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Abstract

As a means of improving man-robot communications, researchers at Lehigh
University have been developing a natural language system call Register Vector
Grammar (RVG). RVG, a relatively compact, efficient, general purpose natural
language system written in Turbo Pascal, should prove well suited to real-time,
dynamic applications such as robotics. Integrated with the RVG system is a
task-level, object-oriented hierarchical planning system called MIC Planner.
Prototyped in Prolog for MS-DOS microcomputers, MIC Planner uses a rule-
based approach to decompose high-level abstract assembly tasks into lower level
robot motion primitives. MIC Planner attempts to achieve a goal state while
manipulating objects in a world model that is maintained by the RVG natural
language system. As an option, the user can also log MIC robot motion com-
mands generated by the planner to a file. These robot commands can then be
compiled by the MIC ‘Compliler System into native operation codes and down
loaded to the robot. This overview of the RVG system along with a review of
current robot control strategies should give some insight into the requirements
that must be met in order to develop intelligent and easy to program robot

control systems.
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/\Qhapter 1

Introduction

This research is an application of artificial intelligence (Al) techniques that
can be applied to enhance the man-machine interface in robotic assembly. More
specifically, we focus on two heavily researched subfields of Al, that of natural
language processing and planning systems. Artificial intelligence is a well es-
tablished field in computer science that has recently gained great attention due
to the popularity of knowledge based expert systems. Back in the early 1970’s,
robots and Al applications to robotics were considered the state-of-the-art
research topic for Al researchers. This came about after Winograd published
his Ph.D. dissertation on understanding natural language in 1971 [26].
Winograd’s now classical ’blocks world’ system allowed the user to manipulate
items in a blocks world domain with a graphical robot called SHRDLU simply
by entering natural language English commands. This work generated much ex-
citement among the Al community and raised many hopes for developing robust
systems that could understand natural language.

During the middle to late 1970s, many of the expectations of Al resear-
chers were not met. These disappointments led to a decrease in interest in
both the areas of natural language and robotics research. Only within the past
few years has there been a renewed interest in combining Al techniques with
robots in an effort to develop the next generation of autonomous or “smart”
robots.

Due to rising labor costs in many industrial manufacturing operations,

robotic assembly has now become technologically and economically feasible.

Thus, technological improvements at any level to the current state-of-the-art In




robotics assembly is seen as very desirable by industry. Funding by large in-
dustrial manufacturers to academic robotic research institutions is on the In-
crease. Not to be left behind, the U.S. government is also funding research in
the fields of Al and robotics, partly for military reasons and partly for the
development of robotic and automation standards.

This paper is the result of a research project started during the summer of
1985 at Lehigh University in the area of natural language processing. The
original goal of the project was to develop a version of the Register Vector
Grammar (RVG) natural language parsing system to run on PC/MS-DOS based
microcomputers. As in earlier natural language and planning systems, the robot
domain was chosen as a limited applications area for the RVG system to inter-
act with. The domain or the robot’s world provided realistic boundaries in
terms of what types of sentences the RVG parsing system would initially be re-
quired to handle.

In addition to the parsing system, a planning system had to be developed
to allow the parsed sentences to actually interact with the problem domain of
the robot. The planning system had to be able to efficiently model and
manipulate items in the robot’s world. Also, the planner needed an integrated
interface with the parsing system to allow for the passing of commands and
parameters to the planner. In addition to the planning system, a separate
robot interface was developed to handle needed calculations for the robot’s arm
movements and to communicate these movements to the robot.

During the design of the planner, several classical data and goal driven

planning systems were reviewed. The result was a prototype planner which 1n-

corporated some of the aspects of these earlier systems. The MIC Planner,




named after the MIC robot control language developed by Werkman [24], is a
task level object-oriented hierarchical planning system, written in Prolog, tar-
g_éted to run on PC/MS-DOS microcomputers.

The particular robot used in the project was the TeachMover instructional
robot by Microbot Incorporated. The reasons for this robot were severalfold.
First, the system developers were familiar with the capabilities of this 5 degree
of freedom robotic arm. Second, using an inexpensive instructional robot was
safer and more practical as opposed to using an expensive industrial robot.
This is especially true when developing a new robot control system where an
unexpected action could result in the robot putting it’s arm through a wall.
Third, the TeachMover is a classical example of a first generation robot with
respect to programming and control. Since many robots 1n use in industry
today have similar restricted programming and control systems, any Improve-
ment in the interface to the TeachMover robot would also apply to those
similar robots in industry.

This paper will provide an overview of the RVG systerﬁ, focusing on
aspects of the system that are related to improving the human-robot interface.
Several areas will be reviewed including current robot programming methods and
robotic software systems, classical planning strategies and new methods which
use world knowledge to guide the planning. The National Bureau of Standards
Robot Control System (RCS) will be examined for its use of hierarchical
decomposition of robot tasks [1] The RVG system planner, MIC Planner, will
be discussed and compared with the NBS system. Finally, the RVG system

will be contrasted with other natural language systems that have been interfaced

with robots.




Chapter 2
Current Robotic Control Methods

Many of the robots used in industry today are programmed by one of the

following two methods [16]:

1. Lead Through - Many points are recorded as the robot’s controller
continuously samples positional feedback from the robot’s actuators as
the arm is physically led through all the points in the robot
program.

9. Teach Pendant - The robot’s arm is moved to destination points in
the robot’s program by flipping toggle switches on the hand held
guiding device These fewer destination points are then recorded as
part. of the robot program.

Both of these methods require that the spatial positioning of the robot’s
arm be recorded. These spatial arm configurations are know as points In a
robot program. The difference in these methods is in the actual number of
points recorded. The lead through programming method records many points at
very small increments and thus tends to be more difficult to edit. In the teach
pendant method, only the end points of motions are recorded. A teach pendant
is a mobile keypad that allows the robot operator to move the robot to desired
locations and record points. The order in which the points are recorded reflects
the sequence of arm motions that the robot will perform when the robot
program is played back.

To aid in the robot program editing process, both methods are usually ac-
companied by associated vendor-supplied blackbox software. In the case of the
lead through method, the robot program is broken into several parts and linked

together by the software. 1f, for example, a move taught to the robot was In-

correct, the robot operator must teach that move over again. In the case of




the teach pendant method, only the end points of a series of motions need be
retaught. In this method, intermediate points in the arm’s path are generated
by the robot’s controller and can be modified by software.

Similarly, the TeachMover instructional robot system can only be
programmed by using a teach pendant. Thus, the same editing problems as-
sociated with large industrial robots are also found with the TeachMover. In
order to make the TeachMover’s programming environment more palatable,
Werkman developed a simple robot programming language called MIC which
stands for Microbot Instruction Code [24]. The MIC language is an example of
a first generation robot language that provides off-line program editing, program
transportability, and the ability to saving and restoring programs to and from

secondary storage.

2.1 First Generation Robot Languages

The blackbox software systems fall into the category of first generation
robot languages. In order for the robot manufacturers to successfully market
their robots, they had to provide a means of programming them that was easy
and straightforward. Thus, first generation robot languages were written for
users who had very little programming experierice. Many of these languages
resembled the BASIC computer language with extensions to allow for robot mo-
tion, simple sensor 1/O, and basic operating system support for saving and res-
toring program files to floppy disk. The languages 1n widest use today is VAL.
VAL was developed by Unimation Inc. for their line of Puma industrial robots
[23]. In fact, since VAL is so easy to learn and use, many robot vendors have

borrowed its simple syntax and feel for their own robot control languages.

While its true that these first languages are easy to understand and use,




their capabilities are somewhat limited. The computational ability of most first
generation robot languages are limited to simple operators like addition and sub-
traction. These languages are not very extensible, unlike common 4th genera-
tion computer languages such as Pascal. Thus, users cannot write user-defined
functions in their programs. The language’s ability to tommunicate with exter-
nal systems is also limited to only the robot’s controller. External systems such
as vision systems and other robots cannot be easily interfaced with many first

generation robot software control systems.

2.2 Second Generation Robot Languages

The answer to the limitations of the first generation languages has been a
new generation of robot languages which borrow heavily from modern computer
science languages. These second generation languages initially took the form of
procedural languages. offering user extensibility and limited scope of variables.
Several first generation features have been kept by the new language systems,
such as using the teach pendant to move the robot arm and record points.
Two of the more popular second generation robot languages include AML by
IBM [4] and VAL II by Unimation.

Figure 2-1 gives example program code, in VAL 1 and AML, for the task
of placing a peg in a hole [{12]. Some of the execution branching in the ex-
ample programs is made upon sampling input signals received from pressure sen-
sors located in the robot’s gripper. The user will i'mmediately notice that the
format and logic of each program differs. The VAL program is very terse and

looks much like BASIC with its many GOTO statements. Kach robot step fol-

lows in sequence from the top of the program to the bottom. The AML

program on the other hand consists of a group of user defined procedures much




TABLE 18-1 Examplesof VAL and AML Programs for Placing a Peg in a Hole

VAL

AML

10

20

30

SETI
REMARK

GRASP
REMARK
GOTO

REMARK

OPENI
DRAW

SETI
IF
TYPE
STOP

REMARK
APPROS
REMARK

REMARK
REACTI
APPROS
REMARK
MOVES

TRIES =2

If the hand closes to less than 100 mm, go to statement
labelled 20.

100, 20

Otherwise continue at statement 30,

30

Open the fingers, displace down along world Z axis and
try again.

500

0, 0, -200

TRIES=TRIES-1"

TRIESGE O THEN 10

NO PIN

Move 300mm above HOLE following a straight line.

HOLE, 300

Monitor signal line 3 and call procedure ENDIT to STOP
the program.

if the signal is activated during the next motion.

3, ENDIT

HOLE, 200

Did not feel force, so centinue to HOLE.

HOLE

PICKUP: SUBR (PART _DATA, TRIES);
MOVE(GRIPPER, DIAMTER(PART _DATA)+0.2);
MOVE(<]1, 2, 3>, XYZ _POSITION(PART _DATA)+<0, 0, 1>);
TRY _PICKUP(PART _DATA, TRIES);

END;

TRY _PICKUP: SUBR(PART _DATA, TRIES);

IF TRIES LT 1 THEN RETURN ('NO PART’).

DMOVE(3,-1.0);

IF GRASP(DIAMETER(PART _DATA)) = 'NO PART’
THEN TRY _PICKUP(PART _DATA, TRIES -1);

END;

GRASP: SUBR(DIAMETER, F);

FMONS: NEW APPLY (SMONITOR, PINCH _FORCE(F));
MOVE(GRIPPER, 0, FMONS);
RETURN (IF QPOSITION (GRIPPER) LE DIAMETER/2
THEN 'NO PART’
ELSE 'PART’);
END;
INSERT: SUBR (PART _DATA, HOLE);
FMONS: NEW APPLY ($MONITOR,
TIP _ FORCE(LANDING -FORCE));
MOVE(L], 2, 3>, HOLE+<Q0, 0, .25>);
DMOVEQ3, -1.0, FMONS);
IF QMONITOR(FMONS) =1
THEN RETURN (NO HOLE");
MOVE(3, HOLE(@3) + PART_ LENGTH(PART _DATA));
END:;

PART _IN_HOLE: SUBR (PART _DATA, HOLE);
PICKUP (PART _DATA, 2.);

INSERT (PART _DATA, HOLE);
END;

:1-Z 2an31 g
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like what a Pascal programmer would write.

The AML program in Figure 2-1-is initiated when the user makes a call
to the main program procedure PART IN _HOLE. This procedure then calls
two additional procedures, PICKUP and INSERT. Each of these procedures is
then broken down into smaller parts which perform the desired function. This
top down approach to designing robot programs is very desirable. Such a
software design methodology allows the user to create libraries of functions that
other users can then reference when developing their robot programs.

Thus, the major advantages of second generation robot languages includes
the ability by the user to create and tailor robot software to meet specific robot
tasks. Once written, the tailored program can then be used by nonprogrammers
who need not be aware of the deeper intricacies. of the program.  Second
generation languages also provide enhanced computational power, mainly through
the addition of more complex operators. These languages are also able to com-
municate better with complex sensors such as »vision\ systems and force sensors.
The operating systems that accompanied the new language systems are also 1m-
proved. Table 2-1 by Gevarter lists other first and second generation robot lan-
guages’, their inventors, their uses, and their status.

Even though many of the problems of the first generation languages are
addressed, the enhancements of the second generation languages still have their
shortcomings. Because of the complexity of the new languages nonprogrammers
cannot fully utilize all of the capabilities of the new robot control software.
Thus, experienced pro-‘gi'a'mm'ers are needed to develop robot applications. Per-

sonal experience in instructing students and engineers in using advanced robot

languages proves this to be true. Since additional programming support costs
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Control Manipulation g,
Mode Type Status | Capability =
, : o
5 - g b g 'g s |55
Robot 'g g .g < ‘é | g | % § :é g
Language Organization e [ > ™ 2 &) e < |8= Comments 9
AL Stanford University X | X | X X | x| x| x| X World model capability §
AML IBM X X X X X Menu capability b
o HELP GE X | X X X X | X &
JARS | JPL X | X X X X | Designed for visual and force 'g'
servoing =
MCL McDonnell-Douglas X X | X X For off-line programming of robots Q
' from a CAD data base =
c*
RAIL Automatix - X X X X | X | X Developed for visual inspection, 3
| | 1 | assembly, and arc welding —
RPL | SRI X X X X |1 : For control of machines compris- g,-‘
| ~ ing a robot work cell K
VAL - Unimation \\[ | X | X X X X c?a
Source: Based on Gruver et al. (1983). EB




money, interest has shifted from just versatility to both versatility and ease of
use. It seems that a new form of robot programming is needed. A new state-
of-the-art robot control and programming methodology has recently been

developed by the National Bureau of Standards in Washington, D.C.

2.3 The NBS Hierarchical Control Strategy

The National Bureau of Standards is one government agency that i1s at-
tempting to address the need for standardization in the automation industry.
One of the issues that NBS is looking into is that of robot integration into the
manufacturing process, an issue that has not been adequately addressed by the
robot manufacturers. Many current robot systems cannot easily interface with
systems from different vendors. Each vendor designs his software system to
work only on his particular line of robots’. Thus, programs written to run on
one vendor’s robots usually will not run on other vendor’s. Software incom-
patibility is one of the major problems in roboticvs today, preventing the advent
of fully automated factories.

