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ABSTRACT 

·This thesis involye·s: ·the investigat·ion of the 

:f·or.ces/·torque relationship, and their possible effects on 

'th·e deep hole drilling· process. 

An experiment, using central compos·ite design,. ~tas . . ·; .... 

Ct:>nducted and the forces/torque were recorded during the, 

cutting period. Tool flank wear was measured after each 

.cut. The response model was determined to use a three~ 

va.riable second order equation to represent both the main 

effects and the interaction and quadractic effects of the 

~achining parameters. Machining parameters included 

cutting speed, feed and length of cut to diameter ratio ( 

L/d ratio ) . Response contour plots were dra·wn to aid to' 

vi.sualize the response pattern of each forces/torque and 

·w,ear model. 

The result of this investigation leads.· into a bett:e.r 

understanding of the operations of the deep hole 

drilling. Response surface methodology was used to aid 

in the selection of the optimal cutting conditions in 

d~$P hole drilling. 
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CHAPl'ER ONE 

IN'l'RODUCTION AND STATEMENTS OF OBJECTIVES 

1.1 Introduction 

Deep hole drilling has been a special topic 
,-. 
in 

drilling operations,··,---Al though the question, how deep is 

deep, is still an ui'S&t.tled argument, .the Machi~ing Data · 

Handbook [20] recommends to lower the speed and feedrate 

it the length of cut to diameter ratio is more than 2. 

A manufacturing difficulty parameter was proposed by 

:a·,urnham [ 4] to estimate the degree of difficulty for 

d:rilling and to define _ the limitation of length in 

c·onv:ent.ional drilling$ The suggested parameter, Jo, wa.s 

e-xpres.sed in the following form : t 

Jo:,,,>= 
Hb X (L/d) 2 X fO.S 

I • 

___ 411a: _____________________ _ 

(68203) X d 1 • 2 
(1.1) 

w re, L : length of c11t in inch 
d·: diameter of drill in inch 

. f : f eedrate in IPR 

It was suggested by Burnham that when the parameter 

Jo is less than or equal· to one, ·a conventional drilling 

~ethod could be employed. Otherwise, it would become 
' 

mandatory to use non-traditional material removal methods 

such· as ECM and EDM for hole-making that requires 

.. ' . , 

•, .::~.· 
;·.1 .•. 

·:,. 

1(,· 

" 

,· 
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Adcuracy on the hole st~aightness. 

,· 

There have been three problem areas which frequently 

occur in deep hole drilling: 

a. Hole surface quality 
/ ' 

I 

b. Path wander and tool breakage in the workpiece 
·'· 

c. Replacement strategy for the worn drill 

.Hole surface quality, typically measured as surface 

'finish, · is not an essential problem for the hole making 

' process because one could simply bore the hole for .. 

surface finish improvement after the plain drilling 

o·p er at ion. Naturally this would increase the 

manufacturing cost. 

The straightness of a drill path and prevention o·f 
,. 

drill breakage in the work material are the critical 

.~_problems in deep hole drilling. The tendency of a twist 

drill to "drift" from a straight direction, is well known. 

A ·typ·i.ca.·1 drill will break in the wqrk materi~l if .t>Ile 

in·c-reases the feedrate and speed to shorten the drilling· 

process time without considering the critical load on tbe 

drill. The critical load of a ~rill depends on the 

material property, the geometry of a drill and the length 

of the hole. Burnham [4] has inferred that the thrust 
' 

· force could serve as a measurable index of the critical 

3. 

"' ·.---...-
I ·1• 

"\ . ·,: . 
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load for the drill. 

f 

One operating functio;ri which has yet to l:>eco)n~ 

totally automated economically under tomputer numerical 

control is tool wear monitoring. The decision to replace 

or to resharpen a worn drill is still nearl.y the functi.:cin 

of an experienced operator. Yee and Blomquist [30] have. 

de~eloped a successful on~line method of determining todl 

wear and predicting drill breakage by applying time 

-domain analysis to the accelerometer signal. One problem 

still needed to be solved is the determination of the 

threshold value of the accelerometer signal of different 

size drills under different cutting conditions. 
) 

According to Farris and Pedder [2], the end of tool life 

can be accurately determined for all practical purposes 

by monitoring the rate of change of thrust and torque_ 

Their investigation indicated that: 

I 

"Tool breakage occurs when the present rate of change 

- ~·~·.· ~- •• •• 'T 

in the thrust and torque is bigger than previous 
rate of change in thrust and torque plus a safty 
coefficierrt." 

It is suggested from such observations that a 

machining. condition selection strategy is needed for the 

deep hole drilling operation. A strategy _which will 

·compensate for the contrasts in different drilling 

• 
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• 

performance indexes can be used as a ·control mechanism 
. . 

for future invest.igations in developing an adaptive 

control system. . . 

1.2 Objective statement and approach 

The purpose of this research is :to .investigate the 

performance of deep hole drilling. -The experim~nt is 

designed to investigate the optimum cutting condition by 

constructirig empirical models for predicting th~·be~avior 

of different drilling peration responses. The responses 

·¢onsidered are tool wear, cutting time, drilling forces· 

~nd the rate of change in drilling forces. After 

emperically determining predicting models and locating 

the optimum condition for deep hole twist drilling, this 

research will recommend a strategy for selecting 

.machining condition for improved drilling performance. 

'\, 

"(L;' 

·.d\ 

5· 
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CHAPI'ER TWO 

LITERATURE REVIEW 

• 

.,.,.~··tr. 

Previous research in· drilling has investigated the 
\ 

effect of the primary independent variables of cutting 

.s.peed, feedrate and length of cut on the reponse 

vari·ables of drill flank wear and thrust force( 

{ 1 i ;:> , 3 ; 4 , 7 , 8 , 10 , .12 ] 

For this 

f:acuses on the 

investigation, 

~ollowing topics: 

the literature review 

' . 

·a. Hole surface quality and thrust force .• 

b. Path wander, drill breakage and thrust.· f.orce. 
" 

c. Workpiece hardness and thrust f orc.e···· 
,• 

d. Drill flank w·ear and thrust force. 

2.1 Hole surface quality and thrust force 

'I' 

~ t:, 

Radhakrishnan and Wu [10] proposed.an 6n-line hole 

quality evaluation method in drilling a composite 

lllti\terial. The aµthors defined a lamiqation frequency, F, 
"" 

which corresponded to the rate at which· the drill 

penetrate through the layers of the laminated composite 

work material. The lamination frequency was given by 

'6 

·;.· . 

\J· 
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• 

# of lamination per inch for composite materail 
F = ----------------------------------------------- (2.1) 

Time for drill to penetrate an inch of material 

I 

During the process of· drilling the composite 

material, a low frequency, less than 1.6 Hz, was found to· .. , 
' 

~e dominant in both ·the thrust and the surf ace waviness 

data. This low frequency was the same as the calculated 
s, 

lamination frequency of equation (2.1). The change in 

standard deviation of this frequency with the thrust 
• 

signal was found to be closely correlated with the change 

in the waviness of the hole surface under all working 

conditions. [10] Since the lamination frequency is~ 

special character of composite material, the result 

obtained might not be applicable to other materials. Irt 

addition, the authors concluded.that the standard 

deviation of the thrust force gave '11, indication of the 
'• 

hole wav.iness. The.ir findings indicated that the thrust 
I 

force standard deviation would be an applicable response</. 

vari·able in. investigating hole surface quality. 

2.2 Path wander, drill breakage and thrust force 

Several authors have investigated the mechanics of 

drilling and have developed theoretical models for t_ool 

path wander. [ 3, 4, 8] The following list states some of 

\ ' 

:.~. 



.. 

I 

the investigators results that will cause either drill 

path wander or drill breakcttje: [3] 

1. The drill is loaded above its critical axial load. 

The critical load will be defined and discussed in 
J 

a subsequent section. 

2. The initiator of path wander is found of sufficient 

size to cause a tip deviation from the straight 

path. 

3. The variance of hardness in work material is large 

to cause drill breakage. 

2.2.1 Critical axial load of drill 

When drill penetration occures, a thrust force is 

applied on the drill~ The higher the feedrate, the 

greater is the thrust force. The critical axial load of 

a drill can be estimated by Column·Analysis [l], or even 

more accurately be estima.ted by the Hole, Curvature 

Interaction Model. [3] In Column Analysis, the drill is 

considered as a long slender column (Fig. 2.1) · $UCh th't 
\ (> ~ 

it·is posE.ible to calculate the.criticai instability or 
' -

buckling load. This critical load can be expressed by 

the following equation: [3] 

8 

t'· 

., 

·1·\ 
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.-<---Fe 

• 1),,'/J 

Fig. 2.1 Column Analysis Schematic: The dri11 in 
column analysis is considered as a long 
slender co·lumn. The chuck is to be the 
rigid base to support drill. 

( F0 : the thrust force or axial load 
R : side force) 

9 
., 

··:J-

I' 

• 
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= 20.16 XE XI/ 12 (2.2) 

where, Fe • critical load, lb-f • 

E • Young's m~dulus, l:b-in2 
• 

I • moment of inertia of the drill • 

cross section, in4 

1 • drill length· in inch • 

A design factor which greatly limits the permissible 

··1.oad and lowers the· critical load is the flute length of 

drill. (Fig 2.2) The advantage of the Hole Curvature 

Interaction model over the Column Analysis is in that it· 

treats the drill not as a uniform circular cross section 

but, more practically, as two sections, the shank and the 

flute. The shank is a circular column such that its 

critical load may be obtained from equation (2.2). The 

flute may be represented as a removal of material from 

the drill cross section (Fig. 2.3) so that the moment of 

inertia of the flute is smaller than that of the shank. 

By numerically integrating the cross section of the 

flute, the moment of inertia of the flute section can be 

viewed as an equivalent moment of inertia of a shank 
' . 

with reduced diameter. Since a reduced diameter section 

is less stiff because of the smaller diameter, it is much 

easier to deflect. The Column Analys.is by equation (2.2) 

10 

1 
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~HA IV k lt.i-• ---

Fig. 2. 2 

. . 

Illustration of standard twist drill. ,... 

Flute is th~ section that can penerate 
into the work material because it was 
designed to sweep the cutting chips 
out of work material~ 

I 

11 
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., 

• • 

fig. 2.3 Cross section of flute of the twist drill. 
The area under hatch line represents the 
removal of material from the cross section 

, of a circular column. 

-
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indicated that th·e longer t~ drill length, 1, the less· 

is the permissible critical load of the drill. That 

i.mplies that a short small-diameter column can be 

substituted by a long large diameter column as long a·s 
. 

the moment of inertia of thase two columns are 

equivalent. In other words, the flute section can be 

substituted by a larger circular column which has the 

same diameter as the shank. The effective total drill 

length, le, can be expressed by the following term :: 

-- (2.3) 

where, le • effectiv'e length of drill • 
. 
dri-11 

·,-.; 

ls shank length of .. • • 

lf ,, flute length of drill • 

·d • shank diameter of drill s • 

df • equivalent flute diameter of dr.i:1:1 • .:.- - ' ·' '.:~. . . ·• . 

The effective drill length, le, as ·calculat~d in 

equation (2.3) can be substituted for drill length, 1, in 

equation (2.2) to e•timate the criticai load of drill. 

Kl'ltiwledge of the .. critical load enables one to monitor the 

thrust force of drilling operation such that critical 

load of the drill is not exceeded-and fracture is avoided 

in the drilling process. 

.. 

13 
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2.2.2 Initiators of drill wander .• . , 

In general there are two common causes of ari11 

... =w:.and:er. [ 3 ] They are : 

a. Hole side variations including score marks, and 

the possibility of some partially attached 

fragments on the hole surface or the wedged 

chip fragment on the drill ( Build Up Edge) • 

. ~. Eccentricity of the drill cutting edge relative 

to the geometric center of the drill. 

These two common causes can not be totally 

~liminated in any practical operations. A very small 

chip fragmant is all that is necessary to trigger drill 

wander. [4] Drill wander can be control ed by using 

· brand new drills in each cutting oper~tion an • y using 

coolant to avoid the possible adhesion of a chip .. rragment 

to the hole surface and drill edge. Without the chip 

fragment and the eccentricity, ,ven at the critical load 
'- .· . ' 

' 

the drill would merely whip around 'inside the hole and 

possibly only .polish the hole surface. 

The most effective method of reducing wander is in 

"reducing the axial load of the dr i 11 ". [ 4] One 

equation used to determine the deflection curve of 

. -
centerline is as follow: 

.· ' 
·,. 

14 
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[ 1<1 -

' ' 

' 

. S1N g,.p ] 
-~o s c B, J + ;o ) 

where, y : deflection in inch 

•: 

(2.4) 

X : distance from the base of tool holder 
to the selected deflection measuring 
point 

B0 = K x sin "?'-o 

Bl = K X cos ?;, 

K2 = Fz / (EX I) 

Fz: thrust force ( axial load) in lbf 

E : Young's modulus 
I : moment of inertia 
1 : length of drill in inch, from the 

base of tool holder to dr·ill tip 
e : eccentricity 
~ : parameter 

.•. 

Equation (2.6) illustrates the· interaction between 

thrust force and eccentricity of the cutting edge 

relative to a drill's geometric center and the maximum 

distance, y, of deflection from the center line of the 

drill. Young's -·modulus and moment of inertia can be 

looked upon as constants if the same sized drill and work 

material is used. Assuming that the eccentricity of 

every drill is the same, the thrust fore~ and length of 

·1··s·: 
' ., . 
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drill outside the tool holder will then be the control 
~ 

variables that can be used to limit the path wander 

during a drilling operation. 

