
Lehigh University
Lehigh Preserve

Theses and Dissertations

1985

Using artifical intelligence to improve the man-
machine interface in robotic assembly systems /
Keith James Werkman
Lehigh University

Follow this and additional works at: https://preserve.lehigh.edu/etd

Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Werkman, Keith James, "Using artifical intelligence to improve the man-machine interface in robotic assembly systems /" (1985).
Theses and Dissertations. 4612.
https://preserve.lehigh.edu/etd/4612

https://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F4612&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F4612&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F4612&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=preserve.lehigh.edu%2Fetd%2F4612&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd/4612?utm_source=preserve.lehigh.edu%2Fetd%2F4612&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

/

I

\

I

/

Using Artificial Intelligence To
Improve The Man-Machine Interface

In Robotic Assembly SysteITis

by

Keith James Werkman

A Thesis

Presented to the Graduate Committee

of Lehigh llniversity

in Candidacy for the Degree of

Master of Science

.
ID

Computer Science

Lehigh u·niversity

1985

J

This thesis is accepted and approved in partial fulfillment of the require

men ts for the Degree of Master of Science.

l ·J
Professor in Charge

cs Chairman

CSEE Department

••
11

Acknowledgments

I would like to take this time to acknowledge all those who have helped

to bring about this paper and the various concepts that are expressed.

Initially, I would like to thank my parents for their years of support,

guidance, love and understanding which without I could not have produced this

paper. I would like to thank Dr. Glenn Blank for being a caring teacher and

advisor during the research project. I would also like to thank Dr. Roger

Nagel for providing the necessary background, robot laboratory facilities, and the

opportunity to conduct research in this field. Special thanks to Jim Rausa for

his endless rereadings and critiques of earlier versions of this manuscript and to

Stephen (~orbesero for his assisting with the Scril)e text. formatter. A special

thanks to Bob Morein of Automata Design Associates for providing me with the

latest virtual memory version of VMA Prolog for the IBM PC. The expanded

version of the MIC Planner could not have been done without it. Finally, I

would like .to thank all ·my friends and fellow graduate students who supported

me during the research project.

. ..
111

.,·

Trademarks

The following are registered trademarks.

AML, PC-DOS and IBM PC

MS-l)OS
Turbo Pascal
VAL and Puma
VMA Prolog

- International Business Machines
- Microsoft, Inc.
- Borland International
- U nimation, Inc.
- Automata Design Associates

•
IV

.-

()
'

Corporation

Table of Contents

Abstract

1. Introduction
2. Current Robotic Control Methods

2.1 First (;encration Robot Languages
2.2 Second Generation Robot l.1anguages
2.3 The NBS Hif~rarchical Control Strategy

2.4 Future Trends

3. Robot Task Planning

3.1 Planning Strategies
3.1. l Hierarchical vs Nonhierarchical Planners

3.1.2 Script-Based Planners
3.1.3 Opportunistic Planners

3.2 'fhc MIC Planner System
3 . 2 . 1 /!', y $ t c r n O v e r v i £l w
3.2.2 Prolog as a J>rototyping Language
3.2.3 1"'he TearhMover Robot
3.2.4 MIC Planning 1"'ask Exarnples
3.2.5 Comparison with the NBS Robot Control System

3.2.6 Possible Future Enhancements

4. Using Natural Lang,1age To Control A Robot

4.1 The RVG System
4.1.1 Overview of Register Vector Grammar NL Processing
4.1.2 Overview of RVG System Components

4.1 .3 Future System Goals

5. Summary

References

'

1

4

5
6

10
15

17

18
18
21
22
23
24
29
31
34
49
55

59

60
61
62
67

69

72

' Appendix A. Example Run Of Assembly Task lxxv
Appendix B. Example Run Of Assembly Task With Full Trace lxxix

Appendix C. MIC Code Generated By MIC Planner lxxxv

Appendix D. Listing File Generated By The MIC Compilhxxviii

System
Appendix E. TeachMover Opcodes Generated By MIC Compiler xc

System
•

Appendix F. Example Stacking Operation XCI

V

Figure 2-1:
Figure 2-2:
Figure 2-3:
Figure 3-1:
Figure 3-2:
Figure 3-3:
Figure 3-4:
Figure 3-5:
Figure 3-6:
Figure 3-7:
Figure 3-8:
Figure 3-9:
Figure 3-10:
Figure 3-11:
Figure 4-1:

List of Figures

Exarr1ples of VA l" and AMl.1 Programs.
(~onccpt.ual diagrarn of the AMRF.
Levels of the NBS Robot Control System.
Four basic rnanipulator configurations.
Three comrnon end effector movements.
The TeachMover robot.
Initial state of the world before assemble.
World after collision detected and grip cleared.
World after part3 cleared from assembly location.
World after fetchFromTo{part1,/8,0,0/).
World after final mate and fas ten.
RCS commands used at each task level.

Input/output to/from each hierarchical level.
A control level in the NBS System.

Major components of the JlV(~ Syste1rn.

.
VI

7
11
13
25
26
32
36
39
40
41
43
50
54
54
63

List of Tables

Table 2-1: Current R.obot C~ontrol Languages.
Table 3-1: MIC Planner Systern Predicates.

••
Vll

9
35

Abstract

As a means of improving man-robot cornrnunications, researchers at Lehigh

lJniversity have been developing a natural language system call R.egister Vector

Gramrnar (RVG). RVG, a relatively compact, efficient, general purpose natural

language systern written in Turbo Pascal, should prove well suited to real-time,

dynarnic applications such as robotics. Integrated with the RVG system is a

task-level, object-oriented hierarchical planning systern called MIC Planner.

Prototyped in Prolog for MS-DOS microcomputers, MIC Planner uses a rule

based approach to decompose high-level abstract assembly tasks into lower level

robot rr1otion primitives. MIC Planner attempts to achiPve a _goal state while

rr1anipulating objects in a world model that is rnaintained by the RVG natural

language system. As an option, the user can also log MIC robot motion corn

mands generated by the planner to a file. These robot comrnands can then be

compiled by the MIC Comryler System into native operation codes and down

loaded to the rob_ot. This overview .of the RVG system along with a review of

current robot control strategies should give some insight into the requirernents

that must be met in order to develop intelligent and easy to program robot

control systems.

• • •
·Vlll

.~

Qhapter 1

Introduction

This research is an application of artificial intelligence (AI) techniques that

can be applied to enhance the man-machine interface in robotic assembly. More

specifically, we focus on two heavily researched subfields of Al, that of natural

language processing and planning systems. Artificial intelligence is a well es

tablished field in computer science that has recently gained great attention due

to the popularity of knowledge based expert systems. Back in the early 1970's,

robots and Al applications to robotics were considered the state-of-the-art

research topic for AI researchers. This came a.bout after Winograd published

his dissertation on understanding hatural language
.
In 1971 [26].

Winograd's now classical 'blocks world' systern allowed the user to manipulate

items in a blocks world domain with a graphical robot called SHRDLU simply

by entering natural language English commands. This work generated much ex

citement among the Al community and raised many hopes for developing robust

systems that could understand natural language.

During the middle to }ate] 970s, many of the expectations of AI resear-

chers were not met. These disappointments led to a decrease in interest in

both the are.as of natural language and ro:botics research. Only within the past

few years has there been a renewed interest in combining AI techniques with

robots in an effort to develop the next generation of autonomous or "smart"

robots.

Due to rising labor costs in rr1any industrial manufacturing operations,

robotic assembly has now become technologically and economically feasible.

Thus, technological improvements at any level to the current state-of-the-art in

]

J

robotics assembly is seen as very desirable by industry. Funding by large in

dustrial manufacturers to academic robotic research institutions is on the in

crease. Not to be left behind, the U.S. government is also funding research in

the fields of Al and robotics, partly for military reasons and partly for the

development of robotic and automation standards.

This paper is the result of a research project started during the summer of

1985 at Lehigh lJniversity in the area of natural language processing. The

original goal of the project was to develop a version of the Register Vector

Grammar (RV(~) natural language parsing systerr1 to run on PC/MS-DOS based

rnicrocornput.crs. As in earlier natural languagP and planning systcrns, the robot

domain was chosen as a limited .applications area for the RV(~ system to inter-

act with. The domain or the robot ~s world provided realistic boundaries in

terms of what types of sentences the RV(; parsing syste1n would initially be re

quired to handle.

In addition to the parsing system, a planning system had to be developed

to allow the parsed sentences to actually interact with the problem domain of

the robot. The planning system had to be able to efficiently model and

manipulate items in the robot's world. Also, the planner needed an integrated

intetface with the parsing system to allow for the passing of commands and

parameters to .. the planner. In addition to the planning system, a separate

robot interface was developed to handle needed calculations for the robot's arm.

movements and to communicate these move_ments to the robot.

During the design of the planner, several classical data arid goal driven

planning systems were reviewed. The result was a prototype planner which in-

corporated some of the aspects of these earlier systems. The MIC Planner,

2

nan1ed after the MIC robot control language developed by Werk man 124 j, •
IS a

ta.sk level object-oriented hierarchical planning system, written in Prolog, tar

geted to run on PC/MS-DOS microcomputers.

The particular robot used in the project was the TeachMover instructional

robot by Micro bot Incorporated. 1"he reasons for this robot were severalfold.

First, the system developers were familiar with the capabilities of this 5 degree

of freedom robotic arm. Second, using an inexpensive instructional robot was

safer and more practical as opposed to using an expensive industrial rob·ot.

This is especially true when developing a new robot control system where an

11nexpectt1d actioh could result in the robot putting it,s arrn through a wall.

1"hird, thP TeachMover is a classical example of a first generation robot with

respect to programming and control. Since many robots in use· in industry

today have similar restricted prograrr1ming and control systerr1s, any improve

me.nt in the interface to the TeachMover robot would· also apply to those

similar robots in .i'ndustry.

This paper will provide an
.

overview of the RVG system, focusing on

aspects of the systerri that are re.lated to improving the human-robot interface.

Several areas wilJ be reviewed including current robot programming methods and

robotic software systems, classical planning strategies and new methods which

use world knowledge to guide the planning. The National Bureau of Standards

Robot Control System (RCS) will be examined for its use of hierarchical

decomposition of robot tasks [l]. The RVG system planner, MIC Planner, will

be discussed and· compared with the ·NBS system. Finally, the RVG system

will be contrasted with other natural language systems that have been .interfaced

with robots.

3

\.

Chapter 2

Current Robotic Control Methods

Many of the robots used in industry today are programmed by one of the

following two methods [l6J:

1. Lead Through - Many points are recorded as the robot's controller

continuously samples positional feedback from the robot's actuators as

the arm is physically led through all the points in the robot

program.

2. Teach /Jendant - 1"'he robot's arm is moved to destination points in

the robot's program by flipping toggle switches on the hand held

guiding device' These fewer destination points are then recorded as

part of tliP robot prograrn.

130th of these methods require that the spatial positioning of the robot's

arm be recorded. These spatial arm configurations are know as points in a

robot prog:ran1. Thr difference in these 1nethods is in the actual number of

points recorded. The lead through programming method records many points at

very small incren1ents and thus tends to be more difficult to edit. In the teach

pendant method, only the end points of ·motions are recorded. A teach pendant

is a mobile keypad that allows the robot operator to move the robot to desired

locations and record points. The order in which the points are recorded reflects

the sequence of arrn motions that the robot will perform when the robot

program is played back.

To aid in the robot program editing· process, both methods are usually ac

companied .by associated vendor-supplied blackbox software. In the case of the

lead through method, the robot program is broken into several parts and linked

together by the software. If, for example, a move taught to the robot was in

correct, the robot operator must teach that move over again. In the case of

4

the teach pendant method, only the end points of a series of motions need be

retaught. In this method, interrnediate points in the arm's path are generated

by the robot's controller and can be modified by software.

Similarly, the 1"eachMover instructional robot system can only be

programmed by using a teach pendant. Thus, the same editing problems as

sociated with large industrial robots are also found with the TeachMover. In

order to make the TeachMover's programming environment more palatable,

Werkman developed a simple robot programming language called MIC which

stands for Microbot Instruction Code [24]. The MIC language is an example of

a first generation robot language that provides off ..]inP program editing, prograrn

transportability, and the ability· to saving and restoring programs to and from

secondary storage.

2.1 First Generation Robot Languages

The blackbox software systems fall into the category of first generation

robot languages. In order for the robot manufacturers to successfully market

their robots, th.ey had to provide a means of programming them that was easy

and straightforward. Thus, first generation robot languages were written for

users who had very little programming experience. Many of these languages

resembled the BASIC computer language with extensions to allow for robot mo

tion, simple sensor 1/0, and basic operatin.g system support for saving and res

toring program files to· floppy disk. The languages in widest use today is VAL.

VAL was developed by Unimation Inc. for their line of Puma industrial robots

[23]. In fact, since v·AL is so easy to learn and use, many robot vendors have

borrowed its simple syntax a_nd feel for their own robot control languages.

While its true that these first languages are easy to understand and use,

5

'

I

their capabilities arc sornewhat, limited. The computational ability of most first

generation robot languages are limited to simple operators like addition and sub

traction. These languages are not very extensible, unlike common 4th genera

tion cornputer languages such as Pascal. Thus, users cannot write user-defined

functions in their programs. The language's ability to tommunicate with exter

nal systems is also limited to onl~ the robot's controller. External systems such

as vision systems and other robots cannot be easily interfaced with many first

.generation robot software control systems.

2.2 Second Gener8tion Robot Lai-1guages

The answer to the lirnitations of the first generation languages has been a

new generation of robot languages which -borrow heavily frorn rr1odern computer

science languages. These second generation languages initially took the form of

procedural languages. offering user extensibility and limited scope of variables.

Several first generation features have been kept by the new language systems,

su_ch as using the teach pendant to move the robot arm and record points.

Two of the more popular second generation robot languages include AML by

IBM [4] and VAL II by lJnimation.

Figure 2-1 gives example prograrr1 code, in VAL I and AML, for the task

of placing a peg in a hole [12]. Some of the execution branching in the ex

ample programs is made upon sampling input sign.als received from pressure sen

sors located in the robot's gripper. The user will immediately n.otice that the

format and logic of each program differs. The VAL program is very terse and

looks much like BASIC wi.th its .many (;OTO statements. Each robot step fol-

lows in sequence from the top of the program to the bottom. The AML

program on the other hand consists of a group of user defined procedures much

6

10

20

30

SETI

REMARK

GRASP
REMARK
GOTO

REMARK

OPENI
DRAW

SETI
IF
TYPE
STOP

REMARK
APPROS
REMARK

REMARK
REACTI
APPROS
REMARK
MOVES

TABLE 18-1 Examples of VAL and AML Programs for Placing a Peg in a Hole

VAL

TRIES= 2

If the hand closes to less than 100 mm, go to statement
labelled 20.

100, 20
Otherwise continue at statement 30.
30

Open the fingers, displace down along world Z axis and
try again.

500
0,0,-200
TRIES = TRIES - 1 .
TRIES GEO THEN 10
NOPIN

Move 300mm above HOLE following a straight line.

HOLE, 300
Monitor signal line 3 and call procedure ENDIT to STOP

the program.
if the signal is activated during the next motion.
3, ENDIT
HOLE, 200
Did not feel force, so continue to HOLE.
HOLE

AML

PICKUP: SUBR (PART_ DATA, TRIES);
MOVE(GRIPPER, DIAMTER(PART _ DATA)+0.2);
MOVE{<l, 2, 3>, XYZ_POSITION(PART _DATA)+<0,0, l>);
TRY _PICKUP(PART _DATA, TRIES);
END· •

TRY _PICKUP: SUBR(PART _DATA, TRIES);
IF TRIES LT 1 THEN RETURN {'NO PART').
DMOVE(3,-l .0);
IF GRASP(DIAMETER(PART _DATA))= 'NO PART'

IBEN TRY _PICKUP(PART _DATA, TRIES-I);
END· ,

GRASP: SUBR(DIAMETER, F);
FMONS: NEW APPLY ($MONITOR, PINCH_ FORCE{F));
MOVE{GRIPPER, 0, FMONS);
RETURN (IF QPOSITION (GRIPPER) LE DIAMETER/2

THEN 'NO PART'
ELSE .PART');

END;
INSERT: SUBR (PART_ DATA, HOLE);

FMONS: NEW APPLY {$MONITOR,
TIP_ FORCE(LANDING- FORCE));

MOVE(<l, 2, 3>, HOLE+<O, 0, .25>);
DMOVE(3, -1.0, FMONS);
IF QMONITOR(FMONS) = 1

TIIEN RETURN CNO HOLE');
MOVE(3, HOLE(3) +PART_ LENGTH(PA:RT _DATA});

END;
PART _IN_HOLE: SUBR {PART _DATA, HOLE);

PICKUP (PART _DATA, 2.};
INSERT (PART _DATA, HOLE);
END;

<
>
~

.~·

:,
0...

>
~
t'-4

~
~

0
O'Q
'"'1
~ a
00 . .

like what- a Pascal programrner would write.

The AML prograrr1 in Figur<~ 2-1 · is initiated when the user makes a call

to the main program procedure]>ART_ JN __ HOLE. This procedure then calls

two additional procedures, PJCKlJP and JNSEJlT. Each of these procedures is

then broken down into smaller parts which perform the desired function. This

top down approach to designing robot programs is very desirable. Such a

software design methodology allows the user to create libraries of functions that

other users can then reference when developing their robot programs.

