to the next word "a" by updating the INST slot of the

current NP, entry #3, as seen in STEP 5:

15

STEP 6:
entry #1 (PRED)
LAB: kick
INTR: ?+- --
INST:
REAS:
ARGl: entry #3
ARG2: entry #2

Remaining text: block.
entry #2 (SUBJ) entry #3 (OBJ)
LAB: robot LAB:
INTR: +-+ -+- INTR: ?-+ ???
INST: the INST: a
REAS: REAS:

The parser then confirms that the lexical structure for "block" matches the

constraints on the current NP (entry #3), and further refines the OBJ entry by

setting the INTR vector to require +SINGULAR, -CONCA VE, -ANIMATE and

-LIVING. Step 6 shows the final state of the CPSR entries.

STEP 6:
entry #1 (PRED)
LAB: kick
INTR: ?+- --
INST:
REAS:
ARGl: entry #3
ARG2: entry #2

Remaining text: .
entry #2 (SUBJ)
LAB: robot

INTR: +-+ -+
INST: the
REAS:

entry #3 (OBJ)
LAB: block
INTR: +-+ --
INST: a
REAS:

The parse concludes successfully when it reaches the terminating punctuation

with the semantic structures established.

It is at this point that referential processing begins.

3.2 Handling Postmodifiers

When RVG encounters a postmodifying· phrase in the text, it parses it as

a clause, taking the entry being modified as its subject. For example, in . "the

girl in the wagon waved," we treat "the girl in the wagon" by saying that the

subject of the postmodifier "in the wagon" is. its head noun, "the girl." The

parse accomplishes t-his in the fallowing manner.

When "in" is encountered, the following CPSR structures will have already

been generated:

\
I: J

16

{

... . -
" I

CLAUSE LEVEL 0 Remaining text: • the wagon waved. in
entry #1 (PRED) entry #2 (SUBJ)
LAB: LAB: girl
INTR: ??? ??? INTR: +-+ -++ • • • • • •

INST: INST: the
REAS: REAS:
ARGl: ??? ??? • • • . . .
ARG2: ??? ??? • • • • • •

The discovery of the preposition following a noun prompts the parser to

fire the action POSTMOD. POSTMOD shifts attention to a new clause level,

and to a new set of semantic (CPSR) registers which will represent semantic

roles for the new clause. It also initializes a new entry for the PRED slot.

Another action, ZEROSUBJ, then puts a pointer to the entry representing the

head noun (entry #2) in the new SUBJ slot.

postmodifying clause will look like this:

The CPSR entries for the

CLAUSE LEVEL 1
entry #3
LAB:
INTR: ???

• • •

INST:
REAS:
ARGl: ??? . . .
ARG2: ???

• • •

(PRED)

??? • • •

??? . . .
??? . . •.

Remaining text: in the wagon waved.
entry #2 (SUBJ)
LAB: girl
INTR: +-+ -++
INST: the
REAS:

The preposition "in" is treated as the predicate of th.e postmodifier. The

new PRED role is therefore refined with the lexical constraints for the predicate

"in":

lexical entry: LAB: • in

INTR: --- _.. __
ARGl: ?-+ +??
ARG2: ?-+ ??.? • • •

The SUBJ entry (#2} will undergo Match3 and Refine3 against the new

PRED's ARG2 constraints. Upon success, PRED's ARG2 will point at the

SUBJ entry. As a direct object is anticipated, an entry is created for it (entry

#4) and Refine3-ed by the ARGl vector from the predicate. The result is:

17

CLAUSE LEVEL 1
entry #3 (PRED)
LAB: in
INTR: --- --
INST:
REAS:
ARGl: entry #4
ARG2: entry #2

Remaining text:
entry #2 (SUBJ)
LAB: girl
INTR: +-+ -++
INST: the
REAS:

the wagon waved.
entry #4 (OBJ)
LAB:
INTR: ?-+ +??
INST:
REAS:

Normal parsing will continue using these structures until the word "waved" in

dicates to the parser that the postmodif ying phrase has ended. Another action,

MODCLOSE, will then return attention back to the main clause and its seman-

tic registers .
•

3.3 The Locality of Negation

An operation performed during the parse which is worth specia.l note is

the propagation of negation onto a predicate entry. The normal interpretation

of negatives by humans presumes that a negative particle affects the predicate

occurring at the same clause level. Consider for instance the following sentence:

a boat not on a base topples.

Depending on ·whether negation acts on the main predicate or the local

predicate, this statement yields one of the two following readings:

(1) some boat is on a base, and it does not topple.

(2) some boat is not on base, and it does topple.

Clearly, (2) yields the intuitive reading. Thus there is a locality of

negation principle which referential processing must .account for.

Thus, when the parser finds "no" before a noun, it sets a marker in the

lNST slots of the noun entry a.nd of the associated predicate . entry, to indicate

''no"-quan tification. The predicate's INST will eventually tell the referential

process that a reversal of the truth value is necessary for that .predicate. . The

18

.-

handling of the negation at the correct level is thus assured.

Implementing the locality of negation yields another benefit in terms of

processing efficiency. Consider the Scope List for our example:

'

a(boat) no(base) on(boat,base) topples(boat)

Now suppose that in the database we identify a "boat" and a "base" for

which the predicate "on(boat,base)" is verified. The negation prescribed by the

INST value of the "on(boat,base)" entry will prompt the referential process to

immediately reject the current set of instantiations. In other words, if the boat

is on a base, then it can't be the one intended in the sentence, and a new

search should begin for another DB match for "boat." As the (failed) negation

is local to the postmodifier predicate, processi"ng with the bad instantiations ter-
•

minates before any futile processing of the main predicate "topples(boat)" can

begin. The main predicate will go unprocessed unless/until a set of instantia

tions are found that affirm that "there is some boat which is not on a base."

