
Lehigh University
Lehigh Preserve

Theses and Dissertations

1986

Fault simulation using binary decision diagrams /
William Bader
Lehigh University

Follow this and additional works at: https://preserve.lehigh.edu/etd

Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Bader, William, "Fault simulation using binary decision diagrams /" (1986). Theses and Dissertations. 4670.
https://preserve.lehigh.edu/etd/4670

https://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F4670&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F4670&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F4670&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=preserve.lehigh.edu%2Fetd%2F4670&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd/4670?utm_source=preserve.lehigh.edu%2Fetd%2F4670&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu


FAULT SIMULATION ·' 

USING 

.~· BINARY DECISION DIAGRAMS 

by 

William Bader 

'· 

A Thesis 

Presented to the Graduate Committee 

of Lehigh University 

in Candidacy for the Degree of 

Master of Science 

in 

Electrical Engineering 

Lehigh University 

September 20, 1986 



.. 
I' 

·~ 

.. 

This thesis is accepted and approved in partial 

fulfillment of the requirements for the degree of Master 

of Science 

.. 
.~ 

--------------------· 
(date) 

~-

---------~------
Professor in Charge 

•. 

Chairman of Department 

.... 

,. 

ii 

·-



.. 

CONTENTS 

1 Introduction • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 2 
1.1 BDD Definitions ••••••••••••••••••••••••••••••• 2 

~ 1.2 BDD Data Structures ••••••••••••••••••••••••.•• 3 
1.3 Pseudo-Code Notation •••••••••••••••••••••••••• 5 
2 Conversion of Gate Networks to BDD's •••••••••••• 7 
2.1 Goals of the Conversion Algorithm ••••••••••.•• 8 
2.2 The Conversion Algorithm ••••.•.••.•••..••.•.•• 9 
2.3 Modification to the Conversion Algorithm •••••• 13 
3 The BOD Fault Simulation Algorithm •.•••.•••••.•• 14 
3.1 Basic Fault Simulation Algorithm ••••••.••••.•• 14 
3.2 Modification I: Saving Good Values •••••••••..• 18 
3.3 Modification II: Critical Graphs ••••••.••••••• 19 
3.4 Modification III: Levelized Graphs •••..••••••• 20 
3.5 Modification IV: Change Sets •.•••••••..••••••• 22 
3.6 Modification V: Graph Jumping •.•••••••.••••.•• 25 
3.7 Modification VI: Stem Approximation ••••••.•.•• 29 
3.8 Modification VII: Fault Dropping ••••••.••....• 31 
4 Advantages over Gate Representations ••••••••...• 34 
4.1 Qualitative Comparison ••.••••••••••••••••••.•• 34 
4 • 2 Experiments ·• • . • • • . • • • • • • • • • • • • • • • • • • • • • • • • . . . • 3 6 
4 . 2 . 1 The XOR Tree • • • • • • • • . • • • • • • • • • • • • • • . • • • • • • • • 3 9 
4 • 2 • 2 The Adder . . • • • • . • • • • . • . • • • • • • • • • • • • • • • • • • . • • 3 9 
4 • 2 . 3 Results . • . . . . • . . . • • . . • . • • • • . . • • . • • • . . • • • . • • • 4 O 
4.3 Comparisons with Other Methods ••••••••••••.••• 43 
5 Differences from Other Works •••••••••••••••••.•• 45 
6 Conclusions • • • . . • • • • • . • . . • • • • • • • • • • • • • • • • • • • • . • • 4 6 

iii 
\. 

. ; .. 

\J' .. 



Fault Simulation 

using . 

:Binary Decision Diagrams 

Abstract 

··This paper describes an algorithm fo·r performing fault 

-s-imulation on binary decision diagrams with a 

,computational bomplexity similar to that of good fault 

simulation algorithms for gate networks. The algorithm 

a.an use fault dropping and can handle multiple observable 

outputs in a single pass, so that substantial reductions 

in simulation are obtained, as was confirmed in. tra·i·l run·s 

of a limited number of test cases. 

:~. 

1 
..... -.·,~. 



Fault Simulation 

·using 

Binary Decision Diagrams 

1 Introduction 

i~l BDD Definitions 
;. 

A binary decis·ion diagram, or BDD, is a type of 

:a.cyclic directed graph that can be used to determine the 

value of a boolean function [l]. The graph is constructed 

from nodes and edges. Constant nodes have an out degree of 

o~ All other nodes have an out degree of exactly 2 and 

:contain the name of a variable. I will call these nodes 

variable nodes.or decision nodes to distinguish them from 

constant nodes. The outward edges are called the exits of 

the node. In particular, one edge is called the a-exit 

and the other • 1S called the 1-exit. Unless otherwise 

labelled, the left edge is the a-exit. Exactly one . node 

2 

\ 

' ' 



}. 

in a BOD has an in degree of o. This node is called the 

entrance node or.root of the BOD. To determine the value 

of the function represented by a BDD for a given input, 

·start at the entrance node and work downward through the_ 

nodes. If the node is a constant node, the value of tht 

function is the value of that node. Otherwise, take the 
r 

a-exit if the value of the node's variable is false or the 

1-exit if it is true. Figure 1 s~ows a BDD with its parts 

labelled. The numbers in parentheses are node numbers 

that correspond to numbers in a later example. 

F!gure 1. A BDD 

-----
(1) I A I <--- entrance node 

-----
I 

Q:-.. ~xit ---> / 
-----

(2) I B I -----~· 
I \ 

1-· \ 
(.3:)- Q: ( 4) 

l_-.·2: -BDD Data Structures 

\ 
, I 

1 

I 
I 
I 
I 
I 

<--- 1-exit 

<-... _~-- constant node 

The input to the BDD fault simulation algorithm I 

1S a 

set of BDD's. We will call each diagram in the set of 

BDD's a graph and the entire set of graphs a network to 

3 



.. 

·'\; •. ; 
I ••• , • .;,. 

avoid confusion between a single diagram ~nd the entire 

set of diagrams. The· BDD fault simulation algorithm 

requires two types of data structures: graphs and nodes. 

·Each graph contains a graph descriptor, a pointer to a 
l 

node, and a graph value. Each node contains a left node 

(O-exit) pointer, a right node (1-exit) pointer, a 

variable pointer, and a node value. There are two types 

of graphs: input graphs and output graphs. Each input 

graph corresponds to a primary input to the network. The 

value of an input graph is theturrent value of the input 

it represents. Each output graph cqrresponds to a BDD and 

has a pointer to the entry node of the BOD. The value of 

a BDD is the same as the value of its entry node. 

There are two types of nodes: constant nodes and 

variable nodes. Constant nodes have a fixed value of 

either o or 1. The value of a variable node depends on 

the value of the graph that represents its variable and on 

the values of the nodes at its exits. If the value of the 

graph is o, then the value of the node is the value of the 
•. 

node pointed to by the node's left pointer; otherwise, the 

value of the node is the value pointed to by the node's 

right pointer. The data structure for the BOD from the 

previous example is shown with comments in Figure 2. The 

node values correspond to an input with A set to O and B 

set to 1. 