Thus, the major advantages of second generation robot languages includes

the ability by the user to create and tailor robot softv..1are1 to rneet specific robo{

tasks. Once written, the tailored progran1 can then bP used by nonprogrammers

who need not be aware of the deeper intricacies. of the program. Second

generation languages also provide enhanced co·mputa.tional power, mainly through

the addition of more complex operators. These languages are also able to com

municate better with complex sensors such as vision systems and force sensors.
'

The operating systems that accompanied the new language systems are also im

proved. Table 2-1 by Gev arter lists other first and second generation tobot Ian-

'
gua.ges, their inventors, their uses, and their status.

Even though many of the problem~ of the first generation languages are·

addressed, the enhancements of the second generation languages still have their

shortcomings. Because of the complexity of the n~w languages nonprogratnmers

cannot fully utilize all of the. capabilities of the new robot control software.

Thus, experienced programmers are needed to develop robot applications. Per

sonal experience in instructing students and engineers in using advanced robot

languages proves this to be true. Since additional programming support costs

8

)

Control Manipulation
Mode Type

....
~

C GJ

0 C -0
•,.j u C a u

0 -Robot ·- t) - C:
II) ... ·- 0 Cl') -~

Organization
0 0 ·- GJ 0

Language c.. [.;. > a: ..,

AL Stanford University X X X X

AML IBM X X X

HELP GE X X X

JARS JPL X X X X

MCL M cl;>o nnell-Dou glas X X

RAIL Automatix X X X X

RPL SRI X X X

VAL Unimation '--(X X X
-

Source: Based on Gruver et al (1983).

\.

Status Capability
..,

-a e
c- -< ·-0 .~ 0c - - GJ GJ 0 .c 0 Q. E ~ E !:J ·~ E u GJ

II) C: -en
0 GJ .,, 0 ::,
u a: < u)!

X X X X

X X

X X X

X

X X

X X

X

X X

Comments

World model capability

Menu capability

Designed for visual and force .
servomg

For off-line programming of robots
from a CAD data base

Developed for visual inspection,
assembly, and arc welding

For control of machines compris-
ing a robot work cell

••

~
0
er
0
~

-

mon<'Y, interest. has shifted fro1r1 just versatility to both versatility and ease of

use. It seems that a new form of robot programrr1ing is nr.eded. A new statc

of-the-art robot control and programming methodology has recently been

developed by the National Bureau of Standards in Washington, l).C.

2.3 The NBS Hier8rchic8l Control Strategy

The National Bureau of Standards is one government agency that is at

tempting to address the need for standardization in the automation industry.

One of the issues that NBS is looking into is that of robot integration into the

manufacturing process, an issue that has not ber.n adequately addressed by the

robot manufacturers. Many current robot ~ystems cannot easily interface with

systems from different vendors. Each vendor designs his software system t.o
/

work only on his particular line of robots. 1"'hus, programs written to run on

one vendor's robots usually will not run on other vendor's. Software incom

patibility is one of the major problems in robotics today, preventing the advent

.of fully automated factories.

The Industrial Syste1ns Division of the NBS has created an Automated

Manufacturing Research Facility {AMRF) as a testbed for studying robot con

trol strategies and interface standards. In January of 1984, NBS researchers im

plemented an integrated manufacturing system using several machine tool

workstations, two fixed base robots, a mobile cart robot, a gripper control sys

tem, a safety system, a database, all connected by a network [14]. Figure 2-2

shows a schematic :of the AMRF.

The control strategy used by NBS's Robot Control System (RCS) is that

of task decomposition at successive levels in a control hierarchy. Each level in

the hierarchy decomposes simpler command strings to the next level in the

10

YW.
a,11 ..

Ope11lod
Vl1tto,

lnlerface

Cell Control
s,, .• m

Horuon&al .
Wo,t Station
ControlSJL

Robot
Control
Ip.

Gripper
Control ,,

Figure 2-2:

· Machine
: Tool
· Conttoller

'

Horllon&al
Machine

Too.I

Network
Processes

Material
Handllng

Control Sya.

,,.,
Tender

Terminal

Robot Cart
Conlroller

IIF Unk

•
Robot Cart

•

Data
Admlnl11r1Uon

System

Tumlng
Station

,--, ~SJL

Robol
Control ,, ..

Robot

Conceptual diagram of the AMRF.

MachJ111
Tool

Controllet

Tumlng
Machine

decornposition until the lowest levels generate t"he actual drive signals for the

robot, th.e gripper, and other actuators in the system [14). Each level in the

hierarchy has a specific responsibility to perforrr1 and is independent of other

task levels, thus allowing for greater modularity and easier updating of the sys-

tern structure.

The NBS Robot Control Systern also attempts to deal with control in a

real-tirne dynamically changing world. As pointed out by NBS researchers, Al

planning systems differ from control systems in that rnost planning systerns that

have been developed for robot control have. never dealt with real world time

11

constraints. Planning is usually done in static worlds that don't change while

backtracking is being performed to find possible solutions in a search space 1•

Control systems on the other hand deal with constant sensor input from the

world in the form of force, vision, binary and other sensors [.3]. 1'he goal of

the NB'S systern is to use a hierarchical decomposition of abstract task descrip

tions in combination with real-time control systems utilizing sensor feedback.

Given such a system, a goal-ditected task can be accomplished in spite of per

turbations in the manufacturing environment [5].

There are seven levels of hierarchical control in the current AMRF project

as described by Albus .[2] and shown in J;-'igure 2-3. 'fhe most abstract level

(se.venth level) is that. of facility control. This level includes such things as the

product design, process planning, accounting and other long range planning.

The next level down the hierarchy is the sixth level., that of shop control. At

this level, shorter range production planning is done along with scheduling, in

ventory management and resource allocation.]t is at this level that timing of

the overall assembly process is taken into account to manage the entire shop

floor assembly process.

Time constraints are also important at the fifth level in the control hierar

chy which deals with cell control. Sup·pJies of various tools for robots and the

machine tools along with raw materials a.re managed to meet the assembly

.demand. Requests are. sent to materials transport workstations to delivered the

needed resources. These resources are then managed by the fourth level of

hierarchy. This is the work.station control level. Here, abstract robot and

1Planning is discussed in deptb in the next chapter

12

Figure 2-3: l.1evcls
0

Feedback
Processing ~·

of the N I\S
M

World ,

l{obot (~on trol
H

Systc111. .
.. .

Lttvel Procesaes

Faclllty
Dealgn, Proceaa Planning,
Accounllng,Procura'"ent.
Long Range Prod"ct~
Pltannlng ·

Model
•

I

T11k
DecompoaltJon

'

Level Outpub

• ...
HP ,,,rt DnJont. Proceu Plana.

01 ~--...... Mr f-4----....
Proourementa. ProduclkNI
Ord ..

---------------- -~----- ------__ ____________ _ . '

Shop
Shurt Range Production
Plonnlng 1nd,.S:hadullng,
Inventory Managemant.
Resource Anoc1Uon

' ..----------.-------~L Ha t ' -
GIMllll~----~M,...a:~----~
. ~ ~

PIOclucllon lchedulN.
Reaou,n Allocatloftl
(lchedule, Bitch. Route
Orden. T1ke/Ae&un1
ReNUICU)

•

----------_ _.__... ____________ .._ _____ ...,. _____ ,
C.ell
Batching of Par1,. RouUng.
Scheduling, Dlap1lchlng

' t------------....-----~~ H1

t11111111~1iaa--... M, ~~----~ 01

· 'IIICII U1b, Route lhelll
(Makeup, Mon Ind Procell

' letcll. ·~

-----------------------~------------------1----.... ------... ---------•

WGrk [';talion
Soquonclng of M.c:hlnlng,

I l1ndllng, cr.,nln" and
ln1pocUon Ta1k1

Robot
Slmple T11k 01compo1IUon

, '
--t ,

Q4 ... --. M4~~g~~--...., .,
~,

1----------.t -cl~~ HI

Gi ~----• Mi~•--~--._.
' . ~

•

llmpla Taau (F11CJ1. Load,
fixture. ate.)

.E1em111tal Mawo, (R,,1cfl.
Gtlap. Ito.)

ti ••••••••••••••••••••••••••.
································~I···························,··
Elemonl1I Mova
DocompoallkJn

.._ ____ --.......... ----~~~ Hz
t

G2 ~-----~ MZM~~~-----~ --
X. V, Z Tnjeclone1

j ~ •••••

••••••••••••••••••••••••••••••••• 1 ···························"······················ •

•

Coordinate Tran1farm1 and
Servo CompuuUon1

~----------,-.----~- Ht - '
•

G1 c~-----it Mt 1o..c1~~----~ -
. . ~'

S1n1ory Fll1db1ck

13

, '
Action

Joint Actuator Drive Slgnale

machine tool cc:>mmands arc generated to perforn1 the actual assembly operation.

Example commands rnight include a clamping set up command given to a robot,

then a set of commands given to a machine tool to actually machine the part.,

and then a set of commands to the robot to remove the clamping fixture and

set up for the next operation 12).

T·he uppermost levels of the NBS Robot Controi System are designed for

total factory automation. The next three levels deal specifically with controlling

robots and machine tools. The third level, the robot control level, takes com-

rnands generated by t"he workstation control level above and decomposes these

com.n1ands into robot motion corrunands that rr1ove the arrn. Sample commands

might include [2J:

FETCH A
MATE B TO A

LOAD TOOL C WITH PART D

These abstract robot actions are then decomposed into subactions that the

second level environmental control system deals with. At this level, commands

like fetch are refined into actions like Reach for part, Grasp, and Lift. Each of

these actions is done on·ly after conditions are tested for that would cause such

an action to fail. One such case would be that of a part not found·. Finally,

the lowest level of the control hierarchy is the coordina.te control system. This

system performs the actual coordinate transformations servo computations that

are needed to move the arm to a desired location in space.

14

2 .4 F11t11re Tr<~nds

As a result. of the work done by NHS on complex, real-time task decom

position, the next generation of robot languages being developed will rnost likely

incorporate task or object-level corr1r11ands. ! 16). These task-level languages will

allow robot opera.tors to specify assembly actions in terms of a series of high

level tasks. Once the assembly action is described and presented to the system,

the task-level soft.ware will refine the abstract tasks into lower level actions un-

ti) the lowest level robot movement primitives are generate. This is similar to

the actions performed by the hierarchical control levels of the NBS Robot Cori-

trol ~ystern.

Ideally,. onP would like to progra_m a robot for a task much as one would

descr·ibe the task to a fellow worker. In the future, robot control system will

be able to read natural language input describing a task and then act upon

them accordingly. For example [16J-:

Mate the part with the hole in it with the part with the peg

in it, so that the peg and the hole are aligned, and the

corners of the surface are aligned.

Indeed, parsing and interpreting complex sentences as above is a major

goal of the RVG natural language system. In the near term though, reading

and interpreting simpler instruction found on manufacturing _process sheets would

be a substantial improvement to robot programming. To provide this degree of

high level task-oriented description capability, further work will be nee:ded. not

only in the area of natural language understanding systems, but also in the area

of task-decomposition by planning systerns. rfhe goal of the RVG system is not

to write VAL I prograrn in English, but to allow one to interact with the robot
I

/

at a much higher level, leaving the details of physical ~cat.ions and arm mo-

15

.

tions to a planning system.

/

16

Chapter 3

Robot Task Planning

The ability to communicate with a robot at an abstract level is major is

sue currently being examined by many researchers around the world. Many

operations must be coordinated in order for an assembly task to proceed

smoothly and efficiently in a manufacturing environment. Various different

machines will have to co_mmunicate with each other in real-time, most likely

across a local area network. The entire operation wilJ be controlled by either

one large control program or several independent programs executing

asynchronously on each rr1achine and communicating with each other. In either

case~ the task of programming these independent systems would be much easier

for the shop floor engineer if he could sirnply describe the complete assembly

task in terms of high level assembly procedures.

The ideal intelligent assembly control system would allow the engineer to

describe these assembly task in terms of natural language sentences. The sys

tem might provide a library of abstract assembly functions that could be com-

bined to accomplish the complete assembly operation. The actions of these

routines might be displayed on a graphics monitor for verification before they

are implemented on the shop floor. Such an intelligent robot control system

will be composed of various interacting modules (sensor system, vision, natural

language input, function library} all of which will be coordinated by a central

control module. The control module will most likely be the system planning

module with a global database that will act as a world model. This database

will be updated by the other system modules, much like the blackboard concept

used in the Hearsay II speech recogn"ition project. A key component to the sue-

17

• •'J

cess of any intelligent robot control system will undoubtedly be the planning

module.

3.1 Planning Strategies

Planning and problem solving are usually considered as one related field by

the Al community. Planning involves the process of combining groups of

subplans in a specific order to achieve a goal. The goals of su bplans can

generally be replaced by other more refined subplans that are generally ordered

in a hierarchical fashion. Most planning strategies generate a linear or partial

ordering of problern solving operators that deal with the problem's search space.

In the current Al litrraturc four general planning strategies have been imple-

rnented. Each one of these methods will be briefly examined. These ap~

proaches include hierarchical planning, nonhierarchical planning, script-based

planning, and opportunistic planning [8].

3.1.1 Hierarchical vs Nonhierarchical Planners

Hierarchical and nonhierarchical planning methods, as well as· other pla·n-

nirig methods, generate a hierarchy of subgoals to ·be achieved. The two

methods differ in the way that they represent th.eir plans. Hierarchical plan

ners, like ABSTRIPS and NOAH, depict their plans in hierarchical levels of

abstraction, the highest being the most abstract and. the lowest being the most

refined. This approach allows the planner to deal ·with very abstract aspects of

a plan instead of specific details. Lower leve) details are postponed until they

are needed and thus precious computational effort is not lost if that particular

branch of the hierarchy is never chosen. In this sense, hierarchical planners can

be said to be very efficient. Nonhierarchical planners, like STRIPS, HACKER,

18

and INTERPLAN, have on]y one representation for a plan. ln the non hierar

chical approach, even though the subgoals are ordered in a hierarchical fashion,

all su bpi ans arc examined in one abstraction space at the same level. Th us,

the planner may waste time on reviewing one subplan that rnay not directly be

related to the success of the overall goal.

When a failure
• occurs 1n a hierarchical planning system, the system

usually backtracks to an earlier decision point in the search space to find

another possible path. Plans generally fail when their preconditions in the

world are not met. Plans ca·n also fail when subgoals interact with each other.

Subgoals are a series -of conjunctive goals that must be attained by the planning

syste·m for the main goal to succeed. The order in which subgoals are applied

can cause plans to fail. This is especially true for subgoals that undo the ac

tions of previous subgoals when they change the state of the world.

The HACKER and INTERPLAN nonhierarchical planning systems deal

with the problem of subgoal interaction by allowing the system to correct the.

offending condition as the plan proceeds. This approach is based on the theory

of linear assumption where subgoals are considered to be independent and thus

are achievable by any ordering scheme (11]. When a subgoal interaction is

found, both systems attempt to reo-rder the subgoals, but only at the cu.rrent

level in the subgoal hierarchy. In the INTERPLAN system, the subgoal that·

failed is moved before other subgoals in the subgoal hierarchy [21]. This reor

dering between subgoal hierarchical levels is not available in HACKER. As a

result, the lNTERPLAN system has proven to be more efficient in generating

plans that cause protection violations or the undoing of earlier subgoals.

A different approach for handli11g interacting subgoals is used in the

19

NOAJI hierarchical planning systern. N()All uses two rr1ethods. First, the sys

terr1 does not arbitrarily order subgoals until their is some reason to do so.

Second, the NOAl1 systern exarr1ines each level of the developing plan and cor-

rects subgoal interactions before they arise [17]. Unlike the nonhierarchical

planners described abovr which commit thernselves to a particular ordering of

subgoals, HOAII adopts the approach of least commitment. NOAH avoids com

mitting itself to a specific planning path until it has examined all possible paths

at the current level in the planning hierarchy. This allows the systern to con

structively correct interacting subgoals without any need to backtrack.

N()All (Nets of Action llierarrhies) rc:ipr<->s<'nts plans in t.ern1s of procedural

nets. J>rocedural nets represent procedural as weH as declarative knowledge

about problems. 1"he procedural or domain knowledge includes fu·nctions .that

expanded goals into subgoals. The declarative knowledge contains information

about the results of plans once they are executed. Thus, if NOAH puts a block

on top of another, the supporting block is noted as not having a clear top.

Wifh this declarative world knowledge information, NOAH can reason about ac

tions before it performs them [8]. A set of critics are employed by the system

to review the declarative knowledge and prevent redundant actions.

When NOAH i~ given a goal, the system uses the procedural domain

specific knowledge to expand the goal into several nodes in the procedural net.

Then criti,.:s examine the net for any interacting subgoals. If any are found,

other domain specific proced·ures are called to reord·er the subgoals at the cur

rent abstraction level. The new ordering is tried and if found successful, the

redundant subgoals are eliminated. Thus, through domain specific procedural in

forrnation as well as a current rr1odel of the world, a hierarchical planning sys-

20

tern such as NC)AH can avoid much backtracking.

3.1.2 Script-Based Planners

rJ'he script-based method of planning deals with plan generation in a much
'

different way than do the hierarchical planners. Script-based or skeletal plan-

ners attempt to model human planning methods. When humans are given

problems to solve, they tend to think of the problem in terms of a related

problems that they are familiar with. This similar problem acts as a skeleton

or framework which is expanded and updated as new information is discovered.

