
Lehigh University
Lehigh Preserve

Theses and Dissertations

1986

LPARSER, an LL (1) parser generator /
James A. Femister
Lehigh University

Follow this and additional works at: https://preserve.lehigh.edu/etd

Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Femister, James A., "LPARSER, an LL (1) parser generator /" (1986). Theses and Dissertations. 4678.
https://preserve.lehigh.edu/etd/4678

https://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F4678&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F4678&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F4678&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=preserve.lehigh.edu%2Fetd%2F4678&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd/4678?utm_source=preserve.lehigh.edu%2Fetd%2F4678&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

LPARSER: AN LL(l) PARSER GENERATOR

by

James A. Femister

A Thesis

Presented to the Graduate Committee

of Lehigh University

in Candidacy for the Degree of

Master of Science

• in

Computer Science

Lehigh University

1986

. .

' l

This thesis is accepted and approved in partial
fulfillment of the requirements for the degree of Master
of Science.

Professor

CS Division

~c of CSEE Department

•

' ' - ll -

ABSTRACT

INTRODUCTION

Table of Contents

LL(l) VS LR(l) PARSING

DESCRIPTION OF PARSER GENERATOR

Page

1

2

2

FUNCTIONAL 4

Overview 4

Format of the Language Description File 4

Using Semantic Actions 7

Resolution of Conflicts 8

IMPLEMENTATION 10

Data Structures 10

Director Set Generation 12

Error Reporting 15

Insert File/Table Description 15

APPLICATIONS 22

COMPARISON WITH YACC 25

FUTURE WORK 26

REFERENCES 27

VITA 28

I I I

- lll -

)

Abstract

LPARSER, an LL(l) based parser generation system

developed by the author and implemented in Turbo Pascal

is discussed. Functional details and some implementation

details are given. The system consists of a table

generator and a skeleton parser (along with a lexical

analyzer). The table generator reads in a grammar

description from a text file and creates several files

that are compiled along with the skeleton parser.

Several aspects of LL(l) and LR(l) parsing are also

discussed. LPARSER is compared with YACC, an LALR(l)

based parser generator. An application of the system (an

expression evaluator) is demonstrated.

- 1 -

Introduction

Considerable work has been done in the area of

automatic, table driven parser generation. Most of this

work has concentrated on LR(l) parsing techniques. LL(l)

parsing, although not as widely used, has several

advantages over LR techniques. LPARSER is an LL(l) based

parser generator that can be used for many different

applications. It is implemented in Turbo Pascal and

provides a self contained parser generation system.

LL(l) vs LR(l) Parsing

The primary reason that LR(l) parsing has received

so much attention by researchers is that a larger set of

languages can be defined by LR grammars than by LL

grammars. It has· been proven that the set of LL

languages (languages that can be defined by an LL(k)

grammar for any k > 0) is a proper subset of the set of

LR languages [1]. LR parsers tend to need very large

parsing tables and much of the research has been involved

with reducing table size. This has led to the

development of SLR (Simple LR) and LALR (Look Ahead LR)

grammars, which are both subsets of LR but require

smaller parsing tables. LL parsers require relatively

- 2 -
' I

I

small tables that are easy to generate. The maximum

number of entries in an LL(l) parse table is V x T where

Vis the total number of symbols in the grammar and Tis

.

the number of terminal symbols (~okens). The tables are

typically sparse. Several trials yielded load factors

ranging from 8% to 22%.

It has been argued that the power available in LR

parsing techniques is unnecessary and that language

features that require non-LL(l) constructs tend to

produce grammars that are difficult to comprehend [9].

- 3 -

Functional Description

Overview

The LPARSER system consists of two programs: an

LL(l) table generator and a skeleton parser (which

includes a built in lexical analyzer), both written in

Turbo Pascal. The table generator reads in an ASCII text

file that contains a language definition and generates

several files that contain tables and executable Pascal

code. These files are automatically included in the

source code of the skeleton parser when it is compiled.