2.2.3 Hardness v·ariation of work •aterial 

A report by Subramanian & Cook [ 12] commented that 

the hardness of the work material plays a dominant role 

in the cutting and extrus·ion forces in drilling. It was 

determined that the harder the material, a lower feedrate 

should be used to maintain the same thrust force. The 

effects of workpiece hardness on drilling may be given by 

the following statements: 

a~ For a constant thrust force drilling, when 

the drill enters from hard region to softer 

region, feedrate would increase and might 

exceed the allowable torque 011 the drill and 
t') 

then causes drill fracture. 

b. For constant feedrate drilling, the harder 

the work material, the higher is the thrust 

force: When the thrust force is to the 

critiqal load, a defective path· wander will 

then be generated. 

The following equati.ons have been used to interpret· 

l6 .. 

.. 
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the relationship between the material hardness and the 

thrust force: 

··· a. Shaw '& Oxford equation : [ 16] 

Fz = [ 0.195 x BHN x 1420 x f0.8 x do.a]+ 

[ 0.0022 X ( BHN X 1420) X d2 ] (2.5) 

:b. Cook's equation : ( 12] 

Fz = Ko [ ( f 0 · 8 x do.a x B ) + ( d 2 x E ) ] x 2.86 

(2. 6) 

where, BHN • Brinnel Hardness Number • 
f • feedrate, IPR • 
d • diameter, i.nch • 
B - 1.36 -
E - 0.032, for standard twist drill -

with point angle 118 dg. 

Ko = -0.2 X BHN2 + 170 X BHN - 2000 

Though these equations are empirically derived and. 

·are not equal to the thrust force that are measured by a.: 

dynamometer for different cutting conditions and 

different materials, they may be used as a reference 

magnitude to check the drilling operation and obtain a 

possible range of thrust force. 

2. 3 Tool wear and thrust force 

An investigation by Subramanian & Cook noted that 
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the growth pattern of wear and thrust force 
! 

are correlated. [12] The conclusion they made was that if 

the variatio11 in thrust force with change in flank wear 

is to be siginificant, _the variation in workpiece 

hardness has to be held within 5% of the mean workpiece 
.. 

hardness value. Such a condition is very difffcult to 

·meet in practice. 

Farris and Pedder [2] investigated the effect of 

cutting conditi~ns on tool flank wear and concluded: 

"The •agnitude of thrust force is not an indicator 
of tool life; however, the rate of increase of 
either thrust force or cutting torque is a good 
in.dicator of the rate of wearland." 

They recommended that the end of tool life can be 

accurately determined by monitoring the rate of change in 

thrust force or torque and that the end of tool life will 

occur when the following condition exists: 

dF / dt > [dF (previous)/ dt] + s x F (previous) 

where, F: thrust force or torque 
s : safty coeff,h;._g.ient, suggested o. 15. 

Maximum scatter value of the force 
at any point. 

The value, dF/dt, may be obtained by calculating the 

rate of change or the slope of force, and co:uld serve as 

one of the response variables of a drilling ~peration. 

.... 

I(,··· 
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By analyzing the relationship ·between this value with 
' 

control variables, sucl1 as speed, feedrate and length of 

cut, some imp~~ant characters may be ob~·ained in 

governing the tool wear behavior in deep hole drilling~ 

j • 

2.4 Summary of literature review 

The literature review enables one to conclude that 

t:he thrust force may be the key factor for constructing a 

·control algorithm for optimum performance of a deep hole 

drilling operation. Beside the axial thrust force, there 

also exist side force components in drilling ( forces in 

the X and Y directions ) (Fig. 2.4). currently~ minim~l­

investigations have been conducted to define the role of 

these forces. The X and Y forces can be attributed to 

hard spots or hardness variance in the workpiece, the 

curved chips on the drill, or the tool wear. Relationship 

between these side forces and the tool path deflection 

would be an interesting aspect to investigate. 

In summary, the literature review served to focus 

·the current research investigation on the following 

topics: 

a. The standard deviation of -fo·rces versus hole 
surface finish. 

b. The dritical thrust force on a drill. 

·. ·1'· 
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Fig. 2.4 Side forces in drilling. 
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c. The·' interaction of thrust force, drill length 
and their influence on path deflection. 

I ' 

d. The relationships between work material 
hardness, feedrate, drill diameter and the 
tl1rust force. 

c. The relations between rate of change in thrust 
force and tool life. 

e. The influence of X and Y side forces on 
drilling operation. 

,( ·. 
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CHAPTER ~E ,. 

..• EXPERIMENT DESIGN, PREPARATIONS AND PROCEDURES 

,. 

This chapter is devoted to the description of the 

experimental design and the preparations and procedures 

used in the deep hole drilling investigation. First, the 

experiment is discussed and the experimental. design i·s: 

selected to serve the purpose of this investigation~ 

After the structure of the experimental design i~ 

determined, the proper choice of cutting conditions i·s. 

made to include the experimental region within the 

c-onstraints of the tool bi ts and the available machinery. 

The preparation of work material and experimental 

equipment. are sta.ted to define the experimental working 

environment. The maasurement methods for the responses,_ 

such as the measure of force and tool flank we,r, were 

also documented for reference. 

3.1 Experimental design considerations 

The responses of this experiment consist of torque, 

thrust force, X-force and Y-force components and flarik 

wear readings which includes average flank wear, inside 
J • 

flank wear and outside flank wear. Machining parameters 
,, 

of the experiment include cutting ~peed, feedrate and the 

ratio of length of cut to diameter. It was the intent of 
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.t·his investigation to choose an experimental design which 
... 

would generate a response surface. such designs 

typically incorporate main effects and interaction 

effects. Main effects indicate the first order linear 

relationship between machining conditions and system 

responses. The interaction terms and quadratic terms i.n. 

the experimental design model define the curvature of the 

system's responses. The combination of both main and 

interaction effects results in a second order three­

variable linear equation of the type: 

·1 

y =Bo+ B1X1 + B2X2 + B3X3 

where, y • • 

X1 • • 

X2 • • 

X3 • • 

Bi • • 

+ 8 12X1X2 + B23X2X3 + B13X1X3 

+ B11X12 + B22X22 + B33X32 

(3.1) 

response measurement 

cutting speed 

feedrate 
t 

' 

ratio of leng·th of cut to dia. 

coefficients of the model 

· The model given by equation (3.1) is one such model that 

may be employed in modeling the response of the system. 

An orthogonal design is the second consideration of 

.23 
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an experimental design. An important characteristic of an 

orthogonal design is that one can obtain the uncorrelated .. 

estimates of the ~odel coefficients. [23] The third 
'\ 

consideration of the experimental design is the property 

of rotatability. An experimental design with this latter 

characteristic can be rotated with its design center 

without losing the accuracy of the system. To be 

rotatable, the experiment is to be constructed in such a 

way that the variance of the estimated response is a 

function only to the distance from the design center and 

not the direction to the point. A rotatable design • 1$ 

constructed to be unbiased in selecting the experiment. 

conditions. 

From these three considerations, an experimental 

design was chosen ( the central composite design) which 

can explore second order interaction ef feet, and which 

exhibited orthogonality and rotatability. 

3.2 Central composite design 

Figure 3.1 ill~strates the arrangement of the 

experimental design for a central composite design having 

three factors. The structure of a central composite 

design is a conventional 23 factorial design with added 

center points and six outer axial points. The distance 

24 
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Fig. 3.1 Structure of central composite design. 
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between each point and the center point is 1.682 times 
. 

the unit distance. The unit distance iA defined to be 

half of the distance between two factorial experimental 

points. Because the experimental conditions are chosen 
' 

and located at the same distance from the center point to 

all surrounding points, the bias in selecting 

ex.perimental conditions is eliminated. The distance from 

·the center point to all the surrounding points indicates 
I d ~ 

that all the surrounding points are on the surface of the 

sphere and that the center point of the sphere is the 

experimental design center. The central composite design 

exhibits both the propertieR of orthogonality and. 

rotatabl i ty. }1ore over, the central composite design, 

with the 2 3 factorial design embedded ~ith in, is also a 

design that can explore second order interaction effect 

amQng factors. In conclusion, the central composite 

;design matches all the properties desired for this 

-i.nvestigation and was chosen to be the experimental 

-d:esign for this research. 

$1 

3. 3 Choice ot cutting condi ti·on 

The choice of cutting conditions was made by taking 
\ 

into account the type of work material, tool material, 

flute length of the drill and the capability of the 
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the machinery. The cuttiril' tools (drill bits) used in this 

experiment were CLE-LINE high speed steel, straight shank, 

jobber ·1ength twist drills which were supplied by 
~f ~ 

Kennemetal Co. Two different diameters of drills were used 

ti '' for comparison ( 1/8 drill and 19/64 drill). Th~ 

reasoning to support the selection of these two diameters. 

W·as: :· 

J 

a. Drills with diameters ranging be.t:we~n :.11·s.::-• ari.d· 

1/2", are the most common used drills:. °[29] 

·b. The machining data handbook [20] recommends to 

lower the cutting speed and feedrate if the ratio 
I 

of length of cut to diameter is greater than 2. 

Many engineers categorize any hole length more 

than six diameters as deep hole drilling. [28] 

The flute length of the 19/64" drill is 3 1/4 

inches ( 11 diameters ) and the fll:Lte length for 

1/8" drill is 1 11/16 inches ( 13.5 diameters ) • 

The flute lengths of botfi si~a of drills are 

adequate to ser~e the purpo$e of studying deep 

hole drilling. 

The Machining Data Handbook [20] recommends the 

drilling 9onditions according to criteria of workpiece 

hardness, size of drill, and type of drill. For HSS 
. 

twist drills, 1/8 11 and 19/64 11 in diameter, and an alloy 

, .. ' 

.. .... 
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steel work material with hardness between 225 BHN and 275 

BHN, the recommended cutting conditions are: 

19/64"drill ==> 
1/8" drill ==> 

0.0046 ipr and 55 sfpm( 707 RPM) 
0.003 ipr and 55 sfpm ( 1680 RPM) 

Cutting conditions for the center points of the 

central composite experimental design were chosen on the 

Bridgeport CNC machine to be as close as possible to the 

recommended feed an.d speed. The following center point 

con~itions were thus chosen: 

19/64 11 

1/8 II 

feedrate 
(ipr) 

0.0046 
0.003 

cutting speed 
(RPM) 

700 
1700 

Length of cut 
over diameter 

6 
7 

.The experimental points, corresponding to the constraints 

of machine tool, drills, and the requirement of the 

Central composite design, were selected and are listed in 

Table 3.1. For convenience, these experimental points 

have been coded such that the lower level correspon s to 

-1, the higher level to 1, and the center point to the 
~ 

origin, o. The transforming equations to relate each 

cutting conditions to the coded values are as follows: 

HV -- 2 X ( V - 700 ) I ( 900 - 500 ) (3.2) --
HF -- 2 X ( F - 0.0046. ) I ( 0.0066 - O .0.0:2 .. 6 ) (3.3) --

',, 

HR -- 2 X ( R - 6 ) I ( 8 - 4 ) (3.4) --

28 
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TABLE 3.1 Selected cutting condit~~ns for experiment 
\ 

1/8" drill 
.... 

V F D V(RPM) F(IPR) D(IN.) 

19/6411 drill 

V(RPM) F(IPR) D(IN.) 

1.. 1 1 

1 1 -1 

1 -1 1 

1 -1 -1 

-1 1 1 

-~l 1 -1 

,-·1 . . -1 1 
I 

:--··1 . • --1 -1 

·o· ·o ·1 • ·68,2 

O· 1. 682 o 

0 -1.682 0 

0 0. 0 

.O.· :Q'. -0 

2400 

2400 

2400 

2400 

1000 

l:()QO 

1000 

1000 

.0066 1.125 

• 0066 .0 .• ·625· 

.0026 l e_1.2·s 

• 0026 o • 6-25 

• 0066 1 • 125 

-~; 'Q-,·o 6:6.: 0 • 625 

.0·0'2::6· ;1 •. 1-25:: 

• 0()2.6 :01 

•• 6<2-.5 

900 

900 

90· .. o 

9,oio.: 

70':0 . .. . 

7(l(l 

7··0.:0.: 

·100: 

.004 

.004 

.• :00·2: 

.. 0·02 

• 004 

• 004 

• 002 

002 • • 

2.375 

1.187:5 

2. :3.7'.5· 

1. 1875: 

2 • 375, 

1. 18,75.' 

2 .·375 . . 

1 .. 18-·7'5". 

2877.4 .0046 

522.6 .0046 

0.875 1-036.4 .003 1.7813 

1700 

1700 

. 1700-

1700 

1700 

.0046 

.0046 

.0079 

.0012 

.0046 

.0046 

29 

0.87:5 363.4 .003 1.7813 

1.2953 70·0 

0. 4545 70:0 

•• o.·03· 2. 7799 

•. -003 0.7826 

• 0048 1. 78:13 . 

.0013 1.781.3 

• Q:_Q·3 .1. 7-8.1.3 

0.875 

0.875 

0.875 

0.875 

"7(l0 

:7·0.0 

'7<()0 

·1-·c>b .... , 
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LV =~ 2 X ( V - 1700) / ( 2400 - 1000) 

LF == 2 X ( F - 0.003) / ( 0.004 - 0.002) 

LR ~= 2 X ( R - 7 )·/ ( 9 - 5) 

where, H • 19/64 11 drills • 
L • 1/8 18 drills. • 
V • cutting speed in RPM • 
F • feedrate in IPR • 
R • length of cut to diameter ratio. • 

3.4 Preparation of work •aterial 

•. 

(3. 5) 

(3. 6) 

(3.7) 

The work material chosen in the investgation was 

AISI 4145 heat treated alloy steel with a hardness 

average of 247 BHN and variance 11.85. ( Appendix I) 

The alloy steel was obtained as round stock, 3 inches in 

diameter and 24 inches in length. The steel was cut into 

cylindrical specimens with a height of 4 inches. 

The dimensions of the work specimen were chosen for 

the following reasons: 

a. The effect of drilling breakthrough phenomenon 

on tool wear is more severe than continuous 

drilling. [8] Four inches in height can offer 

enough space for the selected length of cut and 
~ 

avoid the effect of breakthrough phenomenon. 

b. Because of the restriction of the dynamometer 

30 

•• 

"' .... ___ 



.. 