A planning systern that employs this method can deal with complex plans ef

ficiently without the need to search through the entire r-ule-base for specific

planning rules. Instead, the systern only has to search the rules that reside

within the outer general framework of the main goa].

The MOLGEN system uses the script-based approach to aid molecular

biologists :in lab.oratory procedures [19 J. The system maintains a database of

skeletal plans that range from very general to very specific planes. Once a

skeletal plan is chosen, the plan refinerr1ent process begins. As additional infor

mation is learned about the problem area, only those subgoals related to the
II

outer genera}jzed plan skeleton are searched. If t'he currently selected subgoal is

too specific, the system backs up to the general level skeleton plan and -selects

another subgoal, if any, within the fra:rnework of that plan. Thus a planning

hierarchy is maintained by the system, the advantage being that frequently used

.plan skeletons are referenced first, reducing the search space and the search

time.

21

~.

3.1.3 Opportunistic Planners

A fourth rr1cthodology of planning is the opportunistic approach. This

method uses a control strategy which is more flexible than the other methods

• described. Developed by the Hayes-Roths from their cognitive science research

in human planning, the opportunistic rr1ethod uses a blackboard structure much

like that used in the Hearsay II speech recognition system (8]. Here, infor-

mation relating to the plan being generated is made available to all levels of

the planning system. As the planning proceeds, planning specialists examine the

black board in an asynchronous fashion and suggest alternate planning pos-

s i bi l i ti es.

The Hayes;..H.oths believe that this model is sirr1ilar to the way humans for-

mulate plans. Human use newly acquired information, much like the specialists

in the model, to update their plans. Thus, when an opportunity arises to make

a plan more efficient, human generally t.end to rnodify their plans. The Hayes

Roths tested various subjects on errand-related tasks where the subjects were

given several tasks to accomplish (places to go, items to pick up). The subjects

then spoke aloud while they formulated their plans. The Hayes-Roths noticed

that none of the subjects followed the plan that they }nitially generated. .In

stead, subjects continuously modified their plans t_o take advantage of oppor

tunities as they arose (e.g., pick up an item at the store since we happen to b.e

passing by -on our way to another destination) [13].

The Hayes-Roths also noticed that subjects did not form plans hierarchi

cally (top-down), but rather in a bottom-up (data driven) fashion. Subjects

developed srnall pieces of their plans (islands sub plans) when they though them

to ·be logically feasible and then linked these island subplans together to form

22

an overall plan. This bottom-u·p incremental process of plan generation based

'
on opportunities that arise in the subjects world prevents humans from spending

large amounts of time replanning when a plan fails. ln the opportunistic

method, little or no backtracking is performed. Instead, the plan is construc

tively modified to take into account new opportunities or, in the case of a sub

goal failure, the next best possible subgoal to prevent. total plan failure.

Indeed, there is almost never any complete plan failure because the opportunistic

planner always plans to accomrr1odate the changing conditions in his world.

The opportunistic planning method may be especially appropriate for real-time

dynamic applications, where events are continuously changing and causing the

world model to be updated. ln fact, the NBS Robot. Control System is similar

to the opportunistic planning method in that it maintains its world model in

the black board fashion and updates this model frequently frorn sensors in the

robot's environment [-16J.

3.2 The MIC Planner System

The MIC Robot Planner System is the applications system of the RVG

natural language processing system. The natural language system will read sen

tences from a keyboard, and understand· them, as they refer to a database that

models the robot's world. If the sentence is imperative, the natural language

system will issue a task, in the form of a Prolog predicate, to the MIC Planner

System. A complete description of the RVG system an.cl its component modules

is given in the next chapter.

23

3.2.1 System Overview

MIC Planner is a self contained planning system that maintains all the

necessary information needed to move bricks and cubes about in a robot's work

cell. Unlike many early "blocks world" planning systems which only generated

block movement plans, MIC Planner generates plans and carries them out by

instructing a robot to mOve bricks around in the real world. Authors of several

earlier planning systems believed that arm motions were unimportant trivial ex

tensions which could easily be added to their systems. Upon interfacing the

planner with an actual robot to perform in a real-world environment, many in

teresting and unexpected problen1s emerged.

One specific problem worth mentioning is the physical limitations of the

robot arm. In order to develop a complete plan for, say stacking blocks in the
·'

world, one must take into account the actual range of mOtion of the robot

manipulator. A plan's solution may be foiled simply because the robot's arm is

physical incapable of attaining a specified height. Thus, a plan to stack mul-

tiple blocks that exceeds the robot's maximum arm height should also be noted

by the ph1.nner and cause the stacking task to fail. Additional motion limita-

tions can be cause by the robot's body (upper arm, elbow, forearm) bumping

into other objects in the world. This is the heavily studied problem of collision

avoi<l<l,nce. At Lehigh University, CAD /CAM researchers have placed a sphere

around the gripper of a graphically simulated robot and check for any inter

ference between the sphere and other objects in the robot's work cell [16].

Figure 3-1 displays several common robot manipulator configurations.

Given these four basic robot configurations, plans that succeed on spherical

robot may fail on a rectangular robot simply because of the robot's physical

24

\

reach lirr1itations. The TeachMover instructional robot, which is controlled by

the MIC Planner Syst<!Tn, is a 5-degree of freedorn articulated joint spherical

robot. Articulated joint robots closely rnodcl hurnan arrns and provide a wide

range of rnotions compared to other robot arrn configurations.

Rectangular
(C1rt11l1n Coordln1te1)

••

Spherical
(Polar Coordln1111)

c.

Figure 3-1:

Cyllndrlc1I Coordln1t11

b .

Artlcul1t1d or Jointed Sph1rlc1I
(R1volute Coordln1t11)

d.

Four basic m~nipulator configurations.

In addition to the problems generated by differences in arrr1 configµrations,

one must take into account the freedom of movement of the end effector (har1d

and wrist configuration) of the robot. Figure 3-2 depicts the three basic wrist

motions which are found in some robotic arms. The TeachMover robot only

provides for pitch· and roll motions. The side to side yaw motion can be simu-

]ated by rotating the gripper 90 degrees and then pitching the hand to either

side.

In the MIC Planner Systern, all high level pla·nnir1g related. to the move~

25

· YAWAXIS

. ARM

PITCH AXIS
ROLL AXIS

Figure 3-2: Th·rec con1mon end effector rnovements.

ment of objects by the robot's arm is done by the planner. The only thing

that is not done by the planner is the actual conversion of XYZ Cartesian coor

dinate points into specific comrnands to .rnove the attached robot. Instead, the

planner generates two points (the current arm location and the new arm loca

tion that is to be attained) and writes them to an output file. The output file

is then read by a secondary ,program, CALC, which performs the necessary coor

dinate to joint calculations and then sends the join rr1ovement information to

the robot. While the arm is moving to its new destination, the planning sys

tem is halted. When the ar1n reaches its new destination, a handshake signal is

sent back to the CALC interface prograrr1. If the handshake signal shows suc

cess, then the CALC program exits and the planner continues n1errily along its

way. If the handshake signal shows failure (in the ·case of an emergency stop),

then the CALC program passes this info back to the planner and the planner

acts upon it accordingly. In the case of a user generated emergency stop,

CALC queries the TeachMover's controller for the current ·location of the arrn

and returns it to the planner. This insures that the planner knows where the

26

)
\

arrn is at all times2

1"he CAI.JC program, compiled in rfurbo Jlascal, calculates the coordinate

to joint transformations needed to move the arm. The X YZ Cartesian coor

dinate points arc first converted into intermediate joint angles and then into ac

tual motor step counts that each joint's stepping motor must achieve in order

to position the arm in the desired location. The motor step counts are then

sent to th.e TeachMover's onboard microprocessor by a communications link.

Upon receiving the stepping instruction, the robot's controller moves the arm to

the destination point in a srnooth but nonlinear fashion. During this process,

CAl.JC perforrns a more complete level of robot n1otion range checking as com

pared to the simple range checking done by p]anne.r. If the destination point

specified by the planner is out of range, CALC returns this info to the planner

and the arm movement fails. The entire M](~ Planner System and external

CALC interface program runs on an lBM PC or compatible MS-DOS microcom

puter with at least 512K of memory and communicates to the robot via a

single RS-232C serial link.

The points generated by the MlC Planner System actually consists of six

values. The first thee values are the absolute X, Y and Z Cartesian coor-

dinates (in inche~) of the point in the world. Three additional coordinate fea-. . .

tures are provided. These are the pitch, roll,_ and grip width values of the

TeachMover's gripper. Given this six-valued data structure for points, the plan

ner can represent various object and their orientations within the robot's w.ork

2Note, since the TeachMover does not provide absolute position re~olvers on its joints, it is quite
possible that the arm can go out of calibration. Thus the current arm location returned to the plan
ner by CALC may not be the actual location.

27

•

\.

•

I.

r.ell. Each XYZ coordinates relates to the center point of the bottom surface

each object in the world model. The Pitch and roll values allow the system to

model the current orientation of each object. The gripper width field represents

the width that the TeachMover's gripper must attain in order to grasp and

hold a specific object. The following Prolog fact shows how the object's loca""

tions are represents in the MIC Planner System.

OBJECT
NAME

LO(?ATION(INCHES)
x· Y z

OBJ. ORIENTATION (DEGREES)
PITCH ROLL GRIP (INCHES)

LUC(PARTl, [6.0, -6.0, 0.0], [-90.0, 0.0, 1.6])

ln addition to the orientation and location of objects, the planner also

knows sorne simple features about each object. 1'he current features known by

the planner only include the dimensions of the bricks and cubes in the world

model. This is shown in the Prolog fact below:

OBJECT
NAME

DIMENSIONS (INCHES)
X Y Z

LEN WIDTH HEIGHT

FEAT (PAR Tl , [l . 0 , 1 . 5 , 2 . 0])

Thus, giv-en the two Prolog ·facts above, the p.lanner knows that part1 is

an object located- at (5, -5., O] with an norrnal gripper approach orientatio.n

having pitch of -90 degrees (gripper approaches this item from the positive Z

axis), roll of O degrees (the gripper's roll is parallel to the Y axis), and a grip

width of 1.5 inches (this is the same as the Y dimension). The planner knows

that part1 is 2 inches tall. Thus, any object placed on top of part1 will have

its Z axis coordinate component set to 2 inches.

28

3.2.2 Prolog as a Prototyping Language

The MIC Planning System is written in VMA Prolog on an IBM PC

microcomputer. The Prolog programming language provides a good development

environment for tasks which are easily described in terms of rules or procedures.

Usually such a system requires a database facility for the many facts that the

-rules manipulate. Prolog provides a built in inference engine mechanism that

can exhaustively search its database for all related facts. Thus, Prolog readily

supports the construction of expert systems.

Because Prolog provides these features, the language leans itself to quick

prototyping and testing .of experimental software systerr1s. This a]]ows systern

developers to get a small but complete version new systems up and running

usually in a matter of nours.

Firstly and- .most importantly, Prolog provides a built. in database and in-

ferencing engine facility. For this planning system project, th.e Prolog database

proved to be quite sufficient in modeling the robot's world. In addition to the

flexible format database, Prolog also provides built in predicates which allow the

programmer (o easily manipulate items in· the database. These predicates allow

the programmer to add and delete both facts and rules. Facts are declarative

pieces of data that usually reflect the current state of the system. Rules

generally contain procedural information that make up the Prolog program

which manipulates declarative data items in the database. Many of the features

provided for free by Prolog had to be developed separately in earlier planning

systems such as BUILD [10] and NOAH. In the case· of the BUILD system,

Fahlman spent several months developing the necessary database structure and

manipulation functions. To provide a similar Prolog database s.upport fatility in

29

another language, such as Pascal, cc>nsiderablc tirne and effort and would have

to be given in coding the dat.abas<1 inferencing functions.

Secondly, Prolog programs support a rule-based approach. Prolog rules

control the inferencing mechanisrr1 by manipulating data elements
• 1n the

database. These rules are generally made up of other user defined predicates,

which may in turn ·be rules. This al1ows programs to be written in a top-down

fashion where abstract rules a.re defined in terrns of lower level primitive rules.

A rule-based approach is a natural way to describe abstract assembly tasks that

are the fundamental to developing a robot planner. High-level assembly tasks

can be described as a series of conjoined lower-level su_btasks or subgoals.

These subgoals are refined in terms of lower predicates until a set of simple

primitives are called upon to update data elements in the database (e.g., a

block's location is modified when it is moved). Thus, by combining other

predefined predicates, programming a hierarchy of decomposable abstract as

sembly tasks is very straightforward.

·Thirdly, since P.-rolog is an interpreted language, it allows the programmer

to quickly test newly defined predicates without the delay usually caused by

compilation and linking. The PC based VMA Prolog useq in this project com-

piled all Prolog predicates into a semantic network before execution3
• ·This in-

creases the execution speed of the planner up to acceptable limits. Even though

the program is compiled, the programming environment is still interpreted.

Thus, the programmer (and eventually the user) can easily interact with any

part of the- system, simply by typir1g any predicate name be it, user define.cl or

3Virtual Memory Prolog, written. by Robert Morein of A·utomata Design Associates.

30

' '

built in. 1"his allows the systen1 developer to easily trace and debug 'new predi-

cates that have been added to the planning system in an interactive fashion.

The programmer can also assert new facts into the database as well as whole

new rules. Thus, the programmer can link several planning predicates together

to see their· combined effec~, and, if desirable, he can then save their combined
/.._/'

~

effect as a new assembly predicate. This predicate can then be used later as a

subtask of an even higher user defined predicate. This provides for a flexible

and extensible programming environment that is not available in most 4th

generation computer languages. Other Al languages such as l-1ISP do provide

for lai1guag<\ extensibility and havr interactive prograrnrning environ1r1cnts. l3ut

these other systerns lack the built-in database and inferencing .mechanism found

in Prolog.

3.2.3 The TeachMover Robot

The MIC Planner System instructs the TeachMover robot to moves bricks

about within its environment. Before further discussion on how the planner ac

tual generates robot arm motion commands, it would be beneficial to look at

the TeachMover's configuration, limitations, and features. This will provide a

better und.erstanding of the. steps that have been taken to improved the pro

gramming interface to the TeachMover.

The TeachMover robot is .a self co·ntained robot manipulator and control

system that is powered by an 8-bit 6502A microprocessor with. 2K bytes of

read-write random access memory. The 2K bytes of RAM can store programs

created through the use of the hand held teach pendant or programs which have

been generated off-line and down loaded to the robot from .a host computer sys

tem. Figure 3-3 shows the .various parts of the TeachMover robot and its coor-

3-1

din ate axis systcna [2:2].

SHOULDER
JOINT

BODY~

'

zAXIS
ELBOW
JOINT

BASE ~.~--i-.-JOINT

RIGHT
WAIST

--'+- ---- --:.---

I
y AXIS

X

,

LEFT WRIST

~HAND
1--

(GRIPPER)

z

x AXIS

Figure S-S: The TeachMover robot.

Simple point to point motions can be quickly and easily programmed via

the hand held teach pendant. If the user records a point incorrectly, he can

use the teach pendant to move the arm to the correct location and record the

correct point. Then, once all the points have been recorded, the user presses

the green start key on the teach pendant and the TeachMover moves through

the previously taught series of points. The user ca.11 also perforrn some minor

program editing of points w·ith the teach pendant. Old locations can be

rer)rograrnmed by sirnply rnoving to a new location and pressing record on the

teach pendant. The difficulty in editing increases as more robot instructions as

3·2

added, such as G-OT()s and JUMPs. J1ere, the user must mentally record the

program step number and refer back to it when he wants to change the flow of

control in his program. This becomes quite difficult if there are many branch

ing statements because there is no program listing to refer to. Also, new in

structions can not be inserted into the program. The user can only overwrite

existing TeachMover program statements. This unforgiving editing sc·heme was

one of the major motivation for the development of the off-line robot control

language, MIC.

With an off-line language, editing of control logic of the robot's program is

much easier. ·With the MIC Colnpil<'r Syste111., the user can edit his MIC

program with an editor of his choice an.d then compile and down load his

program to the TeachMover robot [24]. The MIC Compiler System checks for

range errors which can occur when the arm is instructed to move outside the

robot's reach. These error are logged to a listing file wit"h the user's program

and can be printed out to allow the user to review his logic or redefine his

points to ·be within the robot's reach. For those interested in programming the

'TeachMover by using the teach pendant should ref er to the TeachMover User

Reference Manual by Microbot Incorporated [2.2] or to Introduction To The

Microbot TeachMover Robot by Werkman [25]. Those interested in prog_ram

ming the TeachMover via the MIC robot control language should refer to The

Microbot Instruction Code· Compiler manual [24].

The TeachMover tobot can be controlled from an external host computer

by two methods. The robot can receive programs from a host computer and

store them in rnerr1ory (this is what the MIC Compiler System does) or the

TeachMover can be controlJed by a series of interactive commands. The second

33

.,

method of control is incorporat.c1 d into the Ml(J Planner Systen1. The inter

active commands range fron1 simple point to point S"TEP commands to rnore

complex commands such as GRIP, which close the robot's gripper until it

squeezes an object, and READ which returns the robot's current arm location to

the host computer. The MIC Planner System currently only issues STEP com

mands for every arm movement that is generated.

