Lehigh University Lehigh Preserve

Theses and Dissertations

1986

Database for non-destructive fracture failure evaluation /

Kung-Yan Lee Lehigh University

Follow this and additional works at: https://preserve.lehigh.edu/etd

Part of the <u>Applied Mechanics Commons</u>

Recommended Citation

Lee, Kung-Yan, "Database for non-destructive fracture failure evaluation /" (1986). Theses and Dissertations. 4595. https://preserve.lehigh.edu/etd/4595

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

DATABASE FOR NON-DESTRUCTIVE FRACTURE FAILURE EVALUATION

by

Kung-Yan Lee

A Thesis

Presented to the Graduate Committee

of Lehigh University

in Candidacy for the Degree of

Master of Science

in

Applied Mechanics

Lehigh University
1986

This thesis is accepted and approved in partial fulfillment of the requirement for the degree of Master of Science.

December 27, 1985 (date)

Professor in Charge

Chairman of Department

ACKNOWLEDGEMENTS

The author would like to thank Professor G. C. Sih for his guidance and encouragement which made this work possible. His effort for training the Military Industrial Service personnel of the Combined Service Force in the Republic of China is also acknowledged.

Thanks are also due to Mrs. Barbara DeLazaro and Mrs. Connie Weaver of the Institute of Fracture and Solid Mechanics for their constant care and assistance. To my dearest parents and fiancée I owe them their unfailing love and understanding while I was in the United States.

TABLE OF CONTENTS

	Page
CERTIFICATE OF APPROVAL	ii
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vi:
LIST OF FIGURES	vii
ABSTRACT	1
I. INTRODUCTION	2
II. STRAIN ENERGY DENSITY CRITERION	5
2.1 Mechanical and Fracture Propert	ies 5
2.2 Critical Strain Energy Density	11
2.3 Fatigue Crack Growth Properties	12
III. DEVELOPMENT OF MATERIAL DATABASE	18
3.1 Preliminary Information	18
3.2 Data Code System	20
3.3 Crack Growth Resistance Curves	28
3.4 Interpolation of Data	34
IV. FRACTURE ANALYSIS MATERIAL EVALUATION DATABASE (FAMED) PROGRAM	ON 36
4.1 Flow Chart	36
4.2 User Procedure	38
4 3 Additional Subroutine	39

TABLE OF CONTENTS (CONTINUED)

				Page
V. NOI	N-DESTRUC	TIVE EVALUATION	,	41
5.		cially Available Non-o	destructive	41
	5.1.1	Dye Penetrant	•	43
,	5.1.2	Magnetic Particles		43
	5.1.3	Eddy Current		43
	5.1.4	Uitrasonics		43
	5.1.5	X-Ray	•1	44
	5.1.6	Acoustic Emission	#: _ ~	44
5.2	2 Flaw S	ensitivity in Material		44
5.3		e And Useful Life Of C Cylinder	Cracked	45
5.4	Non-de	structive Evaluation		52
REFERENC	ES	•		56
APPENDIX	: FRACTU	RE ANALYSIS MATERIAL		59
Con	puter Pr	ogram for the FAMED co	de	60
Exa	mple			82
VITA				88

LIST OF TABLES

		Page
Table 1.	Mechanical and Fracture Properties of Aluminum, Steel and Titanium	19
Table 2.	Fatigue Load Type I, II and III	21
Table 3.	Fatigue Crack Growth Data For Material 2, Specimen A and Load Type I	25
Table 4.	Critical Crack Size For Different Combination Of Fatigue Load, Material And Specimen Type	27
Table 5.	Critcal Flaw Size For Aluminum / And Titanium Alloys	46
Table 6.	Crack Growth Rate For 300M Steel With Stress Amplitude 69MPa	51

LIST OF FIGURES

	•	Page
Figure 1.	Schematic Of Stress And Strain Curve	6
Figure 2.	Variations Of dW/dV With Distance Near Site Of Possible Failure	8
Figure 3.	Variations Of Yield Strength With Fracture Toughness For Metals	10
Figure 4.	Schematic Of Permanent Change In The Strain Energy Density Factor	14
Figure 5.	Fatigue Crack Growth Versus Change Of Strain Energy Density Factor	16
Figure 6.	Solid Cylinder With Penny-Shaped Crack	22
Figure 7.	Plate With Edge Crack	23
Figure 8.	Hollow Cylinder Arch Edge Crack	24
Figure 9.	Crack Growth Resistance Curves For Change In Specimen Size And Loading Rate	29
Figure 10.	Crack Growth Resistance Curves For Load Type I	31
Figure 11.	Crack Growth Resistance Curves For Load Type I, II and III	32
Figure 12.	Crack Growth Resistance Curves For Material 1, 2 and 3, Specimen A and Load Type I	33
Figure 13.	Variations of Δa_c With V/A For Material 2 (Steel) and Load Type I	35
Figure 14.	Flaw Chart Of FAMED For Evaluating Critical Flaw Size and Fatigue Life	. 37
Figure 15.	Crack Length Versus Number of Cycles	42
Figure 16.	Probability Of Detection As A Function Of Crack Size At A Given Confidence Level	47

-vii-

LIST OF FIGURES (Continued)

	•	Page
Figure 17.	Fatigue of Pressurized Hollow Cylinder With Edge Crack	48

ABSTRACT

A material database has been established for the evaluation of critical flaw size in structural components subjected to fatigue loads. Specimen/size, load amplitude and mean stress and material type can be varied such that their combined effects can be accounted for in determining the condition of global instability. This corresponds to the onset of rapid crack propagation. The computer database permits quick access to material selection and geometry alteration in design.

The concept of non-destructive evaluation (NDE) is also discussed in connection with linear elastic fracture mechanics. A procedure for establishing the particular NDE method is proposed and can be modified for materials that behave nonlinearly. Future development in this area is imminent as quick access to structural integrity evaluation becomes more in demand by the industry.

I. INTRODUCTION

With the advent of modern technology, more sophisticated methodology is needed not only in design but also in evaluating the structural integrity components during service. Unexpected failure can lead to costly repair and delay of production. One of the prerequisites for assessing structural component behavior is a knowledge of the mechanical and fracture properties of materials such that they can be used to forecast the useful life and to develop inspection and/or procedures. Conventional design criteria such as maximum stress, maximum strains, etc. do not yield sufficient information for non-destructive evaluation as they make no reference to the physical dimensions and locations of damage in the material. No reference can thus be established for estimating the remaining life of components under service conditions.

Fracture mechanics became a recognized discipline after World War II because of the inability of continuum mechanics to evaluate failure by fracture. The alarming number of ship structure failures were indicative of the lack of understanding in design against brittle fracture. The fracture toughness and transition temperature quantities [1] were thus introduced to characterize material failure behavior in addition to the conventional mechanical properties such as yield strength, ultimate strength, etc. Most important of all, the interaction of defect or crack size with material comes into play. Allowable load and net section size are

thus determined from a knowledge of both uniaxial and fracture toughness data. The standard K_{lc} test as endorsed by the American Society of Testing Material [2] has received worldwide acceptance and been adopted for industrial application. This methodology referred to as Linear Elastic Fracture Mechanics [3], however, could not yield accurate predictions when fracture is preceded by plastic deformation of yielding of the material. The strain energy density criterion [4-7] will thus be adopted for determining the critical condition of fracture. In particular, crack growth resistance curves involving the rate change of strain energy density factor with crack length denoted by dS/da can be developed to reflect the combined effect of loading rate, specimen geometry and size, and material type.

The characterization of the material damage process involving nonlinear behavior is complex and cumbersome as it can involve an overwhelmingly vast amount of numerical data. In addition to having a sound theory, an easily assessable and usable database can provide the practicing engineer with a powerful tool in design. Alternative consideration in material loading can be made. The change in the mode of failure can then be weighed in relation to cost effectiveness. By specifying the nature of loading, material type and specimen geometry and size, the critical crack length at which rapid fracture occurs can be automatically determined from the database in the computer. This includes the time history of

crack growth such that non-destructive inspection procedure can be established accordingly.

Developed in this thesis is a database that has the capability of assessing the critical crack size for cracked panels and cylindrical bars by making use of the basic material properties. The corresponding fracture data are computed automatically and used in the failure analysis. A non-destructive evaluation procedure is developed together with sample calculations so that it can be easily used by the ordinary engineer. The main contribution of this work may not lie in the completeness of the database but in developing a quantitative formalism based upon which the database may be broader to cover a wider range of application.

II. STRAIN ENERGY DENSITY CRITERION

Prior to the development of a material database, it is essential to have a valid failure criterion that can realistically characterize the behavior of material for the entire load-time history. This includes the stage of nonlinear stress and strain behavior up to terminal failure. The parameter selected should be sufficiently general such that its fundamental character would be retained as loading material type and specimen geometry are damaged. Up to now, only the strain energy density function dW/dV can satisfy these requirements. In particular, the 1/r behavior of dW/dV with r being the distance measured from the crack front is the same for all material and crack geometry discontinuities. This will not hold for the stress intensity factor approach used in LEFM because the order of the crack front stress singularity changes with the constitutive relation and crack geometry.*

2.1 Mechanical and Fracture Properties

The uniaxial tensile test is most commony practiced in gathering data on material behavior. Depending on the specimen size and loading rate, different response can be obtained in a plot of true stress σ versus true strain ϵ as shown in Figure 1. As the load is

^{*}For example, the stress singularity at the point where the crack border intersects with the free surface is different from that in the interior of the solid.

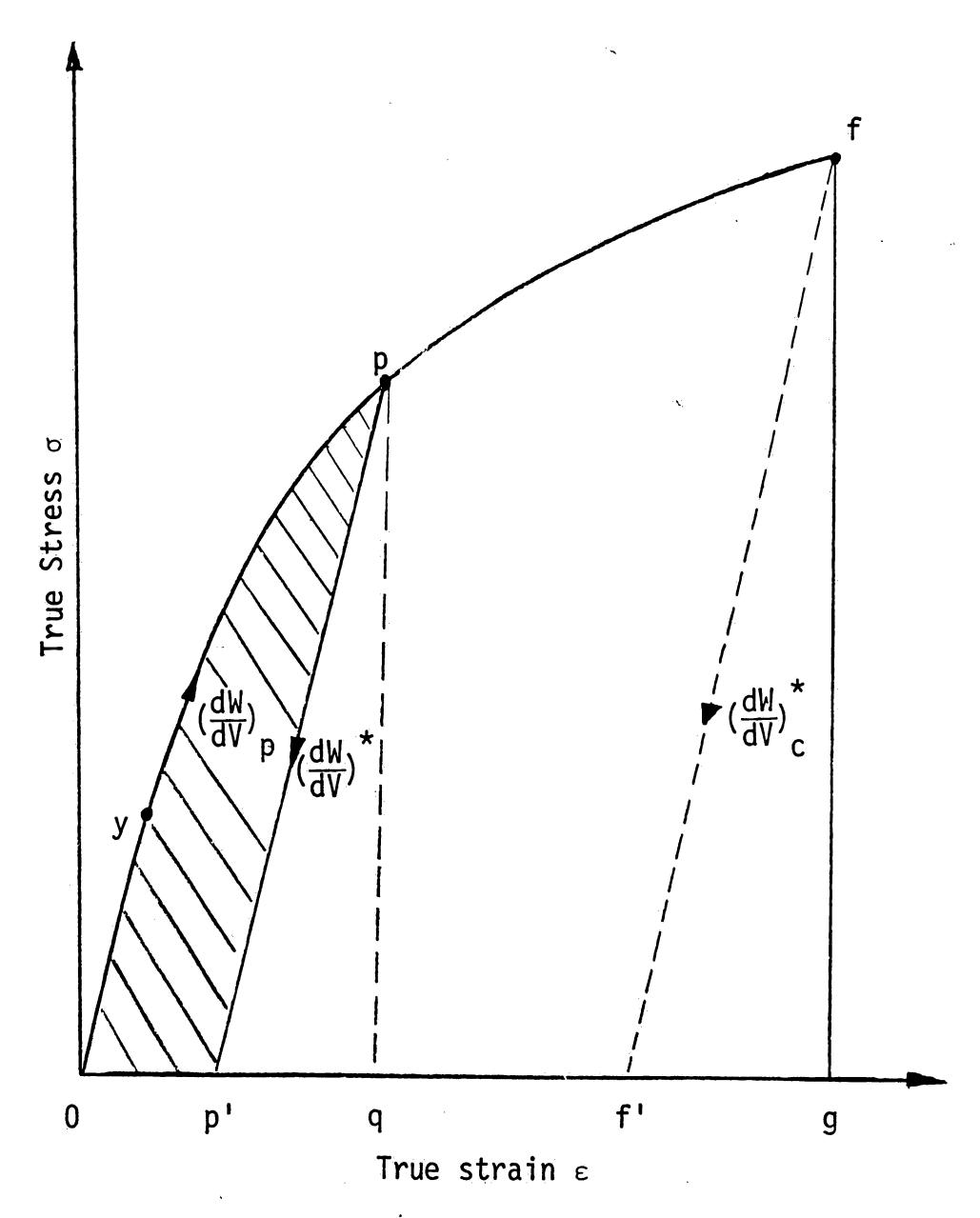


Figure 1. Schematic Of Stress And Strain Curve

increased to the yield point y, a stress level σ_{ys} will be reached beyond which the material will experience permanent deformation. That is, the material will unload along the path pp'. A permanent strain ε_p from o to p will thus be registered. The distance between p' and q is the recoverable strain such that the total strain can be written as

$$\varepsilon = \varepsilon_{p} + \varepsilon^{*} \tag{1}$$

Subsequent loading will follow the line p'p rather than oyp. Hence, the area opp' may be regarded as the energy density dissipated during deformation while the area enclosed by p'pq represents the available energy density. They will be denoted, respectively, as $\left(\frac{dW}{dV}\right)_{p}$ and $\left(\frac{dW}{dV}\right)^{*}$ so that the total strain energy density function $\frac{dW}{dV}$ becomes

$$\frac{dW}{dV} = \left(\frac{dW}{dV}\right)_{p}^{*} + \left(\frac{dW}{dV}\right)^{*} \tag{2}$$

The stress corresponding to the point f at which failure occurs is known as the ultimate stress σ_{ue} . At incipient failure, $(dW/dV)^*$ becomes critical and the amount of energy per unit volume that is available for release is equal to $(dW/dV)^*_c$ or the area f'fg.

In general, dW/dV can be defined in terms of a factor S in the form (Figure 2)

$$\frac{dW}{dV} = \frac{S}{r} \tag{3}$$

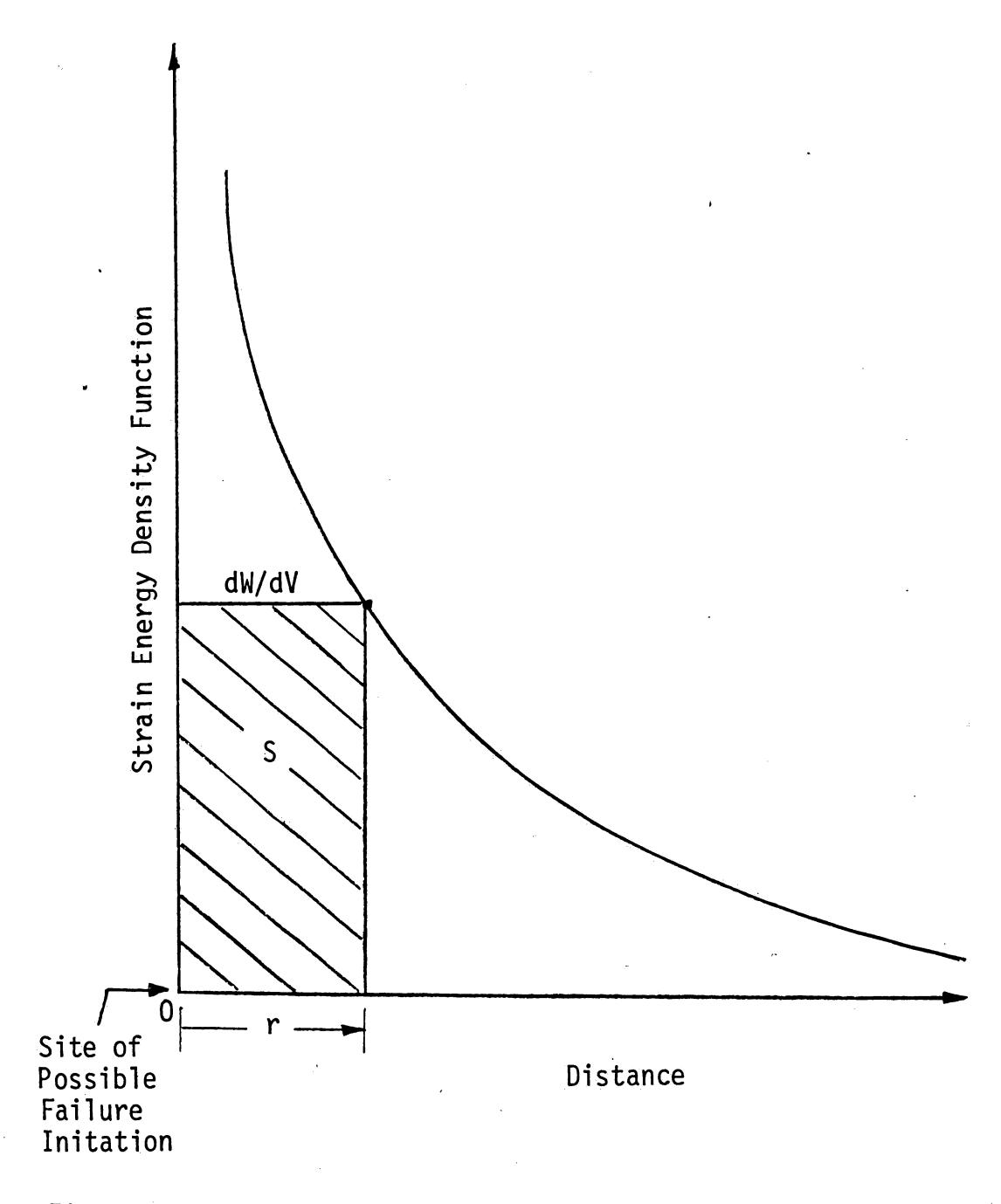


Figure 2. Variations Of dW/dV With Distance Near Site Of Possible Failure.

where r is measured from the site of possible failure such as the crack tip. The function dW/dV generally decreases very rapidly with the distance r. Should the point of investigation o coincide with the crack tip, then the critical value of S or $S_{\rm C}$ can be interpreted as the fracture toughness of the material i.e., the amount of energy required to extend a unit area of crack surface at incipient fracture. The relation

$$S_{c} = \frac{(1+v)(1-2v)K_{1c}^{2}}{2\pi E}$$
 (4)

can be used provided that the ASTM plane strain condition

$$\delta \ge 2.5 \left(\frac{K_{1c}}{\sigma_{ys}}\right) \tag{5}$$

is satisfied with δ being the smallest dimension of the specimen such as the plate thickness. In equation (4), ν is the Poisson's ratio and E the Young's modulus.