19

.. ~

..

Chapter 4

Constructing the Scope List

4.1 Three Hypotheses for Ordering Quantification

John Stevens [10] developed procedures for adding nodes to the Scope List

via parse driven actions, along with a family of recursive algorithms for driving

the instantiation of node entries from the Scope List. His approach was

adapted from three hypotheses on the governance of quantifier dominance sug

gested by Alain Colmeraurer [4]:
Hypothesis 1: The quantification introduced by the article of

the subject of a verb dominates the quantification(s) introduced
by the complement(s) closely related to that verb. In speaking
of complements closely related to the verb, we exclude adverbial
phrases, which will not be studied here.

Hypothesis 2: In a construction involving a noun and a
complement of this noun, the quantification introduced by the
article of the complement dominates the quantification introduced
by the article of the noun.

Hypothesis 3: Whenever a verb, an adjective or a noun has two
complements, the quantification is made in the inverse order of
the natural order of their appearance; that is, the rightmost
complement generates a quantification dominating the
quantification generated by the other complement.

I will address the ev·aluation and implementation of these hypotheses one

at a time.

4.1.1 Hypothesis 1

The first hypothesis appears to observe that the · order of instantiation at

the clause level is 1) subject 2) .direct o~ject and 3) predicate. Thus, the sen-

tences:

1) A student ate·every quiche.
2) Every student ate a quiche.

would produce the foil owing Scope Lists:

20

! I

1S) a{student) every{quiche) ate(student,quiche)
2S) every(student) a{quiche) ate(student,quiche)

Quantifiers on the same clause level are thus ordered by left-to-right syn-

tax.

This rule is simple, intuitively agreeable, and elegantly suited to RVG

parsing. Stevens managed Scope List insertion with the ordering prescribed by

this hypothesis by means of two actions: NPCLOSE and CCLOSE [10].

NPCLOSE is fired whenever the parse recognizes the end of an unmodified

NP, and appends a node to the Scope List for the NP entry. CCLOSE is

triggered when the end of a main clause is reached, and inserts a Scope List

node identifying the main predicate. The ordering of the Scope List proceeds

directly with the parse flow:

: a student ate • • •

actions : SUBJ:NP:DET(a) :N(student) :NPCLOSE:
text

•••

a(student) • • •
Scope List:

text • •

actions :

every quiche
VTRANS(ate):OBJ:NP:ADJ(every):N(quiche):

Scope List:

text • • • CCLOSE(.)
ate(student,quiche)

actions : NPCLOSE:
Scope List: every(quiche)

4.1.2 Hypothesis 2

• •••

•••
. . ..

This hypothesis asserts that the quantification on the object of a
• • .• lr .. • . .. ,~'

postmodifying phrase should be resolved prior to that on the NP being modified.

This appears to be true for a large class of sentences:

e.g.: 1) every driver of every car has a license.
2) a place in the country is nice.
3) all the people in some town were irradiated~

The two interpretations found by varying the scope of the two occurrences

of "every" in {1) are:
la) every individual who drives all the ·cars has a license.

21

\

lb) for every car, each driver of that car has a license.

Clearly, 1 b yields the more likely (or pref erred) reading, and it is this one

which utilizes Colmeraurer's second hypothesi'i.

There are, however, numerous examples of postmodifying phrases whose

conventional interpretation contradicts Hypothesis 2. Stevens noted a pat tern

among the exceptions, most apparent in some where the precedence varied when

"a" was replaced with the semantically equivalent "some," as in:

4) every lawyer in a city is rich.

6) every lawyer in some city is rich.

In (4) the common interpretation will concern all lawyers in any city,

while (5) seems to indicate the lawyers of a particular place. The corresponding

Scope Lists read:

4S) every(lawyer) a(city) in(lawyer,city) rich(lawyer)

6S) some(city) every(lawyer) in(lawyer,city) rich(lawyer).

A sampling of similar constructions lead him to conclude that a universal quan

tification ("all," "every," "each," "no") will dominate over that of the indefinite

article "a"/ "an," regardless of their relative position within a phrase. He there

fore suggested an extension of Hypothesis 2, as follows [10):

Hypothesis 2': In a construction involving a noun and a

complement of this noun, the quantification introduced by the

article of the complement dominates the quantification introduced

by the article of the noun, unless the article of the

complement is "a" ("an") and the article of the noun

introduces a universal quantification (the article is "every"

"all", "each", "any", or "no"), in which case the

quantification introduced by the article of the noun dominates.

Stevens opted to design actions for implementing the original form of the

Hy·pothesis, which has the same advantag~ as Hypothesis 1 of being expressible

by a straightforward embedding of simple actions within RVG 's parsing process.

As was mentioned in Chapter 3, discovery of a preposition following . a

noun caus~ the parse to invoke POSTMOD rather than NPCLOSE.

22

POSTMOD defines semantic entries for a new clause-level, which is then parsed

normally. The object of the modifying phrase will be disposed of by the parser,

including its addition to the Scope List, before the parse of the dependent

'

clause is completed and processing at the level of the parent clause can resume.

Eventually, the parse responds to the end of the postmodifying phrase by invok

ing MODCLOSE. This action restores the main clause entries preempted by

POSTMOD, so that processing of the main clause can resume. As MODCLOSE

also marks the completion of a modified entry, it also adds to the Scope List a

'

node identifying the quantification for the modified NP, and one node for the.

postmodifying predicate constructed during the POSTMOD subparse.

The result is that, since the parser must complete processing for the

postmodifier object before the head noun, the former gets added to the Scope

List first, thus assuring the ordering prescribed by Colmeraurer's Hypothesis 2.