3.2.4 MIC Planning Task Examples

Since the MIC Planner System uses the Prolog interpreter itself as its user

interface, the user has access all the features of Prolog when developing abstract

assembly tasks.. Thus, the user can execute predefined assembly predicates that

exist in the planning system, or he can link several of them together to form

new high level assembly predicates. The user can also look directly at the

Prolog database to se·e what items are available for manipulation.

When the system is initially consulted, it initializes itself and sets up a

sample world of three pa_rts narr1ed partl, pa·rt2, and part3. These brick-like ob-

jects can be move around in the world by user initiated motion predicates.

The user can fetch parts, place them at locations, grip parts, or even 'insert or

delete parts from the world. If the user forgets what motion predicates are

available for use, he can type help. at the Prolog system prompt and a screen

of help will be displayed.. ·Table 3-1 gives a listing of possible high an-d low

level motion and assembly predicates that the user can issue.

In order to dernonstrate an abstract assembly task; the planner has been

taught a general procedure for assembling two parts at a given assembly loca

tion. The predicate assemble takes three parameters; the first part's name, the

second part's name and a location at which the assembly· is to take place. All

34

•= Robot PI ann i ng Commands from Highest To Lowest Abstraction Leve I =•
TASK : stack(A, B, C, [X,Y,Z])

assemble(A, B, [X,Y,Z])

OBJECT: putOn (A, B)

- Stack A on Bon Cat loc [X,Y,Z].

- Assemble A and Bat loc [X,Y,Z].
Puts A on top of B.

f etchFromTo (A,
mate (A, B)
fasten (A, B)

[X,Y,Z]) - Fetch A and place at [X,Y,Z].

- Fetch A and mate to B.

fetch (Object)
placeAt([X,Y,Z])

ARM : approach ([X, Y, Z])
MOTION depart (Di stReturned)

CMDS moveArm ([X, Y, Z])
rotateGr i pper (Degrees)

OTHER:
USER
CMOS

.
grip
unGrip
world
remove (Object)

insert (Object)

speed (0 .. 15)

connected (yes/no)

saveMoves (yes/no)

traceMoves (yes/no)

- GI ue A to B (A becomes part of B)

- Move arm to Object and grip.

- Move arm/grip contents to [X, Y ,Z].
Safely move arm to [X,Y,Z].

- Raise arm at least 5 in. in Z axis.

Move the arm directly to [X, Y ,Z].

- Rotate grip (&object)+ or - Deg.

Closes grip on object at grip loc .

- Opens grip & release grip contents.

Show the current world items.
Removes an Object from the wor Id.

Inserts an Object into the world.

Sets arm speed for next move.
~

Connect & Move/disconnect robot.
Saves MIC moves to file MOVES.MIC.

- Toggle ON/OFF trace of arm motions.

Table 3-1: MIC .J"llanner System Predicates. ·

locations are given in terms of rea] nu_mbers and always includes X, Y and Z

Cartesian coordinates in units of inches. The user initiates the assembly predi

cate as fallows:

ASSEMBLE(PARTl, PART2, [8.0, 0.0, 0.0]).

The above predicate will attempt to assemble two objects, part1 and part2

at the predeterrnined location [8,0,0J. Figure 3-4 shows the layout of the world

at the start of the assembly operation.

divided up into four general actio·ns.

1. Fetch part1 and Place At [8 ,0,0].

2. Fetch part2 and Place At [8,0,0J.

The assemble main task predicate is

3. Mate part1 to part2 (make a nonpermanent bon.d).

4. F astcn part2 to partJ (make one object).

In the MIC Planner System, the assemble predicate is programmed in

Prolog as f ol1ows:

35

fA-rT i
4

3 4

-4 fc.rt 2

-6

CALIBRATION
(INITIALt

6 7

P.1

9

Lo CG\ 1/o

-::, -· ~ -· ~ -
00
& p:·

X ~
C,
~
::,-
~

~
0
~ -0...

0-
~,
0 ...,
·~

~
Cr)

~
~

~
·C:,--...
~
•

assemble(A,B,Atloc) :-
print(,\nAssembling,,A,, and ,,B,' at ,,Atloc,,.\n'),

asserta(motionCommand(assemble,A,B)) /• Set Assemble Flag •/
fetchFromTo(A,Atloc), /• Fetch A to Atloc •/
fetchFromTo(B,Atloc), /• Fetch B to Atloc •/
mate(A,B), /• Mate (snap) A to B •/
fasten(B,A), /• Fasten (glue) A to B•/
retract(motionCommand(assemble,A,B)) /• Reset Assemble Flag.•/
print('AssemblyTask: Completed.\n>), /•Printout completion•/
I

The first two part fetches are done by the Pro log predicate

fetchFtom To(Object __ To_ Fetch, Location_ to_ place_ at). This predicate fetches

an object from it's current location and places it at the specifi.ed location. This

entire abstract, tc1sk must be done in a fairly safe ·manner in ord.er to avoid col

lisions between thP arrn and ol)jects in the robot's world. After the two parts

are brought together at. the ass~mbly point, the planner calls mate(Object1,

Object2). This instructs the robot to nonpermanently connect the two objects.

The final subtask of the assemble main task is the fasten operation. This oc-

curs when the fasten(Object2, Object1) predicate is called. This causes Object2

to become permanently fastened to Objectl. The additional clauses listed above

simple print out informative messages and set and remove flags which are

needed for lower level tasks during the assemble main task.

The first subtask of the assemble command requires the planner to tell the

.robot to fetch the first part, part1 and place it at the specified assembly loca

tion, f 8,0,0]. But, another object (part3) is already at this location. Therefore

a planning conflict occurs and the planner must react in some fashion to

prevent the current Prolog predicate from failing, and consequently causing the

main assemble predicate to fail. The p]anner knows that the assembly of part1

and part2 must take place at location [8,0,0], possibly because there is a special

mounting fixture at that location which is needed for the assembly. The plan-

37

ner correots the conflict Ly clearing thf\ assernbly location of parlr~.

But before location [8,0,0j can b<' cleared of part3, the planner must rid

the robot's gripper of the current object (part1) so that it can grab and remove

the offending object. So the planner clears the gripper of the current object by

placing it (partl) at a predeterrr1ined location known as the clear stack. The

robot moves the arm t.o the clear stack location and places partl there. The

result of this operation is shown in Figure 3-5. After the gripper is cleared, the

plann~~r tells the robot to g.o back to [8,0,0) and fetch the offending part

(part3). This part is then placed at a secondary location known as the collide

slack~ 'fhe collide stack is \vhere objPcts arP placed when they are found oc

cupying a location that they .should not be i:n. This stack grows as the number

of incorrectly placed objects are found to be in the wrong locations. The result

of clearing the offending object (part3) to the collide stack is shown in Figure

3-6.

After part3 has been placed at the collide stack location, the plann~r

knows that it must restore the object that was in the gripper before the col

lision detection occurred. So the arm returns to the clear stack location and

fetches partl. The planner finally instructs the robot to place part1 at the

newly cleared location [8,0,0]. At this point, the first fetchFromTo subtask has

been successfully completed. The results of the first fetchFromTo subtask can

be seen in Figure 3-7. The second fetchFromTo subtask fetches part2 and

places it on top of p·artl without any problems.

The reader might wonder why the planner does not also clear the as~

sernb]y location ([_8,0,0)) of partl like it did when it found part3 there.

However, a special "assembly condition", asserted into the Prolog database when

38

5

-4

-5

Col/iJe,,
t;ttJ.(A<

Clettr
S1'tl

2

X

3 4
9 10

,,

1'arr2

~
0 .., -0...

~
~
c-+
~ ...,
n
0 ---· 'CJ) -· 0
::,

0..
.~
~
('b
n
~

~
.a,_

~
::,
CL

O'C ..., -· "O

n -~
A: ...,
('b

0..
•

5

-4

-5

C/eQY'
Tack

2

CALIBRATION
Po (INITIAL)

3 6

flrt 2

r---
1
I

I
7 I

I
I
I
L---

P1

----,
I
I
I
I

; 9

I
I

---'

X
10

••

~
0
~ -O..·

~
~
~
~

~
~
""t
~

c.e
("') -~
~ ...,
.~

0..

:;a
0
3
~
VJ
VJ
~
~
._J

er -t..<

--0
("')

~
t:""f" -· 0
::,
•

&

4

-4

-6

Co/Ii e
S11lc.K

3 4

far12

..

Si!,en,b
• Location

P1

•

the assemble predicate was called, does not exist anyrnore. This specific

"assembly condition" is built in and checked for by lower level arm movement

predicates. If a specific collision condition occurs, then the arm movement

predicates resolve it by removing the offending object. If the specific

"assembly" condition is not in effect, then the arm movement predicates can

resolve the collision problem by simply placing the currently held object on top

of the object that happens to be at the destination location. Passively placing

an object at a specified location, the default condition, allows the robot to

safely complete its task with a minirnurn of damage to its environment, and a

111iHi1nurn nurnbc\r of ar1n rnovcments.

1"'he third subtask of the assembly task requires that the planner instruct

the robot to perform a mate o_peration. ln this parficular assembly operation a

mate subtask is the joi.ning of two objects in a nonpermanent fashion. The

mate predicate causes the robot to fetch part2 and twist it 90 degrees until its

simulated screw locking mechanism clicks. Now the parts are mated. They tan

be unMated by rotating the gripper in the opposite direction.

The final su ht.ask of the main assembly task is the fasten operation. In

t-his task, part2 (which is on top of and mated to part1) is melted together

with part1 to form a single object, partl. The final state of the world is

depicted in Figure 3-8. To maintain a consistent world model, the planner

removes part2 from the Prolog database since it now no longer exists (its now

part of partl). The planner also must realize that part1 has "grown" in its Z

axis dimension to now include it's previous height plus the height of _part2.

The planner also updates the X and Y axis dimensions of part1 to reflect the

addition of part2.

42

-·

-5

ear
~Tact

2

CALIBRATION
P0 (INITIALt

·3 6 7

'2

~
0
'"'1 -0..

xe,
~

~
9 10 '"'1

::,
::,
~ -
~
A
~

~

~
::s
0..,

~
Cl)
~

~

~
,,

.

I

A complete trace of the above assembly task can be found in Appendix A

through E. Appendix A lists the norrr1al user readable output generated during

a planning operation of the assembly task. Appendix B provides the reader

with a verbose trace of the sarr1e assembly operation showing the exact points

that the robot's arm moved through while assembling part1 and part2. Appen

dix C lists the MO VE .. 'i.MJC output log file and is generated by the planner

when the saveMoves{yes). predicate is invoked. This file contains valid MIC

robot programming commands that can be compiled by the MIC Compiler Sys

tem written by Werkman [24J. These commands can then down loaded to the

rfeachMover robot to provide native codP for real time execution of the as;..

scmbly task. Appendix D shows the listing -output generated by the MIC Com

piler Systerr1 after compiling the program in Appendix C. Appendix E shows the

actual 1,eachMover opcodes that were generated by the MIC Compiler s·ystem.

Appendix F provides a trace generated by the planner for a stacking

o_peration in which three parts of a stack are rearranged. This stacking opera

tion involves a worst possible case condition that is handled efficiently by the

planner. The initial state of the stack is shown on the left s.ide in the example

below. The final state is shown on the right side.

START
ORDER

PART 2
PART 3
PART 1

---> ---

FINISH
ORDER

PART 1
PART 2
PART 3

The user initiates the stacking operation by issuing the following Prolog

predicate:

LOC(PARTl, STACKLOCATION,_), _
STACK(PARTl, PART2, PART3, STACKLOCATION).

The Loe predicate causes the Prolog database to be queried for the XYZ

44

location of partl. The location is returned in the variable .. 9tackLocation. 1'his

variable is then used as a parameter in the stack predicate. The stack predicate

in the above example states that part1 should be placed on top of part2 which

should in turn be placed on top of part3. The location of the stack should be

at StackL.ocation.

To perforrr1 this task, the stack predicate is defined in Prolog as follows:

stack(A,B,C, Atloc) :-
(((A== B; B == C; C =- A), /• If 3 items NOT UNIQUE, •/

.
'

print(A,' and > ,B, > and > ,C, > are not unique! Aborting.\n'),

! , fa i I / • Then QUIT! • /
)

(asserta(motionCommand(assemble,C,B)),f'et Assemble Flag•/

Print('STACKING·' A 'ON ' B 'ON' C 'at ' Atloc ' \n') . , , , , , , , , . ,
fetchFromTo (C, AtLoc) , /• Put C at I ocat ion Atloc. •/

putOn(B, C) , /• Then put Bon top of C, •/

putOn (A, B) , / • And put A on top of B. • /

retract(motionCommand(assemble,_,_)),/•Reset Assem FJag.•/

print (>Stack Operation: Comp I eted. \n ')/•Pr j nt comp I et ion.•/

)

) ' ! .

The first action that is performed once this predicate is called is a check

to mr- ke sure that the three objects bein.g stacked are all unique objects. If

they are not, a warning message is printed and the stack predicate fails. If

stack had been called by a.not her predicate, then that predicate would also fail.

The fanure of the stack predicate in this case is justified because this predicate,

stack, requires three objects to manipµlate. Chances are that any predicate that

calls stack also expects to find three unique objects in the world and would also

fail.

This condition of high-level predicates failing more quickly than low-level

predicates is ·a general rule among the hierarchy of predicates in the MIC Plan

ner System. The low-level arm motion predicates tend to deal with abnor

malities of greater subtlety than do the higher level more abstract -action predi-

45

cates. This occurs because many gross errors are initially screened out at the

higher levels of abstraction where they are most obvious. The low-level motion .

predicates are coded to deal with more subtle problems such as in the case

where objects. are passively stacked on. top of other objects when their destina-

tion location is occupied.

Given the case that all three object parameters of the. stack predicate are·

unique, the next action is to assert the "assemble flag" which enforces the con-

dition that the first object to be placed is indeed placed at the location

specified, StackLocation. This same condition was also used in the assembly

task exarnple discussed above. After this condition is inserted in the the

database, an informational rnessagc is displayed.

The stacking task is divided. into three main subtasks:

1. Fetch part3 and Place At S'lackLocation. (Causes any objects ·on top·

.of part3 to be removed.)

2. Put part2 on top of part3.

3. Put part1 on. top of part2.

In an attempt by :the planner to place part3 at StackLocation, it must

first resolve the conflict that part2 is· ·on top of part3. Given this condition, the

robot can not physically grasp part3.

Stack location as seen below.

Thus, part2 is cleared to the Collide

MAIN
STACK

PART 2 -~=>
PART 3
PART ·1

COLLIDE
STACK

-----·---

PART 2

Now, part9 is accessible by the robot and can be placed at the destination

location. But, it just happens that the destination locatio.n is where part1 cur-

46

I

rently resides. Thus,
.

since we have enforced the "assembly flag" condition

which states that the ·object to be placed (partS) rnust occupy the specified loca-

tion (partl 's residence). The conflict is resolved by the planner telling the

robot to clear the gripper of par.t3 and then place partl on the Collide St-ack.

This is seen in the following two examples.

CLEAR
STACK

PART 3

CLEAR
STACK

PART 3

MAIN
STACK

<=== JJART S
PART 1

THEN

MAIN
STACK

COLLIDE
STACK

PART 2

COLLIDE
STACK

PART 1

PART .1 ===> PART 2

After the stacking location has been cleared, the planner restores the ob

ject that was previously in the gripper (part3) and then com.pletes the original

place At subtask and places

CLEAR
STACK
----·--

PART 3 ---> ---

part3 at

MAIN
STACK

PART 3

StackLocation as

COLLIDE
STACK

---·------

PART 1
PART .2

seen below.

The next subtask of the stack rriain task predica.te is put0n{part2, parts).

But the execution of this task is hampered by the fact that part1 is on top of

part2. Thus, the robot can not get at part2. As do.ne earlier, the planner

~

clears the top of the current object being fetched.. This time, the standard

()ollide S1tack location can not be used because this would not help resolve the

current conflict. Instead, -this would just put partl back on top of part2. At

th·is point, the planner realizes that it must find another ''clear spot" to place

I

47

the offending object. It decides to place the object at the location, Nearlly.

This action is depicted below:

NEARBY MAIN COLLIDE
STACK STACK STACK

<================== PAR 1, 1
PART 1 PART 3 PART 2

This location is generated by taking into consideration simple volumes of bricks

that exist in the world. The planner knows the XYZ dimensions of partJ and

part2. It decides to place partJ just outside of the collision range of part2. In

this case, the planner always tries to place the off ending Collide Stack object

near the X axis which is rnorc toward the rniddle of Che robot's work cell and

should thus be within the range of the robot.

Now that all objects on top of part2 h~ve been cleared., the planner in

structs the robot to resume the putOn subtask and place part2 on top of part3.

NEARBY
S.TACK

MAIN
STACK

PART 2

COLLIDE
STACK

PART 1 PART a <==== PART 2

The final subtask of the stack predicate, put On{ part1, par.t2} is then ex

ecuted and succeeds. The final state of the world is show below.