The resulting executable program can read a file (or

computer keyboard) containing a sentence in the given

language, parse it, and perform any semantic actions

specified in the language definition. If the parser

encounters an error it will display an appropriate error

message and then halt.

Format of the Language Description File

There are five sections to the language description

file:

- Terminal Symbol Declaration

- Nonterminal Symbol Declaration

- Start Symbol Declaration

- 4 -

- Additional Code Declaration

- Productions

Each section starts with a keyword of the form %xxxxx and

must appear in the order listed above. Tokens are case

sensitive. Tokens may be any length, but only the first

twenty characters are significant. Text may be entered

free format as long as identifiers are separated by at

least one white space character (blank, tab, carriage

return). Any text enclosed by the symbols (*and*) is

considered a comment and is ignored. Comments may appear

anywhere that white space is allowed.

Terminal Declaration

This section is used to declare names for terminal

symbols that will be used in the productions. The only

terminal symbols that have to be declared here are those

that cannot be represented by a literal string, (i.e.

identifier, integer, etc.). In some cases, it may be

desirable to assign a name to a terminal or set of

terminals that can by represented by a literal string.

For example, the arithmetic operators, +, -, *,and/

could each be treated as separate literal symbols or

could by given a name, such as arithoper, that would be

returned by the lexical analyzer along with a value that

would indicate which of the four symbols was read. The

- 5 -

symbol arithoper would then have to be declared in this

section. Also, long literals could be assigned shorter

names.

Nonterminal Symbol Declarations

All nonterminal symbols must be listed here. This

is mainly to enable checks for misspelled symbols in the
')

_,

productions.

Start Symbol Declaration

The start symbol for the grammar is listed here.

If this section is missing the first nonterminal listed

in the above section is assumed to be the start symbol.
r

Additional Code Declaration

Any declarations (variables, constants, procedures,

etc.) that are needed by the action routines are listed

here enclosed by braces. All text between the braces

will be copied verbatim into an insert file that will be

included in the skeleton parser.

Productions

The productions of the grammar are listed here.

Although all nonterminals must be declared above, literal

terminals may be used freely by enclosing them in double

- 6 -

•

quotes. The code for semantic actions is enclosed by

braces and may be included anywhere within the right hand

side of a production. To help minimize typing, multiple

productions that have the same nonterminal on the left

hand side (lhs) can be combined into a single compound

production with vertical bars separating the different

right hand sides (rhs).

Using Semantic Actions

Although LPARSER could be used to generate a parser

that has no semantic actions associated with its

productions, it could do little but decide whether a

given input is generable by the given grammar. Most

parsers must build and maintain symbol tables and other

structures and in the case of a compiler, generate some

sort of code. All of these tasks are accomplished by

interspersing semantic actions within the grammar

productions. Every production in an LPARSER grammar may

have a semantic action assigned to it by placing the

action code between braces and inserting it before the

first symbol of the rhs of the production. Whenever the

production is expanded by the parser its semantic action

code is executed first before the parse stack is

updated. Semantic actions that appear between symbols or

at the end of the production are handled by creating a

- 7 -

•

new, unique, nonterminal symbol called an action symbol

and a new production for each such action. The

.

·production is always a null production with the action

symbol on the lhs. The action symbol is then inserted in

the original production in place of the semantic action

which is then associated with the new production.

Whenever the action symbol gets to the top of the parse

stack it is always expanded by the null production after

its semantic action is executed, effectively removing it

from the stack. If a semantic stack is needed during the

parse, it must be declared along with any supporting

procedures in the Additional Code Declaration section and

maintained through semantic action code.