An illustration of the progression of parse actions and the addition of

Scope List nodes shows POSTMOD and MODCLOSE at work:

text : the owner of

actions : SUBJ: NP: DET (the) : N (owner) : POSTMOD: ZEROSUBJ:
Scope List:

text • •
actions :
Scope List:

text • •

actions :
Scope List:

every car
PREP(of) :NP:ADJ(every) :N(car) :.NPCLOSE:

every(ca.r)

drives .
. MODCLOSE:VINTRANS (drive) CCLOSE(.)

the(owner)of(owner,car) drive(owner)

I'

23

. . .
•. . ..

• • •

• • •

• • •

4.1.S Hypothesis 3

Hypothesis 3 addresses the relative priority of quantifiers in constructions

of recursively postmodified noun phrases, such as "some people in a boat on

every lake under the ... ". The hypothesis provides that the quantification on the

"deepest" level object of the complex phrase should take precedence over those

of higher level. Thus the Scope List for:

1) the Eskimo in every boat on the lake paddles .

•
IS:

the(lake) every(boat) on(boat,lake) the(Eskimo) in(Eskimo,boat)

paddle(Eskimo)

The actions POSTMOD and MODCLOSE designed to implement

Hypothesis 2 will without modification handle the insertion of Scope List nodes

for recursively postmodified expressions in keeping with the quantifier domina

tion exhorted by Hypothesis ·3. Parsing finishes ·with the deepest level object,

puts it on the Scope List, recovers the next higher level clause, puts its objects

on the Scope List, etc. In fact, Hypothesis 3 is a generalization of Hypothesis

2.

4.2 Replacing Hypotheses 2, 3 8nd 2'

In tests witl1 instantiating semantic entries according to these three

hypotheses, Hypothesis 1 worked flawlessly for the domain of canonical declara

tive sentences handled by the present implementation. Hypothesis 2, however,

failed more often than not: it is not general enough to make even a good

default rule for the subset of quantification we wish to represent. Hypoth·esis 3

failed even more regularly than Hypothesis 2, as it is in effect an extension of

the other (flawed) hypothesis.

24

,

A typical example of the failure of Hypothesis 2 (different from that ac

counted for by Stevens) was given in the first chapter:

the man on a horse fell.

According to Colmeraurer's Hypothesis 2, we should derive the following

Scope List:

a(horse) the(man) on(man,horse) fell(man)

1'his reading, however, causes the referential system to verify the statement

even if there are two men on horseback, so long as at least one of them fell.

This is contrary to the normal usage for "the man on a horse," which should

produce a unique referent. Colmeraurer's hypothesis actually corresponds to our

results for "a man on a horse."

The apparent subservience of quantification by "a" to "the" as noted

above, and to universal quantifiers as noted by Stevens, motivates a thorough

• comparison of the relative dominance of pairs of quantifiers
.
In simple

postmodifier constructions of the type:

quantifier} nounl prepo~ition quantifier2 noun2

All possible pairs using our selected quantifiers are shown in the table

below, along with which of the two dominated in a sampling of simple phrases.

In the table, the head-noun/modifier-noun quantifications of a postmodify

ing predicate are indicated with th representing "the", ev representing "every",

etc. The head, pmod, either or * following the hy·phen de.note respectively

that the dominating quantification is that of the head-noun, the postmodifier

noun, both orderings are equivalent, or the conjunction of quantifiers is gram

matically incorrect for English. It is noteworthy that, in every sa:rnple for ·each

quantifier, .the dominant member appears to be invariant.

25

QUANTIFIER DOMINANCE
LOCAL TO A POSTMODIFIED NP

a/a • either th/a • head ev/a • head no/a • head
• • • •

a/th: pmod th/th: either ev/th: either no/th: either

a/ev: pmod th/ev: pmod ev/ev: pmod no/ev: head

a/no: head th/no: head ev/no: head no/no: *

For example, consider th/no: head, at the bottom of the second column.

"th/no" is a shorthand for phrases with the format:

the noun preposition no noun

"head" indicates that for this case (th/no), the head noun dominates. Consider,

for example:

the girl under no canopy got a blister.

My scope reading (in Scope List form.) is:

the(girl) no(canopy) under(girl,canopy) a(blister)

got(girl,blister)

This might be rephrased as: "there was only one girl who was not under

any of the canopies, and that girl got a blister." Other patterns in the above

table show scope preferences similarly:

1) no ingredient in every recipe is expensive.

2) every lawyer in a town eats meatloaf.

3) the person at the wheel makes the decisi6n.

Colmeraurer's Hypothesis 2 thus fails for seven of the eleven quantifier

pairs wherein order is significant.

The table can be collapsed into a small set of local dominance rules:

LOCAL DOMINANCE
_/a: head
_/th: pmod
_/no: head

c-no)/ev: pmod
no/ev: head

RULES
/

In general, priority seems to be determined entirely by the specific quan-

tification on the object of the postmodifier phrase. The one exception,

26

.,c ...

- -·-- -·- --· - . ··-- ·- - __ _,_._ - .

no/ev:head, involves negation, as does no/no:*, the one pair from our set of

quantifiers which is proscribed for English. In the current implementation all of

the consequences of negative quantification are handled as special cases. It

seems reasonable, though, to conjecture that negation calls for its own logic for

referential processing. This thesis suggests some of the issues involved:

1) Negation reverses the evaluation of predicates.
2) "no" is interpreted as the universal quantifier

plus a negative particle on the associated
predicate.

3) The associated predicate is always that on the
same clause level as the "no." (principle of
local negation)

4) Negative quantification on the head noun
effects the local dominance within a post
modified noun phrase.

While indicating an alternative treatment to that specified by Hypothesis 2

(and 2'), the above list does not suggest how the recursively postmodified NP of

Hypothesis 3 should now be resolved. The latter will be invalid at any clause

level at least, as frequently as would ·Hypothesis 2 at the topmost level, which is

too frequent for comfort .. Fortunately, inspection of samples of extended

postmodifiers suggests that the local dominance rules can be applied recursively.

