
Lehigh University
Lehigh Preserve

Theses and Dissertations

1985

Design of an interactive computer graphics
simulator of VAL-II, the programming language of
Unimation's PUMA robot /
Seied Abrishamchian Langrudi
Lehigh University

Follow this and additional works at: https://preserve.lehigh.edu/etd

Part of the Mechanical Engineering Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Langrudi, Seied Abrishamchian, "Design of an interactive computer graphics simulator of VAL-II, the programming language of
Unimation's PUMA robot /" (1985). Theses and Dissertations. 4594.
https://preserve.lehigh.edu/etd/4594

https://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F4594&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F4594&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F4594&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=preserve.lehigh.edu%2Fetd%2F4594&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd/4594?utm_source=preserve.lehigh.edu%2Fetd%2F4594&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

...

-.....
/

,.

DESIGN OF AN INTERACTIVE COMPUTER

GRAPHICS SIMULATOR OF VAL-II, THE

PROGRAMMING LANGUAGE OF UNIMATION'S

PUMA ROBOT

BY

SEIED ABRISHAMCHIA.W LANGRUDI

A thesis

presented to the Graduate Committee

of Lehigh University

in Candidacy for the Degree of

Master of Science

in

Mechanical Engineering

Lehigh University

1985

" 1:

..

'

·\

-~:

).
,'~:~

, . .

CERTIFICATE OF APPROVAL

This thesis is accepted and approved

in partial fulfillment of the requirements

for the degree of

Master of Science

• 1n

Mechanical Engineering·

rofessor in charge

.Chairman Department

. I ...

lL

'·'

--· .)··

"._ ..

ACKNOWLEDGEMENTS

I wish to give sincere thanks to Dr. John Ochs for his ,

support and supervision throughout the course of this work.

I would also like to thank Dr. Tulga Ozsoy for his

valuable suggestions and technical advise.

The continuotts ·encouragement extended to me by my
..

parents during my graduate syudies is especially

appreciated.

Finally, I thank Greg Loney, Drew Landman and Jack

Wentz who made my stay at Lehigh more enjoyable.

,.

• ·i' ...

1·11.

TABLE OF CONTEHTS

page

ABS TRACT • ~(• ·.~ it' ~, •. • • • • • • • l

1.
1.1
1.2
1.3
1.4

2.
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

3.
3.1
3.2
3.3
3.4

4.
4.1
4.2

5.
5.1
5.2

CHAPTER 1

• .3

• .6

• .7

Introduction •••••••••••
Problem Statement ••••••
Project aistory ••••••••
Approach to Problem ••••••••••••••••••••••••••••••••. 8
Organization of Thesis ••••••••••••••••••••••••••.•• 12

CHAPTER 2

Features of The System ••••••••••••••
Model and Workpiece Representation ••

• •••••••••••••• 14
••••••••••••••• 14

Interactive Features ••• .18
Hidden-Surface Removal •••••.•••••••••.•••••••.••..• 20
Robot Kinematics •.••.•••••••••••••••••• ••••••••• "' •• 2 5

••••••••••• 4 5 Transformation of User-Defined Objects ••
Simulation Speed .•••••
Collision Detection •.•
Directory Information.

•
CHAPTER 3 -

• •••• 47
• .48
••••••••••••••••••••••••••••• 53

Pendant Mode. • .54
Joint Rotation •••••••••••••••••••.••••••••••••••• •• 56

.57

.58

.60

World Mode ••••.
Tool Mode ••••••

•
•

Clamp Position and Robot Status ••.•••••••••••••••.

CHAPTER 4 -
Manipulation Mode • ••••••••••••••••••••••••••••••••• 61
Component Repositioning Via Keyboard •••••••.•••••.. 62
Component Repositioning Via User-Defined
-Increments ••••••••••••• ~ ••••••••••••••••••••••••••• 6 6

CHAPTER 5

Edit Mode. • • 67 •
••••••••••••••••••••••••••••• 69
• • • • • e • 7rJ

Program creation •.••••
Program Modification ••

e:. iv

..

.I'

..

6.
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

,.
7.1
7.2
7.3
7.4
7.5

8.
8.1
8.2

((

CHAPI'ER 6 - - \'• ...

VAL-II Commands. •
I.ocation Commands ••••••••••••••••••••••••••••••••
Motion Commands ••••••••••••••••••••••••••••••••••
Hand Commands •••

.73
•• 75
•• 78

.81

.84
• 90,

Program Control ••••••••.••.••••••••.••.••..•.•....
Configuration Control. •

•• 91
•. 92

Trajectory Control ••.••.•.••.•••....••.••.•••.••.
Assignment Instructions ••••••••••••••••••••••••••

Commands ••••••••••••••••••••••••• ~ ••• 93 Miscellaneous

CHPATER 7 -
case Study. • .96

.96 Part Transfer .•••••
Part Repositioning ••••••••••••••••••••••••••••
~cation Data •••••••••••• , •••••••••••••••••••••
Simulator Use •••••••••••••••••••••••••••••••••

• • • • 101
• . • • 102
• • • • 104

Observations •• .107

CHPATER 8 -
Summary ••• e'' • • • .112
Limitations. • .113
Future Efforts ••• •••• • • • • • • • • • .114

REFERENCES. •••• 116

Appendix A •• 119

Appendix B •••••••••••••••••••••••• = •••••••••••••••••• ~ 134

Appendix C •• ~ ·• 14 O

Vi ta 18 8

:ii;.,

. .

v·

I
:.\

· :··

,,

.. ,·

'j

LIST OF FIGURES

Figures page

1-1 PUMA and Simulator Model •••••••••••••••••••••••• 10

2-1

2-2
2-3
2-4
2-5
2-6
2-7

2-8
2-9

2-10

2-11

2-12
2-13
2-14
2-14

Examples of wire-frame extruded
convex polyhedrons •••••••••••••••••••••••••••••• 16

I , Main Menu •••••••••••••••• !I ••••••••••••••• · ••••••• 19
Keyboard Menu ••••••••••••••••••••••••••••••••••• 21
Solid Model Representation of PUMA ••••••••• ~ •••• 23
Alternate Display Schemes ••.•...••••••••••.••••• 25
Definition of Joints ••••••••••••.•••••.•.••••.•• 27
Two dimensional Stiel-figure
joint-coordinated motion ••••••..•••••••••••••••• 35
Various PUMA arm configurations ••••••••••••••••• 38
Zero angle convention
according to Lee •••••••••••••••••••••••••••••••• 4 o
Zero angle convention
according to the simulator ••••• · ••••••••••••••••• 42
Zero angle convention
according to PUMA ••••••••••••••••••••••••• II ••••• 4 4
Coarse Collision Check •••••••••••••••••••••.•••• 50
Coarse Collision Check •••••••••••••••••••••. ·• ••• 50

a Fine Collision Check ••••••••••••••.••••••••••••• 52
b Fine Collision Check ••••••••••.••••••••••••.••.• 52

3-1 Pendant Menu •••••••••••••••••••••••••••••••••••• 5 5

.

4-1 Manipulation Menu ••••••••••••••••••••••.•••••••• 64
4-2 Moving User-Defined Objects ••••••••••••••••••••• 65

5-1 Editor Menu Options ••••••••••••••••••••••••••••• 70

7-1
7-2
7-3
7-4
7-5
7-6

A-1
A-2
A-3
A-4
A-5
A-6
A-7
A-8
A-9

Setup data file for program PROCESS ••••••••••••• 99
Si~ulator output Image for program PROCESS ••••• 103
Location data file for program PROCESS ••••••••• 105
Command data file for program PROCESS ••••.•••••• 108 Cl

Simulator output Image for program PROCESS •.•.• 109
Simulator output Image for program PROCESS ••••. 110

Subroutine Monitor flow diagram ••••••••..••••.• 119
Subroutine IGESCONV & UGIICONV flow diagram .•.. 120

"'---,,. Subroutine PICTUR flow diagram ••••••..••.••.••• 121
Subrout.ine ELBOW flow diagram •••.••.•.• · ••••.•.• 122
Subroutine FOREARM flow diagram •...•••......•.. 123
Subroutine INVERSE flow diagram' •.•••....••..•.. 124
Subroutine IATCH flow diag-ram •••••••.....••.••• 125
Subroutine DETACH flow diagrm ••••••••.....••••• 126
Pendant Mode flow diagram ••••••••••••••.....•.. 127

vi \

J

·---

A-10
. A-11
A-12
A-13
A-14
A-15

I ·c-1
c-2
C-3
C-4
C-5
C-6
C-7
c-s
C-9
c-10
c-11
c-12

C-13
C-14
C-1~
C-16
C-17

C-18

C-19
c-20

C-21
c-22
C-23

C-24
.r'

