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THE PROBLEM DEFINITION 
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Problem Def1n1t1on 

A problem at many large corporat1ons 1nvolves the establ1sh1ng of a 1a1d-1n 

cost for new customers. A la1d-1n cost 1s the 1ncremental cost associated 

w1th produc1ng and then d1str1but1ng product to a customer location. Th1s 

cost 1s used as the bas1s for establ1sh1ng customer contract pr1ces. 

Obviously, the compet1t1on w111 be develop1ng contract pr1ces as well. Thus, 

the calculated pr1ce must be fa1r (prof1table) for the corporat1on but also 

compet1t1ve. 

A Prof1t and Loss (P & L) analysis m1ght suggest a sel11ng pr1ce for new 

bus1ness based on la1d-1n costs from the closest available source for a 

p~~quct. For geograph1c areas w1th fac111t1es .at max1mum capac1ty, a better 

la1d-1n cost can be determ1ned when d1slocat1on costs are cons1dered. A dual 

var1able or shadow pr1ce analys1s 1s a means of cons1der1ng the d1slocat1on. 

The P & L calculat1on of la1d-1n costs 1s: 

where 

L$ = 0$ + P$ 

L$ = total la1d-1n costs from closest fac111ty 

0$ = d1str1but1on costs (round tr1p m1les * cost per m1le) 

P$ = production costs (volume* cost per un1t of volume) 

However, th1s algor1thm does not cons1der the t1mes when a corporat1on's 

product1on/d1str1but1on system becomes constra1ned. For example, 1t may not 

have the capac1ty at a spec1f1c fac111ty to support another customer, or 1t 

f 
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ta~·t cont1nue to supply 1ncreas1ng amounts before capac1ty (and therefore 

costs) needs to be revised. In e1ther case, the la1d-1n cost would change as 

fac111t1es not at capacity are used to satisfy the new demand. 

L1near programm1ng models are often used to suggest sourc1ng patterns for a 

d1str1but1on system by m1n1m1z1ng total incremental costs (product1on and 

d1str1but1on). Constra1nts m1ght 1nclude: 

•• 

• 

Productton 
. \. 

... ,'' " ~~---,· 

Veh1cles ---~--~>: 

Th:e amount of product shlp,p·ed to a locat1on must 

be greater than or equal to the demand . 

Total product1on at a fac111ty must be less than 

or equal to capac1ty. 

The number of veh1cles used to dlstr1bute 

product from a fac111ty must be less than or 

equal to the veh1cle count there. 

Demand constra1nts are one of the three bas1c 11near programm1ng model 

11m1tat1ons. The amount of product sh1pped to a spec1f1ed locat1on must be at 

least equal to a m1n1mum value. The po1nt (geograph1cally) at which a demand 

occurs helps to def1ne the costs of supply1ng product to the necessary 

constra1nt. That 1s, the greater the d1stance a demand po1nt 1s from a 

product source, the greater the cost of supply1ng product there. Although 

there 1s a demand po1nt referred to by each demand constra1nt, note that 

demand constra1nts are assoc1ated w1th the quest1on of 'how much?' wh1le 

demand po1nts w1th 'where?'. 

·- 3. -
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Because the L. P. model m1 n1m1 zes cost, each demand constra1 nt 1 s at 1·ts 1 ower 

• ·bound when opt1mal1ty 1s reached and therefore, each constraint has a dual 

cost assoi1ated w1th 1t. By def1n1t1on, th1s dual or demand po1nt shadow 
(' 

pr1ce 1s the max1mum amount one would be w1111ng to p~y for.an add1t1onal 

amount of the 1nput (demand). For this s1tuat1on, the dual represents the 

amount that the object1ve funct1on w1llq decrease 1f the constra1nts were 

relaxed, or the amount that the objective funct1on w1ll 1ncrease 1f the 

constra1nt were 1ncreased by one un1t. The shadow price for each demand 

location can be 1 nterpreted as the 1 nc rementa l cost to :prqdU.c~ and de 11 ver an: 

add 1 t 1 on al u n 1 t of product to the spec 1 f 1 e d l oca.t·lo a .. 

Th1s approach can ::be u~.s:ed· to help establ1sh la1d--1-n t_o:s.t.s for· new bus1nes:s. 

However, a stab111ty 1n the value of the shadow pt1ce must: be present before 

1 t 1 s an accepted approach (stable in that 1 t ·1 s at l·e-a--st. pred 1 ctab le and 

u.·nderstandable). When per1odic updates to inf-orma-t1'on are made to reflect 

:poss1ble reass1gnments 1n d1str1but1on fleets, :atJd/or f·luctuat1ons 1n 

product1on capac1t1es due to planned or unexpected shutdowns, are the shadow 

pr1ce values pred1ctable? And 1f the shadow pr1ces are to be used for long 

term pr1c1ng strateg1es, 1s 1t relevant to even cons1der a short term 

constra1nt var1at1on? 

The bas1c theme to be addressed 1s the proper use of shadow pr1ces to 

establ1sh a foundation for customer pric1ng. Th1s not1on concerns 1tself not 

only with the poss1ble usefulness of shadow pr1ces, but also proper use. The 

extent to wh1ch one should rely upon shadow prices to understand la1d-1n costs 

- 4 -
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1s extremely 1mport:ant. Know1ng the ltm·1tat1ons of both 1·1near programm1ng 

and sens1t1v1ty analyses should help def1ne the stab111ty of a shadow pr1ce 

and hence 1ts re11ab111ty. 
. . 

·G:u1del 1nes to sugg·e:s.t proper use of the results from s:ens1t1v1ty analyses mus·t 

be developed and should ·help 11m1t the overextens1on of the model/analyses 

·results. That 1s, results are not to be used to help 1n dec1s1ons that are 

~.ou·t.sl,de model boundaries. To assure proper use, the prev1ously stated 

g_:utd·el1nes must be presented 1n an orderly and understandable package wh1ch 

·-1nclu:des 1nformat1on. about data, model concepts, and .result.s. 

;~: .. 

-·~ 
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CHAPTER II 

************** 

ABOUT LINEAR PROGRAMMING AND SENSITIVITY ANALYSES 

:1 

. .:,-
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An Apprec1ation of L1near Programm1ng 

There 1s 11ttle quest1on that 11near progra111111ng has been poorly appl1ed 1n 

. some 1nstances 1n the past, but m1sappl1cat1on does not lessen the ult1mate 

ut111ty of 11near programm1ng techn1ques. The corporat1on that refuses to 

allow 11near programm1ng to be attempted under favorable c1rcumstances may be 

correct 1n assum1ng that 1t w1ll not be successful 1n that part1cular area. 

The corporat1on that gambles all on 11near programm1ng, but 1s too busy to 

take the t1me to understand 1ts use, may also prove 11near programmlng can be 

unsuccessful. However, the corporat1on that apprectates what 11near 

programm1ng can do, and appl1es 1t well 1n s1tuattons for wh1ch 1t represents 

the appropr1ate v1able techn1que, w111 make 1mpress1ve 1nroads 1nto 1mproved 

des-1.gn and operat1on of productive systems. 

An opt1mlzaftqll problem u1t1mately face~ by a dec1s1on-maker 1s one of 

choos1ng fro- many alternat1ves the one that y1elds a max1mum or m1n1mum value 

of some numer1cally measurable cr1ter1on of performance. The necess1ty of 

com1ng to a dec1s1on and 1mplement1ng 1t 1n the real world g1ves focus and 

mean1ng to the opt1m1zat1on problem, but the actual work of solv1ng 1t often 

1s performed by someone other than the dec1s1on-maker. 

In general, there are a great many alternat1ve ways to solve a problem. The 

cond1t1ons and restr1ct1ons that determ1ne wh1ch courses of act1on can be 

adopted and wh1ch cannot are called constra1nts. The measure of effect1veness 

of ~ch alternat1ve 1s the cruc1al component of the opt1m1zat1on problem. It 

must be exp11c1tly stated and must take on a s1ngle numer1cal value for each 

- 1 -
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feas1ble pol1cy. Th1s 1mpl1es that the effect1veness of each element of every 

pol1cy must be measurable on the same scale. If 1t 1s not poss1ble, then the 

def1n1t1on of an opt1m1zat1on problem 1s not sat1sf1ed. By far the most 

frequently used measure of effect1veness 1s total dollar cost, wh1ch serves as 

the pr1nc1pal yardst1ck of an effect1ve operat1on. Measurement 1n terms of 

dollars 1s qu1te natural and conven1ent. Most of the requ1red cost data 

(wages, fuel cost, raw-mater1al pr1ces, etc.) are read1ly ava1lable, and those 

that are not (1nventory carry1ng charge, customer 111 w111, etc .. ) usually 

can be est1mated 1n some rat1onal manner. 

·cert·a1n spec1f1c s.f.r:.uc:tural elem~n:ts mµs-t: be present for a.n ·o·pt·1m1zat1on 

·problem, 1nclud:·1:ng: a: num.er1cal ·measure of effect1veness. ·th1s requ1rement 1s 

_somewhat restrl.c:-tlv.e,: but serves an 1mportant purpose 1n guarantee1ng that any 

opt1m1zat1on problem can be expressed 1n terms of mathemat1cal relat1onsh1ps 

and then solved by means of computat1onal methods. 

The process·: ·of translat1ng a real-world s1--t·uat1on 1nto mathematical language 

1s referred to as formulat1ng the problem. An analyst must select equat1ons 

and 1nequal1t1es that def1ne perm1ss1ble or feas1ble sets of values for all 

the variables, rul1ng out those sets of values that are proh1b1ted by the 

constra1nts of the probl~m. The art of model1ng opt1m1zat1on problems plays a 

major role 1n develop1ng a well structured representat1on of the problem. 

L1near programm1ng deals w1th the problem of allocat1ng 11m1ted resourt~s 

among compet1ng act1v1t1es 1n the best poss1ble way. Th1s problem of 

5577F-V2 



allocation can ar1se whenever one must, ,se·lec-.t: :t·he level of certain act1v1t1es 

that must compete for certain scarce resources necessary to perform these 

act 1 v 1 t 1 es . The var ,1 et y of s 1 tu at 1 on s to wh 1 ch th 1 s de S·'C r 1 pt 1 on a pp 11 es 1 s 

diverse, rang1ng from the allocation of production fac111t1es to products to 

the solut1on of parlor games. However, the one common 1ngred1ent 1n each o,:f· 

these many s1tuat1ons 1s the necessity for allocat1ng resources to 

act1v1t1es. 

/· 

., 
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Shadow Pr1ces 

If an 1nequal1ty 1s of the form 

ax +ax + ••. +ax < b1 1 1 2 2 n n 

an equat1on can be made b_y add1ng what 1s known as a slatk. (<..) .or surplus (>). 

:v,a·r1 able as follows 

a X ·1_.·· ··-~ 
+:ax·+ 

2.· .2 
·+ =a :>( + -x:

5 
·=.. b_.1._ .·.. . . .J1:. O· .~ 

ln l:jnear prog·r-ammtn;g, th1s necess1ty to con·v·ert· t·_p an equat1on has an 

lmportant beneft't·. If the right-hand-side (.:b·l:J 1 s viewed as a resource·,. a 

:S l a·c k var 1 at, l.e t n ·the opt 1 ma l sol u t 1 on at a p os tt_:·1 v e val u e 1 n d 1 cat es: 

t!·h.at the resou.r:Ce' ·1:s not: completely used-. (19) Sim1larly a. :p.os:1.t.i·ve surplus 

. . 

-variable 1n the opttma:l· ·s.olut1on suggests that there is: r·o.·om.: for the 

1 eft-hand-s 1 de to dec:re·a:s:·e.. 'lf the ·s'l ack ( s urp 1 us) var 1 able 1 s zero 1 n the 

opt1mal solution the c·o·n·:st.-.ra1nt holds as an equal1ty and 1s binding. It binds 

down the objective function and prevents it from assum1ng a greater (lesser) 

value. ( 22) Shadow pri Ce$ ·ar·e .. a means of understanding the affect of a binding 

constraint. 

