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ABSTRACT 

Industrial Robats have gained wide acceptance in 

industry due to their flexibilty and reliability ass well 

as their ever increasing ease of teaching and programming. 

The key factor for their further acceptance in 

contemporary programmable automation is the improvements in 

the capabilities and efficiency of robot language. Language 
I 

simulators such as VAL-II SIMULATOR for Unimation's PUMA 

are valuable tools for teaching, developing and testing 

robot control programs. 

VAL-II SIMULATOR is a real-time, interactive, computer 

graphics package which simulates the off-line programming 

language, VAL-II. It employs a Lehigh developed graphics 

package to provide display of the robot behavior upon 

execution of key VAL-II commands. The simulator is menu

driven with an on-line help feature for all control levels. 

Information regarding robot configurations is available to 

the user at any time. Arithmetic and logical expressions 

are also available for decision making. Three levels of 

collision detection are available to the user and the 

simulator has a simple sensor interface. User-defined 

geometries may be interactively retrieved from other 

Computer-Aided Design (CAD) _data-bases using the 

International Graphics Exchange Standard (IGES) and then 
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easily repositioned in the.PUMA's work environment through 

·a manipulation feature in the. simulator. The simulator can 

be used to design and experiment with a variety of setups, 

investigate assembly tasks and develop various programming 

. possibilities. Once a work-cell is created and the VAL-II 

program is developed and tested with the simulator, the 

program may be down-loaded to the PUMA controller for final 

testing and verification. 

! 
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CHAPrER 1 

1. INTRODUCTION 

Due to great technological advancements in recent 

years, industrial robots have become an integral part of · 

flexible automation with some thousands of robots at work 

i~ the United States. Robots now perform many of the tasks 

formerly done by humans. Robots are able to work longer, 

handle heavier payloads, do repetitive tasks, and operate 

under conditions that are considered hazardous to human 

health. During the past decade automation equipment has 

become both more complex and costly to put in place. The 

ability to simulate the selection, installation and 

operation of this equipment through the use of software 

offers great potential for time-saving and added the 

assurance of maximum efficiency in manufacturing 

operations. 

The ability to use an off-line language to program a 

robot externaliy, without tying the robot from the 

production-line, or using a "spare" robot, indeed 

contributes to both safety and efficiency. 

Due to their ease of programming, their ever 

'increasing flexibility and rel~~bility, robot~ have gained 

acceptance by industry. However, a. key factor to their 
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further acceptance as a programmable device is the 

availab:tlity of off-line robot languages and .. this means to 

learn these languages quickly and to develope and test 

reliable application programs. 

Since robots are computer-controlled, they are only as 

smart as the person programming them. Thus, the method of 

programming is a source of error in developing flexible 

manufact,~ring applications. Off-line programming may hold 

the answer to many programming difficulties. Off-line 

programmirlg is ·the programming method by which a robot is 

programmed via a language. This language has certain 

vocabulary, grammar and symbols which can be checked by the 

use of a so called compiler or interpreter. Once the off

line program is checked by the compiler it can be loaded 

into an existing robot to produce the programmed motions. 

By using off-line programming, the time dedicated to 

program a robot is more effectively spent, because robot 

program logic is more likely to be correct, since it is 

implemented off-line, not under the pressure of a downed 

production line. Therefore, the programmer has the time to 

"walk through" the program, checking for errors in the 

logic. Also, the work area may be more suitable to the 

programming task, and an individual has ready access to 

resources. 

Many robot control languages have been developed by robot 

builders and research laboratories to perform complex 

4 
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assembly and m~chine loading tasks. Some of the more 

impot'tant ones are: AL (Stanford University), AML (IBM 

Corporation), HELP (General Electric Corporation), JARS 

(Jet Propulsion Laboratory), MCL (Mcconnel Douglas 

Corporation), RAIL (Automatix Inc.), RPL (SRI 

International), and VAL (Unimation Inc.). 

An important aspect in the development' of robot 
,r f programming languages is the use of Dynamic-Interactive 

computer-graphics. Computer graphics is one method which 

has proven effective for evaluating manufacturing systems, 

and determining the relative merits, eff icisncy and 

effectiveness of manufacturing systems design. Simulation 

packages can aid an engineer in testing and designing 

various work-cell layouts, and studying motion and dynamic 

characteristics of industrial robots. The use of these 

special simulation packages provides significant time

saving in the layout and modeling of robot work-cell 

components and confirming that the final installation will 

perform as intended. Graphics simulators can also be 

utilized as an instructional an~ training tool to give a 

better insight into robot kinematics and dynamics in a 

three dimensional envj.ronment. 

Various robot simulation programs that employ 

IntUactive Computer Gx-aphics have been developed in 

universities, research institutions, industrial 

laboratories, and CAD/CAM houses [1-8]. Most of them are 

5 
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based on Wire-frame modeling for object presentation. 

Examples include VAL SIMULATOR developed by Clifton and 
I 

Ochs [ 3], GRASP by Derby [ 4], PLACE and ANIMATE by Kretch 

[5]. Some are based on solid modeling techniques. For 

example, EMULA developed by Meyer [6], was based on GDP 

[9], a solid modeler representing objects using polyhedral 

approximations, and the work by Soroka [7] was based on 

generalized cones for describing 30 objects. A survey on 

robot simulation can be found in reference (10]. 

1. 1 PROBLEM STATBJIENT 

The general thrust for all these efforts is to develope 

an inexpensive, user friendly, interactive, computer

graphics simulator of robotic work-cells, robots, and their 
~ 

off-line control languages which would feature the 

following: 

1) Create suitable design tools for robot programming. 

2) Help the robot user in developing and evaluating 

program sequences. 

3) Be an instructional instrument for learning the off

line programming language. 

4) Help the robot user obtain a better insight into the 

mathematical description of _robot kinematics. 

5) Provide a linkage with other CAD data-bases to allow 
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part transfer and work-cell comp·onent repositioning. 

6) Evaluate complete manufacturing work-cells. 

7) Evaluate mechanical systems for ease of assembly. 

1.2 PROJECT HISTORY 

0 

To develop a general purpose graphics simulator capable 

of featuring all of the above objectives is a monumental 

task and certainly beyond the scope of one master's thesis. 

Initially, under the· .. supervision of th& Lehigh 

University CAD/CAM program an interactive computer-graphics 

simulator of the VAL language [11] was developed. VAL is an 

off-line programming language for Unimation's PUMA robots. 

VAL and PUMA were chosen for their fundamental 

representative attributes. VAL's Englishlike mnemonics and 

• elementary structure made it a versatile, commercially 

available, off-line programming language and a strong 

candidate for a graphical simulator. The PUMA 600 (Figure 

1.1) is an anthropomorphic robot with six rotational joints 

capable of joint-interpolated and straight~-.line motions. 

VAL SIMULAT9R [12] _uses a wire-frame or edge representation 

·"'JiCheme to graphically display the kl.nematic behavior of 

PUMA robot upon execution of key VAL commands. Algorithms 

for joint-coordinated and straight-line motions, and 

collision detection were developed • 
.• 

-7. ··, .• '"3t 



-
.. /,' 

• 

1.3 APPROACH TO PROBLEM 

Al though VAL SIMULATOR [ 12] offered some fundamental 

features, it lacked the fl~xibility. and effectiveness a 

simulation package must retain. A major improvement was 

necessary to make the package as versatile and user

friendly as possible. Arithmetic and logical expressions 

·needed to be simulated in order to adequately increase the 

level of programming control, which would then be enhanced 

by enabling the operator to call user-defined subroutines. 

The limitation on the number of workpieces to be used 

needed to be relaxed, .since the latter had introduced major 

difficulties in that only simple tasks could have been 

simulated. The linkage with other CAD systems had to be 

added, which would in turn confine the user in generating 

various work-cell components. While using VAL SIMULATOR the 

simulator had to be exited to create or modify user

generated robot programs~ This would result in the loss of 

the location data and setups. 

In 1984 Unimation In·troduced VAL-II [ 14], a new robot 

contro.l system and programming language. In addition to its 

• 
fundamental programming and control features of VAL, it 

also includes: network communication capability which 

enables a remote comp~ter to totally supervise the 

operation of robot systems, computational and logical 

statements like those found in high-level computer 
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languages, a general method including sensory ·information, 

real-time path control and concurrent process control. 

The VAL-II SIMULATOR is written in FORTRAN 77 and 
I 

consists of a series of inter-related subroutines. This 

approach to the organization of the software allows for 

easy modifications and future expansions of any individual 

routines without involving major changes in the other parts 

of the software. 

VAL-II SIMULATOR was developed in the Computer-Aided 

Design Laboratory of Lehigh University. It employs an 

internally developed graphics package GRAPH3D.LU [ 15], to 

graphica1·1y display the model and robot work-cell 

components. It _currently runs on DEC VAX 11/780 

mi~icomputer with VMS operating system and VS11 graphics 

terminals. The VS11 is a relatively inexpensive color 

raster display that features direct memory access 

capability and a dual buffered memory option to allow 

smooth motion of the model. It retails for approximately 

$15,000 as opposed to Vector Generators upon which 

commercially available simulators run, which sell for over 

$70,000. 

-VAL-II SIMULATOR is an Interactive Computer-Graphics 

Simulator of one robot and one language, written in a way 
' 

that allows for future expansion in order to simulate other 

robots and languages. The simulator is a very effective 

instrument for teaching various functions of the language 

9 
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Figure 1-1. Unimation's PUMA 600 robot and simulator model 
in the same configuration. 
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to a robot user. It uses wire-frame presentation to 

display the kinematic beha·.,ior of a PUMA robot (Figure 1-

1). All data is stored in polyhedron form with appropriate 

topology. The program is menu-driven and features on-line 

HELP at all control levels. Moreover, information 

regarding the Confi<3l!1ration Indica.tors is available at any 
\ •, / 

time. With the sim~lJKor a user is able to design and 
) 

evaluate a variety of work-cell setups, locations and 

program possibilities. If needed, user ~reated geometries 

may be retrieved from other CAD data-bases using Initial 

Graphics Exchange Standard (IGES) conversions or through 

the interface with progr·am POLYGON [ 19] .Then, any 

individual part may interactively be repositioned inside 

the work environment, with a constant readout of the 

positional data of the part under question plus the part 

number. Arithmetic and logical expressions, like those 

found in high-level computer languages are available for 

decision making, performing repeating tasks making 

branching or jumps, as well as some limited sensory 

interfacing. Also colli-sions between the robot and the 

workpieces are detected automatically. Once program and 

locations have been verified on the simulator they may be 

down-loaded to the PUMA controller for final testing and 

implementation. 
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1.4 ORGANIZATION OF TBESIS 

The thesis presented here, provides a thorough treatise 

of VAL-II SIMULATOR. It describes clearly the fundamental 

concepts and algorithms, the code for each simulated 

command, and how to use the simulator. For a more effective 

approach, figures, tables and examples are presented 

througho~t the work. Chapter 2 includes model and workpiece 

representation, and a description of the interactive 

features. These features include information on hidden

surface removal, robot kinematics, transformation of user

defined objects, simulation speed, and collision detection. 

Chapter 3 provides a thorough description of the feature 

which graphically displays the functions of a "Teach 

Pendant" for the PUMA robot. VAL-II SIMULTAOR provides the 

linkage with other CAD systems. Once the parts are 

transfered to the VAL-II environment, they may 

interactively be repositioned within the robot work-cell. 

In the simulator this is done through the so called 

MANIPULATION MODE, which is fully described in Chapter 4. 

Chapter 5 provides a complete description of VAL-II 

SIMULATOR "EDIT MODE", which covers all the functions 
.. 

related to this mode. Chapter 6 considers each VAL-II 

command that is simulated. It describes how each command is 

decoded and then implemented. A brief description of key 

VAL-II commands is also presented. The Case Study is~ 

12 
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presented in Chapter 7, followed the by Conclusion, 

Chapter 8, which includes a discussion of the limitations 

of the simulator and recommendations for further study. 

Programs use flow charts, and flow diagrams for key 

subroutines are provided. At the end and in the appendices 

a User's Manual with some examples appears. 

,· 

,.. 
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. ~ CHAPI'ER 2 

2. FEATURES OF ·l'ff B SYSTEM 

2.1 MODEL AND WORKPIECE REPRESERTATIOH 

A language simulator which uses- computer-graphic 

representation of the robot and its surroundings is 

valuable to the robot designer and end user in many 

applications. Thses may include: 1) Performance Evaluation, 

2) Robotics Training, 3) Work-Cell Layout, 4) Assembly of 

Parts, etc. 

Geometric representation of robot related data may be 

in the form of a two-dimensional (planar) figure, a three-

dimensional edge represe11tation (wire-frame), or a color 

shaded representation. The storage of the geometric data 1·s 

key to the ease in which various representations can be 

generated. This is particularly true when real-time 

interactive dynamic graphics is required. At the same time 

collision detection and realistic representation require 
--

that the geometric data contain more-than just edge 

information. (See [ 16] for a collection of papers 

on the subject and [ 1 7] for text.) 

The apparent motion in a graphics simulator is achieved 

by transforming the present locations to desired ones, 

quickly erasing the screen, updating the display data, and 
0 
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displaying the entities. The process of entity 

transformation is a time consuming one. Obviously, there is 

a direct relationship between the number of entities to be 

transformed and- the time required to perform the entity 

transformation and ·the speed of the resulting display of 

motion. 

Two dimensional stick figures are easy to draw, and 

quiqk to transform, but provide very limited visualization • 
. 

~ Three dimensional colored solid models are desirable, 

because the display is clear and collisions may be detected 

visually. Then resulting motion is very slow however, since 

each solid model requires several seconds to draw, unless 

expensive, dedicated processors are used. For the simulator 

the various criteria applied to evaluate the several 

representations were: 

* Amount of storage space needed 

* Ease of transformation 

* Cost of the equipment 

* Display smoothness 

* Level of collision detection 

As a result, it was decided to utilize extruded wire

frame convex polyhedrons (Figure 2-1). By definition, a 

polyhedron is a volume completely enclosed by polygons 

[ 18]. The polygons are generated by simply connecting the 

corresponding vertices. In the simulator, the PUMA robot is 

represented by a collection of a series of polyhedrons, 

15 
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·connected at specific locations to define revolute joints. 

The robot work-cell may also contain other sets of 

polyhedrons to represent the surrounding work environment. 
,,,., 

The advantages of this approach may be summarized as 

follows: 

1) Hidden-faces may be eliminated by simple and quick 

computations 

2) Since surfaces are defined, interferences may easily 

be checked 

3) Skewed and tapered polyhedrons may be drawn 

4) Most objects may be approximated by circumscribed 

parallelepipeds, so only the coordinates of eight vertices 

need to be specified 

Another element which plays a vital role in a graphics 

representation is the type of display terminal to be used. 

Expensive vector generator terminals with dedicated 

processors are available for animation, but are unnecessary 

for language simulators. Storage tubes are attractive due 

to their low cost, but are unsuitable for animation 

purposes, since even the simplest geometries require 

several seconds to draw. Raster scan terminals are the 

obvious compromise, since, they are relatively inexpensive 

and provide fast and clear visualization. 
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2.2·INTERACTIVE FEATURES 

VAL-II SIMULATOR was developed to enable the user to 

position cell components, display the motion of various 

robot components, check robot reach,limits, simulate moving 

objects, detect collisions, and other functions, all 

through an interactive, and user-friendly graphics package. 

The simulator is menu-driven, which mean.s that a list of 

options are available at all control levels. The options 

are convenient and easy to use. The user is often required 

to do no more than press a single key to enter a command. 

Upon initialization of a session, a user is prompted 

' 
whether it is required to read an IGES file, or a 

UNIGRAPHICS-II (UGII) file, or an existing setup file. It 

is often the case that cell components are created in a 

different CAD system and the user would like to transfer 

the parts to VAL-II SIMULATOR environment for use. If this 

is the case, and a part file has already been C\Jnverted to 

IGES format, the user may interactively transfer the part 

and position it inside the robot work-cell. Using the IGES 

output from any three-dimensional CAD system the part data 

is transfered to another program called POLYGON.LU which 

converts the three-dimensional wire-frame to a boundary 

representation polyhedron form [19]. This file can then be 

read into the VAL-II .SIMUALTOR and parts be positioned 

interactively in the work-cell. A work file for a given 

18 
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MAIN MENU • 

ENTER SUBMENUS BV ~RESSIHG: 

.: TO KEVBl)ARD <MONITOR> MODE 

M_ANIPULATIOH: TO MANIPULATE I.JORK PIECE LOCATIONS~ THE KEYBOARD 
P...ENDAH"T 
E_DITOR · 

V-ffL-I I 

OR PRESS: 

R-ETURt-1 

B..EGJH 

I_HJTIALIZE 

S-TOP 
H-HARDCr)PV 

6-ENERATE 

: TO PENDANT MODE 
: TO EDIT MOOE 
: TO DISPLAY A LJST OF EXECUTABLE UAL-II COl'1t1AHDS 

: TO RETURN TO PICTURE OF t100EL ANO U I CE •JERSA 
: TO START OVER 
: TO INITIALIZE UITH SAME SETUP FILE 
: TO EXIT PROGRAM ANO CLEAR SCREEN 
: TO CREATE A PRINTOUT FILE 
: TO GENERATE POLYGON INPUT FILES 

Figure 2-2. Main Menu 
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cell can the·n be manipulated ar1d saved. The operator may 

also wish to read an existing setup file. In any case, the 

specific file will be opened and read, and use+--defined 

objects displayed. The user is then directed to the MAIN 

MENU (Figure 2-2). At this point a user has several easy 

options from which to select. A user may select to enter 

the KEYBOARD Mode (also called Monitor Mode, Figure 2-3) 

MANIPULATION Mode, PENDANT Mode, EDIT Mode, or VAL-II Mode. 
' 

While in the MAIN MENU, a user may reinitialize the work~ 

cell setup, or begin with a new setup file. Also, one is 
r 

able to get hardcopies of the cell layout. While in this 

mode, a user may display, for convenient reference, a list 

of VAL-II commands and switch between this list, the model, 

and the menu. In the Main Menu, files may also be created 

automatically to be used as input to POLYGON.LU (19] to 

generating color shaded pictures (Figure 2-4). Whenever an 

error is encountered an informative warning message will be 

displayed. Other interactive features include: .ffidden

surf ace removal Collision Detection, and directory 

information, which will be discussed later in this chapter. 

2.3 HIDDEN-SURFACE REMOVAL 

In the raster scan terminals the screen is redrawn many 

times each second. So, as the number of entities to draw 

decreases, the smoothness of the display is enhanced. 

20 
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To reduce the number of lines being drawn and tocreate 

an illusi~n that the interior region of a displayed surface 

is opaque, it must be ensured that the sections of the 

object which would be hidden from an observer by the opaque 

surface are not displayed. As explained before, the 

simulator uses the flat faces, which introduces the 

property for the vertices of the bounding polygon that they 

all lie on one and the same plane. Mor& strictly, in the 

simulator, it is stipulated that the objects be not only _ 

plane-faced, but also convex. In this case, a simple 

calculation of the normal of a surface is sufficient for 

determining whether this face is a "front face" and 

potentially visible, or a "back face" and thus invisible 

[20]. Those polygons whose normals point into the 

terminal's screen are not displayed. Needless lo say, this 

algorithm only removes a face(s) which is hidden by the 

volume of the polyhedron it belongs to. 

This process of eliminating the back surfaces makes 

two important contributions. With this algorithm all of the 

polygons are drawn separately, so that they may be 

displayed selectively. Sometimes, this causes an edge to be 

duplicated, unless the wire-frame polyhedrons are drawn 

efficiently. It is often the case that the number of lines 

· that are not displayed is equal to that of those that are 

duplicated· (Figure 2-5). Therefore, for either display, the 

number of actual lines drawn is the same. Hence, the 
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statements determining which polygons to display have a 

significant effect upon the simulation display speed. 

This so called back-face elimination algorithm requires 

the calculation of the coordinates of normals for all of 

the polygons. At the .pa beginning of each VAL-II session, 

the simulator uses the first three vertices (numbered 
~ 

clockwise) of any polygon to define lines in the plane of 

· the polygon. The next step is to determine their vector 

c~os5 products, which define the normal lines to these 

polygons. Then, in the subroutine PICTUR (Appendix A) and 

before the polygons are drawn, the coordinates of the 

normals are checked to see if they point into the 

terminal's screen or not. ~his is done by looking at the 

value of the z component of the coordinate of a normal. If 

this value is less than zero, the normal points into the 

display screen, a flag is set, and as a result the polygon 

is not displayed. The faces and their normals define a 

coordinate system in each face of a polyhedron. This means 

that, whenever a polyhedron definition data is rotated, so 

are the,coordinates of the respective normals. However, 

this is done only when the flags are set for hidden-surface 

elimination. Thus~ the coordinates of normals are not 

rotated when the full wire-frame display option is used • 

24 
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2.4 ROBOT KINEMATICS 
' 

,. _~,.. 

As indicated above, the PUMA has been modeled by a 

series of extruded polyhedrons. The simulation of PUMA 

motion is based on the method of coordinate transformation 
( 

(21] for describing robot kinematics and manipulating 

graphics objects. A coordinate frame is assigned to each 

robot link using the Denavit-Hartenberg convention [22]. 

Themethod used here has already beeh presented in [3], but 

for continuity will be given here. The column vector 

{U} ::a 

X 

y 

z 

w 

(1) 

---
represents a point in space. It can also be represented as 

A A A 

u = (x/w)i + (y/w)j + (z/w)k (2) 

A A A 

where x, y, and z are the components in the i, j, and k 

directions and\w is a scale factor. Given the point {u}, 

its transformation {v} is represented by the matrix product 

{V} = (H] * {U} (3) 

where [H] is a 4 by 4 homogeneous matrix representing any 

combination. of rotation, translation, perspective or 
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scaling transformations. In the simulator 3 by 3 
.Jo',• 

transt,ormation matrices are used, since all of the PUMA 
I 

joints are revolute and only rotations are required. As an 

example, let a=x/w, b=y /w, c=z/w be the coordinates of a 

point in space. Then, a rotation by an angle o, about the 

fixed Screen Coordinate System (SCS) Y-axis, gives 

a• 

b' 

c• 

--
Cose 

0 

-Sin 8 

0 

1 

0 

Sin 8 

0 

Cos 8 

a 

• b (4) 

C 

The rotated data (a•, b 1 , c 1 ) have been obtained by 

premultiplying the definition data by the homogeneous 

transformation matrix. Similar rotation matrices exist for 

rotations about X and z axes. Ref erring to Figure 2-6, one 

sees that rotating the first joint (WAIST) requires 

premultiplying the coordinates of the first polyhedron by 

the above transformation matrix. However, the rotation of 

joint two (SHOULDER) requires a transformation with respect 

to the first joint and not with respect to the fixed scs. 

Thus, the rotation about the X-axis, shifted to the 

rotation axis of the second polyhedron, follows the 

rotation about the Y-axis. Therefore, the transformation 

matrices must be multiplied together to obtain the 

concatenated transformation matrix for each joint. The 

shift to the second rotation axis or translation may be 

included in the concatenated matrix as in the Denavit-
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Hrtenberg convention [22]. As pointed out, in the simulator 

instead of 4 by 4 transformation matrices, 3 by 3 

homogeneous matrices have been used and the respective 

translations are included later. This has the advantage in 

that it makes the algorithm easy to follow and also results 

in quicker response, hence smoother motion, in the price of 

making the transformation subroutine less applicable to 

other rol.,ots. 

