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Abstract 

LPARSER, an LL(l) based parser generation system 

developed by the author and implemented in Turbo Pascal 

is discussed. Functional details and some implementation 

details are given. The system consists of a table 

generator and a skeleton parser (along with a lexical 

analyzer). The table generator reads in a grammar 

description from a text file and creates several files 

that are compiled along with the skeleton parser. 

Several aspects of LL(l) and LR(l) parsing are also 

discussed. LPARSER is compared with YACC, an LALR(l) 

based parser generator. An application of the system (an 

expression evaluator) is demonstrated. 
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Introduction 

Considerable work has been done in the area of 

automatic, table driven parser generation. Most of this 

work has concentrated on LR(l) parsing techniques. LL(l) 

parsing, although not as widely used, has several 

advantages over LR techniques. LPARSER is an LL(l) based 

parser generator that can be used for many different 

applications. It is implemented in Turbo Pascal and 

provides a self contained parser generation system. 

LL(l) vs LR(l) Parsing 

The primary reason that LR(l) parsing has received 

so much attention by researchers is that a larger set of 

languages can be defined by LR grammars than by LL 

grammars. It has· been proven that the set of LL 

languages (languages that can be defined by an LL(k) 

grammar for any k > 0) is a proper subset of the set of 

LR languages [1]. LR parsers tend to need very large 

parsing tables and much of the research has been involved 

with reducing table size. This has led to the 

development of SLR (Simple LR) and LALR (Look Ahead LR) 

grammars, which are both subsets of LR but require 

smaller parsing tables. LL parsers require relatively 
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small tables that are easy to generate. The maximum 

number of entries in an LL(l) parse table is V x T where 

Vis the total number of symbols in the grammar and Tis 

. 

the number of terminal symbols (~okens). The tables are 

typically sparse. Several trials yielded load factors 

ranging from 8% to 22%. 

It has been argued that the power available in LR 

parsing techniques is unnecessary and that language 

features that require non-LL(l) constructs tend to 

produce grammars that are difficult to comprehend [9]. 
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Functional Description 

Overview 

The LPARSER system consists of two programs: an 

LL(l) table generator and a skeleton parser (which 

includes a built in lexical analyzer), both written in 

Turbo Pascal. The table generator reads in an ASCII text 

file that contains a language definition and generates 

several files that contain tables and executable Pascal 

code. These files are automatically included in the 

source code of the skeleton parser when it is compiled. 

The resulting executable program can read a file (or 

computer keyboard) containing a sentence in the given 

language, parse it, and perform any semantic actions 

specified in the language definition. If the parser 

encounters an error it will display an appropriate error 

message and then halt. 

Format of the Language Description File 

There are five sections to the language description 

file: 

- Terminal Symbol Declaration 

- Nonterminal Symbol Declaration 

- Start Symbol Declaration 
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- Additional Code Declaration 

- Productions 

Each section starts with a keyword of the form %xxxxx and 

must appear in the order listed above. Tokens are case 

sensitive. Tokens may be any length, but only the first 

twenty characters are significant. Text may be entered 

free format as long as identifiers are separated by at 

least one white space character (blank, tab, carriage 

return). Any text enclosed by the symbols (*and*) is 

considered a comment and is ignored. Comments may appear 

anywhere that white space is allowed. 

Terminal Declaration 

This section is used to declare names for terminal 

symbols that will be used in the productions. The only 

terminal symbols that have to be declared here are those 

that cannot be represented by a literal string, (i.e. 

identifier, integer, etc.). In some cases, it may be 

desirable to assign a name to a terminal or set of 

terminals that can by represented by a literal string. 

For example, the arithmetic operators, +, -, *,and/ 

could each be treated as separate literal symbols or 

could by given a name, such as arithoper, that would be 

returned by the lexical analyzer along with a value that 

would indicate which of the four symbols was read. The 
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symbol arithoper would then have to be declared in this 

section. Also, long literals could be assigned shorter 

names. 

Nonterminal Symbol Declarations 

All nonterminal symbols must be listed here. This 

is mainly to enable checks for misspelled symbols in the 
' ) 

_, 

productions. 

Start Symbol Declaration 

The start symbol for the grammar is listed here. 