The Industrial Systemns Division of the NBS has created an Automated
Manufacturing Research Facility (AMRF) as a testbed for studying robot con-
trol strategies and interface standards. In January of 1984, NBS researchers im-
plemented an integrated manufacturing system using several machine tool
workstations, two fixed base robots, a mobile cart robot, a gripper control sys-
tem, a safety system, a database, all connected by a network [14].  Figure 2-2
shows a schematic of the AMRF.

The control strategy used by NBS’s Robot Control System (RCS) is that
of task decomposition at successive levels in a control hierarchy. KEach level in

the hierarchy decomposes simpler command strings to the next level in the

10
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Figure 2-2:  Conceptual diagram of the AMRF.

decomposition until the lowest levels generate the actual drive signals for the
robot, the gripper, and other actuators in the system [14]. Each level in the
hierarchy has a specific responsibility to perform and is independent of other
task levels, thus allowing for greater modularity and easier updating of the sys-
tem structure.

The NBS Robot Control System also attempts to deal with control in a
real-time dynamically changing world. As pointed out by NBS researchers, Al
planning systems differ from control systems in that most planning systems that

have been developed for robot control have never dealt with real world time

11




constraints. Planning is usually done in static worlds that don’t change while
backtracking is being performed to find possible solutions in a search space.
Control systems on the other hand deal with constant sensor input from the
world in the form of force, vision, binary and other sensors |3|]. The goal of
the NBS system is to use a hierarchical decomposition of abstract task descrip-
tions in combination with real-time control systems utilizing sensor feedback.
Given such a system, a goal-directed task can be accomplished in spite of per-
turbations in the manufacturing environment 15].

There are seven levels of hierarchical control in the current AMRF project
as described by Albus |2| and shown in Figure 2-3.  The most abstract level
(seventh level) is that of facility control. This level includes such things as the
product design, process planning, accounting and other long range planning.
The next level down the hierarchy is the sixth level, that of shop control. At
this level, shorter range production planning is done along with scheduling, in-
ventory management and resource allocation. It is at this level that timing of
the overall assembly process is taken into account to manage the entire shop
floor assembly process.

Time constraints are also important at the fifth level in the control hierar-
chy which deals with cell control. Supplies of various tools for robots and the
machine tools along with raw materials are managed to meet the assembly
demand. Requests are sent to materials transport workstations to delivered the
needed resources. These resources are then managed by the fourth level of

hierarchy.  This is the workstation control level. Here, abstract robot and

l-P_lan‘ning is. discussed in depth in the next chapter

12




Figure 2-3: Levels of the NBS Robot Control System.
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machine tool commands are generated to perform the actual assembly operation.
Example commands might include a clamping set up command given to a robot,
then a set of commands given to a machine tool to actually machine the part,
and then a set of commands to the robot to remove the clamping fixture and
set. up for the next operation |2].

The uppermost levels of the NBS Robot Control System are designed for
total factory automation. The next three levels deal specifically with controlling
robots and machine tools. The third level, the robot control level, takes com-
mands generated by the workstation control level above and decomposes these
commands into robot motion commands that move the arm. Sample commands
might include [2]:

FETCH A
MATE B TO A
LLOAD TOOL C WITH PART D

These abstract robot actions are then decomposed into subactions that the
second level environmental control system deals with. At this level, commands
like fetch are refined into actions like Reach for part, Grasp, and Lift. Each of
these actions is done only after conditions are tested for that would cause such
an action to fail. One such case would be that of a part not found. Finally,
the lowest level of the control hierarchy is the coordinate control system. This
system performs the actual coordinate transformations servo computations that

are needed to move the arm to a desired location 1n space.

14




2.4 Future Trends

As a result of the work done by NBS on complex, real-time task decom-
position, the next generation of robot languages being developed will most likely
incorporate task or object-level commands. [16]. These task-level languages will
allow robot operators to specify assembly actions in terms of a series of high
level tasks. Once the assembly action is described and presented to the system,
the task-level software will refine the abstract tasks into lower level actions un-
ti] the lowest level robot movement primitives are generate. This is similar to
the actions performed by the hierarchical control levels of the NBS Robot Con-
trol System.

Ideally, one would like to program a robot for a task much as one would
describe the task to a fellow worker. In the future, robot control system will
be able to read natural language input describing a task and then act upon

them accordingly. For example [16]:

Mate the part with the hole in it with the part with the peg
in it, so that the peg and the hole are aligned, and the
corners of the surface are aligned.

Indeed, parsing and interpreting complex sentences as above 1s a major
goal of the RVG natural language system. In the near term though, reading
and interpreting simpler instruction found on manufacturing process sheets would
be a substantial improvement to robot programming. To provide this degree of
high level task-oriented description capability, further work will be needed not
only in the area of natural language understanding systems, but also in the area
of task-decomposition by planning systems. The goal of the RVG system is not
to write VAL 1 program in English, but to allow one to in/t‘_erac_t with the robot

s
at a much higher level, leaving the details of physical l<\)'cat'ions_ and arm mo-

15




tions to a planning system.
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Chapter 3
Robot Task Planning

The ability to communicate with a robot at an abstract level is major is-
sue currently being examined by many researchers around the world. Many
operations must be coordinated in order for an assembly task to proceed
smoothly and efficiently in a manufacturing environment.  Various different
machines will have to communicate with each other in real-time, most likely
across a local area network. The entire operation will be controlled by either
one large control program or several independent programs executing
asynchronously on each machine and communicating with each other. In erther
case, the task of programming these independent systems would be much easier
for the shop floor engineer if he could simply describe the complete assembly
task in terms of high level assembly procedures.

The ideal intelligent assembly control system would allow the engineer to
describe these assembly task in terms of natural language sentences. The sys-
tem might provide a library of abstract assembly functions that could be com-
bined to accomplish the complete assembly operation. The actions of these
routines might be displayed on a graphics monitor for verification before they
are implemented on the shop floor. Such an intelligent robot control system
will be composed of various ,initeracting, modules (sensor system, vision, natural
language input, function library) all of which will be coordinated by a central
control module. The control module will most likely be the system planning
module with a global database that will act as a world model. This database
.will be updated by the other system modules, much like the blackboard concept

used in the Hearsay Il speech recognition project. A key component to the suc-
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cess of any intelligent robot control system will undoubtedly be the planning

module.

3.1 Planning Strategies

Planning and problem solving are usually considered as one related field by
the Al community. Planning involves the process of combining groups of
subplans in a specific order to achieve a goal. The goals of subplans can
generally be replaced by other more refined subplans that are generally ordered
in a hierarchical fashion. Most planning strategies generate a linear or partial
ordering of problem solving operators that deal with the problem’s search space.
In the current Al literature four general planning strategies have been imple-
mented. Each one of these methods will be briefly examined. These ap-
proaches include hierarchical planning, nonhierarchical planning, script-based

planning, and opportunistic planning |8|.

3.1.1 Hierarchical vs Nonhierarchical Planners

Hierarchical and nonhierarchical planning methods, as well as other plan-
ning methods, generate a hierarchy of subgoals to be achieved. The two
methods differ in the way that they represent their plans. Hierarchical plan-
ners, like ABSTRIPS and NOAH, depict their plans 1n hierarchical levels of
abstraction, the highest being the most abstract and the lowest being the most
refined. This approach allow.s the planner to deal with very abstract aspects of
a plan instead of specific details. Lower level details are postponed until they
are needed and thus precious computational effort is not lost if that particular
branch of the hierarchy is never chosen. In this sense, hierarchical planners can

be said to be very efficient. Nonhierarchical planners, like STRIPS, HACKER,
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and INTERPLAN, have only one representation for a plan. In the nonhierar-
chical approach, even though the subgoals are ordered in a hierarchical fashion,
all subplans are examined in one abstraction space at the same level. Thus,
the planner may waste time on reviewing one subplan that may not directly be
related to the success of the overall goal.

When a failure occurs in a hierarchical planning system, the system
usually backtracks to an earlier decision point in the search space to find
another possible path.  Plans generally fail when their preconditions in the
world are not met. Plans can also fail when subgoals interact with each other.
Subgoals are a series of conjunctive goals that must be attained by the planning
system for the main goal to succeed. The order in which subgoals are applied
can cause plans to fail. This is especially true for subgoals that undo the ac-
tions of previous subgoals when they change the state of the world.

The HACKER and INTERPLAN nonhierarchical planning systems deal
with the problem of subgoal interaction by allowing the system to correct the
offending condition as the plan proceeds. This approach is based on the theory
of linear assumption where subgoals are considered to be independent and thus
are achievable by any ordering scheme [11]. When a subgoal interaction is
found, both systems attempt to reorder the subgoals, but only at the current
level in the subgoal hierarchy. In the INTERPLAN system, the subgoal that
failed is moved before other subgoals in the subgoal hierarchy [21]. This reor-
dering between subgoal hierarchical levels 1s not available in HACKER. As a
result, the INTERPLAN system has proven to be more efficient In generating
plans that cause protection violations or the undoing of earlier subgoals.

A different approach for handling interacting subgoals is used in the
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NOAH hierarchical planning system. NOAH uses two methods. First, the sys-
tem does not arbitrarily order subgoals until their is some reason to do so.
Second, the NOAH system examines each level of the developing plan and cor-
rects subgoal interactions before they arise [17].  Unlike the nonhierarchical
planners described above which commit themselves to a particular ordering of
subgoals, HOAH adopts the approach of least commitment. NOAH avoids com-
mitting itself to a specific planning path until it has examined all possible paths
at the current level in the planning hierarchy. This allows the system to con-
structively correct interacting subgoals without any need to backtrack.

NOAH (Nets of Action Hierarchies) represents plans in terms of procedural
nets.  Procedural nets represent procedural as well as declarative knowledge
about problems. The procedural or domain knowledge includes functions that
expanded goals into subgoals. The declarative knowledge contains information
about the results of plans once they are executed. Thus, if NOAH puts a block
on top of another, the supporting block is noted as not having a clear top.
With this declarative world knowledge information, NOAH can reason about ac-
tions before it performs them [8]. A set of critics are employed by the system
to review the declarative knowledge and prevent redundant actions.

When NOAH is given a goal, the system uses the procedural domain
specific knowledge to expand the goal into several nodes in the procedural net.
Then critics examine the net for any interacting subgoals. If any are found,
other domain specific procedures are called to reorder the subgoals at the cur-
rent abstraction level. The new ordering is tried and if found successful, the
redundant subgoals are eliminated. Thus, through domain specific procedural in-

formation as well as a current model of the world, a hierarchical planning sys-
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tem such as NOAH can avoid much backtracking.

3.1.2 Script-Based Planners

The script-based method of planning deals with plan generation in a much
different way than do the hierarchical planneré. Script-based or skeletal plan-
ners attempt to model human planning methods. @~ When humans are given
problems to solve, they tend to think of the problem in terms of a related
problems that they are familiar with. This similar problem acts as a skeleton
or framework which i1s expanded and updated as new information is discovered.
A planning systemn that employs this method can deal with complex plans ef-
ficiently without the need to search through the entire rule-base for specific
planning rules. Instead, the system only has to search the rules that reside
within the outer general framework of the main goal.

The MOLGEN system uses the script-based approach to aid molecular
biologists in laboratory procedures [19]. The system maintains a database of
skeletal plans that range from very general to very specific planes. Once a
skeletal plan is chosen, the plan refinement process begins. As additional infor-
mation 1s learned about the problem area, only those subgoals related to the
outer generalized plan skeleton are searched. If the currently selected subgoal is
too specific, the system backs up to the general level skeleton plan and selects
another subgoal, if any, within the framework of that plan. Thus a planning
hierarchy is maintained by the system, the advantage being that frequently used
plan skeletons are referenced first, reducing the search space and the search

time.
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3.1.3 Opportunistic Planners
A fourth methodology of planning is the opportunistic approach. This

method uses a control strategy which is more flexible than the other methods

.described. Developed by the Hayes-Roths from their cognitive science research

in human planning, the opportunistic method uses a blackboard structure much
like that used in the Hearsay Il speech recognition system [8]. Here, infor-

mation relating to the plan being generated is made available to all levels of

the planning system. As the planning proceeds, planning specualists examine the
blackboard in an asynchronous fashion and suggest alternate planning pos-

sibilities.

The Hayes-Roths believe that this model is similar to the way humans for-
mulate plans. Human use newly acquired information, much like the specialists
in the model, to update their plans. Thus, when an opportunity arises to make
a plan more efficient, human generally tend to modify their plans. The Hayes-
Roths tested various subjects on errand-related tasks where the subjects were
given several tasks to accomplish (places to go, items to pick up). The subjects
then spoke aloud while they formulated their plans. The Hayes-Roths noticed
that none of the subjects followed the plan that they initially generated. In-
stead, subj'ects. continuously modified their plans to take advantage of oppor-
tunities as they arose (e.g., pick up an item at the store since we happen to be
passing by on our way to another destination) |13].

The Hayes-Roths also noticed that subjects did not form plans hierarchi-
cally (top-down), but rather in a bottom-up (data driven) fashion. Subjects
developed small pieces of their plans (islands su-bplan's) when they .th:ou.gh them

to be logically feasible and then linked these island subplans together to form
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an overall plan. This bottom-up incremental process of plan generation based
1
on opportunities that arise in the subjects world prevents humans from spending
large amounts of time replanning when a plan fails. In the opportunistic
method, little or no backtracking 1s performed. Instead, the plan s construc-
ccount new opportunities or, ‘1 the case of a sub-

tively modified to take into a

best. possible subgoal to prevent total plan failure.

goal failure, the next

Indeed, there 1s almost never any complete plan failure because the opportunistic
planner always plans to accommodate the changing conditions in his world.
jc planning method may be especially appropriate for real-time

The opportunist
g the

dynamic applications, where events are continuously changing and causin
world model to be updated. In fact, the NBS Robot Control System s similar
he opportunistic planning method in that 1t maintains its world model 1n

ates this model freque-nt_ly fror

to t
n sensors 1N the

(he blackboard fashion and upd

robot’s environment [16]

2 2 The MIC Planner System
The MIC Robot Planner System 1s the applications system of the RVG

he natural language system will read sen-

natural language processing system. T
stand them, as they refer to a database that

tences from a keyboard, and under
1f the sentence 1s imperative, the natural language

models the robot’s world.
e, to the MIC Planner

system will issue @ task, in the form of a Prolog predicat

escription of the RVG system and 1ts component modules

System. A complete d

is given In the next chapter.
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3.2.1 System Overview

MIC Planner is a sell contained planning system that maintains all the
necessary information needed to move bricks and cubes about in a robot’s work
cell. Unlike many early “blocks world” planning systems which only generated
block movement plans, MIC Planner generates plans and carries them out by
instructing a robot to move bricks around in the real world. Authors of several

earlier planning systems believed that arm motions were unimportant trivial ex-

|
l

tensions which could easily be added to their systems. Upon interfacing the
planner with an actual robot to perform ‘n a real-world environment, many In-
teresting and unexpected problems emerged.