A typical feature of metal behavior is exhibited by the trade-off relation between yield strength σ_{ys} and fracture toughness $^{\rm S}{}_{\rm C}$ as illustrated in Figure 3. The fracture toughness of higher strength metal is usually low. Such a material is proned to brittle fracture. Increase in fracture toughness can only be done at the expense of lowering the strength. For metals with σ_{ys} in the range of 40 to 5,000 MPa and $^{\rm S}{}_{\rm C}$ in the range of 900 to 4,000 N/mc, failure will most likely occur in a ductile manner under normal constraint conditions. For very low strength

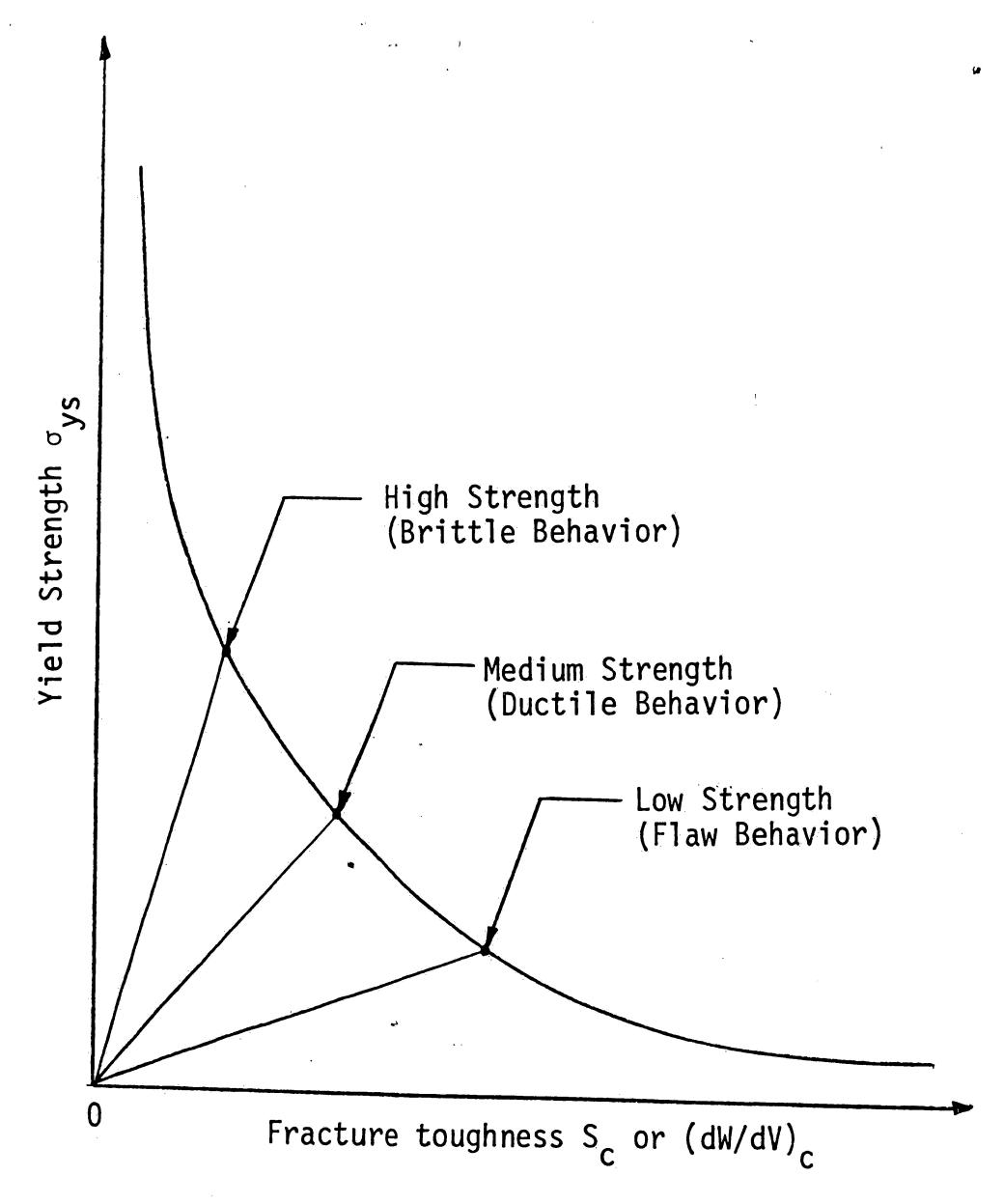


Figure 3. Variations Of Yield Strength With Fracture Toughness For Metals.

materials, metal tends to flow and frequently may not satisfy the stiffness requirement in design. What has been described, of course, applies only to the behavior of materials under uniaxial and normal loading conditions.

In a structural component, the local elements are subjected to triaxial stress states. The local strain rates may be many times higher than those averaged on a global basis. This is mainly because the local mechanical constraints are not uniaxial in character. Care must be exercised in translating uniaxial data to stress states that are multi-axial in character.

2.2 Critical Strain Energy Density

Once the yield point $(\sigma_{ys}, \varepsilon_{ys})$ and failure point $(\sigma_{ue}, \varepsilon_{ue})$ are known, a stress and strain curve may be generated to obtain the strain energy density function dW/dV which is the area under the curve. To this end, use will be made of the Ramberg-Osgood relation

$$\varepsilon = \begin{cases} \frac{\sigma}{E} & , & \frac{\sigma < \sigma}{2} ys \\ \frac{1}{E} \{\sigma + m \left[\left(\frac{\sigma}{\sigma ys} \right)^{n} - 1 \right] \sigma_{ys} \} & , & \frac{\sigma}{2} > \sigma ys \end{cases}$$

$$(6)$$

in which m and n are the strain hardening coefficients. Referring to Figure 1, the strain energy density function at a given point,

say p, may be computed as

$$\frac{dW}{dV} = \int_{0}^{\varepsilon} \sigma d\varepsilon \tag{7}$$

Making use of equation (6), equation (7) may be integrated to yield

$$\frac{dW}{dV} = \frac{1}{E} \left[\frac{1}{2} \sigma^2 + \frac{mn}{n+1} \frac{\sigma^{n+1}}{\sigma_{ys}} \right]$$
 (8)

The critical value $(dW/dV)_{\rm C}$ may be found by simply letting σ equal to $\sigma_{\rm ue}$. From equations (2) and (8) the available energy density at failure can also be obtained

$$\left(\frac{dW}{dV}\right)_{c}^{*} = \frac{\sigma_{ue}^{2}}{2E} \left[1 + nm\left(\frac{\sigma_{ue}}{\sigma_{ys}}\right)^{n-1}\right]$$
 (9)

Once, σ_{ys} and σ_{ue} are known, appropriate values of m and n for a given material may be selected to generate a complete stress and strain curve from which $(dW/dV)_c$ or $(dW/dV)_c^*$ can be obtained.

2.3 Fatigue Crack Growth Properties

If the loads are applied repeatedly at a value considerably lower than the yield strength, failure will eventually take place after many cycles of repeated loading. The LEFM approach [1] assumes that the rate of crack growth da/dN is related to the change in stress intensity factor ΔK , i.e.,

^{*}The stress amplitude is usually taken as 50% of the yield strength while the mean stress level can be zero or non-zero.

$$\frac{da}{dN} = A(\Delta K)^{M}$$
 (10)

where A and M are empirically determined parameters, they cannot be regarded as material constants because they are sensitive to changes to specimen geometry and size [9,10]. As ΔK is determined from the theory of elasticity, there are conceptual difficulties associated with the application of equation (10). Fatigue is a process where damage is accumulated over many cycles of loading while elasticity considers only processes that are reversible involving no energy dissipation. For this reason, da/dN should be estimated from quantities that account for damage accumulation.

The strain energy density criterion [4-7] discussed earlier applies equally well to fatigue by assuming that failure of an uniaxial specimen subjected to cyclic loading $\sigma(t)$ in Figure 4 will occur when the strain energy density function after many cycles of accumulation reaches a critical value, say C, i.e.,

$$\sum_{j=1}^{\Delta N} \left(\frac{\Delta W}{\Delta V}\right)_{j} = C \tag{11}$$

A weighted average $\overline{\Delta W/\Delta V}$ can thus be obtained such that

$$\frac{\overline{\Delta W}}{\wedge V} \cdot \Delta N = C \tag{12}$$

Referring to Figure 4, the variation of $\overline{\Delta W/\Delta V}$ when the distance r

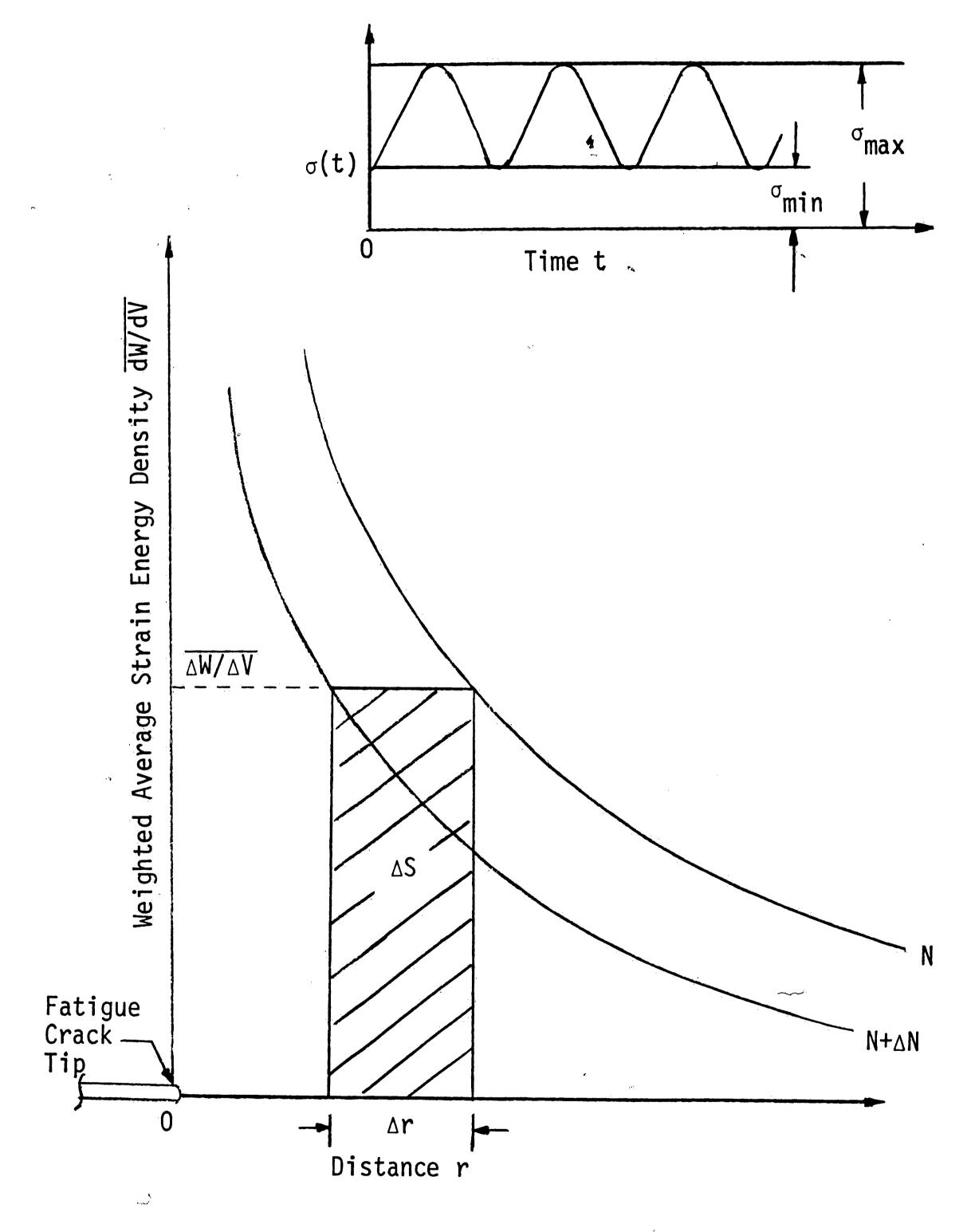


Figure 4. Schematic Of Permanent Change In The Strain Energy Density Factor.

ahead of a fatigue crack is shown. Because of the irreversible nature of the fatigue process, the $\overline{\Delta W/\Delta V}$ versus N curve will not coincide with that after ΔN number of load cycles. There prevails an incremental change in the strain energy density factor ΔS which is the area

$$\Delta S = \frac{\overline{\Delta W}}{\Delta V} \cdot \Delta r \tag{13}$$

Combining equations (12) and (13) gives

$$\frac{\Delta r}{\Lambda N} = B(\Delta S) \tag{14}$$

in which B is the reciprocal of C obtained from the cyclic uniaxial test, i.e.,

$$B = \frac{1}{C} \tag{15}$$

It can also be deduced from a fatigue crack growth test. By taking logarithm of both sides of equation (14), B is the y-intercept on a log ($\Delta r/\Delta N$) versus $log(\Delta S)$ plot (Figure 5) with a 45 degree slope line. Indeed, the work in [11,12] shows that the 45 degree-line correlates well with fatigue data on metals. What should be emphasized is that ΔS must now be computed from the theory of plasticity or any other theories that includes the mechanism of energy dissipation.

The unique feature of the strain energy density criterion is that only one parameter C or B is required to characterize the

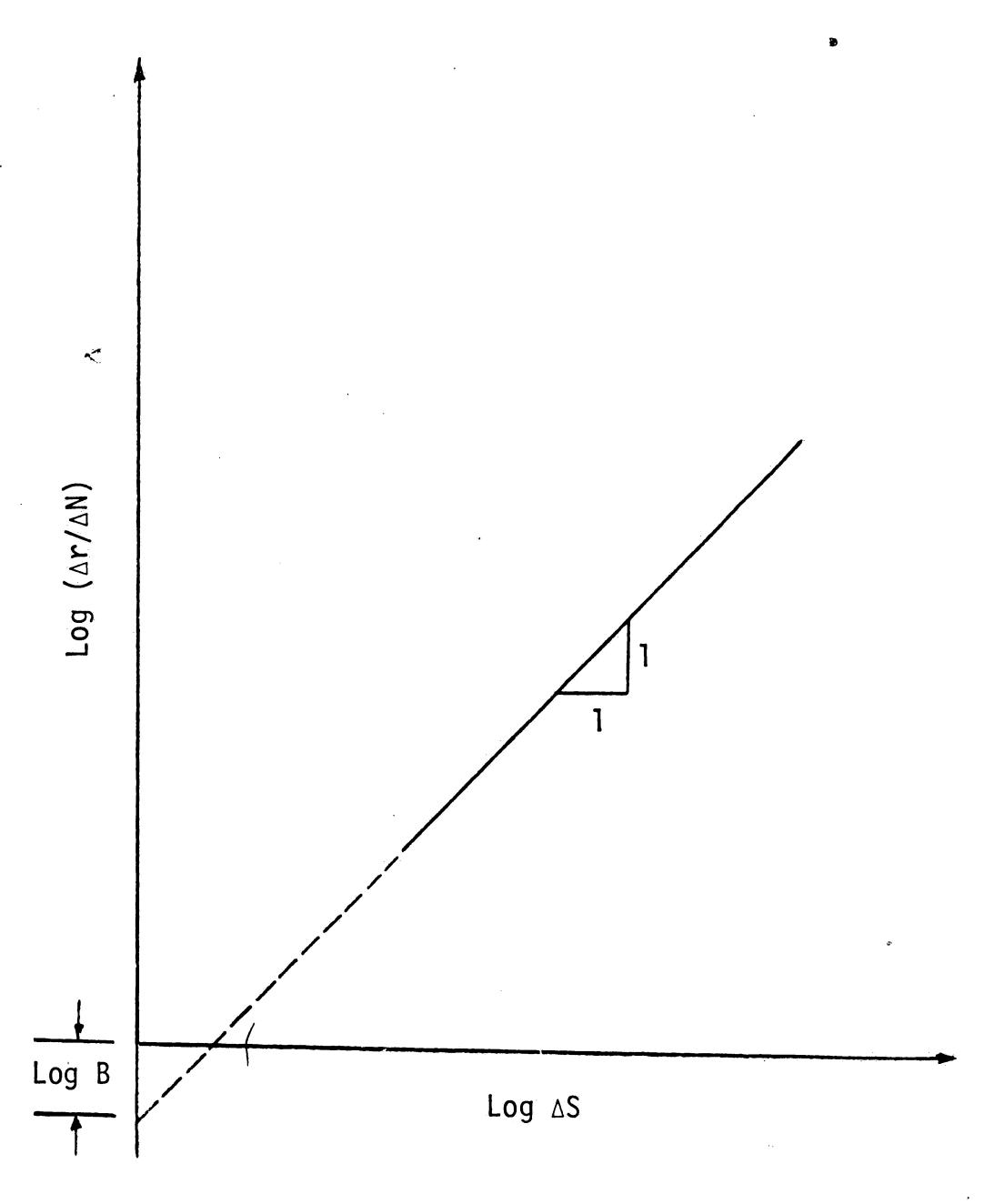


Figure 5. Fatigue Crack Growth Versus Change Of Strain Energy Density Factor.

fatigue property of a material. The parameter C obtained from a cyclic uniaxial test is simply the reciprocal of B that can b evaluated independently from a fatigue crack growth test. A means of checking the validity of the model is also provided.

III. DEVELOPMENT OF MATERIAL DATABASE

The concept of a centralized material database is not new [8]. Depending on the objective of the user, the contents of one database may differ widely from another. Such information will not normally be made available to the general public, mainly because database development requires a great deal of efforts in addition to know how. The ease with which useful results can be made available quickly becomes a measure of the effectiveness of the program. In what follows, the "Fracture Analysis Material Evaluation Database (FAMED)" program will be developed. It has the capability for determining the integrity of simple structures with a crack.

Material behavior owing to changes in geometry and size, loading and material type can be automatically adjusted. Only metal alloys are considered although the same procedure applied to other materials.

3.1 Preliminary Information

The three commonly used metals are aluminum, steel and titanium. Their basic mechanical and fracture properties are given in Table 1 in which material 1, 2 and 3 refer respectively to aluminum, steel and titanium. Fatigue Load will be defined in terms of the stress amplitued $\Delta\sigma$ and mean stress $\overline{\sigma}$

$$\Delta \sigma = \frac{1}{2}(\sigma_{\text{max}} - \sigma_{\text{min}}) \quad ; \quad \overline{\sigma} = \frac{1}{2}(\sigma_{\text{max}} + \sigma_{\text{min}}) \tag{16}$$

Table 1. Mechanical and Fracture Properties of Aluminum, Steel and Titanium

	Material Properties Material Type	Young's Modulus E(MPa)	Poisson's Ratio	σys (MPa)	^o ul (MPa)	εys (cm/cm)	εul (cm/cm)	$\left(\frac{dW}{dV}\right)_{C}$	S _C (KN/m)	K _{1c} (MPa√m)
	1	1.66x10 ⁵	0.33	413.69	1585.81	2x10 ⁻³	4.08x10 ⁻²	49.82	19.815	222.54
	2	2.07x10 ⁵	0.25	517.11	1378.97	2.5x10 ⁻³	1.34x10 ⁻²	12.32	13.485	183.60
-19-	3	2.50x10 ⁵	0.321	620.53	1172.12	3x10 ⁻³	7.04x10 ⁻³	4.7	9.104	150.79

in which σ_{max} and σ_{min} are respectively the maximum and minimum applied stress indicated in Figure 4. Refer to Table 2 for the three combinations referred to as type I, II and III. Variations in specimen geometry and crack shape are also considered. They consist of a solid circular cylinder with a penny-shaped crack, rectangular plate with an edge crack and a hollowed cylinder with an edge crack at the inner boundary. A total of nine cases A, B,---, I are obtained. The dimensions of the three specimens are selected such that they have the same three corresponding V/A ratios. Refer to Figures 6 to 8 inclusive for details.