C-25

C-26

C-27

SULro~itne MOVERINC & MOVERKEY flow diagram 128
Subroutine EDITOR flow diagram ••••••••••••••••• 129
Subroutine UNTIL flow diagram ••••••••••••••••• ~130
Subrouitne LOGIC flow diagram ••.••••• (I •••••••••• 131
Subrouitne WHILE flow diagram ••.••••.•• ~ ••••••. 132
Subroutine HELP flow diagram •••.••••••••••••••• 133

Simulator Flow diagram ••••••••••••••••••••••••• 163
Simulator Output Image for Example ••••••••••••. 164
Simulator Output Image for Example ... · ••••••••••• • 165
Simulator output Image for Example ••••••••••••. 166
Simulator output Image for Example •••••••.••••. 167
Simulator output Image for Example ••••••••••••• 168
Simulator output Image for Example ••••.•••••••• 169
Simulator Output Image for Example •••• ~ •••••••• 170
Simulator output Image for Example 171
Simulator output Image for Example ••••••••••••• 172
Simulator output Image for Example ••••••••••••• 173

a, b, c, d
Simulator output Image for Example •••••.••••••. 174
Simulator output Image for Example ••.• ~ ••••••.• 175
Program PROCESS Setup data file •••••••••••••••• 176
Program PROCESS Location data file ••• Q ••••••••• 177
Program PROCESS Command data file •••••••••••••• 177

a, b, c, d
Simulator Output Image for Example ••••••••••••. 178

a, b, C
Simulator output Image for Example ••••••••••••• 179
Program CONVl Command data file.8 •••••••••••••• 180
Program CONV2 Command data file
(subroutine) ••••••••.•••••••• a •••••••••••••••• • 181
Example Program Location data file .•••••••••••. 181
Example Program Setup data file •••••••••••••••• 182

a, b
simulator output Image for Example ••••••••••••• 183

a, b
Simulator output Image for Example ••••••.•••••• 184

a, b
Simulator output Image for Example .•.•••••••••. 185

a, b
Simulator Output Image for Example .••.•.••••••• 186

a, b
Simulator Output Image for Example ..••••.•••••• 187

.•..

. ,
V.l.l

.c:

(

-t·

·'

1·

I I

LIST OF TABI,ES

Tables page

2-1 Display Algorithm Logic ••••••••••••••••••••••••••• 30
2-2 Rotation Matrices used for each joint.~ ••••••••••• 32
2-J Example of orientation Mtrices for ·

str~ight-line motion •••••••••••••••••••••••••••••• 46.

B-1 List of Common Blocks •••••••••••••••••••••••••••• 13 4
B-2 List of Commoned Variables ••••••••••••••••••••••• 135
B-3 List of Commoned Variables ••••••••••••••••••••••• 136
B-4 List of Commoned '-variables ••••••••••••••••••••••• 13 7
B-5 List of Commoned Variables ••••••••••••••••••••••• 138
B-6 List of Commoned Variables ••••••••••••••••••••••• 139

'

C-1 Step by Step Example Session ••••••••••••••••••••• 160
c-2 Step by Step Example Session ••••••••••••••••••••• 161
C-3 Step by Step Example Session ••••••••••••••••••••• 162

·'

• • •
V1 .l. .l.

-

•.

-

... '

.• 1···

ABSTRACT

Industrial Robats have gained wide acceptance in

industry due to their flexibilty and reliability ass well

as their ever increasing ease of teaching and programming.

The key factor for their further acceptance in

contemporary programmable automation is the improvements in

the capabilities and efficiency of robot language. Language
I

simulators such as VAL-II SIMULATOR for Unimation's PUMA

are valuable tools for teaching, developing and testing

robot control programs.

VAL-II SIMULATOR is a real-time, interactive, computer

graphics package which simulates the off-line programming

language, VAL-II. It employs a Lehigh developed graphics

package to provide display of the robot behavior upon

execution of key VAL-II commands. The simulator is menu

driven with an on-line help feature for all control levels.

Information regarding robot configurations is available to

the user at any time. Arithmetic and logical expressions

are also available for decision making. Three levels of

collision detection are available to the user and the

simulator has a simple sensor interface. User-defined

geometries may be interactively retrieved from other

Computer-Aided Design (CAD) _data-bases using the

International Graphics Exchange Standard (IGES) and then

1

.. .f!·

:~·

. '

''

easily repositioned in the.PUMA's work environment through

·a manipulation feature in the. simulator. The simulator can

be used to design and experiment with a variety of setups,

investigate assembly tasks and develop various programming

. possibilities. Once a work-cell is created and the VAL-II

program is developed and tested with the simulator, the

program may be down-loaded to the PUMA controller for final

testing and verification.

!

\

2

r,

:;.

CHAPrER 1

1. INTRODUCTION

Due to great technological advancements in recent

years, industrial robots have become an integral part of ·

flexible automation with some thousands of robots at work

i~ the United States. Robots now perform many of the tasks

formerly done by humans. Robots are able to work longer,

handle heavier payloads, do repetitive tasks, and operate

under conditions that are considered hazardous to human

health. During the past decade automation equipment has

become both more complex and costly to put in place. The

ability to simulate the selection, installation and

operation of this equipment through the use of software

offers great potential for time-saving and added the

assurance of maximum efficiency in manufacturing

operations.

The ability to use an off-line language to program a

robot externaliy, without tying the robot from the

production-line, or using a "spare" robot, indeed

contributes to both safety and efficiency.

Due to their ease of programming, their ever

'increasing flexibility and rel~~bility, robot~ have gained

acceptance by industry. However, a. key factor to their

3

-~

......

I

.....

further acceptance as a programmable device is the

availab:tlity of off-line robot languages and .. this means to

learn these languages quickly and to develope and test

reliable application programs.

Since robots are computer-controlled, they are only as

smart as the person programming them. Thus, the method of

programming is a source of error in developing flexible

manufact,~ring applications. Off-line programming may hold

the answer to many programming difficulties. Off-line

programmirlg is ·the programming method by which a robot is

programmed via a language. This language has certain

vocabulary, grammar and symbols which can be checked by the

use of a so called compiler or interpreter. Once the off

line program is checked by the compiler it can be loaded

into an existing robot to produce the programmed motions.

By using off-line programming, the time dedicated to

program a robot is more effectively spent, because robot

program logic is more likely to be correct, since it is

implemented off-line, not under the pressure of a downed

production line. Therefore, the programmer has the time to

"walk through" the program, checking for errors in the

logic. Also, the work area may be more suitable to the

programming task, and an individual has ready access to

resources.

Many robot control languages have been developed by robot

builders and research laboratories to perform complex

4

.

assembly and m~chine loading tasks. Some of the more

impot'tant ones are: AL (Stanford University), AML (IBM

Corporation), HELP (General Electric Corporation), JARS

(Jet Propulsion Laboratory), MCL (Mcconnel Douglas

Corporation), RAIL (Automatix Inc.), RPL (SRI

International), and VAL (Unimation Inc.).

An important aspect in the development' of robot
,r f programming languages is the use of Dynamic-Interactive

computer-graphics. Computer graphics is one method which

has proven effective for evaluating manufacturing systems,

and determining the relative merits, eff icisncy and

effectiveness of manufacturing systems design. Simulation

packages can aid an engineer in testing and designing

various work-cell layouts, and studying motion and dynamic

characteristics of industrial robots. The use of these

special simulation packages provides significant time

saving in the layout and modeling of robot work-cell

components and confirming that the final installation will

perform as intended. Graphics simulators can also be

utilized as an instructional an~ training tool to give a

better insight into robot kinematics and dynamics in a

three dimensional envj.ronment.

Various robot simulation programs that employ

IntUactive Computer Gx-aphics have been developed in

universities, research institutions, industrial

laboratories, and CAD/CAM houses [1-8]. Most of them are

5
. ~; ,

•,

I·

based on Wire-frame modeling for object presentation.

Examples include VAL SIMULATOR developed by Clifton and
I

Ochs [3], GRASP by Derby [4], PLACE and ANIMATE by Kretch

[5]. Some are based on solid modeling techniques. For

example, EMULA developed by Meyer [6], was based on GDP

[9], a solid modeler representing objects using polyhedral

approximations, and the work by Soroka [7] was based on

generalized cones for describing 30 objects. A survey on

robot simulation can be found in reference (10].

1. 1 PROBLEM STATBJIENT

The general thrust for all these efforts is to develope

an inexpensive, user friendly, interactive, computer

graphics simulator of robotic work-cells, robots, and their
~

off-line control languages which would feature the

following:

1) Create suitable design tools for robot programming.