One specific problem worth mentioning is the physical limitations of the
robot arm. In order to develop a complete plan for, say stacking blocks in the
world, one must take into account the actual range of m(i){t)i"on of the robot
manipulator. A plan’s solution may be foiled simply because the robot’s arm 1s
physical incapable of attaining a specified height. Thus, a plan to stack mul-
tiple blocks that exceeds the robot’s maximum arm height should also be noted
by the planner and cause the stacking task to fail. Additional motion limita-
tions can be cause by the robot’s body (upper arm, elbow, forearm) bumping
into other objects in the world. This is the heavily studied problem of collision
avoidance. At Lehigh University, CAD/CAM researchers have placed a sphere
around the gripper of a graphically simulated robot and check for any inter-
ference between the sphere and other objects in the robot’s work cell 16].

Figure 3-1 displays several common robot manipulator configurations.
Given these four basic robot configurations, plans that succeed on spherical

robot may fail on a rectangular robot simply because of the robot’s physical
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reach limitations. The TeachMover instructional robot, which is controlled by
the MIC Planner System, is a 5-degree of freedom articulated joint spherical
robot. Articulated joint robots closely model human arms and provide a wide

range of motions compared to other robot arm configurations.

Rectangular Cylindrical Coordinates

(Carteslan Coordinates) b.

Spherical Articulated or Jointed Spherical
(Polar Coordinates) (Revolute Coordinates)
c.
d.

Figure 3-1: Four basic manipulator configurations.

In addition to the problems generated by differences in arm configurations,
one must take into account the freedom of movement of the end effector (hand
and wrist configuration) of the robot. Figure 3-2 depicts the three basic wrist
motions which are found in some robotic arms. The TeachMover robot only
provides for pitch and roll motions. The side to side yaw motion can be simu-
lated by rotating the gripper 90 degrees and then pitching the hand to either
side.

In the MIC Planner System, all high level planning related to the move-
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Figure 3-2: Three common end effector movements.
ment of objects by the robot’s arm is done¢ by the planner. The only thing
that is not done by the planner is the actual conversion of XYZ Cartesian coor-
dinate points into specific commands to move the attached robot. Instead, the
planner generates two points (the current arm location and the new arm loca-
tion that is to be attained) and writes them to an output file. The output file
is then read by a secondary program, CALC, which performs the necessary coor-
dinate to joint calculations and then sends the join movement information to
the robot. While the arm is moving to its new destination, the planning sys-
tem is halted. When the armn reaches its new destination, a handshake signal is
sent back to the CALC interface program. If the handshake signal shows suc-
cess, then the CALC program exits and the planner continues merrily along 1ts
way. If the handshake signal shows failure (in the case of an emergency stop),
then the CALC program passes this info back to the planner and the planner
acts upon it accordingly. In the case of a user generated emergency stop,
CALC queries the TeachMover’s controller for the current location of the arm

and returns it to the planner. This insures that the planner knows where the
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arm is at all times?

The CALC program, compiled in Turbo Pascal, calculates the coordinate
to joint transformations needed to move the arm. The XYZ Cartesian coor-
dinate points are first converted into intermediate joint angles and then into ac-
tual motor step counts that each joint’s stepping motor must achieve in order
to position the arm in the desired location. The motor step counts are then
sent to the TeachMover’s onboard microprocessor by a communications link.
Upon receiving the stepping instruction, the robot’s controller moves the arm to
the destination point in a smooth but nonlinear fashion. During this process,
CALC perforins a more complete level of robot motion range checking as com-
pared to the simple range checking done by planner. If the destination point
specified by the planner is out of range, CALC returns this info to the planner
and the arm movement fails. The entire MIC Planner System and external
CALC interface program runs on an IBM PC or compatible MS-DOS microcom-
puter with at least 512K of memory and communicates to the robot via a
single RS-232C serial link.

The points generated by the MIC Planner System actually consists of six
values. The first thee values are the absolute X, Y and Z Cartesian coor-
dinates (in incheé) of the point in the world. Three additional coordinate fea-
tures are provided. These are the pitch, roll, and grip width values of the
TeachMover’s gripper. Given this six-valued data structure for points, the plan-

ner can represent various object and their orientations within the robot’s work

2Note, since the TeachMover does not provide absolute position resolvers on its joints, it is quite
possible that the arm can go out of calibration. Thus the current arm location returned to the plan-
ner by CALC may not be the actual location.
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cel. Each XYZ coordinates relates to the center point of the botlom surface
each object in the world model. The Pitch and roll values allow the system to
model the current orientation of each object. The gripper width field represents
the width that the TeachMover’s gripper must attain in order to grasp and
hold a specific object. The following Prolog fact shows how the object’s loca-

tions are represents in the MIC Planner System.

OBJECT LDQATIDN(INCHES) OBJ. ORIENTATION (DEGREES)
NAME X Y Z PITCH ROLL GRIP (INCHES)

LOC( PART1, [6.0, -5.0, 0.0], [-90.0, 0.0, 1.5] )
In addition to the orientation and location of objects, the planner also
knows some simple features about each object. The current features known by
the planner only include the dimensions of the bricks and cubes in the world

model. This is shown in the Prolog fact below:

OBJECT DIMENSIONS (INCHES)
NAME X Y Z
LEN WIDTH HEIGHT

FEAT ( PART1, [1.0, 1.5, 2.0] )

Thus, given the two Prolog facts above, the planner knows that partl 1s
an object located at [5, -5, 0] with an normal gripper approach orientation
having pitch of -90 degrees (gripper approaches this item from the positive Z
axis), roll of 0 degrees (the gripper’s roll is parallel to the Y axis), and a grip
width of 1.5 inches (this is the same as the Y dimension). The planner knows
that partl is 2 inches tall. Thus, any object placed on top of partl will have

its Z axis coordinate component set to 2 inches.
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3.2.2 Prolog as a Prototyping Language

The MIC Planning System is written in VMA Prolog on an IBM PC
microcomputer. The Prolog programming language provides a good development
environment for tasks which are easily described in terms of rules or procedures.
Usually such a system requires a database facility for the many facts that the
rules manipulate. Prolog provides a built In infereﬁce engine mechanism that
can exhaustively search its database for all related facts. Thus, Prolog readily
supports the construction of ezpert systems.

Because Prolog provides these features, the language leans itself to quick
prototyping and testing of experimental software systems. This allows system
developers to get a small but complete version new systems up and running
usually in a matter of nours.

Firstly and most importantly, Prolog provides a built in database and in-
ferencing engine facility. For this planning system project, the Prolog database
proved to be quite sufficient in modeling the robot’s world. In addition to the
flexible format database, Prolog also provides built in predicates which allow the
programmer to easily manipulate items in the database. These predicates allow
the programmer to add and delete both facts and rules. Facts are declarative
pieces of data that usually reflect the current state of the system. Rules
generally contain procedural information that make up the Prolog program
which manipulates declarative data items in the database. Many of the features
provided for free by Prolog had to be developed separately in earler planning
systems such as BUILD [10] and NOAH. In the case of the BUILD system,
Fahlman spent several months developing the necessary database structure and

manipulation functions. To provide a similar Prolog database support facility in
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another language, such as Pascal, considerable time and effort and would have
to be given in coding the database inferencing functions.

Secondly, Prolog programs support a rule-based approach. Prolog rules
control the inferenciﬁg mechanism by manipulating data elements in the
database. These rules are generally made up of other user defined predicates,
which may in turn be rules. This allows programs to be written in a top-down
fashion where abstract rules are defined in terms of lower level primitive rules.
A rule-based approach is a natural way to describe abstract assembly tasks that
are the fundamental to developing a robot planner. High-level assembly tasks
can be described as a series of conjoined lower-level subtasks or subgoals.
These subgoals are refined in terms of lower predicates until a set of simple
primitives are called upon to update data elements in the database (e.g., a
block’s location is modified when it is moved). Thus, by combining other
predefined predicates, programming a hierarchy of decomposable abstract as-
sembly tasks is very straightforward.

Thirdly, since Prolog is an interpreted language, it allows the programmer
to quickly test newly defined predicates without the delay usually caused by
compilation and linking. The PC based VMA Prolog used in this project com-
piled all Prolog predicates into a semantic network before execution® . This in-
creases the execution speed of the planner up to acceptable limits. Even though
the program is compiled, the programming environment 1s still interpreted.
Thus, the programmer (and eventually the user) can easily interact with any

part of the system, simply by typing any predicate name be it user defined or

3V.i'rtual- Memory Prolog, written. by Robert Morein of Automata Design Associates.
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built in. This allows the system developer to easily trace and debug Enew predi-
cates that have been added to the planning system in an interactive fashion.
The programmer can also assert new facts into the database as well as whole
new rules. Thus, the programmer can link several planning predicates together
to see their combined effecﬁ, and, if desirable, he can then save their combined
PR
effect as a new assemljy predicate. This predicate can then be used later as a
subtask of an even higher user defined predicate. This provides for a flexible
and extensible programming environment that 1s not available in most 4th
generation computer languages. Other Al languages such as LISP do provide
for laiguage extensibility and have interactive programming environments. But

these other systems lack the built-in database and inferencing mechanism found

in Prolog.

3.2.3 The TeachMover Robot

The MIC Planner System instructs the TeachMover robot to moves bricks
about within its environment. Before further discussion on how the planner ac-
tual generates robot arm motion commands, it would be beneficial to look at
the TeachMover’s configuration, limitations, and features. This will provide a
better understanding of the steps that have been taken to improved the pro-
gramming interface to the TeachMover.

The TeachMover robot is -a self contained robot manipulator and control
system that is powered by an 8-bit 6502A microprocessor with 2K bytes of
read-write random access memory. The 2K bytes of RAM can store programs
created through the use of the hand held teach pendant or programs which have
been generated off-line and down loaded to the robot from a host computer sys-

tem. Figure 3-3 shows the various parts of the TeachMover robot and 1ts coor-
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dinate axis system [22].
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Figure 3-3: The Teac.hMo._ver robot.

Simple point to point motions can be quickly and easily programmed via
the hand held teach pendant. If the user records a point incorrectly, he can
use the teach pendant to move the arm to the correct location and record the
correct point. Then, once all the points have been recorded, the user presses
the green start key on the teach pendant and the TeachMover moves through
the previously taught series of points. The user can also perform some minor
program editing of points with the teach pendant. Old locations can be
reprogrammed by simply moving to a new location and pressing record on the

teach pendant. The difficulty in editing increases as more robot instructions as
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added, such as GOTOs and JUMPs. Here, the user must mentally record the
program step number and refer back to it when he wants to change the flow of
control in his program. This becomes quite difficult if there are many branch-
ing statements because there is no program listing to refer to. Also, new In-
structions can not be inserted into the program. The user can only overwrite
existing TeachMover program statements. This unforgiving editing scheme was
one of the major motivation for the development of the off-line robot control
language, MIC.

With an off-line language, editing of control logic of the robot’s program is
much  easier.  With the MIC Compiler System, the user can edit his MIC
program with an editor of his choice and then compile and down load his
program to the TeachMover robot [24]. The MIC Compiler System checks for
range errors which can occur when the arm is instructed to move outside the
obot’s reach. These error are logged to a listing file with the user’s program
and can be printed out to allow the user to review his logic or redefine his
points to be within the robot’s reach. For those interested in programming the
TeachMover by using the teach pendant should refer to the TeachMover User
Reference Manual by Microbot Incorporated [22] or to Introduction To The
Microbot TeachMover Robot by Werkman [25]. Those interested in program-
ming the TeachMover via the MIC robot control language should refer to The
Microbot Instruction Code Compiler manual [24].

The TeachMover tobot can be controlled from an external hoSt computer
by two methods. The robot can recelve programs from a host computer and
store them in memory (this is what the MIC Compiler System does) or the

TeachMover can be controlled by a series of interactive commands. The second
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method of control is incorporated into the MIC Planner System. The inter-
active commands range from simple point to point STEP commands to more
complex commands such as GRIP, which close the robot’s gripper until it
squeczes an object, and READ which returns the robot’s current arm loéation to
the host computer. The MIC Planner System curre’ntfly only issues STEP com-

mands for every arm movement that is generated.

3.2.4 MIC Planning Task Examples

Since the MIC Planner System uses the Prolog interpreter itself as 1ts user
interface, the user has access all the features of Prolog when developing abstract
assembly tasks. Thus, the user can executc predefined assembly predicates that
exist in the planning system, or he can link several of them together to form
new high level assembly predicates. The user can also look directly at the
Prolog database to see what items are available for manipulation.

When the system is initially consulted, it initializes itself and sets up a
sample world of three parts named partl, part?, and part3. These brick-like ob-
jects can be move around in the world by user initiated motion predicates.
The user can fetch parts, place them at locations, grip parts, or even nsert or
delete parts from the world. If the user forgets what motion predicates are
available for use, he can type help. at the Prolog system prompt and a screen
of help will be displayed. Table 3-1 gives a listing of possible high and low
level motion and assembly predicates that the user can ISSue.

In order to demonstrate an abstract assembly task, the planner has been
taught a general procedure for assembling two parts at a given assembly loca-
tion. The predicate assemble takes three parameters; the first part’s name, the

second part’s name and a location at which the assembly is to take place. All
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»= Robot Planning Commands from Highest To Lowest Abstraction Level =»
TASK : stack(A, B, C, [X,Y,Z])) - Stack A on B on C at loc [X,Y,Z].
- assemble (A, B, [X,Y,Z]) - Assemble A and B at loc [X,Y,Z].
OBJECT: putOn( A, B ) - Puts A on top of B.

fetchFromTo( A, [X,Y,Z]) - Fetch A and place at [X,Y,Z].
mate( A, B ) - Fetch A and mate to B.
fasten( A, B ) - Glue A to B (A becomes part of B)
fetch( Object ) - Move arm to Object and grip.
placeAt ( [X,Y,Z] ) - Move arm/grip contents to [X,Y,Z].