.. 

·I 

used, it was necessary to me·a.:sure the ·forces 

with in the range of the. d-ynam ometer' s 

sensitivity region ( 3 inc,Jies· by 3 inches 

measuring table). A three inches diameter for 

the workpiece specimens was within the 

dynamometer' s range. 

· 3.5 Equipment 

/: 
' 

A BRIDGEPORT CNC series 1 mill:i.ng machine l.oct.tted in 

tha Manufacturing Technology Laboratory at Lehigh 

:u·niversity was select·ed to perform the experiment. Three 

control variables (length of cut., feedrate, and cutting 

speed), were programmed into.the CNC controller to assure 

the accuracy and repeatability of these control variables 

and to avoid potential human error. 

The data acquisition system of this experiment. 

consisted of a Kistler four-component dynamometer, four 

Kistler dual mode amplifiers, four Analog to Digit ( A/D .. ) 
~ 

converters an,.i the PDP 11/34 computer system. Through 

the amplifiers, the four-component dynamometer was linked 

fo the PDP 11/34 computer system to record all force 

components generated during each drilling test. Torque, 

.31.·' 
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thrust, X-force, and Y-force signals read by the 

dynamometer were first amplified and then were 
.., 

converted from -·an analog signal to a digital signal by 

the A/D converters. The digitized signals were recorded 

through each channel by executing a FORTRAN-based data 

acquisition program [ Appendix II] developed as part of 

this research. 

After each cut, the tQol flank wear was examin.ed, 

·w·ith a " ToolMakers " microscope. Corresponding cutting 

t:-i.me :,for each cut was measured by the bu:ilt--in_ time·r ·Q .. :n-

the PDP 11/34 minicomputer. A bloc·k- d.i_a.-gram of· t·he, 

experimental equipment is shown in Fig. 3· .. 2:~ 

3.6 Procedures for Data acquisition 

The measurements of the experimental responses of 

·the study consist of force measurements and flank wear 

measurements. Force measurements were obtaihed by the 

data acquisition system described in the previous 

$ection. Flank wear measurements were standardized and 

obtained with the Toolmakers' microscope. 

3.6.1 Forces measurement 

Forces were measured by a piezo-electrjc Kistler 
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Fig. 3.2 Block diagram of experiment equipment setup 
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four-component dynamometer. Each output force channel -of 

dynamometer was connected to a different amplifier.· The 

set-up of each amplifier is different ~ue to different 

S:e.·nsitivity levels of the dynamometer for each 

force/torque component to be measured. The basic 
I, 

,prpcedure for the setup of the dynamometer and the· 

am:plifiers was as follows : 

1. The possible range of thrust force and torque for 

specific cutting condition was conducted by either 

(1) consulting the Machining Data Handbook (20], 

or (2) calculating the estimated forces .f.rom 

Cook's equation. (equation 2.6) 

·2. The sensitivity levels of ~h·e dynamometer for 

force/torque were set according to the operating 

manual i.e. 219.63 pc /ft-lb (Pico Columb per 
-

foot-pound) for torque, - 8.674 pC/lb for thrust, 

an~ 8.86 pC/lb for x- and Y-force. 

3. The setup of each amplifier for pro~er sensitivity 
\, 

and range calculated [Table 3.2] were calculate.d 

using the following equations: 

a. [Sensi.]dynam = [Sensi.Jamplr x [Range] x [Factor] 

b. [Range] == [ScaleJamplr. x 10 
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TABLE 3.2. Setup of amplifiers 

1. Desired 
range 

:= (4) (9) * 

2. Dynamo. 
Sensit. 

3. Dynamo. 
output 

4. A/D 
converter 
range 

5. Ampli. 
sensit. 

Torque 

0 - 1000 
ft-lb 

' 

219.64 
pc/volt 

0 - 219640 
pc 

0 - 10 
volt 

. ' 

0 - 21964 
pc/volt 

:= (1)/(2)* 

:= (6) (7) (8) * 

2.19 

Thrust 

0 - 2500 
lbf. 

8.674 
pc/volt 

0 - 21685 
pc 

0 - 10 
volt 

0 - 2168.5 
pc/volt 

2.17 

X-force 

0 - 100 
lbf 

16.68 
pc/volt 

0 - 1668 
pc 

0 - 10 
volt 

0 - 166.8 
pc/volt 

1.67 

Y-force -· 

0 - 100 
lbf 

16.68 
pc/volt 

0 - 1668 
pc 

0 - 10 
volt 

0 - 166.8 
pc/volt 

1.67 6. Amplifier 
sensitivity 
setting ( adjustable setting, from o - 9.99) 

-
100 - lk l(l - 100 1 - 10 1 - 10 7. Amplifier. 

sensitivity 
range ( adjustable range, from 0.1 to lOk) 

a. Amplifier 100 
sensitivity 
scale 

9. Aquisition 100 
program 
factor 

100 100 

250 10 

* the numbers in parantheses is the row number. 

100 

10 

For example: The desired .range of torque at row 1-is 
equal to the multiplication of the 
corresponding column element in row 4 and 
row 9. · 
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After the force data was collected, the average, slope, 

• 

standard deviation, and 95% confidence interval for the 

·various regression models were obtained by executing an 

analysis program [Appendix II], developed for this 

research. 

3.6.2 Flank Wear Measurement 

The measurement of drill flank wear was carried out 

by a Toolmakers' microscope aft,r each cut. The wear data 

was measured and ~ecorded according to the following 

procedures: 

' 

1. The measurements were taken at four points. Two 

points located at a distance 1/Sth of the total 

diameter of a drill bit from each cutting margin 

defined the outside flank measurement points. The 

other two points were located at a distance 3/Sths 

of the total diameter from the cutting margin and 
I 

were used to define the inside flank wear. Figure 

3.3 exhibits the location of the four measuring 

points. 

2. The average of the above four wear readings wer.e­

taken to represent the average flank wear. The 

average of the-two inside flank readings was 

.• 
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• 

Fig. 3.3 Flank wear measurement layout 

[ O: outside flank wear measurement point; 

I : inside flank wear measurement point] 
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defined as ·the inside flank wear. The outside 

flank wear was defined as the average of the two 

outside flank readings. 

:· ~ .. 

) 
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CHAPTER FOOR 

EXPERIMENT RESULTS AND ANALYSIS 

Following the preparations, setups, and procedures 

discussed in dhapter three, the experiment using the , 
Central Composite Design was conducted. The recor·d,eq 

measurements of response variables are t·abulated in 

:~ppendix. III. The experimental cutting conditions .o:f: 

both sizes. for the drills used in this investigation wete 

repli.cated four times. The response meas·ure.ments can :be 

fiategorized into two parts: direct measurements artd 

der.t.ve:d measurements. In direct measure,m·ents, response$ 

cons.isted of total average flank wear, inside flank w.e,ar 

and outside flank weara Derived mea.surements cons:isted 
' -~ . . . . . . -. . ., .· 

of the average rate of flank wear, th~ m,e~n va·1.ue:· of. al.I 

their standard deviations. 

4.1. Estimation of Fitted Model Coefficients 
• 

The estimations of coefficients for the regression 

models generated in this research were obtained by a 

Fortran-based program. [ Appendix II] In this program:, 

a three-variable second order model (equation 3.1) 

employed in modeling the response systems .. Using the 
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technique of multivariate linear regression, the 

coeff icien.ts, B1, of the model for each resp~Ilses were 

obtained from the following matrix operation: 

B = ( X' X )-l X' Y ( 4.1) 

where, B: coefficient matrix 
X: coded experiment conditions 
X': transpose matrix of the X matrix 
Y: response matrix 

(X' X )-1 : inverse matrix of the product matrix 

T.he coefficient matrix B of both the direct and deri·ve:d 

me·:asured responses for the 19/64 11 drill and tl1e 1/:8'' 

d·r.-il:l are tabulated in Appendix VI. 

An F-test of each of the response models w,as. 

performed to identify the significance of each of the 

m.ain effects and interaction effects for each response 

model. The selected results of the F-tests are tabulated 

The coefficient of multiple 

getermination, R2, is appended to the tables in Appendi~ 

/ VII for judging the adequacy of the regression model. R2 

values were obtained by use of the following equation :: 

R~ = 
SSR 

------- X 100% 
SST 

40 
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w··h:ere, SSR : Sum of the squares due to the regression 
model 

SST: Sum of the squares about mean responses 

R.2 is a measure of the proportion of total variation 

:o·.f the response about the mean of the responses explained 

by the fitted regression equation. For instance, a R2 

value equal to 97% means that 97% of the total variation 

:of the response about the mean of the responses can be 

exp·lained by the fitted equation. A lack-of-fit test was 

al$o employed to examine whether a regression model was 

~dquate to fit the data or not. Hypotheses fqr the l:ack· ... 

o.f-fit test were : 

·HO : The model adequately fits the data. 

H·1 : The model doe!s not fit the data. 

:The, :.null hypothesis, Ho, will be rejected if the: lack-of­

.f:it. :F-test value exceeds the value of F( 5, 48, .01) =. 

2.:00 with an DI. = 0.01 significant leve·1. The value of: 

F(5·, 48, .01) was the value obtained for the upper one 

percent of the F distribution with 5 and 48 degrees of 

freedom. The degrees of freedom for the multiple 

regression model corresponding to the central composite 

design used in the research were obtained as follow : · (. 

a .• The degrees of freedom ass6ciated with the system 

are the number of the total observations in the 

J 
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experiment. A three factors central composite 

design contains 15 observations. They are a 2 3 

factorial design with 8 observations, six axial 

points and one conter pointer point. In this 

experiment, Al) extra center point was performed 

for all the replications of the design. Th::e 

total number of experimental conditions was 

thus 16. Each experimental condition w.as 

replicated four times. Total observations for 

the experiment are thus equal to four times 

sixteen (4 x 16 = 64). 
,' 

b. Each coefficient in the regressi.on model cont·ai.Jis: 

on·e degree- of freedom. There a re t-Ern. 

coefficients in the model (excluding the 

constant) which account fo~ 10 degree of freedom. 

-c. The degrees of freedom associat~d with the error 

term of the regression model was obtained by 

calculating the difference between the total 

degrees of freedom for the system and the degrees 

of freedom for the regression model. The degrees 

of freedom of the error term then b•come 53, 

which is obtained by substracting 10 ( model) and 

1 (constant) from 64 ( total observations). 

d. The regression model can be partioned into the 
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·tollowing effects; main effects, interaction 
•.\ 

; effects, quadratic effects and the mixed effect 

( tri-factor effect). The interaction effect 
.f' 

contains three coefficients, x12 ,. x13 ,, and x2 3 , 

and accounts for three degr~es of freedom. The 

quadratic effects have three coefficients, x11 , 

x22 , x33 which therefore contribute three degrees 

of freedom. Each of the main effects of the 

system has only one degree of freedom. The 

mixed effect term has one degree of freedom. 

Pure error and lack-of-fit terms are obtained from 

the consideration of the partition of the error term. The 

degra~s of freedom associated with the pure error and 

lack of fit terms are 48 degrees of freedom and 5 deg~ee 

of freedom, respectively. If Ho is not rejected, then 

there is no statistically based apparent reason to doubt 

the adequacy of the mod~l. Hypothesis testing for each 

of the coefficients in the model corresponding to a 

response variable were also conducted. Dependent on the 

degrees of freedom for each term, the F-test values for 

rejecting the null hypothesis were chosen at an 

= 0.01 confidence level such that F( 1,48, .01) = 

2.82 for one degree of freedom and F(3,48, 0.01) = 2.21 

for three degree of freedom. If the null hypothesis is 
" 
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. ) rejected, i• can be concluded, with 99% confidence, that 

the coefficient terms are not equal zero. By deleting 

the coefficients that were not significant determined by 

an F-test for the individual coefficient, the final 

fitted models were refined for each response. 

4.2 Response Contour Plots 

It is difficult to visualize the response surface of 

.·an:·y· of the variables investigated in this research by 

presenting only the coefficients of the models. As an aid 

to visualize the behavior of each response variables as a 

function of the main effects ( cutting speed, feed, and 

.length of cut to diameter ratio), a computer program 

[ Appendix II] which uses the TEMPLT graphic package, 

was written to generate the contour plots for each model. 

Because the response models are in the form of three­

variable second order equations, the contour plots are 

made possible by surpressing one parameter at a time as a 

constant. The constant is initially set at the level 

z.ero for each experimental conditions. The following 

subsections discuss the response surfaces generated as a 

result of the tests conducted. 

• 

'· . . '\ 
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4.2.l Response Surface Plots of the Flank Wear 
• 

Table 4.1 lists the flank weaf models (average wear, 

outside wear and ins.ide wear) for the 1/8" diameter drill 

and the results of their associated statistical tests 

(significant F test for and the R2 values for the 

c·o,mplete model). All of the wear models were found to be· 

significant at a 99% level. Each of the terms of these 

three models were also statistically significant at the 

99% confident level. Figure 4.1 illustrates the response 

surface plot of the average flank wear for the 1/8" 

diameter drill with a constant length of cut to diameter 

ratio (L/d) of 7. A minimum flank wear value (0.0291 

i_n.) was detected (Fig. 4 .1) under the following cutting 

conditions: feedrate 0.0016 IPR, cu1.:.ting speed 1500 RPM. 

Figure 4.2 exhibits the interaction effects of feedrate 

:a·nd length of cut to diameter ratio. The length of cut 

to diameter ratio was·"·"·found to be a dominant factor on .. 

the growth of the flank wear when the feedrate was higher 

than o. 002 IPR. 