2) Help the robot user in developing and evaluating

program sequences.

3) Be an instructional instrument for learning the off

line programming language.

4) Help the robot user obtain a better insight into the

mathematical description of _robot kinematics.

5) Provide a linkage with other CAD data-bases to allow

6

'.

part transfer and work-cell comp·onent repositioning.

6) Evaluate complete manufacturing work-cells.

7) Evaluate mechanical systems for ease of assembly.

1.2 PROJECT HISTORY

0

To develop a general purpose graphics simulator capable

of featuring all of the above objectives is a monumental

task and certainly beyond the scope of one master's thesis.

Initially, under the· .. supervision of th& Lehigh

University CAD/CAM program an interactive computer-graphics

simulator of the VAL language [11] was developed. VAL is an

off-line programming language for Unimation's PUMA robots.

VAL and PUMA were chosen for their fundamental

representative attributes. VAL's Englishlike mnemonics and

• elementary structure made it a versatile, commercially

available, off-line programming language and a strong

candidate for a graphical simulator. The PUMA 600 (Figure

1.1) is an anthropomorphic robot with six rotational joints

capable of joint-interpolated and straight~-.line motions.

VAL SIMULAT9R [12] _uses a wire-frame or edge representation

·"'JiCheme to graphically display the kl.nematic behavior of

PUMA robot upon execution of key VAL commands. Algorithms

for joint-coordinated and straight-line motions, and

collision detection were developed •
.•

-7. ··, .• '"3t

-
.. /,'

•

1.3 APPROACH TO PROBLEM

Al though VAL SIMULATOR [12] offered some fundamental

features, it lacked the fl~xibility. and effectiveness a

simulation package must retain. A major improvement was

necessary to make the package as versatile and user

friendly as possible. Arithmetic and logical expressions

·needed to be simulated in order to adequately increase the

level of programming control, which would then be enhanced

by enabling the operator to call user-defined subroutines.

The limitation on the number of workpieces to be used

needed to be relaxed, .since the latter had introduced major

difficulties in that only simple tasks could have been

simulated. The linkage with other CAD systems had to be

added, which would in turn confine the user in generating

various work-cell components. While using VAL SIMULATOR the

simulator had to be exited to create or modify user

generated robot programs~ This would result in the loss of

the location data and setups.

In 1984 Unimation In·troduced VAL-II [14], a new robot

contro.l system and programming language. In addition to its

•
fundamental programming and control features of VAL, it

also includes: network communication capability which

enables a remote comp~ter to totally supervise the

operation of robot systems, computational and logical

statements like those found in high-level computer

8

' I'

,,

.l.
. '

'

languages, a general method including sensory ·information,

real-time path control and concurrent process control.

The VAL-II SIMULATOR is written in FORTRAN 77 and
I

consists of a series of inter-related subroutines. This

approach to the organization of the software allows for

easy modifications and future expansions of any individual

routines without involving major changes in the other parts

of the software.

VAL-II SIMULATOR was developed in the Computer-Aided

Design Laboratory of Lehigh University. It employs an

internally developed graphics package GRAPH3D.LU [15], to

graphica1·1y display the model and robot work-cell

components. It _currently runs on DEC VAX 11/780

mi~icomputer with VMS operating system and VS11 graphics

terminals. The VS11 is a relatively inexpensive color

raster display that features direct memory access

capability and a dual buffered memory option to allow

smooth motion of the model. It retails for approximately

$15,000 as opposed to Vector Generators upon which

commercially available simulators run, which sell for over

$70,000.

-VAL-II SIMULATOR is an Interactive Computer-Graphics

Simulator of one robot and one language, written in a way
'

that allows for future expansion in order to simulate other

robots and languages. The simulator is a very effective

instrument for teaching various functions of the language

9

. . .

j
-/

'/

Figure 1-1. Unimation's PUMA 600 robot and simulator model
in the same configuration.

10

•

:

to a robot user. It uses wire-frame presentation to

display the kinematic beha·.,ior of a PUMA robot (Figure 1-

1). All data is stored in polyhedron form with appropriate

topology. The program is menu-driven and features on-line

HELP at all control levels. Moreover, information

regarding the Confi<3l!1ration Indica.tors is available at any
\ •, /

time. With the sim~lJKor a user is able to design and
)

evaluate a variety of work-cell setups, locations and

program possibilities. If needed, user ~reated geometries

may be retrieved from other CAD data-bases using Initial

Graphics Exchange Standard (IGES) conversions or through

the interface with progr·am POLYGON [19] .Then, any

individual part may interactively be repositioned inside

the work environment, with a constant readout of the

positional data of the part under question plus the part

number. Arithmetic and logical expressions, like those

found in high-level computer languages are available for

decision making, performing repeating tasks making

branching or jumps, as well as some limited sensory

interfacing. Also colli-sions between the robot and the

workpieces are detected automatically. Once program and

locations have been verified on the simulator they may be

down-loaded to the PUMA controller for final testing and

implementation.

11

' t

' ..

1.4 ORGANIZATION OF TBESIS

The thesis presented here, provides a thorough treatise

of VAL-II SIMULATOR. It describes clearly the fundamental

concepts and algorithms, the code for each simulated

command, and how to use the simulator. For a more effective

approach, figures, tables and examples are presented

througho~t the work. Chapter 2 includes model and workpiece

representation, and a description of the interactive

features. These features include information on hidden

surface removal, robot kinematics, transformation of user

defined objects, simulation speed, and collision detection.

Chapter 3 provides a thorough description of the feature

which graphically displays the functions of a "Teach

Pendant" for the PUMA robot. VAL-II SIMULTAOR provides the

linkage with other CAD systems. Once the parts are

transfered to the VAL-II environment, they may

interactively be repositioned within the robot work-cell.

In the simulator this is done through the so called

MANIPULATION MODE, which is fully described in Chapter 4.

Chapter 5 provides a complete description of VAL-II

SIMULATOR "EDIT MODE", which covers all the functions
..

related to this mode. Chapter 6 considers each VAL-II

command that is simulated. It describes how each command is

decoded and then implemented. A brief description of key

VAL-II commands is also presented. The Case Study is~

12
...

. ,·I

•

•

presented in Chapter 7, followed the by Conclusion,

Chapter 8, which includes a discussion of the limitations

of the simulator and recommendations for further study.

Programs use flow charts, and flow diagrams for key

subroutines are provided. At the end and in the appendices

a User's Manual with some examples appears.

,·

,..

13

:~:

,·

l

' .

. ~ CHAPI'ER 2

2. FEATURES OF ·l'ff B SYSTEM

2.1 MODEL AND WORKPIECE REPRESERTATIOH

A language simulator which uses- computer-graphic

representation of the robot and its surroundings is

valuable to the robot designer and end user in many

applications. Thses may include: 1) Performance Evaluation,

2) Robotics Training, 3) Work-Cell Layout, 4) Assembly of

Parts, etc.

Geometric representation of robot related data may be

in the form of a two-dimensional (planar) figure, a three-

dimensional edge represe11tation (wire-frame), or a color

shaded representation. The storage of the geometric data 1·s

key to the ease in which various representations can be

generated. This is particularly true when real-time

interactive dynamic graphics is required. At the same time

collision detection and realistic representation require
--

that the geometric data contain more-than just edge

information. (See [16] for a collection of papers

on the subject and [1 7] for text.)

The apparent motion in a graphics simulator is achieved

by transforming the present locations to desired ones,

quickly erasing the screen, updating the display data, and
0

14

,.,, ..

.
:/ ...

..

displaying the entities. The process of entity

transformation is a time consuming one. Obviously, there is

a direct relationship between the number of entities to be

transformed and- the time required to perform the entity

transformation and ·the speed of the resulting display of

motion.

Two dimensional stick figures are easy to draw, and

quiqk to transform, but provide very limited visualization •
.

~ Three dimensional colored solid models are desirable,

because the display is clear and collisions may be detected

visually. Then resulting motion is very slow however, since

each solid model requires several seconds to draw, unless

expensive, dedicated processors are used. For the simulator

the various criteria applied to evaluate the several

representations were:

* Amount of storage space needed

* Ease of transformation

* Cost of the equipment

* Display smoothness

* Level of collision detection

As a result, it was decided to utilize extruded wire

frame convex polyhedrons (Figure 2-1). By definition, a

polyhedron is a volume completely enclosed by polygons

[18]. The polygons are generated by simply connecting the

corresponding vertices. In the simulator, the PUMA robot is

represented by a collection of a series of polyhedrons,

15

.

..

. ,.

\,

'· ...
. . .

. . .

., . . ,, ..