To understand this algorithm in more detail, consider 

the first two links, namely the Waist and the Shoulder of 

the model and Table 2-1. The polyhedra definition 

coordinates are stored in an array DEF DAT, the rotated. -
data in an array ROT DAT, and the display data in another -
array called DIS DAT. Using the above algorithm, to obtain -
the rot21.ted data, ROT DAT, - the coordinates of the 

polyhedrons in DEF DAT must be premul tiplied by the -
appropriate transformation matrix. Then, to determine the 

display data, DIS DAT, the appropriate translations are -
added to the rotated data. Column 5 labels the points 

stored in the various arrays, DEF_DAT, ROT_DAT, DIS_DAT. 

Each polyhedron of the model is marked by a reference or a 

pivot point (REFl, REF2, ••• ) ~ Column 1 contains the 

appropriate transformation matrices which multiply the 

reference points and coordinates of the vertices of the 

polyhedron definition data, in the manner of equation (4). 

Forming the transformation matrices requires a great deal 
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of sine and cosine calculations of various angles. so, to 

minimize the time required for these computations, the 

sines and cosines of angles are computed once and stored. 

For example, if the rotated data for the second 

polyhedron (POLY2) is required, the concatenated 

transformation I 

1S obtained by multiplying the 

transformation matrices together, as follows: 

Cl 0 Sl 1 

[T2] = O 1 0 * 0 

-Sl 0 Cl 0 

0 0 

C2 -S2 

S2 C2 

1 

0 

SlS2 

C2 

-Sl ClS2 

S1C2 

-S2 

ClC2 

(5) 

Note that, in obtaining the concatenated matrix, the order 

of multiplication is critical. Also, here for ease of 

notation, Sj = Sin (joint angly j), and Cj = Cos (joint 

anglej) (Table 2-2).Now, the rotated dataisobtained by 

premul tiplying the definition data of the coordinates of 

the corresponding polyhedron by the above homogeneous 

transformation matrix 

a• 
n+i 

b' 
I n+i 

c' 
I n+1 

Cl SlS2 

-- 0 C2 

-Sl ClS2 

S1C2 a 
n+i. 

-S2 * b (6) 
n+i 

ClC2 C 
n+i 

where ( i=l, 2, •• , m) represents the indices of the 

-coordinat-es of the second polyhedron (POLY2) and the 
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Cl 0 51 
( Tl ·1 - 0 1 0 -

-SI 0 Cl ,.j 

Cl SIS2 SIC2 
I TZ J - 0 CZ -52 -

-51 CIS2 CIC2 

Cl. S1523 51C23 
[ T3 I : 0 C23 -523 

-SI CIS23 CJC23 

CIC4•SIS23S4 ·C1S4+S1SZ3C4 SIC23 
I T4 1 : C2354 C23C4 -523 

-S1C4+CIS2354 S1S~+C1S23C4 CJC23 

Ml I 
: M21 

M31 

Ml2 MJ,3 
M22 M23 
M32 i.133 

,·~ ... 

I TS 1 : 
Ml1C8+Ml2C556+Mt3SS56 ·Mll56+Ml2C5CS+Ml3S5C6 -M12SS+Ml3C5 
M21C8+M22C5:.8+M2355S6 -M21S6+M22C5C6+M23S5C6 -M2255+M23CS 
M31C6+M32C556+M33S5S8 -M31S6+M32C5C6+M33S5C8 -M32SS+M33CS 

where SiJ = SIN longle i + angle JJ 
and CIJ = COS (angle I + angle Jl 

ROT AT I ON TERMS rOR BOTH -0 I NTS 5 & 8 ARE I NCLUOED IN I T5 I 
OR THE CLAMP T~ANSFORMATION MATRIX, SINCE A ROTATION ABOUT EITHER 

ONE. ONLY TRANSFORMS THE CLAMP. 

. 

·.~. 

· TABLE 2-2. ROTATION MATRICES USED FOR EACH JOINT 
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reference point for the third polyhedron, (POLY3). Now, in 

order 'to obtain the display data for the second polyhedron, 

DIS DAT2, the rotated data is added to REFl and REF2. For -
example, the display data of a point in the array DIS DAT2 -
is 

a" = a' + a +a' (7) 
n+l n+l 1 n 

b" = b' + b +b' (8) 
n+l n+l 1 n 

c" = C 1 + C -l·C 1 (9) 
n+l n+l 1 n 

Similarly, we can determine the subsequent polyhedrons 

display data. However, the process of obtaining the 

transformation matrices is a complicated and time-consuming 

one. The amount of computations must be minimized as much 

as possible to provide a fairly quick response and smooth . 

motion. As explained earlier_, PUMA has 6 rev°\ute joints. 

If we consider a rotation about the waist of the model, the 

display data must be computed for the first polyhedron as 

well a~r all of the subsequent ones. But, for example, a 

rotation about joint three does not affect joints 1 and 2, 

and so on. For this reason, dedicated routines have been 

used so that no display data is computed unless necessary. 

For instance, if the FOREARM is to be rotated, a subroutine 

named ELBOW (in Appendix Al is called. This routine 

calculates all the sines and cosines of corresponding , 
33 
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angles and forms the corresponding transformation matrix, 

and obtains the rotated data. It then calls another 
' 

subroutine called FOREARM (in Appendix A) and process 

continues until all the data i.s computed for all joints. At 

this point a flag i·s · checked to see whether the clamp is to 

be displayed in the "OPEN" or "CLOSE" position and a 

subroutine is called to calculate the display data. This 
.. 

rouitne also checks to see if any user defined object is to 

be rotated. Lastly, the reference points are added to the 

respective rotated links and object data and the new model 

configuration is displayed. 

2.4.1 JOINT-COORDINATED MOTION 

The above rotation algorithm has been used to simulate 

joint-coordinated motion. In the simulator, the algorithm 

for this type of motion has been coded so that, initially, 

the largest joint angle difference is computed. It is then 

divided by a speed dependent increment to determine.the 

number of configurations to be displayed between the 

current and final desired configurations.Then, based upon 

the number of increments, a step size is calculated for 

each joint's rotation angle difference. At this point all 

the joint angles are incremented simulta~eously by the 

corresponding step size, and the necessary display data 

generated for each intermediate configuration until the 
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final desired configuration is reached. With joint-. 

coordinated motion, the clamp speed is not constant, since 

it follows a complicated three dimensional space-curve. To 

understand the method used here, refer to Figure 2-7. It 

shows how this method is applied to a two dimensional stick 

figure model. In the configuration drawn the first link is 

oriented 60 degrees from the horizontal and the second link 

is 30 degrees from the first one. In the final desired 

configuration, assume that they both are horizontal. 

Suppose that in this case, the speed dependent increment is 

20 degrees. The largest joint angle difference is 60 

degrees, hence, the number of steps is easily determined 

to be 3. The second joint angle difference, 30 degrees, is 

then divided by the number of steps to yield a s!ep size of 

10 degrees. This procedure may be repeated if there are 

more joints. Upon computation of all step sizes, the links 

are rotated simultaneously by the respective incremental 

amounts and the result, in this case, is displayed at two 

intermediate locations and the final configuration. If the 

calculated number of steps is not a whole number, the 

increment between the last intermediate and the final 

configuration for each joint is adjusted to a size 

proportional to the remainder. 

,,'),. 

36 

.<> 



/ . 

,, 

j! 

-· · 2. 4 • 2 STRAIGHT-LINE MOTION 

e 
For controlling manipulator arms which exhibit 

I 

anthropomorphic geometrical and mechanical characteristics 

(i.e. an arm with solely rotating joints and with redundant 

degrees of freedom) it is necessary to solve inverse 

kinematics equations which is a very difficult -task (23]. 

In the simulator, straight-line motion uses the inverse 

kinematic solution by Lee [24], to invert between the 

PUMA's location data format and the joint angles. 

Lee's geometric approach, determines • various arm 

configurations of a PUMA robot, based on the link 

coordinate systems and··human arm geometry, with the help of 

three configuration indicators. These indicators enable one 

to find a solution from the possible four solutions for the 

first three joints, and a solution from the possible two 

solutions for the last three joints, for a six-link PUMA 

robot. This method can be extended to any robot arm with 

rotary join.ts. Orthogonal coordinate frames are de.fined at 

each joint with the z-axis pointing in the direction of 

motion and the x-axis points away from and is normal to the 

previous z-axis. The labeling of the coordinate systems 

begins from the supporting base to the end-effector of the 

PUMA arm (Figure 2-6). As indicated above, associated with 

the joint solution are three indicators, two with the 

solution of the first tl:1ree joints (ei·ther a .. LEFT or RIGHT 
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hand arm configuration, and either elbow ABOVE o·r BELOW the 
·J 

wrist configuration, Figure 2-8), and one with the last 

three joints (FLIP o:r NO FLIP). These conf igurat·ions are 

prespecified by the user for finding the inverse solution. 

To determine the first joint angle, the projection of the 

position vector in the X0 -Y0 plane from the wcs origin to 

the intersection point of the last three joint axes is 

found. The first joint angle is determined from the 

equations which result from equating the components of the 

projection of the position vector desired by the 

appropriate concatenated transformation matrix. The second 

configuration indicator specifies an elbow ABOVE or BELOW 

the wrist. For joint two, the projection of the same 

position vector is made onto the x1 -Y1 plane. Joint two is 

determined with the equations which result from the 

geometry in this plane and the second configuration 

indicator. For -joint three, we project the same position 

vector onto the x2 -Y2 plane. The third joint angle .is 
~ 

obtained from the resulting geometric equations and the 

first two configuration variables. Knowing the first three 

joint angles, we can find the solution of the last three 
' 

jointsc The solution of the last three joints of PUMA robot 

arm can be found by setting these joints to meet .the 

following criteria: 

1) set joint 4 such that a rotation about joint 5 will 

align the axis of motion of joint 6 with the given approach 
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vector 

2) Set joint 5 to align the axis of motion of joint ·6 

with the approach vector 
, 

3) Set joint 6 to align the given orientation vector 
. . 

and normal vector 

For a better understanding of the inverse algorithm, refer 

to Lee's paper [24], and subroutine INVERSE in Appendix A. 

In the simulator, three zero angle position conventions 

are used. Lee's geometric solution takes advantage of the 

angle convention which defines the horiz~ntal robot 
\.' 

configuration as the zero position (Figure 2-9). The 

simulator uses the widely accepted statically balanced 

vertical configuration [21] which defines the zero position 

for each joint mid-way between the stop limits (Figure 2-

10). The PUMA's convention is different and uses a 

combination of the other 2 (Figure 2-11). Presumably, this 

convention was chosen for stepper motor convenience. To 

conveniently calculate the inverse solution, to rotate 

model efficiently, and to display,data in the format 

familiar to PUMA users, in the simulator, • conversions are 

made between the three conventions mentioned above. The 

simulator determines the joint angles in Lee's convention 

for the current configuration by simply adding 90 degrees 

to the second joint in the simulator convention. 

straight-line motion is more involved, and requires 

more computations, and thus is slower than joint-

41 
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coordinated motion. It is used in WORLD and TOOL and VAL-II 

modes. For straight-line motion th~ first step is to 

determine the joint angles in Lee's convention as described 

above. The joint angles for the final desired configuration 

are determined by applying the inverse kinematic solution 
. 

to the corresponding Lee's convention data. Once known, the 

joint angles are used to calculate orientation matrices and 

theoretical configuration indicators [24]. In the VAL-II 

mode, the user defined configuration indicators and the 

next predicted configuration values are compared. If they 

disagree, no move is made. The same procedure is followed 

while in PENDANT mode. The theoretical configuration 

indicators at the current and th~) next predicted 

configuration are compared. Again, if there is a 

disagreement between the corresponding values, PUMA 

controller will not allow any motion, and an informative 

warning message is displayed. Just like in the joint

coordinated moti.on, for the straight-line motion along an 

allowable path, differences between the beginning and the 

end positions and entities in the orientation matrices are 

calculated. At ·this point,~ the number of ~teps is 

determined by dividing the maximum position coordinate

differences by a speed dependent increment. Once the number 
,JP 

of steps is known, differences for each position coordinate 
. 

and each orientation matrix are incremented from the 

current to the next desired configuration by the 
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appropriate step sizes. Table 2-3 shows an example 

beginning, two intermediate, and a final desired 

orientation matrix for a straight-line PUMA robot motion. 
-

'As can be seen the only elemnt that is changes is the 

' 

translational elemnt and the rest remain the same. 

2.5 TRANSFORMATION OP USER-DEFIHED OBJECTS 

The simulator can be used to move user-defined objects 

inside the robot work-cell. This is one of the important 

features of VAL-II SIMULATOR. This process of grasping an 

object, moving it, and then detaching from it is all 

simulated in a user-friendly fashion. Once the LED sensor 

is intersected by any of the workpieces, a flag is set and 

a wrist to object reference point (first corner) distance 

is calculated. As mentioned previously, the transformations 

are done with respect to the fixed scs, which means that 

the object must be shifted to scs. This is essentially done 

by subtracting the coordinates of the reference vertex for 

the object from all of the vertices display data. At this 

point the object definition data which is redefined with 

respect to scs, must be redefined. This is done by 

premultiplying the object data by transpose of the clamp 
T 

transformation matrix, [T5] • Now, to redefine the object 

with respect to the wrist, and make it a part of the 

clamp, the redefined object definition data must be 
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-ov.62 o. 15 -0.77 12.84 
-0.07 0.97 0.24 21. 11 
0.79 0.20 -0.59 24.71 
o.oo o.oo o.oo 1.00 

. 
-0.62 o. 15 -0.77 12.84 
-0.07 0.97 0.24 18.50 

0.79 0.20 -0.59 24.71 
o.oo o.oo o.oo 1.00 

-0.62 0.15 -0.77 12.84 
-0.07 0.97 0.24 15.89 
0.79 0.20 -0.59 24.71 
o.oo o.oo o.oo I .OO 

-0 .. 62 0.15 -0.77 12.84 
-0.07 0.97 0.24 13.27 

. 0.79 0.20 -0.59 24.71 
o.oo o.oo o.oo 1.00 

TABLE 2-3. EXAMPLE ORIENTATION MATRICES FOR 
STRAIGHT-LINE MOTION 
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premultiplied by the clamp· matrix, [TS], and then shifted 

by the sum of all of the reference distance calculated in 

the first step. A reverse procedure is followed to detach 

an object from the clamp. When the flags are properly set 
.. ' 

to detach an object, the distance between the object and 

the scs origin is calculated. The rotated object data is 

redefined, so that, when this new reference distance is 

added to the reference vertex of the object, it is 

displayed in the same place as it was when defined with 

respect to the wrist. To better understand this process, 

refer to subroutine LATCH .pa and DETACH in Appendix A. 

2 • 6 SIMULATION SPEED 

One major difference between the PUMA robot and its 

simulation is in that the dynamic effects such as 

acceleration, deceleration, or gravity· and inertia 

effects have not yet been included in the simulator. 

One of the advantages of robots is t~at they may be run 

at high speeds. Robots of course, follow a continuous path, 

as opposed to the simulator which displays the model at 

discrete positions along a segmented path. When this is 

done quickly, the repetitive images are blended to create 

the apparent motion.· The speed variations in the simulat.or 

are based upon a relative speed and not a true one. 

The PUMA controller allows the speed to be set in the 
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monitor mode, and then fine-tuned with the teach pendant or 

the VAL-II mode. But in the simulator the speed set in 

the pendant mode is independent of that in the-VAL-II 

mode. In the simulator while in the pendant mode, the 

default speeds have been chosen sothat the resulting 

. motion is slow to be fully observabl.e. In joint-coordinated 
I 

mode, the default speed corresponds to an adjustable joint 

rot~tion increment of 8 degrees for each key depressio~. 

Similarly, in the VAL-II mode, the default speeds for 

joint-coordinated and straight-line motion are adjusted 

with VAL-II commands. In the VAL-II mode, the default value 

for the largest joint angle rotation increment (full speed) 

is 12 degrees. This was chosen arbitrarily to produce 

segmented displays which run slowly enough to be easily 

observable, yet quickly to minimize turn-around time while 

debugging VAL-II programs. 

2 • 7 COIJ,ISION DETECTION ALGORI'l'HM 

As explained earlier in this chapter, the simulator 

uses extruded wire-frame convex polyhedrons to represent 

the -robot model and the user-defined workpieces. One 

disadvantage of this geometric modeling scheme is that, 

when one object extends over and covers a part of another, 

it is very difficult to verify visually, whether one object 

is in front of, behind, or intersecting another. In order 
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to detect precis~ly, any unwanted collisions between the 
robot model and workpieces, between moving and stationary 
objects, and between the different parts of the robot 
itself the simulator uses both a coarse and a fine 
mathematical intersection check. These algorithms are 
valuable tools for robot users, since many undesired 
collisions may be prevented during VAL-II program debugging 
and location definition. 

The coarse check algorithm, "grows" all possible 
obstacles using a speed dependent error margin to form a 
parallelepiped envelope around them. This method was 

suggested by Pieper (25]. It then checks to see if the 
midpoint of the clamp or any other moving polyhedron is 
inside any of these parallelepiped envelopes. In the case, 
when a midpoint lies inside one of these parallelepipeds, 
the fine check algorithm is used. Refer to Figure 2-12 to 
better understand this algorithm. At the beginning of a 
VAL-II session, the radii of circumscribed spheres, shown 
in yellow, for every polyhedron and clamp are calculated. 

For the coarse check algorithm, the radius of moving 
polyhedron is added to the extreme·coordinates of the 
vertices of each stationary polyhedron to form the yellow 
box shown. Simultaneously, a speed dependent margin is also 
added to form the lavender box. The coarse check compares 
the coordinates of the center point of·a moving polyhedron 
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and the maximum and minimum coordinates of the lavender 

box. A yellow warning message is displayed, when the 
~ 

. 

coordinates of the moving center-point are inside the 

envelope, at which time the fine check algorithm is 

applied. 

In order to provide precise results and quick display 

response, a speed dependent error margin is necessary. To 

understand the use of this error margin refer to Figure 2-

13. In the figure the same object is shown surrounded by a 

small and a large lavender box. Also, a fast and a slow 

i 

clamp path is shown for each, represented by a series of 

red and white cross hairs. ,~f the box is small and the 

distance between the steps along the path represented by 

cross hairs large, there will not be sufficient warning 

time between the imminent and actual collision. On the 
' 

other hand, if the box is large and the distance between 

the steps along the path small, the fine check algorithm is 
\ 

applied more often than necessary, thus slowing down the 

display speed of the simulator. The error margin has bean 

selected arbitrarily to provide a good compromise. 

As mentioned before, when the midpoint of a moving 

polyhedron is inside a parallelepiped, the program applies 

0 the fine check algorithm. This algorithm is applied when we 

need to determine if a line segment of a polyhedron has 

intersected a plane of a polygon of another polyhedron or 

vice versa. The problem is solved by first determining if 
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and then where the projection of.a line segment intersects 

the plane of a polygon. There are three possibilities, 

si~ce if there are line segments parallel to the plane ·of a 

polygon, there must also be lines in a direction which 

intersects the plane (Figure 2-14 A and B). The algorithm 

first checks to see if the intersection point of the line 

and the plane ·1ies on the line segment. If it does, lines 

are drawn from the intersection point to adjacent vertices 

of the polygon, resulting in generation of some triangles. 

Then the areas of these triangles are summed. If the sum of 

the areas is larger than the area of the polygon, the point 

is outside the bounds of the polygon, otherwise a collision 

has taken place. . 

2.8 DIRECTORY INFORMATION 

Information regarding the names of individual robot 

control programs created in the VAL-II environment, as well 

as information on location data files may be obtained while 

in this mode. Also, the content of any VAL-II programs may 

be displayed on the screen. 
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CHAPl'ER 3 

3. PENDANT MODE 

This chapter. of the thesis is dedicated to discussion 

of the PENDANT mode (figure 3-1) of the VAL-II SIMULATOR. 

This portion of the simulation program was developed to 

graphically display the functions and usage of the ''Teach , 

Pendant" for a six-li11lc PUMA Robot. 

While in this mode, each of the 6 joints of the PUMA 

may be rotated independently of others, by pressing any one 

of the numbers 1 through 6 on the keyboard to move the 

corresponding joints. The joints have been numbered from 

the supporting base (link O) to the robot end-effector 

(link 6), as in Figure 2-6. The rotation algorithm is the 

same as that explained in chapter 2. Also, two special 
l',. 

cases of the straight-lin1e motion, namely: World and Tool 

modes are simulated, by which the robot clamp may be moved 

along a straight-line parallel to any one of the axes of 

the World or Tool Coordinate Systems. This may be done by 

simply pressing 'W' (W_ORLD), or 'T' (T_OOL) followed by 

'X', 'Y', or 'Z' to move the clamp along the respective 

axes of the correspo~ding coordinate systems. 

The Speed in this mode is independent of that in VAL-II 
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Mode. However, the rotational increment may interact! vely 

be changed by pressing 'I" (_I_NCREASE)' or· 'D' (D_ECREASE) 

to increase or decrease the rotational increment, 

respectively. Also, the direction of joint rotations may be 

changed by simply pressing 'N' (N_EGATIVE), which switches 

from clockwise rotation to counterclockwise, or vice versa. 

The clamp of the robot may be displayed in either 

"OPEN", or "CLOSED" position by pressing 10 1 (0 PEN), or -
'C' (CLOSE), respectively. -

.. 

To keep the user updated on positional data of the 

robot and also robot status, at all levels the position of 

the clamp, Euler orientation angles, and configuration 

indicators may be displayed. 

3.1 JOINT ROTATIONS 

The exact •ethod to teach an industrial robot the 

points on its path is to move each link of the robot 

independently of others to reach the desired position and 

orientation and then storing it in the computer memory 

[26]. 

In the simulator each of the six joints may be rotated 

by pressing any one of the numbers 1-6 on the keyboard to 

· rotate the corresponding links in the joint-coordinated 

motion. 

No display data for the vertices of model polyhedrons 
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are calculated unless n.ecessary. For example, if a rotation 

of joint 1 (WAIST) is required, the display data for all 

1 the subsequent joints needs to be updated. However, if 

the FOREARM. is to be rotated, the display data for the 

polyhedrons of the Waist and Shoulder need not be 

recalculated, since they remain stationary during the 

coarse of this motion, but the display data for the rest of 

the joints (3, •• ,6) must be calculated. (Refer to chapter 2 

for more detailed information.) 

The default joint rotation increment is set arbitrarily 

to 8_ degrees, and may interactively be increased or 

decresed by pressing 'I' (I_NCREASE), or 'D' (D_ECREASE), 

respectively. If a switch in the direction of joint 

rotation is required one may press 'N' (N_EGATIVE) to 

switch from clockwise to counterclockwise or vice versa. 

3.2 WORI,D MODE 

World mode is a special case of straight-line motion. 

In this mode the clamp of the robot may be moved along 

straight-line parallel to any one of the axes of the World 

Coordinate System (WCS), while maintaining the same 
• 

orientation. This may be done by pressing 'W' (W_ORLD) 

followed by 'X', 'Y', or 'Z' to move along the 

corresponding direction. For this motion, Lee's algorithm 
<\ 

is app·lied to determine the final joint angles. Initially, 
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the orientation matrix is formed using the current joint 

angles. Also, user specified position along the TCS's z

axis is referenced. The next desired position is determined 

by adding the increments along the appropriate axes of the 

WCS to the referenced current position. 