Let's define the s-hadow price, p1, of the 1th resource b1, to be the 

achievable rate of increase in the objective function per unit increase 1n 

resource 1.(3) This definition may be formally stated as follows: 

.-.. 10 -
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. · * I --- -·b :p = .6-. z,.. . · cS· : · :_t 

where z* denotes the opt1mal value of the objett1~e ·fu~¢t1on, prov1ded only 

1ncreases 1n b1 are allowed. A real1st1c defln1t1on of the shadow pr1ce of 

the or1 g1 na 1 surplus requ1 rement 1 s the rate of ,change 1 n z per un1 t of 

decrease 1n th1s requ1rement.(l) 

A geometr1c 1nterpretat1on of shadow pr1ces is tllustrated through the 

follow1ng f1gure: 

Xl 

I 

5577F-V2 

·· ... z 
• . .. 

•• •• 
•• • •• •• • •• • •• 

X2 

- 11 -

• . • 
•• • 

• •• • •• • • • • 
1 

3 



Note that 1ncreas1ng respu·rc:e: l does no·t: alter the feasible reg1on at all. 

Hence, the shadow pr1ce of resource l 1s 0~ Also observe that although 

constra1nt l 1s redundant, 1ts presence does affec·t :ach1evable ga1n 1n the 

-~· 

obj ect1 ve f unct1 on resu 1 t1 ng from 1·ncreas 1 ng e1ther· re.so.urc-e 2 or resource 3. 

That 1s, the shadow pr1ce for constra1nt 2 and/:o=r _3· 1s ltm·1ted b.y the pre-seJic .. e 

of constra1nt 1. 

In many app11c.at1ons 1nvolv1ng 11near programm1ng prob:l:e·mst th.e shadow pr1ces 

are more 1mpor·tant than the solut1on of the problem" T.hey a-llo:w the model 

user to determ1 ne whether certa 1 n changes 1 n the· optlrnal model. requ1 rements 

:mtg:ht a·ctual_:ly 1ncrease the object1ve funct1on .. 

If p-rtma.l degene-racy. e.x1sts.: (p·r1mal d.egeneracy o.ccurs- w:he.:n one-· .or ·mo.r:e of the 

bas 1 c -var1ables e.qual s 0), the l_e.ft-- a-nd rlght-hand-s lde der1,vat1=v:es of z w1 th 

r:e.spe-ct: t:o_ a. re-source may :n-ot be equal. ( 2) If the optimal ·-pr·tmal s--01 ut1 on 1 s 

·nondegenerate, however, these two values w111 be the same. TheJf·.e a re two 

.s had:ow pr1 ces then, for each resource or comb 1 nations of resources: pas 1 t 1 ve 

and negative.(l) Each one can be determ1ned e1ther by solv1ng a much simpler 

linear program over the set 6f opt1mal dual solutions or equ1valently, and 

perhaps much: more eas1ly, by parametr1c programm1ng. In add1t1on, there 1s an 

1nterval of pos1t1ve length for which a g1ven shadow pr1ce 1s va11d. 

It 1s of 1nterest to know what 1nformat1on regard1ng shadow pr1ces 1s prov1ded 

by commerc1al 11near programm1ng software packages. In order to ascertain the 

correct shadow pr1ces us1ng MPSX (IBM's Mathemat1cal Programm1ng System), the 

~-· 
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parametr1c analys1s opt1on (PARARHS) must be employed for each constra1nt for 

wh1ch RANGE has 1nd1cated the g1ven shadow pr1ce may be val1d. Hence, the 

problem must be run tw1ce; f1rst us1ng RANGE and then us1ng PARARHS.(2) 

As previously stated, shadow pr1ces are not necessar1ly equal to dual 

var1ables except 1n the case when the primal problem is nondegenerate. In all 

cases, the 1th shadow pr1ce always equals the smallest valu~ of the 1th dual 

variable 1n the set of opt1mal dual extreme po1nt solut1ons.(3) The 

w1despread assumption that shadow pr1ces a_nd dual var1ables are 1dentical may 

lead pract1t1oners to the erroneous conclusion that increasing the value of a 

part1cular resource would be prof1table (1n some cases). Th1s "Situat1on 1s 

.made worse by the fact that there are commerc1al software packages that assume 

dual variables and shadow pr1ces are synonymous . 

. . ~··! 

- 13 -
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Sens1t1v1ty Analyses 

One of the advantages of l1near programm1ng 1s the amount of other sens1t1v1ty 

1nformat1on that 1s ava1lable bes1des f1nd1ng the opt1mal solut1on. 

Sens1t1v1ty analys1s of the solut1on (often referred to as post-opt1mal 

analys1s) perm1ts the evaluat1on of the effect 1n chang1ng a quant1ty.(19) 

The study of how sens1t1ve a g1ven opt1mal solut1on 1s to var1ous changes 1n 

the 1nput parameters 1s usually called sens1t1v1ty analys1s or parametr1c 

analys1s. Sens1t1v1ty analys1s, along w1th the 1nvest1gat1on of how spec1f1c 

changes 1n the 1nput parameter affect the opt1mal solution 1s called 

post-opt1mal analys1s. 

The general l1near programm1ng problem 1s to f1nd non-negat1ve values of n 

variables wh1ch max1m1ze a g1ven 11near funct1on of the var1ables, subject to 

m g1ven l1near constra1nts. It 1s presumed that the constants of the problem 

are known w1th absolute prec1sion and do not change w1th t1me.(20) However, 

1n many cases only est1mates of these values are ava1lable, and the values may 

have to be changed when better est1mates are ava1lable. The values may also 

change w1th t1me. Further, the opt1mal solut1on obta1ned may have to be 

changed to satisfy secondary object1ves such as customer good w111 etc ... 

Aga1n, when a pract1cal problem has been formulated and solved as a l1near 

progr'amm1ng problem, 1t 1s frequently the case that not all of the 1nput 

parameters are known exactly. Typ1cally, some of these parameters have been 

- 14 -
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est1mated or calculated only approx1mately. Thus 1t 1s 1mportant to know how 

sens1t1ve the opt1mal solution 1s to changes 1n such parameters. For example, 

1f 1t 1s known that a part1cular cj 1s accurate to w1th1n ±5 per cent, then 

we must al so determ1 ne whet:ler the computed opt1ma 1 so 1 ut1 on rema 1 ns opt1ma l 

for all values of j 1n th1s range; w1thout th1s add1t1onal 1nformat1on, 1t 1s 

not all certa1n that the computed opt1mal solut1on 1s 1ndeed the true optimal 

s,o'lut1 on to the actual problem-. ( 8_) 

.. 

:l'h.er:e: are a--1s.:o maflY pract1cal s1tuat1ons wh1ch ar1se 1n wh1ch a 11near 

µr9gramm1 n,g ':mod·e 1 1 s used per1 od 1 ca 11 y to f 1 nd, for ex amp 1 e, the opt 1ma l 

pfoduct1on ·quant1t1es for the next per1od. In such cases, a few changes 1n 

the c·ost c:oe:ff1c1ents a.nd/or the r1ght-hand-s1des are not uncommon. 

-Anqther type of mod1f1cat1on 1n the 11near programming model wh1ch somet1,me·s 

oocc·urs 1s the add1t1on of a new constra1nt or variable to the or1g1nal 

formulation; either because the or1g1nal formulat1on was erroneous or because 

the model s1tuat1on has changed. 

An 1mportant aspect, then, to many pract1cal problems 1s a sens1t1v1ty 

analys1s 1n order to evaluate the consequences of a change 1n a constant or of 

dev1at1ng from the opt1mal solut1on. The object1ve of post-opt1mal1ty 

analys1s 1s to study the effect of d1screte changes 1n coeff1c1ents of the 

11near programm1ng problem on the opt1mal solut1on.{23) Parametric 11near 

programm1ng 1nvest1gates behav1or of the opt1mal solution as a result of 

predeterm1ned 11near var1at1ons 1n the parameter of the problem. The purpose 

of sens1t1v1ty analys1s 1s to obta1n new and informat1ve results through a 

m1n1mal amount of add1t1onal computat1onal effoTt.(8) 

- 15 -
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Se~s1t1v1ty-analys1s 1s performed to answer two bas1c quest1on~: 

1. What 1s the opt1mal solut1on when one of· \he :constants of the problem 

(either some cj, B1, or A1j) 1s changed? 

2. When the value of one :of ·the va .. r1:a_b];e·~ ts changed by a g1 ven amount, 

what changes are ne-~·e-~sary ·1 n the values o"f the other var1 ab 1 es for 

the reduct1on 1-n v'alue: of fhe: object1ve funct1on to be m1n1ma1?(20) 

The study of th:e a·ffect ·:o·f ·C'ha.ng1 ng the constants can result 1 n a ·better 

understand 1 n g of the ·pr ob 1 em by prov 1 d 1 n g a keener 1 n s 1 g ht 1 n to the 

11m1tat1ons ,nvolved. It can help 1n plann1ng to meet chang1ng cond1t1ons, 

and hence, tesul t 1 n a more prof1tabl e ·operat1 on. When study1 ng the cost 

coeff1c1ents of var1ables 1n the opt1mal bas1s, one understands the worth of a 

resource without chang1ng opt1ma11ty.(21) 

What 1s the effect on the opttmal solut1on when a set of g1ven data of the 

problem 1s changed? Remember, problems of post-opt1mal1ty are concerned w1th 

a d1screte. :·mod:1f1cat,1on of the g1ven data. That 1s, one of the follow1ng 
~ 

occurs: 

1. b changes 

2. c changes 

3. a Column of A 1s var1ed 

4. a row of A 1s var1ed 

5577F-V2 
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S .. a new constra1nt 1s added 

6., a new variable 1s added 

where: A= coeff1c1ent matr1x 
I 

b = requ1rements vector 

c = cost vector 

/ 

Parametr1t ptobl~~s ar~ tortterned with these same s1x changes, however the 

data changes vary 1n a cont1nuous manner. The purpose of parametric 

pr.ogramm1ng 1s to study the var1ation of the optimal ·:program as a functJon .of' 

the va-lues of c·ert·a:tn data. 

For· example, let •·s -:make b v.a=ry, c.onttnuous l y as a l:lti:ear f unct1 on of ·a . 

. p·arameter e: 

b = b + e ·cS 
0 

where cS and b· are f 1 xed ve.ct.o:rs .. . ···o· 

When e var1es, the opt1mal1ty cr1terion rema1n~ sat1sf1ed as long as the 

present bas1s 1s ma1nta1ned. There also ex1sts a cr1t1cal value e = a 
1 

beyond which the problem ceases to be an optima 1 program. The quest·1 ort t.h·en 

surfaces on what must be done when e passe.s· t.he cr1tical value e 1.n 
~-

,o:rder to re-opt1m1 ze the problem. 

Let's start from an optimal bas1c program corresponding to the bas1s B and 
0 

the value e = 0 of the parameter, and make e 1ncrease (decrease) 
0 

- 17 -
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through pos1t1ve (negat1ve) values. The ser1es of d1st1nct values e, 
1 

e , . . . e of e and a s e r 1 e s of b a s es B , B , . . . BP are 
2 p 1 2 . 

determ1ned wh1ch have the follow1ng propert1es.(22J 

( 

l. Each bas1·s B1 1s deduced· f·rom B1_
1 

by subst1tut1ng a stng:le-

vector Aj 1 for Aj 1_
1 

1f e1 1s determ1ned by a un1que • 

m1n1mum and not more than one vector. 