. .
. ;:·~ .. ;.; ,.

•

..
• f.,,,, ... • •• .

• • . ,
I

. .

..
·.-. ~-,;#

..
::-
• 4 • .
. -.;,; ..
I -.-:
. ,. : , -·•:.
. . . . ·
!·-

'-.:• ..
••

FIGURE

. .

: .

. .

2-l •

. . .

EXAMPLES OF WIRE-FRAME
CONVEX POLYHEDRONS

.. . ..
..

16

EXTRUDED

. . .

l

,.
•

·connected at specific locations to define revolute joints.

The robot work-cell may also contain other sets of

polyhedrons to represent the surrounding work environment.
,,,.,

The advantages of this approach may be summarized as

follows:

1) Hidden-faces may be eliminated by simple and quick

computations

2) Since surfaces are defined, interferences may easily

be checked

3) Skewed and tapered polyhedrons may be drawn

4) Most objects may be approximated by circumscribed

parallelepipeds, so only the coordinates of eight vertices

need to be specified

Another element which plays a vital role in a graphics

representation is the type of display terminal to be used.

Expensive vector generator terminals with dedicated

processors are available for animation, but are unnecessary

for language simulators. Storage tubes are attractive due

to their low cost, but are unsuitable for animation

purposes, since even the simplest geometries require

several seconds to draw. Raster scan terminals are the

obvious compromise, since, they are relatively inexpensive

and provide fast and clear visualization.

17

\ .

,

2.2·INTERACTIVE FEATURES

VAL-II SIMULATOR was developed to enable the user to

position cell components, display the motion of various

robot components, check robot reach,limits, simulate moving

objects, detect collisions, and other functions, all

through an interactive, and user-friendly graphics package.

The simulator is menu-driven, which mean.s that a list of

options are available at all control levels. The options

are convenient and easy to use. The user is often required

to do no more than press a single key to enter a command.

Upon initialization of a session, a user is prompted

'
whether it is required to read an IGES file, or a

UNIGRAPHICS-II (UGII) file, or an existing setup file. It

is often the case that cell components are created in a

different CAD system and the user would like to transfer

the parts to VAL-II SIMULATOR environment for use. If this

is the case, and a part file has already been C\Jnverted to

IGES format, the user may interactively transfer the part

and position it inside the robot work-cell. Using the IGES

output from any three-dimensional CAD system the part data

is transfered to another program called POLYGON.LU which

converts the three-dimensional wire-frame to a boundary

representation polyhedron form [19]. This file can then be

read into the VAL-II .SIMUALTOR and parts be positioned

interactively in the work-cell. A work file for a given

18
. '

MAIN MENU •

ENTER SUBMENUS BV ~RESSIHG:

.: TO KEVBl)ARD <MONITOR> MODE

M_ANIPULATIOH: TO MANIPULATE I.JORK PIECE LOCATIONS~ THE KEYBOARD
P...ENDAH"T
E_DITOR ·

V-ffL-I I

OR PRESS:

R-ETURt-1

B..EGJH

I_HJTIALIZE

S-TOP
H-HARDCr)PV

6-ENERATE

: TO PENDANT MODE
: TO EDIT MOOE
: TO DISPLAY A LJST OF EXECUTABLE UAL-II COl'1t1AHDS

: TO RETURN TO PICTURE OF t100EL ANO U I CE •JERSA
: TO START OVER
: TO INITIALIZE UITH SAME SETUP FILE
: TO EXIT PROGRAM ANO CLEAR SCREEN
: TO CREATE A PRINTOUT FILE
: TO GENERATE POLYGON INPUT FILES

Figure 2-2. Main Menu

19

"!";'' •

-

.. ,

~ ..

•

".

cell can the·n be manipulated ar1d saved. The operator may

also wish to read an existing setup file. In any case, the

specific file will be opened and read, and use+--defined

objects displayed. The user is then directed to the MAIN

MENU (Figure 2-2). At this point a user has several easy

options from which to select. A user may select to enter

the KEYBOARD Mode (also called Monitor Mode, Figure 2-3)

MANIPULATION Mode, PENDANT Mode, EDIT Mode, or VAL-II Mode.
'

While in the MAIN MENU, a user may reinitialize the work~

cell setup, or begin with a new setup file. Also, one is
r

able to get hardcopies of the cell layout. While in this

mode, a user may display, for convenient reference, a list

of VAL-II commands and switch between this list, the model,

and the menu. In the Main Menu, files may also be created

automatically to be used as input to POLYGON.LU (19] to

generating color shaded pictures (Figure 2-4). Whenever an

error is encountered an informative warning message will be

displayed. Other interactive features include: .ffidden

surf ace removal Collision Detection, and directory

information, which will be discussed later in this chapter.

2.3 HIDDEN-SURFACE REMOVAL

In the raster scan terminals the screen is redrawn many

times each second. So, as the number of entities to draw

decreases, the smoothness of the display is enhanced.

20

. - ., '~ - \ '
' ,.,

•

N

•

,.

I

L-I~sr - T•IEl·l
L_I:;r - ·rHEI·~

L_ I:~T ·- THE1·4

r·...-1:·E LISTP
r·,··1:·E l. I :3TF:
T'r·t~E LISTL:

PRO(,. t·4t11··1E: 1 . .,IAL- I I F I LE I_ I ST I f·jG
tJ1=tL- I I f·F.:1)GF.:Ff1'1S L I ST
u1=1L- I I LO•::Ar I 1)~4 Dl=tTA 1= I LE~; •

F·_c,~~ IT I •)t4 • T(I I) I SF·I-A't' 1=·0s I ·r I c•t t OF •:LFtf11:, •

~:-t11)1JTH •
•

F Ff•-·EC· • - -· "'·' •

,:1_F~ I Et·jT •
•

t-1 .. ,..,=c • -·· .. -·-· '

R_E.fl_lF~t~ • •

t·1-0l)EL • •

"-'-Al_ - I I . .
•

•

' (: (ILi_ I t; I IJt·~ Cl,EC•<!:; (01·~ • .,.0FI=)
BF11:1< F"A•:ES (Clf~/l)FF)
(:ALI_::: (II~ I Et·fT 1 Tl) SCl~LE, 'fRFit·~:3LATI::
c:c,01.:c> 1 t~1=tTE 1=RAt·11::s (1:1t·j,..'C1l=F)

TO l~ETIJl~t-j Tt) Tl-U~ T1:11:, OF A t11:":t~U
1·0 I) I SF·I-A't' "THE r·10t>EI_

BEFl)RE l::t·jTEI~ I HG A IJAL. ,:c111r·11=tt1[)

Figure 2-3. Keyboard Menu·

•

OR ROTl=tTE

'

11(1[:eEI .•

.. .'\ ... l.

•

To reduce the number of lines being drawn and tocreate

an illusi~n that the interior region of a displayed surface

is opaque, it must be ensured that the sections of the

object which would be hidden from an observer by the opaque

surface are not displayed. As explained before, the

simulator uses the flat faces, which introduces the

property for the vertices of the bounding polygon that they

all lie on one and the same plane. Mor& strictly, in the

simulator, it is stipulated that the objects be not only _

plane-faced, but also convex. In this case, a simple

calculation of the normal of a surface is sufficient for

determining whether this face is a "front face" and

potentially visible, or a "back face" and thus invisible

[20]. Those polygons whose normals point into the

terminal's screen are not displayed. Needless lo say, this

algorithm only removes a face(s) which is hidden by the

volume of the polyhedron it belongs to.

This process of eliminating the back surfaces makes

two important contributions. With this algorithm all of the

polygons are drawn separately, so that they may be

displayed selectively. Sometimes, this causes an edge to be

duplicated, unless the wire-frame polyhedrons are drawn

efficiently. It is often the case that the number of lines

· that are not displayed is equal to that of those that are

duplicated· (Figure 2-5). Therefore, for either display, the

number of actual lines drawn is the same. Hence, the

22

-
-

. .
Figure 2-4. A Color Shaded Solid Model
representation proquced by interface to
GEOMOD through POLYGON

23
~ .
. /

!

• I

..
:.,:::,::. '\

statements determining which polygons to display have a

significant effect upon the simulation display speed.