Consider the following sentence:

·t'he trunk in a closet in ev.ery house holds a body.

The _Scope List for the pref erred reading is:

c every(house)a(closet)in(closet,house)the(trunk) ...
in(trunk,closet)a(body)holds(trunk,body)

The postmodifier predicate "in(trunk,closet)" could be plated after

"a(body)" without altering the resulting interpretation. However, it is obvious

that it will be more efficient to test a database entry against all relevant con

ditions as · soon as it is introduced, so as to .minimize the work spent on fruit-

27

less paths. Moreover, it has been demonstrated that the ordering used is

simply and directly derived by RVG syntax and semantics.

We will try to maintain as much as possible the economy of the actions

used by Stevens, as we undertake the construction of the Scope List shown

above. First, "every (house)" is inserted onto the Scope List by NPCLOSE at

the end of the ex tended NP. The deepest and first completed postmodifier

phrase, " ... a closet in every house" inserts "a(closet)" before "every (house)", and

the predicate-node "in(closet,house)" after both. At this point:

Scope List= every(house)a(closet)in(closet,house)

The parse then reverts to the higher level po.stmodifier phrase: "the trunk

in· a ·" The correct ordering of the Scope List depends on "the(trunk)" being

attached at the end of the Scope List.

If we compare the subject quantification with that on the front of the par-

tially constructed Scope List, we. find that the /ev:pmod rule shows the

desired result: append "the(trunk }" to the Scope List and then add

·"in(trunk,closet)".

The above example was described using a single S.cope List to which the

parser added nodes at all clause levels. This works only if we have a solitary

_postmodified NP as the first NP in the sentence. To generalize, we need to

posit that changes in clause level also cause a change in Scope List level. The

local Scope Lists are appended to or prefixed as appropriate when MODCLOSE

\.

fires. The necessary operations are:

1) adding the header-node to either the front or back
of the lower level Scope List, as prescribed by
the applicable local dominance rule

2) appending the lower level Scope List to the end of·
that of the next higher level clause

3) appending the predicate node to the end of the
unified Scope List.

28

4.3 Embedding Local Dominnnce Rules

While the few local dominance rules identified are simple in themselves, I

have yet to hit upon a schema for ordering the necessary primitive actions by

means of ternary features in a way that is not cumbersome. I have therefore

opted to combine them within a single action so that the aggregate can replace

the previous processing of MODCLOSE.

•
1s:

A concise characterization of the new processing for MODCLOSE, where:

SLis~l represents the Scope List for a parent level

S1ist2 represents the Scope List for a dependent level

and SubjNode represents the pending node for a head-noun

MODCLOSE:
1) IF List2 starts with no(noun) AND

SubjNode = no(noun)
THEN /* double negation! */

MODCLOSE fails
ELSE
IF SList2 starts with ev(noun) AND

SubjNode = no(noun)
THEN prefix SubjNode to SList2

ELSE
IF SList2 starts with no(noun) OR a(noun)

THEN prefix SubjNode to SList2

ELSE
append SubjNode to SList2.

2) Append the modifier-predicate node to SList2.

3) Append SList2 to SListl.

The attachment of local Scope Lists might be understood easier by an ex

ample. Consider the following sentence and its parse:

SENTENCE: the teacher hit a student in every c·lass near the

office.-

text :the teacher hit a .. .

actions :SUBJ:NP:DET(the) :N{teacher) :NPCLOSE:VTRANS(hit) :- .. .

Scope List: (level 0:) the(teacher) ..•

text : · student in • • •

actions :OBJ:NP:DET(e.):N{student):POSTMOD:ZEROSUBJ: . ·• .
Scope List: (level 1:) • • •

29

•

,,

text : every class near .. .
actions :PREP(in):NP:ADJ(every):N(class):POSTMOD:ZEROSUBJ .. .
Scope List: <level 2:) .. .

text • •

actions :
Sc.ope List:

text • •
actions :

the office .
:PREP(near):NP:DET(the):N(office):NPCLOSE:

MODCLOSE ...
Scope List: t~e(office) • • •

• • •

• • •

At this point there are three different Scope Lists accounted for by the

parser, with the following contents:

level 2: the(office)
level 1: [PENDING: every(class)]
level 0: the(teacher) [PENDING: a(student)]

MODCLOSE must first reconcile the level 2 Scope List with its head noun

node "every(class)". The /the:pmod rule requires placing , the head node

second, producing "the(office)every (class)." Having consolidated clause level 2

with level 1, MODCLOSE can now append the postmodifier predicate. Two

Scope Lists remain:
I

level 1: the(office)every(class)near(class,office)
level 0: the(teacher) [PENDING: a(student)]

A second MODCLOSE will fire, and reconcile the pending node,

"a(student)," and the level 1 Scope List via the _/the:pmod rule. At the

conclusion of this second MODCLOSE the parse will have reverted back to

clause level O with the fallowing Scope List:

level 0: the(teacher)the(office)every(class)
pear(office,class)a(student)in(student,class)

All that remains at this point in our example is for CCLOSE to fire,

which will add the main-predicate node "hit{teacher,student)" to the end of the

level O Scope List. Parse and Scope List construction terminate .together.

30

Chapter 5

Using the Scope List

5 .1 Referential Processing

Having finished the parse and fully ordered the Scope List, we turn to the

task of referencing the database. The current system passes the Scope List to a

routine called QuantSearch, which after checking the quantification indicated

in the first node, pas~es the Scope List on to one of the procedures: A, THE,

EVERY, NO, ZERO, MOD or PRED. The first four handle the specified

mode of quantification, ZERO instantiates an unquantified object (e.g.: a proper

noun), MOD instantiates a modifier/predicate, and PRED handles the main

predicate. Upon success, each records the unique index of the matched database

(DB) entity in the INST slot of the matching parse entry. All except PRED

then invoke QuantSearch, passing it the Scope List minus its first node.