In the PENDANT Mode, the simulator does not use thr 

user-defined configuration indicators. Instead it 

temporarily redefines these configuration indicator values 

to the theoretical ones for the current position and 

oi-·entation. Lee's solution is then applied to compute the 

final joint angles using the theoretical values obtained, 

thus far, as well as the final position and current 

orientation matrix. once the joint angles are predicted, 

they are checked to see if they do not exceed the joint 

angles stop limits. If they are valid, the display data is 

calculated and the new model configuration displayed. 

Otherwise, the PUMA controller does not allow any motion 

and a warning message is displayed. 

3.3 TOOL MODE 

This is another special case of straight-line mot,ion, 

by which the clamp may be moved along straight-line 

parallel to any one of the axes of the Tool Coordinate 

System, (TCS). This may be done by pressing 'T' ·(T_OOL) and 

the • x •, • y •, or • z' to move in the corresponding 

58 

~· 

,I ' 

.. 



direction. As in the World Mode, the clamp maintains the 

same orientation during the motion. 
u, 

To determine the final joint angles, current user 

specified position along the TCS's z-axis and the 

orientation matrix is used. Initially, the position along 
t' 

the TCS's z-axis is a~igned with the z-axis of the scs. 
This is done by premultiplying the coordinates of the 

position data by the inverse of the current clamp matrix 
-1 

[TS] • Once aligned with the scs, the point is shifted by 

user controlled increment size along th~ appropriate axis. 

The incremented position is transformed back to the TCS by 

premultiplying it by [TS]. (One property of the 

transformation matrix used here is that its inverse is the 

same as its transpose.) 

At this point, the simulator temporarily redefines the 

configuration indicators' values, and checks the validity 

of the solution obtained. If the joint angles do not exceed 

their prespecified stop limits, the new display data is 

calculated, and the arm is displayed in the new 

configuration. Otherwise, a warning message will appear on 

the screen and PUMA controller will not allow any motion. 

In both, World and Tool Modes, before displaying the 

model, it is also checked to see if the predicted motion is· 
.~ 

inside the robot work volume. This is done by comparing the 

interactive joint angle rotation increment to the magnitude 

of joint angle 3 (ELBOW). If the angle is smaller than the 
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user defined rotational increment, links 2 and 3 are nearly 

aligned • 

. 3.4 CLAMP POSITION AND ROBOT STATUS 

In order to keep the operator updated on robot 

configuration (LEFTY, RIGHTY, ABOVE, ••• ) and also the 

clamp position and oientation, also its status (OPEN, or 

CLOSED), the proper information may be displayed on the 

screen, upon user's request. 

At any time, the position of the clamp, Euler 

orientation angles, joint angles and configuration 

indicators may be displayed by pressing 'P' (P_OSITION) and 

then 1 1 1 , 1 2 1 , or '3' corresponding to position along the 

TCS's z-axis at the origin, LED sensor and clamp tip, 

respectively. 

.·· . 
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CHAPTER 4 

4. MANIPULATION MODE 

The first step in the ·manufacturing engineering process 

is the design and layout of the work-cell. The manual 

process is often quite laborious and time-consuming. 

Perhaps, the most critical factor is the designer's real 

lack of knowledge of the three dimensional spatial 

relationship of the cell components as related to the 

required motion of the robot. 

As mentioned before, VAL-II SIMULATOR is a language 

simulator and not a drafting package, meaning that, it does 

not duplicate the features of a CAD geometric modeler. For 

this reason, other CAD systems capable of JD modeling must 

be used in order to create robot work-cell components.Once 

the cell-components are created they must be transfered to 

VAL-II environment. VAL-II SIMULATOR allows geometries to 

be transfered via an IGES software link or UNIGRAPHICS-II 

files (UGII files must first be interfaced with program 

POLYGON (19], to generate file.DAT, which is used by VAL-II 
',) 

SIMULATOR) . 

This portion of the simulation program was dev~loped to 

enable th• user to reposition cell components, as a 

simulation tool for designing and evaluating work-cell 
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layouts. The key direction of this section .is the off-line 

simulation and checkout of the part positioning or flow 

before installation. 

Upon completion of part transfering process, and after 

entering the MAIN MENU, one may wish to reposition any one~ 

of the cell-components inside the work environment. This 

may be done by pressing 'M' (M_ANIPULATION) to enter the 

MANIPULATION MODE. This mode enables the user to translate 

or rotate a user specified part. The operator may select to 

move the individual part by system defined increments, thru 

pressing 'K' (K EYBOARD), or by user defined increments, by -
pressing 'I' (INCREMENTS). For convenience, the coordinate -
axes display may be turned ON or OFF. Also, during the 

coarse of part translation, a constant readout of the 

positional data of the moving workpiece with respect to 

both, the World and the Screen Coordinate Systems is 

displayed. Whenever, a part is repositioned, 

its new display data is calculated and the part will be 
, 

displayed in the new position. At the end of a MANIPULATION 

session, the user may save the new setup under the same or 

a new user-defined name. A flow chart describing various 

levels of this mode is shown in Appendix A. 

4.1 COMPONENT REPOSITIONING VIA KEYBOARD 

If the keyboard option is used, a menu will appear on 
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the screen (Figure 4-1). In order to avoid complexity a~nd 

also for a neater display, and since often users memorize 

various options under this menu, the menu ·is not displayed 

at all times unless the operator requests for its display. 

While in this mode, any individual part may be tran·slated 

along straight-line parallel to any one of three axes of 

scs. This may be done by pressing 'B' (BACKWARD), 'F' -
(F_ORWARD), 'U' (U_PWARD), 'D' (D_OWNWARD), 'L' (L_EFT), 

or 'R' (R_IGHT) to move the part in positive or nrgative 

direction of the X, Y, or z axes of the fixed scs, 
respectively. A constant readout of the positional data, 

with respect to both, the World and Screen Coordinate 

Systems, ,plus the moving part number are displayed during 

the part repositioning process. The default increments are 

set to <5 mm> for each key depression. Upon each key 

depression the new display data of the part is calcual ted 

and the part is displayed in the new position:At any time 

the user may decide to end repositioning one part and start 

with another • 
. 

Upon completion of a MANIPULATION session, the user is 

asked whether it is required to save the new setup or not. 

If affirmative, the new setup file may be saved undr~r a new 

file-name, or the old one will be updated. 
l 

At this time, the control wiJ.l be transfered to the top 
\ 

of the program, namely the MAIN MENU. 
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Figure 4-1. Manipulation Menu 
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Figure 4-2. Moving user-defined workpiece 
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· 4.2 COMPOND1' REPOSITIONING VIA USER-DEFINED INCREMENTS 

The user may also select to move the part by specified 
-

.. increments with respect to .fixed scs. Conveniently, the 

user may turn the coordinate axes display ON or OFF. 

As before translations and rotations are allowed. The 

user may select to translate the specified ·part parallel 

to any one of the scs axes. He is then asked if it is 

required to rotate the part. If so,the rotation increrments 

are entered by the user and the new display data 

calculated, and the part will be displayed in the new 

position (Figure 4-2). A constant readout of the moving 

part positional data, ·along with the part number is 

displayed, at all times. At any point, the user may decide 

to start repositioning anot!1er part. At the end of the 

session the user is allowed to save the new setup under the 

same or a new user-defined name. The control is then 

transfered to the MAIN MENU. 
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CHAPl'ER 5 . "\, •: 

5. EDIT MODE 

• J . 

In the recent years manufacturing tasks have become 

complex and costly. As a result of this, robot programs 
I_ 

specially those written for complex and sophisticated 

product assembly, now require more logic, functional 

checking, and programming constructs. 

In a robot program which has been written using any one 

of the robot programming languages, the logic and 

conventional programming constructs form a significant 

portion of the code as opposed to "geometric move" 

commands. Even in a highly geometric application, such as 

automobile spot welding, the robot program resembles a 

traditional computer program (27]. In ·one existing 

automobile plant there are more than one hundred spot 

welding robots programmed in a high-level language. The 
I 

programs consist of 500 to 1000 steps, of whidh the weld 

path is only 20 steps. Here, the geometric ~ortion is less 

than 51 of the total program. Although, this is not typical 

of t.oday•s spot welding programs, it is an indication of 

the future direction of robot programming (28]. 

In order to make the program editing in VAL-II 
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SIMULATOR as easy and user-friendly as possible, a 

considerable amount of effort was devoted d·uring the 

initial design of the EDIT Mode. The task was to make 

. 
certain that, like other, sections of the package, this mode 

was easy to use, but yet powerful enough to provide all of 

the desired functionality. The major design criterion was 

that a user, with some knowledge of VAL-II programming, 

could effectively use the EDITOR of VAL-II SIMULATOR (EVS), 

by only spending a few minutes of reviewing the Editor Menu 

Options (EMO). 

The Editor of VAL-II SIMULATOR (EVS) is menu-driven, 

which means that a list of options is available at all 

times. The user may start out with an existing VAL-II 

program for further extension, or modification. It is also 

possible to create new programs. For convenience, each line 

within a progra11 is referenced to by a unique step number. 

Steps are numbered consecutively, and numbers are 

automatically adjusted by the editor, whenever program 

lines are deleted or new ones inserted. These step numbers 

are 1 ikely to be changed as a program evolves, hence they 

would not be useful for identifying steps for program

controlled branching. (For this reason, program steps can 

contain step labels.) The Editor continuously checks the 

syntax of a program while it is being created or modified. 
jl 

Tniat is, when the user completes a program-line by pressing · 
I . 

the RETURN key (<CR>), the editor checks to make sure the 
1.., • .,.,.,, 

I 68 
,·::.f''. 



·' , 

,, 

I 

syntax of the line is acceptable. The line is rejected and 

an error message is output, if any error is found • 
. • ~\ 

The Edit session may be invoked by pressing 'E' . (E_DIT) 

and the corresponding menu (Figure 5-1) is displayed. The 

commands associated with the VAL-II editor are listed in 

this menu. These editing commands can be used fo~ creating 

and modifying user programs. The menu consists of several 

options. One may press 'C' (CREATE) to invoke the progrm -
creation mode. Any program line may be deleted, or a new 

lines inserted, by pressing 'D' (D_ELETE), or 'I' 

(I NSERT), respectively. At the end of each session, one -
may press •s' (S AVE) to save a new or modified version of -
a program, or 'E' (EXIT) to exit from the Edit Mode and -
return to the MAIN MENU. A flow diagram of the EDITOR 

structure is shown in Appendix A. 

5.1 PROGRAM CREATION 

The EVS a .. llowsr -the user to create VAL-II robot 

programs, without having to exit the VAL-II SIMULATOR 

environment, hence preservingthe programs, setup, and 

locations. A file may be created by typing EDIT followed by 

the program name, file.DAT. The EVS will first open the 

file DATFILER.DAT and checks to see whether the user

defined program name matches one of the entries in the 
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Figure 5-1. Editor Menu Option$ 
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list. If it does, it means thit the file is an old one, 

hence it will be opened and the content of it displayed on 

the screen. However, if the file is a new o~e, a flag is 

set, the user is notified that the input file does not 

exist, and therefore, a new file under the user-defined 

name will be initialized. In this case, the new program 

name is added to the list, and the content of th~ file 

DATFILER.DAT is updated. The system continuously checks the 

syntax of the program-lines as they are entered. If a line 

is acceptable, it will be added to the file, and the user 

may proceed to the next step. Otherwise, the line is 

rejected and an error message is displayed. 

5.2 PROGRAM MODIFICATION 

. 
For program debugging purposes, it is often necessary 

to delete or add VAL-II program lines. As mentioned 

previously, each line within a program has a unique step 

number referenced to it. In order to delete a program line, 

one must type 'D' (D_ELETE) followed by the step number. 

Program line insertion may be done in more or less the same 

method. To insert a line one must type 'I' (I_NSERT) 

followed by the corresponding step number. This may be 

repeated for as many time as necessary. Whenever, lines are 

inserted or deleted, the step numbers are automatically 

adjusted by the EVS. 



.. 

/ 

Upon any program-line removal or insertion, the 

modified version of the VAL-II program will be displayed 

for user verification. During program modification, 

whenever, a wrong key is depressed an informative message 

is displayed, notifying the user of his input and the 
I\ 

modified file will automatically be saved. 

·-. The Editor of VAL-II SIMULATOR, constantly checks the 

syntax of a program while it is being modified. A line is 

rejected and an error message is displayed if any error is 

encountered. Otherwise, the program line is accepted and is 
~ 

automatically added to the program, immediately adjusting 

the step numbers • 

,.. ,L 
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CRAP'l'ER 6 
i• 

6. VAL-II COMMANDS 

I , 

As mentioned in·the first chapter, VAL-II SIMULATOR 

utilizes· some of the basic concepts and fundamental 

structure of its predecessor, VAL SIMULATOR [12]. Also, 

some of the simulated commands which were developed for the 

VAL SIMULATOR, have been made compatible with VAL-II 

SIMULATOR. However, the main emphasis of this thesis was to 

focus on more advanced features in terms of programming 

control and graphics display. Therefore, a great deal of 

consideration has been given to this type of VAL-II 

commands. For completeness, some of more important commands 

and those which have been made compatible with the VAL-II 

SIMULATOR are also discussed below. In the simulator, the 

VAL-II commands are grouped into eight categories: 1) 

Location, 2) Motion Control, 3) Hand Control, 4) Program 

Control, 5) Configuration Control, 6) Trajectory Control, 

7) Assignment Instructions, and 8) Miscellaneous Commands. 

The following information is provided for each command: 

1) The specific command syntax 

2) An indication of when the command can be used 

3) A description of the operation performed by the 

command 

In addition to these, it is also explained how the FORTRAN 
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"DECODE'' statement is used to read in the user input. VAL

II commands consist of a command name, usually followed by 

one or more command argu~ents. An optional comment can be 

included on a command line by preceding it with a 

semicolon. Thus, the general command syntax is 

<COMMAND name> {<space><argument>} {<space>;<comment> 

For cl'arity, all VAL-II SIMULATOR command names are shown 

in uppercase in this chapter. Command arguments which are 

to be supplied by the user are shown in lowercasse. Also, 

some shortened notations are used as well. Angle brackets, 

< >, are used- to enclose a description of the actual 

argument to appear. Note that, these brackets are used for 

clarification and are never to be included as part of a 

command. In this chapter, optional arguments are enclosed 

in brace-s, { }. If there is a comma following such an 

argument, the comma must be retained if argument is 

omitted. For oue example, the BASE command has the form 

BASE {<dx>}, {<dy>}, {<dz>}, {<z rotation>} 

To specify a 300 millimeters translation in the z-axis, the 

operation could be entered in any one of the following 

ways: 
.• 

BASE 0,0,300,0 or . BASE- , , 300, 
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6.1 LOCATION COMMANDS 

The three location commands, namely: HERE, WHERE, and 

·BASE are monitor commands and specially important, at the 

same time very powerful, and provide significant 

flexibility in VAL-II programming. These instructions can 

be used to define or understand • various robot 
.. 

config1.4rations during a VAL-II program execution. 

! .. ' 

6.1.1 HERE <location variable> 

HERE is a monitor command and as the mnemonic implies 

i~ defines a particular position and clamp orientation for 

future references. The simulator reads the HERE command 

followed by location variable and immediately converts the 

joint angles from current simulator joint angles data 

format to those of PUMA convention and Euler orientation 

angles defined with respect to the current wcs. It then 

associates them to the user-defined location variable and 

stores the converted joint angles in an array. 

6.1.2 WHERE 

Upon execution of this command, the current location 

and clamp orientation of the robot with respect to the WCS 

is displayed. The Cartesian World Coordinates are displayed 
'j 
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· in millimeters and the joint angles in degrees •. Note, 

depending upon the clamp,path, rotation angle values 

displayed may be shifted by 360 degrees. That is a value 

shown as 170 degrees can also be interpretted as -190 

degrees. 

In the simulator, WHERE command is more consistant and 

provides more information than the PUMA controller. In the 

simulator the angles displayed · for a particualr 

configuration are always the same regardless of the paths 

followed.As discussed in section 3.4, there are several 

position display options. Depending upon the one chosen by 

the user, the position display may be any one of three 

points along the TCS's z-axis. The information on robot 

clamp status and configuration indicators as well as Euler 

and joint angles are displayed in addition to the above 

information. 

6.1.3 BASE {<dx>}, {<dy>}, {<dz>}, {<z rotation>} 

Upon progra• initialization, the origin of the World 

Coordinate Systea, of the robot is assllllled to be located at 

the interset:tion of the axes of joints 1 and 2, with the X,, 

Y, and Z axes f i:x:ed in spac~,. The BASE command off sets and 

rot~tes the reference frame as specified. It is used in 

VAL-II •ode to perfor• specified tranformations with) 

resp~ct to the fixed wcs and user-defined work-cell. 
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'l'ransfor•ations are· done tirith respec·t to scs. For this 

reason, the definition and rotated object data (Table 2-1) 

is rotated and then translated back to its position with 

respect to the wcs•s initial orientation. This is done 

first, because the BASE com•and prescribes the 

transforaations to take place w·ith respect to the initial 

wcs frame; then, to determine the value of the shift and 

rotation increments, DECODE statement of FORTRAN language 

is used. During the next step, the original object data is 

shifted by subtracting the incre•ent and then rotating the 

object in the negative direction. Xn the same way, data for 

the wcs frame is read from a file and transfor•ed. The 

robot •odel, however, re•ains centered on the screen at all 

ti•es, and the shifts and rotation transformation are 

perforaed on the user-defined work-cell components. Note, 

before i•ple•entation of the BASE co•mand, the si•ulator 

checks to see if any user-defined object is attached to the 
'· 

cla•p. If this is the case, the sa•e transf oraat.ion for the 
' 

robot and user-defined objects will be perfor•ed 
• • 

separately. 

· 6.1.4 SET <location variable>• <location varibale> 

This co••and sets the value of the location variable on 

the left equal to the location variable on the right of the 

equal sign. The si•ulator stores the configuration data for 
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the right hand na•e also with the first name. 

6. 1.·s SHIFT <pointA> BY { <dx>}, { <dy>}, {<dz>} 

.This coaaand :modifies the respective user-defined 

incre•ents along the axes of the wcs. If the position does 

not violate the robot reach limits and does not exceed the 
. . 

allowable joint rotation limits, the modified 

configuration will be displayed. Otherwise, the robot 

controller will not allow any •otion and an error message 

will be displayed on the screen. In this case where the 

configuration specified by •point A" does not exist, a 

si•ulator error aessage will be displayed. 

6.2 MOTION COMMANDS 
. l 

6.2.1 MOVE <location>/ MOVES <location> 

These comm~ds cause the robot to •ove to the position 

and orientation specified by •location.• In the si•ulator 

the location naae is decoded and the corresponding PUMA 

data obtained and converted to si•ulator joint angle 

format. Inter•ediate configurations are determined using 

the joint-coordinated or straight--line •otion discussed in 

Chapter 2. The si•ulator first co•pares the user-defined 

configuration indicators for the final desired loca.tion 
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with the theoretical ones. If the solution is not vitlid, no 

•otion is allowed, ana an error aessage is displayed. 

6.2.2 ALIGN 

This command causes the tool to be rotated so that its 

z-axis is aligned parallel to the nearest axis of the wcs, 

hence, forming an orientation aatrix that contains only 

zeros and ones. This instruction is primarily helpful for 

lining up the tool before a series of locations are taught. 

Again, the user-defined configuration indicators and the 

theoretical ones are first compared. The motion is then 

si•ulated only if the solution is valid and the path 

possible. 

6.2.3 APPRO <location>,<mm> / APPROS <location>,<mm> 

These co•aands •ove the tool to the position and 

orientation specified by •location,• using joint

coordinated or straight-line aotions, respectively, but 

orfset along the tool z-axis by the distance given in 

•illiaeters. A positive distance sets the tool "back• 

(negative tool-Z) from the specified location; a negative 

distance offsets the tool •forward• {positive tool-Z). The 

offset along the TCS's z-axis is analogous to shifting a 

•illing aachine tool to a clearacne plane. These coamands 
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are very iaportant for insuring that while ·approaching the 

location no collision will take place. 

6.2.4 DEPART <mm>/ DEPARTS <mm> 

/ 

These commands •ove the tool (by joint-coordinated or 

straight-line) the distance given in ailli•eters, along the 

current z-axis of the tool. A positive distance aoves the· 

tool back: a negative distance •oves the tool forward. 

These co••ands are useful specially when the halld grasps an 

object and departs fro• alocationin such a way that the 

object does not collide with the table or fixture fro• 

which it is taken. It is also used to avoid collision 

between the claapa and an object when departing with the 

cla•ps open after releasing an object at a given location. I 

6.2.5 DRIVE <joint>,<change>,<speed> 

./, 

Thi.a co••and operates- the single specified joint 

changing its joint variable by "change• a•ount (in degrees) 

at the •speed• percent of full speed. The joint nuaber, 

•joint• can be 1,2,;.,6. In the siaulator, first the joint 

nu•her is decoded and then the 11cbange• aaount followed by 

the ~speed.• The si•ulator defines a nev location by 

adding the a•ount •change• to the joint variable. :rt ther., 
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uses the joint-coordinated aotion and aeta the aiaulation · 

speed as described in Chapter 2. 

• .... '7" 

6.2.6 READY 

This co••and aoves the robot into the statically 

balanced vertical configuration. At this point all the 

configuration indicators, naaely IARII, IELBOW, and IWRIST 

have positive values. As explained before, the si•ulator 

takrA..s advantage of t;he angle convention and defines zero 

joint angles in this position. The siaulator then creates a 

location for the zero position and moves the ar• to this 

location using joint-coordinated aotion. 

6.2.7 DELAY <time> 

This comaand causes the robot aotion to stop for the 

specified period of tllle. 

6.3 HAND CONTROL 

The robot tool frequently has the fora of so•e kind of 

a grasping device, refered to as a hand. Here, it is 

assuaed that the robot has electrically driven proportional 

hands [13]. 
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6.3.l OPEN {<hand opening>}/ OPENI {<hand opening>} 

In the si•ulator OPEH and OPBHI behave in the saae 

fashion, and the hand opening is changed to the •hand 

opening" percent of fully open position. To open the cla•p 

in the specified a•ount, the definition data for the 

reference vertices of the polyhedrons re·:presenting the two 

cla•p faces are translated by the user-defined incre•ent to 

achieve the desired hand opening. Here, it is assumed that 
,_. 

no object sticks to the clamp. The detach algorith• 

explained in section 2.5 is used and the flags are set so 

that the objects are redefined with respect to the fixed 

scs •. 

6.3.2 CLOSE <hand opening>/ CLOSEI <hand opening> 

These com•ands operate in a way siailar to OPEN and 

OPENI co••ands. Here, the definition data for the reference 

vertices of the cla•p polyhedrons are translated by the 

user-defined incre•ents, to achieve the desired closing 

position. As poited out previously, the fine check 

algorith• is used to see if it is possible to grasp a user

defined workpiece, by checking to see if the LED line 

segment has intersected any of the polygons belonging to 

the polyhedrons representing the hand. If it has, the flag 

is set a=".ld the attach algorithm described in section 2.5, 
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is applied. Confusion aay arise when two s•all objects are 

placed near one another, or a collision warning was ignored 

by the user; in either case one aay expect the robot to /-' 

attach both objects to the claap. However, the siaulator 

only attaches the cla•p to the lowest numbered object 

polyhedron (the object nu•her is deterained by its location 

in the SE'l'OP data file). For efficiency, the si•ulator does 

not repeat these steps when the cla•p is already closed. 