This so called back-face elimination algorithm requires

the calculation of the coordinates of normals for all of

the polygons. At the .pa beginning of each VAL-II session,

the simulator uses the first three vertices (numbered
~

clockwise) of any polygon to define lines in the plane of

· the polygon. The next step is to determine their vector

c~os5 products, which define the normal lines to these

polygons. Then, in the subroutine PICTUR (Appendix A) and

before the polygons are drawn, the coordinates of the

normals are checked to see if they point into the

terminal's screen or not. ~his is done by looking at the

value of the z component of the coordinate of a normal. If

this value is less than zero, the normal points into the

display screen, a flag is set, and as a result the polygon

is not displayed. The faces and their normals define a

coordinate system in each face of a polyhedron. This means

that, whenever a polyhedron definition data is rotated, so

are the,coordinates of the respective normals. However,

this is done only when the flags are set for hidden-surface

elimination. Thus~ the coordinates of normals are not

rotated when the full wire-frame display option is used •

24
.. ,,

. . .
. .

.,

...
• "I. •

. .

. . .
. .

. .

. . . . \•
,
..

. .

., r ••
·. .: . ·

:· '· .
. . . •. -. . . ' : :.,,.

I"• • •
. ' . . .-:

. . ~- ·.-. .
1· . .,
. - .

-~--~---~ , , , , ,, ,,
~' --, -,- ,, ·-------~ t I

I
• f
I I
I I
I I
I I .-

•- ----· ~ -~-
-

• I
I

~'~
;JI

POLYGON BY POLYGON
FOR HIDDEN-SURFACE

REMOVAL

,,
"

_, , ,

SEGMENT BY SEGMENT
FOR WIRE-FRAME
REPRESENTATION

. FIGURE 2-5. ALTERNATE DISPLAY SCHEMES •

...:. . : \. -- :• •. . . ~· . ·.. . .. ··~
~ ~-:·. -'Iii

. .
..

. 2~

. . .

• t'

. .

..

. . ..

. . .

. .

2.4 ROBOT KINEMATICS
'

,. _~,..

As indicated above, the PUMA has been modeled by a

series of extruded polyhedrons. The simulation of PUMA

motion is based on the method of coordinate transformation
(

(21] for describing robot kinematics and manipulating

graphics objects. A coordinate frame is assigned to each

robot link using the Denavit-Hartenberg convention [22].

Themethod used here has already beeh presented in [3], but

for continuity will be given here. The column vector

{U} ::a

X

y

z

w

(1)

represents a point in space. It can also be represented as

A A A

u = (x/w)i + (y/w)j + (z/w)k (2)

A A A

where x, y, and z are the components in the i, j, and k

directions and\w is a scale factor. Given the point {u},

its transformation {v} is represented by the matrix product

{V} = (H] * {U} (3)

where [H] is a 4 by 4 homogeneous matrix representing any

combination. of rotation, translation, perspective or

26

·-.,.'.

....

].

--- ··--- -.. --~ .. --~
.J·---·~ . ·•• ••

Figure 2-6 ...

5
6

----._ ~-

':Definition of

27

• . .

1.-

·'
•

I •:

,,· ,.-· . ,,. ,,,
l...w--

joints

--~

·'(

.-.

...

..

scaling transformations. In the simulator 3 by 3
.Jo',•

transt,ormation matrices are used, since all of the PUMA
I

joints are revolute and only rotations are required. As an

example, let a=x/w, b=y /w, c=z/w be the coordinates of a

point in space. Then, a rotation by an angle o, about the

fixed Screen Coordinate System (SCS) Y-axis, gives

a•

b'

c•

--
Cose

0

-Sin 8

0

1

0

Sin 8

0

Cos 8

a

• b (4)

C

The rotated data (a•, b 1 , c 1) have been obtained by

premultiplying the definition data by the homogeneous

transformation matrix. Similar rotation matrices exist for

rotations about X and z axes. Ref erring to Figure 2-6, one

sees that rotating the first joint (WAIST) requires

premultiplying the coordinates of the first polyhedron by

the above transformation matrix. However, the rotation of

joint two (SHOULDER) requires a transformation with respect

to the first joint and not with respect to the fixed scs.

Thus, the rotation about the X-axis, shifted to the

rotation axis of the second polyhedron, follows the

rotation about the Y-axis. Therefore, the transformation

matrices must be multiplied together to obtain the

concatenated transformation matrix for each joint. The

shift to the second rotation axis or translation may be

included in the concatenated matrix as in the Denavit-

28

\.
I

\
''

. - . . . -· .. .
I

Hrtenberg convention [22]. As pointed out, in the simulator

instead of 4 by 4 transformation matrices, 3 by 3

homogeneous matrices have been used and the respective

translations are included later. This has the advantage in

that it makes the algorithm easy to follow and also results

in quicker response, hence smoother motion, in the price of

making the transformation subroutine less applicable to

other rol.,ots.

To understand this algorithm in more detail, consider

the first two links, namely the Waist and the Shoulder of

the model and Table 2-1. The polyhedra definition

coordinates are stored in an array DEF DAT, the rotated. -
data in an array ROT DAT, and the display data in another -
array called DIS DAT. Using the above algorithm, to obtain -
the rot21.ted data, ROT DAT, - the coordinates of the

polyhedrons in DEF DAT must be premul tiplied by the -
appropriate transformation matrix. Then, to determine the

display data, DIS DAT, the appropriate translations are -
added to the rotated data. Column 5 labels the points

stored in the various arrays, DEF_DAT, ROT_DAT, DIS_DAT.

Each polyhedron of the model is marked by a reference or a

pivot point (REFl, REF2, •••) ~ Column 1 contains the

appropriate transformation matrices which multiply the

reference points and coordinates of the vertices of the

polyhedron definition data, in the manner of equation (4).

Forming the transformation matrices requires a great deal

29

.. '•

w
0

" • I • •

.
: • • o o ' • I I • 10 e •

, I . . .
• . '

I ' .

-I I >
01

~
·N r I J

I
._ f TI I
•
0 I Tl I
l/}
-0 I TI I
r
>
-<
> r
G> I Tl J 0
l] ' .._ (T2 I
~
:r
~ I T2 I

r I T2 J 0
Ci)
_,..

n

r T2 I

1:

•

•

•
•

•
•

•
•

•

• •

• ·2 3

•r1n11:1on r-ot:at:ed

lal 1bl ,cl J I lol ,bl ,cl J •AEP-1

la2,b2,c21 I la'2,b'2,c'2J

Ca3,b3,c3t I ra'3,b'3,c'31 aAOTDATI

la1,b1,c4t I la'4,b'4.c'41

• I • • • •

Can,bn,cr,) I la'n,b'n,c•n1 •AErz
I.>

Ian• I ,bn• I .cn• 11 I la'n•l,b'n•l,c'n•JI

lon+2,bn•2,cn•21 I fo'n•2,b'n•2,c'n•21 •ROTDAT2

Can•3,bn•3,cn+3a I 1a•n•3,b'n+3,c'n+31

• • • • • •

lan+m,bn••,cn•~I • la'n•3,b'n•3,c'n•31 •AEP"3

.
• •

4

dJeplo.,

la'Z.b'Z,c'2J+AEl'l

Ca'3,b~3,c'31•AEl'I

1 a• 4 , b • 4, c • 41 +AEr l .

•
•
'

la'n•l,b•ntl,c'n+ll+AE71•AE~2

ta'n•Z,b'n•Z,c'n•21•RE,a•AE.P2

la'n•3,b'n+3,e'n+31+AE~l•REr2

. t

..

•D1SDAT1

•D1SOAT2

• •

. .
• •• •

IS

AUi

PCJLYI

AEYZ

POLY2

AE.r3

.. . . .
,,

•

I

of sine and cosine calculations of various angles. so, to

minimize the time required for these computations, the

sines and cosines of angles are computed once and stored.

For example, if the rotated data for the second

polyhedron (POLY2) is required, the concatenated

transformation I

1S obtained by multiplying the

transformation matrices together, as follows:

Cl 0 Sl 1

[T2] = O 1 0 * 0

-Sl 0 Cl 0

0 0

C2 -S2

S2 C2

1

0

SlS2

C2

-Sl ClS2

S1C2

-S2

ClC2

(5)

Note that, in obtaining the concatenated matrix, the order

of multiplication is critical. Also, here for ease of

notation, Sj = Sin (joint angly j), and Cj = Cos (joint

anglej) (Table 2-2).Now, the rotated dataisobtained by

premul tiplying the definition data of the coordinates of

the corresponding polyhedron by the above homogeneous

transformation matrix

a•
n+i

b'
I n+i

c'
I n+1

Cl SlS2

-- 0 C2

-Sl ClS2

S1C2 a
n+i.

-S2 * b (6)
n+i

ClC2 C
n+i

where (i=l, 2, •• , m) represents the indices of the

-coordinat-es of the second polyhedron (POLY2) and the

31

. . . .
..
. .
••

'•

._. : '! :.

·.'.