If this section is missing the first nonterminal listed 

in the above section is assumed to be the start symbol. 
r 

Additional Code Declaration 

Any declarations (variables, constants, procedures, 

etc.) that are needed by the action routines are listed 

here enclosed by braces. All text between the braces 

will be copied verbatim into an insert file that will be 

included in the skeleton parser. 

Productions 

The productions of the grammar are listed here. 

Although all nonterminals must be declared above, literal 

terminals may be used freely by enclosing them in double 
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quotes. The code for semantic actions is enclosed by 

braces and may be included anywhere within the right hand 

side of a production. To help minimize typing, multiple 

productions that have the same nonterminal on the left 

hand side (lhs) can be combined into a single compound 

production with vertical bars separating the different 

right hand sides (rhs). 

Using Semantic Actions 

Although LPARSER could be used to generate a parser 

that has no semantic actions associated with its 

productions, it could do little but decide whether a 

given input is generable by the given grammar. Most 

parsers must build and maintain symbol tables and other 

structures and in the case of a compiler, generate some 

sort of code. All of these tasks are accomplished by 

interspersing semantic actions within the grammar 

productions. Every production in an LPARSER grammar may 

have a semantic action assigned to it by placing the 

action code between braces and inserting it before the 

first symbol of the rhs of the production. Whenever the 

production is expanded by the parser its semantic action 

code is executed first before the parse stack is 

updated. Semantic actions that appear between symbols or 

at the end of the production are handled by creating a 
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new, unique, nonterminal symbol called an action symbol 

and a new production for each such action. The 

. 

·production is always a null production with the action 

symbol on the lhs. The action symbol is then inserted in 

the original production in place of the semantic action 

which is then associated with the new production. 

Whenever the action symbol gets to the top of the parse 

stack it is always expanded by the null production after 

its semantic action is executed, effectively removing it 

from the stack. If a semantic stack is needed during the 

parse, it must be declared along with any supporting 

procedures in the Additional Code Declaration section and 

maintained through semantic action code. 

Resolution of Conflicts 

If the grammar that is input to LPARSER is truly 

LL(l) then each entry in the parse table it generates 

will be uniquely defined. If it is not LL(l) then one or 

more elements of the table will contain expand actions 

that reference more than one production. LPARSER uses a 

simple rule to decide between two conflicting 

productions; the production which appears first in the 

grammar definition file will always be selected for 

expansion. By carefully selecting the order of the 

productions in the file the grammar writer can resolve 
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ambiguities in the most logical manner. A classical 

example of grammatical ambiguity is the dangling else 

problem [2]. As an example of this problem, consider the 

grammar in Fig 1 and the program fragments in Fig 2. 

statement::= IF condition THEN statement elsepart I 

other statement 

elsepart ::= ELSE statement I -

IF conditionl THEN 

IF condition2 THEN 

statementl 

ELSE 

statement2 

(a) 

Fig 1. 

Fig 2. 

IF conditionl THEN 

IF condition2 THEN 

statementl 

ELSE 

statement2 

( b) 

The problem arises when trying to expand the symbol 

elsepart when the current input symbol is ELSE. Since 

ELSE is in both FIRST(elsepart) and FOLLOW(elsepart) and 

elsepart is nullable, either of the two expansions is 

valid. By defining the elsepart production as shown in 

Fig 1 with the "ELSE statement" clause listed first, the 

ELSE in a compound IF statement will always be associated 
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with the innermost IF as indicated in Fig 2a. This is 

the desired association in almost all current programming 

languages. Switching the order of the two clauses in the 

elseif production will cause the ELSE to be associated 

with the outermost IF, as shown in Fig 2b. 

LPARSER will always generate a parse table by 

resolving all conflicts that arise regardless of how many 

conflicts are present in the grammar. 