PRED, called at the end of the Scope List, passes back to the cascade of call

ing procedures the truth value of the input clause with respect to database

referents.

Consider a simple example. The sentence: "the child smiled" yields the

fallowing parse entries:

parse-entry# 1
LAB: child
INTR: vector A
INST: the
REAS:

parse-entry# 2
LAB: smile
INTR: vector B
INST: pred
REAS:
ARGl: parse entry #1

The l~sta~tiation of these will start when QuantSearch passes the Scope

List: the(child)smile(child) to THE for pro~essing. Suppose that THE· iden

tifies child: uniquely with the DB object with a unique index, say 376. The

31

INST slot of the entry gets that index number:

parse-entry# 1
LAB: child
INTR: vector A
INST: 376
REAS:

j I'

parse-entry# 2
LAB: smile
INTR: vector B
INST: pred
REAS:
ARGl: parse entry #1

The abridged Scope List, smile(child) is passed on to another invocation

of QuantSearch. The second QuantSearch will in turn call PRED, which will

search the database seeking some entry that matches parse entry #2. To

match this, a DB entry's ARGI must point at DB entry #376.

5.2 Match3, AsymMatch3, and DBMatch3

All instantiations are accomplished by traversing the database and compar

ing each DB entity in turn with the parse entry to be matched. The database

entities are themselves entry structures, with basically the same structure as

parse (CPSR) entries. Evaluating a DB entry against a parse entry consists of

comparing the contents of corresponding slots.

The matching that goes on between slots is neither an equality test nor

Match3. It is permissable for· a matched DB datum to be more specific than

that of the corresponding parse entry, but the reverse is not true. If there's a

"red shoe" represented in the database and sentence refers to "the shoe" then

the reference should ~ucceed, but if the database entry does not specify color

and a sentence refers to "red shoe" then the two can.not be automatically

equated with each other. Ternary vectors will therefore be matched using the

ternary operation AsymMatch3. AsymMatch3 compares a target vector

against a goal vector, succeeding if the goal is consistent with and no less

specific than the target, and otherwise failing. The. match is accomplished by

making any - or + of the target. vector match by equality against the goal,

32

...

(

,,

while allowing a ? in the target to match anything:

target: ???+++--
goal : ?+-?+-?+-

x XXX fails

target:++??
goal : ++-?-

In comparing any two slots, one ·of four cases will arise:

DB slot points to: Parse Entry slot points

{a) vector vector

(b) vector entry

(c) entry vector

(d) entry entry

succeeds

to:

The first case has been addressed already. In case (b), the vector of the DB

slot is a prioti less specific than the entry pointed at by the parse slot, so this

situation causes a failure of DB reference. In Case (c), however, the more

tightly constrained DB entry will match with the vector of the parse slot, if

AsymMatch3 succeeds between the parse vector and the DB entry's INTR vec

tor. In case (d) the DB entry pointed at from the DB slot must first be

matched against the Parse slot entry, which is a simple recursion of the entry

match being interrupted.

A g'"ay area remains 1Il~tching of Parse versus DB entries. Suppose

AsymMatch3 fails on two slots for which Match3 succeeds. Although the DB

and parse data are semantically consistent, the parse data is more specific.

Whereas the success of AsymMatch3 guarantees a match, its failure entails, not

a nonmatch, but rather that the DB information is underconstrained. That is,

the DB lacks sufficient data to resolve the match.

Consider once more a DB object for a "shoe" which has has a feature

value ?RED. Although a parse entity "red shoe" will fail to AsymMatch3 with

this object, it is not safe to assume that. the feature is -RED.

In this situation the. current system will poll the user. The poll for our

exam·ple entries might be:

33

,..

.

DO YOU MEAN shoe306 FOR shoe?

where shoe305 is a database referent and shoe the. LAB _slot value of the parse

entry. If uncertain about the reply, the user can use other system routines to

browse the desired database entries. A response of "no" will cause the current

DB entry to fail th~ overall maLching attempt. A positive response will cause

the program to Refine3 the appropriate vector of the DB en try with the more

specific Parse vector, and the match will succeed. Thus the database may

"learn" new information, and the referential system neither rejects nor accepts

such references arbitrarily.

This overall process is combined into DBMatch3, which resolves the

match in this manner:

DBMatch3: IF AsymMatch3 succeeds THEN DBMatch3 succeeds

ELSE
IF Match3 fails THEN DBMatch3 fails

ELSE
prompt user and react to response.

5.3 Recursive Instantiation

Now it is worthwhile to examine the implementation of the individual

procedures that handle the various quantifiers.

5.3.1 PRED

PRED searches the database entries for a successful DBMatch3 with the

main predicate. Its reaction to success or failure depends on the contents of

the parse entry's INST slot. If the latter is empty then PRE'D responds to a

successful DBMatch·3 by:

1) setting the parse entry INST slot with the index of the

matching database entry.

2) setting a success status in a parameter to be pa.seed back

to its calling procedures.

3) terminating.

34

c,

I
'

•

If the INST slot is empty and no match is found the_ response is to set a -1 in

the REAS slot, i.ndicating to the system that no database match exists, and

therefore to regard the proposition as false.

If the negative quantifier "no" occurred at the main clause level of the in

put sentence, the INST slot of the predicate entry will have been set to signal

negation. In this case, failure to find a match induces PRED to term1nate with

a success stat us. A valid DBMatch3 will in this case constitute a coun-

terexample to the negation, inducing PRED to:

1) set the index of the damning DB entry in the REAS slot, thus
0

flagging this Scope List node as a failed reference, along
with storing the counterproof for conceivable responses by
the system.

2) terminate with a fail status.