3.2 Data Code System

Based on the strain energy density fatigue model described in Section 2.3 and the procedure for obtaining ΔS in [13], the crack growth data for each load type in Table 2 can be obtained. For the case of a steel circular cylinder of specimen type A (Figure 6) subjected to load type I (Table 2), Table 3 summarizes the crack growth data for 5,700 load cycles in increment of 300 cycles. The corresponding values of the strain energy density factor S are also given which will be used subsequently for constructing the crack growth resistance curve a procedure that will be used to generate additional data for evaluating loading rate and specimen size effects. With three different variations of specimen type, material and fatigue loading, there results a total of 27 combina-

Table 2. Fatigue Load Type I, II and III

Loading Type	$= \frac{1}{2} (\sigma_{\text{max}} + \sigma_{\text{min}})$	$\Delta \sigma (MPa)$ $= \frac{1}{2} (\sigma_{max} - \sigma_{min})$
Ι	206.9 $(\sigma_{\text{max}} = 48 ; \sigma_{\text{min}} = 12)$	124.1
II	258.1 $(\sigma_{max} = 60 ; \sigma_{min} = 15)$	155.2
III	284.5 ($\sigma_{max} = 65.9$; $\sigma_{min} = 16.5$)	170.7

Specimen Type	Radius b(cm)	Length L(cm)	$\frac{V}{A}$ (cm)
А	12.7	50.8	5.08
В	19.05	76.2	7.62
С	25.4	101.6	10.16

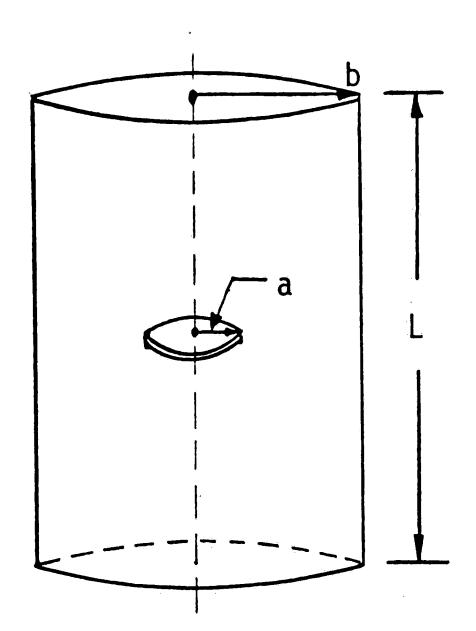


Figure 6. Solid Cylinder With Penny-Shaped Crack

Specimen Type	Thickness h(cm)	Width 2b(cm)	Height L(cm)	V/A(cm)
D	11.684	116.84	233.68	5.08
E	17.526	175.26	350.52	7.62
F	23.368	233.68	467.36·	10.16

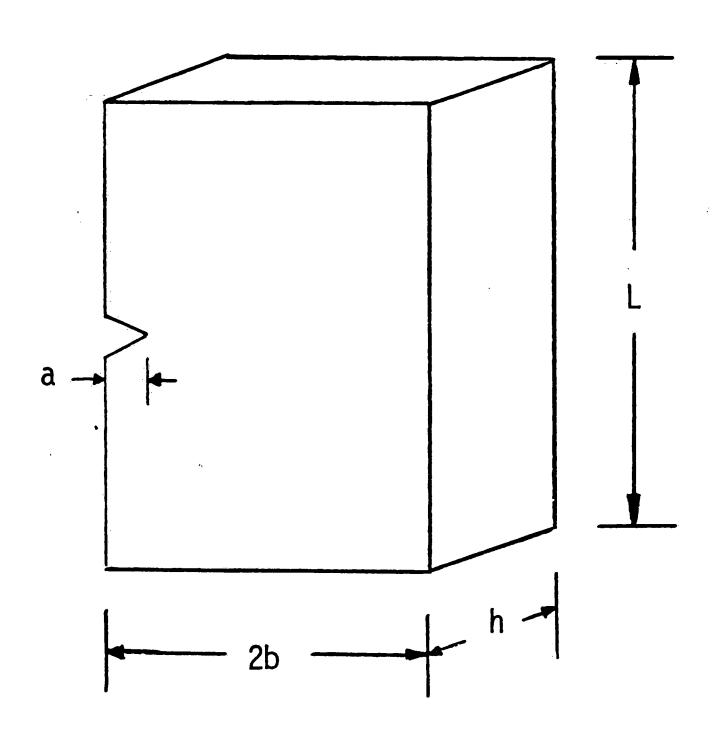


Figure 7. Plate With Edge Crack

Specimen Type	Inner Radius c(cm)	Outer Radius b(cm)	Length L(cm)	V A(cm)
G	4.6	9.2	36.8	5.08
Н	6.9	13.8	55.2	7.62
I	9.2	18.4	73.6	10.16

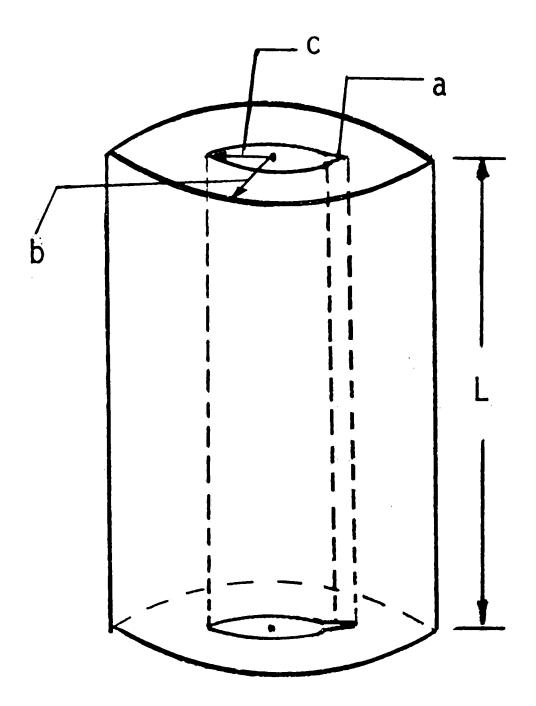


Figure 8. Hollow Cylinder Arch Edge Crack

Table 3. Fatigue Crack Growth Data For Material 2, Specimen A and Load Type I

a(cm)	N(Cycles)	$\Delta a/\Delta N(x10^{-4})$	S(kN/m)
2.540	0	.0	. 0
2.604	300	2,133	1.149
2.675	600	2,367	1.277
2.758	900	2,767	1.435
2.859	1200	3,367	1.630
2.983	1500	4,133	1.866
3.128	1800	4,833	2.127
3.296	2100	5,600	2.429
3.491	2400	6,500	2.780
3.719	2700	7,600	3.190
3.986	3000	8,900	3.671
4.298	3300	10,400	4.233
4.663	3600	12,170	4.890
5.090	3900	14,230	5.723
5.583	4200	16,430	6.610
6.154	4500	19,030	7.746
6.812	4800	21,930	8.884
7.566	5100	25,130	10.391
8.421	5400	28,500	11.845
9.382	5700	32,030	13.383
9.439	5705	114,000	13.485

Table 3. Fatigue Crack Growth Data For Material 2, Specimen A and Load Type I

<u>a(cm)</u>	N(Cycles)	$\Delta a/\Delta N(x10^{-4})$	S(kN/m)
2.540	0	0	0
2.604	300	2,133	1.149
2.675	600	2,367	1.277
2.758	900	2,767	1.435
2.859	1200	3,367	1.630
2.983	1500	4,133	1.866
3.128	1800	4,833	2.127
3.296	2100	5,600	2.429
3.491	2400	6,500	2.780
3.719	2700	7,600	3.190
3.986	3000	8,900	3.671
4.298	3300	10,400	4.233
4.663	3600	12,170	4.890
5.090	3900	14,230	5.723
5.583	4200	16,430	6.610
6.154	4500	19,030	7.746
6.812	4800	21,930	8.884
7.566	5100	25,130	10.391
8.421	5400	28,500	11.845
9.382	5700	32,030	13.383
9.439	5705	114,000	13.485

RETAKE

The Operator has

Determined that the

Previous Frame is

Unacceptable and Has

Refilmed the Page

in the Next Frame.

DUPLICATE

PAGINATION

PAGE(S)

25

Table 3. Fatigue Crack Growth Data For Material 2, Specimen A and Load Type I

2.540 0 0 0 2.604 300 2,133 1.149 2.675 600 2,367 1.277 2.758 900 2,767 1.435 2.859 1200 3,367 1.630 2.983 1500 4,133 1.866 3.128 1800 4,833 2.127 3.296 2100 5,600 2.429 3.491 2400 6,500 2.780 3.719 2700 7,600 3.190 3.986 3000 8,900 3.671 4.298 3300 10,400 4.233 4.663 3600 12,170 4.890 5.090 3900 14,230 5.723 5.583 4200 16,430 6.610	7
2.675 600 2,367 1.277 2.758 900 2,767 1.435 2.859 1200 3,367 1.630 2.983 1500 4,133 1.866 3.128 1800 4,833 2.127 3.296 2100 5,600 2.429 3.491 2400 6,500 2.780 3.719 2700 7,600 3.190 3.986 3000 8,900 3.671 4.298 3300 10,400 4.233 4.663 3600 12,170 4.890 5.090 3900 14,230 5.723	7
2.758 900 2,767 1.435 2.859 1200 3,367 1.630 2.983 1500 4,133 1.866 3.128 1800 4,833 2.127 3.296 2100 5,600 2.429 3.491 2400 6,500 2.780 3.719 2700 7,600 3.190 3.986 3000 8,900 3.671 4.298 3300 10,400 4.233 4.663 3600 12,170 4.890 5.090 3900 14,230 5.723	
2.859 1200 3,367 1.630 2.983 1500 4,133 1.866 3.128 1800 4,833 2.127 3.296 2100 5,600 2.429 3.491 2400 6,500 2.780 3.719 2700 7,600 3.190 3.986 3000 8,900 3.671 4.298 3300 10,400 4.233 4.663 3600 12,170 4.890 5.090 3900 14,230 5.723	5
2.983 1500 4,133 1.866 3.128 1800 4,833 2.127 3.296 2100 5,600 2.429 3.491 2400 6,500 2.780 3.719 2700 7,600 3.190 3.986 3000 8,900 3.671 4.298 3300 10,400 4.233 4.663 3600 12,170 4.890 5.090 3900 14,230 5.723	
3.128 1800 4,833 2.127 3.296 2100 5,600 2.429 3.491 2400 6,500 2.780 3.719 2700 7,600 3.190 3.986 3000 8,900 3.671 4.298 3300 10,400 4.233 4.663 3600 12,170 4.890 5.090 3900 14,230 5.723	0
3.296 2100 5,600 2.429 3.491 2400 6,500 2.780 3.719 2700 7,600 3.190 3.986 3000 8,900 3.671 4.298 3300 10,400 4.233 4.663 3600 12,170 4.890 5.090 3900 14,230 5.723	6
3.491 2400 6,500 2.780 3.719 2700 7,600 3.190 3.986 3000 8,900 3.671 4.298 3300 10,400 4.233 4.663 3600 12,170 4.890 5.090 3900 14,230 5.723	7
3.719 2700 7,600 3.190 3.986 3000 8,900 3.671 4.298 3300 10,400 4.233 4.663 3600 12,170 4.890 5.090 3900 14,230 5.723	9
3.986 3000 8,900 3.671 4.298 3300 10,400 4.233 4.663 3600 12,170 4.890 5.090 3900 14,230 5.723	0
4.298 3300 10,400 4.233 4.663 3600 12,170 4.890 5.090 3900 14,230 5.723	0
4.663 3600 12,170 4.890 5.090 3900 14,230 5.723	1
5.090 3900 14,230 5.723	13
5.050	0
5 583 4200 16.430 6.610	13
J. J	0
6.154 4500 19,030 7.746	6
6.812 4800 21,930 8.884	34
7.566 5100 25,130 10.391	1
8.421 5400 28,500 11.845	15
9.382 5700 32,030 13.383	3 3
9.439 5705 114,000 13.485	<i>)</i>

Table 3. Fatigue Crack Growth Data For Material 2, Specimen A and Load Type I

a(cm)	N(Cycles)	$\Delta a/\Delta N(x10^{-4})$	S(kN/m)
2.540	.0	0	0
2.604	300	2,133	1.149
2.675	600	2,367	1.277
2.758	900	2,767	1.435
2.859	1200	3,367	1.630
2.983	1500	4,133	1.866
3.128	1800	4,833	2.127
3.296	2100	5,600	2.429
3.491	2400	6,500	2.780
3.719	2700	7,600	3.190
3.986	3000	8,900	3.671
4.298	3300	10,400	4.233
4.663	3600	12,170	4.890
5.090	3900	14,230	5.723
5.583	4200	16,430	6.610
6.154	4500	19,030	7.746
6.812	4800	21,930	8.884
7.566	5100	25,130	10.391
8.421	5400	28,500	11.845
9.382	5700	32,030	13.383
9.439	5705	114,000	13.485

tions. That is for the solid cylinder configuration in Figure 6, a total of 27 critical crack sizes are found, Table 4. This number will increase to 81 if the two other specimen configurations in Figures 7 and 8 are also considered. Because of the enormous increase in accumulated data as more combinations of loading, specimen geometry and material are included, a code system needs to be developed.

Data storage in the FAMED program will be referred to by a four digit code*. Letters and numbers will be assigned consecutively to denote the specimen type, material , load and flaw size including location in the order stated. For example lIAa refers to material 1, load type I, specimen A and flaw size a. Specimen A as defined in Figure 6 is a solid cylinder with radius 12.7 cm and L = 50.8 cm giving V/A = 5.08 cm. Material 1 is aluminum and load type I pertains to $\overline{\sigma}$ = 206.9 MPa and $\Delta \sigma$ = 124.1 MPa (Table 2). In this way, each one of the 27 critical crack size in Table 4 can be identified by the code numbers lIAa, 2IAa,---,3IIICa. Additional data may be added and they can be coded as lIDa, 2IDa,---3IIIFa. Specimen type D is defined in Figure 7 while the other three digits refer to material, load and flaw type as before.

^{*}An additional digit may be added for flaw location such as o would denote a flaw at center of specimen.

Table 4. Critical Crack Size For Different Combination Of Fatigue Load, Material And Specimen Type.

		Critical Crack Size a (cm)		
Specimen Type	Material Type	Load Type I	Load Type II	Load Type III
<u>A</u>	7	10.375(cm)	9.215	8.456
	2	9.439	8.020	6.817
	3	8.753	7.187	5.384
<u>B</u>	1	11.263	9.912	8.984
	2	10.137	8.797	7.431
	3	9.595	7.893	6.244
<u>C</u>		12.000	10.643	9.263
	2	10.634	9.437	8.095
	3	10.312	8.606	6.954

3.3 Crack Growth Resistance Curves

When crack growth is accompanied by yielding, the load versus displacement relations for a cracked specimen or the crack length versus number of load cycle relations become highly nonlinear and are not readily adaptable for use in design. The objective of constructing the crack growth resistance curves (R-curves) therefore is to linearize the nonlinear fracture data. Criteria such as the crack opening displacement [14] and J-integral [15] approach are not useful since their relations with crack growth remain nonlinear. Such an exercise defeats the very purpose of constructing R-curves.

Figures 9(a) and (b) illustrate schematically that plots of ΔS versus Δa could be parallel lines if the specimen size is altered. The larger or thicker specimens corresponding to a higher V/A ratio would behave more brittle and rapid fracture would occur with little or no slow crack growth, Figure 9(a). The precise amount of slow crack growth Δa prior to incipient failure is determined from the intersections of the S_C = constant line with the parallel dS/da = constant lines. Failure by plastic collapse would result if the specimen size is reduced so small that yielding be-

^{*}It is more expedient to express size effect in terms of V/A rather than thickness or cylinder radius so that the brittle and/or ductile behavior of specimens with different geometries can be compared on equal footing.

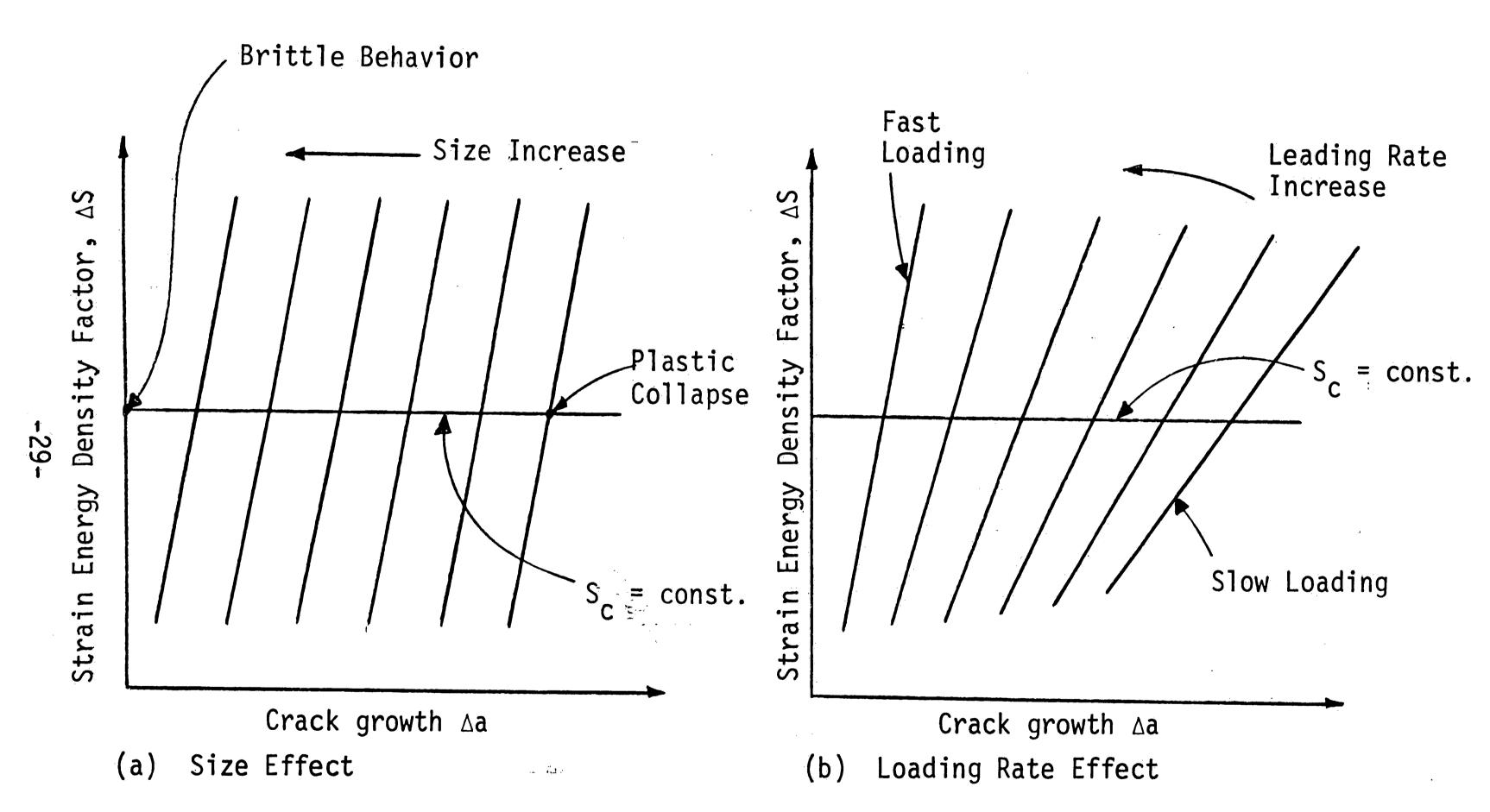


Figure 9. Crack Growth Resistance Curves For Change In Specimen Size And Loading Rate

gins to dominate. Loading rate also has an influence on slow crack growth behavior. Figure 9(b) shows that as the loading rate is increased the dS/da = constant lines tend to rotate in a counterclockwise direction. Crack can grow in a stable fashion for a long period of time if the loading rate is slowed down. This corresponds to the phenomenon of creep.

More specifically, Figure 10 displays the ΔS versus Δa plots for a cylindrical steel bar specimen subjected to load type I. Three parallel lines are obtained that correspond to V/A = 5.08, 7.62 and 10.16 cm. The amount of slow crack growth can be obtained from the interactions of the $S_c = 13.485$ KN/m constant line. Similarly, the cylindrical specimen V/A ratio may be fixed at V/A = 5.08 cm and the material is assumed to be steel. Three dS/da = constant lines are again obtained. It is seen from Figure 11 that the lines rotate counterclockwise as σ and $\Delta \sigma$ are increased. Fatigue slow crack growth is therefore entranced by lowering σ and The material type may also be varied as it is done in Figure The material with the highest $S_c = 19.815 \text{ KN/m}$ being the aluminun attains the largest crack growth Δa . Next in line is steel and titanium comes in last with $S_c = 9.104 \text{ KN/m}$. The material possesses the highest toughness value in this case also has the longest subcritical crack growth period.