6.3.3 GRASP <hand opening>,{<label>} 

In VAL-II this instruction causes the hand to close 

i1t- aediately, and then checks to see if the final opening is 

less than specified a•ount.If it is, the program branches 

to the step specified by the program label. Otherwise, it 

vill close the clamp 1001 and continues with the very next 

step. In the si•ulator, however, a flag is checked to see 

if the LED sensor has intersected any of the user-defined 

polyhedrons~ If it has, it closes the claap by the 

specified a•ount, and branches to the step specified by the 

label. Otherwise, the progra• execution will continue vith 

the next step. Thus, this instruction si•ply provides a 

one-step •ethod of grasping a pa.rt and then branching to a 
I 

. 

different part of the prograa, soaething which nor•ally 

requires two individual steps. 
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6.4 PROGRAM CONTROL 

The following instructions control the sequence in 
r which user pr_ogra• instructions are executed. Thus, they 

· can be used to control the logical flow within user 

programs. 

6.4.1 GOTO <label> 

This command performs an unconditional branch to the 

progra• step identified by "label.• The si•ulator, first 

decodes the label and then rewinds the active file 

searching for the specified step label. Zf it is found, the 
.. 

progra• execution will continue fro• that step. Otherwise, 

an error •essage is displayed, and the program execution 

will continue vith the progra• step following the GOTO 

statement. 

6.4.2 CALL <program> 

This co••and teaporarily suspends the execution of 

current progra•, and execution continues at the first step 

of the indicated user program, which is then considered a -

sub1:outine. In the simulator, this is done by si•ply 
. " 

~ 

openin~r the file •prograa•.DAT while the active _progra~ is 

already opened. Execution autoaatically returns to the .. --· 
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current progra• when a RBTURlf instruction is executed in 
. ' ' 

the subroutine. 

6.4.3 RETURN 

Ter•inates execution of the current subroutine and 

resuaes execution of the last-suspended program at the step 

following the instruction which caused the subroutine to be 

invoked. 

6.4.4 PAUSE <MESSAGE> 
,. 

This co•mand causes an executing VAL-II progra• to 

te•porarily stop execution. After a PAUSE com•and is 

executed and the active progra• stopped, for 

implementation, a user may enter any VAL-II co•mand. The 

siaulator will decode the user input, and accepted 

co•mands are i•plemented until the PROCEED co•mand is 

encountered, at which ti•e control is returned to the VAL

II progra. 

6.4.5 STOP <MESSAGE>/ HALT <MESSAGE> 

These com•ands ter•inate the execution of the user 

prograa unless more loops are to be coapleted, in which 

case, the control will return to the first step o,f the 
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progra•. I:t can be.said that the STOP instruction aarka the 

end of a VAL-II program execution pass. In the PUKA 

controller, however, the HALT instruction ter•inates the 

progra• execution regardless of any nu•ber of loops 

re•aining to be completed. In the siaulator, this coa•and 

is regarded in t.he sa•e manner as the STOP co••and. These 

commands •ay be followed by.inforaative •essages which are 

printed for the user on the screen. 

6.4.6 DO ••• UNTIL 

This structure provides a way to control the execution 

of a group of instructions based on a control expression. 

The syntax for the DO structure is as follows: 

DO 

{<group of instructions>} 

UNTIL <logical expression> 

In the si•ulator, the group of instruction oteps are 

executed, then the UNTIL statement is encountered, and the 

logical expression is evaluated. If the logical condition 

is not satisfied, the progra• is rewinded and the DO 

statement is found and the progra• execution continues at 

the first step following the DO statement. Otherwise, the 

very next step following the UNTIL statement is executed. 

Note th~t, the group of instructions within the DO 
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structure is always executed at least one tiae (Appendix A) •. 

6.4.7 IF .•. THEN ••• ELSE • • • END 

·~ 

This form of IP instruction provides a •eans for 

conditionally executing a group of instructions, or 

alternating groups. The complete syntax is: 

IF <logical expression> TBEN 

<first group of steps> 

ELSE 

<second group of steps> 

END 

In the simulator, when IP command is encountered, the 

logical expression is exa•ined. If it is satisfied, the 

first group of ste·ps is executed, and the control will be 

transfered to the first step following the EHD step. 

Otherwise, the second group of instructions is executed, 

and the control will transfer to the first step following 

the END state11ent. The siaulator first decodes the variable 

na•ea followed by the •athe•atical condition used. It -then 

opens the file CBBCK.DAT to see if the first variable na•e 

exists in the list, and if it does it obtains its value. 

The saae thing is done for the second variable naae. It 

then co•pares the two values obtained thus far, and decides 

whether the logical e:xpres·sion holds or not; and based on 
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~· the result the corresponding group of instructions is 

executed. In any .case, if either one of the variabl,a naaes 

vas not declai-ed be:f ore an error message is displayed and 

the control is transfered to the very rirat line following 

the END step (Appendix 1~) • 

6.4.8 WHILE ••• DO ••• END 

This structure provides another means for executing a 
·.t.·. 

group of instructions until a control condition is 

satisfied. The complete syntax for the WHILE structure is: 

WHILE <logical condition> DO 

{<group of instructions>} 

END 

In processing the WHILE structure,. first the logical 

expression is.evaluated. If the logical condition is 

satisfied, the group of steps is executed and the control 

is transfered to the step containing the WHILE co••and to 

re-exa• the logical condition. However, when the logical 

condition is not satisfied, the program execution will 

continue at the first instruction af·ter the END step. In 

the si•ulator, the variable names a~d the matheaatical 

condition are first decoded. Then, the file CHECK.DAT is 

opened to exa•ine the validity of the variable na•es. If 

('.) 

88 



·1'· 

,. ' 

I' 

the na•es app~ar in the list, their corresponding.values 

are immediately deter~ined.Then, the logical condition is 

examined and results obtained.Whenever, anyone of the 

varibale naaes does not appaar in the file CHECK.DAT, an 
~ . 

error •essage is displayed, and the WHILE structure is 

ignored (Appendix A). 

6.4.9 EXECUTE <program>,<loops> 

This co••and causes the specific program to be executed 

•loops• ti•es. In the siaulator, upon decoding the EXECUTE 

coaaand the file llprogra••.DAT is opened and the content of 

it executed step after step. Whenever, a STOP or HALT 

co•.mand is encountered, an execution loop is terminated. 

Just before opening the llprogra•• data file, the interrupt 

flag is set, so as to enable the user to abort the progra• 

execution without leaving the VAL-II SIIIUIATOR envirollllent. 

As the coa•ands are processed, they are read, decoded and 

i•plemented,one by one, each coaaand is scrolled. on the 

display terainal, for evaluation and co•parison purposes 

vith the actual PUll robot's behavior. If the nuaber of 

loops is negative, the PUJIA controller executes the VAL-II 

progra• indefinitely. However, in such a case, the 

silllulator repeats the program 1000 times. 
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6.4.10 ABORT 

This command terainates eJCecution of the active robot 

progra•, i••ediately after coapletion of the step currently 

being siaulated. The siaulator does not accept this 

co•mand, but has the same capability. In the si•ulator, a 
6'· 

display terminal is used to simulate the behavior of the 

PUJIA upon execution of VAL-II co:mmands. Hence, to si•ulate 

the effects of an ABORT instruction, one aay depress the 

•cTRL" and •c• keys, si•ultaneously. This will interrupt 

the active program execution and sets.the corresponding 

flag which is checked before reading and decoding each VAL

II command fro• the file. Interrupting a progra• execution 

by the use of •cTRL" and •c• keys preserves the user

defined locations and setups. 

6.5 CONFIGURATION CONTROL 

For an anthropo•orphic aanipulator arm (i.e. an ar• 

with solely rotating joints and redundant degree of 

freedo•) like a PUMA 600, •ost po:lnts in its wotk space aay 
-

be reached by specifying one of the eight possible spatial 

configurations (13]. Hor•ally, the robot remains in the 

default configuration, those set upon progra• 

initialization, until the user requestsfora different 

config,uration, or when a READY instruction is executed. 
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The first two configuration indicators, RIGBTY and 
-

LEFTY, request a change in the robot configuration so that 

the first three joints of the robot resemble a huaan•s 

right or left ar•,respectively. The second two, ABOVE and 

BELOW, control t..he configuration so that the •elbow• of the 

robot is pointed up (ABOVE), or down (BELOW) (Figure 2-8) a 

The last two, HOFLIP and FLIP, change the range of 

operati<>{l of joint 5 (wrist rotation) to positive (NOFLIP) 
,.,, 

or negative {FLIP) angles. This is the difference between 

the cla•p pointing upward or downward. 

In the simulator, these co••ands are being i•ple•ented 

by setting the sign of the configuration indicators I.ARM, 

IELBOW and I WRIST, for the three joints -in question. 

Positive values for the configuration indicators a~e 

assigned for RIGHTY, ABOVE, HOFLIP; negative values 

correspond to LEFTY, BELOW, and FLIP. It •ust be kept in 

--mind that, joint angles obtained by Lee's approach to the 

inverse kinem~tic solution [24] is effected by changing 

t__hese configuration indicators. 

6.6 TRAJECTORY CONTROL 

6.6.l SPEED <percent> 

The speed of the ar• is set by this coamand. In joint

coordinated motion, this command sets th:~ rotation time for 
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the largest joint angle difference, na•ely for~ joint 

which •aves fart.best. In straight-line aotion it sets the 

clamp speed. In the si•ulator the incre•ent size used by . 

joint-coordinated and straight-line •otions is set by the 

SPEED comaand. If the requested speed is less than 101 or 

aore tban 1001 of maxi•u• speed, the speed is automatically 

set to 101 or 100% of maximum speed, ~f!Spectively. Also, 

when the SPEED command is decoded, the speed dependent 

error •argin is aslo calculated (the speed dependent error 

•argin was discussed when ve talked about coarse collision 

check algorithm). 

6.7 ASSIGNMENT INSTRUCTION 

I•plicit assignment instructions are aslo simulated in 

the VAL-II SIMUIA'l'OR. For example, a variable "Row• may be 

declared to have a value of 10, by typing •ROW=10•. 

Variable names •ay be up to 9 characters long. In the 

si•ulator, whenever this situation is encountered, the file 

CHECK.DAT is opened and its contents are checked. If the 

variable na•e already exists, its corresponding value vill 
" 

be updated. Otherwise, the new name will be added to the 

1ist of file CHECK.DAT, and its value stored. Also, other 

forms of assignment statements such as: 8 ROW=ROW+x•, or 

9 ROW=ROW-Y9 aay be included in the VAL-II programs. 
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6.8 MISCELLANEOUS COMMANDS 

6.8.1; {<character string>} 

• 

This provides a •co••ent• line in a VAL-II progra•. The 

co••ent lines are used only for the progra••er•s benefit, 

and are ignored when a program is executed. 

6.8.2 TYPE {<character string>} 

This co•,mand operates aore or less in the sa•e way as 

the•;• (remark) comaand; in that it provides a coament 

line in a VAL-II program, and the •essage which appears 

following this state•ent is ignored by the siaulator, and 

is only for the programmer's benefit. 

6.8.3 TYPE {<variable name>}= 

Upon execution of this co•wand, the infor•ation 

described by the output specification is displayed on the 

terainal. In the siaulator, the inforaation is liaited to 

the values of various variable naaes declared during a VAL

II session. When this coaaand is executed, the file_ 
' 

CHECK.DAT is opened and the entries in the list read, one 

by one. If the variable na•e exists in the 11st, its 1ast 
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declared value is retrieved, arid its last declared value ·1s· 

displayed. Otherwise, an error message is displayed. Rote 

that, if thew=• sign is oaitted, the simulator will 

regard this com•and as a siaple 'l'YPB stateaent explained in 

section 6.8.2. 

6.8.4 STATUS 

Upon execution of this coa•and, status information for 

the systea, and the user robot control program being 

executed is displayed. In the si•ulator, this includes the 

speed of the robot set by the last SPEED comaand, the 

nu•her of program execution loops completed and those still 

remaining. 

6.8.S HELP 

This co••and provides on-line help for the VAL-II 

SIMULATOR users. Upon execution of this com•and the HELP 

MENU appears on the screen. The operator is then asked 

whether he needs •ore inforaation on a specific topic. If 

the answer is •yes•, the user will then be asked to input 

the topic for which help is needed. The user input is then 

decoded and a file called HELPER.DAT, which contains a list 

of all the help topics, is opened. The user input is 

checked against individual entries in this list. Whenever, 

[':)'~ . ,r~.> C ..• 
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the user input •atches one of the entries in the file, a 

pointer is set and the corresponding information is 

displayed on the screen. A flow chart is provided for 

better understanding of hov this progra• 

operates in Ap_pendix A. The following inforaation is 

provided for each topic: 1) the specific command syntax; 2) 

a description of the operation performed by the coaaand; 3) 
•.. 

an indication of when the co~mand can be used. Help is 

available for all VAL-II com•ands and so•e of the Monitor 

co•mands. Since, it is very difficult to memorize all the 

entries in the HELP MENU, the user is frequently asked 

whether it is necessary. to display the HELP MENU or not. 
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CHAPrER 7 

. ~- l'IJ' 

7. CASE S'tODY .... 

In order to explain how the simulator may be used, a 

simple part processing task is shown, in a step by step 

manner. It will be explained how the parts which have 

already been created using a UNIGRAPHICS-II system, were 
~ 

transfered to VAL-II SIMULATOR environment, through IGES 

interface. Also, preparation of location data and 

instructions for VAL-II SIMULATOR use are given. 

7.1 PART TRANSFER 
., 

Part files may be transfered to the VAL-II SIMULATOR 

environment either via IGES interface, or through POLYGON 

[ 19] interface. It is assumed that the parts have already 

been created using a CAD system capable of JD modeling. In 

order to use IGES interface, the part file data format must 

first be converted to IGES format via mea~s provided by the 

individual CAD system. Once the file is written in IGES 

format and the file "program.IGS" is generated, one can 

start a VAL-II session. After the copy right information is 

displayed, the following menu is displayed: 
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I GES FILE -
U GII FILE -
EXISTING FILE -
INPUT "I"' "U", OR "E": 

Except in the Eitor and VAL-II modes, most of the commands 

only require single key inputs from the user. In this 

example,· only IGES interfaceis used, hence, the input 

should be "I." This requests the initialization of the 

section of the package which interactively reads in the 

"program.IGS", and places the parts at the origin of the 

user specified coordinate axes. Then, the following 

question will be displayed on the screen: 

ENTER IGES FILE NAME TO BE READ: 

Th"e name of the IGES file created is input, "program. IGS". 

The IGES file is then opened and read in, and converted to 

a format which may then be read and used by VAL-II 

SIMULATOR. This file will have a <.SET> extension. This 

file may have a different name from the IGES file. For this 

reason, the user is asked to input the desired setup file 

name: 

. ENTER SET-UP FILE NAME: 

This file will contain all the geometric data, in a format 

which can be used by the VAL-II SIMULATOR. In order to 

successfully complete writing this file, the following 

information is required: a) the number of workpieces in the 

work-cell, b) the units of the workpieces, which could 
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either be in millimeters (MM), or in inches (IN), and c) 

the location of the of the reference coordinate system in 

which the data have been defined. This information is 
' 

input by answering the following questions: 

ENTER THE NUMBER OF WORKPIECES IN CELL: 

ENTER UNITS OF WORKPIECES (MM/IN): 

ENTER COORDINATE AXES SYSTEM (W/S): 

If the data are input properly, the SIMULATOR will write 

the file and a message is displayed, informing the user 

that the file xxx.SET has successfully been written. At any 

point if a wrong answer is input, an error message will be 

displayed, and the user asked, whether or not he wishes to 

continue the part transfer. The part(s) will be placed at · 

the origin of the coordinate axes system specified by the 

user. A setup file corresponding to our example is shown in 

Figure 7-1. The first line contains the number of user

defined objects in the work-cell, in the example 14. The 

object coordinates may be in millimeters or inches. The 
I 

second line specifies the units of workpieces; either "MM", 

or "IN" is used. The third line, shows the coordinate 

system with respect to which the object data is defined. A 

''W" will designate the wcs, and a "S" will specify the scs. 

Following the third line of each setup file, lines of data, 

one corresponding to each user-defined object appear to 

indicate each object's size; this is specified by giving 

the number of vertices belonging to one polyhedron. The 
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1111 
w 
l, 8 1, e 
. 440.00 -50.00 -3~0. 00 575.00 -600.00 -320. 00 

0.00 0.00 0.00 20.00 o. 00 0. 00 

0.00 0.00 70. 00 .?0.00 0. 00 -2,0. 00 

0.00 30.00 70.00 ~0.00 20. 00 -250.00 

0.00 30.00 0.00 20.00 20.00 0.00 

S0.00 0.00 0.00 0.00 0. 00 0.00 

50.00 0.00 70. 00 0.00 o. 00 -250.00 

50.00 30.00 70. 00 0.00 20. 00 -250. 00 

50.00 30.00 0.00 0.00 20. 00 o.oo 
1, e 1, B 

440.00 105.83 -320. 00 575. 00 200.00 -320.00 

0.00 0.00 0.00 20.00 0.00 0.00 

0.00 0.00 70.00 20.00 0.00 -;?50. 00 

0.00 30.00 70. 00 20.00 20.00 -250. 00 

0.00 30.00 0.00 20.00 20.00 C' 00 

,o.oo . o. 00 0.00 0.00 0. 00 o. 00 

,o·.oo 0.00 70 00 0.00 o. 00 -250.00 

50.00 30.00 70. 00 0.00 20.00 -250.00 

50.00 30.00 0.00 0.00 20. 00 0.00 

1, a 1, 8 

-4b3.5l 500. 00 -320. 00 345. 00 200.00 -320. 00 

0.00 0.00 0.00 20.00 0. 00 0.00 

0.00 0.00 40. 00 20.00 0. 00 -250. 00 

0.00 600.00 40.00 20.00 20.00 -2,0.00 

0.00 600.00 0.00 20.00 20.00 0.00 

500.00 0.00 0.00 0.00 0.00 0.00 

500. 00 0.00 40. 00 0.00 0.00 -~50.00 

500.00 b00.00 40. 00 0.00 20.00 -250. 00 

500.00 600.00 0.00 0.00 20. 00 0. 00 

1, 8 1, a 
-4b3.5l ~0.00 -320.00 345. 00 -600. 00 -3:!0. 00 

40.00 0.00 0.00 20.00 0. 00 0.00 

40.00 0.00 -2~0. 00 20.00 0.00 -250.00 

40. 00 40.00 -;?50. 00 20.00 20. 00 -250.00 

40.00 40. 00 0.00 20. 00 20. 00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 -2,0. 00 0.00 0. 00 -~so. oo 
0.00 40.00 -250. 00 0.00 20. 00 -~50.00 

0.00 40. 00 0.00 0.00 20. 00 0.00 

1, 8 1, B 

-4b3.51 lObO.CO -320.00 495.00 400.00 -~0.00 

40. 00 0.00 0.00 0.00 0.00 0. 00 

40. 00 0.00 -250. 00 0.00 0.00 -lS0.00 

40. 00 40. 00 -~~o. oo 176.78 176. 78 -1,0. 00 

40. 00 40. 00 0.00 176.78 176.78 0.00 

0.00 0.00 0.00 -176.78 176.78 0.00 

0.00 0.00 -250. 00 -176.78 176.78 -1,0.00 

0.00 40. 00 -;?50.00 0.00 353.56 -150. 00 

0.00 40. 00 0.00 0.00 353.50 0.00 

l, 8 1, B 

-2.,1 1060. 00 -320.00 495.00 400. 00 -470. 00 

40.00 0.00 0.00 0.00 0.00 0.00 

40.00 0.00 -250. 00 0.00 0.00 -100. 00 

40.00 40, 00 -;?50. 00 176.78 176.78 -100. 00 

40. 00 40. 00 0.00 176.78 176.78 0.00 

0.00 0.00 0.00 -176. 78 176. 78 0.00 

0.00 0.00 -;?50.00 -176.78 176.78 -100.00 

o.oe 40. 00 -250. 00 0.00 353.56 -100. 00 

0.00 40.00 0.00 0.00 353.56 0.00 

l, B 
-2.,1 :,oo.oo -320.00 . 

' 

40.00 0.00 0.00 
-

40.00 0.00 -250. 00 

40.00 40.00 -~50.00 

40.00 40.00 0 00 

0.00 0.00 0.00 Figure 
0.00 0.00 -250.00 7-1. Example Program 
0.00 40.00 -250.00 

0.00 
. 

0.00 40. 00 Setup --
data file 

1, e 
595.00 -600.00 -320.00 

0.00 0.00 0.00 

0.00 0.00 -20.00 
0.00 800. 00 -20. 00 

0.00 800.-00 0.00 

-250.00 0.00 0.00 

-250.00 0.00 -20.00 

-2,0.00 800.00 -20.00 

-250.00 800. 00 0.00 
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arrays ·have been adjusted so that up to 30 objects, 

excluding the robot model itself, may be used in each work

cell, with hidden-surfaces properly removed. To have the 

collisions checked for all the parts, the dimension of the 

INDEX array is set to 1100. In our example, each object has 

8 vertices, as shown in Figure 7-1. This is shown by 

specifying the first and last vertex with a comma 

separating them (1,8). Due to the data format chosen, the 

first digit should be 1, and the last one an even integer 

larger than 6. As explained in previous chapters, 

associated with each object is a ref~rence point (the first 

corner). The set of data following the number of vertices 

for the first polyhedron is the coordinates of the 

reference point, namely the first corner of the first 

object. Following this line, the coordinates of each vertex 

is given with respect to this reference point, given in 

(X, Y,Z) order separated by commas or spaces, corresponding 

to prespecified coordinate system. As mentioned in Section 

2.1, the simulator uses polygons to form convex polyhedron 

env~lopes which r~present objects. The vertices 

representing the front and back faces must be given either 

in a clockwise, or counterclockwise,order, when looking 
·~ 

toward the origin along the line of the normal axis. When a 

counterclockwise convention is used, the magnitude of the 

coordinates along the normal axis, for the first polygon is 

larger than that of the second one, and vice versa, when a 
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clockwise ordering is used •. 
() 

7.2 PART REPOSITIONING 

The user is then directed to the MAIN MENU. Since, the 
. . ' 

objects are all at the origin, they must be moved to the 

desired locations in the work-cell to represent the 

designed layout. To move to MANIPULATION Mode, 'M' ..., 

(M_ANIPULATION) is pressed on the keyboard. A menu is then 

displayed which corresponds to manipulation mode using the 

system defined increments. The user is first asked, the 

part number to be moved. Parts are numbered l, 2, ... , n 

consecutively, according to their location in the setup 

file, where n is the total number of parts in the work

cell. After the part number is input, the following menu is 

displayed: 

INCREMENTS 

KEYBOARD -
RETURN 

ENTER COMMAND# 
,. 

A single key input is required. The operator may select to 

use the KEYBOARD option by pressing 'K' from the keyboard', 

and then by depressing 'U' (U_PWARD), 'D' (D_OWNWARD), etc. 

to move the individual part in the desired direction, until 

the final desired location is reached. If the locations. are 

precisely known, one may pref er to move the individual part 
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by specifying the proper translational and rotational 

increments. If the latter is chosen, by pressing 'I', it is 

then asked whether the user would like to have the 

coordinate axes display ON· or OFF. The user is then asked 

to input the corresponding translational and rotational 
l 

increments. The translations and rotations are performed 
,.. 

with respect to the scs and a readout is available along 

with the part numb~r for reference. Once done with 

repositioning one part, one may start to move another by 

answering 'NO' to question which asks whether it is desired 

to continue moving the current object. In our case the 

proper translational and rotational increments are input 

for all the parts so that the work-cell will be displayed 

as shown in Figure 7-2. The end of a Manipulation session 

is marked by answering 'NO' to the question which asks 
,: 

whether it is desired to move another part. We want to save 

the new setup, so we answer 'YES' to question 

DO YOU WANT TO SAVE THE NEW SET-UP FILE (Y/N) ?: 

and it is then asked, whether it is prefered to use the old 

setup file name or a new one is to be speci,fied. The file 

name may contain up to 9 characters and must be followed by 

a " . SET". The control is th'en returned to the MAIN MENU. 

