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Problem Definition

A problem at many large corporations involves the establishing of a laid-in
cost for new customers. A laid-in cost is the incremental cost associated
with producing and then distributing product to a customer location. This
cost 1s used as the basis for establishing customer contractuprices.
Obviously, the compet1t16n will be developing contract prices as well. Thus,
the calculated price must be fair (profitable) for the corporation but also

competitive.

A Profit and Loss (P & L) analysis might suggest a selling price for new
business based on laid-in costs from the closest available source for a
product. For geographic areas with facilities at maximum capacity, a better
1lald-1n cost can be determined when dislocation costs are considered. A dual
variable or shadow price analysis 1s a means of considering the dislocation.

The P & L calculation of 1laid-in costs is:

LY = D% + P$
where L$ = total laid-in costs from closest facility
D$ = distribution costs (round trip miles * cost per mile)

P$ production costs (volume * cost per unit of volume)

However, this algorithm does not consider the times when a corporation's
production/distribution system becomes constrained. For example, it may not

have the capacity at a specific facility to support another customer, or it

s
K
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can't continue to supply increasing amounts before capacity (and therefore
costs) needs to be revised. In either case, the laid-in cost would change as

facil1ities not at capacity are used to satisfy the new demand.

Linear programming models are often used to suggest sourcing patterns for a

distribution system by minimizing total incremental costs (production and

distribution). Constraints might include:

. Demand ~--=---->  The amount of product shipped tc a location must
be greater than or equal to the demand.

. Production easaﬁ. Total production at a facility must be less than
or equal to capacity.

. Vehicles -----=>  The number of vehicles used to distribute
product from a facility must be less than or

equal to the vehicle count there.

Demand constraints are one of the three basic 1inear programming model
1imitations. The amount of product shipped to a specified location must be at
least equal to a minimum value. The point (geographically) at which a demand
occurs helps to define the costs of supplying product to the necessary
constraint. That is, the greater the distance a demand point is from a
product source, the greater the cost of supplying product there. Although
there is a demand point referred to by each demand constraint, note that

- demand constraints are associated with the question of 'how much?' while

demand points with 'where?’'.
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Because the L.P. model minimizes cost, each demand constraint is at 1ts lower
bound when optimality is reached and therefore, each ’constra1nt has a dual
costuassoﬁiated with 1t. By definition, this dual or demand point shadow
price is the maximum amount one would be willing to pay for. an additional
amount of the input (demand). For this situation, the dual represents the
amount that the objective function will decrease if the constraints were
relaxed, or the amount that the objective function will increase if the
constraint were increased by one unit. The shadow price for each demand

location can be interpreted as the 1ncrementa1 cost to produce and deliver an

additional unit of product to the specified location.

This approach can bé used to help establish laid-in costs for new business.
However, a stability in the value of the shadow price must be present before
it is an accepted approach (stable in that it 4s at least predictable and
understandable). When periodic updates to information are made to reflect
possible reassignments in distribution fleets and/or fluctuations in
production capacities due to planned or unexpected shutdowns, are the shadow
price values predictable? And if the shadow prices are to be used for long
term pricing strategies, is it relevant to even consider a short term

constraint variation?

The basic theme to be addressed is the proper use of shadow prices to
establish a foundation for customer pricing. This notion concerns itself not
only with the possible usefulness of shadow prices, but also proper use. The

extent to which one should rely upon shadow prices to understand laid-in costs
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is extremely important. Knowing the 1imitations of both linear programming
and sensitivity analyses should help define the stability of a shadow price
and hence 1ts reliability.

Guidelines to suggest proper use of the results from sensitivity analyses must
be developed and should help 1imit the overextension of the model/analyses
results. That 1s, results are not to be used to help in decisions that are
outside model boundaries. To assure proper use, the previously stated
guidelines must be presented in an orderly and understandable package which

4ncludes information about data, model concepts, and results.

. @w
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An Appreciation of Linear Programming

There 1s 1ittle question that linear programming has been poorly applied in
“some instances in the past, but misapplication does not lessen the ultimate
uti1ity of linear programming techniques. The corporation that refuses to
allow linear programming to be attempted under favorable circumstances may be
correct in assuming that it will not be successful in that particular area.
The corporation that gambles all on 11near»programm1ng, but s too busy to
take the time to understand its use, may also prove linear programming can be
unsuccessful. However, the corporation that appreciates what linear
programming can do, and applies it well in situations for which it represents
the appropriate viable technique, will make impressive inroads into improved

design and operation of productive systems.

An opt1m1zat10nﬁpr0b1emu1t1mate1yfaced by a decision-maker is one of
choosing from many alternatives the one that yields a maximum or minimum value
of some numerically measurable criterion of performance. The necessity of
coming to a decision and implementing it in the real world gives focus and
meaning to the optimization problem, but the actual work of solving it often

{s performed by someone other than the decision-maker.

In general, there are a great many alternative ways to solve a problem. The
conditions and restrictions that determine which courses of action can be
adopted and Qh1ch cannot are called constraints. The measure of effectiveness
of edch alternative is the crucial component of the optimization problem. It

must be explicitly stated and must take on a single numerical value for each
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feasible policy. This implies that the effectiveness of each element of every
policy must be measurable on the same scale. If it 1s not possible, then the
definition of an optimization problem is not satisfied. By far the most
frequently used measure of effectiveness is total dollar cost, which serves as
the principal yardstick of an effective operation. Measurement in terms of
dollars 1s quite natural and convenient. Most of the required cost data
(wages, fuel cost, raw-material prices, etc.) are readily ava11ab1e, and those
that are not (inventory carrying charge, customer 111 will, etc. . ) usually

can be estimated in some rational manner.

Certain specific structural elements must be present for an optimization
problem, including a numerical measure of effectiveness. This requirement is
somewhat restrictive, but serves an important purpose in guaranteeing that any
optimization problem can be expressed in terms of mathematical relationships

and then solved by means of computational methods.

The process of translating a real-world situation into mathematical language
1s referred to as formulating the problem. An analyst must select equations
and inequalities that define permissible or feasible sets of values for all
the variables, ruling out those sets of values that are prohibited by the
constraints of the problem. The art of mode]1ng optimization problems plays a

major role in developing a well structured representation of the problem.

Linear programming deals with the problem of allocating limited resources

among competing activities in the best possible way. This problem of
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allocation can arise whenever one must select the level of certain activities
that must compete for certain scarce resources necessary to perform these
activities. The variety of situations to which this description applies is
diverse, ranging from the allocation of production faciTﬁties to products to
the solution of parlor games. However, the one common ingredient in each of
these many situations 1s the necessity for allocating resources to

activities.
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Shadow Prices

If an inequality 1s of the form

ax +ax +...+ax <b
11 2 2 nn i
an equation can be made by adding what is known as a slack (<) or surplus (>)

variable as follows

In Tinear programming, this necessity to convert to an equation has an
jmportant benefit. If the right-hand-side Cbt) s viewed as a resource, a
slack variable in the optimal solution at a positive value indicates

that the resource is not completely used.(19) Similarly a positive surplus
variable in the optimal solution suggests that there i1s room for the
left-hand-side to decrease. If the slack (surplus) variable is zero in the
optimal solution the constraint holds as an equality and is binding. It binds
down the objective function and prevents it from assuming a greater (lesser)

value.(22) Shadow prices are a means of understanding the affect of a binding

constraint.

Let's define the shadow price, pi, of the 1th resource b1, to be the
achievable rate of increase in the objective function per unit increase in

resource 1.(3) This definition may be formally stated as follows:

- 10 -
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where z* denotes the optimal value of the objective function, provided only
Increases 1in b1 are allowed. A realistic definition of the shadow price of

the original surplus requirement is the rate of change in z per unit of

decrease in this requirement.(1)

A geometric interpretation of shadow prices is 11lustrated through the

following f1gure:w

X1

X2

-1 -
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Note that increasing resource 1 does not alter the feasible region at all. R
Hence, the shadow price of resource 1 is 0. Also observe that although
constraint 1 4s redundant, i1ts presence does affect achievable gain in the
objective function resulting from increasing either resource 2 or resource 3.