Cl 0 51
(Tl ·1 - 0 1 0 -

-SI 0 Cl ,.j

Cl SIS2 SIC2
I TZ J - 0 CZ -52 -

-51 CIS2 CIC2

Cl. S1523 51C23
[T3 I : 0 C23 -523

-SI CIS23 CJC23

CIC4•SIS23S4 ·C1S4+S1SZ3C4 SIC23
I T4 1 : C2354 C23C4 -523

-S1C4+CIS2354 S1S~+C1S23C4 CJC23

Ml I
: M21

M31

Ml2 MJ,3
M22 M23
M32 i.133

,·~ ...

I TS 1 :
Ml1C8+Ml2C556+Mt3SS56 ·Mll56+Ml2C5CS+Ml3S5C6 -M12SS+Ml3C5
M21C8+M22C5:.8+M2355S6 -M21S6+M22C5C6+M23S5C6 -M2255+M23CS
M31C6+M32C556+M33S5S8 -M31S6+M32C5C6+M33S5C8 -M32SS+M33CS

where SiJ = SIN longle i + angle JJ
and CIJ = COS (angle I + angle Jl

ROT AT I ON TERMS rOR BOTH -0 I NTS 5 & 8 ARE I NCLUOED IN I T5 I
OR THE CLAMP T~ANSFORMATION MATRIX, SINCE A ROTATION ABOUT EITHER

ONE. ONLY TRANSFORMS THE CLAMP.

.

·.~.

· TABLE 2-2. ROTATION MATRICES USED FOR EACH JOINT
.

.
• . . .

• •• -
. ·-·~- .

. . .
••

·., .• - . ~ ..
• I .•l" ..

. . . .
. • ..

•
..... I •• • \.~· .

.• = .. ~ . ~· .•

..
-..;. •.

··,. .. -~

...

./' -•.
. ..

•.·

. . . , .

32 . . .

.

• II •

··-·~:

•.
··•·

:. - ...

-

. ·- .-'-.·. 7 ~ ')
~ 4 -

reference point for the third polyhedron, (POLY3). Now, in

order 'to obtain the display data for the second polyhedron,

DIS DAT2, the rotated data is added to REFl and REF2. For -
example, the display data of a point in the array DIS DAT2 -
is

a" = a' + a +a' (7)
n+l n+l 1 n

b" = b' + b +b' (8)
n+l n+l 1 n

c" = C 1 + C -l·C 1 (9)
n+l n+l 1 n

Similarly, we can determine the subsequent polyhedrons

display data. However, the process of obtaining the

transformation matrices is a complicated and time-consuming

one. The amount of computations must be minimized as much

as possible to provide a fairly quick response and smooth .

motion. As explained earlier_, PUMA has 6 rev°\ute joints.

If we consider a rotation about the waist of the model, the

display data must be computed for the first polyhedron as

well a~r all of the subsequent ones. But, for example, a

rotation about joint three does not affect joints 1 and 2,

and so on. For this reason, dedicated routines have been

used so that no display data is computed unless necessary.

For instance, if the FOREARM is to be rotated, a subroutine

named ELBOW (in Appendix Al is called. This routine

calculates all the sines and cosines of corresponding ,
33

J
:'

angles and forms the corresponding transformation matrix,

and obtains the rotated data. It then calls another
'

subroutine called FOREARM (in Appendix A) and process

continues until all the data i.s computed for all joints. At

this point a flag i·s · checked to see whether the clamp is to

be displayed in the "OPEN" or "CLOSE" position and a

subroutine is called to calculate the display data. This
..

rouitne also checks to see if any user defined object is to

be rotated. Lastly, the reference points are added to the

respective rotated links and object data and the new model

configuration is displayed.

2.4.1 JOINT-COORDINATED MOTION

The above rotation algorithm has been used to simulate

joint-coordinated motion. In the simulator, the algorithm

for this type of motion has been coded so that, initially,

the largest joint angle difference is computed. It is then

divided by a speed dependent increment to determine.the

number of configurations to be displayed between the

current and final desired configurations.Then, based upon

the number of increments, a step size is calculated for

each joint's rotation angle difference. At this point all

the joint angles are incremented simulta~eously by the

corresponding step size, and the necessary display data

generated for each intermediate configuration until the

34

·,.

.. ' .

.
•

:•

~ ·.

. .. •

•

'

. . .

,. : . .
. .
•

•

...

•

.-
•

•

• •.
.. •.. . .

• •• ·•
. . ..:, .
• '$,.

~ :,·•. .,

..

. ·:- :
•
' . · ~

. ,··· .
- .·.

-·
"' • • • • "!' . •. .. ,.~.~ .: ··.~ . .. ~ :.~· .. ·~

• fl&':... . ~:
·~

.. 1: •. •.-
. <-;'.·. . '
Jt.!

. .-

•-.;.:

•
0

.-
.. .

;,

.•.
. ..

•

.. . •·. • •.

..
:.~ .

•.

..

.• ..

,.

_,.

y

X

t
I

' I _...3o.o
I •

•
' • I

• • • I
I

I
I

I
I

I
I

I
I

I , ,

I

, ,
, , ,

.,

,.

, , ,

-0 • 0
•

FIGURE 2-7. ·rwo DIMENSIONAL STICK-FIGURE JOINT-COORDINATED MOTION

. •

..•. .•..
•

-, -. .. .~.:-: ··: -· . .

,_

.-

._.
..

. ..

.•

. ..._

·.• --~. ·• ' .

• . .

•--.-

.
-·

··•:

;,

• .• . ..
-.

.-

-.

··.-.

-·

·-

..

.,,._

~

final desired configuration is reached. With joint-.

coordinated motion, the clamp speed is not constant, since

it follows a complicated three dimensional space-curve. To

understand the method used here, refer to Figure 2-7. It

shows how this method is applied to a two dimensional stick

figure model. In the configuration drawn the first link is

oriented 60 degrees from the horizontal and the second link

is 30 degrees from the first one. In the final desired

configuration, assume that they both are horizontal.

Suppose that in this case, the speed dependent increment is

20 degrees. The largest joint angle difference is 60

degrees, hence, the number of steps is easily determined

to be 3. The second joint angle difference, 30 degrees, is

then divided by the number of steps to yield a s!ep size of

10 degrees. This procedure may be repeated if there are

more joints. Upon computation of all step sizes, the links

are rotated simultaneously by the respective incremental

amounts and the result, in this case, is displayed at two

intermediate locations and the final configuration. If the

calculated number of steps is not a whole number, the

increment between the last intermediate and the final

configuration for each joint is adjusted to a size

proportional to the remainder.

,,'),.

36

.<>

/ .

,,

j!

-· · 2. 4 • 2 STRAIGHT-LINE MOTION

e
For controlling manipulator arms which exhibit

I

anthropomorphic geometrical and mechanical characteristics

(i.e. an arm with solely rotating joints and with redundant

degrees of freedom) it is necessary to solve inverse

kinematics equations which is a very difficult -task (23].

In the simulator, straight-line motion uses the inverse

kinematic solution by Lee [24], to invert between the

PUMA's location data format and the joint angles.

Lee's geometric approach, determines • various arm

configurations of a PUMA robot, based on the link

coordinate systems and··human arm geometry, with the help of

three configuration indicators. These indicators enable one

to find a solution from the possible four solutions for the

first three joints, and a solution from the possible two

solutions for the last three joints, for a six-link PUMA

robot. This method can be extended to any robot arm with

rotary join.ts. Orthogonal coordinate frames are de.fined at

each joint with the z-axis pointing in the direction of

motion and the x-axis points away from and is normal to the

previous z-axis. The labeling of the coordinate systems

begins from the supporting base to the end-effector of the

PUMA arm (Figure 2-6). As indicated above, associated with

the joint solution are three indicators, two with the

solution of the first tl:1ree joints (ei·ther a .. LEFT or RIGHT

37

. ~

...

. .
OPEt£D)(1,.1 VI-I z~ 0 A T 0PEt£D ~ ~~M zw 0 A T
Rl~HTV 338. 53 ~34.32 -s~. :51 163. 19 4~. 95 178. 8:5 RIGHTV 249. 46 .. ~··· ,;7 -s~. S6 167. 32 82. 94 1~8. 3:5

'.~ f160l'E JT I JT -JT 3 JT 4 JT ~ JT 6 BELBJ JT I .J"j I: JT 3 JT 4 JT :5 JT ' C c;

~ UC•FLIP -1 ee. e12 172. 88 !9. 34 -1. :52 .3e. 64 -9. 54 HOFLJP -1 ea. 02 182.63 168. 66 -e. 33 -84. 24 -18. " I ~ .. ~ t,-1• ,,-,,,.
!~~ \f~-

OQ ·~ "':f

·~-~ ~
i' '1 • ,v, ~
'/:1 (D ''.;'
'·~{(',-1 .. ' , .• j N '; :¥.