7 • 3 LOCATION DATA 

The functions of the "Teach Pendant" may be used to 
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Figure 7-2. Simulator Output Image for Program Process 

,. , .. ., .......... ·: :• 
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·independently move each link of the PUMA robot by pressing 

any one of the numbers 1-6 on the keyboard for the 

corresponding link. This is the exact method, a real 

industrial robot is taught points in its space (26]. Once a 

desired location is reached, one may save that location by 

entering the VAL-II mode and typing " HERE <point name>". 

There is a quicker method to define and store locations, 

and that is to write them in a "program.LOC" file, by 

looking at the positions of the objects defined in the 

setup file. (However, to take advantage of this method, the 

user must leave the VAL-II SIMULATOR environment.) Any 

location data contains the positions and orientation 

angles. In the file, each location is identified bythe 

label, POINT, followed by a space and then an appropriate 

name of up to 9 characters long, a comma, and the position 

and orientation data separated by commas (Figure 7-3). 

7.4 SIMULATOR USE 

The simulator may be used in an interactive manner to 

perform the following tasks: 

-to move the end-effector to different locations, 

-to orient the end-effector, 

-to open and close the gripper, 

-to perform repeating tasks, 
.·, .. 

-to make conditional and unconditional branching or 
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POINT A,465. ,-45. ,-245. ,89. ,91. ,0. 
FG!NT B, 465., 120. ,-245. ,90. ,90. ,0. 
POINT C, -180. , 600., -204. 16, 90., 90. , -90. 
POINT D, -100. , 600., -204. 16, 90., 90., -90. 
POINTE, 425. ,590. ,-220., 90., 90. ,-45. 
POINT F, 425. ,590. ,-400. ,90. ,90. ,-45. 

.. 

Figure 7-3. Example Program Location data file 

.,, 
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jumps. 

The order in which the individual instructions are to be 

executed is critical to simulate a manufacturing 

application effectively and efficiently. Oftentimes, 

several iterations are necessary to find the most suitable 

locations, work-cell setups and the optimum VAL-II program. 

A program session may be started with no previous 

setups or a previous session may be continued. In either 

case tl1e Editor is used to develop the VAL-II program. To 

invoke the EDIT Mode, from the MAIN MENU, one must press 

'E' (E_DIT). This will cause the Editor Menu to be 

displayed. Then to create a new program to perform the 

part processing task, we type EDIT followed by the program 

name, xxxxx.DAT. If this is a new session the following 

message will appear on the screen: 

INPUT FILE xxxxx.DAT DOES NOT EXIST 

If you are continuing development of an existing file the 

Editor will load your program. For a new session the file 

is initialized, and one may press 'C' for CONTINUE, and tha 

VAL-II program is then typed in step by step. End of each 

line is marked by pressing the RETURN key on the keyboard, 

and the next step may be input after pressing •c•. Once the 

VAL-II program editing is completed, the file is saved by 

pressing •s• (SAVE) and the Editor may be exited by typing -
'E' (E_XIT), which will transfer the control back to the 

MAIN MENU. To test the program, we must enter the VAL-II 
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mode. This specific program is written to pick up parts, 

process them, and then place them on a table. The 

processing task is simulated by inserting the part in a 

part processor. 

After the locations are taught tp the robot, we enter 

the VAL-II mode. VAL-II commands are input to visualize the 
I 

performance of the PUMA. An example program edited in the 

EDIT Mode appears in Figure 7-4. If any modification is 

required, we may go back to the EDIT Mode, and delete lines 

of instructions or add new ones. Figures 7-5 to 7-6 show 

the simulation of the example program. In these figures 

one part is picked up (Figure 7-5 a), moved straight up 

(Figure 7-5 b), moved along straight line for processing 

(Figure 7-5 c) and inserted in the part processor (Figure 
; 

7-5 d). Once processed, it is moved to a location which is 

offset from the final location (Figure 7-6 a), the part is 

released and the clamp departed from that location (Figure 

7-6 b), and moved to grasp the second part (Figure 7-6 c). 

once the program and locations have been verified on the 

simulator, they may be down-loaded to PUMA controller for 

final testing and implementation. 

7.5 OBSERVATIONS 

Since, the effects of changes in payloads due to clamp 

velocity and acceleration are not simulated, and also, the 

107 

) 

: ' ,, 



; PROGRAM: PROCESS 
; THIS PROGRAM SIMULATES·. A PART 
READY 
LEFTY 
ABOVE 
APPRO A,-50 
TYPE PICK UP THE FIRST PART 
MOVE A 
CLOSEI 50 
DEPARTS 100 · 
MOVES E 
MOVES F 
TYPE PROCESS -THE FIRST PART 
DELAY 1 
DEPARTS 200 
APPROS C,-50 
MOVES C 
OPENI 100 
DEPARTS 100 
APPROS B,-50 
MOVES B 
TYPE PICK UP-THE SECOND PART 
CLOSEI 50 
DEPARTS 100 
MOVES E 
TYPE PROCESS THE SECOND PART 
DELAY 1 
SHIFT E,0,0,-200 
MOVES E 
APPROS D,-50 
MOVES D 
OPEN! 100 
DEPARTS 100 
READ"f 
STOP 

-.. 

PROC:ESSING APPLICATIOt,1 

.. 

• 

Figure 7-4. Example Program Command data file . 
• 
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-~-T ·-rs POSSIBLE TO GRASP THIS PART 

I 

·a,.·. . . -b:. 

.. C • 

·, t.Figure 7-5. Simulator Output Imag~s for Example 
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Figure 7-6. Simulator Output Images for Example 
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location data in the simulator and those in the real work-
'"' I 

cell environment are different, the successful simulation 

does not guarantee foolproof VAL-II program implementation. 

One serious limitation of the graphical simulation is that 

the third link, FOREARM, is shown symmetrical and does not 

show the assymetrical taper found on the actual PUMA. For 

this reason the clamp is not located precisely ~here 

predicted. This may cause problems in stacking parts. 

As dj~cussed before, the simulation speed does not 

directly correspond to actual speed. In the actual VAL-II 

Language setting the speed to 25% of the full speed 

prescribes a safe program execution and corresponds -to 

approximately full simulation speed. However, if in the 

simulator, the robot is run at full speed, a part may 

appear to be placed in the precise specified location. But, 

in the real work environment the part may reach its final 

position too quickly and when it is placed in the specified 

location, it is actually "thrown". Since the simulator does 

not simulate the system dynamics, it is recommended that 

the simulation speed be set so that it corresponds to a 25% 

PUMA speed. 

., . 
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CHAPl'ER 8 

8. SUMMARY 

Due to great technological advancements in recent 

years, ro"bot language simulators, like the VAL-II SIMULATOR 

are being considered A most important assist in the 

implementation of robot systems. These simulators are used 

for off-line programming of robots. In addition the 

simulators may be used as instructional instruments and 

help in evaluating program sequences, · as well as designing 

various work-cell layouts. In manufacturing, they may be 

used for off-line programming, hence, minimizing the 

production-line down time. 

VAL-II SIMULATOR is menu-driven with an on-line help 

feature for all control levels. VAL-II SIMULATOR utilizes 

the basic concepts and fundamental structure of VAL 

SIMULATOR and offers :11ore_ advanced features in terms of 

programming control and finer graphics display. Information 

regarding configuration indicators is available to user at 

any time. Arithmetic and logical expressions are available 

for decision making, for performing repeating tasks, and 

for making unconditional or conditional branching or jumps. 

Collisions are detected automatically and a simple sensor 

. . ' 1.1:2· 
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interface is p:r·ovided. C User-defined geometries may 

interactively be retrieved from other CAD data bases using 

the International Graphics Exchange Standard (JGES) and 

then easily positioned in the PUMA's work environment. With 

these features the simulator can be used to design and 

experiment with a variety of work-cell setups, 

investigating assembly tasks, and to develop various VAL--II 
. ·~· 

programming possibilities. Once a work-cell is created and 

the VAL-II program is developed and tested with the 

simulator, the VAL-II program may be down-loaded directly 

to the PUMA controller for final testing and verification. 

8.1 LIMITATIONS AND RECOMMENDED APPROACHES 
' 

The simulator does not currently change the 

configuration indicators if needed. If the values of the 

user-defined configuration indicators do not agree with the 

theoretical ones, the motion is halted. Oftentim~s, t~e 

user does not know whether the path is possible or not. In 

such a case, an automatic change option would considerably 

enhance the simulator's performance. 

In the Simulator's VAL-II Mode, each input string must 

first be decoded by the system to recognize the command for 

implementation. Therefore, there is a short stop at each 

instruction.· 
"' 

~ ., 

The collision check algorithm requires a great deal of 
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computations ·to precisely inform the user of unwanted 

events, hence, resulting in slower simulation display. 

The simulator uses extruded wire-frame polyhedrons 

which necessitates defining envelopes around the objects 

rather than use the actual geometries. 

It must also be kept in mind that VAL-II SIMULATOR is 

not a robot emulator. The effects of gravity or inertia or 

changing payloads, or dynamic effects such as accelerations 

and decelerations are not simulated. 

Very limitedsensory interface is available. 

'. 

8.2 FUTURE EFFORTS 

VAL-II SIMULATOR has been written in FORTRAN 77, and 

consists of a series of inter-related subroutines, which 

allows for easy modification, or extension of individual 

routines without involving major changes in the rest of the· 

program. 

The FRAME and INVERSE commands may be added by 

introducing compound transformations. 

For more programming control, IF-SIG commands may be 

included. For the IF-SIG command to be practical, along 

with the robot some hardware should also be simulated. 

Routin~s may be developed to optimize clamp 

trajectories. 

A rouitne may be developed which would enable the 
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computation of estimated ctcle time$. 

The simulator in its present form only simulates one 

robot ~nd one language. A library may be created so that 

other robots as well as their programming languages could 

be simulated. 

115 

. ' 

J 
' 

> 
' . 
' 



REFERENCES 

[l] Leu, M.~. and Mahajan, R., "Simulation of Robot 
Kinematics using Interactive Computer Graphics," 
Proceedings of ASEE 1983. Annual Conference, Rochester 
Institute of Technology, NY, June 1983, pp. 34-39. 

( 2] Le1.1, M.C. and Park, S.H., "Use of Computer Graphics for 
Robotics Instruction," Proceedings of ASEE 1983. Frontiers 
in Education Conference, Worcester Polytechnique Institute, 
MA, October 1983. 

(3] Clifton, M.B. and Ochs, J.B.,"An Interactive Computer 
Graphics Simulation of VAL, Programming Language of the 
Unimation PUMA robot," Proceedings from the 26th IEEE 
Computer Society International Conference, Arlington, VA, 
September 25-29, 1983, pp. 193-200. 

[ 4] Derby, S.J., "Kinematic Elast-Dynamic Analysis and 
Computer Graphics Simulation of General Purpose Robot 
Manipulators," Ph.D. Thesis, Rensselaer Polytechnique 1

• 

Institute, Troy, New York, August 1981. ,,p 

[5] Kretch, S.J.,"Robotic Animation," Proceedings of the 
2nd International Computer Engineering Conference, ASME 
Computer Engineering Division, August 15-J.9, 1982, pp. 87-
92. 

[ 6] Meyer, J., '~An Em.ulation sy,tem for Prog~ammable sensory 
Robots," IBM Journal of Research and Devel,i:,pmen.t, Vol. 25, 
No. 6, Nov. 1981, pp. 955-962. 

[7] Soroka, B.I.,"Debugging Robot Programs With a 
Simulator," Proceedings SME Autofact West, CAD/CAM VIII, 
Anaheim, CA, November 1980. ,, 

[8] Tilove, R.B.,"Extending Solid Modeling Systems for 
Mechanism Design and Kinematic Simulation," GM R~search 
Publication GMR-4246, Jan. 1983. 

[ 9] Wesley, ·M·.-A. ,· Loz·a110-Prez, T., Lieberman, L. I., Lavin, 
M.A., and Grossman, D.D.,"A Geometric Modeling Systems for 
Automated Mechanical Assembly," IBM Journal of Research and 
Development, Vol. 24, No. 1., Jan. 1980, pp. 64-74. 

[10] Derby, s.J.,"Computer Graphics Robot Simulation 
Programs: A Comparisort," Published in th& bound volume 
"Robotics Research and Advanced Applications," ASME Winter ... 

116 

L ,. 

J 

l . 
;~ ,, 



. . 

-

Annual Meeting, Nove)Dber 1982, pp. 203-212. 

[11] ''User's Guide to VAL", Unimation, Inc., Danbury, 

Conn., June 1980. 

[12] Clifton, M.~.,"VAL Robot Simu.:.ator," M.S. Thesis, 

Lehigh University, Bethlehem, Penn., May 1984. 

[ 13] ''User's Guide to VAL-II", Unimation, Inc., Danbury, 

Conn., April 1983. 

( 14] "A Robot Programming System Incorporating Real Time 

and Supervisory Control: VAL-II" 

[15] Ozsoy, T., Ochs, J.B.,"Lehigh University's VS11-3D 

Graphics Package," Proceeding from 1983 DECUS Meeting, st. 
Louis, MO, May 26, 1983. 

[16] Barnhill, R.E., Riesenfeld, R.F.,"Computer Aided 

Geometric Design," Academic Press, New York, 1975. 

(17] Faux, I.D., Pratt, M.J.,''Computational Geometry for 

Design and Manufacturing," John Wiley, New York, 1979. 

[ 18 ] Foley, J. D., VAN DAM, A., FUNDAMENTALS OF INTERACTIVE 

COMPUTER GRAPHICS, Adison-Westly Publishing Company, Inc., 

1982, pp. 505-537. 

[19] Oszoy, T., Ochs, J.B.,"An Interactive Modelling 

Program for the Generation of Planar Polygons for Boundary 

Type Solid Represen.tation of Wire-Frame Models," 

Proceedings from the Symposium on Computer Aided Geometry 

Modeling, NASA Langley, Hampton, VA, April 21, 1983. 

[20] Giloi, W.K., INTERACTIVE COMPUTER GRAPHICS, Prentice

Hall, Inco, Englewood Cliffs, NJ, 1978 • 

( 21] Paul, .R.P., "Robot Manipulator a: ,Mathematics, 

Programming and Control", MIT Press, 1981. 

[22] Denavit, J. and Hartenberg, R.S.,"A Kinematics 

Notation for Lower Pair Mechanisms Based on Matrices,'' 

Journal of Applied Mechanics, Vol. 22, ASME Transactions, 

Vol. 77, 1955, pp. 21s~221. 

(23] Gaglio, s., Morasso, P., Tagliasso, V., Zaccaria, 

R., "Co·mputation of Inverse Kinemat·ics and Inverse Dynamics 

in Manipulate Arm Control," Proceedings from 11th 

International Symposium on Industrial Robots, Tokyo Japan, 

7. 8. and 9. October 1981. 

. ..... 

117 



I 

.. 

[24] Lee, C.G.S .. , Ziegler, M.,"A Geometric· Approach in 
solving the Inverse Kinematics of PUMA Robots," Proceedings 
from the 13th International Symposium on Industrial Robots 
and Robots 7, Vol. 2, April 17-21, 1983, pp. 16.1-16.18. 

[ 2 5] Pieper, D.L., "Th'e Kinematics of Manipulators Under 
Force Control," Ph.D. Thesis, Computer Science Department, 
Stanford University, October 1968. 

[26] Mahajan, R. and Mogal, J.S.,"An Interactive Graphic 
Robotics Instructional Program !GRIP, A Study of Robot 
Motion and Workspace Constraints" · 

[ 2 7] Jacobs, M.P., "Off-Line Robot Programming: A current 
Practical Approach," Proceedings from Robots 8 Conference, 
Vol. 1, Applications for Today, Detroit, Michigan, J-une 4-
7, 1984, pp. 4.1-4.11. 

0 

(28] Rossol, L.," Technological Barries in Robotics: A 
Perspective from Industry" Presented at the First 
International Symposium of Robotics Research, Bretton 
Woods, New Hampshire, August 28- September 2, 1983. 

118 

:.,..,, 
.. ' ., ._,,..;.~. 

\· 



"l. . 
. . , . ·. ·. 

.' 

. . 

. . 

. 

. .. 

. , . 

. . . , . . . . . . ... ·: . . 
'• . . . . ... \ . . . . 

. • ! ' .. ~ . . ~ . ., 
'. ' . ~~ . . .·., .. 

. . . ·. . '. . . .. . . . 
• I • - • • •. • • 

. . . . . . 

. . 

. . 

• 

,• 

. . 

. . . . . . 

. . . . . . . 
• I • • ,. ••• 

. . . 
I . 

. 

. LISTP 

READ PROGRAM 
NAME 

NO 

\ 

DIRECTORY 

ISTF 

L ( ST VAL- 1 I 
FILES 

RETURN 

I 

LIST LOCATION 
FILES 

FIGURE ~-1. SUBROUTINE MONlTOR FLOW O(AGRAM 

• • 

. .. . . 
•' , . . 



i. 

.. . . 

. . 
• 

. ._.· . . 

.. 

• 

.•. . .. · .. .. 

. . . . . -
. . . 

... . .. . 
.. -... .. . . . . . . . . . . . . :·· . . . •· ... 

•. .. . ·= . .... . . 
..:. 

~ : : .. . . . -.- .•· • . .. 
. '• ·.·.. •·: 

• -~·_:-~.·.!" 

:.-~ . .. 
-- e: •. . - . . . •..... 
··-. . -·· ·-·.Y ~· ~ ~ 

• • •. . !t ,I •. • 

. ~...... . 
.- :.... ~ .. 

• i ~ ·" .• 

.. ·.:_. .. : . . . ......... '. .. ·•· . . . •· 

.• 

-·· . 

I r 

ENTER Tt-£ r+EW 
SETUP FILE NAME 

I t 

ENTER NUMBER 0,:
WORKPJECES JN CELL 

, t 

~ITS .OF WORKPIECES 

I t 

COCYl)INAT AXES 

1 • 

(llEN FJLE. IGS 

. t 

READ 11-E DATA 

1 t 

WRITE 1l£ DATA IN 
FILE.SE1 IN VAL-II 

Fa:MAT 

I 

INITIALIZE 

1 • 

IGES 
UGI I 

EXISTING 

E 

, . 

u 
1 t 

ENTER THE NEW 
SETUP FILE NAME 

I 

ENTER NUMBER OF 
rORkPIECES IN CELL 

I 

LNITS CF WCR<PIECES 

, 

COOROINAT AXES 

I ' 

CPEN FILE.DAT 

READ 11-E DATA 

I t 

WRITE T.-e DATA IN 
FILE.SET IN VAL·II 

FCR.lt\T 

...._-----~=RETURN~~-------~ 

... 

FIGURE A-2. SUBROUTINES IGESCONV & 
UGIICONV FLOW DIAGRAM 

. . . . . . •.. 

•. . 

. " 
.•._. 

120 .• 

. . .. 
.. .. .• ... .. . - .. 

•' . •. .. ·-~ . . .· •.. •. . ~-.. . . : 
:·~· 

.• . . . 

•. 

.•. 

.. 

·,.-: 
•· 

. •. 

I 

· .. ·. :.-, 

.•... ~ 

· .. • 



. ; •:. • 
·-

. • . 

. ~-

·,. PICTUR 

I DRAW BI\SE 

y N 

-

•. . .. ·~ •... ~. 

. . . 
. . 

. . ~. 

--
..•. ~-

... 

. .. 

DRAW POLYHEDRONS OF MODEL 
LINE BY L(NE DRAWP0LYHEDRONsQF9--..__... 

POLYGON BY POLYGON 

DRAW WORKPIECES 
LINE BY LINE 

:• 

DRAW AXES 

DISPLAY LED SENSOR 

RETURN 

FF 

DRAW WORKPIECES 
POLYGON BY POLYGCN 

FIGURE A-3. SUBROUTINE PICTUR FLOW DIAGRAM 

.... 

.. 
~ 1·21 

~· .. 
:.. . . .; .. .... 

,,; . . . .. :~~- i 
. ,~ :' . 

. . ~: ·-;;..._. ·~· . ..., . .. 
. . ... 

·•. ·.•· :-.·;_ ~: . 
. . . 
•v 

·· ... · .-:·· . 
• ··.~· .• ·e:. :~·: 

... 
•. 1 •. .. . . . .. . 

y~ ... . 
· ..... . -. . , 

.. ,. .~·. • ... 
'•.• : 

-~.· .. .".':, . 

. ·• .. 

.. . ~ ... . 

... 

. .. 
•· . •. 

\ 

.: . 

. . .. . .. 
: ~-

. ' . 

·.• ... . 

• 



. . . 
. ••' . 

. .. .. 

. . 

.. 
. . ... 

. -

. ...... 

.. • . 
:•. 

ELBOW 

I • 

CALCULATE 
SIN & COS 
OF ANGLE 3 

, 

TRANSFORM 
FJART DATA 

FOR LINK 4 

I f 

CALL FOREARfv11 

} .. 

• 

,/ . . FIGURE A-4. SUBROUTINE ELBOW FLOW DIAGRAM . 
. \ . . . . ... . . .. . ' .. . .. "' ...... 

• . . . .... : .. . . . .. . \ . ,. . · .. . . .... .•:. 

• 
·• .. , 

. 

. . .. .. . . . .,.. -~· ·•· . ...··. ·- ·• ... ... .. .. .. .. 

.. 
. . . 

. . . . . 

. ··. 
~--...... . 

. . .. :~~: :•. •···· , . 

. ..;:~-~--·r· .· . • 
. .. . ,,. ,. ... . -.. •,;- .: . ..... . . . 

. ..-~:?.. ., . . • 
~: ·• ~- : ' . ~· . 

•I-...~:··• ~ 
• .. , I I• ,e • 

. 1',...... ··-: .. • . ..... ,• -~ . . . .. . . . . .,. . 
~·:' . . , ~. .. .. 
. .\ .· 

... ·. 
! .•. 

... . . . .. 
. .. . . 

-
...... 

. . . 
" 

• .. •• ra 
• --~·- --~ •• 4111.·_ ---~ . 

~: - . . '• •.· . 

.. 
. '· 

. • .. 
. . 

. . . 
122 

. .. . .. . . . . ... ~· _ .. · . . . . 
. • !a'. ·.• ·_•;·41 

_. . . 

-. 

-· •. 

.. 
.• : . 

:•·.· 

.. .. ·-.. .- ... 
·; 

•. 

·• .... 

ii,: 

• 

·: . 

. 
~~-

· . 
. . . . _ .. 

.•· .. •. 
.1 

·•· 



. . 
·' 

. . 

. ): 
,. .• 

• I -•. 

:•' . •: . . . 
: .... 
: .. , ·.-.. .., .. ·•. 

-~. .. 

:• . 

. . 
. ... ~~ . . .. . 

,,· 

• • • ! 

.... · .. 
. :.. . 
! .. ·- .. ... -~ ,~··: :• ~- . . . . •. ~-· .... . . . . . . . . ::J·.. . ... 

L_...,....' 