2:.: Th·e bas1c SJ)lut1on x8 assoc1ated w1th the bas1s B1 and the ve·c-··to.r 

b0 +· ,e_1 1_:s ·an. opt1mal prog_ram for every value of e taken on 

se:gment :.e..1.. i< ··8 ·< a, . 
. 1 +.1· 

J: .• ta·ch 1teratton of th.e p:rec-e:d1ng pro:c·e.du,r:e 1s c·hara.cter1zed by the 

fact that e 1s g1v:en a. f'1:n1te tn:cre . .a:se. :a.n:d the :.d·ua·1 a;lgor1thm 1s 

app 11 ed for a f 1 x·ed val.u.e: ·o.f e .. 

D1scuss1ons. of parametr1c analys1s can be kept s1mple due. to the fact a s1ngle 

parameter 1s 1ntroduc~d at a t1me. When d1sc.uss1ons of s1multaneous var1at1on 

of many parameters occurs, cr1.t1cal po1nts {1.e. e) are replaced by 

cr1t1cal hyperplanes. 

A summary then, of the four bas 1 c areas where sens 1 t1 v1 ty analyses are. 

performed are as follows. 

1.~ The f1rst focuses attent1on on the non-basic var1ables other than 

slack or surplus var1ables. The question 1s, 1n the case of 

- 18 -
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m1n1m1zat1on, how much would the or1gtnal -cost coeff1c1ent of a 

var1able have to be lowered 1n order f.or 1t:· to enter the opt1mal 

solut1on?(l9) 

.2:._ _C·ohcern1ng slack var·1ab.le.s, t:h¢· relat1ve cost factor often referred 

to as the shadow pr1ce, 1s a measure of the value of one add1t1onal 

:untt of the r1ght-hand-s1de. In terms of a resource, the shadow 

.p.r1ce 1 s the va 1 ue of one addi t1 anal un1 t of that resource. 

3. Anothe:r type of sens 1 t1 v1 ty anal y·s1 s centers on the cost· coe'f.f·t:clent 
\ 

of var1ab l es 1 n the opt1ma l bas 1 s. What 1 s the range of val.ue.s t:·h_a_.t 

a part1cular cost coeff1cient c:an take on without affecting th.e: 

optimal solut1\on? 

4. A fourth sens1t1v1ty that can be performed· :a,d._dresses the constants on 

the r1ght-hand-s1de. What 1s the range perm1s.s1ble in a constant 

w1thout chang1ng the var1ables 1n the opt1mal s.ol1Jtion?(l9) 

It 1s not necessary to solve a mod1f1ed problem from the beg1nn1ng to obtain 

the des1red sens1tiv1ty information; instead the information can be found 

performing relat1vely few computations using data 1n the optimal tableau to 

the or1g1nally solved problem. 

Suppose we have solved the linear programming problem; max1m1ze z = ex, 

subject to Ax= b, x > 0, and have obtained an optimal bas1c feas1ble 
. -lJ 

solut1on, x8 . If we denote by c8 the cost vector corresponding to x8 , 

then the current values of zj-cj are 

- 19 -
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j = 1 , 2, ..•.. m. 

where the Y,1 also correspond to the current optimal solot1on. 

Now, suppose we w1sh to change one of the c.1' say ck' to a new value, 

ck' where 

c: k . _;::· C k - cS k 

Since a ch·ange in the o·-bjective function in no way alters the set of feas1bl~ 

solut1ons, the solu:ti·on x8 will remain optimal provided that the new values 

of zJ - c.1 are .. stHl non-negative. 

If ck corresponds tD a variable which is cUrt~ntly nonbasic, then it 1s 

obvious from prev1ous equation that only· -z.k, - ck w111 be changed, all 

other zJ - c .1 wi 11 remain unchanged ( sln:ce c8 has not been changed) and 

hence .non-negat1 ve. Moreover 

.. 

zk - ck= cByk - ck 

= cByk - (ck+ ik) 

= (cByk - ck) - cSk 

= (z*k - ck) - ~k 

Accord1ngly, 1f the cost ck of any nonbas1c var1able xk 1s 1ncreased by an 

amount up to (z*k - ck)' the current optimal solution w111 remain opt1mal. 

- 20 -
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If such a .co:st· ck 1s 1ncreased by more than the quant1ty ( z*k - ck) then 

the result~ng zk - ck w111 become negat1ve, and a few more s1mplex 

1terattons may be needed to determ1ne the new opt1mal solut1on. Note that the 

co,s--t o·:f any :nonbas1c var1able can be decreased w1thout bound, w1thout 

.affect1 n_g 'th.e: 0..ptlmaJ 1 ty of x* 8 • 

. c.-.ons1der now the case 1n wh1ch we w1sh to ch·ange th·e· cost :ck. ·correspond1ng 

to a bas1c var1able xk. Suppose that xk 1s the pth bas1c -var1able 

x* 8 • Let p . 

. · ·, _-· ._·_ &·-_- .. - -·· .. - . 6· : - -- +- . - - - - ·+· : . 
-C·k·.-.- - :.Ck_·. -.. k-- .-. C-s··-_· ~- c.B.-' .. 'k . ' -_ . ·p- '-p. . 

' . . 

·Then., for· j. =· k, 

zs - cJ "' 'sYj ,,. cJ 

·h e.n-:c e.; 

=· c,_a·r y 1 J - cj 

= :C_ 8-,:Yij + cSky pj - c j 

'* . = Z j + i\Y pj - C j 

zj, "' cj = ( z * j - c j ) + i\ y P j 

= 0 

(zk - ck= 0 be~ause x 1s bas1c). 

necessary that 

5577F-V2 
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In order that all zk - ck> 0 1t 1s 

j = l, 2, ... , n j = k 
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Note that &k must sa·t1~fy all of .th:e, lne·qual1t1es s1multaneously. For 

each ypj > 0 we have that 

And henc~ 4k > m~x (z*j - cj) / -Ypj :y )>. :Q: 
.·pj_' 

Stm1larly, we obtain 

y <· ·O 
J).j 

·1hu'·s, 1f 6k 11es in the range dete·rm1ned b.,Y. t'he. Jl'.re·v·lous two equat1ons, 

th.en x*8 rema1ns opt1mal. If ik falls ou:ts':1.de t:h:1s range, at least one 

2j - cj w111 be negattve. 

Max1 m1 z.e z = ex 

,Ax = b 

- o· )( .> : -· .. : 

Suppose we w1sh to modify the requ1rements vector b. If we w1sh to change the 

1th component of b by an amount f 1 (pos1t1ve or negat1ve), then 

b1 = b1 + f1, 1 = 1, 2, ... ~, m; or, 1n vector notat1on, we have 

b = b + f. Now, we must recompute the values of the bas1c variables 

·~ correspond i n g to the vectors 1 n the c u r rent bas 1 c f ea s 1 bl e sol u t 1 on . If we. 

denote the current basis matr1x by B, then 

·- 22 -
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:.x.- .. - B- 1 b . ·s -

- B- 1 (b + f) -

- B- 1 b + B- 1 f -

- x* + B- 1 f - B 

-1 Hence, depend1ng on B f, the new bas1c solut1on may or may not be 

feasible. However, the z*j - cj are unaffected by a change 1n the 

requ1rements vector and therefore 1f ~ 1s feas1ble, 1t 1s also opt1mal.(8) 
B 

When 1t 1s necessary to change one or more ~f the elements of the coeff1c1ent 

matr1x A, the s1tuat1on becomes mu.ch more comp11cated than making changes 1n c 

~r b. Th1s 1s part1cular1y true 1f we w1sh to change an element from a column 
. . 

of A wh 1 ch 1 s bas 1 c ·1 n: the opt 1 ma 1 so 1 u t 1 on , s 1 n ce 1. n: th 1 s case the opt 1 ma 1 

basis matrix must be recomputed. 
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L1near Programm1ng Problems and Data Uncerta1nty 

The general 11near programm1ng problem 1s determ1n1s.t.1c. The model ts 

formulated· and solved w1th a g1ven set of parameters:., Th1s general assumpt1:Qn 
' 

makes 11near, programm1ng an extremely easy techn1que to use. However, th1s 

assumption is: ·a:l .. s-o·: t.he pr1mary problem 1n the pract1cal appl1cat1on of 11near 

programm1ng'. ·T·he- t-r:ue values of model parameters are usually not known unt11 

after the d'·ec-tst:on· ba·:s-e:d: :upon the 11near programm·lng solu-t1pn 1s actually 

1mplemen:t:ed.- o:fte:n, all 'Or some of the paramet:ers may be random var1ab]·es., 

w·h1c:h are 1nflue,nc.e·d by r-a·ndorn. e.ve·n:ts 1n t~he dec1s1on env1ronment. 

Sens 1 t1 v1 ty anal·yses a:nd _:parametr1 c pr·og·ra:rntn1 ng can be used for exam1 n1 ng the 

effects of changes 1n model parameters: the major d1sadvantage of these 

methods 1s the1r 1nab111ty to take 1nto atcount the randomness of the 

parameters as governed by spec1f1c .prob·a·b111ty d1str1but1orrs. 

T~:~·re: h·a.v:e b.e:.e,n ma:n·y d:1:f:.ferent approache·s _su..g·ge.st·ed for f ormulat1 ng the 11 near 

:p.:r·ogramrntn-g_ p·rob lems under uncerta 1 nty. Bas 1 ca 11 y, two approaches to 

·formula-t1n:g these 11near _programm1ng problems under uncerta1nty have shown 

~-o·me: m·e_r:tts.:{15) The f1"rst approach, wh1ch 1s generally referred to as 

·stochastic pr·ogr'amm1ng, attempts to solve the problem through mak1ng one or 

more dec1s1ons by select1ng model parameters at d1fferent po1nts 1n t1me. 

Although th1s approach sounds very log1cal, 1ts pract1cal appl1cat1on 1s 
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enormously complex, espec1ally when the model 1s 

of t1me per1ods. Character1st1cally, stochast1c 

larger and 1nvolves a number 

' programm1ng problems evolve 

1nto nonl1near problems a,s several of the parameters become random. Th1s 

attr1bute d1rectly effects the d1ff1.culty of solv1ng the problem.(24) The 

second approach, called chance-constra1ned programm1ng, 1nvolves the 

formulat1on of a determ1n1st1cally equ1valent model to the problem under 

uncerta1nty.(15) 

Stochast1c Pr(fQra:mmlng so·lves problems under uncerta1nty that 1nvolves mak1ng 

two or more d·etls:1ons at d1fferent po1nts 1n t1me w1th the cond1t1on that at 

least one of the later dec1s1ons depends not only on an earl1er dec1s1on but 

also on the value of random parameters observed 1n the t1me 1nterven1ng 

( '' 

between the two dec1s1ons.(24) After the random event occurs over t1me, th.e-

parameters can be rev1Sed according to dec1s1on rules to account for the 

resolved uncerta1nt1es. The follow1ng general Stochast1c Programm1ng 

formulation 1s as follows.(15) 

: S:u:b.j··_e:¢ t ·t-o 

"k. 

I a1jxj = b1 
j = l 

m 

1 = l, ... , g 

+ t aq1jxqj = bq1 
j = K+ 1 

·"'· 

\ 
\',_ 
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•· 

.-:...·.,-·_ 

1 = g + 1 ,. . •. ·• , ·M-' 

q :: } ., ... , Q 

J = ·1 , ... , K, . . . n 

Where Xj (j = 1, ..• , K ~ n) = the f1xed levels of X 

X qj ( j = K + 1 , • • • , M) = the levels of X after .a::ll random 
values are known 

Q = a poss1ble set of va:lues ,for cj, A1j, and b1 

The pr1mary d1ff1culty 1n us1ng th1s approach 1s related to the extremely 

large model that results, where add1t1onal var1ables and constra1nts are 

necessary for proper formulat1on. These add1t1ons make the problem more 
) . 

complex, result1ng 1n a large 1ncremental amount of computat1on. Th1s 

drawback reduces the pragmat1c appl1cat1on of the stochast1c programm1ng model 

to real-world situat1ons.(23) 

..... 
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A nonsequent1al approach to stochastic programm1ng 1s a one-stage techn1que 

that does not allow for intermediate revisions in the model formulation as 

previously descr1bed. One method used in this approach 1s the expected value, 

wh1ch transforms the original nonlinear, probab111st1c problem 1nto a 

deterministic linear programm1ng model. Essentially the expected value is 

used in place of a random parameter and might be a more realistic value than 

the mean value approach.(15) 
_<:, • 

. 