ARM : approach( [X,Y,Z]) - Safely move arm to [X,Y,Z].

MOTION depart( DistReturned) - Raise arm at least 5 in. in Z axis.

CMDS moveArm( [X,Y,Z] ) - Move the arm directly to [X,Y,2].
rotateGripper (Degrees ) - Rotate grip (& object) + or - Deg.
grip - Closes grip on object at grip loc.
unGrip - Opens grip & release grip contents.

OTHER: world - Show the current world items.

USER remove( Object ) - Removes an Object from the world.

CMDS insert( Object ) - Inserts an Object into the world.
speed( ©..15 ) - Sets arm speed for next move.
connected( yes/no ) - Connect & Move/disconnectrobot.
saveMoves ( yes/no ) - Saves MIC moves to file MOVES.MIC.
traceMoves( yes/no ) - Toggle ON/OFF trace of arm motions.

Table 3-1: MIC Planner System Predicates.
locations are given in terms of real numbers and always includes X, Y and Z
Cartesian coordinates in units of inches. The user initiates the assembly predi-

cate as follows:

ASSEMBLE( PART1, PARTZ2, [ 8.0, 0.0, 0.0 ] ).

The above predicate will attempt to assemble two objects, part! and part?
at the predetermined location [8,0,0]. Figure 3-4 shows the layout of the world
at the start of the assembly operation. The assemble main task predicate is

divided up into four general actions.

1. Fetch part! and Place At [8,0,0].

2. Fetch part2 and Place At [8,0,0].
3. Mate part! to part? (make a nonpermanent bond).
4. Fasten part2 to partl (make one object).

In the MIC Planner System, the assemble predicate is programmed in

Prolog as follows:
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assemble(A,B,AtLoc) :-
print(’\nAssembling’,A,’ and ’,B,’ at ’,AtLoc,’.\n’),
asserta(motionCommand (assemble,A,B)) /% Set Assemble Flag »/

fetchFromTo (A,AtLoc), /* Fetch A to AtlLoc »/
fetchFromTo(B,AtLoc), /% Fetch B to AtLoc */
mate (A,B), /* Mate (snap) A to B =/
fasten(B,A), /* Fasten (glue) A to Bx/

retract (motionCommand (assemble,A,B)) /+ Reset Assemble Flag.*/

print (’Assembly Task: Completed.\n’), /* Print out completions/
|

The first two part fetches are done by the Prolog predicate
fetchFromTo(Object To Fetch, Location_to_ place__at). This predicate fetches
an object from it’s current location and places it at the specified location. This
entire abstract task must be done in a fairly safe manner in order to avoid col-
lisions between the arm and objects in the robot’s world. After the two parts
are brought together at the assembly point, the planner calls mate(Object1,
Object?). This instructs the robot to nonpermanently connect the two objects.
The final subtask of the assemble main task is the fasten operation. This oc-
curs when the fasten(Object2, Objectl) predicate is called. This causes Object?
to become permanently fastened to Objectl. The additional clauses listed above
simple print out informative messages and set and remove flags which are
needed for lower level tasks during the assemble main task.

The first subtask of the assemble command requires the planner to tell the
robot to fetch the first part, part! and place it at the specified assembly loca-
tion, [8,0,0]. But, another object (part$) is already at this location. Therefore
a planning conflict occurs and the planner must react in some fashion to
prevent the current Prolog predicate from failing, and consequently causing the
main assemble predicate to fail. The planner knows that the assembly of partl
and part2 must take place at location [8,0,0|, possibly because there is a special

mounting fixture at that location which is needed for the assembly. The plan-
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ner corrects the conflict by clearing the assembly location of part$.

But before location [8,0,0] can be cleared of part3, the planner must rid
the robot’s gripper of the current object (part!) so that it can grab and remove
the offending object. So the planner clears the gripper of the current object by
placing it (partl) at a predetermined location known as the clear stack. The
robot moves the arm to the clear stack location and places part! there. The
result of this operation is shown in Figure 3-5. After the gripper is cleared, the
planner tells the robot to go back to [8,0,0] and fetch the offending part
(part8). This part is then placed at a secondary location known as the collide
stack. The collide stack is where objects are placed when they are found oc-
cupying a location that they should not be in. This stack grows as the number
of incorrectly placed objects are found to be in the wrong locations. The result
of clearing the offending object (part3) to the collide stack is shown in Figure
3-6.

After part$ has been placed at the collide stack location, the planner
knows that it must restore the object that was in the gripper before the col-
lision detection occurred. So the arm returns to the clear stack location and
fetches partl. The planner finally instructs the robot to place partl at the
newly cleared location [8,0,0]. At this point, the first fetchFromTo subtask has
been successfully completed. The results of the first fetchFromTo subtask can
be seen in Figure 3-7. The second fetchFromTo subtask fetches part? and
places it on top of part! without any problems.

The reader might wonder why the planner does not also clear the as-
sembly location (|8,0,0])) of parts like it did when it found part$ there.

However, a special “assembly condition”, asserted into the Prolog database when
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the assemble predicate was called, does not exist anymore. This specific
“assembly condition” is built in and checked for by lower level arm movement
predicates. If a specific collision condition occurs, then the arm movement
predicates resolve it by removing the offending object. If the specific
“assembly” condition is not in effect, then the arm movement predicates can
resolve the collision problem by simply placing the currently held object on top
of the object that happens to be at the destination location. Passively placing
an object at a specified location, the default condition, allows the robot to
safely complete its task with a minimum of damage to its environment, and a
minimum number of arm movements.

The third subtask of the assembly task requires that the planner instruct
the robot to perform a mate operation. In this particular assembly operation a
mate subtask is the joining of two objects in a nonpermanent fashion. The
mate predicate causes the robot to fetch paert2 and twist it 90 degrees until its
simulated screw locking mechanism clicks. Now the parts are mated. They can
be unMated by rotating the gripper in the opposite direction.

The final subtask of the main assembly task is the fasten operation. In
this task, part? (which is on top of and mated to partf) is melted together
with partl to form a single object, partl. The final state of the world is
depicted in Figure 3-8. To maintain a consistent world model, the planner
removes part? from the Prolog database since it now no longer exists (its now
part of part1). The planner also must realize that part! has “grown” in 1ts Z
axis dimension to now include it’s previous height plus the height of part2.
The planner also updates the X and Y axis dimensions of partl to reflect the

addition of part2.
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A complete trace of the above assembly task can be found in Appendix A
through E. Appendix A lists the normal user readable output generated during
a planning operation of the assembly task. Appendix B provides the reader
with a verbose trace of the same assembly operation showing the exact points
that the robot’s arm moved through while assembling part! and part2. Appen-
dix C lists the MOVES.MIC output log file and is generated by the planner
when the saveMoves(yes). predicate is invoked. This file contains valid MIC
robot programming commands that can be compiled by the MIC Compiler Sys-
tem written by Werkman [24]. These commands can then down loaded to the
TeachMover robot to provide native code for real time execution of the as-
sembly task. Appendix D shows the listing output generated by the MIC Com-
piler System after compiling the program in Appendix C. Appendix E shows the
actual TeachMover opcodes that were generated by the MIC Compiler System.

Appendix F provides a trace generated by the planner for a stacking
operation in which three parts of a stack are rearranged. This stacking opera-
tion involves a worst possible case condition that is handled efficiently by the
planner. The initial state of the stack is shown on the left side in the example

below. The final state is shown on the right side.

START FINISH
ORDER ORDER
PART 2 PART 1
PART 3 === PART 2
PART 1 PART 3

The user initiates the stacking operation by issuing the following Prolog
predicate:

LOC( PART1, STACKLOCATION, ),
STACK( PART1, PART2, PART3, STACKLOCATION).

The loc predicate causes the Prolog database to be queried for the XYZ
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location of partl. The location is returned in the variable StackLocation. This
variable is then used as a parameter in the stack predicate. The stack predicate
in the above example states that part! should be placed on tbp of part?2 which
should in turn be placed on top of part3. The location of the stack should be
at StackLocation.

To perform this task, the stack predicate is defined in Prolog as follows:
stack (A,B,C, AtlLoc) :-

( ( (A==B; B==C; C==A), /+ If 3 items NOT UNIQUE, * /
print(A,’ and ’>,B,” and *,C,’ are not unique! Aborting.\n’),
v, fail /* Then QUIT! * /
)

)

(asserta(motionCommand(assemble,C,B)),/8et Assemble Flag */
print (’STACKING:’>,A,’ ON ’>,B,” ON ’,C,’ at ’,AtLoc,’.\n’),

fetchFromTo(C, AtLoc ), /* Put C at location AtlLoc. * /
putOn( B, C ), /* Then put B on top of C, */
putOn( A, B ), /* And put A on top of B. */
retract (motionCommand (assemble, , )),/+*Reset Assem Flag.x*/
print(’StackOperation:Completed.\n’)/*Print completion.x/

)
), .

The first action that is performed once this predicate is called is a check
to mrke sure that the three objects being stacked are all unique objects. If
they are not, a warning message is printed and the stack predicate fails. If
stack had been called by another predicate, then that predicate would also fail.
The failure of the stack predicate in this case is justified because this predicate,
stack, requires three objects to manipulate. Chances are that any predicate that
calls stack also expects to find three unique objects in the world and would also
fail.

This condition of high-level predicates failing more quickly than low-level
predicates is a general rule among the hierarchy of predicates in the MIC Plan-
ner System. The low-level arm motion predicates tend to deal with abnor-

malities of greater subtlety than do the higher level more abstract action predi-
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cates. This occurs because many gross errors are initially screened out at the
higher levels of abstraction where they are most obvious. The low-level motion
predicates are coded to deal with more subtle problems such as in the case
where objects are passively stacked on top of other objects when their destina-
tion location is occupied.

Given the case that all three object parameters of the stack predicate are
unique, the next action is to. assert the “assemble flag” which enforces the con-
dition that the first object to be placed is indeed placed at the location
specified, StackLocation. This same condition was also used 1n the assembly
task example discussed above.  After this condition is inserted in the the
database, an informational message is displayed.

The stacking task is divided into three main subtasks:

1. Fetch part$ and Place At StackLocation. (Causes any objects on top
of partd to be removed.)

2. Put part2 on top of parts.
3. Put partl on top of part2.
In an attempt by the planner to place part$ at StackLocation, 1t must
first resolve the conflict that part2 is on top of part3. Given this condition, the
robot can not physically grasp partS. Thus, part? is cleared to the Collide

Stack location as seen below.

MAIN COLLIDE
STACK STACK
PART 2 ===

PART 3

PART 1 PART 2

Now, part3 is accessible by the robot and can be placed at the destination

location. But, it just '“h_appens that the destination location is where partl cur-
I

46




rently resides. Thus, since we have enforced the “assembly flag” condition
which states that the object to be placed (part8) must occupy the specified loca-
tion (partl’s residence). The conflict is resolved by the planner telling the
robot to clear the gripper of part$ and then place partl on the Collide Stack.

This is seen in the following two examples.

CLEAR MAIN COLLIDE
STACK STACK STACK
<=== PART 38
PART 3 PART 1 PART 2
* THEN =

CLEAR MAIN COLLIDE

STACK STACK STACK
PART 1

PART 3 PART 1 ===> PART 2

After the stacking location has been cleared, the planner restores the ob-
ject that was previously in the gripper (part$) and then completes the original

placeAt subtask and places part$ at StackLocation as seen below.

CLEAR MAIN COLLIDE

STACK STACK STACK
. | PART 1

PART 8 === PART 3 PART 2

The next subtask of the stack main task predicate is putOn(part2, part3).
But the execution of this task is hampered by the fact that part! is on top of
part?. Thus, the robot can not get at part2.  As done earlier, the planner
clears the top of the current object being fetched. This time, the standard
Collide Stack location can not be used because this would not help resolve the
current conflict. Instead, this would just put paertl back on top of part?. At
this point, the planner realizes that it must find another “clear spot” to place

‘.
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the offending object. It decides to place the object at the location, NearBy.

This action is depicted below:

NEARBY MAIN COLLIDE

STACK STACK STACK
<======:=========:: ])/1}271 _I

PART 1 PART 3 PART 2

This location is generated by taking into consideration simple volumes of bricks
that exist in the world. The planner knows the XYZ dimensions of partl and
part2. It decides to place partl just outside of the collision fange of part2. In
this case, the planner always tries to place the offending Collide Stack object
near the X axis which is more toward the middle of the robot’s work cell and
should thus be within the range of the robot.

Now that all objects on top of part?2 have been cleared, the planner in-

structs the robot to resume the putOn subtask and place part2 on top of parts.

NEARBY MAIN COLLIDE

STACK STACK STACK
PART 2 |

PART 1 PART 3 <«=== PART 2

The fina) subtask of the stack predicate, putOn(partl, part2) is then ex-

ecuted and succeeds. The final state of the world is show below.

NEARBY MAIN COLLIDE
STACK STACK STACK
PART 1
PART 2

PART 1 === PART 3

THE GOAL STATE CONFIGURATION
As can be seen in the examples above, the assembly and stacking tasks
are treated by the MIC Planner System as a conjoined series of ordered sub-

tasks that must be achieved in the given sequence in order to satisfy the main
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action predicates, assemble and stack. In the specific case of the assembly task,
the given order of the subtasks cannot be changed in the event that a subtask
fails. Each predicate in the MIC Planner System is designed to succeed given
minor perturbations in the robot’s world. In several cases, the planner will ask
the user if he wants to perform a specific operation if it is deemed in-
appropriate by the planner. If the user agrees to a inappropriate operation, the
planner will try its best complete its primary task by dealing with the resulting
world model. Only when an impossible situation exists will the planner give up
(e.g. when the user tries to fetch an object that is not in the world).

The MIC Planner System is capable of successfully handling perturbations
in it’s environment for two reasons. First, its assembly tasks are well under-
stood and take into account all possible task exceptions. Second, each assembly
task is represented in a planning hierarchy of subgoals where each subgoal relies
on the successful completion of lower level subgoals. Such a task description
hierarchy allows the human task planner to clearly describe tasks in terms of

easy to understand primitives.

3.2.5 Comparison with the NBS Robot Control System

The NBS Robot Control System, as described above, uses a hierarchy of
task .decompositions to successfully control robots and other machine tools
through their manufacturing operations.  The discussion here centers on the
lower four levels of the NBS RCS hierarchy where parallels in task decomposi-
tion can be found between both the NBS and MIC Plan.her Systems. The lower
levels of the RCS include the Work Station level, the Task level, the E-Move
level, and the Primative level.