4 



• 

• 

Fi·gure 2. Data structures for a BOD 

Graph Descriptor Value Node Pointer Comments 

----- ---------- ----- ------------ --------
1 input 0 - variable A 

2 input l - variable B 

3 output 0 l entrance 
of a BDD 

Node o-exit 1-exit Variable Value Comments 

---- ------ ------ -------- ----- --------
1 2 4 l 0 entrance node 

depends on A 

2 3 4 2 l depends on B 

3 ·-· - (, 0 0 constant 0 

4 1 ·1 constant 1 - -

When a ~DD is excited with an input, either the left 

or the right branch of each node is activated. Among the 

set of activated branches, there is a unique path from the 

·, 

entrance node of the BDD to exactly one of its exit nodes. 

The path is called the active path for that input. 

It is possible to simulate a BDD network by simulating 

every node from the constant nodes to the root node in 

much the·same manner that gate networks must be simulated 

gate by gate. However, since the value of a BDD only 

depends on the value of the constant node at the end of 

the active path, it is much more efficient to simulate 

only the active path by starting at the entrance node and 

working towards the exit node. Note that whenever a 

decision node depends on the value of an output graph, 

that graph must be evaluated before making the decision on 

5 

v, 

' ' 



the node. 

1.3 Pseudo-Code Notation ... 

We will describe our gate conversion 
,. 

algorithm and 

several versions of our fault simulation algorithm in a 

Pascal-like pseudo-code. Each procedure will be declared 

as 

procedure example(exampleargument); 
begin 

do something 
end; 

Comments will be delimited by braces, for example 
,, 

{ this is a sample comment}. 

IF statements have the syntax 

if some condition then 
do action Al 
do action A2 

else 
do action Bl 
do action B2 

while FOR statements have the syntax 

for each item in a set do 
do something with the item 

Note that.IF and FOR statements can be nested inside each 

other and that statements in the body of another statement 

are marked by their indentation. As in Pascal, we will 
. 

use square brackets to denote array subscripts and periods 

(".") to reference elements 

6 

in . structures.· The 
I 

.. 



' ! 

, 

( 

declarations of the variables that we will use in 

pseudo-code to represent BOD networks are shown in Figure 

3. For example, Nodes is a data structure that represents 

all the nodes in a BOD network; Nodes[5] represents node 

number 5, and Nodes[5].LeftNode represents a pointer to 

the a-exit of node number 5. 

Figure 3. Declarations 

Nodes: array [1 .• MaximumNumberOfNodes] of 
record 

Value { value of this node, 
o, 1, or unknown} 

.. 

Critical { whether this node is critical, 
Yes, No, Unknown} 

Graph { pointer to the graph that 
contains this node} 

DecisionGraph { pointer to the graph that 
represents the nodes•s 
variable} 

LeftNode { pointer to the o exit 
of this node} 

RightNode { pointer to the 1 exit 
of this node} 

end; 
Graphs: array [1 .. MaximumNumberOfGraphs] of 

record 
GraphType { InputGraph, outputGraph, or 

ObservableOutputGraph} 
Value { value of this graphs, 

o, 1, or unknown} 
Critical { whether this graph is critical, 

Yes, No, Unknown} 
EntranceNode { pointer to entrance node of 

this graph} 
end; 

.• 

:• 

. :~·· 
-....... 



•: 

• 

2 Conversion of Gate Networks to BDD's 
• 

:~:.:1 Goals of the Conversion Algorithm 

When doing fault an~lysis on gate networks, the 

stuck-at fault model is typically used. In this model, a 

fault c~uses a line to be stuck at either o or 1. A 

fanout branch can be stuck without having its stem or 

other branches stuck. So that we may do fault simulation 

on a BDD network, we must be able to convert the gate 

networks into BDD networks in such a manner that faults in 

the original gate network can be mapped into faults in the 

BDD network. To be completely general, the • conversion 

algorithm must also be able to handle any combinational 

circuit, including circuits with multiple outputs. 

In order to maintain the correspondence between . 

faults, BDD networks are created in an algorithmic fashion 

such that each BDD node corresponds to an input lead • in 

the gate network and each graph corresponds to a primary 

input, fanout stem or observable output. In the BDD, gate 

inputs are represented by nodes, and the value of each 

input is represented by the value of the graph 

8 



• 

. -. 

corresponding to the.node's variable. Thus, stuck-at-a or 

1 faults in a gate network correspond to stuck-left or 
4 

right faults in a·node. This was first described in [9]. 

2:. 2 The Conversion Algorithm 

The process of BOD construction starts by creating an 

input graph for each primary input in the gate network. 

Then, the gates in the gate network are examined in order 

by increasing level. For each gate, if the first input is 

a primary input, a fanout stem, or an observable output, 

then a decision node is created with the graph: 

corresponding to that line as the decision variable. The· 

new node is labelled with the line number of the input. 

Otherwise, the input must be the output of a gate with a 

fanout of exactly 1. Since the gates are processed by 

increasing level, a BDD was already created for this gate 

in an earlier step. 
I 

This BDD will now be used to 

represent the input line of the current gate. The same is 

done for all the other inputs. If the gate is an OR gate 

or a NOR gate, the new input is combined with the existing 

BDD by replacing all o exits of the existing BDD with the 

entrance node of the BDD for the new input. If the gate 

is an AND ·gate or a NANO gate, the new input is combined 

.9 

-; 



by·replacing all l exits of the eiisting BDD with the 

entrance node of the BDD for the new input. After all the 

inputs are processed, if the gate is an INVERTER, ' a NOR 

gate or a NAND gate, all the o and 1 constant nodes of the 

BOD are complemented. If the gate output is a fanout stem 

or an observable line, a graph entry is made for it. An 
.... 

example of a gate network is shown in Figure the resulting 

BOD network is shown in Figure 5, and its data structure 

is shown in Figure 6. The values of the nodes in the data 

structure correspond to an input of o for A and 1 for B. 

A more precise statement of the algorithm follows in 

Figure 7. Note that in the statement of the algorithm, we 

treat primary inputs as a type of gate just as we treat 

them as a type of graph in BOD networks. 

Figure 4. A Gate Network 

a.O d.l ------
A---------------------------1 I d.O 

I INANDl------
1 C. 1 ------ ------1 I I ------
------1 I C. 0 I d. 2 ------ ------1 I 

INANDI------ INANDI------F 
------1 I I e.1 ------ ------1 I 
I C. 2 ------ ------1 I I ------
1 INANDI------

B----~----------------------1 I e.o 
b.O e.2 ------

~ .. 

10 

·,. 



Figure 5. Resulting Binary Decision Diagrams 

BDD 1 
I 
A 

(9) 

BDD 2 BOD 3 
I I 
B ------

(3) IBDDll 
1a.o I ------
I 

(1) 0 (2) 

BDD 6 

I ------
(7) I BDD3 I 

Id. 1 I 
------
I \ 
I ------
I ( 8) I BDD5 I 
I Id. 2 I 
I ------
I I \ 

------
IBDD5I 
1e.1 I --=-----

\ ------
(10) IBDD61 

1e.2 I 
------

I 
1 

\ 
\ 

\ 

\ 

\ 

0 

BDD 4 BDD 5 
I I ------ ------

(4) IBDD21 (5) IBDD3I 
lb.O I 1c.1 I ------ ------
I \ I \ 

1 0 1 I ------
I ( 6) I BDD4 I 
I I c. 2 I 
I -------
I I \ 
1 

I 1-
, 

I _/ 
/ 

I 
I 
I 
I 
I 

11 

0 



.• 

Figure 6. Resulting Data Structure 
' 

Graph Descriptor Value Node Pointer Comment 
----- ---------- ----- ------------ -------

1 input 0 - variable A 
2 input 1 - variable B 
3 output :o 3 A 

l 4 output ·1 .4. B 
5 output ·1 5 output of gate C .. 