5.3.2 MOD

MOD behaves like PRED in that it seeks any ,DBMatch3 against its as

sociated predicate entry, and varies its response to a match (or lack of the

same) according to whether the INST slot initially indicates negation or not.

Its behavior differs from PRED due to the necessity of passjng on a. Scop·e List

to other procedures, the failure of which ·may force MOD to reinstantiate

against a different DB entry.

Before starting its search of the database, MOD saves the INST value in a

temporary variable.

If no match is found, MOD responds exactly like PRED.

If negation is not in effect, it will tespond to a successful D BMatch3 by:

1) putting the DB entry's index in the predicate node's INST
slot.

2) passing the tail of the Scope List to QuantSearch.
3a) If QuantSearch returns a success status, MOD will likewise

3b)
terminate successfully.
If QuantSearch returns a fail status, MOD will look in the
ARG2 slot for the pointer to the failed postmodifying
phrase's head-noun entry. It will then set the REAS slot

''

of that entry with the index of the DB predicate for
which the reference failed, and then terminate with a fail
status.

The reason for saving the failed INST value in the REAS slot of the predicates

subject in (3b) is so that when the failure propagates back to the procedure

handling the instantiation of the predicate's subject entry, that procedure may

distinguish a failure of the modifying phrase frorr1 that of an independent clause

element.

If negation is in effect, a successful D BMatch3 causes MOD to terminate

with a fail status.

5.3.3 ZERO

As a proper noun must be unique, ZERO will never reprocess once the

referent has been identified. Thus it tests its INST and REAS slots as soon as

it begins, and if it finds a valid DB index in the former and a null value for

the latter, it will immediately pass the tail of its Scope List to QuantSearch,

leaving the previous instantiation intact.

Upon a DBMatch3 success it will:·

1) set the INST slot with the DB index.
2) invoke QuantSearch, and
3) terminate, passing on whatever status it gets back from

QuantSearch.

Otherwise, if ZERO f ai.ls to find a single D BMatch3 in the database, it

terminates with a fail status and -1 set in the REAS slot.

36

• . • • .. J - ~ ,. , •.•

5.S.4 A

The procedure A will run DBMatch3 against every DB entry until a suc-

cess occurs or the entire database is traversed. In the former case, it will set

the INST slot of the Parse entry with the index to the matching DB entry and

call QuantSearch, passing it the beheaded Scope List. If QuantSearch returns a

fail status, A will continue its trek through the database trying for another

match. If QuantSearch returns a success status, A will do likewise and ter-

minate.

If the entire database is checked without a successful termination occuring,

A will set a -1 in its REAS slot, and terminate with a fail status.

5.3.5 THE

For the same reason and by the same approach as ZERO, THE will never

seek to reprocess an en.try it has successfully instantiated.

Otherwise THE seeks until it gets a successful DBMatch3, or else marks

its failure and terminates in the same way as do~s A.

Upon finding a single DBMatch·3 success, it sets its REAS slot with a .null

value and then invokes QuantSearch. If the latter returns a fail status then

THE checks the REAS slot. A null value signifies that the clause failed, caus

ing THE to pass on the fail status and terminate. A non-null REAS value in

dicates that the f~ilure was of a post modifier of the current entry. In this case

THE behaves as if the previous DBMatch3 had failed, and continues its DB

search.

This last twist in the processing functions as if, in examining the phrase,

"the man with a gun," the system finds a database object that matches "man"
'

only to realize later (when MOD fails to DBMatch3 with(man,gun)), that

37

that DB object doesn't really match "man" at all. lt continues with its DB

search from the point at which it made the "mistake."

If QuantSearch succeeds, then THE will continue its search through the

database, seeking a second match. If it fails to find one, then there is indeed

one and only one match for the "the"-quantified entry, so it terminates with a

success status. On the other hand a second match, if not discounted by a

MOD failure, will cause THE to fail. This is a failure of the uniqueness con

dition of "the" - quantification. lt is marked as such for the system through the

assignment of the index of the first DB match to the INST slot and that of the

second to the REAS slot. The system can · thereafter find the (first) two com

peting instantiations by inspection of these two slots.

5.3.6 EVERY

Should EVERY fail to· find any DBMatch3 for its entry, it will quit with

a status of 'undefined': avoiding the confusion that might be caused by a spe

cious success due to a null member set. EVERY will otherwise succeed unless

it finds an instantiation for which the remnant of the Scope List fails •.

lt will seek any DBMatch3, and having set INST, it will invoke

QuantSearch. If Qua:r:itSearch returns a fail .status, EVERY responds to a de

pendent MOD failure in the same way as does THE. A non-local failure causes

it to terminate, passing on the fail status.

Barring the return of a terminating failure from QuantSearch, EVERY will

traverse the entire database, terminating wit.h a success status so long as ~t

least on.e DBMatch3 has succeeded.

•

5.3.7 NO

NO simply calls EVERY, using ·identical parameters. This is because

negation is a universal quantification that reverses the truth value of the as-

sociated predicate. Once the parse completed processing the lexeme "no "
'

the

truth-reversal function of negation devolved to the PRED or MOD procedure,

via the · negation indicator in the predicate's INST slot. From that point the

"no"1 quantification was distinguished from that of "every" so that the correct

local dominance rules were invoked to order the Scope List, and so that any

displays or traces of the Scope List would be readily comprehensible to the

• viewer.

5.4 Updating the Database

If the highest level QuantSearch returns a success status, then every parse

entry has been instantiated as required, and the input sentence represents a fact

entered in the database. In this case the message: "That fact is known" is

displayed to the user.

A failed reference results in the message: "Input text not verified." At

present we are not storing negated predicates in the database so the referential

component will terminate at this point if the failed Scope List has a 'pred' or

'mod' node with a negative "indicator. Otherwise the procedure will query: "Do
. :

you wish to update the Database?"

processing to end.