Figure 3-9 shows the lower four levels of the NBS RCS that were used In
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Figure 3-9: RCS commands used at each task level.
the Automated Manufacturing Research Facility (AMRF) project. The Work
Station level allows the operator to specify fairly abstract motion actions such

as [14]:

e« TRANSFER( [Obj from A] to B [ end at C | ), robot acquires Ob
from A, moves to location B, releases the Obj, and then moves to
location C.

e ACQUIRE ( Obj at A ), robot moves the arm from its current posi-
tion to the Obj’s location at A and grasps the Oby.
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o RELEASE | end at A |, the robot releases the object it is currently
holding and moves to location A.

o CLEAR | drop at B | | end at C |, the robot releases the currently

held object at location B and then proceeds to location C.

e MOVE ([ Obj | | from A | to B ), causes the robot to move from
location A with or without Obj to location B. The Ob; 1s not
released.

These actions are in turn defined in terms of lower level actions that. the Task
level sends to the E-Move level.

To see just exactly how a Work Station command is actually performed,
we w'i” examine the decomPosition of the TRANSFER task defined at the Task
level in the control hierarchy. The TRANSFER task requires that 1) the robot
locate an object at location A, 2) move the object to location B, and 3) then
optionally end at location C or a safe point above location B* . To locate an
object in the work cell, the system has to interact with a vision system. This
is done through the LOCATE(Obj) subtask which is defined at the E-Move
level in the control hierarchy. Once the object is found, the system has to
move the robot’s arm to the object and grasp it. This is done by first calling
the E-Move subtask MOVE-TO-OBJ(Location). Now that the arm is at the

object’s location, the object must be grasped. PICKUP(Obj) is called to per-

form this subtask.

The system now decomposes the second part of the TRANSFER task.

This requires the robot to move to location B while holding the object. So, the

E-Move level subtask MOVE-TO(Location) is called. Once at location B, the

object must be released before the arm can proceed to location C. The E-Move

4A safe point is a term used to describe a location usually vertically above a previous point. This
point is considered “safe” in that it is out of the way of other objects in the robot’s work cell.
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subtask RELEAS'E(Obj)A does this.  The last part of the TRANSFER task
moves the robot’s arm to location C (or a safe location if C is not specified),
so again the E-i'Move subtask MOVE-TO(Location) is called. Finally the
E-Move level’s PAUSE subtask signals the completion of the TRANSFER task.
Each of the arm motion subtasks defined at the E-Move level’s is in turn
decomposed into lower level arm movement subtasks defined at the PRIMITIVE
task level (level 1 in the hierarchy). Tasks defined at this level include more
refined  motion  operations such as  GOTO(Point)) GOTHRU(Point),
APPROACH-POSITION-FINGERS(Obj), DEPAR T-POSfTION-FINGERS(Obj},_
IMMED-GRASP(Obj), and PAUSLE.

There are similar task operations and arm movement primitives in MIC
Planner System. Analogous to the NBS TRANSFER task is the MIC Planner’s

fetchFromTo predicate.

FETCHFROMTO(OBJECT, LOCATION ).

Here, the user specifies an Object to fetch and then a Location at which
to place the object. The fetchFromTo predicate is decomposed into two sub-
tasks, fetch(Object) and placeAt(Location). The fetch(Object) predicate initially
locates the object in the world model and then causes the robot to move to the
object and grip it. To do this, fetch 1s further decomposed:
ej':z:z's_ts;(O.bjec't,Space’),- approach(Space), and grip. The exists predicate checks to
see if the object exists in the database. If it does, then the location Space is
returned.  This information 1s then passed to the approach predicate which
moves the arm to the specified location safely. Once there, the grip predicate
instructs the robot to grasp the object at the current location.

The second part of the fetchFromTo main task is the placeAt predicate.
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PlaceAt contains three major subtasks: approach(Location), unGrip and depart.
After the object is placed at the specified location, it is released and the arm is
instructed by the planner to back away to a safe point location. fetchFromTo,
thus performs motion actions much like the NBS system’s TRANSFER task.
Both include task decomposition hierarchy and both use task level feedback.

Each one of these task levels In thve NBS Robot Control System hierarchy
receives feedback from its surrounding control levels at clocked time intervals.
The feedback comes from three sources: commands from higher level control
modules, status results of commands executed by lower level modules, and sen-
sory feedback from external sensors and vision systems as shown 1n Figure 3-10.
An example would be the following. The Task level receives abstract action
commands from the Work Station level above. The Task level processes these
command by decomposing them into lower level task commands and sends these
task commands to the E-Move level below. The E-Move level further decom-
poses the task commands into elemental robot movement commands such as
GOTO(Point). 1f the robot can successfully attain this point, a signal stating
this result is then passed back to the Task level.

Each control level is made up of related task processes. The process Iis
the basic element of the NBS system. A process is divided into three parts; an
input, the process, and an output [14]. The input part of a process formats the
incoming command into the desired format needed by that process. The output
part converts the data into a format usable by other processes in the system.
The actual process itself is a state table that is divided into input states with
associated output functions. This state table structure depicted in Figure 3-11]

is the same for each task level in the NBS RCS 'system.
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Figure 3-10: Input/output to/from each hierarchical level.
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Figure 3-11: A control level in the NBS System.

The NBS researchers chose the state table representation for each task
level in the NBS control hierarchy for several reasons. First, they believe that
any procedurally written robot program can be rewritten in terms of a finite-
state automaton (FSA) [1]. This has several benefits. First, it makes for an
explicit means for expressing simultaneous processes which are occurring at each
level of the control hierarchy. Secondly, a FSA facilitates explicit error han-
dling conditions. Thirdly, is allows for the addition of new sensor input devices
by simply adding new lines into the state table. A fourth advantage to the

FSA approach is that is provides a formalized an structured approach to
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describing each task level. Thus, as in the case of adding new sensor input or
new error condition checking, the programmer simply adds new lines (rules) to
the state table much like he would add rules to an expert system. A firal ad-
vantage to using FSAs and state tables over procedural robot programming lan-
guages is that it is easier to debug.

The MIC Planner System demonstrates that a rule-based approach can
provide some of the benefits of the state table approach used by NBS in their
RCS. Thoug}; there is explicit state table, descriptions of how task are decom-
posed maybe more straight forward in terms of Prolog rules than in terms of
state tables. The ability to increase the planner’s knowledge with new rules is
also easily done in Prolog.  Given Prolog’s automatic backtracking control
sc;heme, once a predicate fails, the MIC Planner System would attempt to use
other versions of the failed predicate that it had in its database in order to find
a solution.  Also, Prolog provides an interactive environment with a built-in

trace facility. This allows the programmer to easy debug his task descriptions.

3.2.6 Possible Future Enhancements

The MIC Planner System was designed to operate under the “STRIPS
assumption” in that the world is static and only action predicates change items
in the world. A worthwhile enhancement to the system would be to add real-
world feedback which would allow it to react to changing world conditions.
Thus, given continuous visual input from a simple overhead mounted vision sys-
tem, the planner could keep track of objects at least in X-Y space on the table
top. If a second side-mounted vision system were added, the planner could also
use this input to decide exactly where objects were in 3-space. Possibly the vi-

sion system could report the specific dimensions of the objects in both the X-Y
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plane and Z axis. Once a fasten operation is performed, the planner would have
{o inform the vision system monitoring the Z axis that the two objects are now
to be considered as one. Thus the Z axis dimension of height returned to the
planner would have to reflect both the top and Jbottom parts’ heights.

The MIC Planner System could easily be modified to use various sensor
inputs given the current hierarchical structure of the programmed tasks. Ul-
timately, the lowest level arm motion tasks would be responsible for checking
the availability of a destination location before an object is placed. For proper
use of this new world knowledge, a outer level monitor program would have. to
be written which would continuously poll for new feedback. Possibly the input
sensors would generate specific “world update” predicates that would be placed
in a file and read by the Prolog monitor system®. The planner’s “blackboard”
would contain specific slots (predicates) that could be updated directly by the
external sensor system.

The MIC Planner, like the NBS system, can behave in an opportunistic
fashion. In the field of real-time robotics, complete plan generation before the
system makes a move may not be the best route to go. Instead, a piecemeal
g;ener‘a,-ti-on of the plan, as in the opportunistic approach may be more flexible
and efficient. Indeed, many current experimental planning systems are starting
to take into account real-world constraints such as time dependent travel and
deadlines. If a planning system is ever to be used for a real-world application
such as robotic control, it will have to deal with the many uncertainties that

arise in a changing world.

5Th-is case of communicating via files is specific to the current implementation of Prolog for the PC

used in this project. This may change as new versions. of Prolog become available
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The use of production rules is seen an an important step in the develop-
ment of advanced planning systems. A real-time rule-based planning system
called the Flexible Planning System (FPS) has been developed, implemented and
tested in a real-world environment on the HILARE robot [18]. This rule-based
system allows for goal-directed as well as data-directed processing to occur.
The FPS system uses the STRIPS assumption in that all updates to the world
model are done exclusively through production rules. The FPS system allows
for parallel execution of these rules in real-time. The planning method used is
similar to the NOAH system in that rules build a procedural net of possible
choices. A set of critics then examine and expand promising nodes in the net-
work. These critics select goal expansion operators dynamically utilizing precon-
ditions (environmental context), current conditions, post-conditions, and con-
straints [18]. The system is made “smarter” by simply adding new rules to its
rule base. Because the system planning knowledge is represented in the form of
rules, heuristics may be added at any level of the planning hierarchy without
much trouble.

The FORBIN planner is a planning system that use spatial and temporal
reasoning to generate plans to deal with deadlines and travel time of a mobile
r’obof [15]. Here, a mobile robot is used to move about the factory floor sup-
plying various machines with supplies and machined parts. The FORBIN sys-
tem uses a hierarchical structure much like NOAH’s but modifies its plans based
on time. Two new modules are incorporated into the system to do this; the
Time Map Manager TMM and the Time Optimizing Scheduler TOS. As dead-
lines pass, the system reorders its subgoals by looking up temporal information

in the TMM module and then explores the possible repercussions of the subgoal
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reordering via the TOS module. A feasible extension to an opportunistic ver-
sion of the MIC Planner System would be to provide a means for the system to

deal with real-time constraints for given assembly operations.
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Chapter 4
Using Natural Language To Control A
Robot

The next level of research in developing intelligent robotic systems will be
the enhancement of user interface. An enhanced user interface might include a
speech recognition system that translates words and phrases spoken by humans
into ASCIl text in computer systems. Indeed, there are several system now
available on microcomputers that recognize the voice input of individuals. Many
of the currently available systems record a series of words spoken by a single
user and then let the user assign a secondary microcomputer command to the
spoken phrase. Once spoken, the specch recognition system generates microcom-
puter commands that can be used by applications programs of the operating
system. Such a system will allow easier access to complex applications
programs to both normal and handicapped users alike.

In advanced speech recognition systems, each word will be detected and
converted to ASCIl text. These sentence or phrase of words will then be
handed over to a natural language processing system which !?will parse the sen-
tences and determine a semantic meaning for each sentence parsed. The seman-
tic meanings will then be translated into commands in an artificial language
which is understood by the planning and control systems. Through the decom-
position of these artificial language commands, possibly into other lower level
commands that are only understood by the robot’s controller, the planning sys-
tems will guide the attached machinery through what will be considered intel-
ligent actions. It is also likely that low-level modules will return their com-

mand languages up to the high levels which in turn will translate the artificial
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languages back into natural language responses. These responses might be dis-
played on a CRT or possibly translated back into speech signals that will be
broadcast over a loudspeaker. Hence, natural language processing systems will
play an important part. in the development of the next level of intelligent
robotic systems.

Using natural language to describe tasks has several advantages [9]. First,
and probably most important, it provides for an interesting interaction between
the human and the machine. Programming a task for a robotic system will not
be as boring or as difficult to accomplish as it is currently is with first and
second generation robot programming languages. Natural language also tolerates
imprecision better than does the strict syntax of a robot programming language.
Also, and amount of information about a task that is to be conveyed can often
be condensed by using natural language. It 1s also feasible to claim that
describing a task in natural language will be faster than writing the task in a

robot control program.

4.1 The RVG System
The Register Vector Grammar natural language processing system is an ef-
ficient, compact, finite-state parsing system that 1s well-suited for real-time

situations.
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4.1.1 Overview of Register Vector Grammar NL Processing

The key feature that makes the RVG natural language processing system a
good choice for real-tilme applications is that 1t its syntactical as well as lexical
knowledge are represented in a compact data s.tructure'called ternary feature
vectors. Ternary feature vectors are fixed length ordered vectors which allow
for three values for each feature. The values range from O to 2 where 0 means
the feature is off or doesn’t exist, 1 means the feature is on or does exists, and
9 mean that the system doesn’t care what the value of the feature is (a mask).
The ordering of features in a ternary vector 1s significant only in that the
processing systein knows which features it 1s dealing with. The actual order of
features defined in a ternary vector by the RVG programmer is insignificant to
the processing performance of the system. The ternary feature vectors are 1m-
plemented as a pair of bitvectors (Pascal sets) and are compared by ternary
operators in a very fast bit-wise fashion. Thus, whole vectors are processed 1n
parallel on current machine architectures. 1t 1s theoretically feasible to build an
RVG machine which exploits ternary operations on these feature vectors.

A register vector grammar consists of a table of syntactic production rules
which contain two vectors, a condition vector (the vector that must be matched
in order to use that rule) and a result vector (the action to be taken once that
rule is fired). A RVG lexicon consists of fixed-size lexical entries, which, in ad-
dition to information pertaining to morphology and syntactic categories, is also
made up of ternary feature vectors for representing semantic constraints. The
RVG parser uses the grammar and lexicon to parse 1nput sentences and
generate semantic descriptions. It is important to note that semantic forms are

built and checked in step with the syntactic parse of the sentence. Thus,
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semantics can help constrain on syntactic parsing.

4.1.2 Overview of RVG System Components
Figure 4-1 shows an overview of the RVG natural language processing sys-
tem, including its various components, one of which is the MIC Planner System.