That 1s, the shadow price for constraint 2 and/or 3 1s 1imited by the presence

of constraint 1.

In many applications involving linear programming problems, the shadow prices
are more important than the solution of the problem. They allow the model
user to determine whether certain changes in the optimal model requirements

might actually increase the objective function.

If primal degeneracy exists (primal degeneracy occurs when one or more of the
basic variables equals 0), the left- and right-hand-side derivatives of z with
respect to a resource may not be equal.(2) If the optimal primal solution is
nondegenerate, however, these two values will be the same. There are two
shadow prices then, for each resource or combinations of resources: ;os1t1ve
and negative.(1) Each one can be determined either by solving a much simpler
1inear program over the set of optimal dual solutions or equivalently, and

perhaps much more easily, by parametric programming. In addition, there is an

interval of positive length for which a given shadow price is valid.
It is of interest to know what information regarding shadow prices is provided

by commercial linear programming software packages. 1In order to ascertain the

correct shadow prices using MPSX (IBM's Mathematical Programming System), the

- 12 -
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parametric analysis option (PARARHS) must be employed for each constraint for
which RANGE has indicated the given shadow price may be valid. Hence, the

problem must be run twice; first using RANGE and then using PARARHS. (2)

As previously stated, shadow prices are not necessarily equal to dual
variables except in the case when the primal problem is nondegenerate. 1In all
cases, the 1th shadow price always equals the smallest value of the ith dual
variable in the set of optimal dual extreme point solutions.(3) The
widespread assumption that shadow prices and dual variables are identical may
lead practitioners to the erroneous conclusion that increasing the value of a
particular resource would be profitable (in some cases). This situation 1s
made worse by the fact that there are commercial software packages that assume

dual variables and shadow prices are synonymous.

- 13 -
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Sensitivity Analyses

One of the advantages of 1inear programming is the amount of other sensitivity
information that is available besides finding the optimal solution.
Sensitivity analysis of the solution (often referred to as post-optimal

analysis) permits the evaluation of the effect in changing a quantity.(19)

The study of how sensitive a given optimal solution is to various changes 1in
the input parameters is usually called sensitivity analysis or parametric
analysis. Sensitivity analysis, along with the investigation of how specific
changes in the input parameter affect the optimal solution is called

post-optimal analysis.

The general linear programming problem is to find non-neqgative values of n
variables which maximize a given linear function of the variables, subject to
m given linear constraints. It is presumed that the constants of the problem
are known with absolute precision and do not change with time.(20) However,
in many cases only estimates of these values are available, and the values may
have to be changed when better estimates are available. The values may also
change with time. Further, the optimal solution obtained may have to be

changed to satisfy secondary objectives such as customer good will etc...
Again, when a practical problem has been formulated and solved as a linear

programming problem, it 1s frequently the case that not all of the input

parameters are known exactly. Typically, some of these parameters have been

- 14 -
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estimated or calculated only approximately. Thus ft is important to know how
sensitive the optimal solution 1s to changes 1in such parameters. For example,
i1f 1t 1s known that a particular cj is accurate to within 15 per cent, then
we must also determine whetiier the computed optimal solution remains optimal
for all values of J in this range; without this additional information, 1t is

not all certain that the computed optimal solution is indeed the true optimal

solution to the actual problem.(8)

There are also many practical situations which arise in which a linear
prqgramm1ngamod91 is used periodically to find, for example, the optimal
production quantities for the next period. In such cases, a few changes in

the cost coefficients and/or the right-hand-sides are not uncommon.

Ariother type of modification in the linear programming model which sometimes
occurs is the addition of a new constraint or variable to the original

formulation; either because the original formulation was erroneous or because

the model situation has changed.

An important aspect, then, to many practical problems is a sensitivity
analysis 1in order to eva]uaté the consequences of a change in a constant or of
deviating from the optimal solution. The objective of post-optimality
analysis is to study the effect of discrete changes in coefficients of the
linear programming problem on the optimal solution.(23) Parametric linear
programming investigates behavior of the optimal solution as a result of
predetermined linear variations in the parameter of the problem. The purpose
of sensitivity analysis is to obtain new and informative results through a

minimal amount of additional computational effort.(8)

- 15 -
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Sensitivity analysis is performed to answer two basic questions:

1. What is the optimal solution when one of the constants of the problem

(either some cj, B1, or A1j) is changed?

> wWhen the value of one of the variables is changed by a given amount,
what changes are necessary in the values of the other variables for

the reduction in value of the objective function to be minimal?(20)

The study of the affect of changing the constants can result in a better
understanding of the problem by providing a keener insight into the
Timitations involved. It can help in planning to meet changing conditions,
and hence, result in a more profitable operation. When studying the cost
coefficients of variables in the optimal basis, one understands the worth of a

resource without changing optimality.(21)

What is the effect on the optimal solution when a set of given data of the
problem 1is changed? Remember, problems of post-optimality are concerned with
a discrete modification of the given data. That is, one of the following

occurs:.

1. b changes
2. ¢ changes
3. a Column of A 1s varied

4. a row of A is varied

_ 16 -

5577F-V2




5. a new constraint is added
6. a new variable is added
where: A = coefficient matrix

(
b = requirements vector

c cost vector

Parametric problems are concerned with these same six changes, however the
data changes vary in a continuous manner. The purpose of parametric
programming is to study the variation of the optimal program as a function of

the values of certain data.

For example, let's make b vary continuously as a linear function of a

parameter ©:

b =b +63¢§
0

where & and bd,are fixed vectors.

When 6 varies, the optimality criterion remains satisfied as long as the

present basis 1s maintained. There also exists a critical value 6 = e1

beyond which the problem ceases to be an optimal program. The question then

surfaces on what must be done when © passes the critical value & in

1

order to re-optimize the problem.

Let's start from an optimal basic program corresponding to the basis B0 and

the value eo = 0 of the parameter, and make 6 increase (decrease)

-1 -
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through positive (negative) values. The series of distinct values 6 ,

@, ... 6 of 6 and a series of bases B , B, ... B
2 p 1l 2

determined which have the following properties.(22)

are
P

§

1. Each bas‘i‘s--B1 s deduced from 81_1 by substituting a single
vector Aj1 for Aj1-1 1f e1 s determined by a unique
minimum and not more than one vector.

2. The basic solution x, associated with the basis B1 and the vector

B
bb *-ﬁﬁ is an optimal program for every value of @ taken on

segment 0, < 6 < 6

i 1+1

3. Each iteration of the preceding procedure is characterized by the
fact that e is given a finite increase and the dual algorithm is

applied for a fixed value of e.

Discussions of parametric analysis can be kept simple due to the fact a single
parameter is introduced at a time. When discussions of simultaneous variation
of many parameters occurs, critical points (i.e. 6 ) are replaced by

critical hyperplanes.

A summary then, of the four basic areas where sensitivity analyses are

performed are as follows.

1. The first focuses attention on the non-basic variables other than

slack or surplus variables. The question is, in the case of

- 18 -
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minimization, how much would the original cost coefficient of a
variable have to be lowered in order for 1t to enter the optimal

solution?(19)

2. Concerning slack variables, the relative cost factor often referred
to as the shadow price, is a measure of the value of one additional
unit of the right-hand-side. 1In terms of a resource, the shadow

price is the value of one additional unit of that resource.

3. Another type of sensitivity analysis centers on the cost coefficient
. )
of variables in the optimal basis. What is the range of values that

a particular cost coefficient can take on without affecting the

optimal solution?