. :• 
·. ··.• :• 

· . ...--

. . ~.~:...:- . · .. :; ·-·~ ... •.: ~ '. · .. • .. . . . . -~-- .. •.,:. . . . . . . -~ . · ... .. ·. .. 
• I • ,,: ·• 

•· ~M· ·• ._, 
. • 

.• 

-= 
·i 

.. 

• 

. r· 

CALCULATE 
SIN & COS 

OF ANGLE 4 

FOREARM 

DETERMINE 
----e. RANSFORMATION 

MATRIX 

TRANSFORM 
PART DATA 

FOR LINK 5 

·CALL WRIST 

•. 

FIGURE A-5. SUBROUTINE FOREARM 
FLOW DIAGRAM 

.. 

,• 

. ' .. 
. ,_ .. i .-, 

• .. • . 
123 

·. 

.-

·, 

.. 

. .· 
-~ 

,.• 

·" -~- .•. 
• . 

... 

. . 



' ... 

.. 

. . ' .. •, 

.. 

. ' .... ,. •· 

. . . . 
. . 

·•: .. . . . . 

. . 
-.. 

. i ..... , . . .. 

.. 

.. . . . ·.. ·•.· ~ .. 
. . •.. .. ·-· ., . . •: 
. . •,: :·· 

_ .. ~:~~:.- -~ ~ -. -. . 

.... · :· . 

. . 

·-· ·.~ :·.: ~-- .. _. -... . 
~··-· . ~~ .,· . 

:· ••. 
. (.· 

• ..-., • •.j . . •.. . .. • .- . 

. ' .,.~·- : ... 
'11111":· • • . • .. .. . . . 

• ;I • 
;I\ 

I ,. • • 
. . .- -: . .. . .. ·=-:~· ·• .... 

•. . ·- ... 

.. 

·.,,_. . 
·• 

·. :: 

.• 

. 
: . . 

.':' 

:, 

INVERSE 

I 

OBTAIN ~IENTATION MATR(X 

' 
OBTAIN WRIST POSITION VECTOR 

~-

I • 

CALCULATE .JOINT ONE 
, .. . 

, . 

CALCULATE JOINT TWO 

I .. 

CALCULATE JOINT THREE 

7 
I 

OBTAIN T3 MATRIX 
WITH FlRSI THREE 

JOINT ANGLES 

'1 

CALcu..A TE ~ l NT F~ 

. ' 

CAL.Cl.LATE JOINT f'IVE 

I I 

. 

CALCULATE JJINT S[X 

t ' 

RETURN 

FIGURE A-6. SUBROUTINE INVERSE FLOW DIAGRAM 

.• 

~:-

.•. •· ·-· ... 

· . 124 •. 

.. . .-

:, ... . . , 
,.· ·' 

.. . . ·· . . ..... .. ;., ...... • 
..• 

.... 

.. 

.. 
.. 

.• : .. 

.• 



. • 

C 

.. .. 
.4i' 
~- •·. ·, 

... 

. . . 
. . . 

,· · .. 
·' 

·,· 

. " , ·c.) 

I • • : 

. . . ' . . 

. . . 

LATCH 

CALCUALATE 
WRIST-PART 

DISTANCE 

SHIFT PART 
DATA TO SCS 

ORIGIN 

N 

OBTAIN TRANSPOSE 
OF CLAMP MATRIX 

TRANSPOSE PART 
DATA WITH 
TRANSPOSE 

. .....___ 

OEF'INE PART 
WITH RESPECT 

TO WRIST 

RETURN 

..... 

. . . 

FIGURE A-7. SUBROUTINE LATCH FLOW DIAGRAM 

,,I, 

,o$,. 

125 

-~-

. • 

:•: 

. o· 

'· 

.. 
. .. . . 

. 

. ·~ .. 
.. •• 1 .... 

•• •! •• . . . . . . 
I .... ,• . . ,.• .. --··· . ., . I . . . 

.. '\ .. . . . .. \.-.,.~ 
. . 

. . 
. . . . ··-· .. .. . . 
•., 

.• 

. 
• 

. . . 
. . 

•. ..• i ,. ,, : ' • 
·.• ·~· •. ,. . ... ., .... 

:, .. -~ -.•• .·: :: . ~I.: •. 

; . .• . . . 
,I I .• .•. I ·.·, I 

. . .. . . • .. 
... . ·"' ..•. ... . : .. . . . . 

. • 

.• 

. .. .. . . . . : ... . .. :, ... ,._., . ,. ·• 
-~- ~·-··: 

. . ~-.: 
• 

:• ... .• . -~ 

. .• . . . 

... 
.# • . 

·• 
··: :.• 

.• . 
~ .. 
• 

. 
• • • . . 

. . .... ·. 
. . 

.., 

. . · .. 

• 



' 

. . .. 
.. 

DETACH 

SET DETACH 
FLAGS 

y 

CALCULATE 
PART-SCS ORIGIN 

DIFFERENCE 

REDEFINE ROT.ATED 
DATA W.R.T SCS 

ORIGIN 

RETURN 

. . . 

. . . 

... ,. 
.,. ~- ... ·- . . . . .. .. . . - .. . . 
I • o • . •· ,,. ' . ..•. ~ .. .. .,. . 

• • ..... "t:· . . . . . . . 
.. . - , . . . . . . . 

:, ,·. . . . 
,• I • 

. . · .... 
. . . . . . '"':.· ... •. 

. . ·- ' . . . . "' .. •* 1 • - . . . . .... . . .. 

. . 

.. . . . . . . . . . . 
. . . . . . 

. . . 
. . 
.. . 

FIGURE .A-8. SUBROUTINE DETACH FLOW DIAGRAM 

126 

. . . 

I • • 

. . . . . 
. . .. 
• I . . . . . . . 



,. ..... , ~·: ..• • .. ,·. . . . . ·.• . .. . .. . 
. ' .. ·i • 
• ,1 • . ..•.. ··' .. 

·:· .. 

P. 
N 
~ 

.... 

i. 

. . . . . . 
t • • I 

• • • • : •' I . . . . . . ,, 
! . . .. . 

. . .. 
. ... 

WORLD 
X,Y,Z 

TOOL 
X,Y,Z 

• • 

JOINT 
MODE -...._ _____ _... 

LISTL 
1 I 

LOCATION FILES 
LIST 

·,:.,,. . 

wx,wv.wz -

TX, TV, r-

-
44,5,6 

MAIN MENU 

p ,, 
I 

PENDANT 
MODE 

DIRECTORY 

LISTP pr,og. NAME 

PROGRAM 
LIST 

I OR O_ 
--

0 OR C_ 
-

INCREASE 
DECREASE 

OPEN 
CLOSE 

01 
.PZ,~3 CLAMP POSIT I ON 

LISTr 
, 

VAL· l I PROGRAMS 
LIST 

., F'IGURE A-9. PENDANT MODE FLOW DIAGRAM.-
• I 

. 
•' 



•. 

. . . . . . . 

, . . . 
,. 

KEYBOARD 

LEFT 
RIGHT 

UPWARD 
DOWNWARD 
FORWARD 

BACKWARD 
X ROTATION 
Y ROTATl(J\J 

Z ROTATION 

SAVE 

RETURN 

FIGURE A-10. 

MAIN MENU 

INCREMENTS 

YES 

SUBROUTINES MOVERINC & MOVERKEY FLOW DIAGRAMS 

12.8 

1 ...... 

·:··., 



·. 

• 

,, 

'· 

0 
...--......- FL.AG 

l 
17 

1 ' 

CONTINl.E START 

--
-

--

ADD TO FILE 

=.· ', 

ao 

DISPLAY 
f" I LE CONTENT 

t 

.... 

.• 

MA ( N MEMJ .... --=~------1 EXIT -: 
t 

(EDITOR 
I J 

DISPLAY ME~ 

' ILE NAIE ~tE~•-------. 
INITIALIZE 

I r 

r FLAG: 0 !a.----- -----... ~ FL/\G= I 
j • I ' 

. . 

-; ....• ·, ~ ... 
. ~ ...... . 
. : ;· .. . . . . 

. •.: .... 
•.- . . . ... ... .. ',• . ~ . 

~ . . ..... 
. ,.1: 

.• •,I• 

. . 
. . . ... 
. .. 
. . . 

•• !' • .: • 
... . . 
•· ... .. . . . . 

:...- ·~ .• •. • I . . 
, -:• C.. .,. • • 

•... 
:: .. : .·, 

• 

. 

l· 

I 

.... 

• . 

________________ c_.fNPtJT ~E ________________ ___ 

.__ __________________ ,;_;. _______ ~( I~ l ,..._ __________ __ 

t.------;==========·~; s • 
JNSERl SAVE FILE 

~ I 

1 ' 

STEP NO. STEP NO. 

-
AOO TO FILE DELETE FROM FILE 

I~ ,, 
.._--.1I._.,,...- I NPUT 

, ' I 7 

SAVE F'ILE .,____.. SA VE f' I LE .,____ 

\. 

FIGURE A-11. SUBROUTINE EDITOR FLOW DIAGRAM 

. 1:2:;9:. 

•· :•. 

.. 

• 

. '!· • 

• 

. 

. · .. , . ~'..: 

.•. ·, 
! : . . 



~ 

·, 

. . . . .. 

. . .. :· .. . 
·, 

. . ; 

-~· 

FALSE 

. -.... 

: . . . . . . . 

: 

. '· 
. 

DO 

EXECUTE THE 
GROUP OF 

INSTRUCTIONS 

UNTIL 

SECOND 
VARIABLE 
EXISTS? 

RETURN 

. . 

. . . . . 

... 

.. 

• 

FIGURE A-12. SUBROUTINE UNTIL FLOW DIAGRAM 

l-3:.() 
···. ,' . 

:,·,:_· ·.·· 
'·"-:· 

. .. 

. . . ........ _. 
I . ,• . •'. . . . . 

• I .. I ~. ·~ . . . . ·-. ,• . . .~ •. ·lt1~ •. 
. .. .. . . .. . ~-~, 
·- -··~f . ,· ... . . . . ~· . . ,. .. ... 

··. ... -·· 
•: . : .... . . .•. . . .. .. . . .. . . . . . ··~·. \~. ·~· . 

.. 

. ·• . . . . 
' .. . . . •· . . . ~· . . . 

..... l;.a•.• . . . . . ,· . 
. . . . . . 

·'). ·.• ... ·.-.. . ..... 
' •. • i. •• • • •• . ··.-. . ., ; . . . . 

• ,· • ,; I• . . . 
.-~ :; . .. . . . 

• 

. .. 
. .. .. .. . .•.·· •. .. . 

. . ... 
.. - ..• _ 

. 
. . 

. . •· .. 
·:•. . •. 

'•.· . 

. ... 

~- \ 
. ~ •'· ... 

.. -.. : . 
•·• r .. -•-:-
;.• . 

/ :·~ 

-. .... . 
. . 



' 

NO 

EXECUTE THE 
FIRST GROUP Or ,__ __ 

INSTRUCTIONS 

EXECUTE THE 
--~ SEC~ GROUP OF l I NSTRUCT IONS 

-------t· ENO IF ~----

RETURN 

. . .. 

FIGURE A-13. SUBROUTINE LOGIC FLOW DIAGRAM 

131 

. . 

.. 

.' ....• ~ .. 
. . t· : . . . . ... ,. . . 
!' ..,~ . . . ., .. 

.. 1-·· . . \• 

. . . . . . ,.• 
.: . . . : . .. . -. . ... .. . ... r . . . . - . 

• • • J .. . . . . . .... . . . . . . . . . . . . . .. - . . . 
:. .. · .. . -.. 

• I • • : • • . . . . . . . 

.. 

. . . . . . . . . 

. . 

. .. . . 

. 
: .-
. 

... . 
' .. 



: 

~- i •. 

•. 

. . 

. . 

-.. 

... 

NO 

NO 

WHILE 

EXECUTE THE 
GROUP OF 

INSTRUCTIONS 

END 

RETURN 

ALSE 

. . . . . 
.. . 

... . 
.• 

:• •. . 
·•, 

.. 

.. ,.. 
• • ,. I I . . : ,,. . 

. :.•' >. 
'· r 
: •... 

JI>' 

''· '.- I . (,·', . . ~' : 
... . .. .. . . . .. •.. .. -·.• ·• .. ' . . .. .. .... . .. \ .. . .... , 

•. . .. 
. ... : ~ , 

. 

. , : ',· 

~ 
. . . . 

• .·•·· . . . ' . . . ·.~ . 
. •- .• . . .. . ; . .. 

=~: ·.: •• 

•· . 

. . .. 

. .- . 

,; 

.• 

. . 

FIGURE A-14. SUBROUTINE WHILE FLOW DIAGRAM 

. • 

:!3.2: 

. . 

. . . 
·•··· ... .. . - -._ . . 

.. . . . 

~. :: .. 



• 

. . . 

-
"' 
-.. . . .. 

, . . . :• 

. . . 

. . . . . , 
. . 

.. 
-. .. . .... . . . . . ~: 

.• .· 
.. : 

.. ..... ... ... 

• 

NO 

F"IGURE A- 15. 

MAIN MENU 

• 
VAL- 11 MODE 

HELP MODULE 

NEED 
MORE 

HELP? 

DISPLAY 
INFORMATION 

tE.-V DISPLAY 

. ,., 

SUBROUTINE HELP FLOW DIAGRAM 

. .. 

133 

. . . . 

,<) 



• 

APPENDIX B. 

COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 
COMMON 

/ ANGLE/ ANG, THETA ( b > , CE ( b > , 5 ( o >, AMAX ( b, 2 > , LA5T (ts) , !Pe:e:D CC)> 

/ARMS/ LPH,SF,CF,ARM<300,3),AC300,3),B<300,3),MVERT<30,3> 
/CL.MP/ ICHE~ .. iLATCH, IPOS, t.JPART, ll-.TTACH(30) 
/ CONF I G/ IARM, I ELBOW, I~ I Si, V,K 

/G~OM/ A2,02,D4,D6,H,PI 
/GROWTH/ RGROWC30),XH,YH, ZH 
/LOOP/ !LOOP, IREMAIN, HELPER< 100) 
/NORMS/ lHIDE, NuRM(3u, 2), HID( 150, 3), HIDE< 150, 3) 

/PER/ IPER, SP DERR, SPEEDM 
/POS/ LPOINT, IEND, CHAR ( 100>, DATA< 100, 6>, C.OMM( 70)-, L1STER<3> 

/POS/ STAT< 100), rJUMB 
/POS/ DATFILE<l00),POS1l,POS1TJON 
/POSIT/ IND,~DXR, BDYR,BDZR~R!,CZ, SZ,WCS(7,3) 
/POSTN/ XTEMr,YTEMF, ZTEMP 
/ROTM/ R4(3,~>,~5(3,3>,R5TC3,3> 
/ OtJT / IT I ME 
/SINCOS/ S1.S2,S3,S4: 5S,Sb~S23,Cl,C2,C3,C4,C~,C6,C23 
/FLAG/ IFLAG<10Q!3> 
/VERINDI NPl(:-SO>, NLI<30), IFI!JDEXCSQO, 3>,Lit.:DEX<1100,2) 

/SCPRMS/ SDXLNG,SDYLNG,CFAt~SRESX,SRESV 
-·- .. .. . . 

Table B-1. List of Common Blocks 
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mot-ion !rodionsl 

total number or polyhedrons 

scale ractor (pixel/inch) 

conversion rac~or lmm/inchl 

ARMSl300,3J derini~ion geometric doto finl 

Af300.3J rotated geometric data fpixelsJ 

display geometric doca (pixelsJ 

MVERT ( 30 • 3) po I yhedron _i nde><" its beginning 

and end vertex 

ICHEI< 

ILATCH 

IPOS 

clomp rtog: ope=O, close:! 

LED rrog: grasp not possible=O 
grasp possible =l 

position r109: clamp bose=l 
LED =2 
c I omp t .i p = 3 

TABLE B-2. List or commoned blocks 
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'1 
BLOCK 

. CONFIG 

GEOM 

GROWTH 

LOOP 

PER 

.. _,. 4 

' 
variable runction 

. 

lATTACHl301 attachment rlog: unottoched=O 
attached, =I 

IARM 

IELBOW 

IWRIST 

A2 

·02 

04 

06 

H 

Pl 

RGR0Wf30J 

XH,YH,ZH 

(LOOP 
(REMAIN 

arm conrigurotion indicator 
RIGHTY=l, LEFTY=-1 

elbow 

wrist 

conriguration indicator 
ABOVE= 1. BELOW= -1 

conriguration indicator 
NOFLIP=l , FL[P:. .. 1 

joint 2 ~o Joint 3 orrset (inJ 

JO int 1 to JO int 2 orrset I in) 

Joint 3 to Join~ 4 orrset (inl 

Joint 4 to clomp tip orrset fin) 

WCS origin orrset f"rom 
SCS or i g i n ( i n) 

3.1415927 

radii or enclosing sphere 
ror eoch polyhedron (pixels) 

hand coordinates fpixelsJ 

number or program loops 

number or program loops 
remoining~to be completed 

PER (1001 help topics 

IHIDE 

IPER 

SPEORR 

hidden-surroce removal rlag: 
back surroces not-·removed=O 
bock surroces re~oved =l 

percentage or moximu~ 
simulo~ion speed 

hair or speed dependent error 
motgin 

TABLE B- 3. L i st or commoned var· i ob I es 
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BLOCK 

PCS 

POS 
POS 

POSIT 

POSTN 

VARIABLE 

SPEEDM 

LPOINT 

CHAR( 1001 
DATA( 100.61 

COMMC70J 
STAT ( 1001 

DATFILEf20) 
posl 1 

I) 

posit-ion 

1r.o 

BDXR. 

BDYR, 

BDZR 
RZ 

CZ 

sz 
WC5(7,3l 

XTEMP, 
YTEMP, 
ZTEJ.P 

·~ .. , 

FUNCTION 

max. rotational increment in 
VAL-II mode (radians) 
location name pointer 
total no. or simulated commands 
location names 
location data (mm.degl 

VAL-II Simulated commands 
variable names declared by user 

names or exist;ing VAL- I I r; les 
-· 

user declared variable name 

user declared variable nome 

used ror assignment instructions 

index or positions along rcs•s Z-axis 

coordinates or displacement 
increment due eo BASE command 

rotational increment due to 

BASE command (degrees> 
cosine or RZ 

sine or RZ 
coordinates or vertices which 

rorm WCS rrame 

temporor~ clomp position 

.. 

TABLE B - 4 • L i st or commoned var i ab ·I es 
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BLOCK 

ROTM 

OUT 

SlNCOS 

FLAG 

.•. 

VARIABLE 

R4t3,3) 
R513.3) 

RS~(~.31 
ITIME 

51 .52,53,54. 
55.56,523. 
C l , C2 , C3 , C4 • 
C5,C6,C23 
I FLAG ( I 00 ,31 

... 

.. 

·..__ 

FUNCTION 

rotation motri>< l'or _pint 4 
rotation matrix ror clomp 

transpose or clomp rotation matrix 

POLYGON output rlcgs: 
f'irst out-put=O 

subsequent output =I 

sines & cosines respectivel~ or 
~he Joint-angles in simulator 
convention 

/'Jogs : 

lFLAG(l.11=0 position display OFF 
(1,11=1 position display ON 

.. 

(2.1)=0 motion continues 

12,ll=l ~int angle exceeded 

(2.2J:N no. or Joint angle exceeded 
.• 

(30,31 ::Q NUNIT=S 

(30,31=1 NUNIT=4 
(42,3):0 logical condition 

satisried in WHILE 
(42,3)=1 logical condition 

not sotisried 
, 43,3) :O group or instruct ions 

should be 
executed in WHILE 

(43,3)=1 group or instructions 
should not be 

executed in WHILE 
f 46,3) =O no VAL-1 l pr-ogrom is 

be i ng execut'ed 

( 46, 3 ) = l VAL - I I pr-ogr-am execut' i on 
continues 

:_r 

TABLE B-5. List or commoned variables 
• • . 

•, 
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BLOCK 

VERI"° 

SCPRMS 

VARIABLE 

. ,,,. ... ~ ..... ~ ' . . '.~ ' . -• I . 

.·,. • 

,\ 

~- .. 

FUNCTION 

IFLAGf48.31=0 rile being edited 
• as o new one 

C4B.3l=1 rile already exists 

161 .3) =O input i"s o VAL- I I 
command 

161 9 31=1 input is a assignment 
instruction 

. . 

165.31=1 in editor-, the Sb"tax is 
- checked (VAL- I I command I 

(65.3) :Q in editor syntax is not; 

~If 30) 

checked lossignment-
i nstruct' i on I 

(99.ll=O motion continues 
(99,IJ=I impossible path 

(100.l>=O col I ision check OFF 
(100,3):Q Axes dispJo~ ON 
(100.3t:Q Axes-display ON 
1100,3)=1 Axes display OFF' 

otherwise 
IFLAG(l,11=0 no collision 

f I • 1 I : l co I I i s i on 
ll.2l=N near polghedron N 
I I , 3 J : M near po I yh&Cron M 

indices or polygons ror 
a I I po I yhedrons 

NLl 130) indices or I ine segments 
ror- a I I po I yhedrons . 

IPJNE.xceoo.3 indices or polyhedrons. pol1:19ons 

and ver-tices 
LINEXf400,3J indices or vertices ror fine segment 

SOXLNG , used y VS I 130 graph i cs package 
SDYLNG • to set the window 
CFAC, 
SRESX, 
SRESY 

-~· 

• 

TABLE 6-6. List o~ commoned variables-
' ' 
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1. IN·l'RODUCTIOlf 

The VAL-II SIMULATOR is an interactive computer

graphics simulator of VAL-II, the programming language of 
" 

Unimation's PUMA robot. The simulation program serves the 

following purposes: 

-moves the end-effector to different locations 

-orients the end-effector 

-opens and closes the gripper 

-performs repeating tasks 
(/ 

-makes conditional and unconditional branching or jumps 

It employs an internally developed graphics package 

called GRAPH3D.LU to display the PUMA behavior upon 

execution of key VAL-II commands. The robot model and user

defined workpieces are presented using wire-frame or edge 

representation graphics scheme. Planar polygons are used to 

form extruded convex polyherdons. In order to create a more 

realistic representation of the model and its work 

environment, also to avoid complexity due to number of 

lines to be drawn, hidden-surfaces are removed. Also, 

algorithms for joint-coordinated and straight-line motions 

are developed. Information regarding configuration 

indicators and clamp status is available ·at any time. 

Arithmetic and logical expressions, like those found in 
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high-level computer languages are. available for decision , 

making and programming control. Collisions between moving 

and stationary objects, between the robot clamp and 

stationary objects, and between the robot links and 
( 

themselves are automatically detected. User-defined objects 

may interactively be retrieved from other CAD data bases 

using the International Graphics Exchange Standard (IGES) 

and also using POLYGON (19] interface, and then easily 

positioned in the PUMA's work-environment. With these 

features, users may design and evaluate various work-cell 

layouts, investigate assembly tasks, and test VAL-II 

programming possibilitit?s. VAL-II SIMULATOR is menu-driven 

which means that a list of options is available at_ all 

control levels. Once a work-cell is created and the VAL-II 

program is developed and tested with the simulator, the 

VAL-II program may be down-loaded directly to PUMA 

controller for final testing and verification. 