The components of the system include:

e The Editor Subsystem - Allows the RVG programmer to modify
syntactic productions and lerical entries.

o The Parser Subsystem - Parses sentences and reports its results in the
form of two registers, the Current Syntactic State Register, or CSSR
and the Current Predicative State Register, or CPSR.

e The Pragma Subsystem - This module receives the registers from the
parser, interprets them, and generates task commands for the planner.

e The MIC Planner Subsystem - This is the planner. It receives Prolog
predicates from the Pragma subsystem and generates robot moves.
After moves, Update is called.

e The Update Subsysten - This subsystem performs all the necessary
world model updates.

The RVG language programmer can initially defines his syntax and lexical
dictionary by using the RVG Editor. The Editor subsystem is called from the
main RVG pregram and acts as a separate module independent from the other
RVG subsystems. The Editor provides the RVG language programmer the
means to add and delete syntax productions and lexical entries. ~ With the
Editor, the programmer can also add '% delete entire features (a column In the
ternary vector) globally throughout al]; vectors in both the syntax and lexicon.
Mostly, the Editor is used by the RVG grammar designer to modify existing
ternary features in the grammar and lexicon. Modifying grammar features will

determine the number of productions that are available at a given point in the
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syntactic parse. Modifying semantic features in the lexicon will determine which
words are semantically valid at any point in the parse.

Once the changes have been made, the Editor prompts the user if he
wants to save the changes. The user is not forced to save any changes. In-
stead, he may choose to exit the Editor, return to the main RVG options
menu, and choose the Parser subsystem to try out the changes that he has
made. If the changes are not agreeable, then the user can reselect the Editor
subsystem and make corrections.

The RVG Parser consists of three interacting modules:

1. A lexical component (Morphology and Lookup),

2. A syntactic component (Syntax),
3. And a semantic component (Semantics).

The Parser contains two special registers that it updates as 1t parses an
input sentence. These are the Current Syntactic State Register (CSSR) and the
Current Predicative State Register (CPSR). The CSSR, a ternary feature vec-
tor expressing syntactic state, is generated and updated as the parse proceeds.
The CPSR is a set of pointers to semantic entities that are generated from lex-
ical materials, and retried as new information 1s made available.

The parser starts with the CSSR register initialized to a current starting
state. As words are read in, the morphology and lookup modules are called
upon to recognize each word. These routines return a category (noun, transitive
verb, etc) as well as a ternary vector containing semantic information about the
word. The RVG parser then searches for productions that match the category

of the word. This is the match operation and 1s demonstrated below:
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TERNARY MATCH OPERATION

CSSR = 1222122011
CONDITION VECTOR = 1122122022

Here, a production’s condition vector matches the CSSR by matching each
feature either exactly (by O or 1) or by using the mask (the “don’t care” con-
dition of a 2) condition. Since this production matches, it i1s a possible parse
state for the word in the sentence. A copy of this CSSR is then made and
kept for the next word that is parsed. Before storing, this copy of the CSSR is

changed by the matching production’s result vector as is demonstrated below:
TERNARY CHANGE OPERATION
CSSR COPY - 1222122011

RESULT VECTOR = 0011022022
NEW CSSR COPY = 0011022021

The changed CSSR is now placed in a queue along with other possible syntactic
parse path CSSRs. Each one is then selected from the queue and tested via
the match operation once the next word in the input stream 1s parsed. DBecause
of this straight forward matching and updating of a vector of features at one
time, the entire RVG natural language processing system is fast. Moreover,
RVG avoids recursion, as found in common ATN parsers, and hence lots of
memory overhead is not required. Embedding is instead modeled by a short ar-
ray simulating human short-term memory. The system is basically a fast,
forward-chaining production system.

As the parse progresses, semantic information is also being built up and
stored in the CPSR. Here, the information, all available within lexical entries,
is returned by the Lookup module is used by predicative semantics to build
semantic forms in the CPSR. Since semantic information is available during the

parse, it can be called upon to help further constrain processing by eliminating
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bogus parses of tho sentence. Ternary vectors allow constraints to be
propagated down the parse chain without any extra overhead. Since the con-
straints are initially there, they only need be checked for during the match ter-
nary operation. New constraints are added as the CPSR is refined. For a fur-
ther explanation of RVG syntax and semantic parsing, refer to [6] and [7].

The next major subsystem of the RVG natural language system is the
Pragma module. This subsystem receives both the CSSR and CPSR from the
Parser upon the completion of a successful parse of the input sentence. The
function of this module is to take the semantic information built up during the
parse in the CPSR, made of abstract lexical material, and see if it refers to
particular objects in the robot’s WOI"](; If so, and 1If the sentence is imperative,
Pragma will generate Prolog task predicates that are passed to the planner for
actual execution.

The Pragma subsystem is divided into two modules, Denote and Interpret.
The Denote module takes CPSR and tries to establish reference with respect to
a database (the robot’s world model). If a particular object cannot be
referenced in the database, the module asks the user if he wants to instantiate
a new object with the given name obtained during the parse of the original in-
put sentence. Thus, the denotational semantics, takes abstract meaning stored
in the CPSR and allows it to reference objects in the world.

Once Denote has established reference, the Interpret, module 1s ready to as-
sembly appropriate task predicates in the form of Prolog predicates. These
Prolog task predicates are then passed to the planner subsystem where physical
actions actually are planned and carried out. For more information on the

Denote module and denotational semantics, refer to |20.
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The Planner subsystem, know as the MIC Planner, then reads in the
Prolog task predicates and acts on them accordingly. MIC Planner is divided
into two modules, Decompose and Act. The Decompose module allows for com-
plete task decomposition from abstract meaning into lower level robot arm mo-
tion primitives. As pieces of the task are decomposed, the Act module 1is
called. Act is a predicate that generates the robot controller commands for the
TeachMover robot. These commands are sent to the CALC p}rogram which ac-
tually calculates the arm trajectory and interfaces with the robot’s controller.
After an object is moved in the world, the Planner calls the Update subsystem.

The Update subsystem must update the world model database for the

RVG natural language system when the planner sends 1t a parameter list of ob-

ject features to be updated.

4.1.3 Future System Goals

As of the writing of this paper, several major subsystems of the RVG
natural language system have been completed. Some additional integration of
submodules remains to be done. One specific integration problem related to the
planner is that of maintaining the world model. Since the Planner subsystem
has been written in Prolog, the Pragma subsystem, in order to pass information
to the Planner, must write task predicates as Prolog predicates to an inter-
mediate file which is then read by the Planner. Thus, two world models must
be maintained by the RVG System, -one for the Pragma subsystem to reference
with its Denote module, and one for the Planner to reference upon decomposing
motion tasks. The Update subsystem, receiving another file from the Planner,
will change the RVG database.

Thus we note that the two world models need not contain the same infor-
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mation. The RVG database used by Pragma contains various features about
objects in the world such as object color, size, etc., that can be referenced by
the user through natural language queries. The Planner world model does not
have to contain this infermation. Instead, the Planner’s wofld model only has
to maintain simple labels for each object as well as XYZ positional information.
Thus, “Moving the red block to the top of the green block” may require the
denotational system to search the RVG database for a specific instance of a
block that is red (blockl) and another instance for a block that 1s green
(block2). It would then have to return labels used by the planning system’s
world model and give them to Interpret.  Interpret would then generate the

Planner predicate putOn and combine the object parameters to finally produce

the following MIC Planner input:

PUTON( BLOCK]1,
BLOCK2 ).

68




Chapter 5

Summary

Many of the topics discussed in this paper are currently under investiga-
tion by researcher around the world.  Proposals have been made for the
development of a universal task-oriented robot programming languages that will
be transportable from one robot to another. We have seen that Prolog plan-
ning systems allows for functional extensibility through the linking together of
lower level predicates in a hierarchical fashion. Thus, a programmer can easily
describe abstract assembly tasks to a Prolog planning system in a relatively
short time. We have also seen that a planning system that Incorporates a
hierarchy of task predicates is in itself a step toward the next generation of
robot manipulator languages. Robot operators in the near future might use
such object-oriented task languages to write complete assembly procedures by
simply piecing together a few Prolog predicates from a larger library of possible
lower level primitive assembly task predicates.

One major problem that- must be examined before any generalize task-
oriented language can be developed is the definition of robot independence. Be-
cause there exists many different robot geometries and configurations, it is dif-
ficult for many researchers to agree on what set of robot motion primitives are
universally acceptable for use by all robotic systems [16|. A rotation primitive
of a robot’s base will work fine for cylindrical and spherical coordinate robots,
but how will this primitive action be performed by XYZ Cartesian coordinate
robots or mobile robots that have no base? Indeed, robot independence and the
definition of specific motion primitives is another research area in which the Na-

tional Bureau of Standard’s skills and expertise will be needed.
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It is conceivable that in the future, robot operators will communicate ver-
bally with robots and instruct them to perform a variety of tasks. The user In-
terface will combine the technologies of a signal processing speech recognition
system and natural language parsing system. The underlying meani‘ng of the
spoken sentence will most likely be converted into some form of intermediate
high-level object-oriented task language that the robot understands. The high-
level task will then be broken down into basic sets of primitives that control
specific robot motions and actions. Various complex input sensors will provide
the needed feedback to allow the robot to react autonomously in a complex and
dynamically changing environment.

This thesis has discussed one approach in developing an easy to use Inter-
face between man and robot. It is apparent that in order to make intelligent
machines, many aspects of artificial intelligence will have to be combined. This
will not only include the areas of planning and natural language processing, but
also other AI related subfields such as vision systems, object recognition, speech
understanding and speech synthesis. Contributions from other disciplines will
also be needed such as enhanced grippers and arm configurations from Mechani-
cal Engineering, better planning methods and the integration of Cad/Cam from
Industrial Engineering, new microprocessors such as an RVG machine from
Electrical Engineering, and integration of shop floor and office networks (MAP
and TOP network protocols) from Computer Science. With contributions from
each engineering discipline, the advent of easy to use intelligent machine may
becomeé a reality.

The advent of autonomous robots is not science fiction. Today, In many

academic and industrial artificial intelligence and robotics laboratories around
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the world, researchers are working hard at advancing the state-of-the-art In
robot path planning systems that handle conflicts, improved vision systems for
scene analysis, complex robot sensors including both tactile and force sensing,
and improved man-machine interfaces including graphics and natural language
input and natural language generation. Though most of this technology is still
in the experimental stages, both industry and the government are providing
funding for much of the basic research.  The United States government’s
Defense Advanced Research Projects Agency (DARPA) is very interested in such
research projects. ~ DARPA  has already proposed four advanced Al/robotic
rescarch projects, one of which is the development of an autonomous land
vehicle. It is estimated that the overall U.S. government research funding for
robotics alone in FY 1982 and 1983 was approximately $20 million per
year [12].

The aim of this thesis was to provide an overview and a demonstration of
how Al may help robot manufactures develop intelligent robots as well as what
might be expected by robot operators 1In dealing with industrial robots.
Through the use of various new compﬁt,er technologies, robot operators in the
future will be able to use natural language, graphics, teach pendants, and high-
level task languages to quickly, easily, and safely train their industrial robots to

perform a variety of tasks.
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Appendix A
Example Run Of Assembly Task

[C:\prolog] prolog

A.D.A. PROLOG
type VMA (LARGE MODEL - VIRTUAL MEMORY)
Top of memory ¢ 527990
Workspace Available: 256 Kbytes
Version 1.80 - 12/02/85
Copy for Keith Werkman
Single CPU License
Copyright Robert Morein and Automata Design Associates 1985
Dresher, Pa. (215) - 646-4894

/#**#*******#*****##*##****#**###***#******#**#*#***##*******#*

Consult the prolog based robot planning program.
o ok e ok ok o o ok o o ok oo ok o o ok ok ok o ook ok Rk kR R R R kR ks ok ok ok /

root/user/?-  consult(robot).

Compiling robot.MIC

/******************ﬁ**#***‘#***##*********#**#*#******##***##**

Start of main program.
o sk ok o o ook ok o ok o o ok o ok ok s ok ok ok o o o ok o o o ok o ok oo ok oo ok R sk Rk ok ke /

Planner by Keith Werkman. Version 1.2, 12/11/85

partl is located at:[5,5,0], oriented: [-90,0,1],
features:[1,1,1].

part2 is located at:[5,-5,0], oriented: [-99,0,1.5],
features:[1.5,1.5,1.5].

part3 is located at:[8,0,0], oriented: [-990,0,2],
features:[4,2,1] .

The arm is located at: [5,0,0], Pitch=-90, Roll=0, Grip=0 .

The gripper is holding: nothing .

Type help. for help.

Yes.
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/####‘#*#“#****####*‘#“#*‘####‘##‘*#“#‘#““‘#‘#‘##."##‘***

THE FOLLOWING IS A LIMITED TRACE OF THE ASSEMBLE TASK
where two part?2 are fastened together into one. In this

case, there is a collision detected at the assembly point
and the offending part, PART3, is removed to a collision
stack. After the collision condition is resolved, the

assembly task proceeds until completion.
L e L R R R L L LY

root/user/?- ggsemble(partl, part2, [8.0,0.0,0.0] ).

Assembling partl and part2 at [8,0,0].

SUB TASK: FETCH FROM TO. Fetching partl and placing at [8,0,0]. - ve
==Departing arm==

==Moving Above Drop Point==

==Moving arm TO Drop Point==

Re leased Object: nothing
Gripping Object: partl
==Departing arm==

==Moving Above Drop Point==
==Moving arm TO Drop Point==

«*x%x CollisionWarning: part3 found at [8,0,0] ##wx
Clearing [8,0,0].

---->Storingobject in gripper at [2,-5,0]<(----
==Departing arm==
==Moving Above Drop Point==
==Moving arm T0O Drop Point==
Released Object: partl
==Departing arm==
==Departing arm==
==Moving Above Drop Point==
==Moving arm TO Drop Point==
Gripping Object: part3
==Departing arm== \Po/
==Moving Above Drop Péint==
==Moving arm TO Drop Point==

Released Object: part3

==Departing arm==
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----)>Restoringprevious gripper object(----
==Departing arm==
==Moving Above Drop Point==
==Moving arm TO Drop Point==
Gripping Object: partl
==Departing arm==
==Moving Above Drop Point==
==Moving arm TO Drop Point==

Released Object: partl

==Departing arm==

SUB TASK: FETCH FROM TO. Fetching part2 and placing at [8,0,0].
==Departing arm==
==Moving Above Drop Point==
==Moving arm T0 Drop Point==
Gripping Object: part2
==Departing arm==
==Moving Above Drop Point==
==Moving arm TO Drop Point==

Released Object: part?2

==Departing arm==

SUB TASK: MATE. Mating partl to part2 .
SUB TASK: TWIST. Twisting part2.