Comparing the response plots of the average wear 

(Figs. 4.1 and 4.2) and the outside wear (Figs. 4.3 and 
'·· 

4.4), the responses of the outside flank wear was found 

to be highly correlated with the response of the average 
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** Model 

Average 
flank 
wear 

Outside 

Inside 

' r 

TABLE 4.1 Flank wear model :for 1/B~~diameter HSS drill 

* Main effect * Interaction * Quadratic * r.i1ixed Significance 

o.0351+0.00325x1 
+0.00758X2 
+0.0146 XJ 

o.o461+0.ooss6x1 
+0.0125 X2 
+0.0183 XJ 

o.0241-o.00197x1 
+o.00117x2 
+0.0088JXJ 

+0.00248X1X2 
+o.00519x1x3 
+0.0128 X2XJ 

+o.0027x1x2 
+o.007s3x1x3 
+0.0146 X2XJ 

+o.00256x1x2 
+o.0022.5x1x3 
+0.011 X2XJ 

+o.00516x1~ 
+0.00264X22 
+0.0007 XJ 

+o.oo684Xl~ 
+O. 00 504X22. 
~O.OOJ42XJ 

+o.00352x1~ 
+o.00269x22 
+o.00227x3 

+O. 00·319 
X1X2XJ 

+0.00273 
X1X2XJ 

+O.OJOJ 
X1X2XJ 

: F-test significant level for each effect is 99% * 
** : Coefficients for model may be obtained from Appendix 

.. 

99% 

99% 

99% 

• iv, 

Xl : Coded cutting speed, using transformation equation J.5. 
X2. 1 Coded feedrate, using trans:formation equation J. 6 

0.736 

0.667 

0.546 

'rABLE A4. 2 

XJ I Coded length of cut to diameter ratio, using transformation equation 3.7 . 

• 

'• 
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Figure 4.1 Response plot of the average wear for a 
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(work material: Aist· 4145 HOT ·ROLLED alloy 
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flank wear. Table 4.2 summarizes the correlation analysis 

between~each of the response variables of the 

investigation. The correlation coefficient between the 
) 

average wear and the outside wear for the 1/8" diameter 

drill is 0.978. The ~utting conditions for minimum 

ou.tside wear was 0.0355 inc~es and is found .from figure 

4.3 to be at a cutting speed of 1300 RPM and a feedrate 

of -0.0017 IPR for a 1/8" diameter drill. The cutting 

·conditions for the minimum average flank wear and the 

mi·rfim\11n outside wear were thus almost identical. 

• 
The response plot for the inside wear were different 

vihen comparing the results for the 1/8" diameter drill 

and the 19/64 11 drill. For a drill size equal to 1/8", 

the response pattern of the inside flank wear (Fig. 4.5) 

was similar to the average wear and outside wear as given 

' in figures 4.1 and 4.3. The inside flank wear for t'he 

larger size drill ( 19/64'' diameter) with a constant 

length of cut to diameter ratio equal to 6, (Fig. 4.6) is 

mainly influenced by cutting speed rather than influenced 
.. 

by the combined effect of f eedrate and cutting speed as 

for the 1/8" dr·ill. In general, length of cut to 

diameter ratio and cutting speed were found to be the 

dominant factors in generating the average and outside 

flank wear. 
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Rate of wear 
Average 

Inside 

Outside 
Mean 

Time 
Torque 

Thrust 
X force 

\J\ 
l\.) y force 

Slope 

Torque 

I1hrust 

X f'orce· 
" y :force 

Standard dev. 

·Torque 

11hrust 

X f'orce 
y·force 

TAPLE 4.2 Correlation analysis of the response variables 
f'or 1/8" diameter drills . 

Rate Iv1ean Slope Standard dev. - -: 
-··· 

01/J I\r,T T~1 Mz Fz Fx Fy : Mz Fz Fx Fy Kz Fz Fx Fy 
.978 .89 -.55 -.018 • 50 -.13 -.17 .37 .853 -.07 -.01 .41 .77 .07 .32 

.80 -.54 -.032 .48 -.16 -.10 • .39 .820 -.07 -.01 .42 .75 .06 .04 
.. 

-.52 -~035 .45 -elO -.30 .25 .805 -.09 -.01 • 2.3 .68 .02 .11 

.• 462 .02 -.18 .35 -.22 -.31 .26 .24 .11 -.1 .22 .06 
.44 .21 .44 .50 .17 .18 • 18 .58 .32 • :+o .26 

.14 .01 .31 .64 .04 .06 .60 .73 .35 .52 
.17 .40 -.06 -.07 -.10 -.1 -.1 .14 .14 

.17 -.13 .11 .05 .25 -.0 .02 .36 

.42 .01 .02 .49 .40 .15 .21 

-.01 .07 .45 .87 .11 .32 
.97 -.1 .09 .OJ .10 

.10 .15 -.0 .11 

.6J .53 .65 
~ 

J .22 • 48 
• 26· 

.. 

- ( 

' 

• 

• 

• • 
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Figure 4.5 Response surface plot of the inside wear 
. for a 1/8" HSS drill with a constant length 
of cut to diameter ratio equal to 7. 
Contours represent equal inside wear in 
inches •. (work material 1: AISI 4_145 HOT 
ROLLED alloy steel) 
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4.2.2 Response Surface Plots of the Flank Wear Rate 

Flank wear rate in this investigation is defined by 

the following expression: 

Flank wear 
Flank wear rate= --~-~---------~--------~­

cutting time 
(4.3) 

The flank wear rate represents the average wear rate 

rather thanthe instaneous wear rate . Figure 4.7 

. i-llustrates the average wear rate with respect to a flank 

wear curve. Average wear rate is obtained by dividing 

the f lal1k wear by the total cutting time. The angle (~) 

between the horizontal time line axis and to a line. 

generated from the origin to any flank wear point on the 

curve can be viewed as the average wear rate for the tool 

.for a specific time period. Flank wear progression is 

characterized by three representative sections which can 
• 

be identified on a typical flank wear curve. A_ sha·rp 

increase of the flank wear will be exp~rienc•d in 

section I which is the initial cut (break-in region) o·f 

a new (sharp) tool. Section III represents the growth of 

f 1 an k wear after therm a 1 inst ab i 1 it y. section I r: 

corresponds to the gradual flank wear growth that occurs 

when the number of the holes or cutting time increaser. 

Gradual flank wear progression (section II) is the region 
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P1 , P2 : Wear measurement on the flank wear curve. 

d, J /X.l,,. : Angles between horizontal line and the line between 
origin and the wear point P1 or P2 . 

: The corresponding flank wear on the drill bit with 
respect to P1 , P2 • 

Instaneous rate of wear: 

Figure 4.7 Illustration of the definition of the 
average wear rate with respect to a typical 
flank wear progression. 
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of concern in this thesis. As is apparent for section II 

of the flank wear curve, the smaller the angle between 

the horizontal line and the line between the originl_point· 
--

and the wear point, .the larger the tool flank wear and 

the smaller the average1 J~ar rate. The instaneous wear 

rate can be represented by the slope of the flank wear 

curve to ·a particular point as indicated in Fig. 4.7. 

The flank wear rate model and the slope of the 

,thrust force model for both sizes of drill are given in 

Table 4. 3. The F-test results for all of the models in 

:Ta·ble 4.3 indicated significance at the. 99% 1-evel. Figure 

4.~ illustrates the response surface plot of the average 
rr·-~ 

:£1·ank wear rate for the 1/8" diameter drill with a 

constant cutting speed of 1700 RPM. A ridge exists in the 

low feedrate, low leng·th of cut area of the experimental 

region. As expected, the wear rate increases with an 

increase in feedrate. In the low length of cut to 

diameter ratio area, where the length o·f cut is less than 

0.9 inch, the effect of length of cut on the wear rate is 

found to exceed the effect of the feedrate. Th~ response 

surface plot of the slope of tlfiust force for the. 1/8" 

diameter drill (T.'ig. 4.9) exhibits a similar response 

pattern. The slope of the thru.st force was mainly 

dependent on the feedrate when the length of cut was, 
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** Model 

1/8" 

·wear 
rate 

( 

• 

TABLE 4.J Flank wear rate and the slope of thrust model 

for t,/8" and 19/64" diameter HSS drills 

* Ma.1n effect 

o.000139+.00009x1 

* Interaction 

+.0000355x1x2 

+.0000779X2 +.OOOOJ49X1XJ 

+.0000226X3 +.0000571X2XJ 

* Quadratic 

+. 00002.96Xl 2 

+.000014JX22 

-.00000111XJ2 

* Mixed 

+.OOOOJ8 

X1X2XJ 

Significance 

99% 0.851· 

Slope of .179 +0.146X1 +o.0771x1 2 

+o.0291x22 

-0.00885XJ2 

+0.1.58 

X1X2XJ 

99%. 0.828 

thrust 

19/64" 

Wear 

ratE~ 

+0.180X2 
+O.lllXJ 

o.0900373+.0000022ax1 ~.00000697x1x2 -.0000021ax12 

+.0000147X2 +.0000216X1XJ -.00000147X22 

-.000008J6XJ -.00000406X2XJ +.00000441XJ2 

+.000003.56 
X1X2XJ 

99% o.644 

Slope of .151 +0~0264X1 -0.00936 0.608 

thrus.t 

* 
** 

• 
+0.09J4X2 

~o.o442x3 

X1X2XJ 

1 F-test signifi-cant level· for each effect is 99% 

1 Coefficients :for the models may be obtained from Appendix IV. 

I 

NOTE 1 'The results generateed from wear rate model are in ( in./ 1/JOths sec. ) , 

t.he results from slope of thrust are in ( 1 bf/ 1/JOths sec. ) • 
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Figure 4.8 Response surface plot of average wear rate 
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greater than 0.9 inches. The result of the correlation 

analysis [Table 4.2] supports this finding. A 

correlation coefficient of 0.853 was obtained between the 

average flank wear rate and the slope of the thrust 

force. The response plot of average wear rate and the 

slope of thrust force (Figs. 4.10 and 4.11) at a constant 

cutting speed of 700 RPM, has the same tendency in their 

·respective response models. Correlation betwee.J'i. the.Se. 

two models was obtained as 0.658 (Table 4.4]. Thes·e 

.results indicate that the slope of the thrust force may 

be c~nsidered as a good indicator of the flank wear rate~ 

4.2.3 Response Surface Plots of the Y Component Force and 
Torque 

The models of the Y co:mp_onent force and the torque 

for the 19/64 11 diameter drills are listed in 'rable 4.5. 

:The models for· both the mean value and the standard 

deviation of the Y component force and torque responses 

was found to be statistical significant at a 99% level. 

Each of the terms in the models were also significant at 

this levele 

Figures 4.12 through 4.14 exhibit the response 

surface plots of the standard deviation of the Y 

component force for the 1.9/64" diameter drills. The 
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Rate of' wear 
Avc:rage 

Outside 

Inside 

·Mean 
-

Time 
Torque 

Thrust 
X :force 
y force 

Slope 

Torque 
. 

Thrust 
X force 
y- force 

TABLE 4.4 Correlation analysis of the response variables 

for 19/64" diameter drills 

.951 .36 -.67 -· 37 .50 .J4 -.06 .26 .658 .14 .23 .12 .52 -.13 
.24 -.63 .J4 .46 .28 - • O·J .24 .653 .10 .29 .08 .46 -.14 

-.21 .11 .14 .21 -.09 .51 .147 . 04 .11 .OJ .15 -.09 

-.42 ~.5 -.4 .25 -.J -.61 -.J -.J -.1 -.J .14 
.77 .36 -.19 .60 .411 .13 .07 .56 .47 .34 

.31 -.19 .32 .636 .11 .07 .48 .76 , . 34 
.18 . 27 .242 .22 -.J -.1 -.2 -.06 

.02 -.27 -.2 -.3 -.1 -.2 . • OJ 

.322 .05 -.1 .12 .09 .09 
.23 .11 .20 • 57 -.08 

.14 .02 .05 -.21 
.09 .11 -.23 

Standard deviation 

Torque • .51 .47 
Thrust .13 

X force 

Y. force 

i 

-.09 
-.105 
-.108 

• 

.077 

.265 

.214 

.316 . 

.445 

.083 

-.092 
-.046 • 

• 

-.312 
. 

.647 

.145 

.232 

I 
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** Model 

Mean 

Torq.u~ 3.27 

y force 5.26 

TABLE 4.5 Mean and standard deviation of the torque 
. and Y component force model for 1,.9/64" 

HSS drills 

* * * * Main effect Interaction Quadratic Mixed Significance 

--o.152x1 -O.OJ86X1X2 2 +0.134 99% -0.0577X2 +0.854X2 -0.0106X1XJ -0.19JX22 X1X2XJ 
+o.417x3 +o.0762x2x3 -0.101XJ 

-0.1J8X1 -1.53x1x2 +o.0929x~2 +0.0908 99% -0.458X2 -0.044JX1XJ -0.124X22 X1X2XJ 
-0.020JXJ +0.074JX2X3 -1.1 XJ 

Standard deviation 
Torque 

y force 

0.616 -o.0525x1 +o.0153x1x2 2 
99% --0.0468X1 2 +0.0221 

+0.0986X2 -0.0674X1XJ -o.0697x22 X1X2XJ 
+o,097sx3 -o.0551x2x.3 -0.0422x3 

2.41 -0.1J4X1 -0.640 X1x2 -2 
-0.37 99% -O.J40X1 2 +o.155x2 -o.o447x1x3 -0.124X~ X1X2XJ 

+o.37ox3 -0.0418X2XJ -o.57x3 

: F-test significant level for each effect is 99% * 
** 1 Coefficients f'or models may be obtained from Appendix IV. 

Xl I coded cutting speed, using equ·ation 3. 5 
X2 1 coded f'eedrate, using equation J.6 
XJ I coded length of cut to diameter, using equation J.7 

R2 

0.821 

0.760 
• 

o.454 

0.701 

• .. 
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maximum standard deviation of Y component force from 

these three figures is located at the following cutting 

conditions: 0.00575 IPR feedrate, a spindle speed of 700 

RPM, and 1.95 inches in l.ength of cut ( 6.6 diameters). 

