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I 

A B S T I A C T 

The existing algorithms for nonlinear model reduction are very 

complicated. In this work a simple approach is presented which 

requires no extensive amount of computational effort and appears 

promising. The use of an identification technique (quasilinearization) 

along with a pseudosteady-state hypothesis is demonstrated to have 

successful application in nonlinear dynamic model reduction. 

The proposed approach was applied to a twelve-equation model of 

a low-density polyethylene chemical reactor and resulted • 1n a 

two-equation model which is in excellent agreement with the original 

system and exhibits significantly improved performance over a 

previously developed low-order model. Furthermore, quasilinearization 

was able to find a low-order model which approximated more than one 

dynamic response of the large scale system. 

Although, no claims for a rigorous approach are made, this work 

supports the contention that quasilinearization can contribute to 

nonlinear model reduction. Its application in practical situations, 

can provide simple and accurate approximants suitable for off- and on­

line control use. 
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Notation 

f 

(-~H) 

r* 

M* 

p 

Q 

Qr 

T * 

V 

"* 
Subscripts 

0 

1 

. -, 

N o m e n c 1 a t u r e 

= specific heat (0.57 kcal/kg. K) 

- activation energy (cal/mol) 

initiator efficiency factor 

- heat of polymerization (21.4 kcal/mol) 

initiator concentration (mol/LT) 

- rate constants 

- monomer concentration (mol/LT) -

- pressure (atm) -

- flow rate (LT/s) -

- recirculating flow rate (LT/s) -

- time (sec) 

- temperature (K) 

- volume (LT) 

- radicals concentration (mol/LT) -

- residence time (s) -

-- input conditions -

- volume 1 -
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Superscripts 
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= volume 2 

= volume 3 

= initiation 

= propagation 

= termination 

- reference condition 

- feed 1 

- feed 2 

- dimensional variable 
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Engineering 

represented by 

I N T R O D U C T I O N 

often deal with physical systems problems 

models which are much more complex than the 

capabilities of a given computing facility would allow the model to 

be. In these cases some degree of reduction becomes necessary if 

modern control techniques are to be employed. The reduced models 

designed for this purpose have applications in both on-line and 

off-line studies. In off-line applications it is desirable to have 

the minimum number of computations per second. On the other side, in 

on-line applications, especially in industrial processes, the tasks to 

be solved are more difficult since the computations must be very fast 

while the available machines are relatively small. In reality, in 

closed loop controllers, real-time data must be processed fast enough 

to drive the actuators that control the process. Therefore, an 

accurate low-order model is of great importance. 

The problem of determining reduced-order representations for 

large linear systems, which are able to describe the static and 

dynamic behavior of the system within defined bounds of accuracy, has 

been explored in numerous papers in the last two decades. Analysis to 

measure the performance of these techniques in order to decide which 

method is best is generally inconclusive, and the usual recommendation 

is to choose a technique which seems suitable for the particular 

circumstances prevailing. 
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Many of these methods use a dominant eigenvalue approach 

(Davison, 1966), a continued fraction • expansion (Chen and Shieh, 

1968), moment matching (Lal and Mitra, 1974), Pade-approximations 

(Slamash, 1974), a mixed Cauer form expansion (Shieh and Goldman, 

1974), Routh· approximations (Hutton and Friedland, 1975), 

approximations using orthogonal functions (Bistritz and Langholz, 

1979) or some direct approximation to the frequency response of the 

system transfer function (Hsia, 1972). 

While an extensive body of literature is available for reduction 

schemes for linear systems, few results are available in the 

literature regarding methods suitable for use with nonlinear dynamic 

systems. Quite often to find an accurate approximant that has only a 

few ot the states and terms of the original model, one is forced to 

design and test all possible approximants to find the optimal one. 

This exhaustive approach involves the consideration of an enormous 

number 

systems 

of 

• 
lS 

models. In other cases, control of large scale nonlinear 

achieved by linearizing the original model, performing a 

model reduction and then designing a controller for the reduced 

order,linear system. However, retaining the dominant nonlinearities 

in the reduced model and then linearizing may lead to improved 

performance. 

A. A. Desrochers has published a number of papers [1,2] 

• proposing an algorithm based on conj~gate direction ideas and 

projection matrices which leads to simplification and/or reduction of 

the original model. Each model structure is represented as a node in 

6 
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a tree and costs are assigned along the branches of the tree relating 

the importance of each model term. Although the method has 

experienced some success, it requires a large amount of computational 

effort and it may not lead to reduction but only simplification of the 

model. 