Ch an c e--c ·on st r a i n e d pro gr amm i n g , a spec 1 al approach to st o ch as t 1 c pro gr a mm 1 n g , 

was pioneered and later extended by Charnes and Cooper.(7) Th1s approach is 

concerned with selecting certain random variables as funct1ons of random 

variables w1th known distr1butions. Constraints on these var1ables must be 

ma i nta 1 ned at presc r1 bed l eve 1 s o.f pto.b.abi 11 ty. 

The pr1mar·y' purpose of the chance-constrained method 1s to reduce the problem 

of pl ann.1 n,~ 1 n 11 ght of an uncerta 1 n future. ( 7) In develop1ng the 
t 

chance-constrained stochastic model, a determ1n1st1c equivalence to the 

or1g1nal s·tochait1c problem 1s derived. 

Subject to 

K 
I a1j xj - b1 ·1 - l ' g - - . . . ' 

j - 1 -

K 
p (I a1j xj ~ h1] > 1-a: 

- 1 
1 = g+l, .... , m 

j = l 
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Where 

• 

«t = rtsk level for constra1nt 1 

Cj and b1 are random var1ables 

A 1 l parameters are n:orma.ll..y, d:1:s·tr1;buted w1 th known means 

and variances 

The equ1valent model, wh11e non11near, can be ap~rox1mated us1ng separable 

programm1ng techn1ques. The only 1nformat1on necessary for each random 

var1able b1 1s the {1-«1) fract1le for the uncond1t1onal d1str1but1on of 

the b1 value. The ab111ty of chance-constra1ned programm1ng methods to 

handle la·rger problems 1 s an advantage over other ex1 st1ng stocha.s>t·t.c 

programm1ng techn1ques. 

The pr1nc1pal weakness of the chance-constra1ned model 1s that 1t only 

1nd1rectly evaluates the econom1c consequences of v1olat1ng a constra1nt. In 

most s1tuat1ons, spec1fy1ng the acceptable values for (1-«1) should be 

part of the opt1m1tat1on problem. Therefore, when faced w1th a cho1ce between 

the stochast1c pr-ogtamrn1ng techn1ques an~ chance-constra1ned programming, you 

w111 have to .compare the ser1ous llmlt·atto:n on the problem s1ze aga1nst the 

restr1cted meaning of opt1mal.'1tY.~,(1 .. 5.:) 
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Cons1der the chance-constrained problem: 

Max1m1ze ! = SX + 6X + 3X 
1 2 3 

'.Subject to 

P {a x + a x + a x < 8}:· ·.::> .o.·9·5 
11 1 1 2 2 1 3 3 ~ ·. -~ , . . . 

P { 5 X + X + 6 X < b } > 0 • 1 '(l 
1 2 3 - 2 -

w1th all Xj t 0. Suppose that the a1j•s are 1ndependent, normally 

d1str1buted tandom variables w1th the following means and var1ances: 

E f a·,.
11 

.. J · = i .E ·{·'a_. .. :} :;:·. 3 
... 1·2 

var {a } = 25 
11 

var {a } = 15· 
12 

var {a } = 4 
13 

The parameter b 1s normally d1str1buted w1th mean 7 and var1ance 9. From 
2 

standard normal tables, 

K = K . = l . 645 K = :K = l . 285 
a:1 •.. ():'S a:2 . • :-10· 

For the f1rst- -constraint the equ1valent determ1n1.:s:t1c constraint 1s g1ven by 

/ ,_..,.. 
) 

X + 3X + 9X + 1.645 (25X 2 + 16X 2 + 4X 2
)

0
•

5 < 8 
1 2 3 1 2 3 - . 

and for the second constraint 
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SX + X + 6X < 7 + 1.285 (3) = 10.855 
1 2 3 -

If we let 

=· 25X 2 + 16X2 + 4X 2 

· 1 2 3 

the complete problem then becomes; 

Max1m1 ze z := s·x + 6X + 3X 
1 1 3 

Subject t·o 

X + 3X + 9X + l.645y ~ 8 
1 2 3 

2 ....... 2 4X2 2 , :2s .. x:- · +: 16·x, + - y =: :u-
. ···;1 2 3 

SX + X + 6X ~ 10~855 
1 2 3 

X 
1 

, X 
2 

, X 
3 

, y . ~. · 0 

wh1ch can be solved: by separable programming. However, the add1tional 

var1ables and constraints make the problem much more complex (problem s1ze and 

solv1ng techn1que), resulting 1n a large incremental amount of computation. 

The real1st1c appl1cation of stochast1c programming techn1ques, including 

chance-constra1ned, br~aks down when the s1ze of the original formulation is 

large or when the final formulation 1s nonlinear. 
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CHAPTER III 

*************** 

THE MODEL INPUTS AND THEIR VARIABILITIES 
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Customer Demand -Var1ab111ty 

Demands are generally projected through the us:e of some forecast1ng tool 

From a theoretfcal v1ewpo1nt, forecasters use accepted methodology to ,.,. r· 
decompose t1me ser1es 1nto components, class1fy trends, and produce a 

forecast. Often aggregate demands can be reasonably accurate; however 

forecasts at the customer level may be 1nadequate. Manual adjustments by 

knowledgable personnel are somet1mes not even enough. Because of the 

knowledge of events 1n the f1eld, the1r mod1f1cat1ons can result 1n 1mproved 

forecast accuracy, although 1t 1s often 1mposs1ble f·or the.s::e· 1n_d1-v1.duals t·o: 

scrut1n1ze each of the many many forecasts. 

Except1on r~P'Ort1ng which 1deri1:H1es customers whose forecasts dHf er 

·s1gn1f1cantly from h1stor1c 1nformat1on can be used to help narrow that 

·tn:format1on that 1s necessary to rev1ew. Wh1le except1on report1ng does 

recogn1ze large changes 1n pred1cted sh1pments, 1t does not relate d1rectly to 

the accuracy of a customer's forecast. However, except1on report1ng can be 

1mportant when 1dent1fy1ng demand pattern sh1fts that m1ght c:aus.e large 

f.ore·c .. a st errors. 

There are sever a.l potent 1 a 1 forecast t n g procedures . To beg 1 n w1 th s up pose the 

underly1ng process 1s relat1vely stable and there ex1sts little dependence 1n 

the estimate from per1od to per1od. Then, the "last value" 1s an example of 

an est1mator. However, 1t has the d1sadvantage of be1ng 1mprec1se and 1s 

worth cons1der1ng only 1f the cond1t1onal d1str1but1on has a very small 

var1ance or the process 1s chang1ng so rap1dly that anyth1ng before t1me t 1s 

almost 1rrelevant or may even be m1slead1ng. 
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An average 1s another est1mator. Th1s 1s an excel·lent est1mate 1f the .PrOC!SS 

1s ent1rely stable. However, one does not want to use data that are too ol~ 

because at m1n1mum, occas1onal demand sh1fts are to be expected. A 

mov1ng-average est1mate ~Se$ only the last n per1ods. Th1s est1mator 1s 

eas1ly updated from per1od to per1od; the f1rst observat1on 1s dropped and the 

last one added. The mov1ng-average est1mator comb1nes the advantages that 1t 

uses only recent h1story and represents mult1ple observat1ons. A d1sadvantage 

of th1s procedure 1s that 1t places as much weight upon the f1rst data 1tem as 

o.n th·e ·1ast.. Intu:1t1vely one wou.ld expect more we1ght on the most recent 

o'.bs e.r v:at ton:-~· 

Exponent1al smooth1ng 1s yet anot~er estimat1ng tethniQue. It represents a 

recurs 1 ve re.l at1 onsh1 p and can be expressed. a:s E ( X.t> = exXt + ex( 1-ex) 

(Xt ) + -~- (l-ex) 2 (Xt ). In th1s form 1t becomes ev1dent that 
-1 -2 

expone.nt·tal smooth1 ng g1 ves more we1 ght to Xt and dee reas 1 ng we1 ghts to 
... 

earl1er observat1ons. An 1mportant drawback of exponential smooth1ng 1s that 

1t lags beh1nd a continuing trend. If the mean 1s 1ncreas1ng stead1ly, then 

the forecast w1ll be several periods behind. Another disadvantage 1s the 

problem of choos1ng an appropr1ate smoothing constant ex. If ex 1s chosen 

to be too small, response to change 1s slow. If ex 1s chosen to be too 

large, response to change 1s fast. 

Many of the forement1oned standard forec.as .. ttng techniques are employed 1n many 

d1fferent s1tuat1ons to help 1n the pred1ct1on of demands. In add1t1on, most 

tools 1ncorporate the concept of seasonal1ty. Seasonal1ty can be traced 

through the decompo~1t1on of histor1cal data and/or smooth1ng techn1ques. 
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The following documents the flow of tnformation when seasonality is tracked 

through decompos1t1on. 

Hi stor1 c ·Demand 

De~.s·ea;sonal 1 ze 

Categor1ze Demand Pattern 

I 
L1near 

I 
Quadrat1c 

l . . 
:constant 

xt - b + et xt - b +· :b. t ·+ et:: .xt .. : .... :b: ·+·' b t + b 12 + - - ~.-. C . ·1 
. . ... 

0 0 ··o. 2 

.__ ____ _._· ..... · ... -.-------- .Fo-te.ca:st· 

H1stor1c data 1~ ~ut 1·nto a forecasting system and deseasonal1zed. the 

deseasonal1zed data 1s analyzed and a trend factor 1s 1solated and 

categor1zed. After the trend factot 1s calculated the adjusted data 1~ 

exponent1ally smoothed. 

,... 

et 

An alternat1ve to decompos1ng the da/a 1nto tts seasonal and trend components 

1s to perform the est1mates of these factors s1multaneously. An added 

advantage 1s that the models' sens1t1v1ty to changes 1n demand can be altered: 

by s1mpl_y chang1ng smoothing factors. 

rJ 
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H1stor1c Demand 

• Calculate Smooth Average 

• Calculate Seasonal Factor 

• Calculate Trend 

ft= (Ut + bt) Ft-11 

Ut = Smoothed Average 

bt = Trend 

Ft~11 = Seasonal Factor 

(11near trend) 

A decompos1t1on model often y1elds a more accurate f1t of the h1stor1cal t1me 

ser1es than elementary smooth1ng methods. However, the computer resources 

needed to perform the necessary calculat1ons 1ncreases both the t1me and cost 

of produc1ng a forecast. 

Smooth1ng methods are used extens1vely because of the1r relat1ve s1mpl1c1ty 
' 

and low cost. The greater _-number of smooth1ng factors and the ab111ty to 

seasonal1ze add to the complex1ty of smooth1ng methods. The W1nters 

forecast1ng algor1thm, for example, has the ab111ty to recogn1ze seasonal1ty 

and conta1ns three smooth1ng factors. So, not all smooth1ng methods are as 

s1mple as f1rst expla1ned. 

Once a system of produc1ng forecasts has been developed, there should be a 

mon1tor1ng techn1que to 1nd1cate when a change 1n demand pattern 1s caus1ng 

forecast errors. When a mon1tor1ng method 1nd1cates that the forecast 1s out 

- 35 - • 
5577F-V2 



of control, the cause for change should be 1nvest1gated. If 1t 1s found that 

the new demand pattern 1s 11kely to continue, then the forecasts can be 

mod1f1ed to reflect th1s change. 