Implementation Description 

Data Structures 

The most basic data type that is manipulated by the 

system is the symbol, which is represented in LPARSER by 

a Turbo Pascal char. This limits the number of symbols 

in a grammar to 256 but allows the use of the Turbo 

Pascal string type to represent strings of grammar 

symbols. The built in string manipulation capabilities 

of Turbo Pascal (concatenation, string copying, etc.) are 

used extensively. The LPARSER table generator could be 

modified to represent symbols with integers and implement 

string manipulation facilities with user defined 

procedures. This would increase the maximum number of 

symbols allowed in a grammar to 32767. 
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The two main data structures that are used by the 

table generator are the production table and the symbol 

table. The symbol table has an entry for every symbol in 

the input grammar. The internal value of a symbol is its 

index into the symbol table (which has an index type of 

char). 

Two fields are defined in the symbol table: 

1. symbol name - a twenty character string 

2. symbol type - terminal, nonterminal, or null (the 

lambda symbol is neither a terminal or non 

terminal) 

The production table is an array of records, each of 

which has three fields: 

1. lhs - the single nonterminal on the lhs of the 

production 

2. rhs - a twenty symbol string representing the rhs 

of the production 

3. rhsset - a set of symbols that contains the same 

symbols as rhs. Although this field is redundant, 

it helps to speed up operations that are set 

oriented (e.g. checking to see if a certain symbol 

is present in the rhs of a production) 
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Director Set Generation 

LPARSER calculates the FIRST set for each symbol of 

the grammar and the FOLLOW set for each nonterminal to be 

used later in generating the LL(l) parse table and other 

supporting tables. It first calculates the set of 

nullable nonterminals, which is used in the FIRST set 

calculation. 

A standard bottom up algorithm, illustrated in Fig 

3, is used to find the set of nullable nonterminals [3]. 

This algorithm, like th€ others that follow it, is 

written in Pascal-like pseudo code. The algorithm 

repeatedly scans through the list of productions. When a 

production is found that has a rhs composed entirely of 

already discovered nullable nonterminals (or is empty) 

the lhs of the production is added to the list of 

nullable ·nonterminals. The algorithm halts when no new 

symbols are added to the set during a complete scan of 

the productions. 

An efficient two step algorithm is used for 

computing the FIRST and FOLLOW sets [4]. The algorithm 

uses a relation matrix with the rows and columns 

representing grammar symbols. The matrix is implemented 

as an array of sets (of 0 .. 255). Each set represents a 

row in the matrix with 256 binary elements, providing a 

very compact Pascal implementation. The transitive 

- 12 -



closure algorithm used in the FIRST and FOLLOW set 

computation is a variation of Warshall's algorithm [5] 

that ORs entire rows of the matrix together [6]. This 

'method has the advantage of exploiting the low level 

parallelism of the OR operation on most modern cpus. 

ORing two rows together is implemented in Pascal by 

performing a set union on the two sets that represent the 

rows. This is a built-in Turbo Pascal operation which 

executes quickly. 

The algorithm for computing FIRST sets is shown in 

Fig 4. First, the boolean relation matrix, R, is 

initialized to false; certain entries are set to true; 

and then a transitive closure is done on the entire 

matrix. The FIRST set for a nonterminal Sis found by 

scanning row S of the matrix R for true values in the 

terminal symbol columns. If Sis nullable, then lambda 

should be added to its FIRST set. 

The algorithm for computing FOLLOW sets is similar 

to the one for FIRST sets. The FOLLOW set algorithm uses 

the FIRST sets to set entries in the relation matrix. 
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nullable := [] 
number of scans := 0 
repeat 

.. 

old nullable := nullable -for each production 
if rhs of production<= old nullable then 

nullable := nullable + [Ths of production] 
number of scans := number of scans+ 1; 

until old-nullable = nullable or 
number of scans= number of nonterminals 

Fig 3 - Algorithm for Finding Nullable Nonterminals 

initialize R to false 
for each production p 

i : = 1 
continue := true 
while i <= length(p.rhs) and continue 

R[lhs, rhs[i]] := true 
if rhs[i] is not nullable then 

continue := false 
i := i + 1 

compute transitive closure of R 

Fig 4 - Algorithm for Calculating FIRST Sets 

initialize R to false 
R[start symbol, lambda] := true 
for each production p 

for i := 1 to length(p.rhs) do 
if rhs[i] is a nonterminal then 

F := first(substr( rhs[i+l] .. rhs[length(rhs)])) 
for all terminal symbols, s 

ifs in F then 
R[rhs[i], s] := true 

if lambda in F then 
R[rhs[k], lhs] := true 

compute transitive closure of R 

Fig 5 - Algorithm for Calculating FOLLOW Sets 
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Error Reporting 

The LPARSER system uses a simple table driven 

method for reporting errors encountered during a parse. 