6 obs. output 1 7 output of network 

Node a-exit 1-exit Variable Graph Value Comment 
---- ------ ------ -------- ----- ----- -------

1 - - 0 - 0 constant 0 

~ - - 1 - 1 constant 1 

3 1. 2 1 3 0 A 
4 l 2 2 4 1 B 
5 2 6 3 5: .1 C.1 
6 2 1 4 5· 0 C.2 
7 9 8.: 3 6: 1 D.1 
8 9 2 5 6; 1 D.2 
9 1 l·O. 5 6· 1 E.1 

10·. 1 : .. ~: 4 6: 1 E.2 

·, 
·,i 

,,., .. 

• 

12 

'"•ll 

' . 



' 

Figure 7. Conversion Algorithm 

for each primary, input do 
create an input graph 

for each gate in order of increasing level do 
if it is a primary input then 

create a node with the input as the decision point 
label the node with the line number of the input 

else if the gate is an inverter ~hen · 
if' its input is represented by a graph then 

create a node with the graph as the decision point 
label the node with the line number 

. of the inverter's input 
else 

take the partial BDD for the input 
else if the gate is an AND gate or a NANO gate then 

for each fanin do 
if its input is represented by a graph then 

create a node with the graph as the decision point 
label the node with the line number 

of the current input 
else 

take the partial BDD for the input 
if this is the first fanin then 

make the node or input BDD the current partial BOD 
else 

set the 1 exits of the current partial BDD to be the 
input BOD 

else if the gate is an OR gate or a NOR gate then 
for each fanin do 

if its input is represented by a graph then 
create a node with the graph as the decision point 
label the node with the line number 

of the current input 
else 

take the partial BOD for the input 
if this is the first fanin then 

make the node or input BDD the current partial BDD 
else 

set the O exits of the current partial BDD 
to be the input BDD 

if the gate is an INVERTER, a NANO or a NOR then 
complement the values of all the constant nodes 

if the gate is a primary input or 
the output of the gate is a fanout stem or 
the output of the gate is observable then 

create a graph the for the constructed BDD and mark 
the gate with the index of the graph 

else 
mark the gate with the index of the entrance node 

of the constructed BDD 
13 

I • 



~ 

2.3 Modification to the Conversion Algorithm 

For reasons that will be apparent later, two minor 

modifications to the conversion algorithm allow it to 

produce BDD's that require slightly less overhead for 

fault simulation. First, when the gate network is 

levelized, a gate may be assigned to level L with an 

output that is required only by gates at level L+K or 

higher, where K > 1. If the output of the gate is not 

observabie, then the level of the gate is increased to 

L+K-1. 'If there happens to be an output between levels 

L+K and L+K-2, no overhead will be required for the 

changed gate. For similar reasons, whenever a gate with 

an observable output and a gate with a nonobservable 

output have the same level, the gate with the observable 

output is assigned to a BDD first. 

3 The BOD Fault Simulation Algorithm 

'3.1 Basic Fault Simulation'Algorithm 

14 



Given a BDD network and a set of values for the input 

graphs, the goal of fault simulation is to find the set of 
,. 

critical nodes. A critical node is a variable node such 

that switching the node's input from its left exit to its 

right exit would change the value of an observable graph. 

switching the exits corresponds to provoking a fault in a 

gate network, while changing an observable graph 

corresponds to propagating a fault in a gate network. To 

tell if a node is critical according to the definition of 

a critical node, we could mark the node as stuck and 

resimulate the network. We will take another approach. 

To test if a node is critical, we will replace the node 

with a constant node that has a value complementary to the 

good-simulation value of original node. For the node to 

be critical, two conditions must hold: I) at least one 

observable graph in the new network has a different value, 

and II) the value of the node pointed to by the left exit 

of the original node differs from the value of the node 

pointed to the right exit of the original node. Condition 

I tests if the fault will propagate to an observable 

output if it is provoked, while condition II tests if the 

fault really is provoked. Note that a necessary, but not 

sufficient, condition for I) to hold is that the node be 

on the active path of its BDD. Clearly changing a node 

not on the active&path of its graph will never change the 

graph so being on the active path is necessary, while 
--

15 

.\ .. •.; 
, ... 
i, 

,.,·, '·, _-, 

·.• 



.. 

changing a graph in a BDD network will change nodes in all 

the other graphs that depend on the changed graph but the 

net result of the changes is as unpredictable as changing 

a fanout stem in a gate network, so being on an active 

path is not sufficient. 

The two conditions suggest the algorithm shown 
• 

in 

Figure 8. This algorithm examines each node on the active 

path. To test if a node is critical, it cuts the node out 

of the graph and replaces it with a constant node with the 

complement of the value of the node. The altered network 

is then simulated. Note that although the value of the 

graph that contains the node will change, the values of 

other graphs may not. If the value of an observable graph 

changes, the other exit of the current node I 

1S simulated 

as if it were an entrance node of a graph. If this exit 

has a value different from the exit that was taken during 
I 

the good simulation, the node is marked as critical. 

•· 

16 

.. 

~' 



Figure 8. Bas)c Algorithm 

{ EvaluateNode - evaluate the value of a node} 

procedure EvaluateNode(node); 
begin 

if the node has not been evaluated then 
if the node is a constant o node then 

Nodes(node].Value := o 
else if the node is a constant 1 node then 

Nodes[node].Value := 1 
else { if the node is a decision node then} 

EvaluateGraph( Nodes[node].DecisionGraph) 
if Graphs[ Nodes[node].DecisionGraph ].Value: 

= O then 
EvaluateNode( Nodes[node].LeftNode) 
Nodes[node].Value := 

Nodes[ Nodes[nodes].LeftNode ].Value 
else 

Evaluate( Nodes[node].RightNode) 
Nodes[node].Value := 

Nodes[ Nodes[node].RightNode ].Value 
end; 

{ EvaluateGraph - evaluate the value of a graph} 

procedure EvaluateGraph(graph); 
begin 

if the graph has not been evaluated then 
EvaluateNode(Graphs[graph].EntranceNode) 
Graphs[graph].Value := 

Nodes[ Graphs[graph].EntranceNode ].Value 
end: 

• 

,, m. 

17 

··;, 



{ FindCritical - find all critical nodes} 

procedure FindCritical; ~ 
begin 

clear the value of all nodes 
evaluate the observable graphs ·= 

{i.e. do a good simulation} 
for each node do 

end; 

if the node is on an active path then 
{ test for condition I} 
flip the value of the node . 
clear the value of all graphs and all other nodes 

{ the flip and clear effectively replaces the node 
with a constant node with a complemented value} 

evaluate the observable graphs 
{i.e. a faulty simulation} 

if the value changes {condition I is met} then 
{ test for condition II} 
evaluate the exit not taken during 

the good simulation 
if it has a different value then 

{condition II is met} 
mark the node as critical 

3,. 2 Modification I: Saving Good Values 
.u 

Note that when the other exit of a node is evaluated 

while testing for condition II, the simulation can use 

values already computed by the good simulation. 