The response surface plot of the standard deviation of 

the Y component force (Fig. 4.15) and the standard 

deviation of the torque (Fig. 4.16) for the 1/8" diameter ,, 

drill indicate a common feature i.e. the standard 

deviation of the responses for both the Y component 

force and the torque increases when the length of cut to 

diameter ratio increases. Given the same feedrate ( 0.003 

IPR) the standard deviation of the Y component force and 

the standard deviation of the torque at a cutting speed 

of 1700 RPM were found to be always higher than the 

forces/torque values at the cutting speeds lower or 

higher than 1700 RPM. The analysis of the experimental 

data indicates that the responses for both sizes of 

drills had a similar response pattern. From Tables 4.2 
·, 

and 4.4, the correlation coefficients between the 

standard deviation of the Y component force and the 

torque were 0.652 and 0.647, respectively for the 1/8 11 

drill and 19/6411 drill. The standard deviation of the 

forces/torque represents the stability of the 

forces/torque responses during the drilling operation. 

The term stability is used to represent the magnitude of 
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the standard deviation associated with the tests. A 

large standard deviation is considered to be more 

unstable than a small standard deviation. The similar 

response pattern of the stability of the Y component 

force and the torque indicates that the responses of the 

Y component force and the torque were influenced by the 

same machining parameters of the drilling operation. 

Thus, change in one machining parameter indicates an 

effect on the stability of the torque and the Y component 

force. For example, a reduction in the length of cut to 

diameter ratio would cause both the standard deviation of 

the torque and the Y component force become smaller. 

Therefore, the torque and Y component force to readings 

would be more stable than the data measurements taken at 

the higher length of cut to diameter ratios. 
'i 

The response plot of the slope of the torque and the 

slope of the Y component force exhibits an • inverse 

relationship if compared with the responses of the 

standard deviation of the torque and the Y component 

force. A minimum value for the slope of the Y component 

force was detected while a maximum response was found for 

the slope. A minimum value of the slope of the Y 

component force was found for both sizes of drills. The 

cutting conditions for the minimum value of the slope of 
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the Y component force ( Fig. 4.17) for the 19/64" 
' 

diameter drill were found to be: cutting speed= 600 

RPM, a constant feedrate of 0.0046 IPR, and a length of 

cut of 1.95 inches (6.6 diameters). Conversely, there 

existed maximum values of the slope of the torque for 

both sizes of drills. The cutting conditions for the 

maximum slope of the torque for the 19/64" drill were: 
t) 

cutting speed= 700 RPM, a constant feedrate of 0.0046. 

IPR and the length of cut of 2.025 inches (6.8 

diameters). (Fig. 4.18) The optimal (maximal versus 

~inimal) cutting conditions for both responses occur at 

the identical fedrate but different cutting speeds and 

slightly different l~ngth of cut to diameter ratio. 

Response surface plots of the slope of the Y component 

force (Fig. 4.17) and the torque (Fig. 4.18) for the 

19/64" drill were then compared with the response surface 

plots of the 1/8" diameter drill(Figs.4.19, 4.20). The 

cutting conditions for the minimum slope of the Y 

component force of the 1/8" diameter drill occured at a 

cutting speed of 2100 RPM, a feedrate of 0.00375 IPR, and 

a constant.length of cut to diameter ratio of 7 ( 0.875 

ir1ches ) . A cutting speed of· 21 O O RPM, a constant 

feedrate of 0.003 IPR, and a length of cut of 0.975 

inches (7.8 diameters) were found toQgive the maximum 

slope of the torque. -The c11tting conditions for the 
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minimum/maximum response ·for the slope -of Y component and 

the slope of the torque may be summarized as follows : 

TABLE 4.6 : Comparison of the Optimal cutting 
Condition for Torque and Y Component 
Force Rat·es in Machining AISI 4145 Hot 
Rolled Alloy steel 

speed (RPM) 

feed (IPR) 

ratio 

length of cut 

X-force slpoe 
(lbf/sec) 

Torque ·slope 
(ft-lb/sec) 

1/8" twist drill 

slope of slope of 
torque Y-force 

2100 

0.003 

7.8 

0.975 11 

0.0031 

2100 

0.00375 

7 

0.875 11 

-0.0375 

\ ; 

19/64" twist drill 

slope of slope of 
torque Y-force 

700 

0.00'46 

6.8 

2.025 11 

0. 003,5 

600 

0.0046 

6 

1.95 11 

-0.0033 

As may be observed from·the responses in the 

preceeding table and the corresponding response surf ace 

plots ( Figures 4.17 through 4.20), the torque and force 
,,# 

slope were inversely related i.e. maximum torque slope is 

closely associated with minimum force slope. Also of 

note is that for each drill size, the optimum cutting 
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conditions ( for maximum torque slope or minmum force 
, 

slope) were nearly identical. 

In general, the following summary statements on the 

relationship between the torque and the Y component force 

may be said: 

a. The response patterns of the standard deviation of 

the Y component force and the standard deviation 

of the torque are the same. The stability of the 

torque and the Y component force is affected by 

the same machining parameters, i~e. the length of 

cut and the speed-feed interaction. 

b. The responses of the slope of the Y component 

force and the torque are inversely related with 

similar cutting values at the optimal conditions. 

·This indicates that while the rate of change of· 

the torque is decreasing, the rate of change of 

the Y component force with respect to the same 
Ii 

changes of machining variables ( cutting speed, 

feed, and length of cut) is increasing •. 

4.2.4 Response Surface Plots of the X Component Force 
\ 

Due to the rotating drilling action, the X and Y 

force components would be expected to be of the same 
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magnitude ·but mutually perpendicular. The perpencficular 

force component parallel to the table of the machine tool 

is defined as the X component for~e. Due to the setup of 1 

t.he dynamometer, the Y component force is thus in a 
• 

:direction perpendicular to the mill table. Figures 4.21 

.and 4.22 illustrate the response surface for the X and Y 

component forces obtained with the dynamometer. Due to 
/ 

·the symmetry of the drilling operation, it was expected 

that the X and Y force components would have similar 

response plots. The data and analysis does not support 

such a similarity. To investigate this finding, the 

initial setup (Fig. 4.2_3) position of the v·ise was 

rotated 90 degrees while maintaining tha same dynamometer 

orientation. The center point condition in the 

experimental design was then used as the cutting 

condition to test the effect of vise replace.·ment on the X 

and Y component forces readings. Each drill size was 

replicated four times and the force and torque data 

collected for the switched vise setup. T'he X. and Y 

component force for each test cutting were plotted 

against time to compare with the plots of the previously 

recorded X and Y component force. No differences in the 

values of the forces were detected between the original 

position and the test position from the force curves . 

Regardless of the position of the • vise, the X and Y 
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component force readings were still found to be 

assymmetric. The drill rotational frequency may be an 

explanation of this phenomenon since the plot of the 

recorded responses of the X component and Y component 

forces (Fig. 4.24) indicated a sinuioidi.il behavior. 

Another possibl.e explanation may be the machine tool 

table's stn1ctural flexibility and/or gearing. 

4.2.5 Response Surface Plots of Thrust Force 

In general, under a constant cutting speed, the 

results of the analyses indicated that the effect of 

feedrate and the length of cut were equally important in 

the thrust force model. Figure 4.25 is the response 

surf ace plot indicating the contour of thru·st force for 

length of cut and feedrate interaction. In the low 

length of cut region, feedrate is the dominant factor for 

the thrust force. The length of cut effect on the thrust 

force may be attributed to the tool wear. A worn drill 

bit would adversely affect the ·thrust force in the high 

feedrate, high length of cut region. The slope of the 

thrust has been discussed in section 4.2.2. It was found 

to be highly correlated to the average flank wear rate. 

The c~rrelation coefficient (Table 4.2) between the 

average flank wear wear rate,and the slope of the thrust 
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force was 0.853. Figure 4.26 and Figure 4.27 exhibit the 

response surface plots of the standard deviation of the . 

thrust force for the 19/64" and 1/8 11 drills, . 

:respectively. The following conclusions may be drawn 

from these two figures: 

a. Feedrate is the ~ajor factor for the standard 

deviation of the thrust force on both sizes of 

drill. The higher the feedrate, the higher th~ 

standard deviation of the thrust~ 

b. For the 1/8" drill, at both high and low cut·t.i.-ng 

speed, the cutting speed has less effect on th• 

standard deviation of the thrust force. 

4.3 A Methodology for Optimal Deep-Hole .Drilling 

The response surface plots generated in the previous 

sections served to locate the optimal cutting conditions 

for the deep hole drilling operation for various 

:individual response of interest within the range of the 

experiment. Relationships between the performance 

indexes, such as tool path deflection, hole surface 

quality, and· tool flank wear, and the on-line measureable 
. 

responses, i.e. forces, torque, slope of forces and 

torque, and their standard deviations were reviewed in 
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chapter two. The following subsections are to 

demonstrate an approach to locate the overall optimal 

performance cutting conditions for this experiment. The 

status of the average flank wear for the drill can also 

be simulated by the slope of the thrust force. 

4.3.1 Selection of Optimal Performance Cutting 
Conditions in Deep Hole Drilling 

The criteria used in the selection of the cutting 

conditions for overall performance considers the 

following objectives: 

a. Minimun flank wear to minimize the tool cost and ,. the setup cost. 
b. Minimum cutting time to get better metal remove! 

rate. 
c. Improved hole surface quality. 
d. Minimization of the thrnst forte to avoid tool 

pa th wander. 

Radhakrishnan and Wu [ 10] pointed out that the 

standard deviation of the thrust force could be used as a 

good indicator of the hole surface quality. In their 

discussion, the response of the standard deviation of the 

thrust force was used to represent the standard deviation 

of the hole. surface·quality. In order to get better hole 

surface quality, the standard deviation of the thrust 

for,~e is needed to be minimized. Even though hole surface, 

quality was considered in this thesis, the surface 

"· . \ . 
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quality that was measured during this research (using a 

SURFTEST III stylus prof ilometer) resulted in higl1 

v·ariability for the surface roughness such that no 

statestical significance could be detected. The surface 

qualitty measurements could only be taken on the 19/64 

inch drill diameter holes. 

In order to demonstrate the approa,ch to locate the 

optimal cutting condition, Radhakrishnan and Wu's results 

were employed, and the standard deviation of the thrust 

force was used to indicate the surface quality. An 

illustration of the prbcedure to locate the optimal 

cutting cinditions for a 1/811 twist drill is given by the 

following example: 

Problem specification: 

The hole to be drilled is a 1/8 11 .diameter hole. The 
length of ·the hole is 7/8" (0.875 inches). Cutting 
time requirement for this hole making process is set 
at no more than 10 seconds. No path deflection or 
tool bit breakage is expected-to occur during 
drilling. The work material is an AISI 4145 alloy 
steel bar. 

Approach to select the optimal cutting condi·tions °I - : 

1. Figure 4.28 illustrates the response plot of the 
mean flank wear for the 1/8" diameter drill with 
the length of cut to diameter ratio equal to 7. 
(length of cut equal to 7 /8") 

2. The time of cut, Tc, is defined by the ratio of 
length of cut over feedrate multiplied by spindle 
speed, N. 

3. Figure 4.29 exhibits the response plot of the 
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standard deviation of the thrust force for the 
1/8" diameter drill with the length of cut to 
diameter ratio equal to 7. ( length of cut equal 
to 7 /8") 

.. 

4. Figure 4.30 gives the.response plot of the mean 
thrust force for the 1/8" diameter drill with the 
length of cut to diameter ratio equal to 7. 

(length of cut equal to 7 /8") 

5. Mapping these three figures together and applying 
the constraints specified for the working 
environment, (i.e. the maximum cutting time for 
each hole is 10 seconds), the calculated critical 
load using equation 2.3 for a 1/8" diameter drill 
is 140 lbf. 

6. The hatched line area in figure 4.31 represents 
the optimal performance working zone for the 1/8" 

drill. Chosing the criteria that the optimal 
point is located at the intersection of the 
minimum flank wear and minimum standard deviation 
of thrust force, the optimal point may be located 
on the combined plot ( Fig. 4~31). For this 
example, the optimal cutting conditions resultes 
in a flank wear of 0.033 inches and a standard 
deviation of thrust force equal to 8. The 
optimal cutting conditions are within both the 
time and thrust force constraints. (time= 10 
sec., thrust force = 110 lbf). 

4.3.2 A Possible Approach to Monitor the Status of the 
Drill Flank Wear 

The flank wear curve generally can be divided into 

three sections as indicated previously in Figure. ~.7. 

Figure 4.32 exhibits the representatative pattern of the 

flank wear curve and the corresponding average wear rate 

curve. The average wear rate, as defined to be the wear 

reading divided by the total cutting time (equation 4.3), 
' 
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is always decreasing along the flank wear ourve. An 

increase of the average wear rate indicates the cutting 

tool has reached the point of thermal instability and 

rapid wear occurs. As stated in section 4.2.4, the slope 

of the thrust force was highly correlated with the 

average wear rate and could be a good indicator of the 
" 

average wear rate. The slope of the thrust force could 

be used to monitor the average wear rate. 

A plot of the slope of the thrust force versus time 

is compared with a flank wear curve in Figure 4.33. The 

thrust force data used to plot Figure 4.33 (a) was 

obtained from thrust force reading at cutting conditions 

corresponding to the center point of the experimental 

design (Speed= 1700 RPM, feedrate = 0.003 IPR and length 

.. of cut to diameter ratio = 7). The intent of Figure 4. 3 3 

is to present as a basis fbr flank wear monitoring.· 

Further investigation would need to be done to verify the 

_approach. The thrust force slope has the same pattern as 

the average wear rate shown in figure 4.32. St 

represents the slope of the thrust force at time t, and 

St-l is the slope of the thrust force at time t-1. To 

determine the critical point of the onset of the thermal 

instability, one may succesively calculate the ratio of 

St to St-l to obtain the rate of change of the slope of 
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the··· thrust force. As the ratio, ( O < St / St-l < 1 ·) 

approaches the value one, the drill tip is approaching 

the critical point of thermal instability. If the ratio 

is greater than one, the critical point of the thermal 

instability is surpassed. The analysis of the data in 

this thesis supports this approach, but, as mentioned, 

further work would be necessary to validate this 

conjecture. 
\ 
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CHAPTER FIVE .. 