Tr1gg•s method !f mon1tor1ng, proposed 1n 1964, was an 1mprovement on a method 

proposed by Brown 1n 1962. Because the method 1s based on the calculat1on of 

the exponent1onally weighted average of the error it 1s somet1mes referred to 

as the "Smoothed Error Method," but 1s more generally known 1n th1s country by 

1ts author's name.(16) 

The Tr1gg mon1tdr1~g system ut111zes a track1ng ·s1gnal whose value 1nd1cates~ 

w1th degrees of stat1st1cal conf1dence, the failure of a forecasting system 

due to a change 1n demand pattern. The· s1gn of the track1ng s1gnal 1nd1cates 

whether the forecast 1s h1gher or lower than the actual demands. The track1ng 

s1gnal 1s also an 1deal smooth1ng factor, because 1t becomes larger as the 

data becomes mo;r~ volat1le and decreases when the data 1s more stable. A 

large value g1ves more we1ght to recent data, a smaller value w1ll cause more 

we1ght to be a~soc1ated w1th older data. 

Est1mat1ng custorn:e.t dema-na· levels 1s paramount. ·1n ptaduc1ng good output from ·.a 

d1str1but1on 11near programm1ng model. Oft·en- d·emahd levels are the b1ggest 

set of data go1ng 1nto the model and also the most d1ff1cult to pred1ct. Poor 

est1mat1on of demand levels can at m1n1mum suggest m1slead1ng results. It 1s 

necessary to understand demands well enough to put a range around the estimate 

and also suggest a conf1dence 1n the est1mate. Th1s confidence 1nterval w111 

establ1sh a set of 1nputs that can be used to help calculate f1nal results. 
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Production Capac1ty Var1ab111ty 

Capacity constra1nts are normally of known quant1t1es. That 1s, the 

d1str1but1on system generally has a set of fac111t1es w1th a g1ven output at 

each locat1on, and even ma1ntenance work and other scheduled shutdowns at 

spec1f1c fac111t1es can be 1ncorporated 1nto a L.P. system for planning 

purposes. Unexpected shutdowns, however, can force s1gn1f1cant changes to a 

d;1-s.tr1btit1on plan due to the rather large percent of the total system capac1ty 

a ~1ngle fac111ty re~resents. If a system 1s small enough, shutdown of a 

~-tngle fac111ty can lea~ to catas_t:roph1c var1at1ons to· ,product1on levels at 

n e 1 g h b o r 1 n g fa c 1.11 t:·1 es: • 

In add1t1on to cons1der1ng loss of capac1ty, 1ncreasBs 1n product ava1lab111ty 

w1 11 a 1 so s h 1 ft d 1 st r 1 but 1 on patterns . Inc re as e d product 1 on m 1 g ht- :Come 1 n the 

way of eff1c1ency 1mprovements or new plant construct1on. Aga1n capac1ty 

increases are planned and therefore can be 1ncorporated 1n the d1str1bution 

:system. D1str1but1on patterns w111 change s1gn1f1cantly as new fac111t1es are: 

added, but because eff1ciency 1mprovements are less dramat1c 1ncreases, 

d1str1but1on sh1fts caused by these 1mprovements are often expla1ned. The 

greater the capac1ty 1ncrease the greater the amount of distr1but1on pattern 

sh1fts. 

Another less obv1ous s1tuat1on that can effect L.P. results 1s the plant 

operat1on. Each fac111ty 1n a d1str1but1on system has 1ts own operat1on 

mode(s). Product 1nteract1on, m1n1mum plant turndown, ava1lable raw mater1al, 

etc .. are all factors wh1ch can put some restrictions on the obvious 

constra1nt of total plant capac1ty. These per1pheral factors must be 
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evaluated for appl 1cab111 ty to the s 1 tuat1 on 1 n quest1 o:n. ·the fewer the 

number of extra factors the less compl1cated the L.P. stru~ture 1s. 

Conversely, the greater number of extra factors that can be incorporated (to a 

11m1ted extent) the more accurate the f1nal results. 

~.·eJrt.g able to. ·un~.er··stan:d th·.e t1me frame of capacity changes f1n:c:r·eases and 

.d·ecre-as·es') 1:$.: netes·s,ary. f·o,r· t::h::~ achievement of good results. Th1s 1s a much 

~1'fferent s1tua.t1on than est1ma'tlng other parameters. For example, demand 

var1ab111ty- ne·eds to be cons1de:red at an 1nd1v1dual 1nput level. The t1me 

frame 1 s 1mport,ant for the est.1mate of an overa 11 demand,, but even more 

·1mportant· ls .. r·ecogn1z1ng the 1r1he:·r.ent var1ab111ty of the forecast at a 

:'Spe.:c 1.f 1 c: pe..r 1 'ad:: of t 1 me. 

Capac1ty constraint var1abt11ty (from month to month) need not be heav1ly 

considered as a problem 1n defin1ng d1str1bution sh1fts. If total capac1ty 

co·nst·ra1n,ts are reached as demand 1ncreases, d1str1but1on sh1fts can be 

n,ume.'r·ous but exp la 1 nab le. Al though capac 1 ty con st ra 1 nt va r1ab111 ty need .n.:o·f 

:.be cons1dered, capacity add1t1ons and· shutdowns can have .monumental effects on 

a :system's d1str1but1on pattern. Be1ng able to foresee a shutdown, or in the 

case of preventive ma1ntenance plan for 1t, 1s a most 1~portant cr1ter1on 1n 

understanding the effects of capac1ty constra1nts upon final· d1str1but1on 

patterns. 
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D1str1but1on Requirement Var1ab111ty 

Many d1str1but1on L.P. systems have the capac1ty to cons1der both veh1cle and 

dr1ver constra1nts. For short-term plann1ng (a monthly operat1onal plan; 

plant shutdown due to equipment fa1lure) us1ng the d1str1but1on requ1rements 

as constra1nts 1s 1mportant. For longer term plann1ng (strateg1c operations) 

t:-h.e d1 str1 but1 on requ1 rements can be used to suggest the number of veh1 cl es 

-atl.d drivers that w111 be necessary to properly operate the system over t1me. 

The number of veh·tc'l',es. a·n·d ·d:r1 ver~ ava 11 able for use 1 s a known quant1 ty. 

Th1s quant1ty chang.es upon vehlcle purchases, equ1pment problems, h1r1ng of 

new dr1vers, contract d1sputes, etc ... Generally these var1at1ons are known 

for short-term cons1derat1ons. (Equipm~nt fa1lures would be a s1tuat1on where 

:a.n. operat1on plan could be effected 1n the short term). Although these 

con:,s·tra1nt ava1lab111t1.es are known, they can have a large effect upon L.P. 

results. For example, 1f a fac111ty has a 11m1ted number o·f veh1cles for 

d1str1but1on, 1ts capacity w111 never be a concern, and for th1s reason 1t :\i 

1mportant for a system to have an adequate supply of veh1cles. Aga1n, by 

analyz1ng results of long-term stud1es, the veh1cle ava1lab111ty/product1on 

capacity balance should be kept controlled. 

Understand1ng the effect of the var1ab111ty of the d1str1but1on constraints on 

f1nal L.P. results 1s 1mportant; but 1t 1s cr1t1cal to recogn1ze th1s 

var1ab111ty 1s often full 1ncrements of veh1cles or dr1vers. A loss of a 

veh1cle at a fac111ty already constrained by the number of veh1cles m1ght 

• 
cause a rather large change to the operat1ng system. Ne1ghbor1ng facil1t1es 
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w111 have to d:1s:tr1:_bute the product not able to be d1str1but:ed: ·due to the los:s-: 

of the veh1cle. If all ne1ghbor1ng fac111t1es are already constra1ned a 

r1pple effect can take place. The ne1ghbor1ng fac111t1es w111 p1ck up 

accounts from the fac111ty wh1ch lost a veh1cle. They 1n turn w111 have to 

drop certain del1ver1es to keep w1th1n constra1nts. Th1s effect w111 cont1riue 

unt11 uncbnstra1ned fac111t1es are reached. 

Veh1cle/dr1ver constraints can have major effects on L.P. results. However, 

1f the results are to be 1nterpreted for long term s1tuat1ons, d1str1but1-on 

constra1nts ,n·ee:d n:o-t b..e employed but rather recorded for support of veh1cle 

purchases,. Mtlng of dr1vers, and veh1cle/dr1ver locat1on transfers. ~t 1s 

necessary ·ta, rec·o:~n:tze the m.aJ'or effects d1str1but1on constra1nts can have on 

·a·n L.-f>:. s,ys.tem, but ·1t 1s e:qual ly· tm·por·tant to recogn1 ze that these 

-co·nstra1nts may not ne:edi to b·.e empl:o·yed· fo.t Q.1ven s1tuat1ons (spec1f·t·c.a1l.~· 

long~ter~ plann1ng)·. 
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D1str1but1on/Product Costs 

Input costs are the parameters that dr1ve the d1str1but1on L.P. model, and 

s1nce 11near programm1ng models m1n1m1ze costs, the 1nput costs obv1ously have 

a d1rect effect on model results. For th1s reason alone 1t 1s necessary to 

deta11 the 1nput costs on an 1nd1v1dual bas1s, as well as on how each cost 

compares w1th another. The relat1ve cost of d1str1but1ng the product as 

compared w1th producing the product must also be analyzed and correctly 

represented. If 1t 1s not, the system results w1ll favor e1ther the 

.m·tn .1 m 1 z at 1 on of d 1 st r 1 but 1 on costs or the m 1 n 1 m 1 z at 1 on of product 1 on costs . 

The system should reflect the m1n1m1zat1.on .of ·the t9tal (d1str1but1on and 

product1on) system costs. 

Potent 1 al f:o.r· va-r1 ab1 li='t.y of a>r1q 1 a,.c:k of conf 1 de nee 1 n the 1 nput cos·t 

parameters need to, :be addressed due to the1r d1 rect effects upon results. 

D1str1but1on cost parameters have part1cular potent1al for var1ab111ty because 

of the many 1nd1v1dual 1nput costs that represent the total d1str1but1on 

charge. Veh1cles cost components, for example, m1ght be fuel, ma1ntenance, 

deprec1at1on, etc .. Labor charges for dr1vers must also be cons1dered w1th 

the veh1cle components to represent a total d1str1but1on charge. Uncerta1nty 

1n each component can compound to a rather large var1ab111ty 1n the total 

d1str1but1on cost parameter. 

The product1on cost parameters on the surface would seem to have less 

potent1al for uncerta1nty. However, the components that represent product1on 

costs are ut111ty costs, labor costs, 1nventory charges, etc ... and hav1ng 
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th1s many poss1ble components represents potent1al for var1ab111ty. Ut111ty 

and labor costs are based upon contracts, therefore these components are 

relat1vely stra\ght forward w\th respect to the1r effect upon total product1on 

costs. However, a compl1cated contract or 1nventory charge are components 

wh1ch may 1nject var1ab111ty 1nto the product1on cost parameter. The number 

of components wh1ch put var1ab111ty 1nto the f1nal product1on cost parameter 

1s less than the number wh1ch effect d1str1but1on costs. However, some of the 

product1on cost components can be very compl1cated, more compl1cated than any 

1nd1v1dual d1str1but1on cost component. 

There ex1sts a reasonable poss1b111ty for e1ther productton costs or 

dlstr1but1on costs to show var1ab111ty. All costs and their components must 

be scrut1n1 zed. A good representat1on ·of each cost component 1 s paramount 1n 

the atta1nment of good results. Good representation m1ght d1ctate parameters 

w1th 11ttle var1ab111ty, ot 1t m1ght d1ctate a parameter w1th a large but 

understandable var1ab111t_y. Confidence Ha the value of the parameter itseJf 

and an understand1ng 1n the poss1ble var1ab111ty 1n the value must be 

grasped. A thorough kn owl edge of each 1 s the means to assure the mog.el ts 

dr1ven accurately. 
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CHAPTER IV 

************** 

AN IMPROVED PARAMETRIC PROGRAMMING METHODOLOGY 

··~ ., 

,· 
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Parametric Programming 

Production·capacities, vehicle constraints, and demar.d can all be mon1tored 

through parametric analyses of the r1ght-hand-s1des (in MPSX, th1s is the 

PARARHS opt1on). Demand rows m1ght also be mon1tored by understand1ng the 

range of demand values where the shadow pr1ces w111 hold (RANGE option). 