Another reduction technique was proposed by Masri, Miller, Sassi 

and Caughey for discrete multidegree-of-freedom dynamic systems that 

possess arbitrary nonlinear characteristics. The method uses 

conventional condensation techniques for linear systems along with 

nonparametric identification developments and may be used in the field 

of applied mechanics. 

In this work, an identification algorithm (quasilinearization by 

Bellman and Kalaba [4,5]), along with a pseudosteady-state hypothesis 

for some of the system states, is employed for nonlinear dynamic model 

reduction. 

problems 

The motivation for the approach presented is that many 

of current interest have essential nonlinearities, so 

linearization • is an unacceptable approximation . Furthermore, 

controllers based on models (model-based controllers) must complete 

their calculations quickly if control is to be effective. Therefore, 

nonlinear model reduction is often important. On the other side, 

quasilinearization is of limited usefulness in system identification 

because of its generally small 
. 

region of convergence and 

susceptibility to • noise. However, • in its favor are quadratic 

convergence properties, its reliance on the powerful general-purpose 

ODE solvers available and its easy implement~tion. Therefore, this 

7 



work demonstrates that quasilinearization is an effective model 

reduction tool in whose application the mentioned disadvantages are 

less limiting. 

The first section describes the quasilinearization algorithm 

with its various simplifications, followed by an example where some 

difficulties (i.e. small region of convergence) of the method are 

discussed. The next section presents the original model, a twelve-

order system of a low-density polyethylene reactor, and the 

development of the reduced model, a two-equation model. In the third 

section, the quasilinearization technique is employed for the 

parameter identification of the reduced model. Finally, the dynamic 

responses of the original, a previously developed low-order model and 

the proposed model are compared for several step input changes . 
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1.1 General Description 

CHAPTER ONE 

QUASILINEARIZATION 

Parameter estimation in systems described by a set of ordinary 

differential equations is of great importance in process modelling, 

simulation and optimization. A very powerful technique is the 

quasilinearization approach first introduced by Bellman and Kalaba 

[3, 4] for solving boundary value problems • • ar1s1ng in nonlinear 

differential equations. Its application to the identification of 

parameters of nonlinear systems is due to Kumar and Shridar [5], Sage 

and Eisenberg [ 6] ' and Detchmendy and Shridar [7] . 

By quasilinearization the nonlinear problem • regarded as the lS 

limit of a sequence of linear problems. It may be applied to 

continuous or discrete systems [8] . The form of the nonlinear 

equations must be known a-priori and the parameters to be identified 

are assumed stationary. The method is of particular importance 

because measurements on all of the states are not required. Given a 

sufficient number of measurements of some states, the present approach 

may yield estimates of both the parameters and the initial values of 

the other states simultaneously. 

Starting from an initial trial solution, convergence occurs 

rapidly if the initial guess is "close enough" to the true solutiori. 

g 
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Small region of convergence is a problem for the method and several 

attempts have been made to overcome it [9,10,11,12]. 

1.2 Problem Statement 

Consider a nonlinear system given by: 

(1.1) 

where: ! : n-dimensional nonlinear function, 

! : n-dimensional state vector, 

B : r-dimensional parameter vector, 

M : q-dimensional input vector. 

The output vector i(t) is related to the state vector by a linear 

relationship: 

l (t) = £ :S ( t) (1. 2) 

where C is the 
N 

(mxn) observation matrix, which is assumed to be 

constant, since this 
. 
lS the case for most situations. The reader 

should consult Kalogerakis and Luus [13] for a nonlinear relationship 

between output and state vector. 

The problem is to· estimate the unknown parameter vector 2, which 

minimizes the sum of the squared errors: 

N T N N 

S = E [ l (t . ) - l ( t . ) ] Q ( t . ) [ l ( t . ) - l ( t . ) ] 
i=l 1 1 1 1 1 

I, . , 

(1. 3) 

10 



where: i(ti) : given measurements of the output vector, 

N 

i(ti) : estimated output vector, 

g(t.) : (mxm) positive definite, symmetric weighting matrix. 
1 

1.3 Quasilinearization Method 

First, the elements of E are assumed stationary and then an augmented 

state vector is defined by: 

• 
X 
"' 

X 
N 

z -
"' ' 

where • z -
"' 0 

N 

Therefore, equation (1.1) becomes: 