NEARBY
STACK

MAIN
STACK

PART 1
PART 2

PART 1 ===> PART 3

COLLIDE
STACK

THE GOAL STATE CONFIGURATION

As can be seen in the exan1ples above, the assembly and stacking tasks

are treated by the MIC Planner System as a conjoined series of ordered sub

tasks that must be achieved in the given sequence in order to satisfy the main

48

action predicates, assemble and stack. In the specific case of the assembly task,

the given order of the subtasks cannot be changed in the event that a subtask

fails. Each predicate in the MIC Planner System is designed to succeed given

mi.nor perturbations in the robot's world. In several cases, the planner will ask

the user if he wants to perform a specific operation if it is deemed in

appropriate by the planner. If the user agrees to a inappropriate operation, the

planner will try its best complete_ its primary task by dealing with the resulting

world rnodel. Only when an impossible situation exists will the planner give up

(e.:g. when the user tries to fetch an object that is not in the world).

The MIC]llanner System is capable of successfully handling perturbations

in it's environmPnt for two reasons. First, its assembly tasks are well under

stood and take into account all possible task exceptions. Second, each assembly

task is represente.d in a planning hierarchy of subgoals w·here each subgoal relies

on the successful com.pletion of lower level subgoals~ Such a task description

hierarchy aHows the human task planner to .clearly describe tasks in terms of

easy to understand primitives.

3.2.5 Comparison with the NBS Robot Control System

The NBS Robot Control System, as described above, uses a hierarchy of

task .decompositions to successfully control robots and other machine tools

through their manufacturing operations. The discussion here centers on the

lower four levels of the 'NBS RCS hierarchy where parallels in task decomposi

tion can be found between both the NBS and MIC Planner Systems. The lower

levels of the RCS include the Work Station level, the Task level, the E-Move

level, and the Primitive level.

Figure 3-9 shows the lower four levels of the NBS RCS that were used in

49

W()ffl(

laTA.TlON

,TA TUS • busy, done, l1la.d
rN 90ft to, taNYt'9

COMMAND$

TRANSFER (OBJ from A to I (-1ld at C1>
ACOUIRE (09.I •I A)
ftfl EA~ '1..wt •I CJ
Ct.EAII (drop al IJ (.nd •I CJ
MOVE QOIJJ lfrvffl AJ lo I)

TAllt

CIWAde

UNI-A.ASH COIJ. SUflf ACI NOflMAL)
UTURNI MEASURED DGT ANCE
TO oeJECT

,u,oo-,:\.ASH fO&I. IMST ANCI)
IIETURMI I AND Y CFfllT
Off CEHTROID AND Pflouaa.rn'
01JECT .. YEW II lri.bFIED
OIECT

•,,.Mt,

COMMANDS
LOCATEfOI.J)
PICKUP IOBJ)
MOVE·TO (NAMDM.OCA TION)
MOV&TO-OIJ (NAMED-lOCATION)
IIFJ f lSE COU,
PAUSE

GOTOC..J,I. . ,.,,

COMNANDI
GOTO (POINT)
GOTH"U (POINT)
AP,t10ACH-P05mON·flNOEIU IOI.I)
DEPART -POS"10N·FINOE"5 (O.._
IMMED.Q RASP Col.I)
PAUSE

POSfflON (OftfNIN~
GJIAIP

llnVIINI o,uppa
OftlHINQ

GIIW,n COHTIIOC.
IYITDI

Figure 3-9: RCS commands used at each task level.

the Automated Manufacturing Research Facility (AMRF) project. '"fhe Work

Statiori level al1ows the operator to specify fairly abstract rnotion actions such

as [14]:

• TRANSFER(/Obj from A} to B / end at C J }, robot acquires Obj
f rorr1 A, rnoves to location B, releases the Obj, and then moves to

location C.

• A CQ VIRE (Obj at A), robot moves the arm frorn its current posi
tion to the Obj 's location at A and grasps the Obj.

50

. i

I t

• RELEA .. ',E / end at A /, the robot releases the object it is c.urrently
holding and moves to location A.

• CLEAR / drop at H / / end at l" /, thr robot releases the currently
held object at location B and then proceeds to location C.

• MO VE { / Obj J / from. A / to B }, causes the robot to move from
location A with or without Obj to location B. The Obj is not

released.

These actions are in turn defined in terms of lower level actions that. the Task

level sends to the E-Move level.

To see just exactly how a Work Station command is actually performed,

we Jill examine the decomposition of the TRANSFER task defined at the Task

level in the control hierarchy. The TRANSFER task requires that I) the robot
' i

locate an object at location A, 2) move the object to location B·, and 3) then

optionally end at location C or a safe poin.t above location B4
• To locat.e an

object in the work cell, the system has to interact with a vision system. This

is done through the LOCA TE(Obj) subtask which is defined at the E-Move

level in the control l1ierarchy. Once the object is found, the system has to

move the robot's arm to the object and grasp it. This is done by first calling

the E-Move subtask MOVE-TO-OBJ(Location). Now that the .arm is at the

object's location, the object mus_t be grasped. PICKUP{Obj) is called to per-

form this subtas·k.

The system now decomposes the second part of the TRANSFER task.

This requires. the robot to. move to location B while holding the object. So, the

E-Move level subtask MOVE-TO(Location) is called. Once at location B, the

object must be released before the arm can proceed to location C. The E-Move

4 A safe point is a term used to describe a location usually vertically above a previous point. This
point is considered "safe,, in that it is out of the way of other objects in the robot's work cell.

51

\

subtask RELEASE(Obj) docs this. Thr. last part of the TRANSFER task
'

moves the robot's arm to location C (or a safe location if C is not specified),

so again the E-Move subtask MO VE-TO(Location) is called. Finally the

E-Move level's PA USE subtask signals the completion of the TRANSFER task.

_Each of the arm motion subtasks defined at the E-Move level 's is in turn

decomposed into lower level arm movement subtasks defined at the PRIMITIVE

task level (level 1 in the hierarchy). Tasks defined at this level include more

refined motion operations such

AIJPROA CH-POS~ITION-FINGERS(Obj),

IMML1D-Gl?A·SP(Obj), a~nd JJA USJ~.

as GOTO(Point), GOTHRCJ(Point},

DEPART-POSITJON-FINGERS(Obj},

1"'herc are similar task operations and arm movement primitives in MIC

Planner System. Analogous to the NBS TRANSFER task is the MIC Planner's

fetch.From To predicate.

FETCHFROMTO(OBJECT, LOCATION).

Here, the user specifies an Object to fetch and then a Location at which

to place the object. The fetchFrom To predicate is -decomposed into two sub

tasks; fetch(Object) and placeAt(Localion). The fetch(Object) predicate initially

locates the object in the world model and then causes the robot to move to the

object and
.•

grrp it. To do this, fetch .•
IS further decomposed:

exists(Object,Space); approo.ch(Space), and grip. The exists· predicate checks to

see if the object exis-ts in the database. If it does, then the. location Space is

returned. This information is then passed to the approach predicate ,vhich

moves the arm to the specified location safely. Once there, the grip predicate

instructs the robot to grasp t-he o·bject at the current location.

The second part of the fetchFromTo main task is the placeAt predicate.

52

,

PlaceAt contains three rnajor subtasks: approach{l.1ocation), unGrip and depart.

After the object is placed at the specified location, it is released and the arm is

instructed by the planner to back away to a safe point location. fetchf 1rom To,

thus performs motion actions much like the NBS system's TRANSFER task.

Both include task decomposition hierarchy and both use task level feedback.

Each one of these task levels in the NBS Robot Control System hierarchy

receives feedback from its surrounding control levels at clocked time intervals.

The feedback comes from three sources: commands from higher level control

modules, status results of commands .executed by lower level modules, and sen

sory feedback f ron1 external sensors and vision systems as shown in Figure 3-10.

An example would be the following. The Task level r_eceives abstract action

commands from the Wot-k Stat-ion level above. The Task level processes these

command by decomposing them into lower level task commands and sends these

task commands to the E-Move level ·below. The E-Move level further decom-

poses the task commands into elemental robot ·movement commands such as

GOTO{Point). If the robot can ·successfully attain this point, a signal stating

this result is then passed back to the Task level.

Each control level is made up of related task processes. The process is

the basic element of the NBS system. A process is divided into three parts; an

input, the process1 and an output [14]. The input part of a process formats the

-incoming command into the desired format -needed by that, process. The output

part converts the data into a format usable by other processes in the system.

The actual process itself is a state table that is divided into input states with

associated output functions. This state table structure depicted in Figure 3-11

is the same for each task level in the NBS RCS I system.

53

COMMAND

PftOCESIED
SENSORY _..,__.,... CONTIIOl

DECWON
LEVE.

FE£DUCtC

PAOCEISED
SENSORY __,_.. ___,..

FUDUC8C

PROC!SUD
SENSORY
FfEDIACC

COMMAND

CONTIIOL
DICISION
L!VB.

COMMAND

COHTRDL
DECWON
l.EVB.

COMMAND

Figure 3-10: Input/output to/frorn each hierarchical level.

In,.. ~
lt•t• hooedUNS

ODD ODD
ODD ODD
ODO ODD

,,ep,ocen St,1 .. Table Po1tp,oce11

Figure 3-11: A control level in the NBS Systen1.

The NBS researchers chose the state table representation for each task

level in the NBS control hierarchy for several reasons. First, they believe that

any procedurally written robot program can be rewritten in terms of a finite

state automaton (FSA) [1]. This has several benefits. }rirst, it makes for an

explicit means for expressing simultaneous processes which are occurring at each

level of the control hierarchy. Secondly, a l~SA facilitates explicit error han

dling conditions. rfhirdly, is allows for the addition of new sensor input devices

by sirnply adding new lines into the state table. A fourth advantage to the

FSA approach is that is provides a formalized an structured approach to

54

describing each task level. Thus, as in th<1 r.ase of adding new sensor input or

new error condition checking, the programmer simply adds new lines (rules) to

the state table much like he would add rules to an expert system. A fipaJ ad

vantage to using FSAs and state tables over procedural robot programming lan

guages is that it is easier to debug.

The MIC Planner System demonstrates that a rule-b·ased approach can

provide some of the benefits of the state table approach used by· NBS in their

RCS. Though there is explicit state table, descriptions of how task are decom

posed maybe more straight forward in terms of Pro)og rules than in terms of

state tables. The ability to increase the planner's knowledge wit:h new rules is

also easily done in Prolog. (;iven J)rolog's autornatic backtracking control

scheme, once a predicate fails, the MIC Planner System would attempt to use

other versions of the failed predicate that it had in its database in order to ·find

a solution. Also, Prolog provides an interactive environment with a built-in

trace facility. This allows the programmer to easy debug his task descriptions.

3.2.6 Possible Future E11hancements

The MIC Planner System was designed to operate under the "STRIPS

assumption" in that the world is static and only action. predicates change items

in the world. A worthwhile enhancement to the system would be t·o add real

world feedback which would allow it to react to changing world conditions.

Thus, given continuous visual input from a simple overhead mounted vision sys

tem, the planner could keep track of objects at least in X- Y space on the t.able

top. If a second side-mounted vision systern w·ere added-, the planner could also

u~e this .input to decide exactly where objects were in 3-space. Possibly the vi

sion system could report the specific dimensions of the objects in both the X_-Y

55

plane and Z axis. Once a /a,ten operation is performed, the planner would have

to inform the vision system monitoring the Z axis that the two objects are now

to be considered as one. Thus the Z axis dimension of height returned to the

planner would have to reflect both the top and bottom parts' heights.

The MIC Planner System could easily be modified to use various sensor

inputs given the current hierarchical structure of the programmed tasks. Ul

timately, the lowest level arm motion tasks would be responsible for checking

the availability of a destination location before an object is placed. For proper

use of this new world knowledge, a outer level monitor program wou]d have. to·

be wr.itten which would contin.uously poll for new feedback. l>ossibly the input

sensors would generate specific "world update" predicates that would be placed

in a file and read· by the Prolog monitor system5. The planner's "blackboard"

would contain specific slots (predicates) that could be updated directly by the

external sensor system.

The MIC Planner, like the NBS system, -can behave in an opportunistic

fashion. ln the field of real-time robotics, complete plan generation before the

syst~m makes a move may not be the best route t-o go. Instead, a piecemeal
',

generation of the plan, as in the opportunistic approach may be more flexible

and efficient. Indeed, many current experimental planning systems are starting

to take into account rea]-world constraints such as time dependent travel and

deadlines. If a planning system is ever to be used for a real-world application

such as robotic control, it will have to deal with the many uncertainties that

arise in a changing world.

5This case of communicating via files is s·pecific to the' current implementation of Prolog for the PC
used in this project. This may change as new versions. of Prolog become available

56

...

The use of production rules is seen an an important step in the develop

ment of advanced planning systems. A real-time rule-based planning system

called the Flexible Planning System (FPS) has been developed, implemented and

tested in a real-world environment on the HILARE robot [18]. This rule-based

systern allows for goal-directed as well as data-directed processing to occur.

The FPS system uses the STRIPS assumption in that all updates to t.he world

model are done exclusively through production rules. The FPS system allows

for parallel execution of these rules. in real-time. The planning method used is

similar to the NOAH system in that rules build a procedural net of possible

choices. A set of critics then examine and expand promising nodes in the net

work. 1"hese critics select goal expansion operators dynamically utilizing precon

ditions (environmental context), current conditions, post-conditions, and con

strain ts [18]. The system is .made "s·marter" by simply adding new rules to its

rule base. Because the system planning knowledge is represented in the form of

rules., heuristics may be added at any level of the planning hierarchy without

much trouble.

The FORBIN planner is a planning system that use spatial and temporal

reasoning to generate plans to deal with deadlines and travel time of a mobile

robot [.t5]. He.re, a mobile robot is used to move about the factory floor sup

plying various machines with supplies and machined parts. The FORBIN sys

tem uses a hierarchical structure much like NOAH's but modifies its plans based

on time. Two ne,w modules are incorporated into the system to do this; the

Time Map Manager TMM and the Time Op-timizing Scheduler TOS. As dead

lines pass, the system reorders its subgoals by looking up 'ten1poral information

in the T:MM module and then explores the possible repercussions of the subgoal

57

reordering via the T()S rnodulc. A feasibl<! extension to an opportunistic ver

sion of the Ml(~]>lanncr System would be to provide a rneans for the systerr1 to

deal with real-time constraints for given assembly operations.

,. ,

58

;

r /

~

Chapter 4

Using Natural Language To Control A

Robot

The next level of research in developing intelligent robotic systems will be

the enhancement of user interface. An enhanced user interface might include a

speech recognition system that translates words and phrases spoken by humans

into ASCII text in computer systems. Indeed, there are several system now

available on microcomputers that recognize the voice input of individuals. Many

of thP currently available systems record a series of words spoken by a single

user and then let the user assign a secon·dary microcomputer command to the

spo·ken phrase. Once spoken, the speech recognition system generates micr'ocom

pu ter commands that can be used by applications programs of th.e operating

system. Such a system will allow easier access to complex applications

program·s to both normal and handicapped users alike.

In advanced speech recognition systems, each word will be detected and

converted to ASCll text. These sentence or phrase of words will then be

·-
handed over to a natural language processing system which will parse the -sen

tences and determine a semantic meaning for each sentence parsed. The seman

tic meanings will then be translated into comman.ds in an ·artificial language

which is und·erstood by the planning and control systems. T·hrough the decom

position of these artificial language commands, possibly into other lower level

commands that are only und·.erstood by the robot's controller, the planning sys

tems will guide the attached machinery through what wil1 be considered intel

ligent actions. It is also likely that low-level modules will return their com-

mand languages up to the high levels which in turn will translate the artificial

59

languages back into natural language responses. 'fhese responses rnight be dis

played on a CR'f or possibly translated back into speech signals that will be

broadcast over a loudspeaker. Hence, natural language processing systems will

play an important part in the developrnent of the next level of intelligent

robotic systems.

Using natural language to describe tasks has several advantages. [9]. First,

and probably most irnportant, it provides for an interesting interaction between

the human and the rnarhine. Programming a task for a robotic system will not

be as boring or as difficult to accomplish as it is currently is with first and

second generation robot prograrnrning language1s. Natural language also tolerates

imprecision better than does the strict s·yntax of a robot programming language.

Also, and amount of inform·ation about a task that is to be conveyed can often

be condensed by using natural language. It is also feasible to claim that

describing a task in natural language will be faster than writing the task in a

robot control program.

4.1 The RVG System

The Register Vector Gram.mar natural language processing system is an ef

ficient_, compact, finite-state parsing system that is well-suited for real-time

situations.

60

4.1.1 Overview of Register Vector Grammar NL Processing

The key feature that makes the RVG natural language processing system a

good choice for real-time applications is that it its syntactical as well as lexical

knowledge are represented in a compact data structure called ternary feature •

vectors. Ternary feature vectors are fixed length ordered vectors which allow

for three values for each feature. The values range from O to 2 where O means

the feature is off or doesn't exist, 1 means the feature is on or does exists, and

2 mean that the system doesn't care what the value of the feature is (a mask).

The ordering of features in a ternary vector is significant only in that the

processing systcin knows which features it is dealing with. The actual order of

features defined in a ternary vector by the RVG programmer is insignificant. to

the processing performance of the system. The ternary feature vectors are im

plernen t.ed as a pair of bitvectors (Pascal sets) and are compared by ternary

operators in a very fast bit-wise fashion. Thus, whole vectors are processed in

parallel on current machine architectures. It is theoretically feasible to build an

RVG machine which exploits ternary operations on these feature vectors.