CONCLUSIONS ARD RECOMMENDATIONS FOR FUTURE RESEARCH. 

The following conclusions can be drawn with regard 

to the deep hole drilling experiments conducted in this 

research: 

.\ 

l. A reduction in feedrate or cutting speed reduces 

the thrust force. The effect of feedrate on 

thrust force reduction is of greater magnitude 

than the effect of cutting speed. 

2. The slope of the thrust force is found to be a 

good indicator of the average wear rate. 

3. There was an indication that the rate of change 

of the slope of the thrust force may be a 

possible approach to determine the critical point 

of tQermal instability. 

4. Outside wear is highly correlated with the 

average flank wear. In general, length of cut to 
. . 

diameter ratio and the cutting speed were found 

to be the dominant factors in generating the 
~ 

average flank wea; and the outside flank wear. 

5. The standard deviation of the Y component force 
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and the torque had a similar response pattern 

within the experiment region. 

6. Response Surface Methodology is a viable 

technique to aid in the selection of the optimal 

cutting conditions in deep hole drilling. 

The following recommendations are made · for future 

research: 

1. Forces/torque readings ~should be ffurther 

investigated by a technique such as Data 

Dependent Systems analysis. such an 

investigation would be beneficial in improving 

the underatanding of the physical characteristics 

of the drilling process. 

2. The effect of cutting parameters on the tool path 

deflection would be a v·aluable extension to the 

r·esearch investigation on deep hole drilling. 

3. Additional research is needed to verify the 

approach using the rate of change of the thrust 

force in monitoring the critical point of thermal 

instability • 

4. The interdependency between the response 
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variables i.e. flank wear, thrust force, torque 
I 

etc., should be investigated by techniques such 
r 

as step wise regression. Interdependencies could 

serve as a basis for a control algorithm for 

adaptive control in deep hole drilling. 

~: 

; 
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APPENDIX I 

WORK MATERIAL HARDNESS TEST 
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Results of hardness test of work material 

. 

1. Material: AISI 4145 Hot Rolled alloy steel 

2. Testing machine: Wilson, Rockwell hardness test 
machine, model 3JR 

3. Date; Sept. 17, 1984. 

4. Specimen: The specimen were cut and ground to 
obtain the best surface finish. 

The following figure exhibits the 
testing points on the specimen: 
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5. Results : 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
a. 
9. 
10. 
11. 
12. 
13. 
14. 

Test 1 
Rock A BHN 

60 228 
63 264 

'63 264 
62.5 257 
61 235 
62 245 
62.5 257 
61.5 240 

Test 2 Test 3 
Rock A BHN Rock A BHN 

62.5 257 62 245 
60 228 62.5 257 
61.5 240 62 245 
61.5 240 63.5 260 
62.5 257 63.5 260 
60 228 62 245 
60.5 230 61 235 
62 245 61.5 240 
61.5 240 63 264 
63.5 260 62.5 257 

62 245 
62.5 257 
63 264 
61.5 240 
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15. 
16. 

61.5 
60 

240 
228 

AV e. 61. 9 3 7 5 2 4 8 • 7 5 61. 5 5 2 4 2 • 5 6 2 • 12 .. 5 .2 4 8 • 8 7 5 

Total average: 
Variance • • 

:,. 

'. 

247 BHN 
11.85 BHN 

. .•. 

., 
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APPENDIX II 

IMPLIMENTATION OF COMPUTER PROGRAM 

Computer programs developed for this resea~ch were 

al.l FORTRAN-based program. Programs inclqded : 

1. Data acquisition program. 

Impliments on PDP 
read the voltage 
and translate 
forces/torque. 

11/34 computer system to 
signal from A/D conveter 
to the corresponding 

2. Data analysis program. 

Impliments on PDP 11/34 computer system to read 
the data files that generated from the 
acquisition program and calculate the slope of 
forces/torque, the mean values and their 
standard deviations. 

3. Model fitting and F-test program. 

Impliments on the CYBER 850 system. Three­
variable second order equations was employed to 
use in generating the response model. F-tests on 
each terms of the model were conducted to 
identify the contribution of each terms in the 
model. 

4. Response surface plot program. 

Impliments ·on the CYBER 850 system. Using the 
TEMPLT graphic package, this fortran-based 
program use the coefficients of each response 
model to generate the contour plots for each 
model. 

Computer programs described above are maintain·ed :py 
<.---~,~ 

Dr. Niclolas G. Odrey 
Department of Industrial 
Lehigh University 
Bethlehem, PA 18015 
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TABJ.-A3.1 DIRECT RESPONSE MEASUREMENT OF 19/64• DRILL 

( REPLICATION 1 ) 

Tool Coded Average Outside Inside cutting 
No. v. F D Wear Wear Wear Time -
LOl 1 l 1 .02825 .0285 .028 632 
L02 1 1 -1 .0145 .023 .006 300 
L03 1 -1 1 .0395 .029 .050 2220 
L04 1 -1 -1 .02625 .026 .0275 1087 
LOS -1 1 1 .0555 .0525 .0585 1129 
L06 -1 1 -1 .04075 .034 .0475 555 
L07 -1 -1 1 .0405 .036 .049 2929 
LOS -1 -1 -1 .037 .035 .039 1367 
L09 1.6 0 0 .018 .0205 .0155 577 
LlO -1.6 0 0 .046 .044 .048 1635 
Lll 0 0 1.6 .0455 .055 .041 1368 
Ll2 0 0 -1.6 .01975 .0215 .018 382 
L13 0 1.6 0 .02975 .040 .0195 514 
Ll4 0 -1.6 0 .02325 .020 .0265 3615 
Ll5 0 0 0 .02 .. ,' .0285 .0255 856 
L16 0 0 0 .032 .0315 .0325 869 

( REPLICATION 2 ) 

Tool Coded Average Outside Inside cutting 
No. V F D Wear Wear Wear Time . 

'1 

LOl 1 1 1 .0295 .024 .035 599 
L02 1 1 -1 .03025 .0385 .022 299 
L03 1 -1 1 .06675 .082 .0515 2178 
L04 1 -1 -1 .0505 .048 .053 1018 
LOS -1 1 1 .0575 .061 .054 1068 
L06 -1 1 -1 .03625 .0362 .036 517 
L07 -1 -1 1 .040 .0265 .0385 2900 
LOS -1 -1 -1 .02075 .0205 .021 1409 
L09 1.6 0 0 • 0.13 .0135 .0125 563 
LlO -1.6 0 0 .027 .026 .028 1583 
Lll 0 0 1.6 .04175 .0385 .045 1354 
Ll2 0 0 -1.6 .01975 .0235 .016 364 
Ll3 0 1.6 0 .028 .0335 .0225 488 
L14 0 -1.6 0 .0205 .0175 .0235 3553 
Ll5 0 0 0 .0275 .027 .028 869 
Ll6 o. 0 0 .038 .0315 .,044 881 

I 
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TABLE A3.2 DIRECT RESPONSE MEASUREMENT OF 19/64" DRILL 

( REPLICATION 3 ) 

Tool Coded Average Outside Inside cutting 
No. V F D Wear Wear Wear Time - -
LOl 1 1 1 .01625 .020 .0175 599 
L02 l 1 -1 .00925 .0125 .007 299 
L03 1 -1 1 .03725 .0175 .052 1625 
L04 1 -1 -1 .02525 .0205 .030 774 
LOS -1 1 1 .0395 .0345 .0445 1057 
L06 -1 1 -1 .02925 .027 .0315 556 
L07 -1 -1 1 .0375 .0285 .033 2871 
LOS -1 -1 -1 .02775 .0165 .029 1410 
I.J09 1.6 0 0 .036 .0375 .0295 556 
LlO -1.6 0 0 .02925 .0235 .035 1556 
Lll 0 0 1.6 .07875 .0805 .077 1297 
Ll2 0 0 -1.6 .0225 .0235 .0215 359 
Ll3 0 1.6 0 .03575 .028 .0435 465 
Ll4 0 -1.6 0 .05075 .0415 .060 3517 
Ll5 0 0 0 .03125 .0335 .029 795 
Ll6 0 0 sQ . . .03675 .031 .0425 832 

( REPLICATION 4) 

( . ·, 
"') 

Tool Coded Average Outside Inside Cutting 
No. V F D Wear Wear Wear Time ·- - -

LOl l l 1 .02175 .0255 .018 622 
L02 1. 1 -1 .011 .009 .013 300 
L03 1 -1 1 .03225 .024 .0405 1556 
L04 l -1 -1 .0305 .0245 .0365 777 
LOS -1 l l .030 .0325 .0275 1138 
L06 -1 1 -1 .04125 .0545 .028 334 
L07 -1 -1 l .02175 .0265 .017 2906 
LOS -1 -1 -1 .025 .026 .024 1406 
L09 1.6 0 0 .0235 .026 .021 563 
LlO -1.6 0 0 .03375 .027 .0405 1580 
Lll 0 0 1.6 .03475 .0315 .038 1307 
. 

Ll2 0 0 -1.6 .02725 .027 .0275 359 
Ll3 0 1.6 0 .01425 .018 .0105 471 
Ll4 0 -1.6 0 .032 .020 .044 2430 
Ll5 0 0 0 .03175 .0255 .038 828 
Ll6 0 0 0 .02825 .0225 .034 . 837 
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TABLE A3.3 DERIVED RESPONSE MEASUREMENT OF 19/64 11 DRILL 

( REPLICATION 1) 

-- Mean of forces/torque -- -- Slope of force/torque --
Torque Thrust X y Torque Thrust X y 

- - - -
4.46 388.89 -1.08 -1. 7,~, .007 .1804 .001 .0069 
3.35 410.46 -0.712 2.399 .0049 .3788 -.0028 .0059 
1.22 234.75 -2.965 5.888 -.0001 .0175 .0044 -.0025 
1.42 200.72 0.357 5.723 .0003 .0866 -.0001 .0036 
4.08 425.90 5.514 5.45 .0026 .0845 -.0025 -.0024 
3.28 394.36 4.258 6.041 .0022 .1896 .0022 .0045 
2.31 247.54 -5.099 3.114 .0008 .0137 .0005 -.0000 
0.21 230.29 -3.635 3.943 .0002 .036 .0014 .0024 
2.63 290.07 4.326 6.588 .0021 .2236 .0093 .0055 
4.13 377.33 4.355 5.83 .0031 .0465 .0027 .0024 
3.97 363.86 3.192 2.632 .0031 .0855 .0065 .0052 
2.35 286.21 0.49 1.81 .0025 .176 .0021 • 004·1 
4.10 448.35 0.895 4. 5-19 .0032 .2469 .0055 .0066 
1.80 135.08 0.943 5.719 .0006 .017 .0005 .0002 . 
3.25 325.31 4.747 5.556 .0038 .0971 -.0013 -.0042 
3.08 320.78 4.967 5.982 .0031 .1047 .0054 -.0004 

------- Standard deviation of ------
torque thrust X-force Y-force 

.574 34.724 .85 .931 

.278 18.102 .177 .173 

.273 12.692 1.341 2.777 

.205 22.905 .176 .624 

.87 35.262 2.529 2.794 

.474 39.774 .526 .682 

.609 15.854 1.824 .607 
• OJ. 7 18.017 .393 .324 
.358 21.615 .641 .733 
~73 26.083 .792 1.458 
.555 23.773 1.953 1.589 
.39 27.481 .149 .139 
.609 45.838 .407 2.942 
.215 12.845 .395 1.969 
.404 21.861 2.26 2.43 

·-

.509 26.47 .649 2.226 

.I 

•·••. ~·; • - -. • :. •• • • • • ,,, L 
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TABLE AJ.4 DERIVED RESPONSE MEASUREMENT OF 19/64" DRILL 

( REPLICATION 2) 

-- Mean of forces/torque -- -- Slope of force/torque --
Torque Thrust X y Torque Thrust X y 

- - -

3.96 497.36 1.091 -2.21 .0034 .3141 .0034 .0038 

3.41 492.508 - • 99.7 1.379 .0029 .5366 .0006 .0018 

2.13 223.335 0.63 5.858 .0011 .0519 .0000 -.0005 

1.65 223.099 1.228 6.859 .0008 .0669 .0008 .0029 

3.96 497.364 1.091 2.21 .0034 .3941 .0034 .0038 

3.41 492.508 .997 1.379 .0029 .5366 .0006 .0018 

2.13 223.335 .63 5.858 .0011 .0519 .o -.0005 

1.65 223.099 1.228 6.859 .0008 .0669 .0008 .0029 

4.32 540.706 6.013 5.399 .0028 .17 -.001 -.0047 

3.49 504.297 5.125 5.405 .003 .4115 .0047 -.0125 

2.08 265.801 5.064 2.912 .0004 .0235 .0006 .0002 

2.24 234.356 2.389 5.6 .001 .0254 .004 .0025 

2.78 316.475 5.689 5.28 .0028 .2034 .0014 .0036 

3.67 365.038 4.855 4.901 .0021 .0627 .0014 -.0012 

3.31 334.596 .612 1.52 .0013 -.0324 .0004 .0033 

2.48 381.436 .426 1.594 .0026 .5221 .0025 • 0024 .· 

4.08 459.535 .966 3.878 .003 .2331 .0031 .0115 

1.46 130.867 1.968 5.386 .0004 .0145 .0012 -.0005 

2.99 353.355 3.608 5.676 .0024 .1902 .0011 -.0023 

2.92 355.634 4.761 5.216 .0013 .0483 .0029 -.002 

------- standard deviation of ------
torque thrust X-force Y-force . 