FindCritical is revised as shown in Figure 9: 

18 



Figure 9. Algorithm after Modification I. 

procedure FindCritical; 
.begin • 

clear the value of all nodes 
evaluate the observable graphs 

{i.e. do a good simulation} 
for each node do 

if the node is on an active path then 
flip the value of the node 

-, 

clear the value of all graphs and all the other nodes 
evaluate the observable graphs 

{i.e. a faulty simulation} 
if the value changes {condition I is met} then 

restore good values to all nodes and graphs{*new*} 
evaluate the exit not taken during 

the good simulation 
save good values {***new***} 
if it has a different value then 

{condition II is met} 
mark the node as critical 

\ 

,3,.:3 Modification II: Critical Graphs 

Observe that for a given graph, either all sensitive 

nodes meet condition I or they all fail condition I. A 

graph is called critical if and only if it has a sensitive , 

node that meets condition I. This means that simulation 

from the observable graphs need only be done once per 

graph instead of once per sensitive node. FindCritical 

may be altered as shown below in Figure 10: 

• 

19 

\ 



./· 

Figure 10. Algorithm after Modification II. 

procedure FindCritical; 
begin 

clear the value of all nodes 
evaluate the observable graphs 

{i.e. do a good simulation} 
set Critical to Unknown for each graph {***new***} 
for each node do 

end; 

if the node is on an active path then 
if Graphs[ Nodes[node].Graph ].Critical is 

Unknown then { *new*} 
flip the value of the graph . 
clear the value of all graphs and all other nodes 
evaluate the observable graphs 

{i.e. a faulty simulation} 
if an observable graph changed then {**new**} 

set Graphs[ Nodes[node].Graph ].Critical:= Yes 
else 

set Graphs[ Nodes[node].Graph ].Critical := No 
if Graphs[ Nodes[node].Graph ].Critical= Yes then 

{*new*} 
restore good values to all nodes and graphs 
evaluate the exit not taken during 

the good simulation 
save good values 
if it has a different value then 

{condition II is met} 
mark the node as critical 

3.4 Modification III: Levelized Graphs 

This modification and the following modificati6ns 

require that the graphs and nodes be in a level organized 
' 

form. Level organized form means that nodes in a graph do 

not use any higher graphs as decision var.iables and that 

all the nodes for a graph follow the nodes of all lower 

20 



... 

.J. 

graphs. S_ince our conversion algorithm examines the gate 

network in order -by increasing level, the BDD networks it 

produces have their graphs in order by increasing level 

also. The nodes, however, are not always in the proper 

order. The reordering procedure shown in Figure 11 

collects the nodes for each graph. The values in the 

array NodeMap contain the new index for each node. When· 

the conversion program writes out the BDD data structure, 

all it must do is write the value of NodeMap[n] instead of 

n whenever n is a pointer to a node. 

Figure 11. Procedure to Reorder Nodes. 

{ Reorder -
create a mapping to put the nodes in levelized order· .} 

procedure Reorder; 
begin 

i := 0 
for g := 1 to NumberOfGraphs do 

for n := 1 to NumNodes do 
if Node[n].Graph = g then 

i := i + 1 
NodeMap[i] := n 

end; 

Sinca a change in a node in graph I cannot effect 

graph J, (for J less than I), the good values for these 

graphs do not have to be cleared. Thus, FindCritical can 

be revised ~gain as shown in Figure 12. 

21 



Figure 12. Algorithm after Modification III. 

procedure F'indCri ti cal; 
begin 

clear the value of all nodes 
evaluate the observable graphs 

{i.e. do a good simulation} 
set Critical to Unknown for each graph 
for each node do 

if the node is on an active path then 
if Graphs[ Nodes[node].Graph ].Critical is 

Unknown then 
flip the value of the graph 
clear the value and nodes of this graph and 

all higher graphs {***new***} 
evaluate the observable graphs 

{i.e. a faulty simulation} 
if an observable graph changed then 

set Graphs[ Nodes[node].Graph ].Critical:= 
else 

Yes 

set Graphs[ Nodes[node].Graph ].Critical:= No 
if Graphs[ Nodes(node].Graph ].Critical= Yes then 

restore good values to all nodes and graphs 
evaluate the exit not taken during 

end; 

the good simulation 
save good values 
if it has a different value then 

{condition II is met} 
mark the node as critical 

3.5 Modification IV: Change Sets 

.. 

When a given graph changes, decision nodes in other 

graphs may be affected. If no sensitive nodes in the 

affected graph are changed, the value of the graph will 

not be changed. Just as in a gate network, one can 

envision the effects of a fault propagating through the 

22 

I' 



• 

graphs in a BDD network. Instead of blindly simulating 

the entire network to determine if condition I holds for a 

particular fault, we will maintain a list of graphs on the 

propagation frontier. A graph is on the propagation 

frontier if no faulty simulation has been done for it and 

at least one of its nodes uses as its variable a graph 

that was changed due to the fault. Initially, the list 

will be set to contain all graphs with a node that uses 

the graph to be tested as its variable. From then on, the 

lowest level graph in the list is removed from the list 

and simulated. If the faulty value of the graph differs 

from the good value, all graphs with a node that uses the 

just simulated graph as its variable are added to the 

list. This process continues until either 1) a graph that 

is an observable output changes, in which case the 

original graph is critical, or the list is empty, in which 

case the original graph is not critical. As a speed up, 

note that if the the list ever contains exactly one graph 

and that graph changes then the original graph is critical 

if and only if the new graph is critical. This suggests 

that the nodes should be checked from highest to lowest. 

With this in mind, FindCritical can be recoded as shown in 

Figure 13. Note that this process parallels methods used 

to calculate the D-cube c(T,F) for a test T and a fault F 

in gate networks. For example, a proof that the speed up 

is valid is given as Lemma A in [5]. 

23. 

\ 

. . 



·\ 

Use of change sets also has the desirable side effect 

that multiple outputs can be traced at once. The only 

differences between tracing from a single output and 

tracing from multiple outputs are that an extra good 

simulation must be done for for each additional output and . 

that more graphs are initially labelled critical. Even if 

N outputs share a common graph, that graph will only be 

evaluated once, so the time to simulate all N outputs will 

be much less than N times the amount of time needed to 

simulate the first output. Thus, the extra cost of cost 

of simulating several outputs at once depends more on the 

number of • unique graphs on critical paths from all the 

outputs than on the number of outputs. 

, 

24 

9 

."'I; .~ .. "'· •• ,. 