(1. 4) 

Employing a first order Taylor-series • expansion, we derive the 

(j+l)th estimate for • z 
"' 

from the jth estimate as follows: 

j+l 
! ' M ) - '£( (1. 5) 

Note that equation (1.5) is linear in !j+l and may be expressed as: 

(1 ~ 6) 

where: 

11 
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hJ = ! (il,M) - AJ!J 

Equation (1.6) has the general solution: 

(1. 7) 

where !j+l(t) is the (n+r)x(n+r) dimensional homogeneous solution 

matrix given by: 

(1. 8) 

and is the particular solution which satisfies the 

following equation: 

(1. 9) 

The estimated output may be expressed as: 

(1.10) 

Substitution of (1.10) into (1.7) yields: 

(1.11) 

The optimal !j+l(O) is the one which minimizes the squared error Sin 

equation {1. 3) . 

,. 

12 
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Substituting (1.11) into (1.3), we get : 

is chosen by m1n1m1z1ng • • • • S by considering the condition 

Q.§J.+1 -- 0 h0 h . ld Oz , W lC y1e S: 
N 

(l. 12) 

where: 

Solving the system (1.12), !j+l(O) is obtained and with this value the 

above procedure is repeated to yield !j+2 (0) and thus a sequence of 

1 
parameter vectors is calculated. It is found that the sequence! (0), 

2 ! (0), ..... , converges ~ickly to the optimum if the initial guess 

!O(O) is sufficiently good. 

13 



1.4 Algorithm 

Therefore, the algorithm has the following steps: 

• 

Step 1: Select an initial value !J(O) and set j=O. 

Step 2: Solve equations (1.6), (1.8) and (1.9) simultaneously to 

• • • 

obtain !J(ti)' !J(ti) and gJ(ti)' i=l,2, .... ,N. 

Step 3: Solve equation (1.12) for !j+l(O). 

Step 4: If 

< E ' 

where Eis a preset convergence criterion, 

otherwise set: 

increase j by one and return to step (2). 

stop; 

The total number of differential equations that are integrated at each 

iteration is: 

. 
n to generate !J(t), 

n(n+r) - for the non-trivial components of the homogeneous solution 

matrix !(t), 

n for the non-trivial elements of the particular solution, 

for 
2 a total of n + 2n + nr. This represents a maximum number and may 

be reduced in individual cases. 

14 



1.5 Simplifications 

1. The particular solution can be calculated at each iteration 

from Eqn. (1.7) and therefore the total number can be reduced 

to 2 n +n+nr. 

2. If the initial condition !o for the state vector is 

available, then using also Eqn. (1.7) instead of (1.9), the 

total number is reduced to n(l+r) differential equations 

[ 11] . 

1.8 Example 
I 

Consider an unforced second order system which describes a nonlinear 

oscillator: 

(1.13) 

where c
1

, c2 and c3 are constant parameters to be identified. 

If we define: 

• 
X 

X -2 - X 

equation (1.13) can be expressed as a system of two first order 

ordinary differential equations: 

(1.14) 

15 



or where 

An augmented state vector! is defined as: 

and (1.14) becomes: 

• 
C 1 

or 

The Jacobian matrix is given by: 

where: 

J - QI -
N - az -

N 

1 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

16 

0 

0 

0 

( 1. 15) 



R -4 -

R -5 -

3 -x 1 

-x 1 

2 -x 
2 

The elements of the homogeneous solution matrix !(t) are generated 

by solving the following set of differential equations: 

• 

;11= Rl;ll+ R2;21 ' ;11 (0)=1 

• 
;12= R1;12+ R2;22 ' 

• 
¢13= R1¢13+ R2;23 ' 

• 
¢14= R1¢14+ R2¢24 ' 

• 
;15= R1¢15+ R2;25 ' 

(1.16) 
' 

' 

' 

' 

' 
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The particular solution g(t) is given by: 

(1.17) 

Thus at each iteration : 

• 14 differential equations are integrated: 

2 - to generate ! (t) [Eqn. (1.14) J . 

10 - for the non-trivial components of ! ( t) [Eqn. (1. 16) J . 

2 - for the non-trivial elements of g(t) [Eqn. (1.17)]. 