4. A fourth sensitivity that can be performed addresses the constants on
the right-hand-side. What is the range permissible in a constant

without changing the variables in the optimal solution?(19)

It is not necessary to solve a modified problem from the beginning to obtain
the desired sensitivity information; instead the information can be found
performing relatively few computations using data in the optimal tableau to

the originally solved problem.

Suppose we have solved the linear programming problem; maximize z = cX,
subject to Ax = b, x > 0, and have obtained an optimal basic feasible

If we denote by ¢

solution, X the cost vector corresponding to XB’

B’ B
then the current values of Zj'cj are

- 19 -
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'z, - ¢C Cp) J=1,2, ...m

R I 8Yy ¢y

where the yJ also correspond to the current optimal solution.

- C

Now, suppose we wish to change one of the Cj’ say ¢, to a new value,

Ck’ where

Since a change in the objective function in no way alters the set of feasible

solutions, the solution x, will remain optimal provided that the new values

B
of Zj" qj are still non-negative.

If ck corresponds to a variable which is currently nonbasic, then it is

obvious from previous equation that only-zk - € will be changed, all

- has not been changed) and

other z will remain unchanged (since c

375

hence non-negative. Moreover

B

N
!

O
[

o

Cg¥y - (ck f-6k)

(Cg¥y - S - §

(z*

K~ k) - 8

Thus, z, - ¢, >0 1f § < (z*

Kk~ %k 7. K - ¢

k = Sk

Accordingly, if the cost C\ of any nonbasic variable X, is increased by an

amount up to (z*k - ck), the current optimal solution will remain opt1ma1.'

- 20 -

5577F-V2




If such a cost ¢, 1s increased by more than the quantity (z*k - ck) then

k
the resulting Z, = € will become negative, and a few more simplex
iterations may be needed to determine the new optimal solution. Note that the
cost of any nonbasic variable can be decreased without bound, without
affecting the optimality of X*.
Consider now the case in which we wish to change the cost;ck‘correspond1ng

to a basic variable X - Suppose that Xy is the pth basic variable

x* . Let

37 " %Y T
= Cpy¥yy -~
= Sai¥1y " py T
=Z*j +-6kypj - Cj
hence,
2y =0y = (2 - cq) + 8y, 1=k

(zk - € = 0 because x 1s basic). In order that all A 0 1t is

necessary that

< (z*, - ¢

—akypj " j)

- 21 -
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Note that ék must sat1§fy all of the;#nequa11t1es simultaneously. For

each ypj > 0 we have that

§ > - (z*

k - C) / y

J pJ

And hence_gk;>_max (z*j - Cj) / -ypj ypi >0

Similarly, we obtain

§, < mir L I y.. <0
e < mn (2% - e 1y Yoy ©°F
Thus, if 8, 1ies in the range determined by the previous two equations,
then'x*B remains optimal. If 8, falls outside this range, at least one
Zj‘— F will be negative.
Maximize Z = CX
Ax = Db
x >0

Suppose we wish to modify the requirements vector b. If we wish to change the
ith component of b by an amoant’f1 (positive or negative), then

b1 = b1 + f1, i=1,2, ..., m; or, in vector notation, we have

b=>b+ f. Now{ we must recompute the values of the basic variables

corresponding to the vectors in the current basic feasible solution. If we

denote the current basis matrix by B, then

- 22 -
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=B (b + f)
=B™'b + B7'f
= X¥g + B~ f

Hence, depending on B'lf, the new basic solution may or may not be
feasible. However, the z*j - cj are unaffected by a change in the

requirements vector and thereforet1f;zB_1s feasible, 1t 1s also optimal.(8)

When it is necessary to change one or more of the elements of the coefficient
matrix A, the situation becomes much more complicated than making changes in ¢
or b. This is part1cu1arly true 1f we wish to change an element from a column
of A which is basic in the optimal solution, since in this case the optimal

basis matrix must be recomputed.

- 23 -
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Linear Programming Problems and Data Uncertainty

The general 1inear programming problem is deterministic. The model 1s
formulated and solved with a given set of parameters. This general assumption
makes 1inear programming an extremely easy techn1que to use. However, this
assumption is also the primary problem in the practical application of linear
programming. The true values of model parameters are usually not known until
after the decision based upon the 1inear programming solution is actually
implemented. Often, all or some of the parameters may be random variables, -

which are influenced by random events in the decision environment.

Sensitivity analyses and parametric programming can be used for examining the
effects of changes in model parameters. The major disadvantage of these
methods is their inability to take into account the randomness of the

parameters as governed by specific probability distributions.

There have been many different approaches suggested for formulating the linear
programming problems under uncertainty. Basically, two approaches to
formulating these 1inear programming problems under uncertainty have shown
some merits.(15) The first approach, which is generally referred to as
stochastic programming, attempts to solve the problem through making one or
more decisions by selecting model parameters at different points in time.

Although this approach sounds very logical, its practical application is

_ 24 -
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enormously complex, especially when the model is larger and involves a number
of time periods. Characteristically, stochastic prograd%1ng problems evolve
into nonlinear problems as several of the parameters become random. This
attribute directly effects the difficulty of'solv1ng the problem.(24) The
second approach, called chance-constrained programming, involves the
formu]at1on.of a deterministically equivalent model to the problem under

uncertainty.(15)

Stochastic Programming solves problems under uncertainty that involves making
two or more decisions at different points in time with the condition that at
least one of the later decisions depends not only on an earlier decision but
also on the value of random parameters observed in the time intervening
between the two decisions.(24) After the random event occurs over time, the
parameters can be revised according to decision rules to account for the

resolved uncertainties. The following general Stochastic Programming

formulation 1s as follows.(15)

Minimize Z = £ E(CJ)XJ + TP (quxqj)

J q q
3Sﬂbjg¢tﬂto
k
Poagyky = Py I PRPPPR:
} =1
K m
X ) X ., =
R IR I 3q13%q3 = P
j=1 j=K+]

\ - 25 -
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1, ..., K<mn) = the fixed levels of X

Where Xj (]

X 3 (J = K+1, ..., M) = the Tevels of X after .all random
q h values are known

O
)

a possible set of values for Cj, A1j’ and b1
P, = probability of -occurrence

The primary difficulty in using this approach is related to the extremely
large model that results, where additional variables and constraints are
necessary for proper formulation. These additions make the problem more
complex, resulting in a large incremental amount of compatat1on. This
drawback reduces the pragmatic application of the stochastic programming model

to real-world situations.(23)

_ 26 -
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A nonsequential approach to stochastic programming is a one-stage technique
that does not allow for intermediate revisions in the model formulation as
previously described. One method used in this approach is the expected value,
which transforms the original nonlinear, probabilistic problem into a
deterministic linear programming model. Essentially the expected value is

used in place of a random parameter and might be a more realistic value than

the mean value approach.(15)

Chance-constrained programm1ng, a special approach to stochastic programming,
was pioneered and later extended by Charnes and Cooper.(7) This approach 1is
concerned with selecting certain random variables as functions of random
variables with known distributions. Constraints on these variables must be

maintained at prescribed levels of probability.

The primary purpose of the chance-constrained method is to reduce the problem
of planning in 1ight of an uncertain future.(7) In deve10p1ng the
chance—con;tra1ned stochastic model, a deterministic equivalence to the

original stochastic problem is derived.

K
Minimize Z = ¢ E (C.)X,
3=
Subject to
K
X d X = b 1 = ], ’ g §
j =1 i1y ) i
K
P[Z a1J xj < bﬁ] > 1-«1 1 = g+, , M
J =1
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Where . -¢1'=’r1sk level for constraint 4
. ij and b1 are random variables

« A1l parameters are normally distributed with known means

and variances

The equivalent model, while nonlinear, can be approximated using separable
programming techniques. The only information necessary for each random
variable b1 1s the (1-«1) fractile for the unconditional distribution of

the b, value. The ability of chance-constrained programming methods to

1
handle larger problems is an advantage over other existing stochastic

programm1ng techniques.