" 

\ 

Figure 13. Algorithm after Modification IV. 

procedure FindCritical; 
.begin 

clear the value of all nodes 
evaluate the observable graphs 

{i.e. do a good simulation} 
set Critical to Yes for each observable graph 

and Unknown for all other graphs {***new***} 

,. 

for each node from highest to lowest do { ***new***} 
if the node is on an active path then 

if Graphs[ Nodes[node].Graph ].Critical is 
Unknown then 

flip the value of the graph 
GraphsToCheck := (all graphs that have a decision 

node that depends on 
Nodes[node].Graph) 

while (GraphsToCheck not empty) and 

) 

(Critical= Unknown) do {***new***} 
g := lowest graph in GraphsToCheck 
remove g from GraphsToCheck 
clear all nodes in graph g 
EvaluateGraph(g) 
if graph g changes then 

if (GraphsToCheck is empty) and 
(Graphs[g].Critical <> Unknown) then 

Critical := Graphs[g].Critical 
else if graph g is observable 

Critical := Yes 
. clear GraphsToCheck 

else . 
GraphsToCheck := GraphsToCheck + 

(all graphs that have a decision node that 
depends on g) 

if Critical= Unknown then Critical := No 
if Graphs[ Nodes[node].Graph ].Critical= Yes then 

restore good values to all nodes and graphs 
evaluate the exit not taken during 

the good simulation 
save good values 
if it has a different value then 

{condition II is met} 
mark the node as critical ) 

end; .. 

25 



.3 ,6. Modification V: Graph Jumping 

The previous change reduced the work needed to tell if 

a graph is critical from evaluating most of the graphs 

from the observable output down to evaluating only graphs 

·on the path to the observable output. However, when 

adding graphs to the list, it treats all nodes 

identically. The goal of this modification is to maintain 

information about the types of nodes that have changed in 

a graph. First, note that the graph will not change 

unless at least one sensitive node changes. Thus, we will 

only enter a graph onto the list when a sensitive node on 

that graph is affected. 

Given set of nodes in a graph (including at least one 

sensitive node), we want to tell if the graph's output 

will be changed if the given nodes all use their other 

exit. Suppose exactly one ··node changes on a critical 

graph. Then the graph changes if and only if co_ndition II 

holds for the node, i.e. the node is on the sensitive 

path and the exits of the node have different values. 

Since the graph is critical, all of its nodes were checked 

for meeting condition II as part of the test for 

criticality, so this information is already known and 

requires no extra work to calculate. To generalize this 

26 

.( 



case, note that if the other exit of a node has the same 

value as the graph, the node cannot affect the graph, 

while if the other exit has a different value than the 

graph, the node may affect the graph. For example, if the 

value of the other exit of all the affected nodes is 

identical to the value of the graph, the graph will remain 

unchanged. By the same token, if the graph is on the list 

and if the value of the other exit of all the affected 

nodes differs from the value of the graph, then the graph 

will change. If some mixture of these two types of nodes 

changes, the graph must still be simulated. Sometimes the 

value of the graph or of the other exit of a node is not 

known. In this case, the graph must be simulated also. 

Figure 14 shows the results of this modification. 

Figure 14. Algorithm after Modification v. 

procedure FindCritical; 
begin 

clear the value of all nodes 
evaluate the observable graphs 

{i.e. do a good simulation} 
set Critical to Yes for each observable graph 

and No for all other graphs 
for each node from highest to lowest do 

if the node is on an active path then 
if Graphs[ Nodes[node].Graph ].Critical is 

Unknown then 
clear CriticalCount, NonCriticalCount, and 

Unknowncount values for each graph {*new*} 
flip the value of the graph 
for every decision node that depends on 

Nodes[node].Graph do 
if the node is on an active path then 

add its graph to GraphsToCheck 
if the other exit of the node is unknown or 

the value of the graph is unknown then {new} 
increment Unknowncount for its graph 

else if the other exit differs from the 
27 



• 

value of the ~raph then {***new***} 
increment CriticalCount for its graph 

else if the other exit is identical to the 
value of then graph then {***new***} 

increment NonCriticalCount for its graph 
while (GraphsToCheck not empty) and 

(Critical= Unknown) do 
g := lowest graph in GraphsToCheck 
remove g from GraphsToCheck 
if CriticalCount[g] = 1 and 

NonCriticalCount[g] = o and 
Unknowncount[g] = o then 

changed:= Yes 
flip Graphs[g].Value 

else if CriticalCount[g] = O and 
· NonCriticalCount[g] = 1 and 

Unknowncount(g] = o then 
changed:= No 

else 
clear all nodes in graph g 
EvaluateGraph(g) 
changed:= (Graphs[g].Value changed) 

if changed then 
if (GraphsToCheck is empty) and 

(Graphs[g].Critical <> Unknown) then 
Critical:= Graphs[g].Critical 

else if graph g is observable 
Critical:= Yes 
clear GraphsToCheck 

else 
for every decision node that depends on 

Nodes[node].Graph do {*new*} 
if the node is on an active path then 

add its graph to GraphsToCheck 
if the other exit of the node is unknown or 

the value of the graph is unknown then 
increment Unknowncount for its graph{new} 

else if the other exit differs from the 
value of the graph then {*new*} 

increment CriticalCount for its graph 
else if the other exit is identical to the 

value of then graph then {*new*} 
increment NonCriticalCount for its graph 

if Critical= Unknown then Critical := No 
if Graphs[ Nodes[node].Graph ].Critical= Yes then 

restore good values to all nodes and graphs 
evaluate the exit not taken during 

the good simulation 
save good values 
if it has a different value then 

{condition II is met} 
mark the node as critical 

28 



i' 

end; 

:~ •. 7 Modification VI: Stem Approximation 

The previous version of the algorithm does a faulty 

simulation for every graph evaluated during the good 

simulation. Each graph corresponds to a fanout stem in 

the gate network. Abramovici, Menon and Miller (AM&M) [2] 

have discovered that fanout stems are rarely critical if 
1 

none of their branches are critical. They claim that 

the approximation occurs seldom and consists in not 
marking as detected some faults that are actually 
detected in the evaluated set ••.. This 
approximation does not affect the usefulness of the 
method. 

At worst, this approximation is slightly pessimistic about 

the coverage of a test set. Even if a critical stem • 1S 

not marked as critical for one test vector because none of 

its branches are critical, there will usually be another 

test vector with both the ·stem and some of its branches 
1 

critical. Thus, when determining the coverage of a test 

set as a whole, this approximation has the desirable 

effect of reducing the number of faulty simulations 

without loosing much accuracy. Figure 15 shows the 

algorithm after this modification. ' 
Figure 15. Algorithm after Modification VI. 

,, 

29 

\ 
l 

,· 



.i 

procedure FindCritical; 
begin 

clear the value of all nodes 
evaluate the observable graphs 

{i.e. do a good simulation} 
set Critical to Yes for each observable graph 

and No for all other graphs 
clear list of stems to check {***new***} 
for each node from highest to lowest do 

if the node is on an active path then 
if Graphs[ Nodes[node].Graph ].Critical is 

Unknown then 
if Nodes[node].Graph not in list of 

stems to check then 
Graphs[Nodes[node].Graph].Critical := No {new} 

else 
clear CriticalCount, NonCriticalCount, and 

Unknowncount values for each graph 
flip the value of the graph 
for every decision node that depends on 

Nodes[node].Graph do 
if the node is on an active path then 

add its graph to GraphsToCheck 
if the other exit of the node is unknown or 

the value of the graph is unknown then 
increment Unknowncount for its graph 

else if the other exit differs from the 
value of the graph then 

increment CriticalCount for its graph 
else if the other exit is identical to the 

value of then graph then 
increment NonCriticalCount for its graph 

while (GraphsToCheck not empty) and 
(Critical= Unknown) do 

g := lowest graph in GraphsToCheck 
remove g from·GraphsToCheck 
if CriticalCount[g] = 1 and 

NonCriticalCount[g] = O and 
Unknowncount[g] = o then 

changed:= Yes 
flip Graphs[g].Value 

else if CriticalCount[g] = O and 
NoncriticalCount[g] = 1 and 
Unknowncount[g] = o then 

changed:= No 
else 

clear all nodes in graph g 
EvaluateGraph(g) 
changed -: = ( Graphs [ g] • Value changed) 

if changed then 
if (GraphsToCheck is empty) and 

(Graphs[g].Critical <> Unknown) then 
30 

..... 