A reply of "no" causes referential

and

An affirmative response will cause the Scope List to be traversed again,

instantiation forced.

l) The node has
2) The node has
3)_ The node was·

F·or each node one of the following cases will apply:

been successfully instantiated.
failed instantiation.
never matched against the database.

39

•
~

5.4.1 Processing an Instantiated Node

A successful instantiation is recognized by the node entry's having the in-

dex of a valid DB entry in its INST slot, and a null value in its REAS slot.

ln this case there is usually nothing more to be done: the valid INST value of

the node entry is left intact and processing advances to the next node on the

Scope List~

An exception is an instantiated node with "every"-quantification. This will

have been instantiated to the last DB match found for this entry before the.

subsequent Scope List failed. EVERY is reinvoked for this node, but with a

flag DBUpdate set to force a solution at every subsequent point of failed refer-

ence, by the means detailed in the next section.

5.4.2 Processing for a Failed Instantiation

Failure of reference is indicated by a non-null REAS value. There are

only two such failures that have to be handled. The first is caused by the

nonexistence of any matching DB entry. This is the sole cause of failure in

PRED, MOD, ZERO and A nodes, and is identified by the value of -1 in the

REAS slot. It is corrected by a procedure called AddToDB, which creates a

new database entry that mirrors the semantic and relational constraints ·of the

parse entry. AddToDB sets the new DB entry's index in the parse entry's

INST slot, and assigns the REAS slot a null value.

The second · failure is due to a multiplicity of matches for "the"

quantification. The INS.T and REAS slots of the offending parse entry will con

tain the two matches _identified. A routine called WhichOne resolves the con

flict for the current ·scope Li.st by pol1ing the user in exactly the same format

as does DBMatch3. If "the person" is the failed reference and the INST and

40

•

REAS values are 308 and 412, WhichOne may ask:

DO YOU MEAN woman308 FOR person?

An affirmative response to this question results in the approved instantiation be

ing set in the parse entry's INST slot. A negative reply will invoke the same

question for the second match:

eg: DO YOU MEAN man412 FOR person?

A second negative will cause WhichOne to begin its own database search for a

match, starting after the second refused'" index. It will make the same query
-I
'

with respect to every DB match until o~, is approved or the possibilties are ex-
"'

hausted. The latter eventuality will result in a call to AddToDB to provide a

default match.

The procedure WhichOne could prove unwieldy in a large domain of ob

jects, but we assume that use of a large domain presupposes a method of

restricting the search to some subdomain by some mechanism for focusing the

search, such as that proposed by Grosz and Sidner [5].

5.4.3 Processing an Untried Node

This situation will apply to those nodes on the Scope List subsequent that

-

at which the initial fatal reference failure occurred. These nodes are distin-...

guished by a null value in the REAS slots of the associated parse entries; and

INST slots with either null values or quantification indicators (e.g.: pred, no,

etc). The correctly quantified reference is attempted for each node. However,

if a fail status returns to the first of these nodes then AddToDB or WhichOne

as appropriate is called. Whenever · the first such node is resolved, whether nor

mally or by one of the two forcing procedures, the process begins anew for the

remainder of the Scope List until all have. been resolved.

41

Chapter 6

Conclusion

This paper presents a set of issues that a reasonably robust implemen

tation of referential semantics might be expected to be responsive to, and details

the processes by which the current implementation handles them. It describes

the exigencies of quantification following from the normal use of "every," "no,"

"a" and "the" in the interpretation of input text, along with the instantiation

of proper nouns and predicates.

Seman tic objects and predicates· are ordered for efficient reference on a

\

Scope List. The RVG natural language processing system in which the referen

tial component is embedded makes for a simple and direct process of building

the Scope List, largely due to the efficacy of ternary representation and the

straightforward ordering of actions possible in the parse. The process of match

ing parse structures with database entities takes advantage of several distinct

match operations that can apply among ternary vectors.

database information is handled by polling the user.

U nderconstr ained

Antithetical results surfaced during implementation for some procedures

which John Stevens designed, based on Colmeraurer's rules. The rules have

therefore been revised to account for local dominance in quantifier scope for

postmodifier constructions.

In using the Scope List for interpretation of an input statement a distinc

tion must be made between a reference failure local to a postmodifier phrase

and failure of an independent clause-level structure, as the former failure can be

recovered from. Finally, the system permits the addition of non-negated entries

to the database.
. ----t~ ------- --------- -· -

- ·- - --
'.\!

42
J .. -
'

I ,.

There are a number of directions for possible development of the RVG

referential component. The current implementation requires little modification

to handle questions about database objects. Yes/no questions such as "is the

block on the table" are resolvable by instantiating for "the block •
1s on the

table." WH-questions such as "where •
IS the beef?" can be handled by

DBMatch3ing "at(beef, ??)" against the database, allowing ?? to match with

anything. Reference for imperatives consists of identifying the preconditions for

the command action and producing entries that represent the result events.

The simplest extension to the scope of the current referential component

with the greatest potential impact for quantification is probably the handling of

plurals. This would effect quantification by such terms as "some," "most" and

all forms of enumeration. Other extensions presuppose other ambitious enhance

ments to the overall system. Here is a list of some of the more common quan-

.
tification types that might be added, along with system .features they depend

upon:

1) adjectives such as "many", "big", "almost all".
Interpretation of such relativistic terms presupposes

normative knowledge in the system, or processes for
deriving such knowledge. For instance: a "small elephant"
is still a "large animal," at least by human standards. See
ps 462-478 of Lyons [7].

2) pronouns.
These require a retention of discourse entries for use in

referencing, along with some form of discourse focus for
pairing pronouns to the appropriate objects; e.g.:

"Wilma gave Betty her keys."
It might be proposed as a default that a parse

should prefer to link "her" with the subject "Wilma"
unless counterindicative contextual information intervenes.
See Ritchie [9] for a treatment of context
sensitivity for constraining parse.

a) genitive quantifications.
Constructions such as 'n John's camera" can constrain the
objects applicable for ".camera" only if the system is
cognizant of such complex relatio~s as possession.