When the parser encounters an error entry in the parsing 

('table it cal 1 s an error routine and passes it the symbol 

on top of the stack and the current input symbol. The 

top of stack symbol is used to index a table that 

contains a list of all the possible input symbols that 

could legally appear at that point in the parse. The 

error routine then generates a message of the form: 

Error at linen 
Expected Sl S2 S3 ... Sn 
But found inp 

where n, the current line number, is supplied by the 

lexical analyzer; Sl to Sn are the expected input symbols 

taken from the table; and inp is the actual current input 

symbol. While this method of error reporting does not 

provide an explanatory message tailored to each error, it 

has the advantage of bei11g automatically generated from 

the grammar. Therefore, the grammar writer does not have 

to anticipate all errors that may occur, or run the risk 

of having some errors not handled at all [3]. 

Insert File/Table Description 

LPARSER reads in a grammar file and generates seven 

insert files containing declarations, data tables, and 
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executable code. The first five files are used by the 

I 
parser and the last two are used by the lexical analyzer. 

DECL.INS is the simplest of the insert files. It 

is a verbatim copy of the Additional Code Declaration 

section of the grammar input file. It is inserted in the 

declaration section of the skeleton parser and provides a 

means for the implementer to declare constants, 

variables, and procedures that will be used by the 

semantic actions. Any legal Turbo Pascal declaration 

code can be included here as long as no identifier name 

conflicts arise with the skeleton parser or lexical 

analyzer code. 

The LL(l) parse table is contained in the file 

PARSETAB.INS (Fig 6). The table is implemented as a 

matrix of records. Each record contains an action field 

with one of four actions (pop stack, expand production, 

accept, error) and a production number that is only used 

with the expand production action. The array declaration 

is included in the insert file rather than the skeleton 
\ 

parser because its dimensions are determined by the 

grammar file. Comments marking the rows and columns with 

the symbols they represent are included for debugging 

purposes. 

When the parser encounters an 'expand production' 

action it pops the top symbol from the parse stack and 
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pushes the rhs of the specified production onto the 

stack. An array containing the rhs of each production is 

contained in the file PRODTAB.INS (Fig 7). Each element 

of the array is a string; each character in the string 

has the internal value of one of the symbols in the 

grammar. The symbolic equivalents of each production are 

included as comments. Before the stack is altered, any 

semantic actions for the production are executed. All 

semantic actions are contained in a case statement in the 

file ACTIONS.INS (Fig 8). The case statement is indexed 

by production numbers, each case containing the semantic 

action code for that production. 

The table used by the error reporting routine is 

contained in the file ERRORTAB.INS (Fig 9). Each symbol 

in the grammar is assigned an element in the table which 

contains a string of grammar symbols. The string is made 

up of all the terminal symbols that are valid input 

symbols when the given symbol is on top of the parse 

stack. For a terminal symbol the string will only 

contain itself. For nonterminals the string will contain 

all the nonterminal's FIRST symbols and, if lambda is one 

of the FIRST symbols, it will contain all of the 

nonterminal's FOLLOW symbols also. 
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The lexical analyzer that is included in the 

skeleton parse~hires certain constants that are 

derived from the input grammar. The constants are 

contained in the file CONSTS.INS. These constants 

include internal symbol values for special symbols (such 

as integers and identifiers) and array limits. The file 

LEXVALS.INS contains a lookup table of reserved symbols 

that is used by the lexical analyzer. 