PARARHS 1s used post-opt1mally to perform parametric programming on the 

r1ght-hand-s1des. From any 11near programm1ng problem a ser1es of related 

problems can be def1ned by replacing the right-hand-s1de by the orig1nal 

r1ght-hand-s1de plus a multiple of a change column. This mult1ple is the 

parameter. Thus each value of the parameter def1nes a d1fferent related L.P. 

problem. 

The 'funct1on of PARARHS 1s to scan a whole series of solutions to such 

problems vary1ng the parameter from zero up to a defined maximum. The 

parameter 1s gradually 1ncreased and the solution 1s kept optimal and feasible 

for values of the parameter by changing the basis when necessary. 

RANGE is used post-optimally to generate and put out an analysis of the 

current solution. The analysis includes: 

1. The effects of cost changes on opt1mum activity levels. 

2. The cost of changing a column {row) activity from an optimum level and 

tb~ a~tivity range for which th1s cost is valid. 
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Th 1 s type of 1:nf o rma t 1 on 1 s tmpo-rt:a.n.t bee au s e 1 t i nd-1 ¢ at:e s :: 

1. How much the act1v1ty will vary when a .d1:scount is made on the var1able. 

2. How a problem may be adjusted to ,n.tr·e:as-~ :p·ro:f·tts or reduce c_os·ts. 

As just discussed, RANGE and PARARHS are important opt1ons of MPSX to obta1n 

sens1t1v1ty 1nformat1on. The RANGE opt1on g1v&s 1nformat1on concern1ng the 

t.a:nge of values: over wh1ch a shadow pr1ce hold,s t--r:u.e. However, th1 s range 1 s 

tiru·¢ only. 1_·f ·no other parameter 1 s changed. ·T·herefore, to d1 scuss var1ab1 l 1ty 

bf 1nput parameter·s PARARHS (or PARACOL or PARARIM) 1s the more 1mportant MPSX 

~1on. A methodology of us1ng parametr1c programm1ng to understand the 

var1ab111ty of constra1nts a_nd how the var1a.b1l1ty effects f1nal result.s· .-is. 

the concept to be deta1led. 

- 45 -

5577f-V2 



Parametr1c Analyses to Expla1n Forecast Var1ab111ty 

where 

5577F-V2 

• 

b1 = ~od1f1ed forecast of customer t 

I b1 = mod1f1ed total forecast 

-I b1 = or1g1nal total for~cast 

e. = constant necessary: ·to <1bt-a:·tn ·the s ... t:a-t.edi .ij1.f:f:e:renc.e·· of 

·a:l -= co e ff 1 c 1 en t for· c.u.s·torner ·t t.o.: a-s s:1ig-.n, :a ne·.G·:.e s:s:ar_y p.-a . .rt elf 

the constant e. 

·t:h:e tnc-reas·e- ;(:_-d:e:ct;~-a~·e.) 1 n the forecast of customer 1. 

-~ -4,6 -



If one assumes that the per cent increase (decrease) 1n each customer forecast 

1s equivalent to its 1n1t1al rat1o of forecast to total forecast, then, 

where a.= change from the original total forecast 

Therefore, 

because the rat1o 61/I 61 represents the per cent of the total forecast that 1s 

represented by customer 1. 

However, th1s « 1 does not allow for the poss1b111ty of forecast 

uncerta1nty at the customer level. 

Assume that a normal d1str1but1on holds at the customer level, then 

and, 

ti" 

i 

I bi*= I 61 + I((RN1) (S1)) 

where 
• 
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RN1 = standard normal random var1able w1th X = O, S = l 

s
1 

= standard dev1at1on for the 1th customer d1str1but1on 

F1nally, 

The prev1ous descr1pt1ons reflect the methodology used to help expla1n 

var1ab111ty 1n both the total forecast (e) and the 1nd1v1dual forecast 

(«
1
). An example follows to further expla1n the methodology. 

Example: 

Forecasts are calculated for 1nputs to a d1str1but1on L.P. model. We bel1eve 

that a normal curve represents the uncerta1nty of the total forecast w1th1n 

~5%, and of the 1nd1v1dual forecasts w1th1n ~10%. In both 1nstances we assume 

95% conf1dence 11m1ts (1.e. !2~). 

1. F1rst let's calculate « 1* for each customer. 

where 6 = 10 
1 

-I b1 = 100 
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RN = 1.56 (1.56 Standard dev1at1ons above average) 
1 

S
1 

= (a) (61) 

= ( .05) (10) 

= .5 

One can assume that 

because of the 1mportant properties of the normal d1str1but1on. Its 

phys1cal appearance 1s that of a synvnetr1cal bell-shaped curve extend1ng 

1nf1n1tely far 1n both pos1t1ve and negative d1rect1ons. And the 

sampl1ng d1str1but1on of the means of random samples w1ll be 

approx1mately normal 1f the sample s1ze 1s suff1c1ently large. 

Then, 

ex: * 1 
--
--

10 + ( l . 56) ( . 5) 
l 00 + 0 

0. l 078 

2. Now, let's calculate N values of e to be used for the L.P. runs; 

2 

N = 

Where t = percent11e of the student t d1str1but1on 

5577F-V2 

d = the conf1dence 1nterval w111 be of length 2d; the prec1s1on 

of the est1mate 1s +d. -
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As,sume: SN, has been prev1 o·u·s"l.:.y: ·C:·a--lc:u.l,rt:e~ .f.rom test runs:. 

Note: The sample s1ze N may need to be reassessed when: 

Where 

1. The var1at1on 1n the total forecast changes 

:2:. The var1at1on of an 1nd1v1dual forecast changes 

s1gn1f1cantly. 

standard normal random· ·v·ar:tabTe: 

standard dev1 at1 on for t·he to·t:a_.l f·or·e,c·ctst. ,dts tr1 but1 on 
. . . . ' . ~, . ' . ' . . ' . . ' .· .• .. 

j .== 1 , 2 , ... , N 

.3. Run the nece-ssary L.P. cases. Have the L.P. calculate N sets of customer 

la1d-1n costs us1ng the « 1• values from Step 1 and the ej* values from 

Step 2. 

4 . Us· e ,t::h e res u l ts fr om Step 3 to est 1 mate the v·a l u e for the l a 1 d-1 n cos t;s 

·(:·P1:), as wel 1 as to expla1 n the1 r var1ab111 ty. We can now make a 

statement about the la1d-1n cost for customer 1 based upon forecast 

uhcerta1nty: 11 W1th 95% confidence, the values- of the la1d-1n costs for 

customer 1 range from P 
-2S 

to P • The most 11kely outcome of 

the cost for customer 1 1s P . 11 

0 

5577F-V2 

+2S 

- 50 -



After obta1n1ng the parameters from the prev1ous statement we can draw a 

normal curve and present f1nal results graph1callr: 

5577F-V2 

p 
-2S 

p 
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4. 
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The Methodology 

/ 

• Calculate cx1* 

• Represents forecast var1ab111ty 
at the customer level. 

• Calculate ej* 

• Represents forecast var1ab111ty 
of the total forecast. 

• 

• 

• 
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Parametr1c Analyses to Expla1n Product1on Capac1ty Var1ab111ty and 
-(' .. , 

D1str1but1on Constra1nt Var1ab111ty 

where 

5577F-V2 

b1 = mod1f1ed capacity of fac111ty 1 

I b1 = mod1f1ed system capac1ty 

ti 1 = or 1 g 1 n al ca pa c 1 t y of fa c 111 t y 1: 

t 61 = or1g1nal system capac1ty 

·e ~ constant nece.ssary. to ob:ta·tn.: f:he stated d1ffere.nc'.e ·a,f: 

( I b - :I 6 .) 1 ··1 

« 1 = coeff1c1ent for fac111ty 1 to assign a n~cess.ary part of 

the constant e. 

cxl El = the 1 n c r ease ( d ec r ease) 1 n the forecast of fa c 11 l ty 1. 

.• . .-: 
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If one 1s to step back and ask the quest1on 11 1s 1t necessary to use parametr1c 

analyses to represent capac1ty changes when determ1n1ng demand po1nt shadow 

pr1ces? 11 , the answer w111 probably be 11 no 11
• A s1mple rerun of the L.P. model 

w1th the capac1ty change (plant outage, new fac111ty) cons1dered w111 

accompl1sh the same goal. Aga1n, when establ1sh1ng a base for customer pr1ces 

one needs to cons1der the average product ava1lab111ty over t1me. From 

h1stor1cal data, calculate average upt1me (capac1ty) for each fac111ty. If 

there 1s a large var1ab111ty, 1t may become necessary to use parametr1c 

analyses. 

«
1 

w111 represent 1nd1v1dual fac111ty var1ab111ty. 

e w111 represent global var1ab111ty. 

The same cons1derat1ons hold for d1str1but1on constra1nts. Rev1ew of h1stor1c 

data should def1ne var1ab111ty 1n both dr1ver and veh1cle ava1lab111ty. If 

the var1ab111ty seems h1gh enough to address: 

w111 represent term1nal 1 d1str1but1on constraint 
var1ab111ty. 

e w111 represent global d1str1but1on constra1nt variability. 

If variability is addressed for either production capac1ty or distr1but1on 

constra1nts, steps s1m1lar to those for address1ng var1ab111ty 1n forecast 

accuracy w111 be followed. 
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Parametric Analysis and Cost Coeff1c1ents 

Cost coeff1c1ents are often 1nput 1nto a L.P. system on a per product un1t 

bas1s. However, the costs that make up the coeff1c1ents are often not 

1n1t1ally 1n the same per un1t bas1s, and the var1at1ons that m1ght be 

recogn1zed 1n the costs are also not 1n th1s per un1t bas1s. For example, 

wage rates, a part of the cost per un1t of del1ver1ng a product, would 

probably vary on a per hour bas1s not a per un1t. Fuel cost var1ab111ty 

happens on a per m1le base; not a per product un1t. The po1nt 1s that 1t 

becomes very d1ff1cult td 1dent1fy values of« and e for d1str1but1on cost 

coef f 1ctents: ... 

Product cost. c:oeff1'cfe:r1ts and the1r var1ab111ty can· be more eas1ly def1ned and 

represented by the parame.tr1c prograrnm1 ng methodology. Most corporat1 ons are 
-

able to 1dent1fy a co.st per un1t for produc1ng a product. Although, 

ut111t1es, labor, and raw mater1als (components of the f1nal product cost 

coeff1c1ents) are not 1n1t1ally exam1ned on a per un1t bas1s. Aga1n, 1t 

becomes d1ff1cult to use parametr1c analyses to represent the component 

,...~,· 
.~ .. 

var1ab111t1es. 

Cost parameters are generally more stable than some of the constra1nt 

parameters. If contracts are renegot1ated, fuel costs change, etc ... then 

L.P. runs must be redone to reflect the change. At t1mes the change to 

results w111 be obv1ous (only a change 1n total operat1ng cost). When the 

cost changes are global, there w1ll be no effect to the d1str1but1on · 

patterns. 
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Creat1ng Random Alpha Values Us1ng SAS Software 

DATA Al(DROP=GNUM); INFILE A MISSOVER; 
INPUT @1 GROUP 4. 