Gripping Object: part?2
SUB 'TASK: FASTEN. Fastening part2 to partl .
SUB TASK: MELT. Melting part2 to partl.

part2 has been removed from the world.
Now part2 is part of partl.

Released Object: part2
==Departing arm==
Assembly Task: Completed.

Yes.
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Tt e e L T L R R LR L L AL A L LR LA Al il bbb bl
Display the world contents after the assemble operation has

been completed.
T L L LT LT T T TR T L L LY Y

root/user/7- enorld.
partl is located at:[8,0,0], oriented: [-90,0,1],

features:[1.5,1.5,2.5].

part3 is located at:[2,5,08], oriented: [-99,0,2],
features:[4,2,1].

The arm is located at: [8 , @ , 6], Pitch=-98, Rol =98, Grip=3.

The gripper is holding: nothing .

Yes.

/***‘**##***##**#*##**##*#*##‘*####*#*#*##**####***##**####*#*‘

NOTICE: PART2 is does not exist in the world. It has been
fastened to PART1. Note the new height dimension of PART1.
It used to be 1 inch high. Now it is 2.5 inches high.
PART2’s height was 1.5 inches. Thus 1 + 1.5 = 2.5 inches.

/##*##********#*********#*#*****#*#*#*#****####*********#**#*#*/

root/user/?- ezitsw.
Exiting to the operating system.

[C:\prolog]
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Appendix B
Example Run Of Assembly Task
With Full Trace

/####tt#**##*###t#**###***#*****#*##*#**#**#*##**#****t#*#**tt*
The following is an example run of the ASSEMBLY task

predicate with the SAVE-MOVES option enabled. Hence, all

robot arm moves are written out to a file called MOVES.MIC.

These moves are encoded in commands in the MIC language and

can be compiled into native code by the MIC Compiler System.

RESET the system with three parts.
#***t#*####**##*#**t*#*t#*##t*t#*tt#***tt*#*****###***#**#***#/

root/user/?- snitralize.

Planner by Keith Werkman. Version 1.2, 12/11/85

partl is located at:[S,S,ﬂ],oriented:[égﬂ,ﬁ,l],
features:[1,1,1].

part2 is located at:[S,—S,Q],oriented:[-90,0,1.5],
features:[1.5,1.5,1.5].

part3 is located at:[B,GQG],oriented:[—90,0,2],
features:[4,2,1] .

The arm is located at: [6 , @ , @), Pitch=-90, Rol =0, Grip=0 .

The gripper is holding: nothing .

Type help. for help.
Yes.
/*##**#*#********#*************#****#******#*#***#**#*#**#*****

This time, run program with the Save Moves option enabled.
***t*t***ttttt**¢¢¢¢*¢**¢¢¢y5£@*¢**¢*¢:¢*¢¢¢¢¢**¢m*¢***¢¢¢¢**¢/

root/user/?- sqveMoves(yes).
Command output *ENABLED=*.

Logging move to MOVES .MIC

Yes.
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/##*#***###**#t**#*###****##*******#***###******#***#*##**“##*

Call the ASSEMBLY predicate again to generate log.
o e o o o o ok o o o oo o oo o ok o o oo o oo ok R R s [

root/user/?- a“emﬂe(parﬂ, pad2{8.0,0.0,0.0/ )-

Assemb| ing partl and part2 at [8,0,0].
SUB TASK: FETCH FROM TO. Fetching partl and placing at [8,0,08].

==Departing arm==
Moving FROM: [5,90,0]

TO: [5,0,5]. Gripper holding nothing .
Logging move to MOVES.MIC

==Moving Above Drop Point==
Moving FROM: [5,0,5]

T0: [5,56,5). Gripper holding nothing .
Logging move to MOVES.MIC

==Moving arm TO Drop Point==
Released Object: nothing

Moving FROM: [5,5,5]
TO: [5,5,08]. Gripper holding nothing .
Logging move to MOVES.MIC

Gripping Object: partl

==Departing arm==
Moving FROM: [5,5,0]

TOo: [5,5,5). Gripper holding partl .
Logging move to MOVES.MIC

==Moving Above Drop Point==
Moving FROM: [5,5,5]

TO0: [8,0,5]. Gripper holding partl .
Logging move to MOVES.MIC
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==Moving arm TO Drop Point==

weaw Collision Warning: part3 found at [8,0,0] #+s»
Clearing [8,0,0].

---->Storingobject in gr'}‘pper at [2,-5,0]<(----

==Departing arm==
==Mov ing Above Drop Point==
Moving FROM: [8,8,5]
TO: [2,-6,5]. Gripper holding partl .
Logging move to MOVES .MIC

==Moving arm T0 Drop Point==
Moving FROM: [2,-5,5]

TO: [2,-5,08]. Gripper holding partl .
Logging move to MOVES.MIC |

Released Object: partl

==Departing arm==
Moving FROM: [2,-5,0]

TO: [2,-5,5). Gripper ho lding nothing .
Logging move to MOVES .MIC

==Departing arm==
==Moving Above Drop Point==
Moving FROM: [2,-5,5]
TO: [8,9,5]. Gripper holding nothing .
Logging move to MOVES .MIC

==Moving arm T0 Drop Point==
Moving FROM: [8,9,5]

T0: [8,0,8]). Gripper holding nothing .
Logging move to MOVES .MIC

Gripping Object: part3
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==Departing arm==
Moving FROM: [8,0,0]

T0: [8,0,5). Gripper holding part3 .
Logging move to MOVES.MIC

==Moving Above Drop Point==
Moving FROM: [8,0,5]

TO: [2,5,5]. Gripper holding part3 .
Logging move to MOVES.MIC

==Moving arm TO Drop Point==
Moving FROM: [2,5,5]

T0: [2,5,0]. Gripper holding part3 .
Logging move to MOVES.MIC

Released Object: part3

==Departing arm==
Moving FROM: [2,5,0]

TO: [2,5,5). Gripper holding nothing .
Logging move to MOVES.MIC

---->Restoringprevious gripper object{(----

==Departing arm==
==Moving Above Drop Point==
Moving FROM: [2,5,5]

TO: [2,-5,5]. Gripper holding nothing .
Logging move to MOVES.MIC

==Moving arm TO Drop Point==
Moving FROM: [2,-5,5]

T0: [-2,-5,0] . Gripper holding nothing .
Logging move to MOVES.MIC

Gripping Object: partl

==PDeparting arm==
Moving FROM: [2,-5,0]

T0: [2,-5,5]. Gripper holding partl .
Logging move to MOVES.MIC

==Moving Above Drop Point==
Moving FROM: [2,-5,5]

T0: [8,0,5]. Gripper holding partl .
Logging move to MOVES.MIC

==Moving arm TO Drop Point==
Moving FROM: [8,0,5]

TO: [8,0,0]. Gripper holding partl .
Logging move to MOVES.MIC
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Moving FROM: [8,0,0]
TO: [8,0,0]. Gripper holding partl .
Logging move to MOVES.MIC

Released Object: partl

==Departing arm==
Moving FROM: [8,90,0]

TO: [8,0,5]. Gripper holding nothing .
Logging move to MOVES.MIC

SUB TASK: FETCH FROM TO. Fetching part2 and placing at [8,90,0].
==Departing arm== |
==Moving Above Drop Point==
Moving FROM: [8,0,5]
TO:.[56,-5,5]. Gripper holding nothing .
Logging move to MOVES.MIC

==Moving arm TO Drop Point==
Moving FROM: [5,-5,5]

TO: [5,-5,0). Gripper holding nothing .
Logging move to MOVES.MIC B

Gripping Object: part2

==Departing arm==
Moving FROM: [5,-5,0]

TO: [5,-5,5]). Gripper holding part2 .
Logging move to MOVES.MIC

==Moving Above Drop Point==
Moving FROM: [5,-5,5]

TO0: [8,0,5]. Gripper holding part2 .
Logging move to MOVES.MIC

==Moving arm TO Drop Point==
Moving FROM: [8,08,5]

T0: [8,0,1]. Gripper holding part2 .
Logging move to MOVES.MIC*

Released Object: part2

==Departing arm==
Moving FROM: [8,8,1]

TO: [8,0,5]. Gripper holding nothing .
Logging move to MOVES.MIC
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SUB TASK: MATE. Mating partl to part2 .
SUB TASK: TWIST. Twisting part2.

Moving FROM: [8,9,5]
TO: [8,0,1]. Gripper holding nothing .
Logging move to MOVES .MIC

Gripping Object: part2

Gripper rotated: 90 degrees.
Object in gripper (part2), also rotated.
Logging move to MOVES .MIC

SUB TASK: FASTEN. Fastening part2 to partl .
SUB TASK: MELT. Melting part2 to partl.

part2 has been removed from the world.
Now part2 is part of partl.

Released Object: part2

==Departing arm==
Moving FROM: [8,0,1]

T0: [8,0,5]. Gripper holding nothing .
Logging move to MOVES.MIC

Yes.

/o oo ok ok oo oo o o oo o ok ok kR K R KK R R R R kK K
Display the world contents after the assemble operation has

been completed.
s o ok ok ok ok o ok o o o ok ok ok ko o o okl o ook ok ok R R R R kR R ks kR k[

root/user/?- snorld.

partl is located at:[8,0,0], oriented: [-90,0,1],
features:[1.5,1.5,2.5].

part3 is located at:[2,5,0], oriented: [-99,0,2],
features:[4,2,1].

The arm is located at: [8 , @ , 5], Pitch=-90, Rol =908, Grip=3 .

The gripper is holding: nothing .

Yes.
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Appendix C
MIC Code Generated By MIC Planner

CLLtrrrrrrrer e R LR L R L L L L Ll
The following file was generated by the MIC Planner System
for the task:

ASSEMBLE ( Partl, Part2, [8.0, 0.0, 2.0] )

This code can be compiled into native commands for
the TeachMover instructional robot by Microbot, Inc.
using the MIC Compiler System.
T L L L L L T T T R T PR T YY)

(+ =START=File generated by MIC Planner:
File opened on: Wed Dec 11 15:39:11 1985

*)
(+ File Re-Opened For Output =)

move ( 5.00, 9.00, .00, -90.00, 0.00, 0.90 )
(+ MAIN TASK: Assemble partl TO part2 «)
(« SUB TASK: Fetch partl TO Location x)

(= PREDICATE: Fetch partl =)

(= PREDICATE: Approach Location %)

(= PREDICATE: Depart =)

move ( 5.00, 9.009, 5.0, -990.00,
move ( 5.00, 5.00, 5.0, -90.00,
open

move ( 5.00, 5.00, .00, -90.00, .00, 3.00)
grip ( 1.00 )

(» PREDICATE: Place At Location »)

(» PREDICATE: Approach Location %)

(= PREDICATE: Depart =)

move ( 5.00, 5.00, 5.00, -99.00, .00, 1.00 )
move ( 8.00, ©.00, 5.00, -90.00, ©.00, 1.00)

Q

.00,
.00,

Q
fo)
Q
~

O]
(]
]
o
~

o

Ixxxv




(s CORRECTION PREDICATE: Clear Space =)
PREDICATE: Fetch part3 =)
(#+« CORRECTION PREDICATE: Clear Gripper Of Object part3 ")
PREDICATE: Approach Location =)

(»

(=
(»
move
move
open

(=

move

(»
(=
move
move

( 2.900,

(

(

(
(
(

(
(
(

(

(
(
(

PREDICATE: Depart =)
-5.00,
2.00, -5.00,
PREDICATE: Depart =)
2.00, -5.00,

5.00,
0.00,

5.00,

-990.00,
-90 .00,

-90 .00,

PREDICATE: Approach Location )

PREDICATE: Depart =)

8.00, 0.00,
8.00, 2.00,
2.00 )

5.00,
2.00,

-90 .00,
-90.00,

PREDICATE: Place At Location %)
PREDICATE: Approach Location =)

PREDICATE: Depart =)

8.00, 0.00,
2.00, 5.00,
2.00, 5.00,

PREDICATE: Depart =)
2.00, 5.00,

5.00,
5.00,
2.00,

5.00,

-90 .00,
-90 .90,
-990 .00,

-90.900,

PREDICATE: Approach Location =)

PREDICATE: Depart =)

2.00, -5.00,
2.00, -5.00,
1.00 )

5.00,
¢.00,

-990.00,
~990.00,

'PREDICATE:‘ Approach Location %)

(
(
(
(

(

PREDICATE: Depart =)

2.00, -5.00,
8.00, 2.00,
8.00, 0.00,
8.00, ¢.00,

PREDICATE: Depart =)
8.00, 2.00,

5.00,

-90.900,
-90 .00,
-90 .00,
-90.00,

-gg .ZG,

(* SUB TASK: Fetch part2 TO Location *)
PREDICATE: Fetch part2 =)
PREDICATE: Approach Location =)

(
(
(

(
(
(

- (

PREDICATE: Depart =)

5.00, -5.00,
5.08, -5.00,
1.50 )

5.00,
0.00,

-90.00,
-90.00,

PREDICATE: Place At Location )
PREDICATE: Approach Location =)

PREDICATE: Depart =)

5.00, -5.00,
8.00, ¢.00,
3.00,

8.00,

}_i
PREDICATE: Depart x)
8.00, 0.00,

5.00,
5.00,
1.00,

5.00,

-90.900,
-90 .00,
-90 .00,

-90.00,

Ixxxvi

Q.

Qe

Qo

0.
(»* CORRECTION PREDICATE: Restore Gripper Object #x)

Q@

OB B B

Q8

O B

.00,
.00,

.00,
.00,

.00,

.00,
.00,
.00,

00,

.00,
.00,

.00,
.00,
.00,
.00,

.00,

.00,
.00,

.00,
.00,
.00,

.00,

—

3.

b

—




(« SUB TASK: Mate partl TO part2 »)
(« SUB TASK: Twist part2 »)

move ( 8.00, 0.00, 1.00,
grip ( 1.60 )

(#+ ' PREDICATE: Rotate Gripper )
move ( 8.00, .00, 1.00,

-90.00, ©.00,

-90.00, 90.00,

(« SUB TASK: Fasten part2 TO partl »)
(» SUB TASK: Melt part2 TO partl (make one) =)

open
(» PREDICATE: Depart =)

move ( 8.00, ©.00, 5.00, -90.00, 90.00,

Ixxxvii

3.00 )

1.60 )

3.00 )
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Appendix D
Listing File Generated By
The MIC Compiler System

Line Addr Source

1 Y] (lht#t**#lht#tttttt#tt#t*###t###t#ttt*t*t#tt#ttt*ttt#ttt**#*tttt
2 0 THE FOLLOWING FILE WAS GENERATED BY THE MIC PLANNER SYSTEM
3 %) FOR THE TASK:

4 %) ASSEMBLE ( PART1, PART2, [8.90, 8.0, 0.9] )

5 %)

6 0 THIS CODE CAN BE COMPILED INTO NATIVE COMMANDS FOR

7 0 THE TEACHMOVER INSTRUCTIONAL ROBOT BY MICROBOT, INC.