- 18 -



const 
maxparse - 20; 

type 
parse_table_type - array[l .• maxparse,0 .. 8] of 

record 

const 

act:char; 
prodno:integer 

end; 

m: parse_table_type =( 
( * # Row *) 
( 
(act: 'A' ; prodno: 0 ) , 
(act: 'E'; prodno:0 ) , 
(act: 'E'; prodno:O ) , 
(act:'E'; prodno:0 ) , 
(act: 'E' ; prodno: 0 ) , 
(act: 'E' ; prodno: 0 ) , 
(act:'E'; prodno:O ) , 
(act: 'E'; prodno:O } 
) , 
(* ; Row*) 
( 
(act: 'E'; prodno:0 ) , 
(act: 'E'; prodno:O ) , 
(act: 'E'; prodno:O ) , 
(act:'E'; prodno:O } , 
(act: 'E' ; prodno: 0 } , 
(act: 'E' ; prodno: 0 } , 
(act:'E'; prodno:0 } , 
(act: 'E'; prodno:O ) 

(* # *) 
(*integer*) 
( * ( *) 
( * ) *) 
(* + *) 
(* - *) 
(* * *) 

( * / *) 

(* # *) 
(*integer*) 
( * ( *) 
( * ) *) 
( * + *) 
( * - *) 
( * * *) 

( * / *) 
) 

Fig 6 - LL(l) Parse Table - PARSETAB.INS 

canst 
maxprod - 15; 

type 
prod_table type= array[O .. maxprod] of string[15] ;· 

canst 
prod_table: prod_table_type -

( 
(* 0 START ::=PROGRAM#*) 
#1#18, 
(* 1 PROGRAM::= EXPRESSION; ACTl *) 
#20#2#14, 
(* 2 ACTl ::= *) 
I I 

) 
Fig 7 - Production Table - PRODTAB.INS 
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case prodno of O:; 
1:begin 

sp := 0; isp := 0 
"end; 

2:begin writeln(istk[isp]) end; 
9:begin 

op:= pop; 
opl := istk[isp-1]; 
op2 := istk[isp]; 
case op of 

'+' : op3 := opl + op2; 
' - ' : op3 : = opl - op2; 
'*' : op3 := opl * op2; 
'/' :op3:=opldivop2; 

end; 
isp := isp - 1; 
istk[isp] := op3; 

end; 
10:begin 

isp := isp + 1; istk[isp] := value; 
end; 

12:begin push('+') end; 
13:begin push('-') end; 
14:begin push('*') end; 
15:begin push('/') end; 
end; 

Fig 8 - Action Case Statement - ACTIONS.INS 

canst 
maxerr = 20; 

type 
errtabtype = array[O .. maxerr] of string[lO]; 

canst 
errtab : errtabtype = 

( 
' ' 

' #1, 
#2, 
#9, 
#3#4, 
#3#4, 
#3#4, 
#2#5#6#7#8#9, 
#3#4, 
#2#5#6#7#8#9, 
#1 
) ; 

Fig 9 - Error Table - ERRORTAB.INS 
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canst 
POUND - 1; 
START - 10; 
!DENT - -11; 
INTEGERl = 3; 
NUMTERM = 9; 

Fig 10 - Index Constants - CONSTS.INS 

canst 
maxlex = 9; 

type 
keywdtabletype = array[O .. maxlex] of string30; 

canst 
keywdtable : keywdtabletype = 

( I I f 

I # I f 

I • I 

' ' 'integer', 
I ( I f 

' ) ' ' 
I + I 

' ' ' 
' * ' 
' I ' 
) ; 

' 
' 

Fig 11 - Lexical Values - LEXVALS.INS 

r 
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Applications 

The LPARSER system provides a general parsing 

facility that can be used in a variety of situations. 

Possible applications are : the front end of a compiler 

or interpreter, a calculator program, or a source code 

formatter. Fig 12 shows the grammar definition file for 

an expression evaluator that will read in .an arithmetic 

expression followed by a semicolon and display its 

numerical value. It should serve as a simple but 

concrete example of how a grammar input file is actually 

written. 