,_r 
·1· 

\ 

.... 



Critical:= Graphs[g].Critical 
else if graph g is observable 

Critical := Yes 
. .. clear GraphsToCheck 
else 

for every decision node that depends on 
Nodes[node].Graph do 

if the node is on an active path then 
add its graph to GraphsToCheck 

if the other exit of the node is unknown or 
the value of the graph is unknown then 

increment Unknowncount for its graph 
else if the other exit differs from the 

value of the graph then 
increment CriticalCount for its graph 

else if the other exit is identical to the 
value of then graph then 

increment NonCriticalCount for its graph 
if Critical= Unknown then Critical:= No 

if Graphs[ Nodes[node].Graph ].Critical= Yes then 
restore good values to all nodes and graphs 
evaluate the exit not taken during 

the good simulation 
save good values 
if it has a different value then 

{condition II is met} 
mark the node as critical 
enter Nodes[node].DecisionGraph in 

list of stems to check { ***new***} 

:3 .• 8 Modification VII: Fault Dropping 

When determining the fault coverage of a set of test 

vectors but the exact coverage of each individual vector 

is not required, we do not have to simulate faults for one 

·test that already have been detected by another test. 
I 

Skipping tl1ese faults is. called fault g.ropping. Since only 

31 



the remaining faults must be simulated for each vector, 

fault dropping reduces the time spent per vector. Figure 

·· 16 shows the algorithm with fault dropping. In order to 

keep track of which nodes have been tested for which 

faults, we have added a new field in each node that tells 

which faults have been tested and a new procedure 

Initialize that must be called once for each test set 

(while FindCritical is called once for each test 
). 

vector) 

to initialize the new field. Note that the stem 

approximation cannot be made when doing fault dropping 

because stem faults will not be detected unless the stem 

happens to be critical on the first test for at least one 

branch that detects a fault on that branch. 

Figure 16. Algorithm after Modification VII. 

Nodes: array [1 •• MaximumNumberOfNodes] of 
record 

{ same as before plus} 
TestedForstuck: array [O •• l] of 

{ Yes, or No} 
end; 

procedure Initialize; 
begin 

for each node do 
set TestedForStuck[O] to No 
set TestedForStuck[l] to No 

end; 

procedure FindCritical; 
begin 

clear the value of all nodes 
evaluate the observable graphs 

{i.e. do a good simulation} 
set Criti.cal to Yes for each observable graph 

and No for all other graphs 
for each node from highest to lowest do 

if the node is on an active path then 
if TestedForStuck[ Graphs[Nodes[node].Graph].Value] 

32 

.. 



• 

p,,···-~ 

I. 

\ ' 

= No then {***new***} 
if Graphs[ Nodes[node].Graph ].Critical is 

Unknown then 
clear CriticalCount, Noncriticalcount, ~nd 

Unknowncount values for each graph 
flip the value of the graph 
for every decision node that depends on 

Nodes[node].Graph do 
if the node is on an active path then 

add its graph to GraphsToCheck 
if the other exit of the node is unknown or 

the value of the graph is unknown then 
increment Unknowncount for its graph 

else if the other exit differs from the 
value of the graph then 

increment CriticalCount for·its graph 
else if the other exit is identical to the 

value of then graph then 
increment NonCriticalCount for its graph 

while (GraphsToCheck not empty) and 
(Critical= Unknown) do 

g := lowest graph in GraphsToCheck 
remove g from GraphsToCheck 
if CriticalCount[g] = 1 and 

NonCriticalCount[g] = o and 
Unknowncount[g] = o then 

changed:= Yes 
flip Graphs[gJ,. Value 

else if CriticalCount[g] = o and 
NonCriticalCount(g] = 1 and 
Unknowncount[g] = o then 

changed:= No 
else 

clear all nodes in graph g 
EvaluateGraph(g) 
changed:= (Graphs(g].Value changed) 

if changed then 
if (GraphsToCheck is empty) and 

(Graphs[g].Critical <> Unknown) then 
Critical:= Graphs[g].Critical 

else if graph g is observable 
Critical:= Yes 
clear GraphsToCheck 

else 
for every decision node that depend~ on 

Nodes(node].Graph do 
if the node is on an .active path then 

add its graph to GraphsToCheck 
if the other exit of the node is unknown or 

the value of the graph is unknown then 
increment Unknowncount for its graph 

. else if the other exit differs from the 
33 



end; 

value of the graph then 
increment CriticalCount for its graph 

else if the other exit is identical to the 
value of then graph then , 

increment NoncriticalCount for its graph 
if Critical= Unknown then Critical:= No 

if Graphs( Nodes(node].Graph ].Critical= Yes then 
restore good values to all nodes and graphs 
evaluate the exit not taken during 

the good simulation 
save good values 
if it has a different value then 

{condition II is met} 

,, 

mark the node as critical 
if the node's variable= o then {***new***} 

set TestedForStuck[O] = Yes 
else 

set TestedForstuck[l] = Yes 

4 Advantages over Gate Representations 

. I 

4.1 Qualitative Comparison 

This method has several. advantages over fault 

simulation based on gate networks: it can run with or 

without making approximations; it can use fault dropping, 

and it can handle multiple observable outputs in a single 

pass. 

34 



' 
Fault simulation in gate networks is an 

algorithmically hard problem because faulty simulation is 

needed, either eMplicitly or implicitly, to determine the 

criticality of stems. If the proportion of stems to gates 

is constant for a given class of networks, then doubling 

the size of the network would double the number of stems, 

which would double the number of faulty simulations 

required. If the time required per simulation is 

proportional to the number of gates, the time to do the 

total simulation would increase by four. An algorithm 

that increased in time this fast would run too slowly on 

large networks to be useful for things such as grading 

test sets. Conventional gate oriented algorithms rely on 

making approximations or fault dropping in order to handle 

large networks. For example, the AM&M algorithm [2] may 

miss detecting a critical stem if it has no critical 

branches. The BDD algorithm can run in reasonable time 

without approximations. In this mode, it will never miss 
,.,, 

a critical node or label a noncritical node as critical. 

When it is allowed to make approximations, it runs between 

3% and 5% faster, depending on the topology of the 

network. 

Some algorithms for fault simulation on gate networks 

cannot use fault dropping. To reduce the amount of 

simulation for each test vector, they 

35 

require that the 1 



.. 

4. 

criticality of all stems with a level higher than L be 

known before attempting to determi~e the criticality of a 

stem at level L. The BDD algorithm exploits criticality 

information when it is present, but does not require it. 