• the following system is solved for a new estimate of !(O): 

where 

N 
- [ i(ti) [y(ti)-q2(ti)] 

i=l 
( 1. 18) 

and y(t.) are noise-free measurements generated by integrating (1.14) 
1 

with: i(O) - 1.0 

X (Q) - 0.0 

- 3.0 

c2 - -0.1 

C3 - 1.0 

18 



The minimum number ( N=5) of measurements, sampled every .2 seconds, 

is used along with the initial guess: 

T ! (0) = [2.0 0.6 2.0 0.5 2.0] 

It takes 1.44 CPU seconds on the LUCC CYBER 850 for the algorithm to 

converge to the exact solution with E=.001: 

T z (0) - [1.0 0.5 3.0 -0.1 1.0] 
N exact 

1.7 Difficulties 

Quasilinearization • 
lS a second-order iterative process and 

convergence, if it occurs at all, is quadratic and hence rapid. 

However, if the initial value !O(O) is not sufficiently close to the 

exact vector z t(O), then convergence may not occur. The following 
""exac 

difficulties have been noticed: 

• small region of convergence, 

• the region of convergence is significantly reduced when a large 

number of measurements is used. 

Even though !O(O) [ 1 . 
' 

.5, 4. ,-.1 , 3.] seems a good guess, 

the algorithm was unable to identify c1 _and c3 . With initial guess 

!O(O) = (1. , .5 , 0. ,-.1 ,O.] and the minimum number of measurements 

( N=5 ) convergence occurs, but if more measurements are taken 

( N=20 ), then the algorithm fails. 

19 
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However, with N - j x (n+r) (where j is the iteration number) a 

significant 

achieved. 

• increase in the • size of the region of convergence is 

Numerous approaches have been made to overcome this major 

problem of quasilinearization. Among them are, perturbed data by 

Donnelly and Quon [9] ' linear • programming by Nieman and Fisher 

[10] ,shorter data length by Wang and Luus [11], and direct search 

optimization by Luus and Jaakola [14]. 

Finally, the solution of the system (1.18) proves to be quite an 

important portion of the algorithm [7]. In an ill-conditioned system 

the algorithm experiences difficulty in converging. Eventhough it is 

often difficult to distinguish between properties of the algorithm 

itself ( small region of convergence ) and properties of the 

particular problem ( ill-conditioned system ), a large condition 

number indicates the ill-conditioning of the system. An estimate of 

the standard condition number can be calculated by I I ,-11 I I I WI I 

where: 

11 w 11 - max [ I elements in a row I. 
row 

20 
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2.1 General Description 
L 

CHAPTER TWO 

M O D E L 

Commercially available polyethylene is manufactured either by a 

low-pressure process which yields a high-density product or by a high 

pressure process for low density polyethylene. The high-pressure 

process can be undertaken by any one of the four common polymerization 

techniques: bulk polymerization, solution polymerization, suspension 

polymerization and emulsion polymerization. The bulk technique, which 

is most commonly used, requires a highly purified ethylene stream and 

process pressure between 1000 and 3000 atm. 

Two . main commercial reactor designs have been developed: the 

tubular reactor and the stirred autoclave reactor. Reactor 

temperatures range between 100 and 300°C. Temperatures above 300°C 

are avoided because ethylene decomposition may occur. Successful 

operation of the reactor requires the proper selection of an initiator 

and the control of its injection rate, since this can significantly 

affect the polymerization rate and the temperature profile. 

The development of a mathematical model which accurately 

predicts reactor performance is of practical importance and can 

contribute to the solution of many engineering problems. A number of 

researchers have made studies of polymerization reactor systems. 

Since 1970 it has been known (van der Molen and van Heerden) that the 

21 



operating conditions and the degree of mixing in the reactor affect 

the initiator productivity, but only in 1981 did van der Molen, Koenen 

and Donati [15,16] publish a number of experimental results from which 

this influence became obvious. Recently, in 1984, Marini and 

Georgakis [17] introduced two dynamic models for the low-density 

polymerization reactor; the first model assumes perfect mixture in the 

reactor and the second includes the • • phenomena near the m1x1ng 

injection point. 

2.2 Perfectly mixed model (model A) 

Assuming that: 

•any concentration or temperature gradient is negligible, 

•the physical properties of the reacting medium do not change 

from input to output and 

•the heat effect of the initiation and termination steps is not 

considerable, 

then from mass and enthalpy balances the following set of equations 

can be derived: 

(2 .1) 

22 



I 

where: 

I= initiator concentration, 

X = radical concentration, 

M - monomer concentration, 

T - temperature. 