The PUMA is a spherical robot with 6 revolute joints 

and six axesG For an anthropomorphic robot such as PUMA 

600, 3 configuration indicators must be specified to 

gurantee one unique solution out of a possible four for the 

first three links, and one valid solution out of two for 

the last three joints. The first two configuration 

indicators are associated with the first three joints. It ~ 

must first be specified whether the robot arm is to the 

right of the base (~IGHTY robot) or to the left of the base 
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(LEFTY robot); also, whether the elbow of the robot is 

above the wrist (ABOVE), or below it (BELOW). The last. 

configuration indicator determines whether the clamp is to 

point upward or downward (FLIP or NOFLIP). Oftentimes, a 

user may want to move the robot through an impossible path 

which causes one or more of robot links to exceed their 

prespecified allowable joint angle rotation limits. In most 

cases, this may be taken care of by changing one or more of 

the configuration indicators, or introducing some 

intermediate locations. This however, requires a change in 

the VAL-II program which can easily be done using the EVS 

(Editor of VAL-II SIMULATOR). 

Using the simulator can significantly reduce the amount 

of time spent on robot programming and debugging. It also 

does not require tying up a robot from the production-line 

or using a "spare" robot. It can also contribute to both 
---........ . 

the safety of the operator and the industrial robot and 

time-saving. 

2 • ORGANIZATION 

The simulator is menu-driven, which means that a list 

of options is available at all control levels. Upon 

initialization of a VAL-II session and aft~r the copy right 

information is displayed, the user is asked to ·select a 

setup file. The user may decide to retrieve part files from 
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other CAD data bases and reposition them in ·the work 

environment. This can be done using an _IGES or POLYGON [19] 

interface. In either case proper menus are displayed and 
f 

the user is required to input his commands using only 

single key inputs from the keyboard. Simulation's flow 

diagram is presented in Figure c-1. Once a setup file is 

selected and the file read in and displayed, the user is 

directed to the MAIN MENU (Figure C-2). From this menu, one 

may move to MANIPULATION Mode, EDIT Mode, KEYBOARD Mode, 

PENDANT Mode, and VAL-II Mode. This menu is also used to 

automatically create files that may be used for hardcopy 

printouts and for POLYGON [19] generated solid models. 

While in this menu, it is possible to initialize the work

cell or begin with an entirely new setup file or retrieve a 

different sets of parts from other CAD systems. Whenever, 

any error is encountered informative messages are 

displayed. To stop and exit the VAL-II environment, one may 

press •s•. However, for protecting the new users, the 

simulator does not exit and asks the operator whether he is 

sure or not. From the MAIN MENU one may move to various 

control levels and back. If it is required to reposition 

any of the cell-components to design and test different 

layouts, the user may wish to move to the MANIPULATION 

Mode. The MANIPUMATION MENU is immediately displayed· as 

shown in Figure c-5. While in this mode, any individual 

part in the w·ork-cell may be moved by either the system 

144 



., 

defined, or user-defined increments, along any one of· the 
0 

axes of the fixed Screen coordinate System (SCS) to achieve .._, 

the final desired positions. A constant readout of the 
individual part .. positional data with respect to both the 
scs and wcs as well as the part number is displayed on 

,'I' 

the screen. This level of the simulation program is menu
driven and like other parts very easy to use. Any time, an 
error is encountered, an informative message is displayed. 
Whenever, the user decides to end repositioning one part, 
the simulator asks him whether he would like to save the -

. 

new setup, and if so, whether he would like to save the new 
setup file under a new name or the old file should be 
updated. At this level, for convenience, the coordinate 
axes display may be turned ON or OFF. Once done with 
repositioning the part (s), the user may return to the top 
of the menu. A flow diagram of the manipulation mode is 
shown in figure·c-6. 

The simulator offers many special features. These 
interactive features are all presented in the KEYBOARD 
Mode. To enter the Keyboard Mode from the MAIN MENU, one 
must press 'K'. Following this input the KEYBOARD MENU will 
be displayed as shown in figure C-3. VAL-II program files 
and location files may be listed on the screen, while in 
this mode. A user may obtain a l'ist of all the VAL-II robot 
control ·programs· by· typing LISTF. Also, contents of VAL-II 
program(s) may be d~splayed .on the screen for reference and 
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verification. A list of all location data·files used by 

VAL-II programs may be displayed on the screen by typing 

LISTL. In this mode, the position of the clamp may be 

displayed by pressing 'P' followed by '1 1 , '2 •, or 1 3 • 

corresponding to position along the TCS's z-axis at the 
. \ 

origin, LED sensor, and clamp tip, respectively. One 

drawback of using wire-frame or edge representation scheme 

is that, it is very difficult to visually detect whether an 

object is in front of, behind, or intersecting another one. 

For this reason, algorithms for collision detections are 

used. In order to create a more realistic work environment, 
. 

and to avoid complexity, the hidden-surf aces are 

effectively removed upon user's request. Like any other 

user friendly graphics package, the simulator allows the 

user to translate, rotate and scale the entire work-view. 
\ . 

For convenience, the coordiante axes display may be turned 

ON or OFF. At the end of a KEYBOARD session, the control 

may be transfered to the top of the menu, MAIN MENU, by 

pressing 'R' (R_ETURN). A flow diagram which describes this 

mode is presented in Figure C-4. 

One section of the simulation program has been 

dedicated to graphically display the functions and usage of 

a "Teach Pendant". This mode may be invoked by pressing 'P' 
-

form the MAIN MENU. The PENDANT MENU, as shown in Figure C-

10 will ·then be dsiplayed on the screen. This mode allows 

the user to move the PUMA joints independently of each 
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other. This is the exact method an industrial robot is 

taught points along various paths. The user is also enabled 

to move the clamp along straight-line parallel to any one 

of the axes of the wcs or TCS, by pressing 'W' or 'T' 

followed by 'X', 'Y', or 'Z', to move in the corresponding 

directions. The clamp may also be displayed in fully 

'OPENP or 'CLOSE' positions. Unlike the real PUMA, the 

speed set in Pendant mode and VAL-II mode are independent. 

However, it is possible to increase or decrease the joint 

angle rotation increment. by pressing 'I' or 'D', 

respectively. It is also possible to change the direction 

of the joint rotations by pressing 'N'. This operates as a 

switch and changes the rotational sense from clockwise to 

count~rclockwise and • vice versa. A flow diagram 

corresponding to this mode is displayed in Figure c-11. 

Another important feature of the simulator is its 
• 

Editing capabilities. The EVS is a so called "Line Edito~' 

meaning that to make any changes on any given line, the 

entire line must be retyped. Iri many situations, some of 

' the most impossible paths are not known, until a robot 

program is run once. One way to get around this problem is 

to change one or more of# the configuration indicators, or 
• 

introduce some intermediate locations. ·In either case, 

modification of VAL-II program is necessary; something 

which can easily be done usin~the EVS. One may invoke the 

EDIT Mode by pressing 'E', while in the MAIN MENU. The 
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legal Editor commands are immediately displayed on the 

screen (Figure c-s). For convenience, tl1is menuis 

displayed on the screen at all times while in this mode. At 

this point to start an Edit session, the user types in 

"EDIT" followed by the program name, for exapmle, xxx.DAT. 

The program name may be up to 9 characters long. The EVS 

will search for the input file name in its directory. If 

the name is matched with one of the entries in_ the list, 

the file is an existing one, and the contents of it will be~ 

dislayed on the screen. Otherwise, the user is signalled by 
If 

displaying the following message: 

INPUT FILE" xxx.DAT" DOES NOT EXIST 

and the new name will be added to the entries in the list, 
~ 

and the file will be initialized. If the file is a new one, 

the user then presses 'C' to continue. In the EVS every 

line is referenced by. a unique step number. Hence, upon 

depression of the key 'C', <S. l> will appear on the 

screen. The user may then type in a line of VAL-II 

command(s) as desired. As a program evolves, many of the 

lines may be deleted, or new ones inserted. As a result of 

this, the step numbers are automatically adjusted. 

Therefore, the step numbers should not be used as line-

(( 

addresses. Instead, the first four spaces in any line are 

reserved for step labels. Step labels are optional, and if 

the user does not wish to specify a step l~bel f~r a given 

line, he must type in four spaces before typing in the VAL-

148 

.. , -- '. 



·, 

C 

II command. Conveniently,· the user may set the 'TAB' to 

<5>, and if a step label is to be omitted, one must depress 

the 'TAB' key before typing the VAL-II command. In the 

case when a robot control program has already been 

created and the user wishes to modify it, one may delete 

or insert lines by pressing 'D', gr 'I' followed by 

corresponding step number, respectively. To protect new 

users, every time such modifications take place, the 

updated version of the program will be displayed on the 

screen. During program modification, if a wrong key is 

depressed, the user is immediately informed of that, and 

for protecting the modified version, the program is saved 

at once. A flow diagram is shown in Figure c-11, which 

clearly describes the functions a11:_d usage of this mode. To 

exit the EDIT Mode, one may press 'E' which willtransfer 

the control to the top of the program, namely the MAIN 

MENU. 

The most important feature of the Simulation program is 

the VAL-II Mode. VAL-II commands are Englishlike and easy 

to memor.ize. For this reason the· VAL-II Menu (Figure C-13) 

display is optional. In this mode, users may enter a VAL-II 

command and observe the PUMA's kinematic behavior upon 

execution of that command. Like the EVS, in the VAL-II 

mode, the first 4 spaces are.reserved for step labels, and 

if the step label is to be omitted, 'the user may set the 

'TAB' to <5>, and depress the !TAB' key when necessary, or 
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·_simply type in 4 Si>aces and start the VAL-II command from 

. the fifth column. End of each line is marked by pressing 

the RETURN key from the keyboard. The simulator will read 
" 

the command string, decode it, set a pointer, and display 

the corresponding PUMA behavior. Following the execution of 

each VAL-II command the user must press 'C' to continue 

with the next line. In order to teach locations to robot 

one must press 'D', at which point a menu will be displayed 

which will ask the user whether he wishes to read the 

locations from a data file, or they are to be input 

interactively. If the latter is chosen, the user may input 

the desired positions and orientation angles as desired, 
(,; 

and the robot will be displayed in those configuration. One 

may store various locations in a data file and ask the 

simulator to read the position and clamp orientation data 

from that file. In this case, the user is required to inpµt 

the name of the data file in which the locations are 

stored. The simulator will open the file and start reading 

the data. Every time a line of data is read, the robot will 

be displayed in the corresponding position and clamp 

orientation, and the user is asked to either accept the 

location and continue with the next line of data, to reject 
. 

the location but continue with the rest of the file, or to 

accept the location and quit reading the remaining lines of 

data in that file. The user is required to specify his 

choice by single key inputs. To wipe the 'TT' characters 
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out one may .. press 'W' before typing the next VAL-II 

command. Depression of 'R', transfers the control to the 

top of the menu. While in the VAL-II Mode, if any error is 

encountered, the user is immediately notified of that by 

displaying the appropriate message. User programs may be 

executed and use.r-def ined subroutines can be called to 

accomodate various tasks and t9 increase programming 

control. Conditional and unconditional branching or jumps 

may be performed with limited sensory interface. To abort a 

VAL-II program without leaving the Simulator environment, 

and hence preserving the locations and setup, one may press 

the keys "CTRL" and "C", simultaneously, w~ich acts as an 

"ABORT" command in VAL-II language. At all control leve1-s, 

on-line HELP is available for all the VAL-II and some 

MONITOR commands. For each topic, the prper syntax, and a 

description of the function performed are given. 

3. SCOPE 

The apparent motion in the simulator is achieved by 

transforming the present location, to desired ones, quickly 

erasing the screen, update t~e data and display the 

entities in their new position. When this is done quickly, 

one's eye blends the images to create the apparent motion. 

Depending upon the distance between the current and the 
---~ 

desired configuration, the intermediate locations are 
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determined. ·The model is then displayed in the initial, 

intermediate and final configurations. In the simulator, 

the speed variations are based on the relative speed and 

not the true one. The speed set in the Pend~nt Mode, and 

the one set in the VAL-II mode are independent of each 

other. The default speed, in the simulator, is set so as to 

_provide smooth display. In the VAL-II mode, the default 

value for maximum joint rotation increment is set to 12 

degrees (full speed), which may be adjusted by VAL-II 

commands. In the Pendant Mode however, the default value 

for joint rotation is set to 8 degrees which may be 

increased or decreased. 

To create an illusion that the interior region of a 

displayed surface • is opaque, and also for better 

visualization, the hidden-surfaces may be removed. This is 

done by calculating the coordinates of the normals of the 

planar polygons, to determine whether the face is a "front 

face" and potentially visible, or a "back face", and thus 

invisible. It must be noted that, the algorithm used here, 

only removes a face (s) which is hidden by the volume of the 

polyhedron it belongs to. 

One drawback of wire-frame representation is that, when 

an object extends over, and covers a part of another 
',-

object, it is very difficult to visually detect whether.one 
.. 

object is in front of, behind, or intersecting another one. 

For this reason, routines have been developed which use 
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both the coarse and fine mathematical intersection check 

algorithms which notify users of potential collisions. 

Possible collisions between the moving and statipnary 

objects, the robot links and themselves, and the robot 

links and stationary obj~cts are checked, but impossible 

ones are not. 

The simulator also models the interaction between the 

robot model and user-defined cell components. Latching 

onto, ~oving and detaching from objects is simulated. 

The on-line help feature is one of the most important 

features of the VAL-II SIMULATOR and is available at all 

control levels. This feature makes the simulator a reliable 

and effective instructional instrument for training the 

future robot user. Help is available for all VAL-II 

commands and some Monitor commands. To increase the 

flexibility and pr.ogramming control, the simulator takes 

advantage of a two pass compiler to simulate conditional 

and unconditional branching or jumps. In the first pass, 

the simulator makes a record of the step label, variable 

names, and examines the logical condition. In the second 

pass, it finds the specified step and transfers the control 

to that step. Also, limited sens·ory interface is available. 

Editing features allow users to create and modify robot 

control programs. The Edit Mode prov-ides a more suitable 

work area for the programmer, so that the individual could 
,. < 

use his' resources more efficiently • 

. ' , 

,j.· 
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User-defined geometries may be retrieved from other CAD 

systems using International Graphics Exchange standard 

(IGES) interface or through POLYGON (190interface; they 
. ,} 

may then be repositioned in the PUMA's work environment 

interactively. 

It must be kept in mind that the VAL-II SIMULATOR is 

not a robot emulator. It does not simulate the effects of 

gravity nor inertia9 Dynamic characteristics such as 

accelerations and decelerations are not included to 

minimize the amount of computations, thus providing 

smoother motion. One must also note that, the simulator 

picks up objects when the LED line-segment is intersected 

and the flag is set. The simulator does not know whether · 

the object is between the two faces of the clamp nor if it 

is to heavy. So,the simulator picks up objects, when in 

reality the robot misses the object, or the object slips 

out, when they might be picked up. 

Nearly, all the Location, Configuration, Motion 

Commands, as well as hand and programming control commands 

are simulated by VAL-II SIMULATOR. The simulator does 

not simulate any hardware nor can it handle precision 

points for compound transformations. 

Other PUMA models may be simulated by modifying. the 

present geometry data file. In order to simulate .the 

kinematic behaviors of other robots which do not have six 

revolute joints in an identical configuration,requires 
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diff•rent transformation matrices. Once, the dedicated 
I 

subroutine which forms a particular transformation matrix 
/ ., 

for a joint has been changed, the present method is used to 
() 

obtain the display data for the subsequent links. 
,. 

• 

4 • DATA PREPARATION · 
·-•., 

The robot model is presented by a series of extruded 

convex polyhedrons. The user-defined workpieces are shown 

· by other polyhedrons. The simulator uses a wire-frame or 

edge representation scheme. To form a ·polyhedron, 

corresponding vertices of n-sided polygons are connected to 

form planar polygons which enclose a volume. The cell 

components may be defined by creating the parts I in a 

different CAD system and then interactively retrieved and 

positioned in PYMA's work-environment, or by creating 

separate setup geometry file. A setup file is shown in 

Figure c-20. The first line contains the number of 

user-defined workpieces in the cell, 5. The object 

coordinates may be given in millimeters or inches. Either 

"MM" or "IN" may be used. The third line, shows· the 

coordinate system with respect to which the object data is 

defined. A "W" will designate the wcs, and a "S" will 

specify the scs. Following the thi·rd line of each setup 

file, lines of data, one corresponding to each user-defined 

object appear to indicate each object's size; this is 
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specified l,y giving the number of vertices belonging to one 

polyhedron. The objeqt size is shown by specifying the 

first and last vertex with a comma separ,iting them (1,8). 

Due to the data format chosen here, the first digit should 

be l,and the lastone an even intege~ larger than 6. 

Associated with each object is a reference point (the first 

corner). Next line in the setup file, following the number 

of the vertices for the first polyhedron is the coordinates 

of the reference point, namely the first corner. Following 
\ 0 

this line, the coordinates of each vertex is given with 

respect to the reference point, shown in alphabetic order 

(X, Y, Z) separated by commas or spaces. The order in which 

the vertices are defined is critical. The vertices 
. .,, 

representing the front and back faces must be given either 
<:: 

in a clockwise or counterclockwise order, when looking 

toward the origin along the line of the normal axis. This 

1s very impottant for effectively removing the hidden

surfaces. When a counterclockwise convention is used, the 

magnitude of the coordinates along the normal axis for the 

first polygon is larger than that of the second one, and 

vice versa, when a clockwise convention is used • 

.. The locations may be defined interactively, by typing 

the position and clamp orientation angles while in the VAL

II Mode. There is a quicker method to define locations, and 

that is to write them in a data file. The position and 

orientation angles may easily be determined by looking at 
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the position of -the specific objects defined in a setup 

file. A location data file is shown in Figure C-19. In 
,1 
/ 

this file, each location is signalled by the l'abel, POINT, 

followed by a space, and then an appropriate name of up to 

9 characters long, a comma, followed by the position and 

clamp orientation angles, separated by commas. Once the 

setup and location files are created, one may enter the 

VAL-II SIMU'LATOR environment and observe the kinematic 

behavior of the PUMA upon execution of various VAL-II 

commands. 

5. SIMULATOR USE 

The simulator may interactively be used to serve the 

following purposes: 

-to move the end-effector to different positions 

-to orient the end~effector 

-to open and close the iripper 

-to perform repeating tasks 

-to make conditional and unconditional branching or 

jumps 

The order in which the VAL-II instructions are to be 

executed ·1s critical to simulate a manufacturing task. 

' 

Oftentimes, several iterations are necessary to determine 
~ 

the most efficient sequence of commands. The EVS may be 

used to interactively create and modify VAL-II programs. 
() 

,.., 
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Locations may be created either u.sing the Pendant or VAL-II 

Modes. 

Once programs and locations have been verified on the 

simulator, they may be down-loaded to PUMA-controller for 

final testing and implementation. 

6. EXAMPLE SESSION 

" :,:- , -,i; ~ t:b 

,. 

The following examples show, step by step, the features 

of the simulator. Except for the EDIT Mode and the VAL-II 

mode, user inputs are single key inputs. The proper syntax 

of each command is checked when it is read in. At any time, 

if any error is encountered, corresponding error messages 

are displayed. If a VAL-II command does not match one of 

the entries in the COMMAND.DAT file, it can not be 

simulated and an error message is displayed. The EVS 

continuously checks the syntax of the commands that are 

input. ·If the command is not one of those which may be 

simulated, the line is rejected and an error message will 

be display~d. In the steps of the table below, "RETURN'' 

denotes a carriage return key, which marks the end of a 

line. When more than one input or output is given, they are 

separated by commas. In the format which is used here, the 

first column describes the user's input or the program's 

output; the second column gives a brief description of the 

inputs or outputs on the corresponding line, and the third 
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column references the figure which corresponds to the 

display produced by the, terminal. The first example, 

PROCESS, uses some of the VAL-II commands that can be 

simulated. The second example, CONVl, clearly shows the 

functions and usage of arithmetic and logical expressions 
I 

used in the VAL-II SIMULATOR. The program listings, 

location files, and setup files associated to these two 

examples are given in the figures which appear at the end 

of the chapter •. 

0 
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. '· . .. 

. : . . 

.. 
-. 

. . 
' . . . . . . . , 

. . .. 
.. , . . , ... . 

.... 

INPUT/OUTPUT 

"R ROBSIM .. , 
RETURN 

E 
.. DEM03.SET .. 

RETURN 
RETURN 

K 

F 
F 
A 

A 

R 
M 

1, RETURN 

1 

y 
Y, 0,0.300 
Y,0.0,45 

N 
Y.2,RETURN 
Y,0,0,-200 

N 

N 
Y, "TEST.DAT" 

RETURN · 
E 

"'EDIT TEST.OAT· 

" 
fl 

C 
MOVE A .. 
t.40VE e• 

EXPLANATION 

RUN VAL-II SIMULATOR 

read rrom existing setup rile 

Main Menu display 
Keyboard· Menu display 

hidden-surroces not removed 
hi dden-surroces rem~ .. ,ed 
Axes display ON 

Axes di sp t·oy OFF 
return to Mein Menu 
Manipulation Menu display 

move port' no. I 

coordinate axes ON 

continue 
translate part by 0,0.300 
rotate part- about !:f 1:,y 45 deg. 
stop moving rirst port 
move part no. 2 
translate b~ 0,0,-200 

no rot;at;ion 

end moving ports 
save r i I e under the new name 
bock to main menu 
Edit Mode 
edit; TEST.DAT -program 
continue 

FIGURE 

Cl 

C-2 
C-3 

C-5 

C-7 0 

C-7 b. 

C-7 c 

C-8 
. 

• 

l.. Ct_OSE I 50 .. 

L----~·-!O_~~"---A------'---~--------_. _______ _. 

T ABL.E C-1 • STEP BY STEP EXl,~1.-PLE SESSION 
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• . 
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. . . 

', 

. . . 
•• .I . •. . . . . ... . ,• . .. 

. 

• 

. .. ·· . . ,,. 
. . . . . 

·. 

. :. . : 

.• 

. . . ~ 

. . .. 

. .. . . .. . . I.·-• 

. .. 
. . . 

·, . 

" 

INPUT /OUTPUT· 

D.3. RETURN 
I, 3,RETURN 

MOVE E" 
S.E 

p 
M 
R 
K 

S,R 
p 
M 

1 , l • 1 , l , I , I 
3,3 

1,1,1.1 

3,3,3 
I , I , I 

3 

3 
2 

EXPLANAT!ON 
.. ' 

delete step 3 
insert a new step instead 
new step 3 

saver; le & exit rrom editor 
Pendant Mode 
display model 

bock to main menu 
Ke!::lboord Mode 
collision check ON, return 
bock to pendant mode 
modi display 

rotate JO i.nt 1 
rot-ate Joint 3 
rotate Joint 1 

rotate Joint 3 
increase the rotational 
increment 
rotate Joint 3 
rotate Joint- 3 
rotate Joint 2 

N c~onge direction or rotation 
3 rotate Joint 3 . _ 

A,K,S,R turn collision chec~ orr-
e;E. PROCESS.SET begin with o new setup 

. -
V VAL-II menu display 
V VAL- 11 Mode 

"LE~ lert~ robot 
"AB" elbow above . 

0,0 
·PROCESS.LOC .. 

~eod I ocot i ons rrom a dot'a r i I • • 

RETURN 
A 

/\,A.,A·,A 

E.w 

. 
location rile name 

. 

accept and continue 
accept; and continue 

accept, end reading the rile 
wioe out TT characters 

FIGURE 

C· 10 

C· lZ o 
C-JZ b 

C· 12 c 

C· J2 d 

, C· 14 

C· 13 

C· 15 

• 

TABLE C-2. STEP BY s·TEP EXAMPLE SESSION 
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. . . 
···: 

.. · .. . 