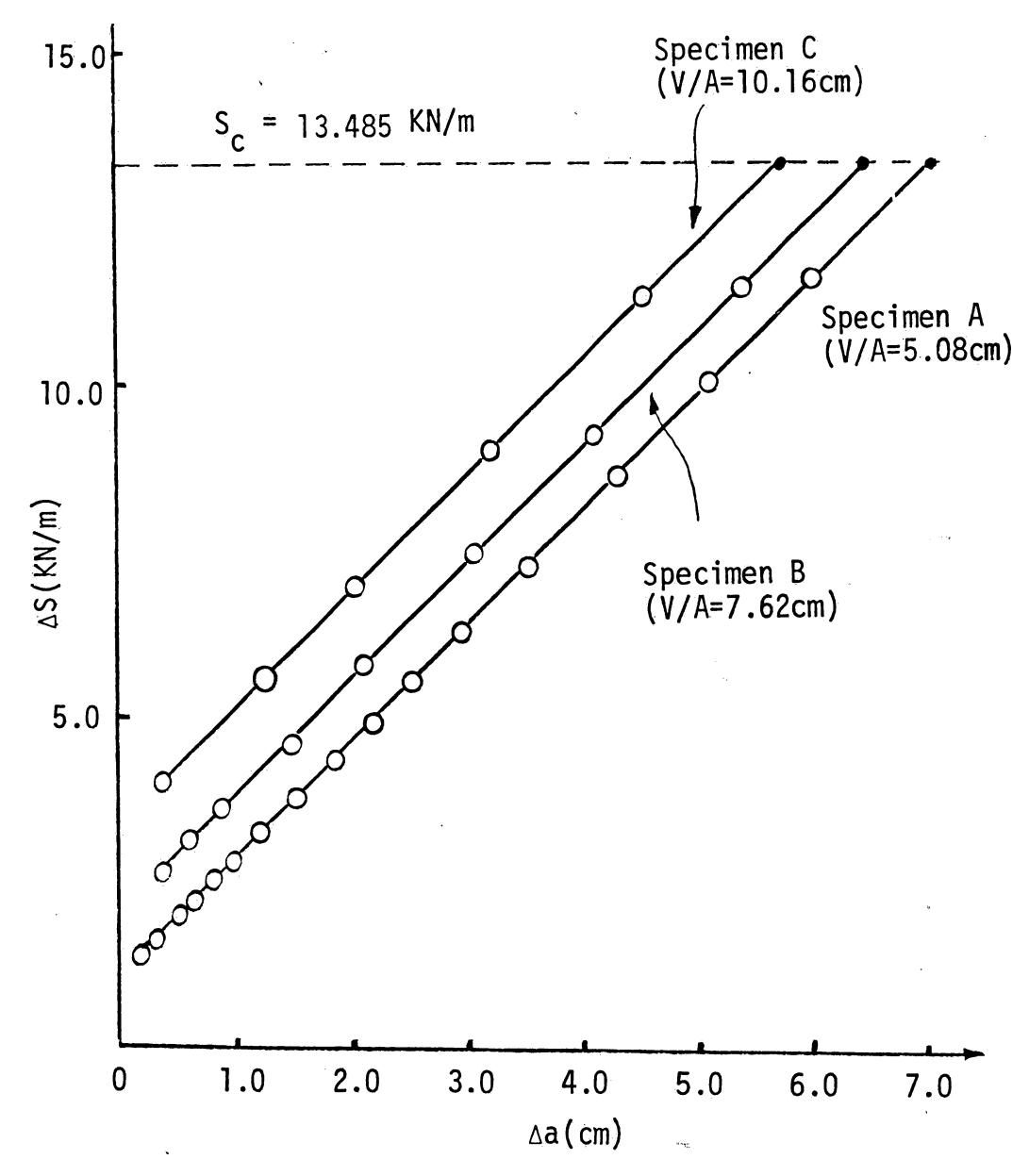


Figure 10. Crack Growth Resistance Curves For Load Type I

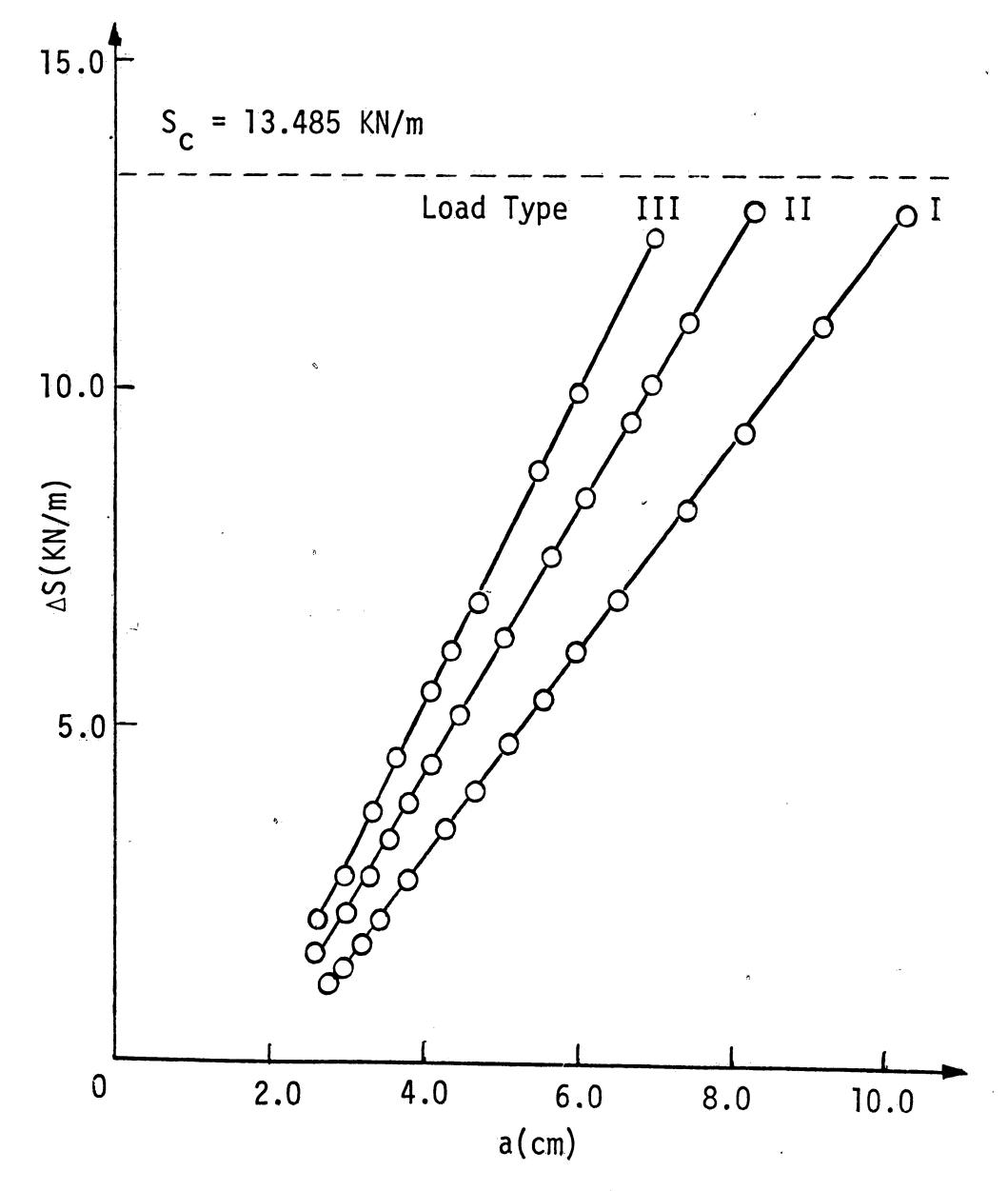


Figure 11. Crack Growth Resistance Curves For Load Type I, II and III.

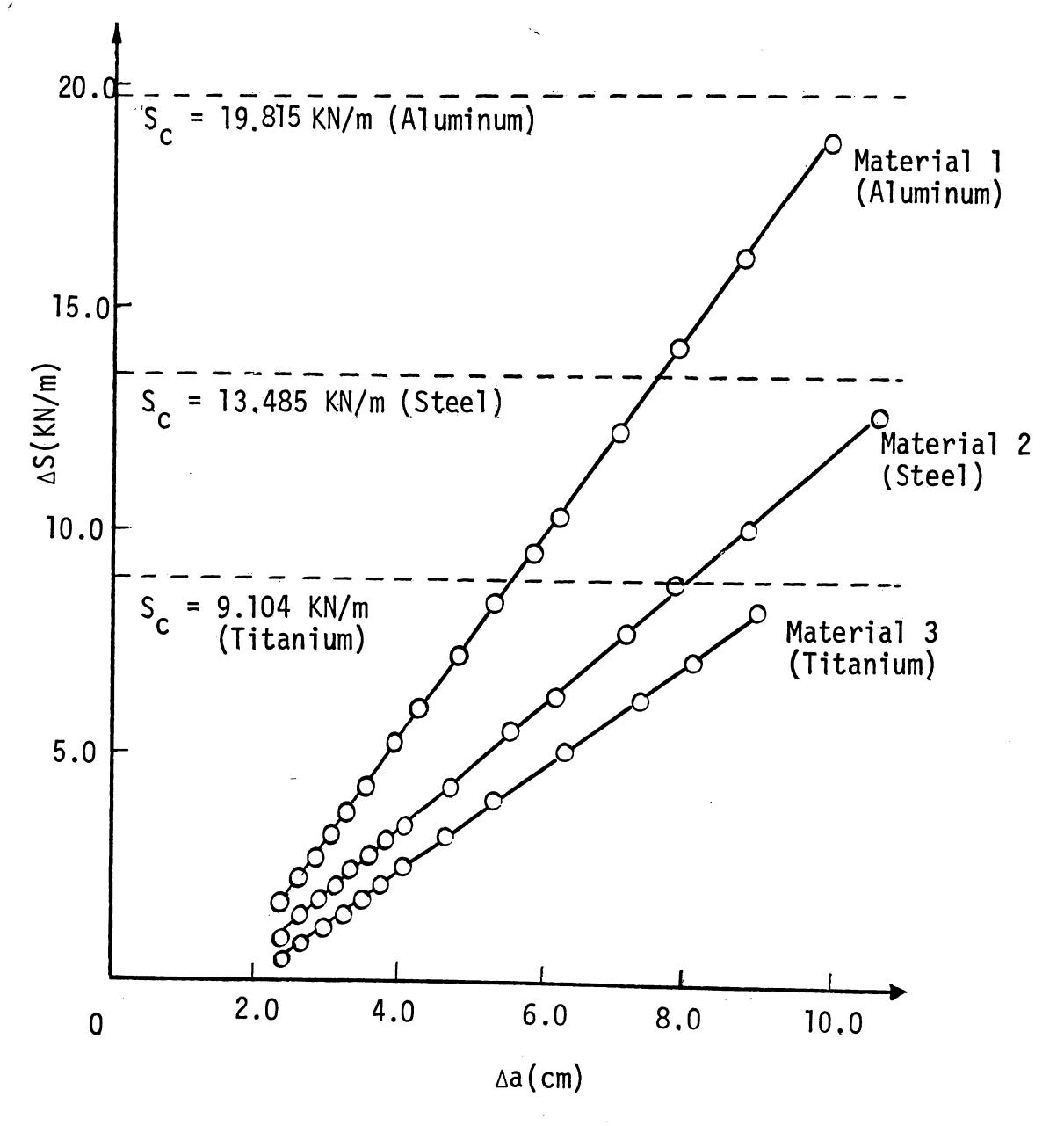


Figure 12. Crack Growth Resistance Curves For Material 1, 2 and 3, specimen A and Load Type I.

3.4 Interpolation of Data

Of particular interest is the critical crack size at which rapid fracture occurs. A situation that should be pre-determined if possible and avoided. For a circular cylinder with a initial crack radius of 2.54 cm, Figure 10 gives three values of $a_{\rm C}$ corresponding to V/A = 5.08, 7.62 and 10.16 cm. Hence, a plot of $a_{\rm C}$ versus V/A may be constructed such that other combinations of $a_{\rm C}$ and V/A may be obtained by interpolation or simply graphically as given in Figure 13. This, of course, can be accomplished by a subroutine in the FAMED program.

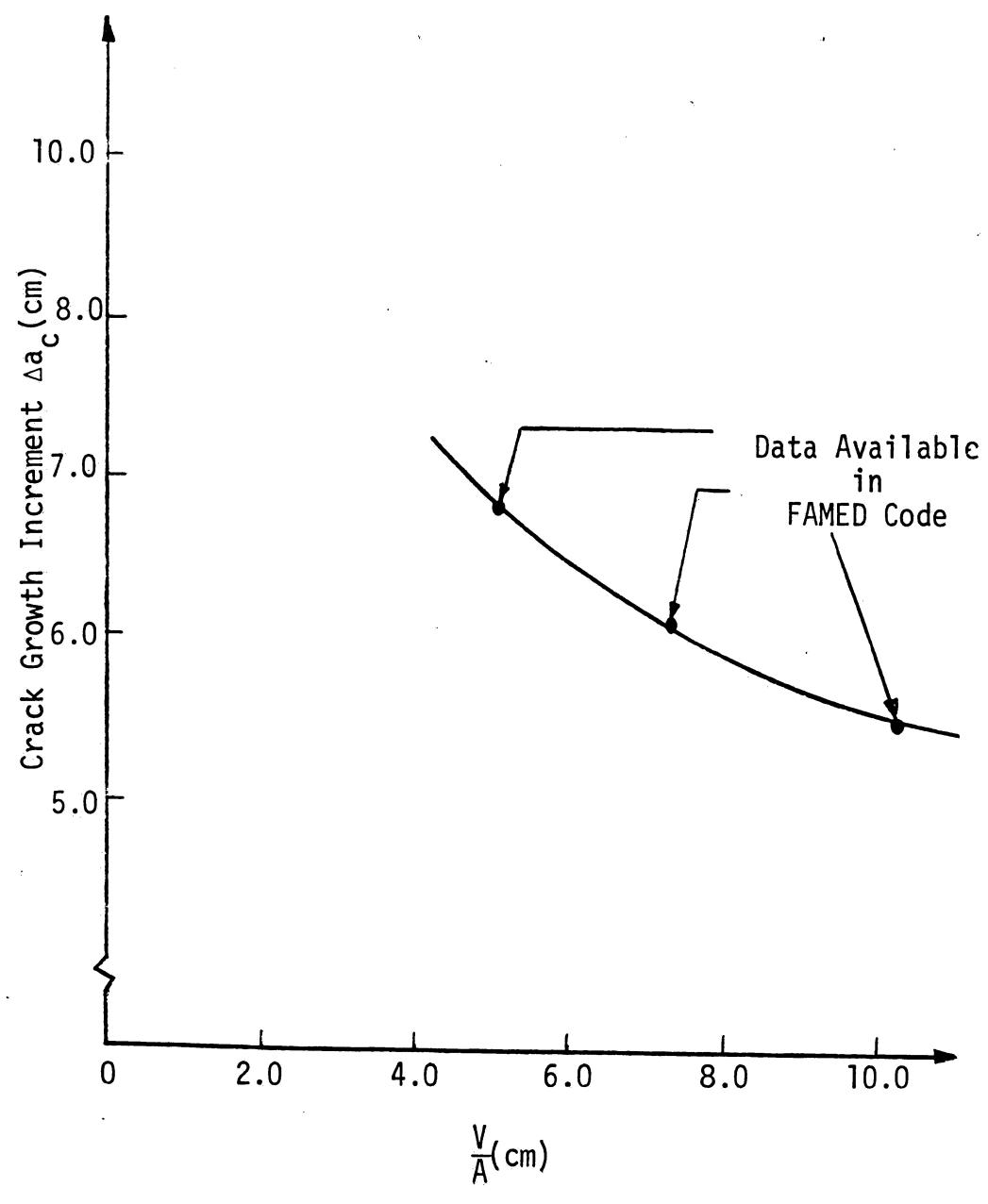


Figure 13. Variations of Δa_{C} With V/A For Material 2 (Steel) and Load Type I.

IV. FRACTURE ANALYSIS MATERIAL EVALUATION DATABASE (FAMED) PROGRAM

This program [16] is developed for those users who may not be familiar with fracture mechanics involving the nonlinear analysis of material behavior. Such a knowledge is beyond the capability of most engineers in the industry. A user friendly program would therefore enable the ordinary engineers to design more sophisticated components that they otherwise should not have been able to do so. As modern technology advances more and more rapidly, such a trend is the future.

4.1 Flow Chart

A flow chart of the FAMED code is shown in Figure 14. The user must first select the material type according to the number 1, 2 and 3. The mean stress $\overline{\sigma}$ and stress amplitude $\Delta \sigma$ must then be decided so that a Roman numeral between I to III is chosen. If the fatigue load falls outside of I, II and III, the user may obtain three answers and find the answer by interpolation. The specimen type and size is designated by the letters A, B,---,I. Three different values of V/A are available for each specimen configuration. Again, an interpolation scheme must be used if the V/A value does not coincide with those listed. The flaw size and location must then be specified so that a four digit code such as AlIa, A2Ia, etc. can be fed in the FAMED program. The critical flaw size a and number of cycles N_f to final fracture are then obtained as output.

Figure 14. Flaw Chart Of FAMED For Evaluating Critical Flaw Size And Fatigue Life.

4.2 User Procedure

The start 1 min

To use the FAMED code, follow the steps indicated in the flow chart, Figure 14. Refer to the Appendix in Section VII for the computer program.

Step 1 - Material selection.

- (1) If user chooses aluminum, indicate number 1
- (2) If user chooses steel, indicate number 2
- (3) If user chooses titanium, indicate number 3

Suppose that steel is chosen, i.e., type 2, the user's manual will furnish the following information as in Table 1:

$$\sigma_{vs} = 517.11 \text{ MPa}$$
 ; $\sigma_{ue} = 1378.9 \text{ MPa}$

$$\varepsilon_{ys} = 2.50 \times 10^{-3} \text{cm/cm}$$
; $\varepsilon_{ue} = 1.34 \times 10^{-2} \text{cm/cm}$

Then the first digit in the code is chosen as 2, i.e., 2xxx.

Step 2 - Fatigue Load

The choices available to the user are shown in the flow chart (or Table 2). Again, these will be given in the user's manual.

Suppose that the user selects load type I referring to

$$\overline{\sigma}$$
 = 206.9 MPa ; $\Delta \sigma$ = 1241. MPa

the second digit in the code is then decided, i.e., 2Ixx.

<u>Step 3</u> - Specimen Configuration

For a solid cylinder with length L = 50.8 cm and radius b = 12.7 cm, the V/A ratio is 5.08 cm. This corresponds to specimen type A, Figure 6. Determined is the third digit in the code number: 2IAX.

Step 4 - Initial Flaw Size and Location

Suppose that the initial flaw size is 2.54 cm and is located at the center of the specimen. Then, the fourth digit a will be assigned. This completes the four digit code 2IAa.

Step 5 - Input Code Number

The code number 2IAa is punched into the FAMED program.

Step 6 - Request for Output

The output of a_c = 6.812 cm and N_f = 4,800 cycles will then be obtained as they are shown in Table 3. Except that the information will be stored in the computer and can be made available on command.

4.3 Additional Subroutine

If the user's input data does not coincide precisely with those in Steps 1 to 4 or those stored in the FAMED program, then at least three outputs on $\mathbf{a}_{\mathbf{C}}$ and $\mathbf{N}_{\mathbf{f}}$ should be obtained such that

the actual answer can be obtained by interpolation as discussed in Section 3.4. Additional subroutines may be developed by the user so that the procedure can be done automatically by the computer.

V. NON-DESTRUCTIVE EVALUATION

One of the main objectives of fracture mechanics is to determine the onset of unstable fracture in terms of a critical crack length $\mathbf{a}_{\mathbf{c}}$ so that such a condition can be prevented in service. This can be accomplished by periodic inspection of the structural component in question. Such a methodology is known as "fracture control".

Figure 15 shows a schematic of crack length versus number of load cycle. As the crack grows very slowly initially, the number of cycles $N_{\rm S}$ corresponding to a certain growth rate $\Delta a/\Delta N$ should be so as to establish the inspection interval. The number of cycles between the useful and fatigue life may be regarded as the safety margin. The fracture mechanics discipline may thus be applied to find $a_{\rm f}$, $N_{\rm f}$, and $N_{\rm S}$ with a predetermined margin of safety. The implementation of fracture control in practice requires the application of nondestructive testing [17-19]. An estimate of the remaining life of the structural component is needed. Depending on the environment and available personnel, recommendation on the use of a particular technique can then be made.

5.1 Commercially Available Non-Destructive Testing Devices

Non-destructive testing is still an art in that only the more experienced individual can reliably detect defects in a given structure. The reliability of detection depends on many variables such as the flaw size, flaw location, material, etc. A brief description of some of the common methods will be given.