A register vector grnmmar consists of a table of syntactic production rules

which contain two vectors, a condition vector (the vector that must be matched

in order to use that rule) and a result vector (the action to be taken once that

rule is fired). A RVG lexicon consists of fixed-size lexical entries, which, in ad

dition to information pertaining to morphology and syntactic categories, is also

made up of ternary feature vectors for representing semantic constraints. The

RVG parser uses the grammar and lexicon to parse input sentences and

generate semantic descriptions. It is important to note that semantic forms are

built and checked in step with the syntactic parse of the sentence.
Thus,·

61

sernantics can help constrain on syntactic parsing.

4.1.2 Overview of RVG System Components

f'igure 4-1 shows an overview of the R VG natural language processing sys

tem, including its various components, one of which is the MIC Planner System.

The components of the system include:

• The Editor Subsystem - Allows the .RVG programmer to modify
syntactic productions and lexical entries.

• The Parser Subsystem - Parses sentences and reports its results in the
form of two registers, the Current Syntactic State Register, or CSSR
and the Current Predicative State Register, or CPSR.

• The Pragma SubsyBtem - This rr1odule receives the _registers from the
parser, interprets therr1, and ge_nerates task commands for the planner.

• The MIC Planner Subsystem - This is the planner. It receives Prolog
predicates from the Pragma subsystem and. generates robot moves.
After moves, Update is called.

• The Update Subsystem - This subsystem performs all the necessary

world model updates.

The RVG language programmer can initially defines his syntax and lexical

dictionary by using the RVG Editor. The Editor subsystem is called from the

main RVG pr.Qgtam and acts as a separate module independent from the other

RVG subsystems. The Editor provides the RVG language programmer the

means to add and delete syntax productions and lexical entries. With the

Editor, the programmer can also add "17delete entire features (a column in the

ternary Vector) globally throughout all vectors in both the syntax and lexicon.

Mostly, the Editor is used by the RV G grammar designer to modify existing

tiernary fc~atures in the grammar and lexicon. Modifying grammar features will

d·etermi·ne the number of productions that are available at a given point in the

62

.,

i

I

I

The R\/G Natura Language System
•• • ••

RUG Edi tor

a 1• I •

Registers
Parser PragMa ~~

(')

0 a
""O
0 -----. :,·
~
:,
~
rn

Planner Update ~

Morph- S1~n tax Se Man t i cs Denote Int er pre t DeooMpose Ao t
o I ogy -

syntactic parse. Modifying semantic features in the lexicon will deterrninc which

words are semantically valid at any point in the parse.

O,nce the changes have been made, the Editor prompts tl1e user if he

wants to save the changes. The user is not forced to save any changes. In

stead·, he may choose to exit the Editor, return to the main RVG options

menu, and choose the Parser subsystem to try out the changes that he has

made. If the chauges are not agreeable, then the user can reselect the Editor

subsystem and make corrections.

The RVG Parser consists of three interacting modules:

I. A lexical component (Morphoio·gy and Lookup),

2 .. A synt.actic component (Syntax),

3. And a semantic component (Semantics).

The Parser contains two special registers that it updates as it parses an

input sentence. These are the Current Synt~ctic State Register (CSSR) and the

Current Predicative State Register (CPSR). The CSSR, a ternary feature vec

tor expressing syntactic state, is generated and upclate9 as the parse proceeds.

The CPSR is a set of pointers to semantic entities th-at are generated frorr1 lex

ical materials, and retried as new information is made available.

The parser starts with the CSSR register initialized to a current staorting

state. As words are read in, the morphology and lookup modules are called

upon to recognize each word. These routines return a category (noun, tran-sitive

verb, etc) as ·well as a ternary vector containing semantic information about the

word. 1,he RVG parser then searches for productions that rnatcl1 the category

of the word.. T.his is the match operation and is demonstrated below:

64

TERNARY MATCH OPERATION

CSSR = 122212201 l

CONDITION VECTOR =-= 1122122022

II ere, a production's condition vector matches the CSSR by matching each

feature either exactly (by O or I) or by using the mask (the "don't care" con

dition of a 2) condition. Since this production matches, it is a possible patse

state for the word in the sentence. A copy of this CSSR is then made and

kept for the next word that. is parsed. Before storing, this copy of the CSSR is

changed by the matching production's result vector as is demonstrated below:

TERNARY CHANGE OPERATION

CSSJl COPY 1222122011

RESULT VECTOR -- 0011022022

NEW CSSR COPY =-~ 0011022021

The changed c;ssR is now placed in a queue along with other possible syntactic

parse path CSSRs. Each one is then selected from the queue and tested via

the match operation once the next word in the input stream is parsed. Because

of this straight forward matching and up.dating of a vector of features at one

time, the entire RVG natural language processing system is fast. Moreover,

RVG avoids
.

recursion, as found .• 1n common A TN parsers, and hence lots of

memory overhead is not required. Embedding is instead modeled by a short ar-

ray simulating human short-term mem.ory.

forward-chaining production system.
. .

The system is basically a fast,

As the parse progresses, semantic information i~ also bein.g built up and
. ~

stored in the CPSR. Here, the information, all available within lexical entries,

is returned by the Lookup module is used by predicative semantics to build

sc1nantic forn·1s in the CPSR. Since serr1antic information is available during the

parse, it can be called upon to help further constrain processing by eliminating

65

bogus parses of the sentence. Ternary vectors allow constraints to be

propagated down the parse chain without any extra overhead. Since the con

straints are initially there, they only need be checked for during the match ter

nary operation. New constraints- are added as the CPSR is refined. For a fur

ther explanation of RVG syntax and semantic parsing, refer to [6) and [7).

The next major subsystem of the RVG natural language system is the

Pragma module. This subsystem receives both the CSSR and CPSR from the

Parser upon the completion of a successful parse of the input sentence. The

function of this module is to t~ke the semantic information built up during the

parse in the CPSR, rnad~ of abstract lexical rnatcrial, and see if it refers to
,

particular objects in the robot's world. If so, and if the sentence is imperative,

Pragma will generate Prolog .task predicates .that are passed to the planner for

actual execution.

The Pragma subsystem is divided into two modules, Denote and Interpret.

The Denote module takes CPSR and tries to establish reference with respect to

a database (the robot's world model). If a. particular object cannot be

referenced in the database, the module asks the user if he wa·nts to instantiate

a new object ·with the given name obtained during the parse of the original in

put sentence. Thus, the denotational semantics, takes abstract meaning stored

in the CPSR and allows it to reference o·bjects in the world.

Once Denote has established reference, the Interpret. module is ready to as-

sembly appropriate task predicates in the form of Prolog predicates. These

Prolog t.ask predicates are then passed to the planner subsystem where physical

actions actually are planned and carried out. ~,or more information on the

Denote module and denotational semantics, refer to [20).

66

The Planner subsystem, know as thP MIC~ J">lanner, then reads in the

Prolog task predicates and acts on them accordingly. MIC J>Janner is divided

into two rnodules, Decompose and A ct. 1'he Decompose module allows for com

plete task decomposition from abstract meaning into lower level robot arm mo-

tion primitives. As pieces of the task are decomposed, the A ct module is

called. Act is a predicate that generates the robot controller commands for the

TeachMover robot. These commands are sent to the CALC program which ac
t

tually calculates the arm trajectory and interfaces with the robot's controller.

After an object is moved in the world, the Planner calls the Update subsystem.

The. l}pdate subsystcrn rnust update the \vorld n1odel .database for the

RV(; natural language systern when the planner sends it a pararneter list of ob

ject features to be updated.

4 .. 1.3 Future System Goals

As of the writing of this paper., several major subsystems of the RVG

natural language system have been completed. Some additional integration of

submodules remains to be done. One specific integration problem related to the

planner is that of maintaining the world model. Since the Planner subsystem

has been writ ten in Pro log, the Pragma subsystem, in order to pass information

to the Planner, must write task predicates as Prolog predicates to an inter

mediate file which is th·en read by the Plann.er. Thus, two world models must

be maintained by the RVG System, one for the Pragma subsystem to reference

with its Denote module, and one for the Planner to reference upon decomposing

rr1otion tasks. The Update su bsystern, receiving another file from the Planner,

will change the RVG database.

Thus we note that the two world models need not contain the same infor-

67

'

n1ation. The RVG database used by Pragma contains various features about

objects in the world such as object color, size, etc., that can be referenced by

the user through natural language queries. The Planner world rnodel does not

have to contain this inforrnation. Instead, the Planner's world model only has

to maintain simple labels for each object as well as XYZ positional information.

Thus, "Moving the red block to the top of the green block" may require the

·denotational system to search the RV G database for a specific instance of a

block that _is red (block I) and another instance for a block that is green

(block2). It would then have to return labels used by the planning system's

world rnodel and give thcrn to Interpret. Interpret. would then generate the

Planner predicate putOn and combine the object parameters to finally produce

the following MIC Planner input:

PUTON(BLOCKI,
BLOCK2).

68

...

• •

Chapter 5

Summary

Many of the topics discussed in this paper are currently under investiga-

tion by researcher around the world. J>roposals have been rnade for the

development of a universal task-oriented robot programming languages that will

be transportable from one robot to another. We have seen that Prolog plan

ning systems allows for functional extensibility through the linking together of

lower level predicates in a hierarchical fashion. Thus, a programmer can easily

describe abstract assembly tasks to a Prolog planning systerr1 in a relatively

short tirne. We ha-ve also seen that a planning system that incorporates a

hierarchy of task predicates is in itself a step toward the next generation of

robot manipulator languages. Robot operators in the near future might use

such object-oriented task languages to write complete assembly procedures by

simply piecing together a few Prolog pred.icates frorn a larger library of possible

lower level primitive assembly task predicates.

One major problem that- must be examined before any generalize task

oriented languag~ can be developed is the definition of robot independence. Be

cause there exists many different robot geometries and configurations, it is dif

fic.ult for many researchers to agree on what set of robot motion primitives are

universally acceptable for use by all robotic systems [16]. A rotation primitive

of a robot's base will work fine for cylindrical and spherical coordinate robots,

but how will this primitive action be performed by XYZ Cartesian coordinate

rob·ot.s or mobile robots that have no base? Indeed, robot independence and .the

definition of specific motion primitives is another research area in which the Na-

tional Bureau of Standard's skills an.cl expertise will be needed.

69-

It is conceivable that in the future, robot operators will cornmunicate ver

bally with robots and instruct them to perform a variety of tasks. The user in

terface will combine the technologies of a signal processing speech recognition

system and natural language parsing system. The underlying meaning of the

spoken sentence will most likely be converted into some form of intermediate

high-level object-oriented task language that the robot understands. The high

level task will then be broken down into basic sets of primitives that control

specific robot motions and actions. Various complex input sensors will provide

the needed feedback to allow the robot to react auto.nomously in a complex and

dynan1ically changing cnvironrnent.

This th.esis has discussed one approach in developing an easy to use inter

face between man and robot. It is apparent that in order to make intelligent

machines, many aspects of artificial intelligence will have to be combined. This

will not only include the areas of planning and natural language processing, but

also other AI related su bfie)ds such as vision systems, object recognition, speech

understanding and speech synthesis. Contributions from other disciplines will

also be needed such as enhanced grippers and arm con.figurations from Mechani

cal Engineering, better planning n1ethods and the integration of Cad/Cam from

Industrial E·ngineering, new microprocessors such as an RVG machine from

.Electrica'l Engineering, and integration of shop floor and office networks (MAP

and 1"'0P network protocols) from Computer Science. With contributions from

each engineering discipline, the advent of easy to use intelligent machine may

bccorne a reality.

The advent of autonomous robots is not science fiction. 1~oday, in many

academic and industrial artificial intelligence and robotics laboratories around

70

the world, researchers are working hard at advancing the stat.c-of-.the-art in

robot path planning systems that handle conflicts, improved vision systems for

scene analysis, cornplex robot sensors including both tactile and force sensing,

and improved man-machine interfaces including graphics and natural language

input and natural language generation. Though most of this technology is still

in the experimental stages, both industry and the government are providing

funding for much of the basic research. The United States government's

Defense Advanced Research Projects Agency (DARPA) is very interested in such

research projects. DARPA has already proposed four advanced Al/robotic

research projPcts, one <>f which is the devcloprnPnt of an autonomous land

vehicle. It is estimated that the o·veraJJ U.S. government research funding for

robotics alone in FY 1982 and 1983 was approximately $20 million per

year f 12].

The aim of this thesis was to provide an overview and a demonstration of

how AI may help robot manufactures develop intelligent robots as well as what

might be expected by robot opera,tors
.
1n dealing with industrial robots.

Through the use of various new computer technologies, robot operators in the

future will be able to use natural language, graphics, te~ch pendants, and high

level task languages to quickly, easi]y, and safely train their industrial robots to

perform a variety of tasks.

71

References

1. Albus, J.S., A .. J. Barbera, and M.L. Fitzgerald. Programming A Hierarchi

cal Robot Control System. 12th International Symposium on Industrial Robots,

National Bureau of Standards, Washington, D.C., 20234, June 9-llth, 1982, pp.

505-517. Frorr1 the 6th International Conference on Industrial R.obot Technology,

Paris, France.

2. Albus, J.S., C.ll. McLean, A.J. Barbera, M.L. Fitzgerald. Hierarchical Con

trol For Robots In An Automated Factory. 13th !SIR/Robots 7 Symposium,

National Bureau of Standards, Washington, D.C. 20234, April, 1983, pp. 1-14.

3. Albus, J.S., A.J. Barbera and R.N. Nagel. 1"'heory And Practice Of Hierar

chical Control. Twenty Third IEEE Computer Society International Conference

Proceedings, National Bureau of Standards, Washington, D.C. 20234, September,

1981, pp. 18-35.

4. AM I.J l?.ef ere1ice Manual.
1981. Second Edition.

IBM (~urporation, Boca Raton, Florida 33432,

5. Barbera, A.J., J.S. Albus, and M.L. Fitzgerald. Hierarchical Control Of

Robots Using Microcomputers.

6. Blank, Glenn D. A New Kind Of Finite-State Automaton:Register Vector

Grammar. IJCAl-85, Dept. of CSEE, Lehigh University, Bethlehem PA 18015,

1985, pp. 7 49-755. Proceedings of the Ninth International Joint Conference On

Artificial Intelligence.

7. Blank, Glenn D. Lexicalized Metaphores: A Cognitive Model in the

Framework of Register Ve~otr Semantics. Ph.D. Th., lJniversity of Wisconsin~

Madison, 1984.

8. Cohen, P.R., and E.A. F·eigenbaum. Planning and Problem Solving. In

The Handbook Of A rtificz·al Intelligence, William Kaufmann, Inc., s·tanford, Cali-

fornia, 1982, Chap. 15, pp. 515-562.

9. Evrard, F., H. Farreny, H. Prade. A Pragmatic Interpreter Of A Task

Oriented Subset ·or Natural Language For Robotic Purposes. 12th lnternationa]

Symposium on Industrial Robots, Loboratorie Languages Et Systemes lnfor

matiques, Universite' Paul Sabatier, 118, Route de Narbonne - 31062 Toulouse

c:edex, France, June 9-llth, 1982, pp. 531-538. From the 6th International Con

ference on Industrial Robot Technology, Paris, France.

10. Fahlman, Scott, E. "A Planning Systern for Robot Construction Tasks".

Artificial Intelligence 5 .(197 4), 1-49 .. Description of the BUILD planning system.

11. ~-,ikes, R.E. and N.J. Nilsson. "STRIPS: A New Approach to the Applica

tion of Theorem Proving to Problem Solvjng". JJCAJ-71 1 (1971), 198-208.

72

12. Gcvarter, William B.. Intelligent Machines: An lntroductory Perspective of

Artificial Intelligence and Robotics. Prentice-llall, Inc., Englewood Cliffs, NJ

07632, 1985.

13. Hayes-Roth, Il. and F. Hayes-Roth. "A Cognitive Model of Planning".

Cognit.ive Science 3 (1979), 275-310.

14. flaynes, L.S., A.J. Barbera, J.S. Albus, M.L. Fitzgerald, and H.G. McCain.

"An Application Example Of 'fhe NBS Robot (~ontrol System". Robotics &

Computer-Integrated Manufacturing 1, 1 (1984), 81-95. Industrial Systems Divi

sion, National Bureau of Standards.

15. Miller, David, R. James Firby, and Thomas Dean. Deadlines, Travel

Time, and Robot Problem Solving. IJCAl-85, Yale University, Dept. of Com

puter Science, New Haven, Connecticut 06520, 1985, pp. 1052-1054. Proceedings

of the Ninth International Joint Conference On Artificial Intelligence.

16. Nagel, R.N. and S.R. Garrigan. An Analysis Of Robot Software And

Plans For]1.s ~:nhancrmcnt. 85-001, IJehigh lJniversity, Bethlehem, PA, June,

1985. f>repared for the NATO Advisory Group for Aerospace Research &,

l)eveloprnen t, Lecture Series No. 142, Artificial Intelligence and Robotics, Sep

ten1 her, 1985.

17. Sacerdoti, Earl I). "The Nonlinear Nature of Plans". JJCAI-75 1 (1975),

206-214.

18. Sobek, Ralph P. A Robot Planning Structure Using Production Rules.

IJCAl-85, Laboratoire d'Automatique et d'Analyse des Systems du C.N.R.S., 7,

avenue du Colonel-Roche, F-31077 Toulouse Cedex, France, 1985, pp. 1103-1105.

Proceedings of the Ninth International Joint Conference On Artificial Intel

ligence.

19. Stefik, Mark J. Planning with Constraints. Ph.D. Th., Stanford Univer

sity, 1980.