• 307 36.629 • 819 .459 

.609 83.754 .181 .174 

.287 23.452 .336 2.745 

.183 27.935 .196 1.354 

.636 36.469 2.741 2.932 

.484 44.609 .614 2.511 

1.025 30.438 2.201 .901 

.269 15.293 .339 1.575 

.512 29.605 2.577 2.431 

.676 25.872 1.876 2.379 

.35 60.17 .575 1.548 

.454 59.344 .273 .355 

.592 53.264 .634 2.513 

.209 17.179 .494 2.318 

.482 30.687 .44 2.643 

• 49;1 33.298 .62 2.121 
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TABLE A3.5 DERIVED RESPONSE MEASUREMENT OF 19/6~~ DRILL 
( REPI;ICATION 3 ) 

L 

-- Meanofforces/torque -- -- Slopeofforce/torque ~~ 
Torque Thrust X Y Torque Thrust ~ Y 

. 
4.52 399.07 .545 1.538 .0065 .0768 
1.96 339.60 1.017 4.272 -.0105 .1849 
2.28 201.62 2.228 6.762 .0011 -.0065 
1.76 205.02 .502 6.691 .001 .0179 
4.42 373.40 5.439 5. 215 .0036 .1373 

·3.51 355.97 5.598 4.805 .003 .1868 
1.51 248.11 -5.022 3.161 .o .0131 
1.79 212.54 1.501 4.162 .0006 .0516 
3.16 352.04 5.471 4.572 .0029 .1863 
3.72 430.86 3.33 5.045 .0021 .0585 
4.19 667.58 2.289 3.067 .0034 .3129 
2.37 254.61 .318 1.068 .0028 .1753 
4.37 615.78 1.687 4.175 .0005 .3366 
1.70 138.49 1.431 4.793 .0005 .009 
3 '916 342.45 4.827 4.907 .0033 .1461 
3.60 : . . . 360.29 4.176 5.181 .005 .2159 

------- Standard deviation of ------
torque thrust X-force Y-force 

.544 28.886 .346 .446 

.748 38.034 .433 2.428 

.644 20.67 .77 2.388 

.195 21.551 .219 .516 
.• 744 27.013 2.476 2.866 
.427 30.553 .445 .686 
.317 17.817 2.49 .801 
.184 18.942 .284 .·27 
.275 14.744 2.206 .566 
.54 27.656 .53 2.262 
.765 75.238 1.832 1.995 
.366 22.974 .129 .15 
.791 94. 4'65 .925 2.695 
.272 17.976 .401 .844 
.49 28.074 .804 2.257 

\ .988 .38.465 .792 2.263 

116 
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.0008 

.0044 

.0045 

.0014 

.0002 

.0052 
-.0002 
-.0003 
-.0015 

.0007 

.0049 

.0017 

.0061 

.0008 

.0045 

.005 

./ i 

;c_-~::-.i. 

.0025 

.0124 
-.0003 

.0038 
-.0019 

.0027 
• 0 
.0023 
.0065 

-.0002 
.0048 
.0026 
.0072 
.0006 

-.005 
- • 000.5 
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TABLE A3.6 DERIVED RESPONSE MEASOREMEN'l OF 19/64" DRILL 

( REPLICATION 4) 

·-- Meanofforces/torque -- -- Slopeofforce/torque --= 
Torque Thrust X y Torque Thrust - -
3.81 
3.22 
2.48 
1.84 
3.72 
3.44 
3.53 
1.43 
2.68 
3.59 
4.18 
2.53 
4.34 
1.45 
3.61 
3.23 

409.36 3.895 2.559 .0031 .1058 

417.11 2.971 .259 .0052 .5204 

219.03 1.704 4.799 .0014 .0276 

212.65 .229 6.907 .0015 .0503 

736.15 5.054 6.07 .0013 .2401 

389.47 3.893 6.889 .0027 .2977 

402.27 2.988 5.222 • 0017 .0561 

230.30 3.145 1.415 • 0·003 .023 

339.45 5.444 4.535 .0027 .1979 

412.61 5.401 4.393 .0018 .• 1131 

333.67 3.992 .93 .0033 .0586 

345.47 .179 1.488 .0027 .1084 

367.23 .582 3.251 .006 .1607 

152.86 .587 4.492 .0003 .0083 

366.09 4.158 5.323 .0047 .2777 

311.44 3.927 4.755 .0031 .128 

------- Standard deviation of -----­
torque thrust - X-force Y-force 

.694 

.251 

.372 

.233 

.557 

.465' 

.912 

.201 

.482 

.978 

.686 

.432 

.484 
~204 

1.133 
.431 

43.715 
23.811 
13.163 
19.291 
76.214 
40.829 
31.96 
22.631 
34.162 
59.169 
23.733 
35.914 
12.374 
18.91 
58.039 
24.737 

2.472 
.263 
• 307 
.151 

2.821 
.779 

1.222 
.504 

2.376 
1.439 
2.694 

.157 

.34 

.397 
1.625 

.701 

117 

.464 

.147 
2.59 
2.044 
2.805 
1.51 
1.132 

.509 

.757 
1.153 

.541 

.214 
2.417 

.916 
2.813 
2.446 

X y 
-

.0094 .0002 

.0149 • 0·019: 
. . 

.0021 - • 00:34 
-.0002 .0016 
-.0033 -.0012 

.0044 • 005·6: 
-.0002 • 0.012 

.0009 -·. 0006 
-.0018 • 0041. 

.003 - • 0·001 

.0027 •. Q005 
00008 •. 00'3 2 
.0031 .0086 
.0005 .0006 

-.0037 -.0048 
.0051 -.0056 

,-- ·, 

. :i: . 
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TABLE A3.7 DIRECT RESPONSE MEASUREMENT OF 1/8 11 DRILL 
( REPLICATION 1 ) 

· Tool Coded Average Outside Inside cutting 
No. V F D Wear Wear Wear Time - -
S01 1 1 1 .1045 0.135 .0735 174 
S02 1 1 -1 .02025 0.0275 .023 86 
S03 1 -1 1 .0475 0.076 .019 356 
S04 1 -1 -1 .0545 0.061 .048 1-00 
sos -1 . ]. 1 .078 0.0875 .0685 434 
S06 -1 1 -1 .03975 0.046 .0335 227 
S07 -1 -1 1 .0465 0.049 .039 896 
sos -1 -1 -1 .05175 0.052 .0515 476 
S09 1.6 0 0. .058 0.092 .024 157 
SlO -1.6 0 o· .0559 0.06975 .0422 884 
·s11 0 0 1.6 .05125 0.0505 .0522 383 
Sl2 0 0 -·1 .•. 6 .0115 0.0175 .0055 129 
S13 0 -1.·6 0 .035 0.0265 , • 0385 613 
S14 0 1. 6 0 .06725 0.103 .0315 166 
S15 0 ·o 0 .05675 0.0825 .0311 249 
S16 0 0 Cl .039 0.042 .036 258 

( REPLICATION 2) 

-rr;oo:l Coded Average Outside Inside Cutting 
No .. , ·v F D Wear Wear Wear Tinte - - -

S.0-1 l 1 ·1 .09975 0.131 .0645 172 
s·o2 l 1 -1 .02175 0.0345 .009 .86 
S03 l -1 1 .0465 0.0705 .0225 343 
S04 1 -1 -1 .0205 0.024 .017 175 
sos -1 l 1 .072 0.1035 .0405 420 
S06 -1 l -:1 .0145 0.0125 .0165 215 
S07 -1 -1 l .032 0.035 .029 855 
sos -1 -1 -1 .02875 0.0225 .035 471 
S09 1.6 0 0 .06825 0.0995 .037 145 
S10 -1.6 0 0 .03875 0.045 .0325 864 
Sll 0 0 1.6 .06375 0.097 .0305 386 
S12 0 0 -1.6 .0335 0.034 .033 128 
S13 0 -1.6 0 .02575 0.0245 .027 615 
S14 0 1.6 0 .04925 0.0785 .02 160 
S15 ,. 

0 0 0 .0365 0.0485 .0245 253 
S16 0 0 0 .036 0.0475 .0245 258 

~ 
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TABLE A3.8 DIRECT RESPONSE MEASUREMENT OF 1/8 11 DRILL 
( REPLICATION 3) 

Tool Coded Average Outside Inside 
No. V F o: Wear· Wear Wear 

S01 
S02 
S03 
S04 
sos 
·S06 
:.907 
sos 
S09 
S10 
Sll 
S12 
S13 
S14 
S15 
S16 

:Tool. 
:No. 
. . - . . ; . 

;$01 
so·2 
S03 
S04 
sos 
S06 
S07 
sos 
S09 
S10 
Sll 
S12 
S13 
S14 
$15 
S16 

- - -· 

1 .1 .. l 
1 1 -·1 
1 -1 1 
1 -1 -1 

-1 1 1 
-1 1 -1 
-1 -1 1 
-1 -1 -1 
1.6 0 0 

-1.6 0 0 
0 0 1.6 
0 0 -1.6 
0 -1.6 0 
0 1.6 0 
·o .. 0 0 
·o· 0 :Q 

Coded 
·V F D ·- - -

1 1 1 
1 1 -1 
1 -1 1 
1 -1 -1 

-1 1 1 
-1 1 -1 
-1 -1 1 
-1 -1 -1 
1.6 0 0 

-1.6 0 0 
0 0 1.6 
0 0 -1.6 
0 -1.6 0 
0 1.6 0 
0 0 0 
0 0 0 

.09445 0.1225 

.0095 0.01 

.02725 0.028 

.023 0.022 

.04375 0.0635 

.024 0.0205 

.03725 0.0345 

.03675 0.0405 

.02825 0.0355 

.033 0.041 

.04075 0.049 

.018 0.0185 

.0235 0.0195 

.054 0.0915 

.023 0.0225 

.0205 0.028 

( REPLICATION 4) 

Average 
Wear 

.07775 

.0145 

.04425 

.0155 

.07925 

.02075 

.03925 

.01775 

.08275 

.03775 

.06725 

.01575 

.03775 

.053 

.03475 

.0335 

outside 
Wear 

0.1005 
0.021 
o. o;:· 
0.019 
0.072 
0.0205 
0.0505 
0.017 
0.123 
0.0405 
0.027 
0.0205 
0.079 
0.083 
0.0485 
0.045 

119 

.0665 

.009 

.0265 

.024 

.024 

.0275 

.04 

.033 

.021 

.025 
.• 0325 
.0175 
.0275 
.017 
.0235 
• 0.13 

Inside 
Wear 

.055 

.008 

.0185 

.012 

.0865 

.016 

.028 

.0185 

.0425 

.035 

.0485 

.011 

.0555 

.023 

.021 . 

.022 

cutting 
Time 

186 
90 

353 
181 
428 
226 
898 
482 

86 
859 
386 
131 
471 
176 
258 
266 

cutting 
Time 

177 
92 

343 
178 
428 
220 
869 
449 
157 
863 
386 
127 
606 
172 
258 
258 

./ ,. 
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TABLE A3.9 DERIVED RESPONSE MEASUREMENT OF 1/8 11 DRILL 

( REPLICATION 1) 

-- Mean of forces/torque -- -- Slope of force/torque ~,-
Torque Thrust ~ · ! Torque Thrust ~ ! 

.64 

.48 

.74 

.43 

.82 

.51 

.90 

.38 

.66 

.96 

.55 

.37 

.34 

.57 

.64 

.53 

169.19 
111.58 

90.40 
93.32 

179.92 
137.16 
115.06 
106.42 
117.86 
152.44 
134.28 
106.45 

75.26 
163.80 
110.82 
132.02 

-------
torque 

.172 

.021 

.112 

.032 

.165 

.053 
.• 147 
.032 
.178 
.126 
.112 
.034 
.047 
.17 
.154 
.049 

-1.23 
.259 

1.456 
.971 

2.853 
2.448 

-1.148 

-1.438 • 004·~ 
.0023 
.0034 
.002 
.0025 
.0016 
.0017 
.0005 
.0062 
.0016 
.0014 
.0008 
.0007 
.003 
.0043 
.0023 

-1.783 
.57 

-2.704 
-2.79 

1.14 
1.478 
1.15 
1.532 
1.668 

Standard 
thrust 

56.292 

.341 
4.169 
3.044 
3.757 
2.738 
4.028 
1.624 
3.742 
3.969 
1.093 

.204 
2.78 
4.274 
1.352 
1.36 

deviation 
X-force 

.415 
2.7556 .079 

12.055 .489 
7.437 .181 

33.681 .765 
15.643 .305 
13.563 .221 

7.262 .259 
37.025 .354 
21.347 .5 
10.658 1.013 

6.932 .147 
2.7 .172 

39.742 .283 
9.604 .217 

22.759 .472 

of 

1.585 
.321 
.138 
.149 
.329 
.195 
.044 
.030 
.550 
.174 
.075 
.112 
.016 
.633 
.120 
.370 

------
Y-force 

.779 

.131 

.536 

.303 
1.62 

• 3 
.68 
.134 

1.693 
.594 
.233 
.068 
.271 

1.919 
.526 
.267 

.0202 
-.0041 

.0112 

.0084 

.008 

.0083 
-.0005 
-.0017 

.0016 
• 0055 
.0188 

-.0009 
.0015 
.0001 
.0025 
.0059 

.9243 

.0131 

.018 

.0038 

.0113 

.0083 
• 000·9: 
• O·Ol.5 
• 0··23.6 
• 0075 . 
.0043 
.0018 
.0036 
.0258 

-.0048 
~-01.08 

I 
•1 

( 

' ' 



:·• 

~' 

.. ; 

TABLE AJ.10 DERIVED RESPONSE MEASUREMENT OF 1/8" DRILL 
( REPLICATION 2) 

. 
-·- Meanofforces/torque -- -- Slopeofforce/torque 
Torque Thrust X y Torque Thrust X ¥ - - - ·-

.679 199.89 -.992 2.98i .0051 1.6792 • 01.68 

.047 120.63 - •. 711 • Q95 .0035 .0961 .0139 

.453 101.55 -.56 2. 6'7 2 .000 .1453 .0052 

.476 69.51 .681 3.395 .0035 .0948 .0049 

.783 199.86 2.574 4.278 .0018 .3439 .0054 

.502 117.43 2.645 2.858 .0011 .1319 .0085 

.932 97.62 2.034 2.469 .0017 .0489 .0076 

.396 113.33 .. -2. 0 2.078 .0003 .0431 .0005 

.339 118.81 -3.473 1.252 -.0009 .6128 .0414 

.925 150.12 -1.· 713 2.449 .0016 .184 .0018 

.073 130.72 2.173 -2.543 .0018 .2218 .0155 

. . . . --
.0447 
.003 
.0024 
.0131 
.0089 
.0121 
.0028 
.0024 
.001 
.0022 
.0191 

.397 117.26 -.422 .226 .0005 .0648 -.0008 -.0003 
• 4.61 72.52 
.696 144.97 
•:707 143.42 
.:43:5 123.69 

-------
torque 

.119 

.047 

.122 

.063 

.209 

.034 
1;096 
.044 
.168 

.['' .114 
.137 
.053 
.044 
.172 
.153 
.091 

.557 4.201 .001 

.303 4.291 .0042 
3.618 2.357 .0054 

• 804 2.74 .0016 

Standard deviation of 
thrust 

41.753 
2.091 
7.67 
2.421 

34.783 
3.623 
7.977 
8.139 

30.519 
15.602 
16.249 
13.412 

4.123 
21.591 
17.03 
11.473 

X-force 

.431 

.139 

.386 

.095 

.594 

.175 
1.479 

.22 

.764 
11251 

1.447 
.088 
.138 
.102 
.74 
.409 

i 

1.21 

.003 .0014 • 0074: 

.2884 -.0022 .027-? 