Resolution of Conflicts

If the grammar that is input to LPARSER is truly

LL(l) then each entry in the parse table it generates

will be uniquely defined. If it is not LL(l) then one or

more elements of the table will contain expand actions

that reference more than one production. LPARSER uses a

simple rule to decide between two conflicting

productions; the production which appears first in the

grammar definition file will always be selected for

expansion. By carefully selecting the order of the

productions in the file the grammar writer can resolve

- 8 -

ambiguities in the most logical manner. A classical

example of grammatical ambiguity is the dangling else

problem [2]. As an example of this problem, consider the

grammar in Fig 1 and the program fragments in Fig 2.

statement::= IF condition THEN statement elsepart I

other statement

elsepart ::= ELSE statement I -

IF conditionl THEN

IF condition2 THEN

statementl

ELSE

statement2

(a)

Fig 1.

Fig 2.

IF conditionl THEN

IF condition2 THEN

statementl

ELSE

statement2

(b)

The problem arises when trying to expand the symbol

elsepart when the current input symbol is ELSE. Since

ELSE is in both FIRST(elsepart) and FOLLOW(elsepart) and

elsepart is nullable, either of the two expansions is

valid. By defining the elsepart production as shown in

Fig 1 with the "ELSE statement" clause listed first, the

ELSE in a compound IF statement will always be associated

- 9 -

with the innermost IF as indicated in Fig 2a. This is

the desired association in almost all current programming

languages. Switching the order of the two clauses in the

elseif production will cause the ELSE to be associated

with the outermost IF, as shown in Fig 2b.

LPARSER will always generate a parse table by

resolving all conflicts that arise regardless of how many

conflicts are present in the grammar.

Implementation Description

Data Structures

The most basic data type that is manipulated by the

system is the symbol, which is represented in LPARSER by

a Turbo Pascal char. This limits the number of symbols

in a grammar to 256 but allows the use of the Turbo

Pascal string type to represent strings of grammar

symbols. The built in string manipulation capabilities

of Turbo Pascal (concatenation, string copying, etc.) are

used extensively. The LPARSER table generator could be

modified to represent symbols with integers and implement

string manipulation facilities with user defined

procedures. This would increase the maximum number of

symbols allowed in a grammar to 32767.

- 10 -

•

The two main data structures that are used by the

table generator are the production table and the symbol

table. The symbol table has an entry for every symbol in

the input grammar. The internal value of a symbol is its

index into the symbol table (which has an index type of

char).

Two fields are defined in the symbol table:

1. symbol name - a twenty character string

2. symbol type - terminal, nonterminal, or null (the

lambda symbol is neither a terminal or non

terminal)

The production table is an array of records, each of

which has three fields:

1. lhs - the single nonterminal on the lhs of the

production

2. rhs - a twenty symbol string representing the rhs

of the production

3. rhsset - a set of symbols that contains the same

symbols as rhs. Although this field is redundant,

it helps to speed up operations that are set

oriented (e.g. checking to see if a certain symbol

is present in the rhs of a production)

- 11 -

Director Set Generation

LPARSER calculates the FIRST set for each symbol of

the grammar and the FOLLOW set for each nonterminal to be

used later in generating the LL(l) parse table and other

supporting tables. It first calculates the set of

nullable nonterminals, which is used in the FIRST set

calculation.

A standard bottom up algorithm, illustrated in Fig

3, is used to find the set of nullable nonterminals [3].

This algorithm, like th€ others that follow it, is

written in Pascal-like pseudo code. The algorithm

repeatedly scans through the list of productions. When a

production is found that has a rhs composed entirely of

already discovered nullable nonterminals (or is empty)

the lhs of the production is added to the list of

nullable ·nonterminals. The algorithm halts when no new

symbols are added to the set during a complete scan of

the productions.

An efficient two step algorithm is used for

computing the FIRST and FOLLOW sets [4]. The algorithm

uses a relation matrix with the rows and columns

representing grammar symbols. The matrix is implemented

as an array of sets (of 0 .. 255). Each set represents a

row in the matrix with 256 binary elements, providing a

very compact Pascal implementation. The transitive

- 12 -

closure algorithm used in the FIRST and FOLLOW set

computation is a variation of Warshall's algorithm [5]

that ORs entire rows of the matrix together [6]. This

'method has the advantage of exploiting the low level

parallelism of the OR operation on most modern cpus.