@16 VOLU 10.l; 
RANDOM= NORMAL(1961273); 
PERCNT = .10; 
STOOEV = PERCNT/2; 
APRODl = RANDOM *(STOOEV * VOLU); 
SKEY = 1; 
GNUM + l; 
FILE B; PUT @l GROUP 4. GNUM 3.; 

PROC SORT; BY GROUP; 

DATA A2; INFILE B MISSOVER: 
INPUT @l GROUP 4. GNUM $CHAR3.; 
IF SUBSTR( GNUM, 1, l) =' 1 THEN SUBSTR( GNUM, l, l) = 101

; 

IF SUBSTR(GNUM,2,1)= 1 1 THEN SUBSTR(GNUM,2,1)='0'; 
IF. SUBSTR(GNUM,3,1)=' ' THEN SUBSTR(GNUM,3,1)='0'; 

PROC SORT; BY GROUP; 

DATA A; 
MERGE Al A2; 
BY GROUP; 

PROC MEANS NOPRINT; 
ID SKEY; 
VAR VOLU APRODl; 
OUTPUT OUT=B SUM=SVOL APROD2;· 

DATA C; 
MERGE A(IN=A) B(IN=B); BY SKEY; 
IF A; 

DATA C; SET C; 
ALPHA= (VOLU + APROOl) / (SVOL + APROD2) ; 

PROC PRINT; SUM VOLU; 

DATA NULL; SET C; FILE C; - -PROD=l; IF GROUP>=3000 THEN PR00=2; 
PUT @5 'ALPHA' 

@15 'DEM' PROD 1. GNUM $3. 
@25 ALPHA 10.8 
@79 I 46 I ; 
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PROC MEANS DATA=C NOPRINT; 
VAR RANDOM; 
OUTPUT OUT=D SUM=RSUM MEAN=RMEAN; 

PROC PRINT; 

PROC MEANS DATA=C NOPRINT; 
VAR ALPHA; 
OUTPUT OUT=D SUM=ASUM MEAN=AMEAN; 

PROC PRINT; 

5577F-V2 
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THE RESULTS 
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Improved Parametr1c Programm1ng and Stochast1c Programrn1ng 

Stochast1c programm1ng techn1ques st1pulate that w1th a probab111ty of 

(1-«1) we want to be able to sell all the output produced (or, we must 

del1ver at least b1 to customer 1). We are pred1ct1ng, w1th a degree of 

certa1nty, that a spec1f1ed occurrence must happen. Th1s approach 1s 

1mportant, espec1ally when we w1sh to suggest that h1gh prof1t levels are 

essent1al, but secondary to the necess1ty of sell1ng all our pro~uct. 

However, the 1nherent var1ab111ty 1n the var1ous 1nputs 1s not spec1f1cally 

addressed. Inherent var1ab111ty refers to the 1nd1v1dual as well as the 

overall 1nput var1ab111t1es. For example, uncerta1nty assoc1ated w1th product 

demand must be addressed at the customer level to help descr1be our lack of 

knowledge concern1ng 1nd1v1dual needs and at the product level to descr1be our 

1nab111ty to perfectly forecast total system-w1de demand. Even those 

var1ab111t1es that are be1ng cons1dered by Stochast1c Programm1ng are often 

not 11nearly represented, forc1ng the use of separable or 11near fract1onal 

programm1ng techn1ques. 

,., 1/1'' 

-· ' 

The Improved Parametr1 c Prograrrtrn1 ng ( I PP) methodology add res,ses 3 bas 1 c 

concerns that are 1nherent problems w1th stochast1c programm1ng techn1ques. 

The 1mproved parametr1c methodology: 

1. attempts to address the 1nherent var1ab111ty of 1nputs on both an 

1nd1v1dual and overall bas1s; 

2. uses parametr1c programm1ng approaches ava1lable 1n most 11near 

programm1ng software packages; and 
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3-.·. :de·,r1 ves f 1 na l results. 1n a rea~s<>.na:_b:l e amot.tht .o,f add1:t1 ona.T c_:o_rnp:u:t1:n·:g·· tlme· 

and expense. 

IPP resolts compare Javorably w1th results .achieved us1ng Stochast1c 

Programm1ng. Refer to the append1x for a table of test results. Tests were 

performed on a d1str1but1on 11near programm1ng system where Stochast1c 

Programm1ng techn1ques were used to descr1be 1nherent 1nput var1ab111ty. When 

RHS var1ab111ty 1s addressed, results are equ1valent and IPP actually becomes 

more effect1ve as add1t1onal cases are run. What 1s 1mportant 1s that for 

equ1 val ent comput1 ng ch:ar·ges mor:e cases can be run under the !PP env1 ronment 

and hence better r.e s u l t·s f o .r: an .e.q u a l expense . As the 1 n 1 t 1 al prob l em grows 

1 n s 1 ze ( rows and column·s) the cost sav1 ngs U:S 1·ng IPP over stochast1 c 

programm1ng w1dens. 

:c:orn pu:t.ln·g 
Co-s:t 

Problem Size 

When cost coeff1c1ents• and allocat1on coeff1c1ents' variab1lit1es were 

tested, results were mixed. When quadratic tendenc1es were observed, 

stochast1c programming com~ned with 11near fract1onal programm1ng techn1ques 
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5577F-V2 



d1splayed obv1ous advantages. However, the comput1ng t1me to address the 

quadrat1c problems were extremely large; even to the po1nt that the problems 

were not perm1tted to f1n1sh due to the excess1ve charges. Although 

stochast1c programm1ng and 11near fract1onal techn1ques m1ght effect1vely 

descr1be some var1ab111ty, excessive costs from comput1ng resources make 1t an 

unacceptable approach. IPP may not fully descr1be the var1abil1ty 1n e1ther 

Cj or a1j (due to nonl1near1ty), but can relate 1mportant tendenc1es not 

shown by a s1ngle L.P. execut1on. 

Improved 
Parametric 
Methodology 

Stochastic 
Programm1ng 

S577F-V2 

PROS 

• Determ1n1st1c 

• Linear Representation 

• Uses Parametric Program-
m1ng procedures ava1lable 
1n most linear programming 
software packages 

• W1ll derive results similar 
to proven techniques in 
most c1rcumstances 

• Improved information due 
to the abil1ty to address 
both overall and individual 
data uncertainties 
simultaneously 

• Determ1nist1c 

• Describes variab1lity 
of cost coefficients, 
allocation coefficients, 
and right hand sides 
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CONS 

• Forces 11near 
representation when 
cons1dering cost 
coefficients or 
allocat1on coefficients 

• A large number of runs 
are necessary to 
correctly represent the 
input variabilities. 

• Often a nonlinear 
(quadratic) representa­
tion and must be solved 
using separable or 
linear fractional 
programming techniques 

• Can add a large number 
of rows and columns to 
the orig1nal problem 
which suggests a large 
increase in comput1ng 
time and costs. 

• A large number of runs 
are necessary to 
correctly represent the 
1nput var1ab1lit1es. 



Demand Var1at1ons 

shadow 
• prices 

forecasts 
( time ) 

4 

3 

2 

1 

• 

Results from test data show that when studying demand variations, shadow 

prices plotted versus the forecast range can follow any of four lines, or some 

combination of them. That part of the function which is increasing represents 

a constrained system. As forecasts increase, the system must incorporate the 

extra pull for product and sacrifice total system cost and individual shadow 

pr1ces. 
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Curve l represents an unconstrained system~ for the expected uncertainty 

·there 1s no system constra1nt which effects f1nal results. In th1s s1tuat,1on\~ 

over the range of forecast values for customer 1 ne1ther d1str1but1on nor 

production con~tra1nts have any effect upon the d1str1but1on pattern. Curve 2 

represents a constra1ned system. The constraint that forces results at the 

lower forecast also effects results at the upper forecast. Curve 4 also 

represents· a constra 1 ned system. However, the constra1 nt that causes the 

1n1t1al effect 1s overr1dden by a second constra1nt at the po1nt where the 

br.e.ak 1n the slo_pe occurs. For example, veh1cle ava1lab111ty m1ght cause the 

ln1·t1al 1ncreas1hg function unt11 plant capacity 1s reached. The capac1.ty 

constraint takes effect at the slope break. Now the capacity constra1nt 

becomes the 11m1t1ng constra1nt. Curve 3 represents a pattern s1m11ar to that 

;of Curve 4. The d1fference 1s that for· some 1n1t1al period there 1s no 

constraint l 1m1tat1on. A.s a constra1nt·: t~ reached. t-he slope bre.ak- o.c:c:-u-rs·; aJ1d 

the funct1on changes cour·sj~ 
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Constra1nt Changes 

~·.: 

2 

shadow 
• prices 

1 

-------• 
constraint availability 

Constraint (prOdUct capacHy, veh1cles, and dr1vers) var1ab111ty tends to be 

d1screte changes rather than a d1str1but1on. Product1on 1ncreases, plant 

shutdowns, veh1cle purchases, etc. all represent these d1screte changes. 

Results often show dramat1c changes when the constra1nt var1at1on occurred. 

Test cases were run assum1ng a var1ab111ty d1str1but1on to better understand 

effects upon f1nal results. 

•. 

Curve 1 represents a L.P. system where changes to constra1nts have no effect. 

Because a term1nal was not yet constra1ned by veh1cle numbers, the loss of one 

veh1cle due to mechan1cal fa1lure ha5 no effect. A veh1cle presently not 
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ut111zed 1s put 1nto operat1on. ·If a fac111ty has not yet reached 1ts 

capac1ty, eff1c1ency 1mprovements are 1rrelevant. Mak1ng more product 

ava1lable w111 not change any d1str1but1on patterns. 

Curve 2 demonstrates the effect constra1nts can have on results. The curve 

has a slope that represents an 1ncrease 1n the shadow pr1ce as a constra1nt 

_becomes more 11m1t1ng. Th1s m1ght be the per cent loss of capac1ty for a 

month. The longer a fac111ty 1s to be shutdown for the plann1ng per1od, the 

greater the loss of capac1ty, and the more 11m1t1ng the constra1nt. 

C 

3 
shadow 

• prices A 

B 

time 

J ' 
• ·~- C ;. 
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Whether one was exam1n1ng forecast var1ab111ty or demand 1ncrease over t1me, 

the effects upon shadow pr1ces were cons1stent. However, because product1on 

and d1str1but1on constra1nt changes tend to be more abrupt when considered 

over t1me, the plotted funct1on tended to show some sta1r-step effects. 

The follow1ng explanat1on r~fers to Curve 3. At the po1nt where Part A of the 

curve meets Part B, and equivalently where Part B meets Part C, the sta1r-step 

effect 1s prevalent. The downward step m1ght represent an add1t1on of a new 

fac111ty or the purchase of a vehicle. The 1mmed1ate relaxat1o-n of a 

constraint. The upward step represents the 11m1t1ng of some constra1nti 

possibly the shutdown of an old fac111ty. What 1s necessary to recognize· 1s: 

that 1t 1s extremely d1ff1cult to be able to equate time and the parameter 

change as was done when d1scuss1ng forecast var1ab111ty. If one can assume 

product demand w111 increase o·ver time, then one can state that trends 1n 

shadow pr1ces w111 be s1m1lar whether comparing them against demands or 

against t1me. However, comparing shadow prices against constraint var1at1on 

1s very different from comparing them aga1nst t1me. 

·.I 
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Cost Coeff1c1ent Var1at1on 

• 

shadow 
1 

• prices 

cost coefficient 

:cost coeff1c1ent var1at1on has a d1tect eff~ct·on f1nal results. As cost 

coeff1c1ents 1ncrease·, shadow prices 1ncrease; as costs decrease, pr1ces 

decrease. If one assumes that costs 1ncrease over t1me, then one can also 

state that shadow pr1ces 1ncrease as cost coeff1c1ents 1ncrease over t1me. 