.199 .0232 - • 00·02 

.1629 -.0035 • 013 . 

---------
Y-force 

.597 

.034 

.276 

.139 
2.101 

.188 

.122 

.187 

.281 

.311 
1.535 

• 212 
.424 
.825 
.402 
.299 

l 
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TABLE AJ.11 DERIVED RESPONSE MEASUREMENT OF 1/8 11 DRILL 
( REPLICATION 3) 

-- Meanofforces/torque -- _ ,._ Slope o .. f f orce/~_orque -·-
Torque Thrust X y 4 Torque Thrust J y 

- - -
.66 187.48 1.7 2.906 • 004 l. 1.0995 .029 .0426 
.37 123.58 .403 -.813 ~0007 .0396 • 0127 .0077 
.75 97.40 1.786 1.752 .0036 .0489 . 0144 -.0049 
.42 80.94 .621 2.696 .003 .1254 .0057 .0032 
.46 161.11 1.159 4.021 --1003 .1836 -.0022 .0091 
.63 158.69 3.121 2.715 0025 .2278 .0046 .0106 
.75 103.25 -2.244 4.008 .0016 .0491 .0042 .0094 
.53 95.47 -1.292 1.689 .0016 .0348 -.0016 .0032 
.25 131.70 -2.008 -1.095 -.0019 .1705 -.0061 .0165 
.77 158.33 3.307 3.37 .0012 .108 .0085 .007 
.58 124.39 -2.538 .833 .001 .098 .0182 .0002 
.36 120.83 -.108 -.945 .0014 .2131 .0018 .0072 
.06 75.57 -1.038 2.829 -.0005 .0469 .0048 .0009 
.79 162.53 • 919 4.393 .0072 .5942 .0145 .0114 
.37 130.13 3.435 3.24 .0004 .1255 .0119 .0184 
.43 119.24 1.845 4.041 .0016 .1289 .0034 .0253 

------- Standard deviation of ------
torque thrust X-force Y-force 

.221 71.027 .502 .747 

.052 14.094 .221 0.066 

.11 7.149 .667 .538 

.102 4.178 .177 .14 

.198 9.231 .444 2.256 

.11 17.164 .454 .332 

.165 14.066 .497 1.202 

.117 4.724 .179 .116 

.059 8.891 .273 .7 

.109 14.422 .952 .687 

.19 10.892 1.457 .195 

.038 9.872 .058 .142 

.053 5.389 .256 .392 

.236 29.028 .503 1.726 

.036 5.936 .378 .531 

.083 9.448 .282 .382 

122 
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TABLE- A3.12 DERIVED RESPONSE MEASUREMENT OF 1/8 11 DRILL 

( REPLICATION 4) 

··~·- Meanofforces/torque -- -- Slope of force/torque --
Torque Thrust X y Torque Thrust X Y, -· 

r 

.64 204.26 1.279 -1.135 .0031 1.5671 .0228 • 0·241 

.40 123.13 -.152 -.62 .0025 .0283 .0046 .J.0013 

.82 110.49 2.342 4.242 .0047 .1002 .0221 .0139 

.24 83.87 -.318 2.81 .0004 .1149 .0061 .0028 
1.10 192.46 3.467 2.657 .005 .3442 .0138 .0046 

.62 152.61 2.926 2.098 .0034 .1.113 .0089 -.0028 

.85 131.56 -.829 3.738 .0018 .1015 .829 3.738 

.44 104.04 -2.513 1.78 .0008 .0341 .0045 .0017 

.51 156.12 -2.725 2.398 .003 .992 • 0192 • 02 09 . 

• 73. 154.68 -2.631 1.774 • 001.1 .1291 .0053 • 0 

.76 110.48 2.672 1.779 .0027 .1055 .0236 .0099 
• 3.9 119.35 -.129 -.444 .001 .0862 .o -.0001 
.31 71.03 -.264 2.647 .0004 .0175 .001 .0006 
.47 160.69 -1.4 4.853 -.0002 .2493 .0235 .021 
.61 115.10 3.525 2.31 .0036 .179 .0159 .0061 
.67 133.67 3.03 2.567 .0042 .19 .0172 . 009.3· 

------- Standard deviation of ------
torque thrust X-force Y-force 

.158 62.192 .517 .891 

.057 15.15 .139 .131 

.097 10.881 .99 .559 

.042 4.934 .147 .224 

.244 23.116 1.764 .697 

.087 14.514 .43 .24 

.136 23.129 .426 .959 

.069 5.639 .204 .121 

.191 53.402 1.108 .919 

.101 12.083 .668 • 217 

.159 11.503 1.125 :'~ .055 13.792 .045 

.03 2.963 .059 .17 

.085 17.129 1.036 1.355 .-_:_,~:, 

•" 

.075 5.296 .391 .161 

.13 5.031 .49 .139 

.\ 

). 
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APPENDIX IV 

COEFFICIENT MATRIX FOR RESPONSE MODELS 

" 
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TABLE A4.l COEFFICIENT MATRIX FOR 19/64" DRILL 
,' 

I 

/ 

Average Outside Inside Cutting Mean value 
• 

~ , Time Wear Wear Wear of Torque 
-

Bo .314E-Ol .~SE-01 .328E-Ol .855E+03 .327E+Ol 

Bl -.344E-02 -. 274E-02 -.115E-Ol -.285E+03 -.152E+OO 

B,2 -.182E-02 .818E-03 .407E-02 -.682E+03 .854E+OO 

BJ .593E-02 .457E-02 -.138E-02 .368E+03 .417E+OO 

Bl2 -.710E-02 -.598E-02 -.222E-Ol .102E+03 -.386E-Ol 

B13 .305E-03 .756E-03 .147E-Ol -.102E+03 -.106E-Ol 

B23 -.211E-03 .463E-03 -.124E-Ol -.195E+03 .762E-Ol 

Bll -.784E-03 -.310E-03 .149E-02 .598E+02 -.577E-Ol 

,B22 -.441E-03 -.288E-03 .237E-02 .344E+03 -.193E+OO 

B::33 .198E-02 .314E-02 .388E-02 -.209E+02 -.lOlE+OO 

Bl:23 -.570E-03 -.162E-02 .126E-Ol .287E+02 .134E+OO 

----- Mean value of ---- ----·--- Slope of -------
Thrust X-force Y-force To~ue Thrust X-force 

- -

.343E+03 .435E+OO .526E+Ol .339E-02 :.l51E+OO .241E-02 

-.220E+02 -.799E+OO -.138E+OO .lOSE-03 .264E-Ol .562E-03 

.101E+03 .241E+OO -.458E+OO .914E-03 .934E-Ol .858E-03 

.272E+02 .574E+OO -.203E-Ol .338E-03 -.442E-Ol -.171E-03 

-.466E+OO -.JOOE+OO -.153E+Ol -.250E-04 .185E-Ol .488E-03 

-.193E+02 -.147E+OO -.443E-Ol .538E-03 -.160E-Ol .109E-02 

.543E+Ol -.270E+OO .743E-Ol .506E-03 -.361E-Ol -.919E-03 

.505E+Ol .283E+OO .929E-Ol -.435E-03 -.922E-02 -.350E-03 

-.142E+02 -.103E+Ol -.124E+OO -.660E-03 -.719E-02 -.137E-04 

.874E+Ol -.927E+OO -.llOE+Ol -.342E-03 .962E-02 .216E-04 

-.557E+Ol .187E-02 .908E--Ol .594E-03 -.963E-02 •+94E-03 

Slope of Standard deviation of 
Y-force Torque Thrust X-force Y-force 

4 

Bo -.285E-02 .616E+OO .332E+02 .990E+OO •. 240E+Ol 

Bl .136E-02 -. 525E--Ol -.178E+Ol -.143E+OO -.134E+OO 

B2 .124E-02 .986E-Ol .998E+Ol .124E+OO .lSSE+OO 

B3 -.739E-03 .978E-Ol .113E+Ol .559E+OO .370E+OO 

B12 .lSOE-02 .153E-Ol -.430E+OO -.509E-Ol -.640E+OO 

B13 -.359~-03 -o674E-Ol -.256E+Ol -.280E+OO -.447E-Ol 

B23 .147E-03 -.551E-Ol -.109E-02 .106E+OO -.418E-Ol 

Bll .141E-02 -.468E-Ol -.202E+Ol .193E+OO -.340E+OO 

B22 .203E-02 -.697E-Ol -.625E+OO -.180E+OO -.124E+OO 

B33 .165E-02 -.422E-Ol .184E+Ol -.135E-Ol -.570E+OO 

B123 .478E-03 .221E-Ol .123E+OO -.177E-Ol -.370E+OO 
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TABLE A6.2 COEFFICIENT MATRIX FOR 1/811 DRILL 

Average outside Inside cutting Mean value 
Wear Wear Wear Time of Torque -

Bo .351E-Ol .461E-Ol .241E-Ol .261E+03 .545E+OO 
Bl .326E-02 .886E-02 -.197E-02 -.178E+03 -.926E-Ol 
B2 .758E-02 .125E-Ol .117E-02 -.121E+03 .390E-Ol 
B3 .146E-Ol .183E-Ol .883E-02 .956E+02 .107E+OO 
Bl2 .248E-02 .270E-02 .256E-02 .548E+02 -.198E-Ol 
Bl3 .519E-02 .783E-02 .225E-02 -.446E+02 -.280E-02 
B23 .128E-Ol .146E-Ol .llOE-01 -.358E+02 -.205E-Ol 
Bll .516E-02 .684E-02 .352E-02 u782E+02 .514E-Ol 
B22 .264E-02 .504E-=-02 .269E-02 .325E+02 -.130E-Ol 
B33 .702E-03 -.342E-02 .227E-02 -.833E+Ol -.222E-Ol 
B123 .319E-02 .273E-02 .303E-Ol .154E+02 .292E-Ol 

---- Mean value of ---- ------- Slope of -------
Thrust X-force Y-force To~ue Thrust X-force - -

.126E+03 .232E+Ol .247E+Ol .285E-02 .179E+OO .707E-02 
-.645E+Ol -.191E+OO -.518E+OO .386E-03 .146E+OO -.llSE-01 

.227E+02 .457E+OO -.178E+OO .604E-03 .180E+OO -.129E-Ol 

.112E+02 .123E+OO .369E+OO .380E-03 .lllE+OO .192E-Ol 

. 251E+Ol -.117E+Ol -.818E+OO -.lOOE-03 .126E+OO .258E-Ol 

.497E+Ol -.897E-02 -.193E+OO .238E-03 .149E+OO -.232E-Ol 

.109E+02 -.269E+OO .206E-Ol .313E-04 .185E+OO -.253E-Ol 

. 650E+Ol -.109E+Ol -.194E-Ol -.315E-03 .771E-Ol • 607E-02 ... 
-.294E+Ol -.513E+OO .529E+OO -.143E-03 .297E-Ol .463E-02 
-.129E+Ol -.588E+OO -.SOOE+OO -.373E-03 -.885E-02 .602E-02 

.219E+Ol .137E+OO .194E+OO .225E-03 .158E+OO .274E-Ol 

Slope of Standard deviation of 
Y-force Torque Thrust X-force Y-force 

Bo -.424E-02 .968E-Ol .108E+02 .432E+OO .350E+OO 
Bl -.484E-Ol -.244E-02 .361E+Ol -.481E-Ol -.396E-Ol 
B2 -.472E-Ol .235E-Ol .789E+Ol • 538E~-Ol .230E+OO 
B3 .882E-Ol .405E-Ol .563E+Ol .276E+OO .273E+OO 
B12 .147E+OO -.397E-02 .442E+Ol -.667E-Ol -.lllE+OO 
B13 -.855E-Ol -.372E-02 .416E+Ol -.233E-Ol -.133E+OO 
B23 -.856E-Ol .169E-Ol .610E+Ol -.634E-02 .149E+OO 
Bll .339E-Ol .lllE-01 .472E+Ol .420E-Ol .921E-Ol 
B22 .347E-Ol .188E-02 .160E+Ol -.606E-Ol .166E+OO 
B33 .322E-Ol -.731E-03 .302E+OO .645E-Ol -.198E-Ol 
B123 .148E+OO .128E-02 .505E+Ol -.340E-Ol -.519E-Ol 
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