20. Stevens, John C. Reference and Quantification in. a Register Vector

Grammar .Natural Language Processor. Master Th., Lehigh University,1985.

21. Tate, Austin. "Interacting Goals and Their Use". IJCA/-75 1· (1975),

215-218.

22. TeachMover User Reference Manual. Microbot, Inc., Mountain View,

California, 1982. Edition 2.

23. VAL Programming Guide. Unimation Inc., Danbury, Connecticut, 1980.

24. Werkman, Keith J. Mic robot .Instruction G'1ode Compiler: The MIC Com-

piler >--9ystem. lnstitute For l{obotics, l,ehigh University, Bethlehem PA 18015,

1985. User's Guide and .Programming Man·ual, Version 2.1.
·\

73

25. Werkrnan., Keith J. Introduction To The Mic robot Tear.hMover Robot. ln-
stitut<' l~or Robotics, Lehigh lJniversity, I1ethlehern f1 A 18015, 1984. Excerpts
F'orm 1'he TeachMover lJser Reference Manual, Version 1.1.

26. Winograd., Terry. "Understanding Natural Language". Cognitive Psychol

ogy 8 (1972), 1-191.

. ...

74

Appendix A
Example Run Of Assembly Task

[C: \pro I og] pt'iJ.og

A. D . A . PROLOG
type VMA (LARGE MODEL - VIRTUAL MEMORY)

Top of memory< 627990
Workspace Avai I able: 256 Kbyt1es

Version 1.80 - 12/02/85
Copy for Keith Werkman
Single CPU License

Copyright Robert Morein and Automata Design Associates 1986
Dresher, Pa. (215) - 646-4894

/••·· Consult the pro log based robot planning program.

···•••/
root/user/?- comult(robot).

Comp i I i ng robot. MIC

!••·· Start of main program.

··••/
Planner by Keith Werkman. Version 1.2, 12/11/85

part·l is located at: [5,6,0], oriented: [-90,0,1],
features: [1, 1, 1] .

part2 is located at: [5,-5,0], oriented: [--90,0,1.6],
features: [1.6,1.5,1.5).

part3 is located at: [8,0,0], oriented: [-90,0,2},
features: [4, 2, 1] .

The arm is located at: [5,0,0], Pitch=-·90., Roi 1=0·, Grip=0.

The gripper is holding: nothing.

Type help. for help.

Yes.

lxxv

,

!••··
THE FOLLOWING IS A LIMITED TRACE OF THE ASSEMBLE TASK

where two part2 are fastened together into
case, there is a co I I is ion detected at the
and the offending part, PART3, is removed
stack . A f te r the co I I i s i on con d i t i on i s
assembly task proceeds unti I completion.

one. In this
assemb I y point
to a col I is ion
reso I ved, the

' \

/••··!
root/user/?- a,aemble{part1, part2, /8.0,0.0,0.0j).

Assembling partl and part2 at [8,0,0].
SUB TASK: FETCH FROM TO. Fetching partl and placing at [8,0,0].
==Departing arm==
==Moving Above Drop Point==
==Moving arm TO Drop Point-=

Re I eased Object: nothing

Gripping Object: partl

==Departing arm==
==Moving Above Drop P.o int==
==Moving arm TO Drop Point==

•••• Col I is ion Warning: part3 found at [8,0,0] ••••
Clearing [8,0,0].

----)Storing object in gripper at [2, -6, 0] <-----

==Depa rt i n9 a rm==
==Moving Above Drop Point==
==Moving arm TO Drop Point==

Re I eased Object: partl

==Depa rt i ng a rm==
==Depa rt i ng a rm==
==Moving Above Drop Point==
==Moving arm TO Drop Point==

Gripping Object: part3

==Depa rt i ng a·rm== /
==Moving Above Dro~i nt==
==Moving arm TO Drop Point==

Released Object: part3

==Depa rt i ng a rm==

lxxvi

-~-

---->Restoring previous gripper object<---

==Depa rt i ng a rm==
==Moving Above Drop Point=.·
==Moving arm TO Drop Point==

Gripping Object: partl

==Departing arm==
==Moving Above Drop Point==
==Moving arm TO Drop Point==

Re I eased Object: pa rtl

==Departing arm==

SUB TASK: FETCH FROM TO. Fetching part2 and p I acing at [8, 0 ,0].
==Depa rt i ng a rm==
==Moving Above Drop Point==
==Moving a rm TO Drop Point==

Gripping Object: part2

==Depa rt i ng a rm==
==Moving Above Drop Poi n:t==
==Moving arm TO Drop Point==

Released Object: part2

==Depa rt i ng a rm==

SUB TASK: MATE.
SUB TASK: TWIST.

Mating partl to part2.
T w i st i n g pa rt 2· .

Gripping Object: part2

SUB TASK: FASTEN.
SUB TASK: MELT.

Fastening pa rt2 to pa rtl .
Melting part2 to partl.

pa rt2 has been removed from t·he wo r Id.
Now part2. is part of partl.

Re I eased ObJ.ect: pa rt2

:=Depa rt i ng a rm==

Assemb I y Task: Comp I eted.

lxxvii.
·f

\.

/•••··· Di sp I ay the wor Id contents after the assemb I e operation has
been completed.

···••/
root/user/·?- world.
partl is located at: (8,0,0], oriented: (-90,0,1],

features: (1.6,1.6,2.6].
part3 is located at: (2,5,0], oriented: (-90,0,2],

features: (4,2,1].
The arm is located at: (8 , 0 , 6], Pitch=-90, Roi 1=90, Grip=3.

The gripper is holding: nothing.

Yes.

/••··
NOTICE: PART2 is does not exist in the world. It has been

fastened to PARTl. Note the new height dimension of PARTl.
It used to be 1 inch high. Now it is 2.5 inches high.
PART2's height was 1.5 inches. Thus 1 ~ 1.5 = 2.5 inches.

/••··!
root/user/?- eziuu,.
Exiting to the operating system.

[C: \pro'I og]

lxxviii

Example

Appendix B

Run

With

Of Assen1bly

Full Trace

Task

!••·· The fol lowing is an example run of the ASSEMBLY task

predicate with the SAVE-MOVES option enab I ed. Hence, a I I

robot a rm moves are written out to a f i I e ca I I ed MOVES. MIC.

These moves are encoded in commands in the MIC language and

can be compiled into native code by the MIC Compiler System.

RESET the system with three parts.

··••/
ti / ? • • ._,.

roo user · - 1mt1w1ze.

Planner by Keith Werkman. Version 1.2, 12/11/85

partl is located at: [5,5,0], oriented: [...-90,0,1],

features: [1,1,lJ.

part2 is located at: [5,-5,0], oriented: [-90,0,1.SJ,

features: [1.5,1.5,1.5].

part3 is located at: [8,0,0], oriented: [-.90,0,2] .,

features:[4,2,1].

The arm is located at: [5 , 0 , 0], Pitch=-90,. Roi 1=0, Grip=0.

The gripper is holding: ~othing.

Type hel.p. f6r help.

Yes.

/••·· This time, run program with th, Save Moves option enabled.

···························~"_.; •............................... ;

root/user/?- aaveMove1{11es).
Command output •ENABLED•.

Logging move to MOVES.MIC

Yes.

lxxix

(
-.,

!••·· Cal I the ASSEMBLY predic~te again to generate log.

··••/
root/user/?- a,aemble(part1, partf/8.0,0.0,0.0j).

Assemb Ii ng partl and part2 at [8,0,0].
SUB TASK: FETCH FROM TO. Fetching pa rtl and p I acing_ at [8, 0, 0] .

==Depa rt i ng a rm==
Moving FROM: [5,0,0]

TO: [5,0,6]. Gripper holding nothing.
Logging move to MOVES.MIC

==Moving Above Drop Point==
Moving FROM: [5, 0, 5]

TO: [5,6_,5]. Gripper ho I.ding nothing .
Logging move t·o MOVES. MIC

==Moving arm TO Drop .Point==

Released Object: nothina

Mo v i n g FROM : [5 , 5 , 5]
TO: [.5,5,0]. Gripper holding nothing.

Logging move to MOVES.MIC

Grippin·gObject:· partl

==Depa rt i ng a rm==
Moving FROM: [5,5,0]

TO: [5,5,5]. Gripper holding partl .
Logging move to MOVES.MIC

==Moving Above Drop Point==
Moving FROM: [5,5,5]

TO: [8,0,5] .. Gripper holding partl .
Logging move to MOVES.MIC

lxxx

==Moving arm TO Drop Point==

•••• Col I is ion Warning: part3 found at [8,0,0) ••••

Clearing [8,0,0].

----)Storing object in ~?per at [2,-5,0]<----
,

==Depa rt i ng a rm==
==Moving Above Drop Point==

Moving FROM: [8,0,5]
TO: [2,-6,5]. Gripper holdina partl .

Logging move to MOVES. MIC

==Moving arm TO Drop Point==

Moving FROM: [2,-5,6]
TO: (2,-5,0]. Gripper holding partl .

Logging move to MOVES. MIC

Re I eased Obj e ct : pa rt 1

==Depa rt i ng a rm==
Moving FROM: [2,-5,0]

TO : [2 , - 5 , 5] . G r i p p e r ho I d i h g n o th i n g .

Logging move to MOVES. MIC

==Depa rt i ng a.rm==
==Moving Above Drop Point==

Moving FROM: [2,-5,5]
TO : [8 , 0 , 5] . Gr i pp er ho I d i n g not h i n g .

Logging move to MOVES. MIC

==Moving a rm TO Drop Point==

Moving FROM: [8,0,5]
TO: [8, 0, 0) . Gripper ho Id i ng nothing .

Logging move to MOVES.MIC

Gripping Object: part3

lxxxi

,

(

==Depa rt i ng a rm==
Moving FROM: [8,0,0]

TO: [8,0,6). Gripper holding part3 .
Logging move to MOVES.MIC

==Moving Above Drop Point==
Mov i ng FROM: [8, 0, 6]

TO : [2 , 6 , 6] . Gr i p pe r ho I d i n g· pa r t 3 .
Logging move to MOVES. MIC

==Moving arm TO Drop Point=
Moving FROM: [2,6,6]

TO: (2,6,0]. Gripper holding part3 .
Logging move to MOVES. MIC

Released Object: part3

==Departing a rm==
Moving FROM: (2,5,0]

TO : [2 , 5 , 5] . Gr i pp e r ho I d i n g not h i n g .
Logging move to MOVES.MIC

------)Restoring previous gripper obj ~ct<---

==Depa rt i rig a rm==
==Moving Above Drop Point=~
Moving FROM: (2,5,5]

TO: (2,-5,5]. Gripper holding nothing.
Logglna move to MOVES.MIC

==Moving arm TO Drop Point==
Moving FROM: [2,-6,6]

TO : [2 , - 5 , 0] . G r i pp e r ho I d i n g not h i n g .
Logging move to MOVES.MIC

Gripping Object: partl

- ·Departing arm==
Mov.ing FROM: [2,-5,0]

TO: [2,-5,5]. Gripper holding par'tl.
Logging move to MOVES.MIC

==Moving Above Drop Point==
Moving FROM: [2, -5 ,.5]

TO: [8, 0, 5] . Gripper ho Id i ng pa rtl .
~ogg i ng move to MOV~S. MIC

==Moving arm TO Drop Point==
Mo v i ng FROM: [8, 0, 5]

TO: (8,0,0]. Gripper holding partl .
Logging move to MOVES.MIC

lxxxii

Moving FROM: (8, 0, 0]
TO: (8,0,0]. Gripper holding partl .

Logging move to MOVES. MIC

Released Object: partl

==Depa rt i ng a rm==
Moving FROM: (8, 0, 0]

TO: (8,0,5]. Gripper holding nothing .

Logging move to MOVES.MIC

SUB TASK: FETCH FROM TO. Fetching pa rt2 and p I acing at [8, 0, 0) .

==Departing arm==
==Moving Above Drop Point==
Moving FROM: [8,0,5]

TO: .[5,-5,5]. Gripper holding nothing .

Logging move to MOVES. MIC

==Moving arm TO Drop Point==
Moving FROM: [5,-5,5]

TO : [5 , - 5 , 0] . Gr i p pe r h o I d i n g n o th i n g .

Logging move to MOVES. MIC

Gripping Objett: part2

==Depa rt i ng arm==
Moving FROM: [5,-5,0]

TO: [5,-5,5]. Gripper holding part2 .

Logging move to MOVES.MIC

==Moving Above Drop Point==
Moving FROM: [5,-5,5]

TO: [8,0,5]. Gripper holding part2 .

Logglng move to MOVES.MIC

==Moving arm TO Drop Point==
Moving FROM: [8, 0, 5]

TO: [8,0, l]. Gripper holding part2 .

Logging move to MOVES. MIC~

Released Object: part2

==Depa rt i ng a rm==
Moving FROM: [8,0,1]

TO: [8,0,5]. Gripper holding nothing.

Logging move to MOVES. MIC

,.
lxxxiii

SUB TASK: MATE.
SUB TASK: TWIST.

Mating partl to part2 .
Twisting part2.

Moving FROM: [8,0,6)
TO: [8,0,1). Gripper holding no.thing.

Logging move to MOVES. MIC

Gripping Object: part2

Gripper rotated: 90 degrees.
Object in gripper (part2), also rotated.

Logging move to MOVES. MIC

SUB TASK: FASTEN.
SUB TASK: MELT.

Fastening part2 to partl .
Melting part2 to partl.

part2 has been removed from the world.
Now part2 is part of partl.

Released Object: part2

==Depa rt i ng a rm==
Moving FROM: [8, 0, 1]

TO: [B,0,6]. Gripper holding nothing.
Logging move to MOVES.MIC

Yes.

..

!••·· Display the world contents after the assemble operation has
been completed.

···••/
root/user/?- world.

partl is located at: [8,0,0], oriented:f-90,0,1],
features:[1.5,1.5,2.5].

part3 is located at: [2,5,0], oriented: [-90,0,2],
features: [4,2,1].

The arm is located at: [8 , 0 , 5], Pitch=-90, Rol 1=90, Grip=3 .

The gripper is holding: nothing ..

Yes.

lxxxiv
<I

.J

Appendix C

MIC Code Generated By MIC Planner

<··· The fol lowing file was generated by the MIC Planner System
for the task:

ASSEMBLE(Partl, Part2, [8.0, 0.0, 0.0))

This code can be comp i I ed into native commands for
the TeachMover instructional robot by Microbot, Inc.
using the MIC Comp i I er System.

···••)
(• =START= Fi le generated by MIC Planner:

Fi le opened on: Wed Dec 11 15:39:111985

•)
(• Fi I e Re-Opened For Output •)

move (5.00, 0.00, 0.00, -90.00,
(• MAIN TASK: Assemble partl TO part2 •)
(•SUBTASK: Fetch partl TO Location•)
(• PREDICATE: Fetch partl •)
(• PREDICATE: Approach Location •)
(• PREDICATE: Depart•)
move (5.00, 0.00,
move (5.00, 5.00,
open
move (5.00, 5.00, .

(1. 00) grip

(• PREDICATE: Place At

5.00,
5.00,

0.00,

-90.00,
-90.00,

-90.00,

Location•)

(• PREDICATE: Approach Location •)

(• PREDICATE: Depa rt •)
move (5.00, 6.00, 6.00, -90.00, ____.,

move (8.00, 0.00, 5.00, -90.00,

lxxxv

0.00,

0.00,
0.00,

0.00,

0.00,
0.00,

0. 00)

0 .00)
0 .00)

3. 00)

1.00)
1.00)

(•• CORRECTION PREDICATE: CI ear Space • •)

(• PREDICATE: Fetch pa rt3 •)

(•• CORRECTION PREDICATE: Clear Gripper Of Object part3 ••)

(• PREDICATE: Approach Location •)

(• PREDICATE: Depart •)
move (2.00, -6.00, 6.00, -90.00, 0.00, 1.00)

move (2.00, -6.00, 0.00, -90.00, 0.00, 1.00)

open

(• PREDICATE: Depa rt •)
move (2.00, -5.00, 6.00, -90.00, 0.00, 3 .00)

(• PREDICATE: App roach Location •)

(• PREDICATE: Depart•)
move (8.00, 0.00, 6.00, -90.00, 0.00, 3 .00)

move (8.00, 0.00, 0.00, -90.00, 0.00, 3. 00)
• (2 .00) grip

(• PREDICATE: Place At Location•)

(• PREDICATE: Approach Location •)

(• PREDICATE: Depart•)

move (8.00, 0.00, 5.00, -90.00, 0.00, 2. 00)

move (2.00, 5.00, 5.00, -90.00, 0.00, 2. 00)

move (2.00, 5.00, 0.00, -90.00, 0.00, 2 .00)

open

(• PREDICATE: Depart•)

move (2.00, 5.00, 5.00, -90.00, 0.00, 3. 00)

(•• CORRECTION PREDICATE: Restore Gripper Object ••)

(• PREDICATE: Approach Location•)

(• PREDICATE: Depart •)

move (2.00, -5.00, 6.00, -90.00, 0.00, 3.00)

move (2.00, -5.00, 0.00, -90.00, 0.00, 3.00)
.