The principal weakness of the chance-constrained model 1is that 1t only
indirectly evaluates the economic consequences of violating a constraint. 1In
most s1tuat1ons; specifying the acceptable values for (1-«1) should be

part of the optimization problem. Therefore, when faced with a choice between
the stothas£1c-programm1ng techniques and chance-constrained programming, you
will have to compare the serious limitation on the problem size against the

restricted meaning of optimality.(15)
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Consider the chance-constrained problem:

Maximize Z = 5x1 + 6X2 + 3X

3
Subject to
P{fa X +a X +a X <8}>0.95
1l 1 12 2 13 3 ™ A
P{5X + X +6X <b}>0.10
b § 2 3 2

with a11'Xj;gV0. Suppose that the a1j's are independent, normally

distributed random variables with the following means and variances:

Efa }=1 Efa_}=3 Efa }=9

1 53 S

]
-+

var {a11} = 25 var {alz} =16 var {ala}

The parameter b2 is normally distributed with mean 7 and variance 9. From

standard normal tables,

K =K =~ =1.645 K =K = 1.285
<2 :

«1 «OS <10

For the first constraint the equivalent deterministic constraint is given by

/

s
-~
oy

X+ 3X_ + 9X + 1.645 (25X% + 16X> + 4X*)°°% < 8
2 3 b § 2 3

) §

and for the second constraint

- 29 -

55T7F-V2




5K + X +6X <7+ 1.285 (3) = 10.855
b § 2 3
If we let

2

y = 25%% + 16X° + 4X
S § 2 3
the complete problem then becomes:

Max1m1ze?2;=-sx; + 6x1 + 3X

3
Subject to

X + 3X2 + 9X3 + 1.645y < 8

1l

25%% + 16X% + 4x? - y* = 0
2 2 3

5K+ X+ 6X < 10.855
1 2 3

Ko Xy X ¥y 20
which can be solved by separable programming. However, the additional
variables and constraints make the problem much more complex (problem size and
solving technique), resulting in a large incremental amount of computation.
The realistic application of stochastic programming techniques, including
chance-constrained, breaks down when the size of the original formulation 1is

large or when the final formulation is nonlinear.
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CHAPTER III
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THE MODEL INPUTS AND THEIR VARIABILITIES
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Customer Demand Variability

Demands are generally projected through the use of some forecasting tool
From a theoretical viewpoint, forecasters use accep?gd methodology to
decompose time series into components, classify trends, and produce a
forecast. Often aggregate demands can be reasonably accurate; however
forecasts at the customer level may be inadequate. Manual adjustments by
knowledgable personnel are sometimes not even enough. Because of the
knowledge of events in the field, their modifications can result in improved
forecast accuracy, although it is often impossible for these individuals to

scrutinize each of the many many forecasts.

Exception reporting which 1deﬁ%1f1es customers whose‘forecasts differ
significantly from historic 1nformat1oﬁ can be used to help narrow that
information that 1s necessary to review. while exception reporting does
recognize large changes in predicted shipments, it does not relate directly to
the accuracy of a customer's forecast. However, exception reporting can be
important when identifying demand pattern shifts that might cause large

forecast errors.

There are several potential forecasting procedures. To begin with suppose the
under]yﬁng process is relatively stable and there exists little dependence in
the estimate from period to perﬁdd. Then, the "last value" is an example of
an estimator. However, i1t has the disadvantage of being imprecise and 1s
worth considering only if the conditional distribution has a very small
variance or the process is changing so rapidly that anything before time t is

almost irrelevant or may even be misleading.
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An average 1s another estimator. This 1s an excellent estimate if the process
Is entirely stable. However, one does not want to use data that are too old
because at minimum, occasional demand shifts are to be expected. A
moving-average estimate uses only the last n periods. This estimator is
easily updated from period to period; the first observation is dropped and the
last one added. The moving-average estimator combines the advantages that it
uses only recent history and represents multiple observations. A disadvantage
of this procedure is that it places as much weight upon the first data item as
on the last. Intuitively one would expect more weight on the most recent

observation.

Exponential smoothing is yet another estimating technique. It represents a
recursive relationship and can be expressed as E.(xt) = «xt + «(]-x)

(Xy_,) + = (1-=)*(X,_ ). In this form it becomes evident that

exponential smoothing gives more weight to xt and decreasing weights to
earlier observations. An important drawback of exponential smoothing 1s that
it lags behind a continuing trend. If the mean is increasing steadily, then
the forecast will be several periods behind. Another disadvantage is the
problem of choosing an appropriate smoothing constant «. If « is chosen

to be too small, response to change is slow. If « is chosen to be too

large, response to change is fast.

Many of the forementioned standard forecasting techniques are employed in many
different situations to help in the prediction of demands. In addition, most
tools incorporate the concept of seasonality. Seasonality can be traced

through the decompo§1tﬁon of historical data and/or smoothing techniques.
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The following documents the flow of information when seasonality is tracked

through decomposition.

Historic Demand
De-Seasonalize

Categorize Demand Pattern

| I
Constant Linear Quadratic
e, €. R 2 e
Xg = b+t Xy = b+ bt + 't Xg = b+ b t + 'biT + 't

fﬂrecaStT”'ff'ﬂﬂ"l

Historic data is put into a forecasting system and deseasonalized. The
deseasonalized data is analyzed and a trend factor is jsolated and
categorized. After the trend factor is calculated the adjusted data is

exponentially smoothed.

An a]ternat1ve to decomposing the dafg into its seasonal and trend components
is to perform the estimates of these factors simultaneously. An added
advantage is that the models' sensitivity to changes in demand can be altered

by simply changing smoothing factors.
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Historic Demand

« Calculate Smooth Average
« Calculate Seasonal Factor

« Calculate Trend

ft = (Ug + by) Feoy, (1inear trend)
Ut = Smoothed Average
by = Trend

Fy_,, = Seasonal Factor

A decomposition model often ylelds a more accurate fit of the historical time
series than elementary smoothing methods. However, the computer resources

needed to perform the necessary calculations increases both the time and cost

of producing a forecast.

Smoothing methods are used extensively because of their relative simplicity
and low cost. The greater number of smoothing factors and the ability to
seasonalize add to the complexity of smoothing methods. The Winters
forecasting algorithm, for example, has the ability to recognize seasonality

and contains three smoothing factors. So, not all smoothing methods are as

simple as first explained.

Once a system of producing forecasts has been developed, there should be a

monitoring technique to indicate when a change in demand pattern is causing

forecast errors. When a monitoring method indicates that the forecast i1s out
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of control, the cause for change should be investigated. If it is found that
the new demand pattern is likely to continue, then the forecasts can be

- modified to reflect this change.

Trigg's method 3@ monitoring, proposed in 1964, was an improvement on a method
proposed by Brown in 1962. Because the method is based on the calculation of

the exponentionally weighted average of the error it is sometimes referred to

as the "Smoothed Error Method," but is more generally known in this country by

its author's name.(16)

The Trigg monitoring system utilizes a tracking signal whose value indicates,
with degrees of statistical confidence, the failure of a forecasting system
due to a change in demand pattern. The sign of the tracking signal indicates
whether the forecast is higher or lower than the actual demands. The tracking
signal is also an ideal smoothing factor, because it becomes larger as the
data becomes more volatile and decreases when the data is more stable. A

| large value gives more weight to recent data, a smaller value will cause more

weight to be assoctated with older data.