ORing two rows together is implemented in Pascal by

performing a set union on the two sets that represent the

rows. This is a built-in Turbo Pascal operation which

executes quickly.

The algorithm for computing FIRST sets is shown in

Fig 4. First, the boolean relation matrix, R, is

initialized to false; certain entries are set to true;

and then a transitive closure is done on the entire

matrix. The FIRST set for a nonterminal Sis found by

scanning row S of the matrix R for true values in the

terminal symbol columns. If Sis nullable, then lambda

should be added to its FIRST set.

The algorithm for computing FOLLOW sets is similar

to the one for FIRST sets. The FOLLOW set algorithm uses

the FIRST sets to set entries in the relation matrix.

- 13 -

nullable := []
number of scans := 0
repeat

..

old nullable := nullable -for each production
if rhs of production<= old nullable then

nullable := nullable + [Ths of production]
number of scans := number of scans+ 1;

until old-nullable = nullable or
number of scans= number of nonterminals

Fig 3 - Algorithm for Finding Nullable Nonterminals

initialize R to false
for each production p

i : = 1
continue := true
while i <= length(p.rhs) and continue

R[lhs, rhs[i]] := true
if rhs[i] is not nullable then

continue := false
i := i + 1

compute transitive closure of R

Fig 4 - Algorithm for Calculating FIRST Sets

initialize R to false
R[start symbol, lambda] := true
for each production p

for i := 1 to length(p.rhs) do
if rhs[i] is a nonterminal then

F := first(substr(rhs[i+l] .. rhs[length(rhs)]))
for all terminal symbols, s

ifs in F then
R[rhs[i], s] := true

if lambda in F then
R[rhs[k], lhs] := true

compute transitive closure of R

Fig 5 - Algorithm for Calculating FOLLOW Sets

- 14 -

.,

(

Error Reporting

The LPARSER system uses a simple table driven

method for reporting errors encountered during a parse.

When the parser encounters an error entry in the parsing

('table it cal 1 s an error routine and passes it the symbol

on top of the stack and the current input symbol. The

top of stack symbol is used to index a table that

contains a list of all the possible input symbols that

could legally appear at that point in the parse. The

error routine then generates a message of the form:

Error at linen
Expected Sl S2 S3 ... Sn
But found inp

where n, the current line number, is supplied by the

lexical analyzer; Sl to Sn are the expected input symbols

taken from the table; and inp is the actual current input

symbol. While this method of error reporting does not

provide an explanatory message tailored to each error, it

has the advantage of bei11g automatically generated from

the grammar. Therefore, the grammar writer does not have

to anticipate all errors that may occur, or run the risk

of having some errors not handled at all [3].

Insert File/Table Description

LPARSER reads in a grammar file and generates seven

insert files containing declarations, data tables, and

- 15 -

executable code. The first five files are used by the

I
parser and the last two are used by the lexical analyzer.

DECL.INS is the simplest of the insert files. It

is a verbatim copy of the Additional Code Declaration

section of the grammar input file. It is inserted in the

declaration section of the skeleton parser and provides a

means for the implementer to declare constants,

variables, and procedures that will be used by the

semantic actions. Any legal Turbo Pascal declaration

code can be included here as long as no identifier name

conflicts arise with the skeleton parser or lexical

analyzer code.

The LL(l) parse table is contained in the file

PARSETAB.INS (Fig 6). The table is implemented as a

matrix of records. Each record contains an action field

with one of four actions (pop stack, expand production,

accept, error) and a production number that is only used

with the expand production action. The array declaration

is included in the insert file rather than the skeleton
\

parser because its dimensions are determined by the

grammar file. Comments marking the rows and columns with

the symbols they represent are included for debugging

purposes.