The above system of equations was made dimensionless with respect to a 

reference temperature Ti, a reference feed initiator Ii and the input 

monomer concentration Model A predicts a continuous decrease in 

the initiator consumption when the polymerization temperature 

increases. However, experimental data show that this is true only for 

the region of low temperatures .. 

, , 

CSTR 

Q, I, T, M, X _ -

Figure 2.1 Schematic presentation of model A. 
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2.3 Imperfectly mixed model (model B) 

In this model the entire reactor is divided into three CSTR's in 

series (Fig. 2.2). The first two units, which represent a small part 

of the total reactor ( V1= v2~ 5% ), are employed to model the 

conditions at the injection point. v3 is the remaining part of the 

reactor and in this unit the main polymerization takes place. Two 

external feeds are considered: Q1 represents a cold stream of 

initiator and ethylene and Q2 • 
1S a feed which comes from another 

reaction zone in a multiple zone reactor and contains a negligible 

amount of initiator. 

,, 
v1 -

Qr 
..... 

~ , 
v2 .... Qr 

,...,,. 

Q2, Io, To, AO' KO 
, r , I 

2Q 
v3 

r ~ ... 

ql+ Q~ 13, A3, M3, T3 
. .... 

Figure 2.2 Schematic presentation of model B. 
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A set of twelve nonlinear differential equations is derived by 

applying mass and energy balances to each of the three units: 

25 



Model B • gives the same steady-state prediction as model A for 

the low temperature • region and at high temperatures it predicts 

correctly the increase of initiator consumption with temperature. The 

difference between the two models can be explained by the fact that 

the decomposition time of the initiator becomes smaller than the 

overall residence time and makes necessary the introduction of V1 and 

v
2

. In model B at high temperatures a great amount 0£ produced 

radicals is wasted in v1 and v2 through the termination reaction and 

this leads to the observed increase in the initiator consumption. In 

Figure 2.3 a comparison between the two models is shown. 

26 
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I 
I 

I 

120. I 

s::. 
~ 90. 
E 
E 1-2 _.... 

"i-,60. 

~ 

0 30 . .... 
D ·-... ·-C: - 0. 

100. 

1- 2 2 

I I Model A 

2 1 Model B 

reoion of 
industrial intereat r ., 

200. 300. 
Polymerization Temperature (0 c) 

Figure 2.3: Change of initiator consumption with polymerization 

temperature for model A and model B. Initiator #10, Q=70[Kg/h], 

P=1570[atm]. 

r 
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2.4 Reduced Model 

Generally, the development of an accurate mathematical model is 

of great importance but very often this model, due to its complexity, 

becomes unsuitable for on-line process control. Many researchers have 

studied model reduction and simplification and a large number of 

methods have been developed, so that the original model can be 

replaced by a simpler and to some extent accurate model. However, 

most of them are applicable to linear systems and only a few can be 

found for nonlinear cases [1,2]. 

For the low-density polymerization process, model B produces , 

results very close to the experimental data but it is not suitable for 

-
on-line use because a large amount of computational time is required. 

On the other side, the simple model A is not acceptable due to its 

inaccurate predictions for the high temperature region. Here a new 

model is developed which is economical to evaluate and accurate, thus 

suitable for on-line purposes. 

First consider the perfectly mixed model A, described by Eqns. 

(2.1). Of the four eigenvalues obtained from these equations, two are 

always very fast (-1000) compared to the dominant eigenvalues (-1,-3). 

In addition, the initiator and radical concentrations have very small 

residues corresponding to the dominant eigenvalues. Therefore, the 

pseudosteady-state hypothesis can be made for the initiator and 

radical concentrations and they can be expressed as functions of 

temperature and initiator feed: 

28 
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(2. 3) 

where: 

and 

C = • 

Because b 
-8 is of order 10 , it can be neglected and then the second 

equation in (2.3) becomes: 

A=./ -c 

Substitution of initiator and radical concentration, I and A, into 

(2. 1) 
. 

gives: 

(2.4) 

where: 

29 
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At this point, we focus our attention only on the dynamic performance 

of the system and we will employ quasilinearization to identify c1 and 

c2 , so that equations {2.4) represent the dynamic responses of the 

physical system (reactor) accurately. 