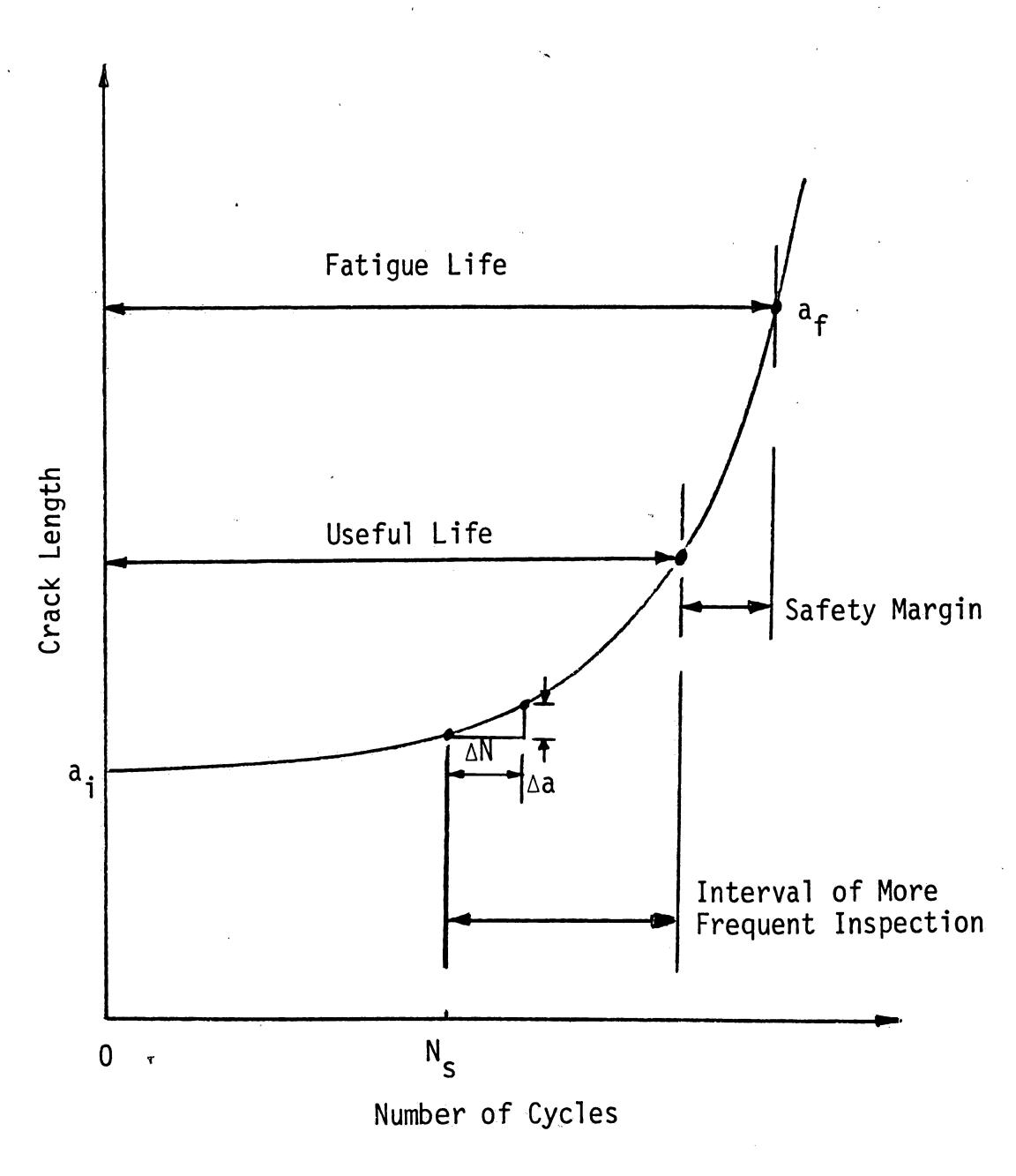


Figure 15. Crack Length Versus Number of Cycles.

5.1.1 Dye Penetrant

This method applies to surface flaws in metals, ceramics, and materials that should be non-porous. It is generally used to locate cracks in welds, castings and machine parts after grinding, etc. It is relatively inexpensive and can be readily administered. Inspection can be made visually. No information, however, could be obtained on flaw depth.

5.1.2 Magnetic Particles

It applies to ferromagnetic materials where the fine magnetic particles or powder can reveal the presence of flaws or surface cracks. The free surface or opening of the crack acts like a pair of magnets as a result of flux leakage. The defective surface of course, must be assessable and reasonably clean so as to achieve good resolution. Grinding or machining of the surface becomes necessary if the material is too rough.

5.1.3 Eddy Current

A relatively inexpensive means of detecting embedded cracks is by correlating the change in current as a result of alteration of coil inductance due to the presence of cracks. This method is widely used in the nuclear industry.

5.1.4 Ultrasonics

High frequency wave is transmitted into the material by a transducer made from piezo-electric crystals. Waves are reflected when encountering a surface boundary and/or a crack and monitored on the oscilloscope. Distance between the first pulse and

reflection gives the location of the crack. The crack size can also be estimated from the wave reflection pattern. Ultrasonic measurements usually underestimate the crack size because the adjoining surfaces may be closed.

5.1.5 X-Ray

X-ray is one of the most widely used techniques in non-destructive testing. The intensity of radiation is interrupted by defects in the material. The nonuniform absorption of radiation appears on the film. X-ray wavelength is in the order of one angstrom or 10^{-8} cm. It becomes tedius if detection were to be performed over a large area.

5.1.6 Acoustic Emission

This technique relies on a high signal-to-noise ratio. It assumes that the acoustic energy released is proportional to the size of defect created during loading. It can be used to monitor the creation of flaws in a full size structure that is in service. The location of a flaw can be determined by using several sensors positioned in a trinagular pattern such that the loci of failure role can be found.

5.2 Flaw Sensitivity In Material

Cracks in the higher strength materials are usually more difficult to detect because the adjoining surfaces can be extremely

tight. Detection becomes impossible when the crack opening is closed and of the same order of magnitude as the grain boundary thickness. According to linear elastic fracture mechanics, the crack opening governed by the radius of curvature ρ in relation to crack length 2a centered in a uniformly plate by the relation

$$a = \frac{1}{4} \left(\frac{\sigma_{m}}{\sigma}\right)^{2} \rho \tag{17}$$

where σ is the applied stress and σ_m the local crack tip stress. Since the tightness of the crack measured by ρ is directly proportional to a, cracks in materials with higher yield strength such as titanium will be more difficult to detect than cracks in aluminum. This is illustrated in Table 5.

In view of uncertainty in detection, it is useful to define a confidence level at which flaws or cracks can be found by non-destructive methods. A series of experiments can thus be performed for a given material and flaw geometry to obtain the results as displayed in Figure 16. A confidence level of 80% for detecting a flaw of length 2a = 0.25 cm in aluminum [7].

5.3 Fatigue And Useful Life Of Cracked Hollow Cylinder

Consider a thick-walled cylinder with inner radius b = 17.78 cm and outer radius c = 20.32 cm in Figure 17 (a). It is subjected to an internal pressure that fluctuates in time as shown in Figure 17(b). The maximum internal pressure p_i is 69 MPa while the minimum is zero. The cylinder is made of 300 M steel with μ = 82800 (MPa)

Table 5 - Critical Flaw Size For Aluminum And Titanium Alloys

(1) Aluminum Alloy 7075

Yield Strength: $\sigma_{ys} = 50 \text{ to } 80 \text{ ksi}$

Toughness: $k_{1c} = 25 \text{ to } 39 \text{ ksi}\sqrt{\text{in}}$

Critical Crack Size: $2a_c = 10^{-1}$ in

(2) Titanium Alloy 6A-6V-2Sn

Yield Strength: $\sigma_{vs} = 150 \text{ to } 180 \text{ ksi}$

Toughness: $k_{1c} = 30 \text{ to } 50 \text{ ksi}\sqrt{\text{in}}$

Critical Crack Size: $2a_c = 10^{-2}$ in

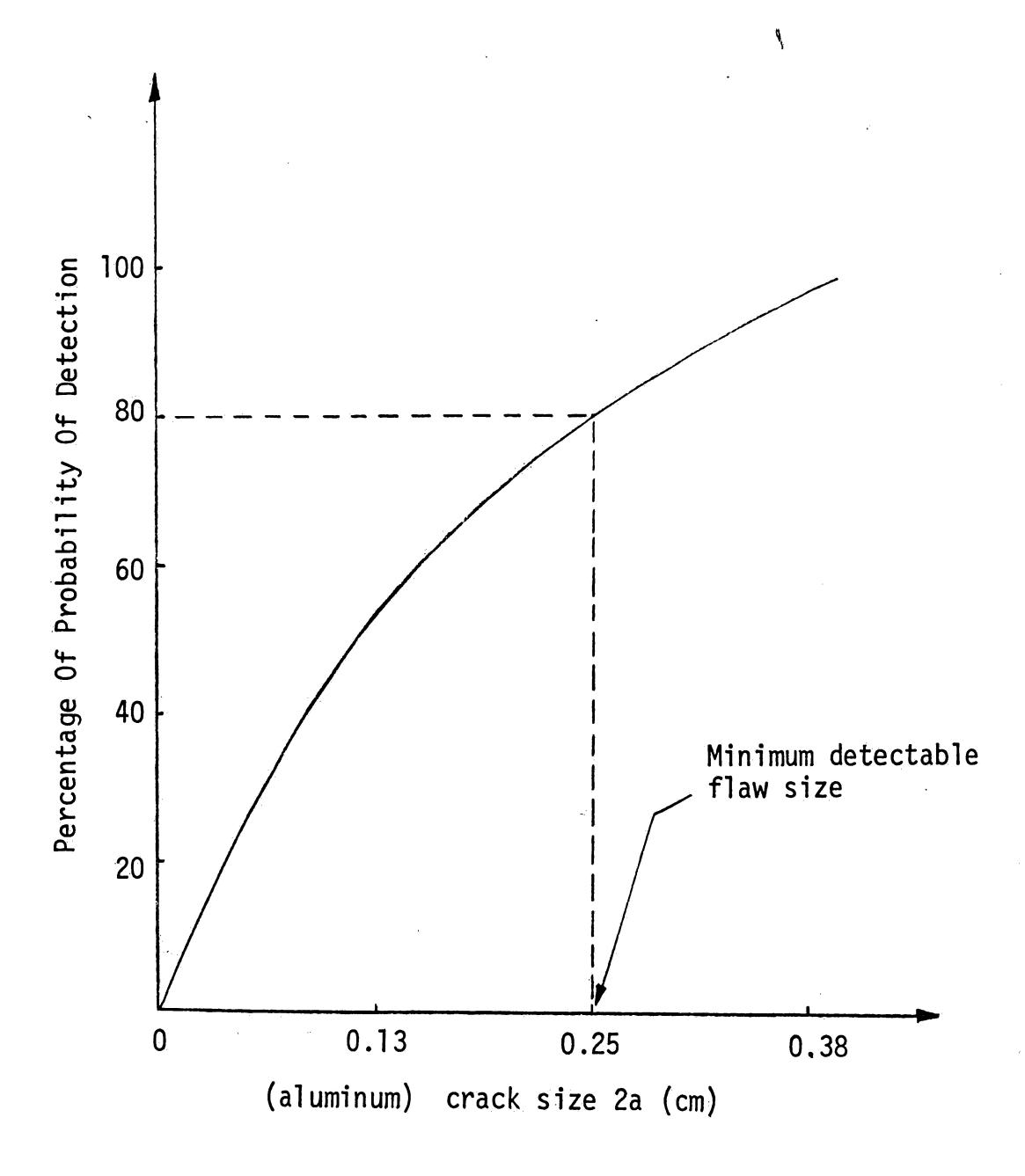


Figure 16. Probability Of Detection As A Function Of Crack Size At A Given Confidence Level.

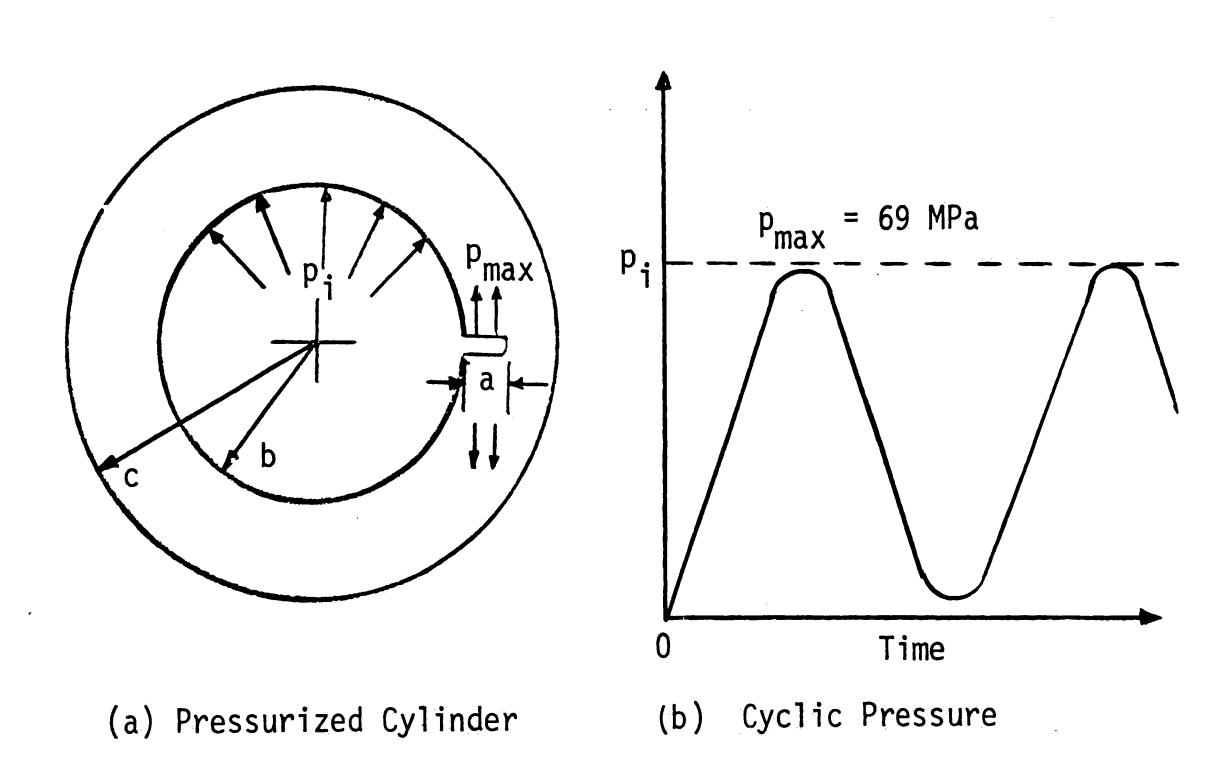


Figure 17. Fatigue Of Pressurized Hollow Cylinder With Edge Crack

and $\nu = 0.25$. Since the stress intensity factor k_1 can be approximated as

$$k_{1c} = 1.12\sigma_{\text{max}}\sqrt{\pi a_{c}}$$
 (18)

It can be found from equations (4), (18) that

$$S_c = \frac{1-2\nu}{4\mu} k_{1c}^2 = 2.45x10^{-4} kN/m$$
 (19)

in which σ_{max} is obtainable from the strength of material as

$$\sigma_{\text{max}} = p(\frac{c^2 + b^2}{c^2 - b^2}) = 69(\frac{(0.2032)^2 + (0.1778)^2}{(0.2032)^2 - (0.1778)^2}) = 519.8 \text{ MPa}$$
 (20)

The critical crack length is thus found.

$$a_{c} = \frac{1}{\pi} \left(\frac{4\mu}{1 - 2\nu \cdot 1.12 \cdot \sigma_{\text{max}}} \right)^{2} = \frac{1}{\pi} \left(\frac{4x82800}{1 - 2 \cdot 0.25 \cdot 1.12 \cdot 519.8} \right)^{2}$$

$$= 8.2x10^{-3} \text{(m)}$$

The crack growth relation in equation (21) must be modified with an exponent m on ΔS because damage accumulation is not accounted for by using linear elasticity in computing ΔS , i.e..

$$\frac{da}{dN} = B(\Delta S)^{m} \tag{22}$$

For 300 M steel, it can be found from [4] that

$$B = 3x10^{-9} (m/cycle) (MPa\sqrt{m})^{-3}$$
; and $m = 2$ (23)

This leads to

RETAKE

The Operator has

Determined that the

Previous Frame is

Unacceptable and Has

Refilmed the Page

in the Next Frame.

and $\nu = 0.25$. Since the stress intensity factor k_1 can be approximated as

$$k_{1c} = 1.12\sigma_{\text{max}}\sqrt{\pi a_{c}}$$
 (18)

It can be found from equations (4), (18) that

$$S_c = \frac{1-2v}{4u}k_{1c}^2 = 2.45x10^{-4}kN/m$$
 (19)

in which σ_{max} is obtainable from the strength of material as

$$\sigma_{\text{max}} = p(\frac{c^2 + b^2}{c^2 - b^2}) = 69(\frac{(0.2032)^2 + (0.1778)^2}{(0.2032)^2 - (0.1778)^2}) = 519.8 \text{ MPa}$$
 (20)

The critical crack length is thus found.

$$a_{c} = \frac{1}{\pi} \left(\frac{4\mu}{1 - 2\nu \cdot 1.12 \cdot \sigma_{\text{max}}} \right)^{2} = \frac{1}{\pi} \left(\frac{4x82800}{1 - 2 \cdot 0.25 \cdot 1.12 \cdot 519.8} \right)^{2}$$

$$= 8.2x10^{-3} \text{(m)}$$
(21)

The crack growth relation in equation (21) must be modified with an exponent m on ΔS because damage accumulation is not accounted for by using linear elasticity in computing ΔS , i.e.,

$$\frac{\mathrm{da}}{\mathrm{dN}} = \mathrm{B}(\Delta S)^{\mathrm{m}} \tag{22}$$

For 300 M steel, it can be found from [4] that

$$B = 3x10^{-9} (m/cycle) (MPa/m)^{-3}$$
; and $m = 2$ (23)

This leads to

$$\frac{da}{dN} = C(\Delta S)^{n} = C(\frac{1-2\gamma}{4\mu}) \cdot (1.12 \cdot 519.8 \cdot \sqrt{\pi a})^{4}$$

$$= 3x10^{-9} \cdot 1.6x10^{-6} \cdot 1.10x10^{12} \cdot a^{2}$$

$$= 5.27x10^{-3} a^{2}$$
(24)

Integration yields

$$\int_{a_{i}}^{a_{f}} \frac{da}{5.27 \times 10^{-3} a^{2}} = \int_{N_{i}}^{N_{f}} dN$$
 (25)

and

$$N_{f} = \frac{1}{5.27 \times 10^{-3}} \left(\frac{1}{a_{i}} - \frac{1}{a_{f}} \right)$$
 (26)

For $a_i = 0.00127m$ and $a_f = a_c = 8.2 \times 10^{-3}m$ in equation (21), it is found that

$$N_f = 1.26 \times 10^5 \text{ cycles}$$
 (27)

If a 85% useful life is assumed, then

$$a_f = 8.2x10^{-3} \cdot 0.85 = 6.97x10^{-3}m$$
 (28)

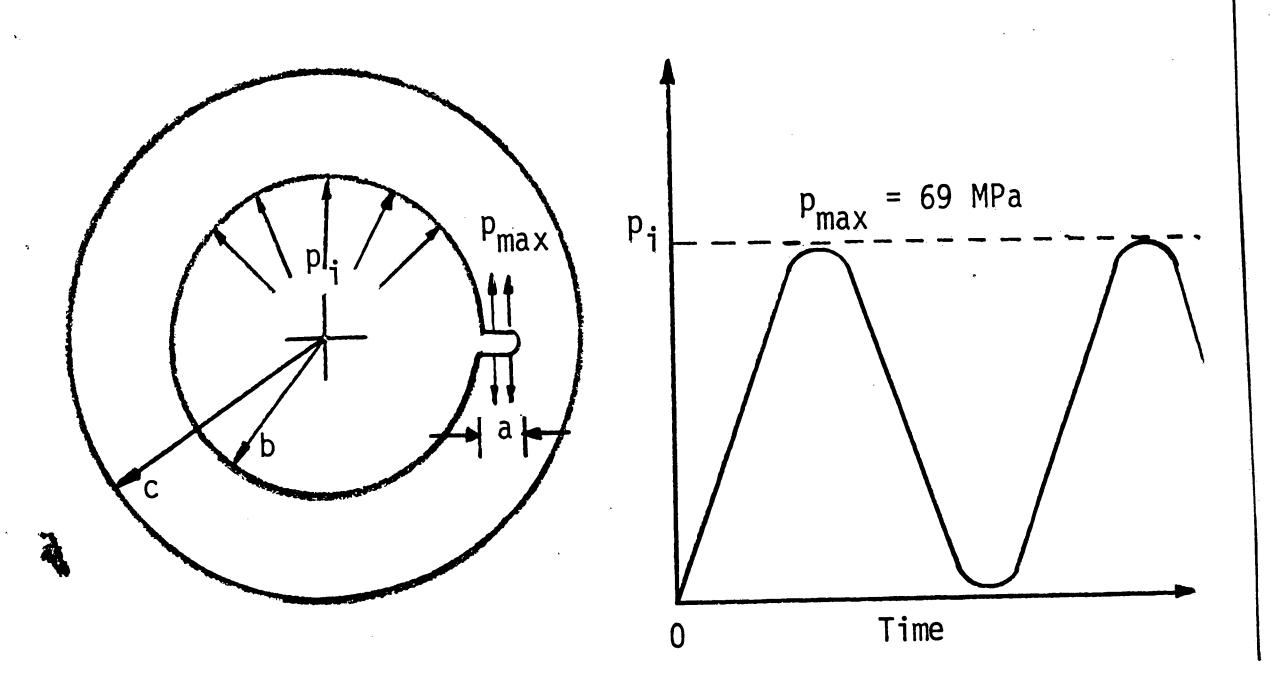
which corresponds to $N_f = 1.22 \times 10^5$ cycles. The interval for NDT inspection may be set between 55000 $^{\circ}$ 70000 cycles, i.e.,

$$a_f = 0.0020m$$
 for $N_f = 55,000$ cycles and

 $\rm a_f = 0.0024m$ for $\rm N_f = 70,000$ cycles. The results of a, N and da/dN can be found in Table 6.