Estimating customer demand levels 1is paramount in producing good output from a
distribution linear programming model. Often demand levels are the biggest
set of data going into the model and also the most difficult to predict. Poor
estimation of demand levels can at minimum suggest misleading results. It is
necessary to understand demands well enough to put a range around the estimate
and also suggest a confidence in the estimate. This confidence interval will

establish a set of inputs that can be used to help calculate final results.
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Production Capacity Variability

Capacity constraints are normally of known quantities. That is, the
distribution system generally has a set of facilities with a given output at
each location, and even maintenance work and other scheduled shutdowns at
specific facilities can be incorporated into a L.P. system for planning
purposes. Unexpected shutdowns, however, can force significant changes to a
distribution plan due to the rather large percent of the total system capacity
a single facility represents. If a system is small enough, shutdown of a
single facility can lead to catastrophic variations to production levels at

neighboring facilities.

In addition to considering loss of capacity, increases in product availability
will also shift distribution patterns. Increased production might come in the
way of efficiency improvements or new plant construction. Again capacity
increases are planned and therefore can be incorporated in the distribution
system. Distribution patterns will change significantly as new facilities are
added, but because efficiency improvements are less dramatic increases,
distribution shifts caused by these improvements are often explained. The

greater the capacity increase the greater the amount of distribution pattern

shifts.

Another less obvious situation that can effect.L.P. results is the plant
operation. Each facility in a distribution system has its own operation
mode(s). Product interaction, minimum plant turndown, available raw material,
etc.. are all factors which can put some restrictions on the obvious

constraint of total plant capacity. These peripheral factors must be
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evaluated for applicability to the situation in question. The fewer the
number of extra factors the less complicated the L.P. structure is.
Conversely, the greater number of extra factors that can be incorporated (to a

1imited extent) the more accurate the final results.

Being able to understand the time frame of capacity changes (increases and
decreases) 1s necessary for the achievement of good results. This 1s a much
different situation than estimating other parameters. For example, demand
variability needs to be considered at an individua) input level. The time
frame is important for the estimate of an overall demand, but even more
important 1s recognizing the inherent variabil1ity of the forecast at a

specific period of time.

Capacity constraint variability (from month to month) need not be heavily
considered as a problem in defining distribution shifts. If total capacity
constraints are reached as demand increases, distribution shifts can be
numerous but explainable. Although capacity constraint variability need not
be considered, capacity additions and shutdowns can have monumental effects on
a system's distribution pattern. Being able to foresee a shutdown, or in the
case of preventive maintenance plan for 1t, is a most important criterion in
understanding the effects of capacity constraints upon final distribution

patterns.
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Distribution Requirement Variability

Many distribution L.P. systems have the capacity to consider both vehicle and
driver constraints. For short-term planning (a monthly operational plan;
plant shutdown due to equipment failure) using the distribution requirements
as constraints is important. For longer term planning (strategic operations)
the distribution requirements can be used to suggest the number of vehicles

and drivers that will be necessary to properly operate the system over time.

The number of vehicles and drivers available for use 1s a known quantity.

This quantity changes upon vehicle purchases, equipment problems, hiring of
new drivers, contract disputes, etc... Generally these variations are known
for short-term considerations. (Equipment failures would be a situation where
an operation plan could be effected in the short term). Although these
constraint availabilities are known, they can have a large effect upon L.P.
results. For example, if a facility has a 1imited number of vehicles for
distribution, its capacity will never be a concern, and for this reason it is
important for a system to have an adequate supply of vehicles. Again, by
analyzing results of long-term studies, the vehicle availability/production

capacity balance should be kept controlled.

Understanding the effect of the variability of the distribution constraints on
final L.P. results is important; but it is critical to recognize this
variabi1ity is often full increments of vehicles or drivers. A 1o$s of a
vehicle at a facility already constrained by the number of vehicles might

cause a rather large change to the operating system. Neighboring facilities
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will have to distribute the product not able to be distributed due to the loss
of the vehicle. If all neighboring facilities are already constrained a
ripple effect can take place. The neighborirg facilities will pick up
accounts from the facility which lost a vehicle. They in turn will have to
drop certain deliveries to keep within constraints. This effect will continue

until unconstrained facilities are reached.

Vehicle/driver constraints can have major effects on L.P. results. However,
1f the results are to be interpreted for long term situations, distribution
constraints need not be employed but rather recorded for support of vehicle
purchases, hiring of drivers, and vehicle/driver location transfers.//:t s
necessary to recognize the major effects distribution constraints can have on
an L.P. system, but it is equally important to recognize that these

constraints may not need to be employed for given situations (specifically

Tong-term planning).
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Distribution/Product Costs

Input costs are the parameters that drive the distribution L.P. model, and
since linear programming models minimize costs, the input costs obviously have
a direct effect on model results. For this reason alone i1t is necessary to
detail the input costs on an individual basis, as well as on how each cost
compares with another. The relative cost of distributing the product as
compared with producing the product must also be analyzed and correctly
represented. If 1t is not, the system results will favor either the
minimization of distribution costs or the minimization of production costs.

The system should reflect the minimization of the total (distribution and

production) system costs.

Potential for variability of and lack of confidence in the input cost
parameters need to be addressed due to their direct effects upon results.
Distribution cost parameters have particular potential for variability because
of the many individual input costs that represenf the total distribution
charge. Vehicles cost components, for example, might be fuel, maintenance,
 depreciation, etc.. Labor charges for drivers must also be considered with
the vehicle components to represent a total distribution charge. Uncertainty
in each component can compound to a rather large variability in the total

distribution cost parameter.
The production cost parameters’on the surface would seem to have less

potential for uncertainty. However, the components that represent production

costs are utility costs, labor costs, inventory charges, etc... and having
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this many possible components represents potential for variability. Utility
and labor costs are based upon contracts, therefore these components are
relatively straight forward with respect to their effect upon total production
costs. However, a complicated contract or inventory charge are components
which may inject variability into the production cost parameter. The number
of components which put variability into the final production cost parameter
is less than the number which effect distribution costs. However, some of the
production cost components can be very complicated, more complicated than any

individual distribution cost component.

There exists a reasonable possibility for either production costs or
distribution costs to show variability. A1l costs and their components must
be scrutinized. A good representation of each cost component is paramount in
the attainment of good results. Good representation might dictate parameters
with 1ittle variability, or it might dictate a parameter with a 1arge.bu{
understandable variability. Confidence in the value of the parameter 1tS¢Tf
and an understanding in the possible variability in the value must be
grasped. A thorough knowledge of each is the means to assure the model is

driven accurately.
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CHAPTER IV
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AN IMPROVED PARAMETRIC PROGRAMMING METHODOLOGY
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Parametric Proqramming

Production capacities, vehicle constraints, and demard can all be monitored
through parametric analyses of the right-hand-sides (in MPSX, this is the
PARARHS option). Demand rows might also be monitored by understanding the

range of demand values where the shadow prices will hold (RANGE option).

PARARHS 1s used post-optimally to perform parametric programming on the
right-hand-sides. From any linear programming problem a series of related
problems can be defined by replacing the right-hand-side by the original
right-hand-side plus a multiple of a change column. This multiple is the

parameter. Thus each value of the parameter defines a different related L.P.

problem.

The ‘function of PARARHS is to scan a whole series of solutions to such
problems varying the parameter from zero up to a defined maximum. The
parameter is gradually increased and the solution is kept optimal and feasible

for values of the parameter by changing the basis when necessary.

RANGE is used post-optimally to generate and put out an analysis of the

current solution. The analysis includes:
1. The effects of cost changes on optimum activity levels.

2 The cost of changing a column (row) activity from an optimum level and

the activity range for which this cost is valid.

_ 44 -

5517F-V2




This type of information is important because it indicates:
1. How much the activity will vary when a discount 1s made on the variable.
2. How a problem may be adjusted to increase profits or reduce costs.