When the parser encounters an 'expand production'

action it pops the top symbol from the parse stack and

- 16 -

pushes the rhs of the specified production onto the

stack. An array containing the rhs of each production is

contained in the file PRODTAB.INS (Fig 7). Each element

of the array is a string; each character in the string

has the internal value of one of the symbols in the

grammar. The symbolic equivalents of each production are

included as comments. Before the stack is altered, any

semantic actions for the production are executed. All

semantic actions are contained in a case statement in the

file ACTIONS.INS (Fig 8). The case statement is indexed

by production numbers, each case containing the semantic

action code for that production.

The table used by the error reporting routine is

contained in the file ERRORTAB.INS (Fig 9). Each symbol

in the grammar is assigned an element in the table which

contains a string of grammar symbols. The string is made

up of all the terminal symbols that are valid input

symbols when the given symbol is on top of the parse

stack. For a terminal symbol the string will only

contain itself. For nonterminals the string will contain

all the nonterminal's FIRST symbols and, if lambda is one

of the FIRST symbols, it will contain all of the

nonterminal's FOLLOW symbols also.

- 17 -

The lexical analyzer that is included in the

skeleton parse~hires certain constants that are

derived from the input grammar. The constants are

contained in the file CONSTS.INS. These constants

include internal symbol values for special symbols (such

as integers and identifiers) and array limits. The file

LEXVALS.INS contains a lookup table of reserved symbols

that is used by the lexical analyzer.

- 18 -

const
maxparse - 20;

type
parse_table_type - array[l .• maxparse,0 .. 8] of

record

const

act:char;
prodno:integer

end;

m: parse_table_type =(
(* # Row *)
(
(act: 'A' ; prodno: 0) ,
(act: 'E'; prodno:0) ,
(act: 'E'; prodno:O) ,
(act:'E'; prodno:0) ,
(act: 'E' ; prodno: 0) ,
(act: 'E' ; prodno: 0) ,
(act:'E'; prodno:O) ,
(act: 'E'; prodno:O }
) ,
(* ; Row*)
(
(act: 'E'; prodno:0) ,
(act: 'E'; prodno:O) ,
(act: 'E'; prodno:O) ,
(act:'E'; prodno:O } ,
(act: 'E' ; prodno: 0 } ,
(act: 'E' ; prodno: 0 } ,
(act:'E'; prodno:0 } ,
(act: 'E'; prodno:O)

(* # *)
(*integer*)
(* (*)
(*) *)
(* + *)
(* - *)
(* * *)

(* / *)

(* # *)
(*integer*)
(* (*)
(*) *)
(* + *)
(* - *)
(* * *)

(* / *)
)

Fig 6 - LL(l) Parse Table - PARSETAB.INS

canst
maxprod - 15;

type
prod_table type= array[O .. maxprod] of string[15] ;·

canst
prod_table: prod_table_type -

(
(* 0 START ::=PROGRAM#*)
#1#18,
(* 1 PROGRAM::= EXPRESSION; ACTl *)
#20#2#14,
(* 2 ACTl ::= *)
I I

)
Fig 7 - Production Table - PRODTAB.INS

- 19 -

case prodno of O:;
1:begin

sp := 0; isp := 0
"end;

2:begin writeln(istk[isp]) end;
9:begin

op:= pop;
opl := istk[isp-1];
op2 := istk[isp];
case op of

'+' : op3 := opl + op2;
' - ' : op3 : = opl - op2;
'*' : op3 := opl * op2;
'/' :op3:=opldivop2;

end;
isp := isp - 1;
istk[isp] := op3;

end;
10:begin

isp := isp + 1; istk[isp] := value;
end;

12:begin push('+') end;
13:begin push('-') end;
14:begin push('*') end;
15:begin push('/') end;
end;

Fig 8 - Action Case Statement - ACTIONS.INS

canst
maxerr = 20;

type
errtabtype = array[O .. maxerr] of string[lO];

canst
errtab : errtabtype =

(
' '