Table 6. Crack Growth Rate For 300M Steel With Stress Amplitude 69MPa

$a(m \times 10^{-3})$	N(cycles x10 ⁴)	$\Delta a/\Delta N(\frac{m}{cycles} \times 10^{-9})$
1.27	0	0
1.36	7	9.00
1.46	2	9.50
1.59	3	10.10
1.73	4	11.50
1.91	5	12.80
2.12	6	14.17
2.39	7	16.00
2.74	8	18.38
3.20	9	21.44
3.85	10	25.80
4.82	1.1	32.27
6.47	12	43.33
8.20	12.6	55.00


5.4 Non-Destructive Evaluation

Example for NDT Method (flaw criticality evaluation)

Rating for an inspectable crack length

$$a_s = a_c (1-I)(1-D)$$
 (29)

Fatigue Of Pressurized Hollow Cylinder With Edge Crack

(a) Pressurized Cylinder

(b) Cyclic Pressure

c = 20.32 cm , b = 17.78 cm , Material.. 300 M steel maximum internal pressure (P_{max}) = 69 MPa critical stress intensity factor parameter k_{1c} = 93.47 MPa \sqrt{m}

$$\sigma_{\text{max}} = P(\frac{c^2 + b^2}{c^2 - b^2}) = 69(\frac{(20.32)^2 + (17.78)^2}{(20.32)^2 - (17.78)^2}) = 519.8 \text{ MPa}$$

(direction normal to the crack)

$$\therefore k_{1c} = 1.12\sigma_{\text{max}}\sqrt{\lambda a_{c}}$$

$$\therefore a_{c}^{'} = \frac{1}{(1.12\sigma_{max})^{2}} = \frac{1}{\lambda} (\frac{93.47}{1.12x519.8})^{2} = \frac{8.2x10^{-3}m}{1.12x519.8}$$

a. Factors Influencing "I" (Material and Frequency)

Factors	Material	Range	Value of Factor I
k _{lc} (μPa)	Aluminum	High (50+) Medium (40-50) Low (30-40)	0.1 0.2 0.3
	Steel	High (100+) Medium (80-100) Low (50-80)	0.1 0.2 0.3
	Titanium	High (70+) Medium (50-70) Low (30-50)	0.1 0.2 0.3
Inspection	Frequency	Continuous Frequent Infrequent	0.1 0.2 0.3
Other Factor		Aggressive Enviro (Stress Corrosion	nment 0.1
		Complex Failure M (No Previous Expe	ode 0.1 rience)

b. Factors Influencing "D" (Operational)

Factors	Range	Value of Factor D
Accessibility	Good Moderate Bad	0.0 0.1 0.2
Surface Finish	Good Moderate Bad	0.0 0.1 0.2
Experience	Available None	o.0 0.1
Comparisons with Standards	Available None	0.0

c. The Value Of Factor I For This Thick-Walled Cylinder Specimen:

d. The Value Of Factor D For This Thick-Walled Cylinder Specimen:

Area of inspection (not accessible)	0.2
Surface finish (moderate)	0.1
No experience	0.1
+) No standard available for comparison	0.1
	D = 0.5

$$a_{s} = a_{c} (1-I)(1-D)$$

$$= 8.2x10^{-3}(1-0.5)(1-0.5)$$

$$= 2.05x10^{-3} (m)$$

So the ultrasonic method is recommended.

REFERENCES

- [1] N. A. Kahn and E. A. Imbemko, "A method of evaluating the transition from shear to cleavage-type failure in ship plate", Welding Journa, Vol. 27, pp. 169s-182s, 1948.
- Plane Strain Crack Toughness Testing of High Strength Metallic Materials, edited by W. F. Brown, Jr. and J. E. Sprawley, American Society of Testing Materials ASTM STP 410, 1966.
- [3] <u>Linear Fracture Mechanics</u>, edited by G. C. Sih, R. P. Wei and F. Erdogan, Envo Publishing Co., Bethlehem, PA., 1974.
- [4] G. C. Sih, "Some basic problems in fracture mechanics and new concepts", International Journal of Engineering Fracture Mechanics, Vol. 5, No. 2, pp. 365-377, 1973.
- [5] G. C. Sih, "The mechanics aspects of ductile fracture",

 In <u>Proceedings on Continuum Models of Discrete Systems</u>, edited
 by J. W. Provan, University of Waterloo Press, Canada, pp. 361-386, 1977.
- [6] G. C. Sih, Mechanics of subcritical crack growth. In <u>Fracture Mechanics Technology Applied to Material Evaluation and Structure Design"</u>, ed. G. C. Sih, N. E. Ryan and R. Jones, pp. 3-18. The Hague: Martinus Nijhoff Publishers, 1984.

- [7] G. C. Sih, Effect of loading history on crack growth. In

 Application of Fracture Mechanics to Materials and Structures,
 ed. G. C. Sih, E. Sommer and W. Dahl, pp. 251-261. The

 Hague: Martinus Nijhoff Publishers.
- [8] G. C. Sih, "Technical-political-economical implications of strategic materials scarcity in the United States of America", Seminar On Material Technology And Resource, pp. 18-26, 1983.
- [9] G. C. Sih and E. T. Moyer, Jr., "Path dependent nature of fatigue crack growth", Int. J. Engrg. Fract. Mech., Vol. 7, No. 3, pp. 269-380, 1983.
- [10] E. T. Moyer, Jr., and G. C. Sih, Fatigue analysis of an edge crack specimen: Hysteresis strain energy density,

 <u>Journal of Engineering Fracture Mechanics</u>, 19: pp. 643-652,
 1984.
- [11] R. Badaliance, "Fatigue life prediction: metals and composites", <u>Fracture Mechanics Technology</u>, edited by G. C. Sih and L. O. Faria, Martinus Nijhoff Publishers, The Netherlands, pp. 1-34, 1984.
- [12] G. C. Sih, "Fracture mechanics of engineering structural components", <u>Fracture Mechanics Technology</u>, edited by G. C. Sih and L. O. Faria, Martinus Nijhoff Publishers, The Netherlands, pp. 35-101, 1984.

- [13] G. C. Sih and C. K. Chao, "Size effect of cylindrical specimens with fatigue cracks", J. of Theoretical and Applied Fracture Mechanics, Vol. 1, No. 3, pp. 239-247, 1984.
- [14] R. Ballarini, S. P. Shah and L. M. Keer, "Crack growth in cement based Composites", Technical report,

 Northwestern University, Evanston, Illinois, 1984.
- [15] H. L. Berstein, "A study of the J-integral method using polycarbonate", AFWAL-TR-82-4080, Air Force Wright Aeronautical Laboratories, Wright-Patterson Air Force Base, Ohio, August 1982.
- [16] Fracture Analysis Material Evaluation Database (FAMED)
 User's Manual, Institute of Fracture and Solid Mechanics,
 IFSM-86-138, January 1986.
- [17] W. W. Stinchcomb, Mechanics of Nondestructive Testing, Plenum Press, 1980.
- [18] W. J. McGonnagle, Nondestructive Testing, McGraw-Hill, 1961.
- [19] H. Berger, Nondestructive Testing Standards A Review, ASTM STP624, 1976.

APPENDIX: FRACTURE ANALYSIS MATERIAL EVALUATION DATABASE COMPUTER PROGRAM

This program utilizes known data to obtain the critical crack length for a cylinder with a crack subjected to cyclic loading. The user's manual should be referred to for more details [16]. The data bank is constructed and based on the strain energy density theory. Use is made of the incremental theory of plasticity combined with finite element method. A critical crack length is determined from the critical strain energy density function together with the number of cycles to fracture. The following factors are considered:

- (1) Material type
- (2) Loading condition
- (3) Specimen geometry
- (4) Flaw size and location

The computer program for the FAMED code follows.

BEST COPY

AVAILABLE

PAGE(S)

Computer Program for the FAMED code.

```
LIS
                   PROGRAM FAMED(INPUT, OUTPUT, TAPES=INPUT, TAPE6=OUTPUT)
        100
                   CHARACTER STRESS1X3, PEC1X1, TAX1X1, TAX2X1, TAX3X1
        110
                   INTEGER AMTL
        120
                 1 CALL MTL
        130
                   WRITE (6,2)
        140
                 2 FORMAT(5X, "PLEASE INPUT SELECTED MATERIAL: "/)
        150
                   READX, AMTL
        160
                   IF (AMTL.EQ.1)GO TO 3
        170
                   IF (AMTL.EQ.2)GO TO 4
        180
-60-
                   IF (AMTL.EQ.3)GO TO 5
        190
                 3 CALL AL
        200
                   GO TO 6
        210
                 4 CALL ST
        220
                   GO TO 6
        230
                 5 CALL TI
        240
                 6 WRITE(6,7)
        250
                 7 FORMAT(5X, "FLEASE INPUT LOADING CONDITION: "/>
        260
                   READ(*,100)STRESS1
        220
               100 FORMAT(A3)
        280
                   IF(STRESS1.EQ.'I ')GO TO 8
        290
                   IF(STRESS1.EQ.'II ')GO TO 9
        300
                   IF(STRESS1.EQ.'III')GO TO 10
        310
```

```
320
        8 CALL GOMT1
330
          GO TO 81
340
        9 CALL GOMT2
350
          GO TO 81
       10 CALL GOMT3
360
370
       81 WRITE(6,11)
       11 FORMAT (5X, "PLEASE CHOOSE THE SPECIMEN("/)
380
390
          READ(*,101)FEC1
400
      101 FORMAT(A1)
          IF(PEC1.EQ.'A')GO TO 12
410
420
          IF (PEC1.EQ. B) GO TO 13
          TF(FEC1.EQ. (C/)GO TO 14
430
       12 WRITE(6,432)
440
      432 FORMAT("THE INITIAL FLAW SIZE=5.08(CM), AND IS LOCATED AT THE CENTE
450
         +R OF THE SPECIMEN, FLS
                                    .TYFE F
460
          READ(*,102)TAX1
470
      102 FORMAT(A1)
480
          IF(TAX1.EQ./P/)GO TO 104
490
      104 WRITE(6,21)
500
       21 FORMATO THE ANSWER FOR YOUR CODE NUMBER IS: "/>
510
          IF (AMTL.EQ.1.AND.STRESS1.EQ.'I '.AND.PEC1.EQ.'A'.AND.TAX1.EQ.'P')
520
530
         +GO TO 22
          IF(AMTL.EQ.1.AND.STRESS1.EQ.'II '.AND.PEC1.EQ.'A'.AND.TAX1.EQ.'P')
540
         +GO TO 23
550
          IF (AMTL.EQ.1.AND.STRESS1.EQ./III/.AND.FEC1.EQ./A/.AND.TAX1.EQ./F/)
560
570
         +60 TO 24
          IF (AMTL.EQ.2.AND.STRESS1.EQ.'I '.AND.FEC1.EQ.'A'.AND.TAX1.EQ.'F')
580
```

```
590
         +GO TO 25
          IF(AMTL.EQ.2.AND.STRESS1.EQ./II /.AND.PEC1.EQ./A/.AND.TAX1.EQ./P/)
600
610
         +GO TO 26
          IF (AMTL.EQ.2.AND.STRESS1.EQ./III/.AND.PEC1.EQ./A/.AND.TAX1.EQ./P/)
620
630
         +60 TO 27
          IF (AMTL.EQ.3.AND.STRESS1.EQ./I /.AND.PEC1.EQ./A/.AND.TAX1.EQ./P/)
640
650
         460 TO 28
          IF(AMTL.EQ.3.AND.STRESS1.EQ./II /.AND.PEC1.EQ./A/.AND.TAX1.EQ./P/)
660
         +60 TO 29
670
          IF (AMTL.EQ.3.AND.STRESS1.EQ./III/.AND.PEC1.EQ./A/.AND.TAX1.EQ./P/)
680
690
         460 TO 30
700
       22 WRITE(6,31)
       31 FORMAT("CRITICAL CRACK LENGTH=10.38(CM), NUMBER OF FAILURE CYCLES=6
710
720
         +125
          GO TO 90
730
       23 WRITE(6,32)
740
       32 FORMAT("CRITICAL CRACK LENGTH=9.22(CM), NUMBER OF FAILURE CYCLES=52
750
760
         +00
                  \mathfrak{n} \neq \mathfrak{I}
          GO TO 90
770
       24 WRITE(6,33)
780
       33 FORMAT ("CRITICAL CRACK LENGTH=8.46(CM), NUMBER OF FAILURE CYCLES=36
790
                  "/)
800
         480
          GO TO 90
810
       25 WRITE(6,34)
820
       34 FORMAT ("CRITICAL CRACK LENGTH=9.44(6M), NUMBER OF FAILURE CYCLES=57
830
                  "/)
840
         +05
          GO TO 90
850
       26 WRITE(6,35)
860
```

```
35 FORMAT ("CRITICAL CRACK LENGTH=8.02(CM).NUMBER OF FAILURE CYCLES 45
 870
 880
                  "/)
          435
           60 TO 90
 890
 900
        27 WRITE(6,36)
        36 FORMAT ("CRITICAL CRACK LENGTH=6.82(CM), NUMBER OF FAILURE CYCLES=33
 910
 920
          +25
                  ^{\rm H}/)
 930
           60 TO 90
 940
        28 WRITE(6,37)
        37 FORMAT ("CRITICAL CRACK LENGTH=8.75(CM), NUMBER OF FAILURE CYCLES=37
 950
 960
          +50
                   "/)
           GO TO 90
 970
        29 WRITE(6,38)
 980
        38 FORMAT("CRITICAL CRACK LENGTH=7.19(CM), NUMBER OF FAILURE CYCLES=30
 990
          +50
                   ^{n} \angle )
1000
1010
           GO TO 90
        30 WRITE(6,39)
1020
        39 FORMAT("CRITICAL CRACK LENGTH=5.38(CM), NUMBER OF FAILURE CYCLES=22
1030
1040
           GO TO 90
1050
        13 WRITE(6,433)
1060
       433 FORMAT("THE INITIAL FLAW SIZE=7.62(CM), AND IS LOCATED AT THE CENTE
1070
          THE SPECIMEN, PLS . TYPE Q "/)
1080
           READ(*,106)TAX2
1090
1100
       106 FORMAT(A1)
           IF(TAX2.EQ.'Q')GO TO 499 -
1110
       499 WRITE(6,40)
1120
      40 FORMAT("THE ANSWER FOR YOUR CODE NUMBER IS: "/)
1130
           IF (AMTL.EQ.1.AND.STRESS1.EQ.'I '.AND.PEC1.EQ.'B'.AND.TAX2.EQ.'Q')
1140
```

```
+60 TO 41
           IF (AMTL.EQ.1.AND.STRESS1.EQ.'II '.AND.PEC1.EQ.'B'.AND.TAX2.EQ.'Q')
1150
1160
          +G0 T0 42
           IF (AMTL.EQ.1.AND.STRESS1.EQ.'III'.AND.PEC1.EQ.'B'.AND.TAX2.EQ.'Q')
1170
1180
          +GO TO 43
1190
           IF (AMTL.EQ.2.AND.STRESS1.EQ.'I '.AND.FEC1.EQ.'B'.AND.TAX2.EQ.'Q')
1200
          +60 70 44
           IF (AMTL.EQ.2.AND.STRESSI.EQ.'II '.AND.PEC1.EQ.'B'.AND.TAX2.EQ.'Q')
1210
1220
          +60 TO 45
1230
           IF (AMTL.EQ.2.AND.STRESSI.EQ./III/.AND.PEC1.EQ./B/.AND.TAX2.EQ./Q/)
1240
          +GO TO 46
1250
           IF (AMTL.EQ.3.AND.STRESS1.EQ.'I '.AND.PEC1.EQ.'B'.AND.TAX2.EQ.'Q')
1260
          +GO TO 47
           IF (AMTL.EQ.3.AND.STRESS1.EQ.'II '.AND.FEC1.EQ.'B'.AND.TAX2.EQ.'Q')
1270
1280
          +GO TO 48
           IF (AMTL.EQ.3.AND.STRESS1.EQ.'III'.AND.PEC1.EQ.'B'.AND.TAX2.EQ.'Q')
1290
1300
           +60 TO 49
1310
        41 WRITE(6,50)
        50 FORMAT("CRITICAL CRACK LENGTH=11,16(CM), NUMBER OF FAILURE CYCLES=2
1320
1330
           4930
1340
           GO TO 90
1350
        42 WRITE(6,51)
1360
        51 FORMAT("CRITICAL CRACK LENGTH=9.91(CM), NUMBER OF FAILURE CYCLES=23
1370
                    #/).
           450
1380
            GO TO 90
1390
         43 WRITE(6,52)
         52 FORMAT ("CRITICAL CRACK LENGTH=8.98(CM), NUMBER OF FAILURE CYCLES=17
1400
1410
```