In order to satisfy the original steady state of the system for every 

value of the parameters c1 and c2 , equations (2.4) are rearranged as 

follows: 

where: 

gM - M 
dt s 

~ --

T0-T0s is the change in input temperature, 

I 0-I0s is the change in initiator feed and 

M, T are monomer concentration and polymerization 
s s 

temperature for T0s and I 05 . 

30 
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CHAPTBI TRIBE 

TBB USE OF QUASILINEAlIZATION FOi MODEL REDUCTION 

3.1 Computational Algorithm 

The computational algorithm that is used to solve the proposed problem 

is a modification of the usual quasilinearization procedure [11]. 

First consider the reduced model (2.6) which in matrix form is: 

where: 

M 

T 
and B -

Therefore n=2 (# of equations) and r=2 (# of unknowns). The 

polymerization temperature is considered to be the output on which 

measurements will be taken, hence: 

y = T = [O 1] ! 

Applying the quasilinearization procedure as outlined in chapter 

one, we derive six [n(r+l)] differential equations to be integnated 

and a linear system to be solved at each iteration step. 

Secondly let us define: 

Q - oR 
oT = [7 -p 

+ J 

where Risa function of T and I given by equation (2.5). 
0 
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• 

Thirdly define: 

wheres is referring to the original steady state of the system. 

Then the Jacobian matrix is given by: 

J = 
N 

c R - 1 
1 

and the homogeneous solution matrix~ is generated by integrating the 

following set of differential equations: 

• 

¢11 
- (c1R l)¢11+ clM Q¢21+ G ;11 (0)=0 - ' 

• 

;12 
- (c1R t);12 + clM Q;22 ;12(0)=0 - ' (3.1) 

• 

;21 
- c2R¢11 + (c2M Q l)¢21 ¢21 (0)=0 - ' 

• 

¢22 
- c2R¢12 + (c2M Q l)¢22 + G ¢22(0)=0 - ' 

In addition, the particular solution 9 is obtained from: 

(3.2) 

Finally, the parameters c1 and c2 are calculated by solving the system 

(1.12) which 
. . 1n our case 1s: 

w 
"" 

- d 
N 
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.. 

where: 

N 
W = E 
N 

i=l 

2 
¢21 (ti) 

¢21Cti);22Cti) 

{ y(t.) - q2(t.) } . 
1 1 

The y(t.) are noise-free measurements generated by simulating the 
1 

twelve-equation, imperfectly mixed model B (Eqn. 2.2} which represents 

the reactor in our case. 

The following parameters are used for the integration: 

fluid-mechanic parameters: 

a - 0.5 

E - - 3.75 

kinetic parameters: 

initiator #10 

initiator #12 

propagation 

termination 

/3 = 2.942 

' 

Da1=97.468, 71=35.011, f=0.60 

Da1=20.719, 71=35.90, 

: D~=278.05, 7p=8.084 

: Dar=l.22E7, 7T=l.115 
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reactor conditions: 

residence time r = 26.9 sec 

reference temperature 

reference initiator feed * IR= 36.74 mmol/h 

operating pressure P = 1570 atm 

input monomer concentration * M = 18.71 mmol/lt 
0 

Therefore at each iteration equations (2.6) and (3.1) are integrated 

simultaneously and then the particular solution is obtained from 

equation (3.2). Finally the system (3.3) is solved for the parameter 

vector. 

The LUCC CYBER 850 is employed along with the IMSL subroutine 

DGEAR (a variable-step, variable-order Adams method) to integrate the 

twelve nonlinear equations of model B in order to generate the 

observations. The measurements are uniformly spaced on the time axis 

with a sampling period of 1.076 sec. 

In general it has been observed that a trade-off is involved in 

selecting the length of the time interval corresponding to the first N 

measurements. From one point of view, a time interval as small as 

possible should be used at the beginning. The selection of parameter 

vector which will generate a trajectory close to the observed one 

becomes easier as shorter time intervals are considered. The other 

point of view is that the initial time interval has to be sufficiently 

\ 
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long so that the estimated parameters are close enough to the exact 

ones. 

Detchmendy and Sridhar [7] have indicated, that a number of 

measurements (N) equal to approximately ten to fifteen times the 

• • number of measurements produces satisfactory results m1n1mum 

(convergence occurs in 3 to 5 iterations). We start the algorithm 

with: 

N = 5 x r 
0 

and increase this number gradually 

N = j X N ' 
0 

• 
J iteration number 

until the entire interval of interest has been used or until the 

estimates of the parameters change by a small percentage as additional 

measurements are added. An E equal 0.0001 is taken in the convergence 

criterion. 