I ';•#4
.~ -~~;..j

()) 'I· ..
-;s1

·~ • J ; /!·
. '
t•· J, :,:· < ~. ~- ~

Pl :_ '~ _!,.,·~f

':~ l'1 't_,
; t, >".,.1

:;- ~ 0 ;~ .. ~~
lj '..f

C ffj
• :,0:

U> ·: :,"};

.·~
: • :{.;.:_ti

'' t-d :;.;;)
·.~. c::: ·;~:,. ~-. ·, ,... ~l ' r.w' -.... 1

'-:,~J; ~
<,•i w > ,:;:; b (X)

a • • .. ,.,
~ . !:

-·

0 A T ti • 0PEt£D >CM VM ZIJ
a 0PEt£D)(1,.1 Vl..l z~ 0 A T

-511. 68 l7S . .. , -,1e. ea ~2: , .. 89. ea e. ea LEFTY
LEFTY -531. 29 61. 79 -610. ea 6:S. ea 89. ee e. ee

.IT 1 -IT i: JT 3 JT 4 .JT s JT 6 0 BELO.,
A80UE .JT l JT E: .JT 3 JT 4 JT :5 .JT ' 144. 118 "'· 14 2e. 81 -179, 98 -84. Ii I. 3i 0

-13. ,. I, 21 • HOFLIP
~ t,tOFLIP ,,,. =sac. 8. 18 19. 13 -179. ,a
HI
t-'•

OQ •
<:.:~~ ~
'. \'?I l'1

Ill • n
.....
0
::,
(ll

•

•

c. d.

•
..

.. ~~ ..

hand arm configuration, and either elbow ABOVE o·r BELOW the
·J

wrist configuration, Figure 2-8), and one with the last

three joints (FLIP o:r NO FLIP). These conf igurat·ions are

prespecified by the user for finding the inverse solution.

To determine the first joint angle, the projection of the

position vector in the X0 -Y0 plane from the wcs origin to

the intersection point of the last three joint axes is

found. The first joint angle is determined from the

equations which result from equating the components of the

projection of the position vector desired by the

appropriate concatenated transformation matrix. The second

configuration indicator specifies an elbow ABOVE or BELOW

the wrist. For joint two, the projection of the same

position vector is made onto the x1 -Y1 plane. Joint two is

determined with the equations which result from the

geometry in this plane and the second configuration

indicator. For -joint three, we project the same position

vector onto the x2 -Y2 plane. The third joint angle .is
~

obtained from the resulting geometric equations and the

first two configuration variables. Knowing the first three

joint angles, we can find the solution of the last three
'

jointsc The solution of the last three joints of PUMA robot

arm can be found by setting these joints to meet .the

following criteria:

1) set joint 4 such that a rotation about joint 5 will

align the axis of motion of joint 6 with the given approach

39
.'l'r

.. "\.

(IF' Et lEt>

LEFT'·t'
1-1B(1~)E

•
t·tC•FLl P

-

. ,

·.·.

I,

\-•i·'' ·r·~J ZJ...I 0 A ,,
.

,:~,:,l'1 - -· - . "::-e 1 C"rt :~s 0. 00 Q- (10 [1 00 •c,. _. l;1 . -.
JT 1 .• IT ,:, .. .IT '!I .• IT 4 .JT c:; '-· ,.• -

0. r,0 - - 0. {)(1 90. ,30 r-1· - . ,313 n -· (nit

-----. ·'.] _.., -----....._ ---~-~- ..

•

,,,,-,,,--~---.,.. -·----· -·----~-. ~

---·-----
·------·~-~ --~

Ff,g_u.te 2-9 • Thre,.e: .zero angle conv~.n~ion

acc.o.·r·d··ing to Lee

•

·.

"· 40
•

!:! . . , . .

T
e. 00

JT 6

0. ('0

.,

.,

vector

2) Set joint 5 to align the axis of motion of joint ·6

with the approach vector
,

3) Set joint 6 to align the given orientation vector
. .

and normal vector

For a better understanding of the inverse algorithm, refer

to Lee's paper [24], and subroutine INVERSE in Appendix A.

In the simulator, three zero angle position conventions

are used. Lee's geometric solution takes advantage of the

angle convention which defines the horiz~ntal robot
\.'

configuration as the zero position (Figure 2-9). The

simulator uses the widely accepted statically balanced

vertical configuration [21] which defines the zero position

for each joint mid-way between the stop limits (Figure 2-

10). The PUMA's convention is different and uses a

combination of the other 2 (Figure 2-11). Presumably, this

convention was chosen for stepper motor convenience. To

conveniently calculate the inverse solution, to rotate

model efficiently, and to display,data in the format

familiar to PUMA users, in the simulator, • conversions are

made between the three conventions mentioned above. The

simulator determines the joint angles in Lee's convention

for the current configuration by simply adding 90 degrees

to the second joint in the simulator convention.

straight-line motion is more involved, and requires

more computations, and thus is slower than joint-

41
'\.

··,~

C•F·Et·~ED
RI t3HT',"
AE:a)t..'E

t·~c, r-· LI P

_ ...
(
l

xw
0. i~),)

JT 1
0. e,0

V1-l
1 c.·c- ·,c-

._,'-'· ... •J

JT .-.
~

-90. ~"!10

I •

,-:....

' J

Zl~I

990. 60
.Jr ,~ .. :.,

i)

~0. ,:-1n - -

.:,:a--· .

--""----.i. -----

0 ., A
9(l. 00 -Q,J _. -. 00

.JT 4 JT s
0. (10 0. 00

Figure 2-10. Three zero angle convention
according to the Simulator

42

...

T

0.00
JT 6

0.00

,

:

,.· "i.' • . - _, '

"

coordinated motion. It is used in WORLD and TOOL and VAL-II

modes. For straight-line motion th~ first step is to

determine the joint angles in Lee's convention as described

above. The joint angles for the final desired configuration

are determined by applying the inverse kinematic solution
.

to the corresponding Lee's convention data. Once known, the

joint angles are used to calculate orientation matrices and

theoretical configuration indicators [24]. In the VAL-II

mode, the user defined configuration indicators and the

next predicted configuration values are compared. If they

disagree, no move is made. The same procedure is followed

while in PENDANT mode. The theoretical configuration

indicators at the current and th~) next predicted

configuration are compared. Again, if there is a

disagreement between the corresponding values, PUMA

controller will not allow any motion, and an informative

warning message is displayed. Just like in the joint

coordinated moti.on, for the straight-line motion along an

allowable path, differences between the beginning and the

end positions and entities in the orientation matrices are

calculated. At ·this point,~ the number of ~teps is

determined by dividing the maximum position coordinate

differences by a speed dependent increment. Once the number
,JP

of steps is known, differences for each position coordinate
.

and each orientation matrix are incremented from the

current to the next desired configuration by the

43

OF·EttEC>

RI GJ1T'f
ABC1• . .JE

t·~C•FLI P -

.>

.•.

)·
. _ ... ~: .

. \

...
• ··1 J •••• • 't·'t.J Z"I 0 A

'~ ·=-·~ ~-·6 158. -,c::9 ~C":=: 80 90. 08 -90. 20 ~-- . ··' ,·· ·,J ·-··-·~.
.JT 1 JT ,.,

a:. JT 3 JT 4 JT 5
0. (10 0. t.)8 -0. 20 0. 00 0. 00

__.,.,..----~--_.,. _-+--+--..._-----~.c--- - .,----....... ...-..-·-----..:.._~·'-~ ~r·J': .
w.

---·-----

Figure 2"'.911 • 'l'hree zero angle PcUoMnAvention
~ccording to the

44

T
0. 00

.JT 6

0. 00

, .

...

appropriate step sizes. Table 2-3 shows an example

beginning, two intermediate, and a final desired

orientation matrix for a straight-line PUMA robot motion.
-

'As can be seen the only elemnt that is changes is the

'

translational elemnt and the rest remain the same.

2.5 TRANSFORMATION OP USER-DEFIHED OBJECTS

The simulator can be used to move user-defined objects

inside the robot work-cell. This is one of the important

features of VAL-II SIMULATOR. This process of grasping an

object, moving it, and then detaching from it is all

simulated in a user-friendly fashion. Once the LED sensor

is intersected by any of the workpieces, a flag is set and

a wrist to object reference point (first corner) distance

is calculated. As mentioned previously, the transformations

are done with respect to the fixed scs, which means that

the object must be shifted to scs. This is essentially done

by subtracting the coordinates of the reference vertex for

the object from all of the vertices display data. At this

point the object definition data which is redefined with

respect to scs, must be redefined. This is done by

premultiplying the object data by transpose of the clamp
T

transformation matrix, [T5] • Now, to redefine the object

with respect to the wrist, and make it a part of the

clamp, the redefined object definition data must be

45

... \.