\ 

"' 

INPUT/OUTPUT EXPLANATION , 

·EXEC PROCESS,l"execute p,-ogram process. once 
•READY" 
•LE• 
"AB• 
"APPRO 6, • 50" 
·MOVE A" 
·CLOSEI so· 
·DEPARTS 100,. 
.. MOVES E .. 
.. MOVES F ... -
·DEPARTS zoo• 
·APPROS c,-so· 
•MOVES c• 
·OPEN[ 100• 
·DEPARTS 100• 
·APPROS B,:Y.o• 
·MOVES B .. 
·CLOSEI 50 .. 
·DEPARTS 100 .. · 

1erty 

approach A 
move to locoion A 
close t'he clomp 
deport by l 00 
move to E along straight line 
move tor 
depart arter part pr-ocessed 
oppr"'Oach C 
move to C 
open the clomp 
depart 
approach B 
move to B 
grasp the part 

"aAOVES E" move to E 
•5t-HFT E,0,0,-lO)• shirt the location 
"MOVES E- insert the port in processor 
·DELAY 1• wait til I part processed 
•oEPARTS 200" deport 
.. APPROS D,-50 .. move to 0 
·MOVES o• 
·QPENI JOO .. 

.. READY .. 
.. STOP 

R 
s 
y 

open the clomp 

stop 
,...etUl"'n to main menu 
ens the session 
conf'irm 

•.. 

FIGURE 

C-16 

. 
C· 17 a 

... 

C· 17 b 
C· J7 c 
C· 17 d 

C· 18 a 

C- JS b 

C· 18 c 

TABLE C-3. STEP BY STEP EXAMPLE SESSION 
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.. 
.. : . . 
,. u . . . . . . . 

,, 

I , 
. ., . 

( 

, 1 . 
l.611 f"ILE NA~l 

SETLP FILE NAME: 
NO. OF' WORKPIECES: 

·~ITS CF WORKPIECES: 
COOROlNATE AXES SYSTEM: 

KEYBOARD~ 

LISTI LISTP 
LISTF 
LISTL 

POSITID'I 
COLLISION 

FACES 
OOIENT 

AXES 
RETURN 
K)[EL 

VAL-II 

MANIPULATION MENU 
l.PWARO 

DOWNWARD 
RIGHT 
L£fT 

FORWARD 
BACKWARD 

X ROT 
Y ROT 
Z ROT 
AXES 
STCP 

u 

... 

INllll\LIZE 

~7 
. 

IGES rlLE 
UGI I FILE 

EXISTING rlLE 
t:. \ / 

I 

SPECIFY SETUP FILE: 

K 

M 
• • • i j T 

DISPLAY '-OOEL 

MAIN MEJ\IJ 

t<EYBOARO 
MANIPlLATICN 

PENDANT 
EDITOR 
VAL· l I 

RET~ 
BEGIN 

INITIALIZE 
STOP 

HAROCOPY 
GENERATE 

VAL- I I COIMA~ 

E 

' IGES FILE NAME: 
SETUP FILE NAME: 

~ NO. OF WORKPIECES 1 
UNITS CF WCR<PIECES1 

~INATE AXES SYSTEM: 

PENlANT MENJ 

f .X,(NT I J ROTATE 
&JOINT 21 ROTATE 
I.JOINT 31 ROTATE 
I.JOINT 41 ROTATE 
tJOINT 51 ROTATE 

"'- IJOINT 6J ROTATE 

V' 

• 

OPEN 
CLOSE 
WORLD 
TCXL 

INCREASE 
DECREASE 
~GATIVE 

RETLRN 
VAL· 11 

EDIT MENJ 

CREATE 
INSERT 
DELETE 

SAVE 
EXIT 

-
Figure-Cl. Simulator rlow diagram 
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MAIN MENU .. 
. ' - . 

_ENTER SUBME~NUS BY ~RESS I HG: 

K-E'fBOARD 
t1_At"f I PULAT I OH 
P_ENDAHT 

E_DITOR 

VJfL-II 

R_E.TURt..r 
B_E(3JH 

I_HITIALIZE 
S_ T1)P 

H-~=tR[)(;r)PV 

G_El-fERATE 

Figu1·e c-2 

: TO KEYBt)ARD (MONITOR> MODE 

: TO MANIPULATE "-'ORK PIECE LOCATIONS FROM THE KEYBOARD 
: TO PEHDAHT MODE 

: TO EDIT MODE 
: TO DISPLAY A LIST OF EXECUTABLE URL-II COMMANDS 

: TO RETURN TO PICTURE OF MODEL AliD UICE •JERSA 

: TO :;TART DUER 
: TO I t-1 IT I AL I ZE LJ I TH SAME SETLIP F I LE 

: TO EXIT PROGRAM AHO CLEAR S•:REEH 

: ·To 1:::REATE A PRINTOUT FILE 

: TO •3EHERATE POL 11"GON. I HPIJT F I LES 

-

Simulator output Image for Example 
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I<. E \' BC) Af~D · i'IENLJ 

L-I~3T - T~IEt·, T't1==·E LISTP PROt:3. t·~A1··1E: I.JAL- I I 
L_I:3T - THEI·~ r·,·1:·E l. I ~3TF: lJt=tL- I I PR()GRAl'1S 
L_ I ~3T - THEl·4 T°l''l~E L ISTL: IJ1=tL- I I LOa:~AT I 1:11··4 

FILE 1-ISTit·4B 
. ,/ .. 

LIST 
D1=tTA t=- I LE~3 

P _1J~; IT I 1)t~ • . re, I) I SF'I_A'( 1=·0s I ·r J Cit~ OF (~LAr11=> 
S_t11)tJTH 

F_A,:Es 

O_R IEl·~T 
A '-'f::c -···· ..... , 
R_E.TIJRt~ 

t-1_0l)EL 

'...'~Al--1 I 

• 
• 

• 
• 

• 
• 
• 

• 
• 

· CC•LI_ IS I t)t·4 Cl-iEC•<!; < 01··~ .. ,'0FI=) 

BA•:I< FA•:ES ( OH/1:rFF) 

CALI_$ Of~ I EN"T 1 Tl) sci=1LE, 'TRAH:3LATE OR ROTt=ITE 110[:•EI._ 
c:c,01~[) l t~r~TE Ff;.:At11::s ( 1Jt~, .. ,c,1=F) 

: TO l~F.Tt~l~t-~ Tt) THJ:: TOI=> OF A 1"11:7NU 
: TO I) I SPI-AV "THE 1··10DEI_ 

: BEFl)RE 1::t~TEI~ I HG A 1...IAI.. ,:or1r·1r~t-tO 

.. -
Figure C-3. ! 
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.. 

.. . . 
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.. 
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Figure C-4. Keyboard Mode Flow Diagram 
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MAIN MENJ 

KEYBOARD tN:REMENTS 

LEFT 

RIGHT 
UPWARD 

DOWNWARD 
• 

FORWARD-.~ 
- NO BACKWARD 

X ROTATi(l\J 
Y ROTATI~ 
Z ROTATJON 

NJ 

SAVE 

RETURN 

, 

.• 

1t 

. -· . . - .•.,. •. . : · . 

·• 

Figure C-6. Manipulation Mode Flow Diagram 
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Figure C-7 •. Simulator output Image for Example 
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Figure C-9. Edit Mode Flow Diagram 
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Figure c-10. Simulator output Image for Example 

.. .,. 

.... 

• 



. . ~ . •' . . . 
• ..:•'.I : • • • • 

. . . . . . . . . . 
... . ' . . .. 

• • • • • I I I I • • ... 

I 

• • .. • I • I I • 
,. I, ' I I'\ I t • ,, I I I I 

o •• ' o I • f I • • I I ' .... I .. I I t I 

• • • JI • ..., • • •• 

°' I • • , ' , ' • . . . . . . . 
I It o I 

. . ., '· .. . 
• •. • ••• t 

.. . 

. . . . .. 
. . 

WORLD 
X,Y,Z 

TOOL 
X,Y,Z 

JO I N'T 
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MAIN MENU 
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DIRECTORY 
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Figure c-11. Pendant Mode Flow Diagram 
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10 C-OLLIDES UITH S 

• 

a. , 

• 

c. 

f' 

• 

CLt1l !F· I!. tlEFtF! F·Ft~T I E• 

10 C:(•LL J t·•E':: U 11 f-1 7 

1 l' c·OLLJ c,e~ ~ITH . s 

C'LAMP I~: tlEF1R PFlf.~ T t \J 

10 ,:~O~L I C•ES U I TH 6 

I '3 C'OLL I C•ES 111 Tt-1 "? 

F·~1F:1' I 8 J ·; ~-:EAR PAP.l 5 

le COLLJOES ~IT~ , 

b. 

. d • 

'. 



.. 

~JF1L-1·1 ME~IU 
ENTER C:Or1MFtt~[):~ ev TVP I t~Ei It~= 

READY 
HERE P 
MOlJE P 

MOUES f• 
OPEUI (~:> 
CLO~:EI <X> 
SPEEDS 
l-JHEJ::E 

APPRO P., D 

f1PPRCr; P ~ 0 

STOF' 

HALT 
DEPART D 

- VERTICAL COl"-fFIGIJRAT IOM • 

- DEFINE COMFIGURATION P 
- JOil-..iT COORDINATE TO P 

- STRAIGHT-LINE TOP 
- OPEi~ CLAMP E:Y x:~ •. 

- CLOSE CLAt1P BY X~ 

- F'ER•:EHT OF FlfLL SPEED 

- DISPLAY POSITIONAL INFORMRTIOH 
- ._10 J HT coo~ I t--lATE APPROA1:H 

- STRAIGHT LI 1·,rc: APPROl=tCH 

- EHD URL- I I PF:OGRAM 

- LIKE STOP <~;EE CTRL_C) 

- .JO I liT COORD I t-lATE 
DEPARTS D - STRAI6HT LINE DEPART 
DELA'( H 

PALISE 

RIGHT'l" 
LEFT'( 

Al301..1E 

BELC'I~ 
FLif> 

t.irJFL IP 

- DELAY PROSRt=tM H SEC1)t..fDS 

- F~ETIJRH COt~TROL TO U:~ER 

- RI GI-IT Ht=lt..fDED ROBOT 

- LEFT HFtt--tDED ROB1)T 

- ELBOW ~BOUE URIST 
- ELBOW BELO~ URJST 
- t~EGAT I t•E JO I t-lT 5 Ftt.f(SLES 
- PO~: I TIUI:: JO It~T !5 At~1:;LES 

UAL-II MENU CONTINUED 
Ef·-lTER Ct.ff1MAt~D~~ EV TYP I HG I H: 

; 

TYF·E :<s 
STFtTLt:; 

SET P1•F'c! 
l>R~ :-c, V .. :Z 
DRil'E .J, A .. S 

- BEFOP..E co,·1r1Et~TS 

- URITES THE UALUE OF X 
- '"'RITES ROBOT STATIJS <~SPEED., PROS. LOOP NO. 
- E(;,UATE P 1 TO P2 

- STRAIGHT LlHE IHCREMEHT 
- M1)1JE .JT. J.. R DEG. AT SP. S 

Bt~SE :~, Y .. z .. R - SI .. I FT flHD F:OTATE ROBOT 
Sl-tlFT P, ><.• V, Z - SHIFT F"OS ITIOt·~ P 
E!<ECUTE NAt1E., N- E:<ECUTE NJ~ME.. t-1 Tl MES 
CTRL-C 

GRASP X, t~JJf1 

HELP 

- TO FtBORT A lJAL-1 I PR0•3RAM 

- CLOSE CLAf'1P B'l" i~:;~.. EL!SE GO TO STATEMENT t,tiJ. <NUM> 
- 1-IRITES DE:;CRIPTION OF UAL-II COMMt~S 

ALIGN - AI_JSt·lS THE T01)L Z-AXIS ~ITH NEAREST IJORLD COORDS. Z...R;<IS 

UAR 1 • VAR 2 - SETS tJAF.:. ON THE LEFT EQUAL TO Ot£ OH THE RIGHT OF EdUAL SI8N 

HELF· 

C_OHT I t·tLIE 

"-'-I f'E 
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: TO DEFJHE ORJEHTATIOHS 

Figure C-13. Simulator Output Image for Example 
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14 
fVil 
w 
l, & 1.-1 

440. 00 -50·00 -3~0.00 575.00 -oOO 00 -3~0 00 
0.00 0.00 0 00 20.00 o. 00 0. 00 
0 00 0 00 70.00 20.00 0.00 -~,o oo 
0.00 30.00 70 00 20. 00 ~o oo -~50 00 
0 00 30 00 0 00 20.00 20 .. 00 0. 00 

50.00 0.00 0.00 0.00 0.00 0 00 
,o.oo 0.00 70.00 0.00 0.00 -:!~C, 00 
50 00 30.00 70 00 0.00 .?O. 00 -;?~O. 00 
,o. 00 30.00 0.00 0.00 20.00 0. 00 

1. II 1.:J 
440.00 10583 -320.00 ,1,.w 200.00 -320. 00 

0.00 0.00 0.00 20. 00 0.00 .-- 0.00 

0 00 0. Oct 70.00 20.00 0. 00 -~50. 00 
0.00 30.00 70 00 20.00 20. 00 -2,0. 00 

0.00 30 00 0.00 20.00 20.00 0.00 

50.00 0.00 0.00 0.00 0. 00 0 00 

,o.oo 0.00 70 00 0 00 0. oo. -2,0. 00 

~0.00 30.00 70.00 0.0'J 20. 00 -2,0. 00 
,o.oo 30.00 0.00 o. (JO 20.00 o. 00 

1. 8 l, 8 
-463. 51 !100.00 -320.00 345. 00 200.00 -320. 00 

0.00 0.00 0.00 20.00 • 0 00 o. 00 

0.00 0.00 40_00 20 00 0.00 -2,0. 00 

0.00 600.00 40.00 20 00 20.00 -250. 00 
0.00 600.00 0.00 20.00 20.00 0. 00 

~0.00 0 00 0.00 0.00 0 00 0.00 

,oo. 00 0.00 40.00 0.00 0 00 -;:?50. 00 

~00. 00 b00.00 40. 00 0.00 :!0.00 -250. 00 

500. 00 600.00 0.00 0.00 20.00 0 00 
• 

l, I 1,. 
-463.51 500.00 -320.00 345. 00 -600.00 -3:?0 00 

40.00 0.00 0.00 20.00 0.00 0 00 

40 00 0.00 -:?,o.oo 20. 00 0 00 -2~0 00 

40. 00 40.00 -250 00 20.00 • 20 00 -~50. 00 

40. 00 40.00 0.00 20.00 20. 00 0 00 

0.00 0.00 0.00 0 00 0. 00 o. 00 • 
0.00 0.00 -;?50.00 0.00 0.00 -250 00 

0 00 40.00 -;?,o.oo 0.00 20.00 -~,o. oo 
0.00 40. 00 0.00 0.00 20.00 0.00 

1. a l, 8 
-463.51 lOb0.00 -3~0.00 49,. 00 400.00 -3~0.00 

40. 00 0.00 0.00 0.00 0.00 0.00 

40 00 0.00 -:?50.00 0.00 0.00 -1~0. 00 

"' 40.00 40.00 -~50.00 171:a. 78 176. 78 -1,0. 00 

40. 00 40.00 0.00 176.78 176.78 0.00 

0.00 0.00 . 0.00 -1,~. 78 176.78 0.00 

0.00 0.00 -250.00 -176.78 176.78 -1,0. 00 

0.00 40 00 -~,o.oo 0.00 353.~ -J50.00 

0.00 40.00 0.00 0.00 353. 56' 0.00 

1. 8 1. a 
-2. ,1 1060. 00 -320.00 •• 5. 00 400.00 -470. 00 

40.00 0.00 0.00 0 00 0.00 0.00 

40. 00 0.00 -~~0.00 0.00 0.00 -100. 00 

40. 00 40.00 -2,0.00 176.78 176.78 -100.00 

40. 00 40.00 C ' 
o.oo l 76. 78 171:,.78 0.00 

0.00 0.00 0.00 -176.78 176.78 0.00 

· o. 00 0.00 -250.00 -17 •. 78 176.78 -100.00 

0.00 40.00 -2,0.00 0.00 353. ~ -100. 00 

0.00 40.00 0.00 0.00 353.,6 0.00 

1. 8 
-2.,1 ,oo.oo -320.00 
40. 00, 0.00 0.00 

40.00 0.00 -~50.00 . . 
40.00 40.00 -;?!tO 00 

,o.oo 40.00 0 00 

0.00 0.00 0.00 Figure C-14. Program PROCESS 
0 00 0.00 -250.00 

0.00 40 00 -:?50.00 

0.00 40.00 0.00 

l, 8 '9-5 00 -320 00 
Setup data file 

-60000 
0.00 0.00 0.00 

" 0.00 0.00 -~o oo 
0.00 800.00 -~o. oo 
0 00 800.00 0.00 

-250.00 0.00 0.00 

-250.00 0.00 -20 00 

-250.00 800 00 -20.00 

-2!>0.00 800.00 0.00 
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,· 

,·!"• 

.. ·, .. 

POINT A,4c:,'5. ,-45. ~4 , -c. 5. , B9. , 91. , 0. 
FGINT B,465., 120. ,-245. ,90. ,90. ,0. 
PGINT C,-180. ,600.,-204. 16,90.,90. ,-90. 
P8It~T D, -100. , 600. , -204. 16, 90. , 90. , -90.· 
POINT E,425., 590. ,-220. ,90. ,90. ,-45. 

- POINT F, 425. , 590. , ·'-~00. , 90. , 90. , -45. 

}\ 

Figure C-15. Program Process: l,_ocation data file 

; PROQRAM: PROCESS 
; THIS PROGRAM SIMULATES A PART PR:OCE:SSINQ APPLICATIOI 
READY 
LEFTY 
ABOVE 
APPRO A,-50 
TYPE PICK UP THE FIRST PART 
MOVE A 
CLOSEI 50 
DEPARTS 100 
MOVES E 
MOVES F 
TYPE PROCESS THE FIRST: P.ART 
DELA'\' 1 
DEPARTS 200 
APPROS C, -50 
MOVES C 
OPENI 100 
DEPARTS 100 
APPROS B, -50 
MOVES B 

.-

TYPE PICK UP THE SEC:OND PART 
CLOSEI 50 
DEPARTS 100 
MOVES E 
TVPE PROCESS THE SECOND PART 
DELAY 1 
SHIFT E,0,0,-200 
MOVES E 
APPROS D,-50 
MOVES D 
OPENI 100 
DEPARTS 100 
READY 
STOP 

Figure C-16. 

,1 

I ·.• 

Program Process·· 
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' 
I - ,_,, -....-

IT IS POSSIBLE TO GRASP THIS PART 

,, 

a. b. 

-

c. d • 
• 

• • 

Figure. C-17. Simulator Output Image for Example 
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c. 

·Figure e,..1s. simulator Output Image for Example 
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-, 

; PROGRAM CONVl 
; This progr•m ·sinaul•tes II anoving conv•vor b~lt. 
READY 
LEFTY 
COL•l 
ROW=3 

100 COL•CCL+l 
TYPE COL• 
OPENI 100 
NOFLIP 
APPRO A,50 
MOVE A 
HOVE B 
CLOSE! 50 

,DEPARTS 100 
MOVE F 
OPENI 100 
DEPARTS 100 
IF COL.EG.2,Tt£N 
GOTO 300 
ELSE 
APPRD C, -50 

300 ENDIF 
TYPE ROW• 

·· WHILE COL. LT. RBW. DO 
COLc:COL+l 
TYPE COL= 
MOVE C 
CLOSEI 40 
DEPARTS 100 
MOVES L 
OPEN! 100 
DEPAij TS 150 
END 
DEPARTS 100 
CALL CONV2 
DO 
MOVE L 
CLOSEI 60 
DEPARTS 100 
MOVE C 
OPENI 100 
DRIVE 2,-30, 100 
UNTIL COL. 'EG. ROW: 
TYPE ROW• 
TYPE COL• 
RIQHTY 
MOVE N 
CLOSEI 50 
DEPARTS l :)() 
HOVE H 
OPENI 100 
DEPARTS ·100 
HOVE A 
RETURN 
STOP 

., 

.~,... Figure C-19. Example Program Command file 
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-

; PR OGRAM CON"-'~ . 
OPEN I 100 
MOVE A 
APPRO F,-50 
MOVE F 
CLOSEI 40 
DEPARTS 150 
M01.JES B 
OPENI 100 
DEPART 100 
MOVE A 
RETURN 
STOP 

• 

. Figure c-20. Example Program Command file (subroutine) 

• 

PCINT A, -21~. 78, :)34. 31, -10~. 29, -174. ":)6. , 0. 

POINT B, -218.37,475. 88,-262. 64,-173. ,73. ,0. 
POINT_C,-294. ,475.,-262. ,-174.,60.,0. 
POINT D,495. 58,274. 82,-430., 11. 75~74.44,3. 5 
POINT F, 523. 58,274. 82,-430., 11. 75,74.44,3. 5 
POINT G,479. 30,272. 54,-363. 59,96. 24, 57.09,-7.45 
POINT H,396. ,308-,-421., 146. ,90. ,i48. 
POINT L,464. 60,263. 35,-431. 12,5. 98,62.57,.27 
POINT M,-369. ,450. ,-2S7. ,-156.,90.~27.52 

Figure c-21. Example Program Location data file 
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5 
tT1 . 
w 
1, 8 .. 

;.,-.. \ 

-241. 00 400. 00 -330. 00 
0. 00 0. 00 0. 00 

- 0. 00 0. 00 70. 00 
0. 00 200. 00 70. 00 
0. 00 200. 00 0. 00 

30. 00 0. 00 0. 00 
30. 00 0. 00 70. 00 
30.00 200. 00 70. 00 
30. 00 200. 00 0. 00 

.1. e 
-311. 00 400. 00 -330. 00 

0. 00 0. 00 0. 00 
0.00 0. 00 70. 00 

.. 0. 00 200. 00 70. 00 
0. 00 200. 00 0. 00 

l 30. 00 0. 00 0. 00 
,·, 30. 00 0. 00 70. 00 

30. 00 200. 00 70. 00 
. 30.00 200. 00 0. 00 

1, e 
-381. 00 400. 00 -330. 00 

0. 00 · 0. 00 0. 00 
0.00 0.00 70. 00 
0.00 200. 00 70. 00 

., 

0.00 200. 00 0. 00 
30. 00 0. 00 o. oo· 
30. 00 0. 00 70. 00 I 

30. 00 200. 00 70. 00 
30. 00 200. 00 0. 00 

1, e 
-100. 00 390. 00 -330. 00 

0.00 0.00 0. 00 
0. 00 0. 00 -40. 00 
0.00 250. 00 -40. 00 

~ ··• 0.00 250. 00 0. 00 
-1150.00 0.00 0. 00 
-1150. 00 0.00 -40. 00 
-1150. 00 250. 00 -40. 00 
-1150. 00 250. 00 0. 00 

1, e 
595.00 -600.00 -500. 00 

0.00 o. oc~ 0. 00 
0.00 0.00 -20. 00 
0.00 1000. 00 -20. 00 
0.00 1000. 00 0.00 

-250.00 0. 0() 0.00 
-250.00 0.00 -20. 00 
-250.00 1000. 00 -20. 00 
-250. 00 1000. 00 0. 00 ' ... 

• • 

\, 

·• 

Figure c-22. Example Program Setup data file 
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Figure C-23. simulator output Image for Example 
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b. 

Figure C-24. Simulator output Image for Example. 
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Figure C-25 •. Simulator Output Image for Example 
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Figure C-26. Simulato.r Output Image for Example 
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Figure C-27. Simulator Output Image for Example 
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