Thus, the algorithm inherently compensates for missing 

information due to fault dropping • 

Gate-based fault simulation can only handle one 

observable output at a time. A normal circuit may have a 

large number of outputs. Fault-simulation algorithms on 

gate networks usually trace from each output to the 

primary inputs, one output at a time. On every BDD 

network tested so far, tracing all the outputs at once 

took only slightly longer than tracing a single output. 

Thus, on classes of circuits that have a fixed proportion 

of observable outputs to gates, such as some iterative 

circuits, an algorithm that can trace all the outputs in 

one pass will run an order of magnitude faster than an 

algorithm that must trace each output one at a time. 

·4 ..• 2· Experiments 
..... ~ 

The BOD fault simulation algorithm outlined above, a 

simplified • version of the AM&M critical path tracing 

36 



.. 

algorithm [2] and. a gate-network-to-BOP conversion 

algorithm were coded in VAX-Pascal on a VAX-11/750 under 

VMS V4.l. Each program was run on two classes of networks 

and the 74Sl81 ALU, and run-time statistics were collected 

that show the relative time complexity of each algorithm. 

All networks were entered in gate network form and then 

converted to BDD's. 

Modified versions of the published programs AUGMENT 

and ANALYZE were used to. get timings of the programs. 

AUGMENT reads a Pascal program and inserts calls to timing 

procedures at the beginning and end of each subroutine. 

As the program runs, the timing procedures collect timing 

data. When the program finishes, it writes a file 

containing the timing information. ANALYZE reads the 

timing information and a symbol table created by AUGMENT 

to produce a report showing the number of times each 

procedure was called, the percentage of the calls to the 

total number of procedure calls, the average number of 

milliseconds per call (not counting calls made to other 

procedures), total number of milliseconds and percentage 

of the total run time, the average number of milliseconds 

per call (including calls.made to other procedures), total 

number of milliseconds and the percentage of the total run 

time. The ~eport can be sorted in forward or reverse 

order by procedure name or by any of the columns. The 

37 



-~ 

last line of the report shows the total run time in 

seconds and the total number of procedure calls. A report 

from a single run shows where the program spends its time. 

It shows which procedures would improve the performance 

the most it they were optimized. A report from several 

runs on similar, but increasingly larger, inputs showe 

where the algorithm encoded by the program should be 

optimized. 

The first network simulated was the Signetics 74Sl81 

4·-bit ALU. /It had 14 primary inputs, 8 outputs and 87 

gates. Exclusive-or gates were replaced with four NANO 

gates. This circuit was chosen because it is well-known 

and has been analyzed by other methods. 

The exclus·ive-or trees were generated by a program. 

For a given number of levels, N, the program generates a 

tree with 2 ** N inputs, 1 output, and 4 * (2 ** N - 1) 

NANO gates. This circuit form was chosen because its 

large amount of reconvergent fanout typically gives worst 

cases for fault-simulation in gate networks. The 

corresponding BDD should also be a worst case for BDD 

fault simulation. 

The adders were also generated by a program. For a 

given number of cells, N, the program would generate an 

38 

\ 



· adder with 2N + 1 inputs, N + 1 outputs and N cells. Each 

cell is a 1-bit full adder implemented in two-level form. 

This circuit was chosen because it has a large number of 

outputs and it has several logic levels for each cell due, 

to the carry ripple. Large adders test the ability of a 

fault simulator to handle a large number of outputs and to 

propagate faults through~many levels of logic. 

4 .,~ .1 The XOR Tree 

The BDD algorithm may not be as efficient as AM&M [2] 

for this network. Trees were tested with up to 7 levels 

and 128 inputs. Although the number of procedure calls in 

the BOD fault simulator increases with an order of 1.02 

(i.e. almost linearly) with respect to the number of 

nodes as the number of levels is increased from 5 to 7, 

the total time spent simulating increases with an order of 

1.8. The total time spent by AM&M increases with an order 

of about 1. 65. 

4. 2' •. 2 The Adder 

:3 .. e·. 
: . -. 

j. 



From a network with 5 cells to a network with 50 

cells, the total time increases with an order of 1.49 for 

the BDD, algorithm and 1.48 for AM&M. When the BDD 

algorithm was run with fault dropping and allowed to trace 

all outputs at once, its total time only increased with an 

order of 1.40 and its time per input vector decreased by a 

factor of 4. With the stem approximation enabled (in 

addition to fault dropping and multiple output tracing), 

the total time increased with an order of 1.26 with a loss 

in precision of about 2.6% of the critical nodes not 

marked as critical. 

4.2.3 Results 

The Tables below show typical timings for the tested 

networks. The times are all in real-time seconds spent 

determining which lines are critical; times for start-up, 

termination, and printing output are not included. The 

BDD fault simulator was run with fault dropping and 

multiple output tracing enabled. Table 1 shows run times 

comparing the BOD fault simulator to a simple 

implementation of the AM&M gate-network critical-path 

tracer. 

40 



,(\ 

The gate network path tracer implemented the 'basic 

algorithm' of [2], but not equal parity cover lines, FFR 

jumping, •no overlap' mode or start and stop lines1 

however, they claim that stem analysis requires 50 percent 

of their total run time and that using equa·l. parity cover 

lines reduces stem analysis time by 10 percent and FFR 

jumping reduces it by another 10 percent. They also claim 

that 'no overlap' mode reduces run time by about 20 

percent. 

spent 

We also suspect that some of the additional time 

. ,{ h id t th by the critical pat tracer s ue o e 

implementation, not the algorithm. For example, frontiers 

were implemented as sets, so operations of the form 

i = lowest level gate in Frontier 

were implemented as loops. AM&M do not tell how they 

implement frontiers, but it is conceivable that 

implementing frontiers as several linked lists of gates, 

with one list for each level and with each list ordered by 

gate number would reduce the run time, so that the 

apparent order-of-magnitude advantage of the BOD algorithm 

is perhaps exaggerated. 

Even though our algorithm seems to increase in time 

slightly faster than the AM&M critical path tracer, 

critical path tracing cannot handle multiple outputs or 

fault dropping. on the other hand, the BDD algorithm can 

use fault dropping and can trace from multiple outputs 

41 

/ 



.. 

with little extra cost. . . 
' 

' 

Table 1. BDD Simulation Time vs. Gate Network Tracing Time 

Circuit· 
------------------
32 input XOR tree 
64 input XOR tree 
128 input XOR tree 
5 cell ADDER 
50 cell ADDER 
74SN181 4-bit ALU 

BDD Time 
--------

537 
1830 
6730 

420 
14780 

870 

Gate Network Time 
-----------------

4570 
13390 
44643 

5910 
180430 

28920 

Table 2 shows the effects that different modifications 

have on the algorithm. The results show that graph 

jumping reduces the number of node evaluations by at least 

an order of magnitude. Tracing all the outputs at once 

reduces the number of node evaluations by a factor that 

depends on the number of outputs and the number of graphs 

that ar~ used by more than one output. With graph jumping 

enabled, fault dropping reduced the number of node 

evaluations by half. Fault dropping had more effect on 

the adder because the test set was longer and most faults 

were detected by the first few tests. The approximation 

algorithm reduced the number of node evaluations from 2 to 

5 percent. Since the approximation cannot be used when 

using fault dropping, it should only be used when complete 

fault lists are required for each test. 
r· 

... / 

·>. 
( .. 