As just discussed, RANGE and PARARHS are important options of MPSX to obtain
sensitivity information. The RANGE option gives information concerning the
range of values over which a shadow price holds true. However, this range is
true only if no other parameter is changed. Therefore, to discuss variability
of input parameters PARARHS (or PARACOL or PARARIM) is the more important MPSX
Jﬁt1on. A methodology of using parametric programming to understand the
variability of constraints and how the variability effects final results s

the concept to be detailed.
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Parametric Analyses to Explain Forecast Variability

modified forecast of customer 1

- 4
=
®
ﬂ
®
o
]

modified total forecast

o
"

original forecast of customer 1

—do
1

original total forecast

—to
W

o = constant necessary to obtain the stated difference of

(£ by, - b

«, = coefficient for customer 1 to assign a necessary part of

the constant o.

« © = ‘the increase (decrease) in the forecast of customer 1.
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If one assumes that the per cent increase (decrease) in each customer forecast

is equivalent to its initial ratio of forecast to total forecast, then,

b, = b, + b, /2 51 (6,)
where o, = change from the original total forecast
Therefore,

@ = b, /2 b,

because the ratio 51/2 b1 represents the per cent of the total forecast that is

represented by customer 1.

However, this « does not allow for the possibility of forecast

uncertainty at the customer level.

Assume that a normal distribution holds at the customer level, then

b

= By o+ (RN (Sy)

and,

£ b t b

" L+ (RN ()

where
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RN, = standard normal random variable with X = 0, S =1
S1 - standard deviation for the ith customer distribution
Finally,
“y = by _ by o+ (RNy) (54
by £ b, + Z((RNy)  (S4))

The previous descriptions reflect the methodology used to help explain
variability in both the total forecast (0) and the individual forecast

(a1). An example follows to further explain the methodology.

Example:

Forecasts are calculated for inputs to a distribution L.P. model. We believe
that a normal curve represents the uncertainty of the total forecast within

+5%, and of the individual forecasts within #10%. In both instances we assume

95% confidence 1imits (i.e. *20).

1. First let's calculate =, for each customer.

B, + (RN,) (Sy)

* I b, + Z((RN,) (S,))
where B1 = 10
X b1 = 100
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RN1 = 1.56 (1.56 Standard deviations above average)
Sl = (o) (51)

= (.05) (10)

= .5

One can assume that

L ((RN1) (51)) =0

because of the important properties of the normal distribution. Its
physical appearance is that of a symmetrical bell-shaped curve extending
infinitely far in both positive and negative directions. And the
sampling distribution of the means of random samples will be

approximately normal if the sample size is sufficiently large.

Then,

o 10 + (1.56) (.5)
¥ 100 + 0

0.1078

2. Now, let's calculate N values of © to be used for the L.P. runs;

[

(t._ .0 (Sy)

{ 1-1/2“

d

—

N =

4

Where t = percentile of the student t distribution

the confidence interval will be of length 2d; the precision

Q.
1

of the estimate is +d.
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Assume: SN, has been previously calculated from test runs.
Note: The sample size N may need to be reassessed when:

1. The variation in the total forecast changes

2. The variation of an individual forecast changes

significantly.
Where RNJ - standard normal random variable
Sj . standard deviation for the total forecast distribution
y = 1, 2, ..., N

3. Run the necessary L.P. cases. Have the L.P. calculate N sets of customer

laid-in costs using the «., values from Step 1 and the ej* values from

Step 2.

4. Use the results from Step 3 to estimate the value for the laid-in costs
(Pa), as well as to explain their variability. We can now make a
statement about the laid-in cost for customer i based upon forecast
uncertainty: "With 95% confidence, the values of the laid-in costs for
customer i range from P_ to P . The most 1ikely outcome of

2S +2S

the cost for customer 1 is Po.“
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Aftér obtaining the parameters from the previous statement we can draw a

normal curve and present final results graphically:

-2S  +28
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Calculate =,

Represents forecast variability
at the customer level.

Calculate ej*

Represents forecast variability
of the total forecast.

Calculate P1j*

N sets of P

using «,, and
ej*

1)*

Establish confidence 1imits for
P1zj*'




Parametric Analyses to Explain Production Capacity Variability and

Distribution Constraint Variability

§b1 = 51 + “1 ef
where b1 - modified capacity of facility 1
z b1 = modified system capacity
51 = original capacity of facility 1
X 51 = original system capacity
© = constant necessary to obtain the stated difference of
x, = coefficient for facility 1 to assigﬁ-afnecessawy-part of
the constant o.
<y O = the increase (decrease) in the forecast of facility 1.
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If one is to step back and ask the question "4s i1t necessary to use parametric
analyses to repfesent capacity changes when determining demand point shadow
prices?", the answer will probably be "no". A simple rerun of the L.P. model
with the capacity change (plant outage, new faci1ity) considered will
accomplish the same goal. Again, when establishing a base for customer prices
one needs to consider the average product availability over time. From

historical data, calculate average uptime (capacity) for each facility. If

there is a large variability, it may become necessary to use parametric

analyses.

« will represent individual facility variability.

3 will represent global variability.

The same considerations hold for distribution constraints. Review of historic

data should define variability in both driver and vehicle availability. If

the variability seems high enough to address:

« will represent terminal 1 distribution constraint
variability.

0 will represent global distribution constraint variability.

1f variability is addressed for either production capacity or distribution

constraints, steps similar to those for addressing variability in forecast

accuracy will be followed.
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Parametric Analysis and Cost Coefficients

Cost coefficients are often input into a L.P. system on a per product unit
bas1s.' However, the costs that make up the coefficients are often not
initially in the same per unit basis, and the variations that might be
recognized in the costs are also not in this per unit basis. For example,
wage rates, a part of the cost per unit of delivering a product, would
probably vary on a per hour basis not a per unit. Fuel cost variability
happens on a per mile base, not a per product unit. The point is that it

becomes very difficult to identify values of « and © for distribution cost

coefficients.

Product cost coefficients and their variability can be more easily defined and
represented by the parametric programming methodology. Most corporations are
able to identify a cost per unit for producing a product. Although, red
utilities, labor, and raw materials (components of the final product cost
coefficients) are not initially examined on a per unit basis. Again, it

becomes difficult to use parametric analyses to represent the component

variabilities.

Cost parameters are generally more stable than some of the constraint
parameters. If contracts are renegotiated, fuel costs change, etc... then
L.P. runs must be redone to reflect the change. At times the change to
results will be obvious (only a change in total operating cost). When the

cost changes are global, there will be no effect to the distribution’

patterns.
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Creating Random Alpha Values Using SAS Software

DATA A1(DROP=GNUM); INFILE A MISSOVER;
INPUT @1 GROUP 4.
@16 VOLU 10.17;

RANDOM = NORMAL(1961273);

PERCNT = .10; .

STDDEV = PERCNT/2;

APROD1 = RANDOM *(STDDEV * VOLU);
SKEY = 1;

GNUM + 1;

FILE B; PUT @1 GROUP 4. GNUM 3.;

PROC SORT; BY GROUP;

DATA A2; INFILE B MISSOVER:
INPUT @1 GROUP 4. GNUM $CHAR3.;
IF SUBSTR(GNUM,1,1)=" ' THEN SUBSTR(GNUM,1,1)='0";
IF SUBSTR(GNUM,2,1)=" "' THEN SUBSTR(GNUM,2,1)="'0";
IF SUBSTR(GNUM,3,1)=" ' THEN SUBSTR(GNUM,3,1)="0";

PROC SORT; BY GROUP;

DATA A;
MERGE A1 AZ2;
BY GROUP;

PROC MEANS NOPRINT;

ID SKEY;
VAR VOLU APRODI;

OUTPUT OUT=B SUM=SVOL APRODZ2;

DATA C;
MERGE A(IN=A) B(IN=B); BY SKEY;
IF A;

DATA C; SET C;
ALPHA = (VOLU + APROD1) / (SVOL + APROD2) ;

PROC PRINT; SUM VOLU ;

DATA _NULL_; SET C; FILE C; |
PROD=1: IF GROUP>=3000 THEN PRQOD=2;

PUT @5 'ALPHA'
@15 'DEM' PROD 1. GNUM $3.