' #1,
#2,
#9,
#3#4,
#3#4,
#3#4,
#2#5#6#7#8#9,
#3#4,
#2#5#6#7#8#9,
#1
) ;

Fig 9 - Error Table - ERRORTAB.INS

- 20 -

'

canst
POUND - 1;
START - 10;
!DENT - -11;
INTEGERl = 3;
NUMTERM = 9;

Fig 10 - Index Constants - CONSTS.INS

canst
maxlex = 9;

type
keywdtabletype = array[O .. maxlex] of string30;

canst
keywdtable : keywdtabletype =

(I I f

I # I f

I • I

' ' 'integer',
I (I f

') ' '
I + I

' ' '
' * '
' I '
) ;

'
'

Fig 11 - Lexical Values - LEXVALS.INS

r

- 21 -

Applications

The LPARSER system provides a general parsing

facility that can be used in a variety of situations.

Possible applications are : the front end of a compiler

or interpreter, a calculator program, or a source code

formatter. Fig 12 shows the grammar definition file for

an expression evaluator that will read in .an arithmetic

expression followed by a semicolon and display its

numerical value. It should serve as a simple but

concrete example of how a grammar input file is actually

written.

The tokens used by the expression grammar are:

integers, the arithmetic operators+ - * /, parentheses

and the semicolon. Except for the integers, all of these

symbols can by represented in the productions by literal

strings and therefore do not have to be listed in the

terminal declaration section. All the nonterminals used

in the productions are listed in the nonterminal

declaration section. The symbol ACT is not part of the

expression grammar itself but is used as a semantic

action symbol. All other semantic actions are inserted

directly in the productions. The symbol ACT is

explicitly declared and used in several places in the

grammar to avoid duplicating its associated semantic

- 22 -

(* Expression Evaluator Grammar Definition*)

%terminals integer;

%nonterminals
FACTOR TERM TERMTAIL EXPRESSIClf EXPTAIL ADDOP MULOP
PROGRAM ACT;

%start PROGRAM

%declarations
(

}

type

stringlO - string[lO];

var

stk: array[l .. 20] of char;
isp, sp: integer;
istk : array[l .. 20] of integer;
op: char;
opl, op2, op3 : integer;

procedure push(s:stringlO);

begin
sp := sp + 1;
s tk [s p] : = s;

end;

function pop:stringlO;

begin
pop:= stk[sp];
sp := sp - 1;

end;

Fig 12 - Calculator Grammar File
(hontinued on next page)

- 23 -

%productions

PROGRAM::= (sp := 0; isp := 0) EXPRESSION';' (
writeln(istk[isp])) ;

EXPRESSION::= TERM EXPTAIL;

EXPTAIL ::= ADDOP TERM ACT EXPTAIL

TERM::= FACTOR TERMTAIL;

•
I

TERMTAIL ::= MULOP FACTOR ACT TERMTAIL I

ACT::=
(

op • = pop; •

opl . = istk [isp-1]; •

op2 • = istk[isp]; •

case op of
I + I • op3 . = opl + op2; • •
I ' • op3 . = opl op2; - -• •
I * I • op3 . = opl * op2; • •
I / I • op3 . - opl div op2; • •

end;
I .

1; lSp • = lSp -•

istk[isp] • = op3; •
) • I

FACTOR • • = • •

ADDOP •• = • •

MULOP ::=

$END

(
. . 1; istk[isp] 1Sp • = lSp + •

integer I ' (' EXPRESSION

(push (' + ')) I + I I
(push (' - ') } I _ I •

I

(push (' * '))
(push (' / '))

I * I

I / I ;

Fig 12

- 24 -

• = •
I) I

•
I

value;)

•
I

\

action code.

The declarations section of the file is used to

declare the variables and procedures that are needed to

implement a pushdown stack for evaluating expressions.

Similar code could be used to implement a semantic stack

in a compiler front end.

Comparison With YACC

One of the best known and most widely used parser

generators in existence is YACC, written by Steve Johnson

at Bell Laboratories [7]. It reads in grammar

description files similar to those used by LPARSER and

generates LALR(l) parsers written in C.