42 



Table 2. Effect on BDD Algorithm of Different Options 

Circuit G 0 D A Node Evaluations 

------------------ --- --- --- --- ----------------
32 input, single N - N - 459 051 

output parity y - N' .N 5 136 
tree y - ·N y 5 136 

all 436 faults y - y - 3 786 
detected 

50 cell adder N - N - 2 344 689 
2232 of 2302 faults N - y - 398 703 

detected by a set y N N N 217 629 
of 20 random test y N N y 212 677 
vectors y N y - 149 422 

y y N N 48 411 
y y N y 46 707 
y y y - 22 775 

G = Graph jumping enabled o = All outputs traced at once 
D = Fault dropping enabled A= Approximation enabled 

4.3 Comparisons with Other Methods 

Most timings reported in the literature are times to 

calculate test sets. Some test-set generation programs 

create test sets by selecting an untested fault and then 

attempting to find a test for it. Once a test is found, 

the programs runs a fault simulator to determine other 

faults detected by that test. The process is repeated 

until a suitable number of faults have been tested. Thus, 

the time to generate a test set of N vectors for a given 

circuit is at least an upper bound on a reasonable time 

that a fault simulator could spend on those same N 

43 

{j 

(}: 



vectors. On a single run for a circuit with 50 logic 

blocks, Roth et al. -[5] report a time of 45 seconds in 

DALG-II deriving tests and 30 seconds in TEST-DETECT doing 

fault simulation. Wang [6] claims his algorithm runs 

about twice as fast as Roth's. our algorithm can simulate 

a test set of 20 vectors with a coverage of about 97% on a 

50 cell adder with about 600 logic blocks in 31 seconds, 

so we can do several times the work in about the same 

amount of time. Cha et al. [7], however, claim to have 

generated 864 patterns for a 32-bit adder in 422 seconds 

on an IBM 370-168, or about 2 patterns per second. They 

do not say if they combine several patterns into each test 

vector. On the 50 cell adder, we can simulate 2 vectors 

in about 3 seconds. Accounting for the difference between 

50 and 32, we are slightly slower if each pattern is a 

complete test ·vector, or several times faster if they 

combine patterns. In addition, their IBM· mainframe is 

probably faster than our VAX. 

More recently, Waicukauski et al. (8] claim to have 

simulated 50,000 patterns on an 890 gate network in 3.2 

seconds on an IBM 3033, or about 72 nsec/gate-pattern. We 

require about 2.5 msec/gate-pattern, a factor of 30,000 

times longer. However, it would be fairly straight 

forward to modify our algorithm to trace 256 vectors at a 

time as they do. This wc1uld speed up our· algorithm by · a 

44 ) 



-

.\ 

• 

factor of 100, but if it does not, going to 512 or 1024 

vectors should. Also, their IBM 3033 is at least 10 times 

as fast as our VAX-11/750. This leaves a factor of 30 

remaining. The current implementation is entirely in, 

Pascal and contains extra instructions for counting calls 

to different procedures and for disabling certain features 

in order to produce information that was ~seful when 

modifying the algorithm. Rewriting the critical 

procedures in assembly language and deleting the extra 

instructions should make the program run at 1·east twice as 

fast, leaving us only about 10 times slower. We expect to 

start work on these modifications in the near future • 

5 Differences from Other Works 

Although Akers [l] first • using for BDD's suggested 

testing, he used diagrams that matched the gate network at 

a functional level only. According to Akers, a test set 

that fully I exercises all of the nodes and branches of a 

diagram would be useful in testing almost any reasonable 

implementation of its function. Villar and Bracho [3] use 

a modified BDD that they call an atomic digraph; however, 

they mainly use the digraph to assist in calculating the 

ring sum ofDthe good function with a faulty function to 

45 



derive 'test vectors. The distinguishing features of our 

BDD fault simulation algorithm·· are that 1) the BDD is 

related to the original network in such a way that faults 

' 

in the BDD can be mapped back to the network and 2) faulty 

simulation is not required for each node. 

6-: Conclusions 

A new algorithm was given for fault simulation on 

binary decision diagrams. The algorithm can trace from 

several outputs in one pass at little extra cost per 

output, can use fault dropping, and can make stem 

approximations when not using fault dropping. For one 

test vector on a circuit with one output the algorithm has 

approximately the same computational complexity as fault 

simulation algorithms based on gate-network tracing. When 

performing fault dropping and handling multiple observable 

outputs ir1 a single pass, the algorithm has a considerable 

advantage over gate-based path tracing. 

' 

46 
. {)_: 



REFERENCES 

[l] s. B. Akers, "Binary Decision Diagrams," IEEE 
Trans. Comp., vol. C-27, pp. 509-516, June 1978. 

[2] M. Abromovici, P. R. Menon, and D. T. Miller, 
"Critical Path Tracing: An Alternative to Fault 
Simulation," IEEE Design and Test of Computers, vol. 
1, pp. 83-93, Feb. 1984. 

[3] E. Villar ands. Bracho, "Fault Simulation and Test 
Generation in Combinational Circuits Using Atomic 
Digraphs," Int. J. Electronics, vol. 59, pp. 
461-470, 1985. 

[4] o. H. Ibarra and s. K. Sahni, "Polynomially 
Complete Fault Detection Problems," IEEE Trans. 
Comput., vol. C-24, pp. 242-249, Mar. 1975. 

[S-] J. P. Roth, W. G. Bouricius, and P. R. 
Schneider, "Programmed Algorithms to Compute Tests to 
Detect and Distinguish Between Failures in Logic 
Circuits," IEEE Trans. Elect. Comput., vol. EC-16, 
pp. 567-580, Oct. 1967. 

[6] D. T. Wang, "An Algorithm for the Generation of 
Test Sets for Combinational Logic Networks," IEEE 
Trans. Comput., vol. C-24, pp. 742-746, July 1975. 

[7] c. w. Cha, w. E. Donath, and F. Ozguner, 11 9-V 
Algorithm for Test Pattern Generation of 
Combinational Digital Circuits," IEEE Trans. 
Comput., vol. C-27, pp. 193-200, Mar. 1978. 

[B] J. A. Waicukauski, E. B. Eichelberger, D. o. 
Forlenza, E. Lindbloom, and T. McCarthy, "A 
Statistical Calculation of Fault Detection 
Probabilities by Fast Fault Simulation," Proceedings 
of the 1985 International Test Conference, pp. 
779-784. 

['9] A. K. Susskind, "Logic Simulation Based on Binary 
Decision Diagrams," Memorandum dated April, 1986. 

47 



.. VITA 

·N.ame: William Bader 

Pl·ace of Birth: Bethlehem, PA 

Date of Birth: September 10, 1964 

Parents: Dr. and Mrs. Merri~ Bader 

Institutions attended: 

Fall 1982 to summer 1986:: ·Leh.i;gh University 

May 1985: Bachelor of Science in 

:professional Experience: 

Computer Engineering (highest 
honors) 

July 1982 to Present: Programmer/Analyst at Software 
Consulting Services. Full 
time since May 1985. 

48 


	Lehigh University
	Lehigh Preserve
	1986

	Fault simulation using binary decision diagrams /
	William Bader
	Recommended Citation


	tmp.1551116526.pdf.23h1P