3.2 Results 

A number of computer experiments are performed in order to test the 

proposed algorithm on the problem under consideration. 

Change of initiator feed rate. A step change of initiator feed 

1* from 55.11 (mmol/h) to 91.85 (mmol/h) is applied to model B to 
0 

produce the observations, while feed temperature is constant at 70°C. 

In table 1 the parameters are given along with the number of 

iterations and the required execution time for different time 

intervals. 
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Table 1. 

Data Length Iterations cpu Time 

(sec) (sec) 

5.38 [ 10] -15.1628 1.6750 4 .129 

10.76 [20] -17.0088 1.7269 5 .205 

26.90 [50] -16.9286 1.7226 6 .339 

37.66 [70] -16.8364 1.7173 g .604 

53.80 [100] -16.7671 1.7131 12 .998 
~ i 

The numbers in the brackets indicate the total number of 

measurements used. Obviously as N increases the number of iterations 

and the cpu time increase and the two-equation model exhibits closer 

dynamic performance. Figure 3.1 displays a comparison between the 

two models for various data lengths. For the 5.38 sec time interval 

(N=lO) the reduced model approximates model B with an error of 1.1 

degrees at steady state which is small compared to the polymerization 

temperature of 230°C. Furthermore, by employing 20, 50 or 100 

measurements the above error becomes negligible and the two models 

exhibit almost identical transients. Consequently, the reduced model 

is in excellent agreement with model Band could be used for on-line 

control of polymerization temperature. 

Change of feed temperature. A step change of feed 

* temperature,T, from 70°C to 60°C is applied to model B with feed 
. 0 
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* initiator I constant at 1.95 (I =71.645 mmol/h). In Figure 3.2 model 
0 0 

B and the two equation model with N=50 are shown to produce dynamic 

responses which are very similar. 

Change of initiator type. At this time the type of initiator is 

changed from #10 to #12 with feed temperature at 70°C and feed 

initiator I at 1.95 
0 

* (I =71.645 mmol/h). Even though polymerization 
0 

temperature changes dramatically from 225°C to 265°C the reduced model 

is able to reproduce this transient as is shown in Figure 3.3. 

Finally, the algorithm was employed to find a low-order model 

which could approximate more than one dynamic response of the original 

model. Data from two dynamic responses were considered: 

• change of initiator feed from 55.11 ·to 91.85 (mmol/h), 

• change of initiator feed from 73.48 to 110.22 (mmol/h). 

The algorithm successfully converged. Obviously, the approximations 

are not as good as the • previous ones (one dynamic response 

considered). However, using a weighting factor one of them can be 

improved while perhaps keeping the second within acceptable limits. 
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Figure 3.1 Comparison between model B ( 1) and reduced model ( 2) 

for a step change in feed initiator from 55.11 (mmol/h) to 91.85 

(mmol/h) for various data lengths. 
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3.3 Region of convergence. 

Quasilinearization is known for its quadratic convergence to 

the optimum, but it appears to have a small region of convergence. 

The 
. 

size of the region varies for different systems and becomes very 

small when strong nonlinearities are involved in the physical system. 

In addition, it has been observed that the data length affects the 

size of the • region. With a large number of measurements a good 

initial guess is needed in order to secure convergence. Figures 3.4 

and 3.5 display the region of convergence for our model for two cases: 

1) the algorithm begins with ten measurements and gradually 

increases them to fifty, 

2) the procedure employs fifty measurements from_ the beginning 

and keeps this number constant. 

The enclosed area contains all the initial guesses for which the 

algorithm 
. 
is able to identify parameters c1 and c2 . However, this· 

does not imply that outside that boundary divergence always occurs. 

In fact, the dots in Figures 3.4 and 3.5 indicate initial guesses for 

which successful runs occurred. Thus the limits of the region of 

convergence are not well defined, rather there is a transition area 

between the regions of convergence and divergence. 

In the second case a reduction of the region is obtained which 

however is not significant. Moreover, there are points on the c1 ,c2 

plane which are good initial guesses for this case but they cause 
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divergence in the first case (-100, 10). Consequently, we can say 

that an increased time interval may decrease the size of the region of 

convergence (closed area) but may not lessen the transition region. 