8 0 USING THE MIC COMPILER SYSTEM.

9 s] tt*#*t*tttttttt*tt***tttt*t*ttt¢**t**t**ttwttt**#t#ttt*itt#t*)
10 0

11 @ (» =START= FILE GENERATED BY MIC PLANNER:

12 0 FILE OPENED ON: WED DEC 11 15:39:11 1985

13 %)

14 0 =)

15 @ (+ FILE RE-OPENED FOR OUTPUT *)

16 0
17 @ MOVE ( 5.00, 0.00, .00, -990.00, 0.00, 2.00 )
18 1 (+ MAIN TASK: ASSEMBLE PART1 TO PART2 »)
19 1 (+ SUB TASK: FETCH PART1 TO LOCATION *)

20 1 (» PREDICATE: FETCH PART1 )

21 1 (= PREDICATE: APPROACH LOCATION =)

22 1 (» PREDICATE: DEPART =)

23 1 MOVE ( 5.00, 0.00, 5.00, -99.00, 2.00, 2.00 )
24 2 MOVE ( 5.00), 5.00, 5.00, -90.00, 2.00), 2.00 )
25 3 OPEN

26 4 MOVE ( 5.00, 5.00), .00, -90.00, @.00, 3.00 )
27 5 GRIP ( 1.00 )

28 6 (= PREDICATE: PLACE AT LOCATION =)
29 6 (= PREDICATE: APPROACH LOCATION x)

30 6 (= PREDICATE: DEPART =)

31 6 MOVE ( 5.00, 5.00, 5.00, -990.00, 2.00, 1.00 )
32 7 MOVE ( 8.00, 0.00, 5.00, -90.00, 2.00, 1.00 )
33 8 (»+ CORRECTION PREDICATE: CLEAR SPACE =)

34 8 (» PREDICATE: FETCH PART3 )
35 8 (»* CORRECTION PREDICATE: CLEAR GRIPPER OF OBJECT PART3 =)
36 8 (= PREDICATE: APPROACH LOCATION =)

37 8 (= PREDICATE: DEPART =)

38 8 Move ( 2.00, -5.00, 5.00, -90.00, 2.00, 1.00 )
39 9 MOVE ( 2.00, -5.00, 0.00, -990.00, 2.00, 1.00 )

49 10 OPEN

41 11 (= PREDICATE: DEPART )

42 11 MOVE ( 2.9, -5.00, §5.00, -90.00, ©.00, 3.00 )
43 12 (* PREDICATE: APPROACH LOCATION )

44 12 (»  PREDICATE: DEPART )

45 12 MOVE ( 8.00, ©.00, 5.00, -90.00, @.00,
46 13 MOVE ( 8.00, ©.00, ©.00, -9¢.00,  0.00, 3.00 )
47 14 GRIP ( 2.00 ) ‘

w
Q
Q
~
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48

49

50
51
52
53
54

56

66
57
58
59
%
61
62

63

84
65
66
67
68
69
70
71
72
73
74

75
76.

17
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

96

97
98

16
16
15
16
16
17
18
19
19
20

20

20
20
21
22
23
23
23
24
25
26
27
28
28
29
29
29
29
29
30
31
32
32
32
32
33
34
35
36
36
37
37
37
38
39
39
40
40
40
41
41

(= PREDICATE: PLACE AT LOCATION =)
(= PREDICATE: APPROACH LOCATION ")
(» PREDICATE: DEPART =)

MOVE ( 8.00, ©.00, 5.0, -90.00, ©.00,
MOVE ( 2.06, 65.00, 65.00, -90.08, ©.00,
MOVE ( 2.00, ©5.00, ©.00, -90.00, ©.00,
OPEN

(«  PREDICATE: DEPART #)

MOVE ( 2.00, 5.00, ©5.00, -90.00, ©.00,

(#% CORRECTION PREDICATE: RESTORE GRIPPER OBJECT ##)
(+  PREDICATE: APPROACH LOCATION #)
(+ PREDICATE: DEPART )

MOVE ( 2.00, -5.00, 5.00, -90.00, ©0.00,
MOVE ( 2.00, -5.00, ©.00, -90.00, ©0.00,
GRIP ( 1.00 )

(« PREDICATE: APPROACH LOCATION )

(+ PREDICATE: DEPART #)

MOVE ( 2.0, -5.09, 5.80, -92.80, ©0.00,
MOVE ( 8.00, ©.00, 5.00, -90.00, ©.00,
MOVE ( §.00, ©.00, ©0.00, -90.00, ©0.00,
MOVE ( 8.00, ©0.00, ©0.00, -90.00, ©.00,

OPEN

(% PREDICATE: DEPART =)

MOVE ( 8.00, ©0.00, 5.00, -99.00, ©.00,
(« SUB TASK: FETCH PART2 TO LOCATION =)

(% PREDICATE: FETCH PART2 &)

(«+  PREDICATE: APPROACH LOCATION #) N

(«  PREDICATE: DEPART #)

MOVE ( 5.090, -5.00, 5.00, -990.00, 0.00,
MOVE ( 5.00, -5.08, ©.08, -90.00, ©.00,

GRIP ( 1.60 )
(# PREDICATE: PLACE AT LOCATION »)
(* PREDICATE: APPROACH LOCATION =)

(+ PREDICATE: DEPART ) Y

MOVE ( 5.00, -5.00, 5.00, -90.00, ©.00,
MOVE ( 8.00, ©.00, 5.00, -90.00, ©0.00,
MOVE ( 8.00, ©.90, 1.00, -90.00, ©.00,
OPEN

(% PREDICATE: DEPART =)

MOVE ( 8.00, 2.00, 5.00, -990.00, 2.00,
(*+ SUB TASK: MATE PART1 TO PARTZ2 =)

(» SUB TASK: TWIST PART2 =)

MOVE ( 8.00, 2.00), 1.00, -99.00, 2.00,
GRIP ( 1.50 )

(% PREDICATE: ROTATE GRIPPER =)

MOVE ( 8.00, 2.00, 1.00, -90.09, 90.00,
(» SUB TASK: FASTEN PART2 TO PART1 %)

(*+ SUB TASK: MELT PART2 TO PART1 (MAKE ONE) =*)

OPEN

(% PREDICATE: DEPART =)

MOVE ( 8.00, @.00, 5.00, -990.00, 990.99,

Ixxx1x
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Appendix E

TeachMover Opcodes Generated
By MIC Compiler System

©,8705,256,0,0,0,0,0
1,8705,-18176,244,-3072,-1280,253,-768 _
2,8705,-18060,-16204,-19392,-1021,253,-518
3,8705,-18060,-16204,3392,-1021,253,767
4,8705,-2956,-16328,-28352,-253,255,1023
5,87@5,-2956,-16328,-21696,-253, 255,255
6,8705,-18060,-16204,10048,-1021,253,-1
7,8795,9728,141,08,-768,253,-256
8,8705,-5178,-8%25,24099,-1030,-259,-255
9,8705,-2618,-8744,19235,-68,-257,257
10,8705,-2618,-8744,12579,-6,-257,1025
11,8705,-5178,-8725,17443,-1030,-259,513
12,8705,9728,141,-6656,-768,253,256
13,8705,3840,230,16128,0,254,768
14,8705,3840,230,-13312,0,254,256
15,8705,9728,141,29440,-768,253,0
16,8705,-5317,9195,-11811,-1275,509, 254
17,8705,-2757,9176,-16675,-251,511,766
18,870@5,-2757,9176,12765,-251,511,1278
19,8705,-5317,9195,17629,-1275,509,766
20,8705,-5178,-8725,17443,-1030,-259,513
21,8705,-2618,-8744,12579,-6,-257,1025
22,8705,-2618,-8744,19235,-6,-257,257
23,8705,-5178,-8725,24099, - 1038 ,-259,-255
24,8705,9728,141,0,-768,253,-256

25,8705 ,3840,230,22784,0,254,0
26,8705,3840,230,22784,0,254,0
27,8705,3840,230,16128,0,254,768
28,8705,9728,141,-6656,-768,253,256
29,8705,-18035,16564,3520,-772,-3,512
30,8705,-2931,16440,-28224,-4,-1,768
31,8705,-2931,16440,25792,-4,-1,256
32,8705,-18035,16564,-8000,-772,-3,-256
33,8705,9728,141,-18176,-768,253,-256
34,8705,28672,183,-7424,-256,254,0
35,8705,28672,183,4096,-256,254,768
36,8705,9728,141,-6656,-768,253,256
37,8705,28672,183,4096,-256,254,768
38,8705,28672,183,-7424,-2656,254,0
39,8705,28672,-32585,-7296,-256,510,254
40 ,8705,28672,-32585,4224,-256,510,1022
41,8705,9728,-32627,-6528,-768,509,510
42.,0,0,0,0,0,0,0

43,0,0,0,0,0,0,0

124,0,0,0,0,0,0,0
125,0,0,0,0,0,0,0

b
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Appendix F
Example Stacking Operation

/e ok s o oo o o o oo o o O o o o o o o o o o o R
START with the current world so that the three parts are
stacked one on top of another as in the LEFT stack and issue

a stack command to get the parts to be ordered as in. the
RIGHT stack.

START FINISH
ORDER ORDER
Part 2 Part 1
Part 3 ===) Part 2
Part 1 Part 3

*#*#************#*********#*i##**#********##*##*####***##*#**#/

root/user/?- world.

partl is located at:[3,3,08], oriented: [-90,0,1],
features:[1,1,1].

part2 is located at:[3,3,2], oriented: [-90,0,1.5],
features:[l.S,l.S}l,S].

part3 is located at:[3,3,1], oriented: [-90,0,2],
features:[4,2,1] . -

The arm is located at: [3 , 3 , 6], Pitch=-90, Rol =0, Grip=3 .

The gripper is holding: nothing .

Yes.

—

/#****#*****************#****##**#*****##*****#*****#******#***

Execute the STACK operation predicate.
e o o o oo o o ook o ok ok ok ok sk sk ok ok ok ko kR kR R kR kR kR ko ko [

root/user/?- atack( part1, part,?, part3, /3.0,3.0,0.0/ ).

STACKING: partl ON part2 ON part3 at [3,3,d].

SUB TASK: FETCH FROM TO. Fetching part3 and placing at [3,3,0].
part3 has part2 on top of it. |
Want to clear the top of part3 (y or n)? v

XCl




SUB TASK: FETCH FROM TO. Fetching part2 and placing at [2,5,0].
==Departing arm== -
==Moving Above Drop Point==
==Moving arm TO Drop Point=

Gripping Object: part2

==Departing arm==
==Moving Above Drop Point==
==Moving arm TO Drop Point==

Released Object: part2

==Departing arm==
==Departing arm==

==Moving Above Drop Point==
==Moving arm TO Drop Point==

Gripping Object: part3

==Departing arm==
==Moving Above Drop Point==
==Moving arm TO Drop Point==

»*xx%x Collision Warning: partl found at [3,3,0] *%xx*x
Clearing [3,3,0].

---->Storing ob_j;e.ct in g-r"ipper at [2,-5,0])¢<----

==Departing arm==
==Moving Above Drop Point==
==Moving arm TO Drop Point==

Released Object: part3

==Departing arm==
==Departing arm==

==Moving Above Drop Point==
==Moving arm TO Drop Point==

Gripping Object: partl
==Departing arm==
==Moving Above Drop Point==

==Moving arm TO Drop Point==

Released Object: partl
==Departing arm==

Xcll




---->Restoringprevious gripper obj ect(----

==Departing arm==
==Moving Above Drop Point==
==Moving arm TO Drop Point==

Gripping Object: part3

==Departing arm==
==Moving Above Drop Point==
==Moving arm TO Drop Point==

Released Object: part3

==Departing arm==

SUB TASK: PUT ON. Put part2 on part3.

SUB TASK: FETCH FROM TO. Fetching part2 and placing at [3,3,0].
part2 has partl on top of it.
Want to clear the top of part2 (y or n)? v

SUB TASK: FETCH FROM TO. Fetching partl and placing at [3.75,4.25,0].
==Departing arm== |

==Moving Above Drop Point==

==Moving arm TO Drop Point==

Gripping Object: partl
==Departing arm==
==Moving Above Drop Point==
==Moving arm TO Drop Point==
Released 0bje~¢t: partl
==Departing arm==
==Departing arm==
==Moving Above Drop Point==
==Moving arm TO Drop Point==
Gripping Object: part2
==Departing arm==
==Moving Above Drop Point==
==Moving arm TO Drop Point==

Released Object: part2

==Departing arm==

XCl111




SUB TASK: PUT ON. Put partl on part2.

SUB TASK: FETCH FROM TO. Fetching partl and placing at [3,3,1].
==Departing arm==

==Moving Above Drop Point==

==Moving arm TO Drop Point==

Gripping Object: partl

==Departing arm==
==Moving Above Drop Point==
==Moving arm TO Drop Point==

Released Object: partl
" ==Departing arm==

Stack Operation: Completeqd.

Yes.

/0o oo ok o o o o o o R o o o o R
Display the world contents after the stacking operation has

been completed.
ok ok ok sk ok ok ok ok ok ok ok o ok ok ok oo ok ok ok ok ok o o o ok ook ok ok ok ok sk ok ok ok Rk ok s R sk ks sk ko ok ke /

root/user/?- world. .
partl is located at:[3,3,2.5], oriented: [-90,0,1],

features:[1,1,1].

part2 is located at:[3,3,1], oriented:[-99,0,1.5],
features:[1.5,1.5,1.5]. |

part3 is located at:[3,3,8], oriented:[-990,0,2],
features:[4,2,1],

The arm is located at: ,L;/’ 3, 5], Pitch=-99, Roll=0, Grip=3 .

T/
The gripper is holding: nothing .

Yes.

root/user/?- ezitays.
Exiting to the operating system.

[C:\proldg]
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