@25 ALPHA 10.8
@79 '46' ;
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PROC MEANS DATA=C NOPRINT;

VAR RANDOM;

QUTPUT OUT=D SUM=RSUM MEAN=RMEAN;
PROC PRINT;

PROC MEANS DATA=C NOPRINT;
VAR ALPHA;
QUTPUT OUT=D SUM=ASUM MEAN=AMEAN;

PROC PRINT;
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Improved Parametric Programming and Stochastic Programming

Stochastic programming techniques stipulate that with a probability of
(1-«1) we want to be able to sell all the output produced (or, we must
deliver at least 61 to customer 1). We are predicting, with a degree of
certainty, that a specified occurrence must happen. This approach is

important, especially when we wish to suggest that high profit levels are

essential, but secondary to the necessity of selling all our product.

However, the inherent variability in the various inputs is not specifically
addressed. Inherent variability refers to the individual as well as the
overall input variabilities. For example, uncertainty associated with product
demand must be addressed at the customer level to help describe our lack of
knowledge concerning individual needs and at the product level to describe our
inability to perfectly forecast total system-wide demand. Even those
variabilities that are being considered by Stochastic Programming are often
not 1inearly represented, forcing the use of separable or linear fractional

programming techniques.

The Improved Parametric Programming (IPP) methodology addresses 3 basic
concerns that are inherent problems with stochastic programming techniques.

The improved parametric methodology:

1. attempts to address the inherent variability of inputs on both an

individual and overall basis;

2. uses parametric programming approaches available in most 1inear

programming software packages; and
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3. derives final results in a reasonable amount of additional computing time

and expense.

IPP results compare .favorably with results achieved using Stochastic
Programming. Refer to the appendix for a table of test results. Tests were
performed on a distribution 1inear programming system where Stochastic
Programming techniques were used to describe inherent input variability. When
RHS variability is addressed, results are equivalent and IPP actually becomes
more effect1ve as additional cases are run. What is important is that for
equivalent computing charges more cases can be run under the IPP environment
and hence better results for an equal expense. As the initial problem grows
in size (rows and columns) the cost savings using IPP over stochastic

programming widens.

Computing

ki\\\\~\IPP

—_— —

Problem Size

wWhen cost coefficients' and allocation coefficients' variabilities were
tested, results were mixed. When qUadrat1c tendencies were observed,

stochastic programming combined with linear fractional programming techniques
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displayed obvious advantages. However, the computing time to address the
quadratic problems were extremely large; even to the point that the problems
were not permitted to finish due to the excessive charges. Although
stochastic programming and linear fractional techniques might effectively
describe some variability, excessive costs from computing resources make it an
unacceptable approach. IPP may not fully describe the variability in either

C, or a1j (due to nonlinearity), but can relate important tendencies not

J

shown by a single L.P. execution.

PROS CONS
Improved « Deterministic « Forces linear
Parametric representation when
Methodology « Linear Representation considering cost
coefficients or
« Uses Parametric Program- allocation coefficients

ming procedures available
in most linear programming + A large number of runs

software packages are necessary to
correctly represent the
e« W11 derive results similar input variabilities.

to proven techniques 1in
most circumstances

. Improved information due
to the ability to address
both overall and individual

data uncertainties

simultaneously
Stochastic e« Deterministic - 0Often a nonlinear
Programming (quadratic) representa-
« Describes variability tion and must be solved
of cost coefficients, using separable or
allocation coefficients, 1inear fractional
and right hand sides programming techniques

« Can add a large number
of rows and columns to
the original problem
which suggests a large
increase in computing
time and costs.

« A large number of runs

are necessary to

correctly represent the
6 input variabilities.
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Demand Variations

4
A
3
shadow
prices
2
1

forecasts
(time )

Results from test data show that when studying demand variations, shadow

prices plotted versus'the forecast range can follow any of four 1ines, or some
combination of them. That part of the cunction which is increasing represents
a constrained system. As forecasts increase, the system must incorporate the

extra pull for product and sacrifice total system cost and individual shadow

prices.

_ 63 -

55T77F-V2




Curve 1 represents an unconsirained system. For the expected uncertainty
there is no system constraint which effects final results. In this situation,
over the range of forecast values for customer 1 neither distribution nor
prnduct1on constraints have any effect upon the distribution pattern. Curve 2
represents a constrained system. The constraint that forces results at the
lower forecast also effects results at the upper forecast. Curve 4 also
represents;a¢constra1ned system. However, the constraint that causes the
initial effect is overridden by a second constraint at the point where the
break in the slope occurs. For example, vehicle availability might cause the
1nitial increasing function until plant capacity 1is reached. The capacity
constraint takes effect at the slope break. Now the capacity constraint
becomes the 1imiting constraint. Curve 3 represents a pattern similar to that
of Curve 4. The difference 1is that for some initial period there is no
constraint 1imitation. As a constraint is reached the slope break occurs and

the function changes course.
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Constraint Changes

shadow
prices

.b
constraint availability

Constraint (product capacity, vehicles, and drivers) variability tends to be
discrete changes rather than a distribution. Production increases, plant
shutdowns, vehicle purchases, etc. all represent these discrete changes.
Results often show dramatic changes when the constraint variation occurred.

Test cases were run assuming a variability distr1but1oﬁ to better understand

effects upon final results.

Curve 1 represents a L.P. system where changes to constraints have no effect.
Because a terminal was not yet constrained by vehicle numbers, the loss of one

vehicle due to mechanical failure has no effect. A vehicle presently not
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utilized 1s put into operation. If a facility has not yet reached 1its
capacity, efficiency improvements are irrelevant. Making more product

available will not change any distribution patterns.

Curve 2 demonstrates the effect cbnstra1nts can have on results. The curve
has a slope that represents an increase in the shadow price as a constraint
becomes more 1imiting. This might be the per cent loss of capacity for a

month. The longer a facility is to be shutdown for the planning period, the

greater the loss of capacity, and the more 1imiting the constraint.

A1 NS S i 1 Ty SIS T T

shadow
prices

time
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whether one was examining forecast variability or demand increase over time,
the effects upon shadow prices were consistent. However, because production
and distribution constraint changes tend to be more abrupt when considered

over time, the plotted function tended to show some stair-step effects.

The following explanation refers to Curve 3. At the point where Part A of the
curve meets Part B, and equivalently where Part B meets Part C, the stair-step
effect is prevalent. The downward step might represent an addition of a new
facility or the pufchase of a vehicle. The immediate relaxation of a
constraint. The upward step represents the 14miting of some constraint,
possibly the shutdown of an old facility. What is necessary to recognize 1s
that 1t is extremely d1ff1cujt to be able to equate time and the parameter
change as was done when discussing forecast variability. If one can assume
product demand will increase over t1me, then one can state that trends in
shadow prices will be similar whether comparing them against demands or
against time. However, comparing shadow prices against constraint variation

1s very different from comparing them against time.
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Cost Coefficient Variation

shadow
prices

cost coefficient

)

Cost coefficient variation has a direct effect on final results. As cost
coefficients increase, shadow prices increase: as costs decrease, prices
decrease. If one assumes that costs increase over time, then one can also

state that shadow prices increase as cost coefficients increase over time.

what is important here is that basically one category of functions
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Shadow Prices and a Planning Horizon

shadow
prices

time

when the test case was set up to represent a long range planning situation
shadow prices followed a pattern similar to the prev1ous'curve. For long
range planning, distribution constraints were relaxed and results concerned
with these constraints will be used only for suggestions for the number of
necessary vehicles and drivers. Average available production capacities,
based on historic data, were used for production constraints. Forecasts were
projected over the planning horizon and costs were escalated to represent

inflation and increased operating costs.
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The first port1on of the curve (Part A) shows the increasing value in the
‘shadow price over an initial period of time. At the point where Part A meets
Part B of the curve, an addition of a new faci1ity causes a decrease 1in the
shadow price. The decrease in price from increased availability of product
dominates the increase in price from cost inflation and causes the step down
in pride. Part B of the curve represents the increase in shadow prices until
a period in time when a faci1ity ¥s shut down (where Part B meets Part C).