The shape of the region could be explained by the fact that the 

output of the system, T, depends directly on c2 , since only c2 is 

involved in the second equation of the model, and indirectly on the 

other parameter. Therefore a change in c1 does not affect the output 

as much as a similar change in c2 does. This can be seen also in the 

homogeneous solution matrix, which is the sensitivity matrix for 

outputs linearly related to the state [18], where ¢22 is three orders 

larger than ¢21 . For the above reason the region of convergence 

appears to be wider along the c1 axis than along the c2 axis. 

3.4 State variables. 

Of the two state variables of the reduced model, x2 has been 

made to be the polymerization temperature, T, with excellent results, 

as we have seen in the previous sections of this chapter. Because 

on-line accurate measurements of the monomer concentration are not 

easy, only temperature Twas considered in the output with the hope 

that x1 will be close to the monomer concentration M, since the first 

equation came from the monomer equation of model A. However, this did 

not happen and x1 has no physical meaning for the reactor. The fact 
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that we have changed significantly the equations from (2.4) to (2.5) 

when we forced them to satisfy the original steady state for every 

value of and c2 can explain the above result. Thus our model 

represents the polymerization temperature T • 1n the reactor with 

respect to feed temperature and feed initiator. Since x1 is not the 

monomer concentration M, this can explain why the ratio c2/c1 is not 

equal top in the proposed model. 

3.5 Previous Reduced Model 

Georgakis and Marini [18] have proposed a two equation model 

which, along with a "reaction rate controller", performs 

satisfactorily throughout the range of operating conditions of 

industrial interest. This model consists of two equations which 

basically come from a reduction of model A and have the following 

form: 

• M - 1 - M - R 

(3. 5) 

• 
T - T - T + p R 

0 

where: 

R = M F(T) .Jr with 
0 

F(T) = Da exp[g(l-1/T)] J r./(l+r.+ar.r.). 
1 1 1 1 

' 
and 
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Constant a takes into account the fluid dynamic characteristics of the 

reactor model and is given by: 

a= 0.4 
mixing time 
residence time • 

Figures 3.6, 3.7, 3.8 display a comparison between model B, reduced 

model by Georgakis-Marini and the proposed model. 
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C O N C L U S I O N S 

Employing a pseudosteady-state hypothesis for some of the system 

states, which is· justified by the fact that these states have very 

small residues corresponding to the slow eigenvalues, a reduced model 

was obtained and then quasilinearization was used to identify the 

unknown parameters. The algorithm experienced no difficulty • 
1n 

converging when the initial guesses were close enough to the exact 

values. It was observed that the limits of the region of convergence 

are not well defined but there is a transition area between the 

regions of convergence and divergence. 

The proposed model, a two-equation nonlinear model, accurately 

approximates the dynamic performance of a low-density polyethylene 

reactor for changes on type or quantity of initiator or feed 

temperature. In addition, it was found to exhibit significantly 

improved performance over a previously developed low-order model for 

the low-density polyethylene reactor by Marini and Georgakis. 

Since measurements only from the reactor temperature were 

considered, one of the reduced model states represents the 

polymerization temperature but the other has no physical meaning for 

the reactor. However, this does not weaken the proposed model since 

in practice only temperature can be measured and thus used in control 

structures. 

Attempts were also ·made to employ this approach in order to find 

a reduced model able to approximate more than one dynamic responses of 

the original system. Thus data from two dynamic responses were 
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considered and the parameters were successfully identified. 

Obviously, the approximations were not as good as in the case of one 

response considered. However, with a weighting factor one of the two 

approximations was improved while the second remained within 

acceptable limits of accuracy. 

This work supports the fact that by combining quasilinearization 

and pseudosteady-state (where it is applicable) or sensitivity of the 

output to the several states for model reduction, simple and accurate 

low-order models can be obtained. This technique may be applied on 

practical situations where no need for the optimal reduced model 

exists. Its • main advantages are those of quasilinearization: fast 

convergence and no need for measurements from all the system states. 

It seems promising even for on-line applications since with a small 

number of measurements it could be able to predict dynamic responses 

close to the real ones. Furthermore, if direct search optimization 

(14) or any other technique (9,11,12,13) is used along then the 

problem of small region of convergence could be overcome and 

successful runs are almost guaranteed. 

Consequently, no claim of a rigorous method is made but some 

results are presented which support that quasilinearization is of 

great importance and can contribute to solving the problem of model 

reduction in practical situations and thus allowing the on~line use of 

control techniques on large scale dynamic nonlinear systems. 
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