(1.00) grip

' (• PREDICATE:. Approach Location •)

(• PREDICATE: Depa rt •)
move (2.00, -5.00, 6.00, -90.00, 0.00, 1. 00)

move (8.00, 0.00, 5.00, -90.00, 0.00, 1. 00)

move (8.00, 0.00, 0.00, -90.00, 0.00, 1. 00)

move (8.00, 0.00, 0.00, -90.00, 0.00, 1.00)

open
(• PREDICATE: Depart •)
move (8.00, 0.00, 5.00, -90.00, 0.00, 3 .00)

(• SUB TASK: Fetch part2 TO location•)

(• PREDICATE: Fetch part2 •)

(• PREDICATE: Approach Location •)

(• PREDICATE: Dep~ rt •)
move (5.00, -5.00, 5.00, -90.00, 0.00, 3 .00)

move (5.00, -5.00, 0 .-00, -90.00, 0.00; 3 .00)
• (1. 50) gr1 p

(• PREDICATE: PI ace At Location •)

(• PREDICATE: Approach Location •)

(• PREDICATE: Depart •)
move (5.00, -5.00, 5.00, -90.00, 0.00, 1. 50)

move (8.00, 0.00, 5.00, -90.00, 0.00, l. 50)

move (8.00, 0.00, 1.00, -90.00, 0.00, 1. 50)

open ,1
(• PREDICATE: Depart •)
move (8.00, 0.00, 5.00, -90.00, 0.00, 3 .00)

lxxxvi

(•SUBTASK: Mate partl TO part2 •)
(•SUBTASK: Twist part2 •)
move (8.00, 0.00, 1.00, -90.00, 0.00,
grip (1.60)
(• . PREDICATE: Rotate Gripper •)
move (8 . 00 , 0 . 00 , 1 . 00 , - 90 . 00 , 90 . 00 ,

(•SUBTASK: Fasten part2 TO partl •)
(•SUBTASK: Melt part2 TO partl (make one)•)
open
(•
move

'·

PREDICATE: Depart •)
(8.00, ·0.~0, 5.00, -90.00, 90.00,

lxxxvii

3 .00)

1. 60)

3 .00)

•

Appendix D

Listing File Generated By
Compiler System The MIC

Line Addr Source

1 0 <··· 2 0 THE FOLLOWING FILE WAS GENERATED BY THE MIC PLANNER SYSTEM

3 0 FOR THE TASK:
4 0 ASSEMBLE (PARTl, PART2, [8. 0, 0. 0, 0. 0])

THIS CODE CAN BE COMPILED INTO NATIVE COMMANDS FOR
THE TEACHMOVER INSTRUCTIONAL ROBOT BY MICROBOT, INC.

6
6
7
8

0
0
0
0 USI~ THE MIC COMPILER SYSTEM.

9 0 ···••)
10 0
11 0 (• =START= FILE GENERATED BY MIC PLANNER:
12 0 FILE OPENED ON: WED DEC 1115:39:111985

13 0
14 0 •)
15 0 (• FILE RE-OPENED FOR OUTPUT •)

16 0
0 MOVE (5.00, 0.00, 0.00, -90.00, 17

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
·35
36
37
38
39
40
41
42
43
44
45
46
47

1 (• MAIN TASK: ASSEMBLE PARTl TO PART2 •)
(• SUB TASK: FETCH PARTl TO LOCATION •) 1

1
1
1

(• PREDICATE: FETCH PARTl •)
(• PREDICATE: APPROACH LOCATION•)
(• PREDICATE: DEPART •)

1 MOVE (5.00, 0.00,
2 MOVE (5.00, 5.00,

3 OPEN
4 MOVE (5.00, 5.00,

5.00,
5.00,

0.00,

-90.00,
-90.00,

-90.00,

5 GRIP (1. 00)
6 (• PREDICATE: PLACE AT LOCATION •)
6 (• PREDICATE: APPROACH LOCATION •)
6 (• PREDICATE: DEPART•)
6 MOVE (5.00, 5.00, 5.00, -90.00,
7 MOVE (8.00, 0.00, 5.00, -90.00,
8 (•• CORRECTION PREDICATE: CLEAR SPACE••)
8 (• PREDICATE: FETCH PART3 •)
8 (•• CORRECTION PREDICATE: CLEAR GRIPPER OF
8 (• PREDICATE: APPROACH LOCATION •)
8 (• PREDICATE: DEPART•)
8 MOVE (2.00, -5.00,
9 MOVE (2.00, -5.00,

10 OPEN
PREDICATE: DEPART•)

5.00,
0.00,

-90.00,
-90.00,

11 (•
11 MOVE (2.00, -6.00, 5.00, -90.00,

PREDICATE: APPROACH LOCATION•) 12 (•
12 (•
12 MOVE
13 MOVE
14 GRIP

PREDICATE: DEPART •)
(8 . 00 , 0 . 00 ,
(8 . 00 , 0 . 00 ,
(2. 00)

5.00,
0.00,

lxxxviii

-90.00,
-90.00,

0.00,

0.00,
0.00,

0.00,
0.00,

0 .00)

0 .00)
0 .00)

3 .00)

1.00)
1. 00)

OBJECT PART3 ••)

0.00,
0.00,

0.00,

0.00,
0.00,

1.00)
1.00)

3. 00)

3 .00)
3 .00)

•

48 16 (• PREDICATE: PLACE AT LOCATION •) I

49 16 (• PREDICAT~: APPROACH LOCATION •)

50 16 (• PREDICATE: DEPART •)

51 16 MOVE (8.00, 0.00, 5.00, -90.00, 0.00, 2. 00)

52 16 MOVE (2.00, 5.00, 5.00, -90.00, 0.00, 2 .00)

53 17 MOVE (2.00, 5.00, 0.00, -90.00, 0.00, 2 .00)

54 18 OPEN

55 19 (• PREDICATE: DEPART•)

56 19 MOVE (2.00, 6.00, 6.00, -90.00, 0.00, 3 .00)

57 20 (•• CORRECTION PREDICATE: RESTORE GRIPPER OBJECT ••)

68 20 (• PREDICATE: APPROACH LOCATION •)

69 20 (• PREDICATE: DEPART•)

60 20 MOVE (2.00, -6.00, 6.00, -90.00, 0.00, 3. 00)

61 21 MOVE (2.00, -5.00, 0.00, -90.00, 0.00, 3 .00)

62 22 GRIP (1. 00)

63 23 (• PREDICATE: APPROACH LOCATION •)

64 23 (• PREDICATE: DEPART •)

65 23 MOVE (· 2. 00, -5.00, 5.00, -90.00, 0.00, 1.00)

66 24 MOVE (8.00, 0.00, 5.00, -90.00, 0.00, 1.00)

67 26 MOVE (8.00, 0.00, 0.00, -90.00, 0.00, 1. 00)

68 26 MOVE (8.00, 0.00, 0.00, -90.00, 0.00, 1.00)

69 27 OPEN

70 28 (• PREDICATE: DEPART•)

71 28 MOVE (8.00, 0.00, 5.00, -90.00, 0.00, 3. 00·)

72 29 (• SUB TASK: FETCH PART2 TO LOCATION •)

73 29 (• PREDICATE: FETCH PART2 •)

74 29 (• PREDICATE: APPROACH LOCATION •)

75 ·29 (• PREDICATE: DEPART•)

76. 29 MOVE (5.00, -5.00, 5.00, -90.00, 0.00, 3 .00)

77 30 MOVE (5.00, -5.00, 0.00, -90.00, 0.00, 3 .00)

78 31 GRIP (1. 60)

79 32 (• PREDICATE: PLACE AT LOCATION•)

80 32 (• PREDICATE: APPROACH LOCATION •)

"' 81 32 (• PREDICATE: DEPART •) ~

82 32 MOVE (6.00, -5.00, 5.00, -90.00, 0.00, 1. 60)

83 33 MOVE (8.00, 0.00, 5.00, -90.00, 0.00, 1. 50)

84 34 MOVE (8.00, 0.00, 1.00, -90.00, 0.00, 1. 60)

85 35 OPEN

86 36 (• PREDICATE: DEPART •)

87 36 MOVE (8.00, 0.00, 5.00, -90.00, 0.00, 3 .00)

88 37 (•SUBTASK: MATE PARTl TO PART2 •)

89 37 (•SUBTASK: TWIST PART2 •)

90 37 MOVE (8.00, 0.00, 1.00, -90.00, 0.00, 3 .00.)

91 38 GRIP (1. 50)

92 39 (• PREDICATE: ROTATE GRIPPER •)

93 39 MOVE (8.00, 0.00, 1.00, -90.00, 90.00, 1 ;50)

94 40 (•SUBTASK: FASTEN PART2 TO PARTl •)

95 40 (• SUB TASK: MELT PART2 TO PARTl (MAKE ONE) •)

96 40 OPEN

97 41 (• PREDICATE: DEPART•)

98 41 MOVE (8.00, 0.00, 5.00, -90.00, 90.00, 3 .00)

j
•'

lxxxix

l , / ')

(

I

•

Appendix E

TeachMover Opcodes Generated

By MIC Compiler System
0,8705,266,0,0,0,0,0
1,8705,-18176,244,-3072,-1280,253,-768 _
2,8705,-18060,-16204,-19392,-1021,253,-618

\

3,B705,-18060,-16204,3392,-1021,263,767 ,
4,8705,-2956,-16328,-28352,-263,255,1023
6,8705,-2956,-16328,-21696,-263,255,255
6,8705,-18060,-16204,10048,-1021,263,-1
7,8705,9728,141,0,-768,253,-266
8,8705,-5178,-8)26,24099,-~030,-259,-255
9,8705,-2618,-8744,19236,-6,-257,267
10,8705,-2618,-8744,12679,-6,-257,1026
11,8705,-5178,-8725,17443,-1030,-269,513
12,8705,9728,141,-6656,-768,253,256
13,8705,3840,230,16128,0,254,768
14,8705,3840,230,-13312,0,254,256
15,8705,9728,141,29440,-768,253,0
16,8705,-5317,9195,-11811,-1275,509,254
17,8705,-2757,9176,-16675,-251,511,766
18,8705,-2757,9176,12765,-261,511,1278
19,8705,-5317,9195,17629,-1275,509,766
20,8705,-5178,-8725,17443,-1030,-259,613
21,8705,-2618,-8744,12579,-6,-257,1025
22,8705,-2618,-8744,19235,-6,-257,257
23,8705,-5178,-8725,24099,-P030,-259,-255
24,8705,9728,141,0,-768,253,-256
25,8705,3840,230,22784,0,254,0
26,8705,3840,230,22784,0,254,0
27,8705,3840,230,16128,0,254,768
28,8705,9728,141,-6656,-768,253,256
29, 8;705, -18035, 16564, 3520, - 772, -3, 512
30,8705,-2931,16440,-28224,-4,-1,768
31,8705,-2931,16440,25792,-4,-1,256
32,8705,-18035,16564,-8000,-772,-3,-256
33,8705,9728,141,-18176,-768,253,-256
34,8705,28672,183,-7424,-256,254,0
35,8705,28672,183,4096,-256,254,768
36,8705,9728,141,-6656,-768,253,256
37,8705,28672,183,4096,-266,264,768
38,8705,28672,183,-7424,-256,254,0
39,8706,28672,-32585,-7296,-256,510,264
40,8705,28672,-32585,4224,-256,510,1022
41,8705,9728,-32627,-6528,-768,509,610
42,0,0,0,0,0,0,0
43,0,0,0,0,0,0,0

124,0,0,0,0,0,0,0
125,0,0,0,0,0,0,0

XC

Appendix F

Example Stacking Operation
,

START with the current world so that the three parts are
stacked one on top of another as in the LEFT stack and issue
a stack command to get the parts to be ordered as in. the
RIGHT stack.

START
ORDER

Part 2
Part 3
Part 1

FINISH
ORDER

Part 1
===> Part 2

Part 3

••••••••••••••••••••••••••••i•••••••••••••••••••••••••••••••••I
root/user/?- world.
partl is located at: [3,3,0], oriented: [-90,0,1],

features: [1, 1, 1]. .
pa rt2 is I ocated at: [3, 3, 2] , or·i ~nted: [-90, 0, 1 .. 5] ,

features: [1.5,1.5,1.5]·.
pa r t 3 i s I o ca te d a t : [3 , 3 , 1] , .o r i en te d : [- 90 , 0 , 2] ,

features: [4, 2, 1] .
The arm is located at: (3 , 3 , 5], Pitc.h=...,.90, Roi 1=0, Grip=3.

The gripper is holding: nothing.

Yes.

,
Execute the STACK operation predicate .

.. ,
root/user/?- ,tack{ part1, part2, part9, /9.0,9.0,0.0j).

STACKING: partl ON part2 ON part3 at [3,3,0].
SUB TASK: FETCH FROM TO. Fetching part3 and placing at [3,3,0].

part3 has part2 on top of it.

Want to c I ear the top of part3 (y or n)? 1/

•
XCI

-· ,.

·r

...

. ~)

SUB TASK: FETCH FROM TO. Fetching part2 and pla~ing at (2,6,0].
==Departing arm==
==Moving Above Drop Point==
==Moving arm TO Drop Point==

Gripping Object: part2

==Depa rt i·ng a rm==
==Moving Above Drop Point==
==Moving arm TO Drop Point==

Released Object: part2

==Depa rt i ng a rm==
==Depa rt i ng a rm==
==Moving Above Drop Point==
==Moving a rm TO Drop Po.int==

Gripping Object: part3

==Depa rt i ng a rm==
==Moving Above Drop Point==
==Moving a rm ·TO Drop Point==

• • • • Co I I i s i on Warn i n g : part 1 found at [3 , 3 , 0] • • • •
Clearing (3,3,0].

----)Storing object in gripper at [2,-5,0]<----

==Departing arm=-
==Mov i ng Above Drop Po-int==
==Moving a rm TO Drop Point==

Re I eased Obj ~ct: pa rt3

==Departing arm==
==Depa rt i ng arm==
==Moving Abov.e Drop Point==
==Moving a rm TO Drop Point==

Gripping Ob:j ect: pa rtl

==Depa rt i ng a rm==
==Moving Above Drop Point =
==Moving a rm TO Drop Point==

Re I eased Object: partl
==Depa rt i ng a rm==

••
XCll

•·

----)Restoring previous gripper object(----.

==Departing arm==
==Moving Above Drop Point==
==Moving a rm TO Drop Point==

Gripping Object: part3

==Depa rt i ng a rm==
==Moving Above Drop Point==
==Moving arm TO Drop Point==

Re I eased Object: part3

==Depa rt i ng a rm==

SUB TASK: PUT ON. Put part2 on part3.
SUB TASK: FETCH FROM TO. Fetching pa rt2 and p I acing at [3, 3, 0] .

part2 has partl on top of it.

Want to clear the top of part2 (y or n)? U

SUB TASK: FETCH FROM TO. Fetching partl and placing at [3.75,_4.25,0].
==Depa rt i ng a rm==
=-Moving Above Drop Point==
==Moving a rm TO Drop Point==

Gripping Object: partl

==Departing arm==
==Moving Above Drop Point==
==Moving arm TO Drop Point==

Re I eased Object: partl

==Depa rt i ng a rm==
==Depa rt i ng a rm==
==Moving Above Drop Point==
==Moving a rm TO Drop Point==

Gripping Object: part2

==Depa rt i ng a rm==
.:...:Moving Above Drop Point==
==Moving a rm TO D·rop Point==

Re I eased Object: pa rt-2

==Departing arm==

. "·

....
XClll

"

0

SUB TASK: PUT ON. Put partl on part2.
SUB TASK: FETCH FROM TO. Fetching partl and placing at [3,3,1].

==Depa rt i ng a rm==
==Moving Above Drop Point==
==Moving a rm TO Drop Point==

Gripping Object: partl

==Depa rt i ng a rm==
==Moving Above Drop Point==
==Moving arm TO Drop Point==

Released Object: partl

' ==Depa rt i ng a rm==

Stack Operation: Comp I eteq.

Yes.

!•··· Display the world contents after the stacking operation has

been comp I eted.

···••!
root/user/?- world.
partl is located at: [3,3,2.5], oriented: [-90,0,1],

features: [1,1,1].
part2 is located at: [3,3,1], oriented: ["'"90,0,1.5],

features: [1.5,1.5,l.5].
part3 is located at: [3,3,0], oriented: [-90,0,2],

features: [4,2,1],,.
The arm is located at: [9/, 3 , 6], Pitch=-90, Roi 1=0, Grip=3.

,.
--.) \..,

The gripper is holding: nothing.

Yes.

ro~t(user /?- eziu111 . .
Ex, t, ng to the operat Ing system.

[C: \p·ro.1 og]

•
XCIV

..

' "

VITA

Keith James Werkman, tha son of Frank James and
Margaret Werkman was born on September 13, 1961 in
Bethlehem, Pennsylvania. He attended Lehigh University
and received his Bachelor of Science Degree in
Chemistry with a minor in Computer Science in June of
1983. While pursuing his Master's Degree in Computer
Science, he has served as a teaching assistant and
laboratory manager for the Institute For Robotics at
Lehigh University and has instructed students and
engineers from various industries on robotics. His
professional experience includes employment with the
several small computer companies. He is currently a
researcher for the Institute For Robotics in the areas
of artificial intelligence and robot languages.

'' •
,,

XCV

,,,

,,

	Lehigh University
	Lehigh Preserve
	1985

	Using artifical intelligence to improve the man-machine interface in robotic assembly systems /
	Keith James Werkman
	Recommended Citation

	tmp.1551116526.pdf.RQBUs