64

```
420
                 "/)
1420
           GO TO 90
1430
        44 WRITE(8,53)
1440
        53 FORMAT("CRITICAL CRACK LENGTH=10.14(CM), NUMBER OF FAILURE CYCLES=2
1450
               "/)
          4550
1460
           GO TO 90
1470
        45 URITE(6,54)
1480
        54 FORMAT ("CRITICAL CRACK LENGTH=8.80(CM), NUMBER OF FAILURE CYCLES=21
1490
          +10 "/)
1500
           GO TO 90
1510
        46 WRITE(6,55)
1520
        55 FORMAT("CRITICAL CRACK LENGTH=7.43(CM), NUMBER OF FAILURE CYCLES=15
1530
              \mu / \lambda
          +60
1540
           60 TO 90
1550
        47 WRITE (6,56)
1560
        56 FORMAT ("CRITICAL CRACK LENGTH=9.60(CM), NUMBER OF FAILURE CYCLES=16
1570
          +40
1580
          GO TO 90
1590
        48 URITE(6,57)
1600
        57 FORMAT ("CRITICAL CRACK LENGTH=7.89(CM) NUMBER OF FAILURE CYCLES=13
1610
          +50 "/)
1620
           GO TO 90
1630
        49 WRITE(6,58)
1640
        58 FORMAT ("CRITICAL CRACK LENGTH=6.24(CM), NUMBER OF FAILURE CYCLES=10
1650
          +35 "/)
1660
           GO TO 90
1670
        14 WRITE (6,434)
1380
       434 FORMAT ("THE INITIAL FLAW SIZE=10:16(CM) FAND IS LOCATED AT THE CENT
1690
```

```
S. TYPE S
          HER OF THE SPECIMEN, FL
1700
           READ(*,109)TAX3
1710
       109 FORMAT(A1)
1720
           IF(TAX3.EQ.'S')GO TO 110
1730
       110 WRITE(6,59)
1740
        59 FORMAT ("THE ANSWER FOR YOUR CODE NUMBER IS:
1750
           IF (AMTL.EQ.1.AND.STRESS1.EQ.'I '.AND.PEC1.EQ.'C'.AND.TAX3.EQ.'S')
1760
          +60 TO 60
1270
           IF(AMTL.EQ.1.AND.STRESS1.EQ.'II '.AND.PEC1.EQ.'C'.AND.TAX3.EQ.'S')
1780
          +60 70 61
1790
           IF (AMTL.EQ.1.AND.STRESS1.EQ.'III'.AND.PEC1.EQ.'C'.AND.TAX3.EQ.'S')
1800
          +60 TO 62.
1810
           IF (AMTL.EQ.2.AND.STRESS1.EQ./I /.AND.PEC1.EQ./C/.AND.TAX3.EQ./S/)
1820
          +60 TO 63
1830
           IF (AMTL.EQ.2.AND.STRESS1.EQ.'II '.AND.PEC1.EQ.'C'.AND.TAX3.EQ.'S')
1840
          +60 TO 64
1850
           IF (AMTL.EQ.2.AND.STRESS1.EQ.'III'.AND.PEC1.EQ.'C'.AND.TAX3.EQ.'S')
1860
          +60 TO 65
1870
           IF (AMTL.EQ.3.AND.STRESS1.EQ.'I '.AND.FEC1.EQ.'C'.AND.TAX3.EQ.'S')
1880
          +60 TO 66
1890
           IF (AMTL.EQ.3.AND.STRESS1.EQ.'II '.AND.FEC1.EQ.'C'.AND.TAX3.EQ.'S')
1900
          +60 TO 67
1910
           IF (AMTL.EQ.3.AND.STRESS1.EQ.'III'.AND.FEC1.EQ.'C'.AND.TAX3.EQ.'S')
1920
```

```
400 TO 68
1930
        60 WRITE (6,69)
1940
        69 FORMAT("CRITICAL CRACK LENGTH=12.00(CM), NUMBER OF FAILURE CYCLES=2
1950
                */)
          +550
1960
           GO TO 90
1970
        61 WRITE (6,70)
1980
        70 FORMAT("CRITICAL CRACK LENGTH=10.64(CM), NUMBER OF FAILURE CYCLES=1
1990
                  # / )
          4805
2000
        62 WRITE(6,71)
2010
        71 FORMAT ("CRITICAL CRACK LENGTH=9.62(CM), NUMBER OF FAILURE CYCLES=13
2020
                  ^{\rm H} / )
          +10
2030
           60 TO 90
2040
        63 WRITE(6,72)
2050
        72 FORMAT ("CRITICAL CRACK LENGTH=10.63(CM), NUMBER OF FAILURE CYCLES=1
2060
          4950 "/)
2070
           GO TO 90
2080
        64 WRITE(6,73)
2090
        73 FORMAT("CRITICAL CRACK LENGTH=9.44(CM), NUMBER OF FAILURE CYCLES=15
2100
2110
            GO TO 90
2120
        65 WRITE(6,74)
2130
        74 FORMAT("CRITICAL CRACK LENGTH=8.09(CM), NUMBER-OF FAILURE CYCLES=11
2140
                  "/)
           +50
2150
```

```
GO TO 90
2160
        66 WRITE(6,75)
        75 FORMAT ("CRITICAL CRACK LENGTH=10.31(CM), NUMBER OF FAILURE CYCLES=1
2170
2180
                   _{\rm B} \times \lambda
           +360
2190
            GO TO 90
2200
         67 WRITE(6,76)
2210
         76 FORMAT ("CRITICAL CRACK LENGTH=8.60(CM), NUMBER OF FAILURE CYCLES=10
2220
                   # / )
           450
2230
            GO TO 90
2240
         68 WRITE(6,77)
            FORMAT ("CRITICAL CRACK LENGTH=6.95(CM), NUMBER OF FAILURE CYCLES=75
2250
2260
                   _{\rm H} \nearrow \lambda
2270
            GO TO 90
2280
         90 WRITE(6,78)
2290
         78 FORMAT("IF YOU WANT TO DO IT AGAIN, PLS. TYPE 1
2300
            WRITE(6,79)
2310
                                                                     14/)
         79 FORMAT("IF YOU WANT TO QUIT, PLS. TYPE 2
2320
            READX,BOG
2330
            IF (BOG. EQ.1)GO TO 1
2340
            TF(BOG.EQ.2)GO TO 80
2350
         80 STOP
2360
             END
2370
2380 C
```

SUBROUTINE MTL WRITE(6,300) 2420 300 FORMAT(10X, ************************************	2390 0	
2420 300 FORMAT(10X,"************************************	2400	SUBROUTINE MTL.
2430 WRITE(6,301) 2440 301 FORMAT(10X,*** INSTITUTE OF FRACTURE & SOLID MECHANICS **"/) 2450 WRITE(6,302) 2460 302 FORMAT(10X,*** LEHIGH UNIVERSITY **"/) 2470 WRITE(6,303) 2480 303 FORMAT(10X,*** DIRECTOR:DR.G. C. SIH **"/) 2490 WRITE(6,304) 2500 304 FORMAT(10X,************************************	2410	WRITE(6,300)
2440 301 FORMAT(10X,"** INSTITUTE OF FRACTURE & SOLID MECHANICS **"/) 2450 WRITE(6,302) 2460 302 FORMAT(10X,"** LEHIGH UNIVERSITY **"/) 2470 WRITE(6,303) 2480 303 FORMAT(10X,"** DIRECTOR:DR.G. C. SIH **"/) 2490 WRITE(6,304) 2500 304 FORMAT(10X,"************************************	2420	300 FORMAT(10X,"************************************
2450 WRITE(6,302) 2460 302 FORMAT(10X,"** LEHIGH UNIVERSITY **"/) 2470 WRITE(6,303) 2480 303 FORMAT(10X,"** DIRECTOR:DR.G. C. SIH **"/) 2490 WRITE(6,304) 2500 304 FORMAT(10X,"************************************	2430	WRITE (6,301)
2460 302 FORMAT(10X, *** LEHIGH UNIVERSITY ***/) 2470 WRITE(6,303) 2480 303 FORMAT(10X, *** DIRECTOR:DR.G. C. SIH ***/) 2490 WRITE(6,304) 2500 304 FORMAT(10X, ************************************	2440	301 FORMAT(10X,"** INSTITUTE OF FRACTURE & SOLID MECHANICS **"/)
2470 WRITE(6,303) 2480 303 FORMAT(10X,"** DIRECTOR:DR.G. C. SIH **"/) 2490 WRITE(6,304) 2500 304 FORMAT(10X,"************************************	2450	WRITE (6,302)
2480 303 FORMAT(10X,"** DIRECTOR:DR.G. C. SIH **"/) 2490 WRITE(6,304) 2500 304 FORMAT(10X,"************************************	2460	302 FORMAT(10X,"** LEHIGH UNIVERSITY **"/)
WRITE(6,304) 304 FORMAT(10X, "************************************	2470	
2500 304 FORMAT(10X, "************************************	•	303 FORMAT(10X,"** DIRECTOR:DR.G. C. SIH **"/)
2510 WRITE(6,305) 2520 305 FORMAT("(1)THE DATA BANK IS CONSTRACTED AND BASE ON THE STRAIN ENE 2530 +RGY DENSITY THEORY. "/) 2540 WRITE(6,500) 2550 500 FORMAT("(2)USED IS MADE OF THE INCREMENTAL THEORY OF PLATICITY COM 2560 +BINED WITH FINITE ELE MENT METHOD. "//) 2570 WRITE(6,501)		
2520 305 FORMAT("(1)THE DATA BANK IS CONSTRACTED AND BASE ON THE STRAIN ENE 2530 +RGY DENSITY THEORY. "/) 2540 WRITE(6,500) 2550 500 FORMAT("(2)USED IS MADE OF THE INCREMENTAL THEORY OF PLATICITY COM 2560 +BINED WITH FINITE ELE MENT METHOD. "/) 2570 WRITE(6,501)	* *	304 FORMAT(10x,"************************************
2530 +RGY DENSITY THEORY. "/) 2540 WRITE(6,500) 2550 500 FORMAT("(2)USED IS MADE OF THE INCREMENTAL THEORY OF PLATICITY COM 2560 +BINED WITH FINITE ELE MENT METHOD. "//) 2570 WRITE(6,501)		WRITE (6,305)
2540 WRITE(6,500) 2550 500 FORMAT("(2)USED IS MADE OF THE INCREMENTAL THEORY OF PLATICITY COM 2560 +BINED WITH FINITE ELE MENT METHOD. **/) 2570 WRITE(6,501)		305 FORMAT("(1)THE DATA BANK IS CONSTRACTED AND BASE ON THE STRAIN ENE
2550 500 FORMAT("(2)USED IS MADE OF THE INCREMENTAL THEORY OF PLATICITY COM 2560 #BINED WITH FINITE ELE MENT METHOD. **/) 2570 WRITE(6,501)		
2560 TRINED WITH FINITE ELE MENT METHOD. **/) 2570 WRITE(6,501)		WRITE(6,500)
2570 WRITE(6,501)		
2580 501 FORMAT("(3)A CRACK LENGTH IS DETERMINED FROM THE CRITICAL STRAIN D	•	
44 574 44 4	• • •	
2590 LENSITY FUNCTION AND N UMBER FAILURE CYCLES. "/)		
2600 WRITE(6,502)		
2610 502 FORMAT("(4)THE FOLLOWING FACTORS ARE CONSIDERED: "/)	2610	DOZ FURMATO" (4) IME FULLUWING FACTURS ARE CUNSIDERED; "/)

```
2620
            WRITE(6,306)
        306 FORMAT(5X, "(1) MATERIAL TYPE
2630
2640
            WRITE(6,307)
2650
        307 FORMAT(5X)"(2)LOADING CONDITION
2660
            WRITE(6,308)
       308 FORMAT(5X,"(3)SPECIMEN GEOMETRY
2670
2680
            WRITE (6,309)
2690
       309 FORMAT(5X,"(4)FLAW SIZE AND LOCATION "/)
2700
            WRITE(6,310)
2710
       310 FORMAT("HOW TO USE FAMED: "/)
2720
           WRITE(6,311)
       311 FORMAT(5X, "FLS. CHOOSE THE MATERIAL TYPE FIRST, THERE HAVE ALUMINIU
2230
2740
          +M, STEEL, TITANIUM THREE KINDS OF MATERIAL. "/)
2750
           WRITE(6,312)
       312 FORMAT(ZX,"(1)IF YOU CHOOSE ALUMINIUM, PLS. TYPE 1
2760
2770
           WRITE(6,313)
2780
       313 FORMAT(7X,"(2) IF YOU CHOOSE STEEL, PLS. TYPE 2 "/)
2790
           WRITE(6,314)
2800
       314 FORMAT(7X, "(3) IF YOU CHOOSE TITANIUM, FLS. TYPE 3 "/)
2810
           RETURN
2820
           END
2830 C
2840 C
```

2850 SUBROUTINE AL 2860 WRITE (6,315) U.P.STRAIN "/) UL.STRESS Y.P.STRAIN 2870 315 FORMAT("AL: YIELD STRESS 2880 WRITE (6,316) $n \neq y$ (MPA) (MPA) 2890 316 FORMAT(" 2900 WRITE(6,317) 4.08E-2 "/) 2E-3 1585.81 2910 317 FORMAT(" 413.69 2920 WRITE(6,318) LOADING CONDITION, THERE HAVE THREE KI 2930 318 FORMAT("(1)PLEASE CHOOSE TONS $_{\rm H} \setminus$) 2940 ANDS OF LOADING CONDIT 2950 WRITE (6,319) " /) DELTA STRESS(MPA) MEAN STRESS(MPA) 2960 319 FORMAT(". 2970 WRITE (6,320) =0.5(SIGMAMAX-SIGMAMIN 320 FORMATO" =0.5(SIGMAMAX+SIGMAMIN) 2980 2990 WRITE (6,321) n \angle) 124.1 206.9 3000 321 FORMAT(" WRITE(6,322) 3010 $^{\rm H}$ / \rangle 155,2 258.1 3020 322 FORMAT(" 3030 WRITE (6,323) #/) 170.7 284.5 3040 323 FORMAT(" 3050 WRITE(6,324) 4 1 324 FORMAT("(2)IF YOU CHOOSE LOADING 1, PLS. TYPE I 3060 WRITE(6,325) 3070

	3080	325	FORMAT("(3)If	YOU CHOO	SE LOADING	2,FLS.	TYPE II	"/)	
	3090		WRITE(6,326)			g.v. g'	over a fact that the decide	n /)	
	3100	326	FORMAT("(4)IF	YOU CHOO	SE LOADING	3 2 F L. W +	TYPE III	"/)	
	3110		RETURN						
	3120		END						
	3130 C					ì			
	3140 C				r			e e	
	3150		SUBROUTINE S	r					
	3160		WRITE (6,327)				n y 1800, 1806, 6000 2200, 20, 48° 5, 2	t to the section of the Aller A.	14 .7 N
ť	3170	327	FORMAT("ST:)	YIELD STRE	ess UL,st	RESS	Y.F.STRAIN	U.F.STRAIN	₹" Z Z
72-	3180		WRITE(6,328)			•••	n		
i	3190	328	FORMAT("	(MPA)	(M	PA)	"/)		
	3200		WRITE (6,329)					à my Alim en	Y # 7 \
	3210	329	FORMAT("	517.11	1. 3	78.97	2.5E-3	1.34E-2	
	3220		WRITE (6,330)			ana, aga a gi daga - dag dag	A LANG OF THE PERSON OF THE STREET	we nate Tubb	E KI
	3230	330	FORMAT("(1)FI			nine co	NDITIONATHER	KE. MAYE. IMKE	
	3240	··	HNDS OF LOADIN	VG CONDI	TION		"/)		
	3250		WRITE(6,331)	• • •					
	3260	331	FORMAT("	MEAN STRE	(SS(MPA)		DELTA STREE	59(MPA)	" /)
	3270	¥	WRITE(6,332)						
	3280	332	FORMAT("	=0.5(SIG)	IAMAX+SIGMA	MIND	=0.5(SIGMA)	MAX-SIGMAMIN	()"/)
·· AT	3290		WRITE(6,333)				,		
	3300	333	FORMAT("	206	9		124.	1.	<u>/)</u>

-72-

	3310			WRITE(6,334)		258.1				155.2		# /)
	3320		334	FORMAT("		al al Ci vi II.				<u></u>		
	3330		· · · · · · · · · · · · · · · · · · ·	WRITE(6,335)		moa is:		•		17077		" /)
	3340		335	FORMAT("		284.5						
	3350			WRITE (6,336)	cz m.i.i	was den en en en	T SYATET ALCO	401	3. TYPE	1	#/)	
	3360,		336	FORMAT("(2)IF	YOU	UHUUSE	LOADING	.l. y 1 1 y	.) (1 1 1 1	•••	•	
	3370			WRITE (6,337)			1 25 A Vi T 2165	o 194 (e TVEE	T T	"/)	
	3380		337	FORMAT("(3)IF	YOU	CHUUSE	LOADING	M. P. F. L. S	D, v	ala eja.	• •	
	3390			WRITE (6,338)				ny val (e yvet	* 	"/)	
ì	3400		338	FORMAT("(4)]F	YOU	CHOUSE	LOADING	9 P 1 3		de de de	<i>F</i> •	
7.3	3410			RETURN								•
į.	3420			ENU								
,	3430	()										
	3440	Ü										
	3450			SUBROUTINE TI								
	3460			WRITE (6,339)			440 440		s a line (m. 1	Young Cole	11 D G	TRESS"/)
	3470		339	FORMAT("TI: Y	I E L D	STRESS	UL.ST	KE 55	Y . P . S	I PCE. D O	U VI V V	1 1 V has the tile
	3480			WRITE(6,340)						# / N		
	3490		340	FORMAT("	(MP)	4) 🔑	(MP	'A)		"/)		
	3500			WRITE (6,341)					•••• ••••	•• y	". A.	4E-3 "/)
	3510		341	FORMAT("	620	.53	1.1.7	2.12	35	···· 🗘	\$ 9 W	f less Not 6 4
	3520			WRITE(6,342)		•		ass. 194 C. 4 994	and and to a time the the time.	mar marron	LAUF	THEFF KT
	3530		342	FORMAT("(1)FL	EASE	CHOOSE	THE LOA	III.NU	CHMUTIT	CHA & LLECTOR	. 1117 v I	THREE KI

	3540	•	HNDS OF LOADIA	VG CO	NDI .	rion		"/)			
	3550	****	WRITE(6,343)	SZPE Á SI	yes ego per per ger ger ger	/ እረም		romi ro	v embede	е / мюл у	n /)
	3560	343		MEAN	STRESS	(TIP A)		DELTA	1 011/00	S(MPA)	//
	3570		WRITE(6,344)	26 8***	2 200 MP 200 0 2 A A 2 Z	ል እደ ነ ያን ሞ ያንላይ ል ነ	× T X 1 X	/A 600 A	/ m	AVOTO	MAMIN)"/)
	3580	344	*	= () → ()	(SIUMAM	AXASIGMAA	ATBA	⇔V.D:		HA "" O I U	LIMITARY VV
	3590		WRITE(6,345)						4 75 4 4		⁸ /)
	3600	345	FORMAT("		206.9				124.1		//
	3610		WRITE(6,346)						a :::: ::: ::: ::::		11 / 3
	3620	346			258.1				155.2		"/)
-74-	3630		WRITE(6,347)								11 - 2 3
4	3640	347			284.5	•			170.7		" /)
	3650		WRITE(6,348)		- .				•1•	u / 3	
an en '	3660	348	FORMAT("(2)II	TYOU	CHOOSE	LOADING	1 y F L. S +	TYPE	.].	"/)	
	3670		WRITE(6,349)					2 200 2000	190 · igs	n ()	
	3680	349	FORMAT("(3)I	T YOU	CHOOSE	LOADING	2,PLS.	TYPE.	1. 1.	"/)	
	3690		WRITE(6,350)		·					n es	
	3700	350	FORMAT("(4)II	= YOU	CHOOSE	LOADING	3 , FL.S.	TYPE	1. 1. 1.	"/)	
	3710		RETURN								
	3720		END		1						
	3730 C		* .			_					
	3740 C				•		•				
	3750		SUBROUTINE G	DMT1				•			
·~	3760		WRITE(6,351)							-	