The tokens used by the expression grammar are: 

integers, the arithmetic operators+ - * /, parentheses 

and the semicolon. Except for the integers, all of these 

symbols can by represented in the productions by literal 

strings and therefore do not have to be listed in the 

terminal declaration section. All the nonterminals used 

in the productions are listed in the nonterminal 

declaration section. The symbol ACT is not part of the 

expression grammar itself but is used as a semantic 

action symbol. All other semantic actions are inserted 

directly in the productions. The symbol ACT is 

explicitly declared and used in several places in the 

grammar to avoid duplicating its associated semantic 
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(* Expression Evaluator Grammar Definition*) 

%terminals integer; 

%nonterminals 
FACTOR TERM TERMTAIL EXPRESSIClf EXPTAIL ADDOP MULOP 
PROGRAM ACT; 

%start PROGRAM 

%declarations 
( 

} 

type 

stringlO - string[lO]; 

var 

stk: array[l .. 20] of char; 
isp, sp: integer; 
istk : array[l .. 20] of integer; 
op: char; 
opl, op2, op3 : integer; 

procedure push(s:stringlO); 

begin 
sp := sp + 1; 
s tk [ s p] : = s; 

end; 

function pop:stringlO; 

begin 
pop:= stk[sp]; 
sp := sp - 1; 

end; 

Fig 12 - Calculator Grammar File 
(hontinued on next page) 
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%productions 

PROGRAM::= ( sp := 0; isp := 0) EXPRESSION';' ( 
writeln(istk[isp]) ) ; 

EXPRESSION::= TERM EXPTAIL; 

EXPTAIL ::= ADDOP TERM ACT EXPTAIL 

TERM::= FACTOR TERMTAIL; 

• 
I 

TERMTAIL ::= MULOP FACTOR ACT TERMTAIL I 

ACT::= 
( 

op • = pop; • 

opl . = istk [isp-1]; • 

op2 • = istk[isp]; • 

case op of 
I + I • op3 . = opl + op2; • • 
I ' • op3 . = opl op2; - -• • 
I * I • op3 . = opl * op2; • • 
I / I • op3 . - opl div op2; • • 

end; 
I . 

1; lSp • = lSp -• 

istk[isp] • = op3; • 
) • I 

FACTOR • • = • • 

ADDOP •• = • • 

MULOP ::= 

$END 

( 
. . 1; istk[isp] 1Sp • = lSp + • 

integer I ' ( ' EXPRESSION 

( push ( ' + ' ) ) I + I I 
( push ( ' - ' ) } I _ I • 

I 

( push ( ' * ' ) ) 
( push ( ' / ' ) ) 

I * I 

I / I ; 

Fig 12 
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action code. 

The declarations section of the file is used to 

declare the variables and procedures that are needed to 

implement a pushdown stack for evaluating expressions. 

Similar code could be used to implement a semantic stack 

in a compiler front end. 

Comparison With YACC 

One of the best known and most widely used parser 

generators in existence is YACC, written by Steve Johnson 

at Bell Laboratories [7]. It reads in grammar 

description files similar to those used by LPARSER and 

generates LALR(l) parsers written in C. 

Semantic actions in YACC are used the same way as 

they are in LPARSER with one main exception. Due to the 

bottom up nature of LALR parsing it is possible to 

automatically maintain a semantic stack that runs in 

parallel with the parse stack. Semantic actions in YACC 

can directly access and modify this semantic stack. The 

top down parsing mechanism of LPARSER requires that the 

implementer declare and maintain his own semantic stack 

which grows and shrinks independent of the parse stack. 

The LPARSER system includes a lexical analyzer that 

can be modified by the user. YACC comes without a 
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lexical analyzer but is designed to be used in 

conjunction with LEX, a lexical analyzer generator [10]. 

Future Work 

Work is currently being done to extend LPARSER in 

several directions. One extension is to increase the 

maximum number of symbols allowed in an input grammar in 

order to accommodate compiler front ends for languages 

like Pascal or Modula-2. The current limit of 256 

symbols is sufficient for defining the syntax of these 

languages but is too small to accommodate the large 

number of action symbols that are needed to perform 

semantic analysis and code generation. 

Another extension is the implementation of a table 

driven error correction and recovery mechanism [3,8]. 

When confronted with a parsing error the parser will 

repair the error by deleting symbols from and adding 

symbols to the input string. Which symbols to add and 

delete is determined by calculating a least cost function 

based on a set of terminal symbol costs assigned by the 

parser designer. 

The source code for the implementation of LPARSER 

is on file with Professor Samuel L. Gulden, Dept of 

C.S.E.E., Lehigh University. 
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