The remaining part of the curve (C) again displays the increases in the shadow

price due to general inflation and more 14miting production constraints.
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Applying Improved Parametric Programming

The plots over the previous few pages display the trends of shadow prices from
| effects in data changes. Using the Improved Parametric Programming techniques
to describe input var1ab111fy, we will display some other very important

trends on the same plot as detailed below. \

A
shadow :
prices | range in values of the
Y shadow price at time t

resulting from data uncertainty

time

Along with the general trend of the shadow price over time, the 95% (any
acceptable level) confidence interval is plotted as well. At any point in
time, one can locate the expected value of the shadow price as well as the

range of values that might occur due to the uncertainty in the input data.
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These trend plots, along with diagrams of the distribution of the shadow
prices, are important in describing the risk involved with pricing a customer

at a specific level.

It 1s also necessary to understand the possible consequences involved with
suggesting prices at different levels. When a customer price 1is suggested
based upon the expected value of a shadow price rather than some value less
than this expected value, there 1s less risk involved with obtaining future
profits. Although this 1s an obvious statement, it is important. Just as
important, is making use of information from the Improved Parametric
Programming techniques to define the risk involved with moving away from the
expected value (1.e. define the risk involved with obtaining a specified level
of profit). Large scale problems with-data uncertainties are solved more
effectively and more efficiently using IPP, providing the potential for
increased corporate profits and better risk assessment. IPP can be a highly
effective technique for describing data uncertainty in 1arge-sc§1e problems
because it 1s similar to existing (i.e. accepted) technology. It is not
necessary to "sell" anyone on new mathematical techniques; simply provide for
an explanation of the benefits of IPP and show that it is only an extension of

already accepted linear programming practices.
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CHAPTER VI
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THE CONCLUSIONS AND FINAL REMARKS
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conclusions and Final Remarks

Results from the various tests suggest the following:

1.

5571F-V2

The parameters that have the largest effect upon shadow prices are
capacity changes. This should be recognized because capacity
changes present the largest relative change of any of the tested
constraints and coefficients. Although variability in product
output is minimal, new facilities and plant shutdowns represent the
capacity change that show such a large effect upon shadow prices.

It is important when considering strategic location of new
faci1ities that they are placed properly. Even proposed new
facilities that are to be onstream five years into the future should
be highly scrutinized. A "good guess" as to where the facility

might be located may not be good enough.

Cost coefficients' variabilities place a direct effect on shadow
prices. If one is off just a 1ittle bit on the estimate of the
value of a cost coefficient, then at least one shadow price will be
off a 1ittle bit. However, because the cost coefficients are the
parameters that have the most available data, their estimates are
reasonably accurate. So, even though cost coefficients do have a
direct effect upon final results, the fact that their estimates are
very good suggest this is not an area of major concern. The various

constraints have a much larger effect upon finai results.
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3. Distribution constraints can have a major effect upon results. If
however, the system is to be a strategic planning tool, then these
constraints should be relaxed and final results used to heiﬁ plan
for vehicle and driver needs. When these constraints were
considered in the tests, they did represent some major effects. If
vehicle availability was exhausted at a terminal, other terminals
were forced to service new areas and the effects upon shadow prices
were apparent. Obviously, the tighter the constraint the more
drastic its effect. The effect was not linear; an exponential

effect was prevalent.

4. Demand constraints represented the potential for most uncertainty.
Forecast variability exists at both the customer and system levels.
It is important to employ the modified parametric programming
methodology so that individual shadow prices are better understood.
Variability in the forecasts presented a rather wide range of
effects upon final results. In areas where capacity was already a
constraint, relaxing the forecast caused a large decrease in the
shadow price. Increasing the forecast had an equivalent negative
effect upon the shadow price. When capacity is not a 1imiting
factor, forecast variability had 1ittle or no effect upon final
results. It is necessary to recognize what can happen to a system
if changes occur simply because of data uncertainty. To obtailn a
new customer account with assurance that a corporation will be more
profitable based upon a single L.P. run is naive. To understand the

probabi1ity of failure at different demand/price levels 1is

critical. - | o
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In summary, to assure éood results from a distribution L.P. model the

following points must be addressed:

1. variability of demand forecasts
2 location of capacity increases oOr decreases ,;D

3. relevance of distribution constraints.

Using some of the sensitivity analyses presented can.be a means to a good
service, that 1s a good information system. However, the technical aspects
are really just the beginning of a successful application. There are
peripheral requirements for the success of any technology, not the least of
these is to find an area that really provides some value to a client. The
technology of using shadow prices as a base for customer pricing has proved

to provide value to a corporation and has been generally accepted as an

important methodology.

Because data 1s an essential element of the system, a second necessary

requirement 1s how to manage the data. System inputs and results must be
actively managed in an environment separate from product10n~systems. The
task of management might include providing for new data, purging old data,

controlling access to confidential data, and communicating with clients on

the relevance of the data.

Training and support represent another aspect of a successful system. The

reason a system will be used is if someone (analyst) can demonstrate to the
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client how 1t helps get his/her job done. Technical people are motivated to
learn technical material in order to do their jobs, this is not true for most
clients. Their motivations might be to become a better financial analyst or

product manager.

Odds are small that the system will fully satisfy the client's needs, and so
1t 1s necessary that the system remain flexible as not to 1imit its
potential. The ultimate features of the system have been conceptualized but
implementation should take place with only a few capabilities at a time.

This gives the client time to become familiar with the system without
becoming immediately overwhelmed. Choosing the right technology and using it
well are important, but even more critical is having the methodology accepted
by the client. If a client can make frequent use of the system with few or
no complications, then the system will be a vehicle for providing a

significant value to the corporation.
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IMPROVED PARAMETRIC PROGRAMMING (IPP)
VS.
STOCHASTIC PROGRAMMING (SP)

| IPP SP IPP SP

- Parameter # of # of Computing Computing Objective Objective
Case Addressed Row Columns Time Time ($000,000) ($000,000)
1 by 1,200 9,000 38 10 1.5 1.5

2 by 1,500 12,000 42 94 8.6 8.6

3 by 1,700 13,000 61 ? 9.4 ?

4 by 1,900 18,000 90 ? 10.5 ?

5 by 2,000 18,000 107 ? 11.1 1

1 Cj 1,200 9,000 32 63 1.4 1.6
2 Cy 1,500 12,000 43 101 8.6 8.7
3 Cy 1,700 13,000 65 119 9.4 9.6
4 Cj 1,900 18,000 91 ? 10.5 ?
5 €3 2,000 18,000 104 ? 11.1 ?
1 ayy 1,200 9,000 . 36 63 1.5 1.6

2 ayj 1,500 12,000 43 91 8.6 8.5

3 ayj 1,700 13,000 69 118 9.4 9.4
4 ay3 1,900 18,000 98 ? 10.5 ?

5  a43 2,000 18,000 109 ? 11.1 ?
Note: 1) A1l cases started execution from an optimal basis where input

parameters were at their expected values.

2) Computing time is a measure of I/0 and CPU time.

3) Each objective function cost is an average of the N runs for each

case.
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