351	FORMAT("L1: ME	AN STRESS(M	PA)	DELTA	STRESSO	(PA)"/)	
	WRITE(6,352)						
352	FORMAT("	206.9			124 . 1	*/)	
	WRITE(6,353)						
353	FORMAT("PLEASE	CHOOSE THE	SPECIMEN, THER	E HAVE	THREE K	CINDS OF	SPECI
•	PMEN: ">						
	WRITE(6,354)						
354	FORMAT(5X,"(A)	CYLINDER (CM) ;	$_{\rm n} \setminus$)			
•	WRITE(6,355)						
355		L=50.8, R	=12.7, V/A=5.0	8		" ()	-
. See a Summer		#					
356		L=76.27 R	=19,3, V/A=7,6	<u></u>		n /)	
	WRITE(6,357)						•
357	FORMAT("	L=101.6 / R	=25.4, V/A=10.	1.6		$\mathfrak{m} \setminus \mathcal{Y}$	
	WRITE(6,358)						
358		ICLLOW CYLI	NOER(CM):			" /)	
يندو ددهو ودده		· ••• • •••					
307		L=36.8 R	(0) = 9.2 y R(1) =	4,69 V	ZA=5.08	"/)	
······································		g good good ging igne,	a and a superior and the angle of	2 225 6.3	a sa	11 e 5	
300		L=OO.Zy K	(U)=13.8yK(1)=	Ć∢≯y ∨	/A=/.62	" /)	
"Y 7/4		1 *** / 1**	ZONNIJA ON AL MIZORNIJA	m m in	1	n 2 v	
3 O 1)	L=/a+by K	CO/##186049KC1/#	7 + x2 9 - V	// A T T T	· " / /	
*****	WIVE LET COACOS					<u> </u>	
	352 353 354 355 357 359 359 360	WRITE(6,352) 352 FORMAT(" WRITE(6,353) 353 FORMAT("PLEASE +MEN: ", WRITE(6,354) 354 FORMAT(5X,"(A)(WRITE(6,355) 355 FORMAT(" WRITE(6,355) 356 FORMAT(" WRITE(6,357) 357 FORMAT(" WRITE(6,357) 357 FORMAT(" WRITE(6,358)	WRITE(6,352) 352 FORMAT(" 206.9 WRITE(6,353) 353 FORMAT("PLEASE CHOOSE THE +MEN: "/) WRITE(6,354) 354 FORMAT(5X,"(A)CYLINDER(CM WRITE(6,355) 355 FORMAT(" L=50.8, R WRITE(6,356) 356 FORMAT(" L=76.2, R WRITE(6,357) 357 FORMAT(" L=101.6, R WRITE(6,358) 358 FORMAT(5X,"(B)HOLLOW CYLI WRITE(6,359) 359 FORMAT(" L=36.8, R WRITE(6,360) 360 FORMAT(" L=55.2, R WRITE(6,361) 361 FORMAT(" L=73.6, R	WRITE(6,352) 352 FORMAT(" 206.9 WRITE(6,353) 353 FORMAT("PLEASE CHOOSE THE SPECIMEN, THER +MEN: "/) WRITE(6,354) 354 FORMAT(5X,"(A)CYLINDER(CM): WRITE(6,355) 355 FORMAT(" L=50.8, R=12.7, V/A=5.0 WRITE(6,356) 356 FORMAT(" L=76.2, R=19.3, V/A=7.6 WRITE(6,357) 357 FORMAT(" L=101.6,R=25.4, V/A=10. WRITE(6,358) 358 FORMAT(5X,"(B)HOLLOW CYLINDER(CM): WRITE(6,359) 359 FORMAT(" L=36.8, R(0)=9.2, R(I)= WRITE(6,360) 360 FORMAT(" L=55.2, R(0)=13.8,R(I)= WRITE(6,361) 361 FORMAT(" L=73.6, R(0)=18.4,R(I)=	WRITE(6,352) 352 FORMAT(" 206.9 WRITE(6,353) 353 FORMAT("PLEASE CHOOSE THE SPECIMEN, THERE HAVE +MEN: "/) WRITE(6,354) 354 FORMAT(5X, "(A)CYLINDER(CM): "/) WRITE(6,355) 355 FORMAT(" L=50.8, R=12.7, V/A=5.08 WRITE(6,356) 356 FORMAT(" L=76.2, R=19.3, V/A=7.62 WRITE(6,357) 357 FORMAT(" L=101.6,R=25.4, V/A=10.16 WRITE(6,358) 358 FORMAT(5X, "(B)HOLLOW CYLINDER(CM): WRITE(6,359) 359 FORMAT(" L=36.8, R(0)=9.2, R(1)=4.6, V WRITE(6,360) 360 FORMAT(" L=55.2, R(0)=13.8,R(1)=6.9, V WRITE(6,361) 361 FORMAT(" L=73.6, R(0)=18.4,R(1)=9.2, V	WRITE(6,352) 352 FORMAT(" 206.9 124.1 WRITE(6,353) 353 FORMAT("PLEASE CHOOSE THE SPECIMEN, THERE HAVE THREE FINE HAVE THREE FI	WRITE(6,352) 352 FORMAT(" 206.9 124.1 "/) WRITE(6,353) 353 FORMAT("PLEASE CHOOSE THE SPECIMEN, THERE HAVE THREE KINDS OF +MEN: "/) WRITE(6,354) 354 FORMAT(5x, "(A)CYLINDER(CM): "/) WRITE(6,355) 355 FORMAT(" L=50.8, R=12.7, V/A=5.08 "/) WRITE(6,356) 356 FORMAT(" L=76.2, R=19.3, V/A=7.62 "/) WRITE(6,357) 357 FORMAT(" L=101.6, R=25.4, V/A=10.16 "/) WRITE(6,358) 358 FORMAT(5x, "(B)HOLLOW CYLINDER(CM): "/) WRITE(6,359) 359 FORMAT(" L=36.8, R(O)=9.2, R(I)=4.6, V/A=5.08 "/) WRITE(6,360) 360 FORMAT(" L=55.2, R(O)=13.8, R(I)=6.9, V/A=7.62 "/) WRITE(6,361) 361 FORMAT(" L=73.6, R(O)=18.4, R(I)=9.2, V/A=10.16 "/)

```
4000
        362 FORMAT(5X, "(C)PLATE(CM):
                                                                     # / )
4010
           WRITE(6,363)
4020
       363 FORMAT("
                            L=233.68, W=116.84, D=11.68, V/A=5.08
4030
            URITE (6,364)
4040
       364 FORMAT("
                            L=350.52, W=175.1, D=17.51, V/A=7.62
4050
           WRITE(6,365)
4060
       365 FORMAT("
                            L=467.32, W=233.66, D=23.34, V/A=10.16 "/)
4070
           WRITE(6,366)
4080
       366 FORMAT("(1) IF YOU CHOOSE CYLINDER V/A=5.08yPLS. TYPE A "/)
4090
           WRITE(6,367)
4100
       367 FORMAT("(2) IF YOU CHOOSE CYLINDER V/A=7.62,PLS. TYPE B "/)
4110
           WRITE(6,368)
4120
       368 FORMAT("(3)IF YOU CHOOSE CYLINDER V/A=10.16, PLS. TYPE C "/)
4130
           WRITE(6,369)
4140
       369 FORMAT("(4)IF YOU CHOOSE HOLLOW CYLINDER V/A=5.08, FLS. TYPE D"/)
4150
           WRITE(6,370)
4160
       370 FORMAT("(5)IF YOU CHOOSE HOLLOW CYLINDER V/A=7.62,PLS. TYPE E"/)
4170
           WRITE(6,371)
       371 FORMAT("(6)IF YOU CHOOSE HOLLOW CYLINDER V/A=10.16,PLS. TYPE F"/)
4180
4190
           WRITE(8,372)
       372 FORMAT("(7)IF YOU CHOOSE PLATE V/A=5.08, PLS. TYPE G "/)
4200
4210
           WRITE(6,373)
       373 FORMAT("(8), IF YOU CHOOSE PLATE V/A=7.62, PLS. TYPE H "/)
4220
```

-76-

	4230		WRITE(6,374)	•		,		
	4240	374	FORMAT("(9)IF	YOU CHOOSE	FLATE V/A=10.18	G.DIC Type	T H A	
	4250		RETURN			NALIT ON THE LEE	T/)	
	4260		END					
	4270	C						
	4280	C						
*	4290		SUBROUTINE GOV	MT2				
	4300		WRITE(6,384)					
4	4310	384	FORMAT("L2: ME	EAN STRESS()	(PA) r	ELTA STRESS	AMBAY	# / j ·
-77-	4320		WRITE(6,385)		A,	The for 1 171 Sec. 1 1 No. 5,7 Sep	Vium 64 A	
j.	4330	385	FORMAT("	258.1		155.2		" /)
	4340	and a second	WRITE(6,386)					
	4350	386	FORMAT("PLEASE	E CHOOSE THE	SPECIMEN, THREE	HAUF THREE	RINING (OF SPECI
	4360	je - 4.	HMEN: "/)			# # # # 5 \$000 Beco	TABLE CO.	ormus
	4370		WRITE(6,387)					
	4380	387	FORMAT(5X,"(A)	CYLINDER (CM) :		"/)	
	4390		WRITE(6,388)				, ,	•
	4400	388	FORMAT("	L=50.8, R	=12.7, V/A=5.08		* / Y	
	4410		WRITE(6,389)		· ·		/ /	
	4420	389	FORMAT("	L=76.2, R	=19.05.U/A=7.62		"/)	
	4430	**** *** **	WRITE(6,390)		· · · · · · · · · · · · · · · · · · ·	,	* *	
	4440	390	FORMAT("	L=101.6,R	=25.4, V/A=10.1	ó	9 / Y ~	
	4450	New York	WRITE(6,391)			,	₹ ₹	

	4460	391	FORMAT(5Xy"(B	HOLL	OW CYL	INDER(CM):		"/)	
,	4470		WRITE(6,392)				•		
	4480	392	FORMAT("	<u></u> :::	36.8,	R(O)=9.2,	R(I)=4.69 V	7/A≕5.08 "/)	
	.490		WRITE (6,393)						_
		393	FORMAT("	:::	55.29	R(O)=13.8y	R(I)=6.9,	V/A=7.62	"/)
•	4510		WRITE (6,39,4)	n is brown and the new section	t ar comment	A design of the second	_		
	4520	394	FORMAT("	::::	73.60	R(O)=18.49	$R(T) = 9 \cdot 2 y$	V/A=10.16	" /)
	4530		WRITE(6,395)						x_1^{-1}
	4540	395	FORMAT(5Xx "(C) FLAT	E(CM):			и /)	
-78-	4550		WRITE(6,396)			•		p.t	
ĭ	4560	396	FORMAT("	l ::::	233,68	y W=116.84	y D=11.689	V/A=5.08	" /)
	4570	,	WRITE(6,397)						Company of
	4580	397	FORMAT("	 ::::	350.52	y W=175.19	D = 17.51y	V/A=7.62	"/)
	4590		WRITE(6,398)				•		
	4600	398	FORMAT("		467.32	y W=233.66	y D=23.36;	V/A=10.16	# /)
	4610		WRITE(6,399)						
	4620	399	FORMAT("(1)IF	YOU	CHOOSE	CYLINDER	V/A=5.08,FL	S. TYPE A	"/)
	4630		WRITE (6,400)						<u> </u>
	4640	400	FORMAT("(2)IF	YOU	CHOOSE	CYLINDER	V/A=7.62,FL	S. TYPE B	"/)
	4650	**>	WRITE (6,401)						
	4660	401	FORMAT("(3)1F	YOU	CHOOSE	CYLINDER	V/A=10.16.P	LS. TYPE C	"/)
	4670		WRITE (6,402)					1011	yo. Hi sik
	4680	402	FORMAT("(4)IF	YOU	<u>CHOOSE</u>	HOLLOW CY	LINDER V/A=	5.08, FLS. TYPE	n "/)

	4690		WRITE(6,403)							
	4700	403	FORMAT("(5)IF	YOU	CHOOSE	HOLLOW	CYLINDER	V/A=7,62,F1	LS. TYPE	E "/)
	4710		WRITE(6,404)							
	4720	404	FORMAT("(6)IF	YOU	CHOOSE	HOLLOW	CYLINDER	V/A=10.16.1	PLS. TYP	EF"/),
	4730		WRITE (6,405)							
	4740	405	FORMAT("(7)IF	YOU	CHOOSE	PLATE	V/A=5.08,1	PLS. TYPE G		# /)
	4750		WRITE (6,406)							
	4760	406	FORMAT("(8)IF	YOU	CHOOSE	PLATE	V/A=7.62,1	PLS. TYPE H		("/)
	4770	140	WRITE(6,407)					9		
	4780	407	FORMAT("(9)IF	YOU	CHOOSE	FLATE	V/A=10.16	PLS. TYPE 3	Ľ	*/>
-79_	4790		RETURN							
ı	4800		END							
	4810 C	r k								
	4820 C	•								
	4630		SUBROUTINE GOM	173						
	4840		WRITE(6,408)							
	4850	408	FORMAT("L3: ME	AN S	TRESS		DELTA	STRESS		"/)
	4860		WRITE(6,409)		•					
	4870	409	FORMAT("	284.	5		170	o 7		# /)
	4880		WRITE (6,410)					•		
	4890	410	FORMAT("PLEASE	CHO	OSE THE	SPECI	MENATHERE	HAVE THREE	KINDS O	F SPECI
	4900	4	FMEN: "/)				•			
	4910		WRITE (6,411)							

-/9

	4920	411	FORMAT(5X,"(A)	CYLINDER(CM): "/)	
	4930		WRITE(6,412)		
	4940	412	FORMAT("	L=50.8, R=12.7, V/A=5.08 "/A	
	4950		WRITE(6,413)		
Ann	4960	413	FORMAT("	L=76.2, R=19.05,V/A=7.62 "/)	
	4970		WRITE(6,414)		
	4980	414	FORMAT("	L=101.6,R=25.4, V/A=10.16 "/)	
	4990		WRITE(6,415)		
_	5000	415	FORMAT(SX, "(B)	HOLLOW CYLINDER (CM): "/>	
0	5010		WRITE(6,416)		
	5020	416	FORMAT ("	L=36.8, R(0)=9.2, R(I)=4.6, V/A=5.08	$\mathfrak{n} \nearrow \mathfrak{f}$
	5030		WRITE(6,417)		
	5040	417	FORMAT ("	L=55.2, R(0)=13.8,R(I)=6.9, V/A=7.62	"/)
	5050		WRITE(6,418)		
	5060	418	FORMAT("	L=73.6, R(0)=18.4,R(I)=18.4,V/A=10.16	n \nearrow)
	5070		WRITE(6,419)		
	5080	419	FORMAT(SX,"(C)	PLATE(CM): "/)	
	5090		WRITE(6,420)		
	5100	420	FORMAT("	L=233.68, W=116.84, D=11.68, V/A=5.08.	"/)
	5110		WRITE(6,421)	u	
	5120	421	FORMAT("	L=350.52, W=175.1, D=17.51, V/A=7.62	$^{\rm u}/)$
,	5130	A 200 400	WRITE(6,422)		
	5140	422	FORMAT ("	L=467.32, W=233.66, D=23.34, V/A=10.16	$\mathbf{n} \geq \mathbf{j}$

80

	5150		WRITE(6,423)				
	5160	423	FORMAT("(1)IF	YOU	CHOOSE	CYLINDER U/A=5.08, FLS. TYPE A "/)	
	5170		WRITE(6,424)		,		
	5180	424	FORMAT("(2)IF	YOU	CHOOSE	CYLINDER W/A=7.62,FLS. TYPE B "/)	
	5190		WRITE(6,425)				
	5200	425	FORMAT("(3)IF	YOU	CHOOSE	CYLINDER V/A=10.16, FLS, TYPE C "/)	
	5210		WRITE(6,426)			and the second of the second o	
	5220	426	FORMAT("(4)IF	YOU	CHOOSE	HOLLOW CYLINDER V/A=5.08,FLS. TYPE "	/)
-81-	5230		WRITE(6,427)			the state of the s	/ 4
i	5240	427	FORMAT("(5)IF	YOU	CHOOSE	HOLLOW CYLINDER V/A=7.42*PLS. TYPE E "	/)
	5250	5t	WRITE(6,428)		per a super con con ser	THE RESIDENCE OF A STANDARD AND A SHOP OF THE STANDARD AND A STANDARD OF THE STANDARD AND A STAN	/ 1
	5260	428	FORMAT("(6)IF	YUU	UMUUSE	HOLLOW CYLINDER V/A=10.16, PLS. TYPE F "	
	5270		WRITE(6,429)			PLATE UZASSIOSIPLS TYPE 6 "Z)	
	5280	429	FORMAT("(Z)IF	YUU	CHOUSE.	PLATE V/A=5.08, PLS. TYPE 6 "/)	
	5290		WRITE (6,430)		programme and programme	PLATE U/Am7.AD.PLS. TYPE H "/)	
	5300	430	FORMAT("(8)IF	YUU	UHUUSE	PLATE V/A=7.62, PLS. TYPE H "/)	
	5310		WRITE (6,431)		and 0 0.000, 300, 300, 9000	end where the end on the company of	
	5320	434		YOU	CHOOSE	PLATE V/A=10.16, PLS. TYPE I "/)	
	5330		RETURN				
<u>.</u>	<u> 5340 </u>	. Transie	END				<u> </u>

EXAMPLE

-82

FAMED 23:51 FT5

** INSTITUTE OF FRACTURE & SOLID MECHANICS **

** LEHIGH UNIVERSITY **

** DIRECTOR: DR.G. C. SIH

- (1) THE DATA BANK IS CONSTRACTED AND BASE ON THE STRAIN ENERGY DENSITY THEORY.
- (2)USED IS MADE OF THE INCREMENTAL THEORY OF PLATICITY COMBINED WITH FINITE ELE MENT METHOD:
- (3)A CRACK LENGTH IS DETERMINED FROM THE CRITICAL STRAIN DENSITY FUNCTION AND N UMBER FAILURE CYCLES.
- (4) THE FOLLOWING FACTORS ARE CONSIDERED:
 - (1) MATERIAL TYPE
 - (2)LOADING CONDITION
 - (3) SPECIMEN GEOMETRY
 - (4) FLAW SIZE AND LOCATION

Example (Continued)

HOW TO USE FAMED:

PLS. CHOOSE THE MATERIAL TYPE FIRST, THERE HAVE ALUMINIUM, STEEL, TITANIUM THR EE KINDS OF MATERIAL.

(1) IF YOU CHOOSE ALUMINIUM, PLS. TYPE 1

(2) IF YOU CHOOSE STEEL, PLS. TYPE 2

(3) IF YOU CHOOSE TITANIUM, PLS. TYPE 3

PLEASE INPUT SELECTED MATERIAL:

U.F.STRAIN Y.F.STRAIN ST: YIELD STREES UL.STRESS

> (MPA) (MPA)

1.34E-2 2.5E-3 517.11 1378.97

Example (Continued)

(1) PLEASE CHOOSE THE LOADING CONDITION, THERE HAVE THREE KINDS OF LOADING CONDI

MEAN STRESS(MPA)

DELTA STRESS (MPA)

=0.5(SIGMAMAX+SIGMAMIN)

=0.5(SIGMAMAX-SIGMAMIN)

206.9

124.1

258.1

155.2

284.5

12

170.7

(2) IF YOU CHOOSE LOADING 1, FLS. TYPE I

CRATE YOU CHOOSE LOADING 2, PLS. TYPE II

(4) IF YOU CHOOSE LOADING 3, FLS. TYPE III

FLEASE INPUT LOADING CONDITION:

7 III

L3: MEAN STRESS

DELTA STRESS

284.5

170.7

PLEASE CHOOSE THE SPECIMEN, THERE HAVE THREE KINDS OF SPECIMEN:

(A) SOLID CYLINDER (CM):

L=50.8, R=12.7, V/A=5.08

L=76,2, R=19.05,V/A=7.62

L=101.6.R=25.4, V/A=10.16

(B)PLATE(CM):

L=233.68, W=116.84, D=11.68, V/A=5.08

L=350.52, W=175.1, D=17.51, V/A=7.62

L=467.32, W=233.66, D=23.34, V/A=10.16

(C)HOLLOW CYLINDER(CM):

L=36.8', R(0)=9.2, R(I)=4.6, V/A=5.08

L=55.2, R(0)=13.8,R(I)=6.9, V/A=7.62

L=73.6, R(0)=18.4, R(I)=18.4, V/A=10.16

Example (Continued)

- (1) IF YOU CHOOSE CYLINDER V/A=5.08, FLS. TYPE A
- (2) IF YOU CHOOSE CYLINDER V/A=7.62, FLS. TYPE B
- (3) IF YOU CHOOSE CYLINDER V/A=10.16,PLS. TYPE C
- (4) IF YOU CHOOSE PLATE V/A=5.08, PLS. TYPE D
- (5) IF YOU CHOOSE PLATE V/A=7.62, PLS. TYPE, E
- (6) IF YOU CHOOSE PLATE V/A=10.16, FLS. TYPE F
- (7) IF YOU CHOOSE HOLLOW CYLINDER V/A=5.08, PLS. TYPE G
- (8) IF YOU CHOOSE HOLLOW CYLINDER V/A=7.62, PLS. TYPE H
- (9) IF YOU CHOOSE HOLLOW CYLINDER V/A=10.16, PLS. TYPE I PLEASE CHOOSE THE SPECIMEN:
- THE INITIAL FLAW SIZE=3.81(CM), AND IS LOCATED AT THE CENTER OF THE SPECIMEN, PLS. TYPE Q

-86

Example (Continued)

THE ANSWER FOR YOUR CODE NUMBER IS:

CRITICAL CRACK LENGTH=7.43(CM), NUMBER OF FAILURE CYCLES=1560

IF YOU WANT TO DO IT AGAIN, PLS. TYPE 1

IF YOU WANT TO QUIT, PLS, TYPE 2

7 2

STOF

Kung-Yan Lee was born on December 26, 1956 in I-Lan, Taiwan,
Republic of China. His parents are Chung-Ping Lee and Yu-Hsueh
Hsieh. He grew up in Taipei and graduated from the Muncipal
Cheng-Kung High School in 1976. He will be married to I-Chun Chao
in October 1986.

He received the Bachelor of Science degree in the Metallurgical Engineering Department in June, 1980 from Chung Cheng Institute of Technology, Taoyuan, Taiwan. After graduation, he served in the Army for two years and then transferred to the Arsenal in Taipei as an engineer. He was admitted as a graduate student in the Department of Mechanical Engineering and Mechanics at Lehigh University, Bethlehem, Pennsylvania in August, 1984.