What 1s important here 1s that bas1cally one category of functions 

( 1 ncreas 1 ng) represents the results of how cost coef f 1 c.1e.n.ts; eff-e'c·t shadow 

pr1ces. 
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Shadow Pr1ces and a Plann1ng Hor1zon 

l: •. 

C 

shadow 
1 

• prices B 

A 

time 

When the test case was set up to represent a long range plann1ng s1tuat1on 

shadow pr1ces followed a pattern s1m1lar to the prev1ous curve. For long 

range p 1 ann1 ng, d1 str1.but1 on constra 1 nts were re 1 axed and res·u l ts concerned 

w1th these constra1nts w111 be used only for suggest1ons for the number of 

necessary veh1cles and dr1vers. Average ava1lable product1on capac1t1es, 

based on h1stor1c data, were used for product1on constra1nts. Forecasts were 

projected over the plann1ng hor1zon and costs were escalated to represent 

1nflat1on and 1ntreased operat1ng costs. 

5577F-V2 
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The f1rst port1on of the curve (Part A) shows the 1ncreas1ng value 1n the 

_shadow pr1ce over an 1n1t1al per1od of t1me. At the po1nt where Part A meets 

Part B of the curve, an add1t1on of a new fac111ty causes a decrease 1n the 

shadow pr1ce. The decrease in pr1ce from increased availab111ty of product 

dom1nates the 1ncrease 1n pr1ce from cost inflat1on and causes the step down 

1n pr1~. Part B of the curve represe.nts the increase 1n shadow pr1ces unt11 

a per1od 1n t1me when a fac111ty ts shut down (where Part B meets Part C). 

Th .. e r:e,ma,1n1-Jl:·9 part of the curve (C) aga1n d1splays the 1ncreases in the shadow 

.. 

:P:r1ce dlie to general 1nflatto'n. ,and more 11m1t1ng product1on constra1nts. 
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~pply1ng Improved Parametr1c Programm1ng 

The plots over the previous few pages display the trends of shadow pdces from 

effects in data changes. Using the Improved Parametric Progranvning techn1ques 

to describe input variability, we w111 display some other very important 

trends on the same plot as deta1led below. 

shadow 
• prices 

A// 
/ 

B / 

/ 
/ 

/ 

time 

/ 
// 

/ 
/ 

/ 

J 

1 

range in values of the 
shadow price at time t 
resulting from data uncertainty 

• 

Along w1th the general trend of the shadow pr1ce over t1me, the 95% (any 

acceptable level) conf1dence 1nterval 1s plotted as well. At any po1nt 1n 

t1me, one can locate the expected value of the shadow pr1ce as well as the 

range of values that m1ght occur due to the uncerta1nty 1n the 1nput data. 
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These trend plots, along w1th d1agrams of the d1str1but1on of the shadow 

prices, are important 1n descr1b1ng the r1sk involved w1th pr1c1ng a customer 

at a spec1f1c level. 

rt 1 s· also nee es sary to understand the poss 1 b 1 e con·sequences 1 nvo 1 ved w1 th 

suggesting pr1ces at different levels. When a customer pr1ce 1s suggested 

based upon the expected value of a shadow pr1ce rather than some value less 

than this expected value, there 1s less r1sk involved with obta1n1ng future 

prof1ts. Although th1s 1s an obv10us statement, 1t 1s important. Just as 

tmportant, 1s mak1ng use of· ·1nformat1on from the Improved Parametric 

Programming techn1que,s· to cfe·ftne the r1sk involved w1th moving away from ·th:e 
.. 

expected value (1.e. ~e'f·1n.e· the r1sk 1nvolved w1th obtaining a spec1f1e~ lev.el 

of prof1t). Large scale, ~r-0blems w1th·data uncerta1nt1es are solved more 

effectively and more eff1c1ently us1ng IPP, prov1d1ng the potential for 

increased carp~rate profits and better r1sk assessment. IPP can be a highly 

effective tec:hn1que for descr1b1ng data uncerta1nty 1n large-scale problems 
6 

because 1t 1s s1m1lar to ex1st1ng (1.e. accepted) technology. It 1s not 

necessary to ~·se 11" anyone on new mathemat 1 ca 1 techn 1 ques; s 1 mp l y prov1 de for 

an explanation of the benef1ts of IPP and show that 1t 1s only an extens1on of 

a 1 ready accep.·ted 11 near pro:g.r'.a.mmlng pract1 ces . 

.. :. 
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CHAPTER VI 

************** 

THE CONCLUSIONS AND FINAL REMARKS 
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Conclus1ons and F1nal Remarks 

Results from the var1ous tests suggest the follow1ng: 

1. The parameters that have the largest effect upon shadow pr1ces are 

capac1ty changes. Th1s should be recogn1zed because capac1ty 

changes present the largest relat1ve change of any of the tested 

constra1nts and coeff1c1ents. Although variab111ty 1n product 

output ,s m,n,mal, new fac111t1es and plant shutdowns represent the 

capac1ty change that show such a large effect upon shadow prices. 

It 1s important when considering strategic location of new 

fac1lit1es that they are placed properly. Even proposed new 

fac111ties that are to be ons·tream five years 1nto the future should 

be h1ghly scrutinized. A "good guess" as to where the fac1lity 

might be located may not be good enough. 

2. Cost coefficients' variabilities place a direct effect on shadow 

pr1ces. If one ,s off just a 11ttle b1t on the est1mate of the 

value of a cost coefficient, then at least one shadow price will be 

off a little bit. However, because the cost coefficients are the 

parameters that have the most available data, their estimates are 

reasonably accurate. So, even though cost coefficients do have a 

direct effect upon final results, the fact that their estimates are 

very good suggest this is not an area of major concern. The various 

constraints have a much larger effect upon f1nal results. 
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3. D1str1but1on constra1nts can have a major effect upon results. If 

however, the system 1s to be a strateg1c plann1ng tool, then these 
. 

constra1nts should be relaxed and f1nal results used to help plan 

for veh1cle and dr1ver needs. When these constra1nts were 

cons1dered 1n the tests, they d1d represent some major effects. If 

veh1cle ava1lab111ty was exhausted at a term1nal, other term1nals 

were forced to service new areas and the effects upon shadow pr1ces 

were apparent. Obv1ously, the tighter the constra1nt the more 

drast1c 1ts effect. The effect was not 11near; an exponent1al 

effect was prevalent. 

4. Demand constraints represented the potential for most uncerta1nty. 

5577F-V2 

Forecast variab111ty ex1sts at both the customer and system levels. 

It is important to employ the modified parametr1c programm1ng 

methodology so that 1nd1v1dual shadow prices are better understood. 

Variab111ty 1n the forecasts presented a rather wide range of 

effects upon f1nal results. In areas where capacity was already a 

constra1nt, relax1ng the forecast caused a large decrease 1n the 

shadow price. Increasing the forecast had an equivalent negative 

effect upon the shadow price. When capacity is not a lim1ting 

factor, forecast variab1lity had little or no effect upon final 

results. It is necessary to recognize what can happen to a system 
• 

1f changes occur s1mply because of data uncerta1nty. To obta1n a 

new customer account with assurance that a corporat1on w111 be more 

profitable based upon a single L.P. run 1s naive. To understand the 

probability of fa11ure at different demand/pr1ce levels 1s 

cr1t1cal. 
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In summary, to assure good results from a d1str1but1on L.P. model the 

" 
follow1ng po1nts must be addressed: 

1. var1ab111ty of demand forecasts 

2 locat1on of capac1ty 1ncreases or decreases 

3. relevance of d1str1but1on constra1nts. 

Us1ng some of the sens1t1v1ty analyses presented can be a means to a good 

serv1ce, that 1s a good 1nformation system. However, the techn1cal aspects 

are really just the beg1nning of a successful application. There are 

peripheral requ1rements for the success of any technology, not the least of 

these is to f1nd an area that really prov1des some value to a client. The 

technology of us1ng shadow pr1ces as a base for customer pr1c1ng has proved 

to prov1de value to a corporat1on and has been generally accepted as an 

1mportant methodology. 

Because data 1s an essent1al element of the system, a second necessary 

requ1rement 1s how to manage the data. System 1nputs and results must be 

act1vely managed 1n an env1ronment separate from product1on systems. The 

task of management m1ght 1nclude prov1ding for new data, purg1ng old data, 

contro111ng access to conf1dent1al data, and commun1cat1ng w1th c11ents on 

the relevance of the data. 

Tra1n1ng and support represent another aspect of a successful system. The 

reason a system w111 be used 1s 1f someone (analyst) can demonstrate to the 
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cl1ent how 1t helps get h1s/her job done. Techn1cal people are mot1vated to 

learn techn1cal mater1al 1n order to do the1r jobs, th1s 1s not true for most 

cl1ents. Their mot1vat1ons m1ght be to become a better financial analyst or 

product manager. 

Odds are small that the system w111 fully satisfy the cl1ent•s needs, and so 

1t 1s necessary that the system remain flexible as not to 11m1t 1ts 

potential. The ultimate features of the system have been conceptualized but 

implementat1on should take place w1th only a few capabil1t1es at a t1me. 

This g1ves the client time to become fam111ar w1th the system w1thout 

becoming immediately overwhelmed. Choosing the right technology and using it 

well are important, but even more critical is having the methodology accepted 

by the client. If a client can make frequent use of the system with few or 

no complications, then the system will be a vehicle for providing a 

significant value to the corporation. 
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,._. P-a-rameter # of 
:c_·a,s·-e·· Addressed Row 

l b1 1,200 
2 b1 1,500 
3 b1 1,700 
4 b1 1,900 
5 b1 2,000 

, CJ l ; 2-:00.: 
2 Cj l .s·ocl . . •.... 
:3 Cj 1. ·100 

. ' . . 

4 Cj 1-,900 
:5 Cj 2., o.o.o: 

1 a1j 1,200 
2 a1j 1,500 
3 a1j 1,700 
4 a1j 1,900 
5 a1j 2,000 

IMPROVED PARAMETRIC PROGRAMMING (IPP) 
vs. 

STOCHASTIC PROGRAMMING (SP) 

IPP SP IPP SP 
# of Comput1ng Comput1ng Object1ve Object1ve 

Columns T1me T1me ($000,000) {$000,000) 

9,000 38 70 7.5 7.5 
12,000 42 94 8.6 8.6 
13,000 61 ? 9.4 ? 

• • 
18,000 90 ? 10.5 ? 

•· • 

18,000 107 ? 11 . l ? 
·• .• 

9,000 32 :6.3 7.4 7.6 
12,000 43 10.1 8.6 8.7 
13,000 65 ll,9. 9.4 9.6 
18,000 91 1: 10.5 ? ... • 

18,000 104 .? 11 . l ? 
• • 

9,000 •: :36: 63 7.5 7.6 
12,000 ,43.· 91 8.6 8.5 

.. 

13,000 :6:9' 118 9.4 9.4 
... 

l 8, 00.0 98· ? 10.5 ? 
'.: _)· .. .. · • • 

1·a:.,oo·o l 0:.9; ? 11 . l ? 
• • 

Note: 1) All cases started execution from an opt1mal bas1s where 1n~Qt 
parameters were at the1r expected values. 

·2.) Comput1 ng t1me 1 s a measure of 1/0 and CPU, tlme. 

3) Each objettfve function cost 1 s an a;ve.:ra:g.e of the N runs for each 
case. 

- 82 -

5577F-V2 . 



VITA 

Michael G. Fischbach, son of Gerald and Martha Fischbach, 

was born January 25, ]958 in Lima, Ohio. Undergraduate 

studies were performed at Ohio University in Industrial 

Enqineering and completed in June, ]980. Graduate studies 

in Industrial Engineering were completed at Lehigh University 

in June, ]986. 

-83-

' . 


	Lehigh University
	Lehigh Preserve
	1986

	An improved parametric programming methodology :
	Michael G. Fischbach
	Recommended Citation


	tmp.1551116526.pdf.5a4cZ