43

Certain constructions related to genitive relations

reverse our scope predictions for other prepositional

post-modifiers. Contrast these two sentences:

1) Sal knows an island in every ocean.

2) Sal knows an island with (possessing, having, etc.)

every species (of palm tree).

Our rules, derived from Col~eraurer and Stevens, predict

the~e scope readings:

ls) every(ocean) an(island) in(island,ocean) ...

2s) every(species) an(island) with(island,species) ...

(ls) seems right: for every ocean there is an island in

that ocean that Sal knows. But (2s) does not: it's not

that Sal knows a species of every island, but that there

is a particular island that he knows on which one may

find every species in question. The right scope reading

for (2) should therefore reverse the quantifier ·order of

(2s):

2s') an(island) every(species) with(island,species) ...

This new wrinkle seems to be related to a class of stative

predicates that consistently have this effect (have,

possess, contain, etc.) . If so, this distinction

could be handled by distinguishing syntactic categories

that are in turn associated with different scope list

building actions.

4) ambiguous definite reference.
The handling of multiple objects identified in text by the same

label requires that the system be able to restrict its

attention to subdomains of the database, and determine the

extent of such subdomains during discourse. Thus the correct

referent for "John" depends on any prior discourse (e.g.: we

have been discussing the Kennedy brothers) and context

(e.g.: John Stevens is the only person named John familiar to

those in dialog). As mentioned previously, Gros~ and Sidner

offer a method of appropriately partitioning the realm of

discourse objects in [6].

44

References

1. Bickerton, D. "Creole Languages". Scientific American 249 (1983),

116-122.

2. Blank, G. D. "A New Kind of Finite-State Automaton: Register Vector
Grammar". IJCAI 85: Proceedings of the Ninth International Joint Conference
on Artificial Intelligence 2 (1985), 7 49-755.

3. Blank, G.D., Solderitsch, N.
using Ternary Feature Vectors.
University.

and Stevens,J.C. Natural Language Semantics
CSEE Department, Packard Lab 19, Lehigh

4. Colmeraurer, A. An Interesting Subset of Natural Language. In Logic
Programming, Academic Press, New York, 1982, pp. 45-66.

5. Grosz, B.J. and Sidner, C.L. Discourse Structure and Proper Treatment of
Interruptions. In /JCAI 85: Proceedings of the Ninth International Joint Con
! ere nee on Artificial Intelligence, International Joint Conference on Artificial
lntelligence,2, 1985, pp. 832-839.

6. Leech, G.. Semantics. Chaucer Press, 1981.

7. Lyons, J .. An Introduction to Theoretical Linguistics. Cambridge U.niver

sity Press, 1979.

8. Rand, A.. /nt.roduction To Objectivist Epistemology. New American

Library, 1966.

9. Ritchie, G. Semantics in Parsing.
'Academic Press, 1983.

In Parsing Natural Languages,

10. Stevens, John C. Reference and Quantification in a Register Vector

)
~

Grammar Natural Language Processor. Master Th., Lehigh University,1985.

45

•

)

-------- -,_..~ ..

Vita

Bryan James Murphy, the son of Bryan James and Donna Murphy was

born on May 7, 1955 in Valparaiso, Indiana. He attended Lehigh University

and received his Bachelor of Arts Degree in Mathematics in June of 1977. He

taught high school mathematics to the junior and senior classes at Navua High

School, Fiji Islands; and was Acting Head of the Math Department there from

January of 1978 through December of 1979. He has since been employed as an

application programmer in · Bethlehem, Pa. He has been pursuing graduate level

study in Computer Science at Lehigh University on a part-time basis sinc.e 1980.

46 '

•

.. .;i

;:_9
~i.,

=-_,....

- --- ·-......

-:- ... - -...
·- '!II

.~ -!' ...

- -:a .. ' --··
- ~ 6-

.. ~.
~ . ..

...._ -. . "' -,
---. -~

...... :., .•
- -r-....... ..

' --
~ "'ftbl,.

·- 2 "·• ..
... -. --- -I

.. • ~. ~.

_,-~ ~

....._ -·- .,
:"'

~-···
..
" --. "1

·- • ·~ ···'-
• ~ f

--· ,
• ·---- •

-' .. -- I

411 .._ ... •
• -- I

• - .:
.. - ..

--
-

~l .•
' '\" ... "'

' .
~

-· ••

--

'
• ·.~

..
'"'

..
•
• •

...
., ..•

~-
•

Vita

13.ryan J .. am:e,$. "ivfurph.y, the son of Bryan .Jam~~: and- D·on·na Murphy was.

born ,on: },·Jay 7,. 1il5:::S: in Valparaiso, lndi·a.tra. .He att~ntled .Le.hjgf! University

and receive.cl: h1s B<:1chelor· of Arts Degree in Mat.hemattcs in: June. 9f .19'7.7. H·e

taught high sch:ool m·athematics to th·e junior and· sen:lor class.e.s ,a.t. Navua High

School, :Fiji Island:s::· and: was, Ac.ting. Head of tb:e- .. Math: ::P_ep~.rtrnent .there from

application ptogtalilm~.r·, in Beth.leh_em, Pa. :H-t~ :has been p·ursuing gr~duate level

st.u-d.y irt CornputJ~T :.Stienc~ at Le.hig_h :·universi.ty :Oil :a: p,art,;;tirn.e 'b~sis :Since 1980.

4.6

. .

	Lehigh University
	Lehigh Preserve
	1986

	Referential semantics for a register vector grammar natural language processing system /
	Brian J. Murphy
	Recommended Citation

	tmp.1551116526.pdf.3DMzy