Semantic actions in YACC are used the same way as

they are in LPARSER with one main exception. Due to the

bottom up nature of LALR parsing it is possible to

automatically maintain a semantic stack that runs in

parallel with the parse stack. Semantic actions in YACC

can directly access and modify this semantic stack. The

top down parsing mechanism of LPARSER requires that the

implementer declare and maintain his own semantic stack

which grows and shrinks independent of the parse stack.

The LPARSER system includes a lexical analyzer that

can be modified by the user. YACC comes without a

- 25 -

lexical analyzer but is designed to be used in

conjunction with LEX, a lexical analyzer generator [10].

Future Work

Work is currently being done to extend LPARSER in

several directions. One extension is to increase the

maximum number of symbols allowed in an input grammar in

order to accommodate compiler front ends for languages

like Pascal or Modula-2. The current limit of 256

symbols is sufficient for defining the syntax of these

languages but is too small to accommodate the large

number of action symbols that are needed to perform

semantic analysis and code generation.

Another extension is the implementation of a table

driven error correction and recovery mechanism [3,8].

When confronted with a parsing error the parser will

repair the error by deleting symbols from and adding

symbols to the input string. Which symbols to add and

delete is determined by calculating a least cost function

based on a set of terminal symbol costs assigned by the

parser designer.

The source code for the implementation of LPARSER

is on file with Professor Samuel L. Gulden, Dept of

C.S.E.E., Lehigh University.

- 26 -

References

[1] Aho, A.V. and J.D. Ullman. The Theory of Parsing,
Translation and Compiling, Vol 2:Compiling, Prentice
Hall, Englewood Cliffs, N.J., 1973.

[2] Aho, A.V., R. Sethi, and J.D. Ullman. Compilers -
Principles, Techniques, and Tools, Addison-Wesley,
Reading, Mass., 1986.

[3] Tremblay, J.-P. and P.G. Sorenson. The Theory and
Practice of Compiler Writing, McGraw-Hill, New York,
N.Y., 1985

[4] Gulden, S.L. Personal communication, 1986.

"'· [5] Warshall, S. "A Theorem on Boolean Matrices," J.
~.

ACM , 9 (19 6 2) , pp . 11-12 .

[6] Reingold, E.M., J. Nievergelt, and N. Deo.
Combinatorial Algorithms - Theory and Practice,
Prentice-Hall, Englewood Cliffs, N.J., 1977.

[7] Johnson, S. C. "Yacc - Yet Another Campi ler- ~
Compiler," Computing Science Technical Report #32,
AT&T Bell Laboratories, Murray Hill, N.J., 1978.

[8] Fischer, C.N., D.R. Milton, and S.B. Quiring.
"Efficient LL(l) Error Correction and Recovery Using
Only Insertions," ACTA INFORMATICA, Vol 13, No. 2,
February 1980, pp. 141-154.

[9] Machanick, P. "Are LR Parsers Too Powerful?,"
SIGPLAN NOTICES, Vol 21, No. 6, June 1986, pp. 35-
40.

[10] Lesk, M.E. "Lex - a lexical analyzer generator,"
Computing Science Technical Report #39, AT&T Bell
Laboratories, Murray Hill, N.J., 1975.

- 27 -

•

Vita

James A. Femister was born on September 24, 1959, in

Newark, N.J. to James and Dolores Femister. He earned a

BS in Computing Science from Lehigh University in 1981

and worked as a research assistant at the University of

Illinois Urbana-Champaign from 1981-82. Before returning

to Lehigh in 1985 he worked in New York City as a

consultant for Business Logic, Inc., a computer

consulting firm.

~I

- 28 -

,

	Lehigh University
	Lehigh Preserve
	1986

	LPARSER, an LL (1) parser generator /
	James A. Femister
	Recommended Citation

	tmp.1551116526.pdf.EbxNV