. '

,7

"'.'

. ' .

. .
,

' .

..
.. . .

. . -
. ' • . . .

•

,
...
.

• • . .
: ~ ..

• - .· ·~ . . . ;,. ·. . .·
.

. . -. . .
. " - i '":,. . ..
.
•.·· . , -· ·-.~·
-··

··'. ·• ·- •.

-ov.62 o. 15 -0.77 12.84
-0.07 0.97 0.24 21. 11
0.79 0.20 -0.59 24.71
o.oo o.oo o.oo 1.00

.
-0.62 o. 15 -0.77 12.84
-0.07 0.97 0.24 18.50

0.79 0.20 -0.59 24.71
o.oo o.oo o.oo 1.00

-0.62 0.15 -0.77 12.84
-0.07 0.97 0.24 15.89
0.79 0.20 -0.59 24.71
o.oo o.oo o.oo I .OO

-0 .. 62 0.15 -0.77 12.84
-0.07 0.97 0.24 13.27

. 0.79 0.20 -0.59 24.71
o.oo o.oo o.oo 1.00

TABLE 2-3. EXAMPLE ORIENTATION MATRICES FOR
STRAIGHT-LINE MOTION

46

..

I

.

. ..

N \:

,·-~.

,·

premultiplied by the clamp· matrix, [TS], and then shifted

by the sum of all of the reference distance calculated in

the first step. A reverse procedure is followed to detach

an object from the clamp. When the flags are properly set
.. '

to detach an object, the distance between the object and

the scs origin is calculated. The rotated object data is

redefined, so that, when this new reference distance is

added to the reference vertex of the object, it is

displayed in the same place as it was when defined with

respect to the wrist. To better understand this process,

refer to subroutine LATCH .pa and DETACH in Appendix A.

2 • 6 SIMULATION SPEED

One major difference between the PUMA robot and its

simulation is in that the dynamic effects such as

acceleration, deceleration, or gravity· and inertia

effects have not yet been included in the simulator.

One of the advantages of robots is t~at they may be run

at high speeds. Robots of course, follow a continuous path,

as opposed to the simulator which displays the model at

discrete positions along a segmented path. When this is

done quickly, the repetitive images are blended to create

the apparent motion.· The speed variations in the simulat.or

are based upon a relative speed and not a true one.

The PUMA controller allows the speed to be set in the

47
_,/ ') :, ,, -

' \ ,·, \

,,

monitor mode, and then fine-tuned with the teach pendant or

the VAL-II mode. But in the simulator the speed set in

the pendant mode is independent of that in the-VAL-II

mode. In the simulator while in the pendant mode, the

default speeds have been chosen sothat the resulting

. motion is slow to be fully observabl.e. In joint-coordinated
I

mode, the default speed corresponds to an adjustable joint

rot~tion increment of 8 degrees for each key depressio~.

Similarly, in the VAL-II mode, the default speeds for

joint-coordinated and straight-line motion are adjusted

with VAL-II commands. In the VAL-II mode, the default value

for the largest joint angle rotation increment (full speed)

is 12 degrees. This was chosen arbitrarily to produce

segmented displays which run slowly enough to be easily

observable, yet quickly to minimize turn-around time while

debugging VAL-II programs.

2 • 7 COIJ,ISION DETECTION ALGORI'l'HM

As explained earlier in this chapter, the simulator

uses extruded wire-frame convex polyhedrons to represent

the -robot model and the user-defined workpieces. One

disadvantage of this geometric modeling scheme is that,

when one object extends over and covers a part of another,

it is very difficult to verify visually, whether one object

is in front of, behind, or intersecting another. In order

48

"

'

.,-

•

to detect precis~ly, any unwanted collisions between the
robot model and workpieces, between moving and stationary
objects, and between the different parts of the robot
itself the simulator uses both a coarse and a fine
mathematical intersection check. These algorithms are
valuable tools for robot users, since many undesired
collisions may be prevented during VAL-II program debugging
and location definition.

The coarse check algorithm, "grows" all possible
obstacles using a speed dependent error margin to form a
parallelepiped envelope around them. This method was

suggested by Pieper (25]. It then checks to see if the
midpoint of the clamp or any other moving polyhedron is
inside any of these parallelepiped envelopes. In the case,
when a midpoint lies inside one of these parallelepipeds,
the fine check algorithm is used. Refer to Figure 2-12 to
better understand this algorithm. At the beginning of a
VAL-II session, the radii of circumscribed spheres, shown
in yellow, for every polyhedron and clamp are calculated.

For the coarse check algorithm, the radius of moving
polyhedron is added to the extreme·coordinates of the
vertices of each stationary polyhedron to form the yellow
box shown. Simultaneously, a speed dependent margin is also
added to form the lavender box. The coarse check compares
the coordinates of the center point of·a moving polyhedron

49

.,

_

•,

+ REC•

+
+

,-

YELLOLJ

LAVENDER

+
+

RED

V

Figure 2-12. Coarse Collision Check
"growing" a Polyhedron

&.&HITE

+

+ +

+ ~ED

+ +

+

_ ___,, ·--- + + _
I I

LAlJENDER

LAVEt-lDER

+

+

Figure 2-13. Coarse Collision Check
Adding Speed Dependent Error Margin

. II

so

YELLOL.1

)(

•,

UHJTE +

and the maximum and minimum coordinates of the lavender

box. A yellow warning message is displayed, when the
~

.

coordinates of the moving center-point are inside the

envelope, at which time the fine check algorithm is

applied.

In order to provide precise results and quick display

response, a speed dependent error margin is necessary. To

understand the use of this error margin refer to Figure 2-

13. In the figure the same object is shown surrounded by a

small and a large lavender box. Also, a fast and a slow

i

clamp path is shown for each, represented by a series of

red and white cross hairs. ,~f the box is small and the

distance between the steps along the path represented by

cross hairs large, there will not be sufficient warning

time between the imminent and actual collision. On the
'

other hand, if the box is large and the distance between

the steps along the path small, the fine check algorithm is
\

applied more often than necessary, thus slowing down the

display speed of the simulator. The error margin has bean

selected arbitrarily to provide a good compromise.

As mentioned before, when the midpoint of a moving

polyhedron is inside a parallelepiped, the program applies

0 the fine check algorithm. This algorithm is applied when we

need to determine if a line segment of a polyhedron has

intersected a plane of a polygon of another polyhedron or

vice versa. The problem is solved by first determining if

51

.- .,, ...
. I ,

. . .

..•

. . .
. ~ ..
• • •'.°'. ~ ,,.

• j

' .. _.:., ..
..

! • •· • ·.

. .. . r , .

. :. . .,
. ::.·.• - .

··- 1.·

. . .. ~··:·:· .. ; . .

. t,:,, ..

.

FIGlAE 2·J4A. FINE COLLISION CHECl<·BREAKING

PCLi1£DRONS INTO POLYGONS AND LINE SEGEMNTS

+

•

+

FIGURE 2-146. Flt£ COLLISION Ct-ECK-CHECt<ING THE INTERSECTION

POINT BY SUMMING THE AREAS OF TRIANGLES

".

. :,

' . ..
..

and then where the projection of.a line segment intersects

the plane of a polygon. There are three possibilities,

si~ce if there are line segments parallel to the plane ·of a

polygon, there must also be lines in a direction which

intersects the plane (Figure 2-14 A and B). The algorithm

first checks to see if the intersection point of the line

and the plane ·1ies on the line segment. If it does, lines

are drawn from the intersection point to adjacent vertices

of the polygon, resulting in generation of some triangles.

Then the areas of these triangles are summed. If the sum of

the areas is larger than the area of the polygon, the point

is outside the bounds of the polygon, otherwise a collision

has taken place. .

2.8 DIRECTORY INFORMATION

Information regarding the names of individual robot

control programs created in the VAL-II environment, as well

as information on location data files may be obtained while

in this mode. Also, the content of any VAL-II programs may

be displayed on the screen.

53

.. ~ ·,

I

CHAPl'ER 3

3. PENDANT MODE

This chapter. of the thesis is dedicated to discussion

of the PENDANT mode (figure 3-1) of the VAL-II SIMULATOR.

This portion of the simulation program was developed to

graphically display the functions and usage of the ''Teach ,

Pendant" for a six-li11lc PUMA Robot.

While in this mode, each of the 6 joints of the PUMA

may be rotated independently of others, by pressing any one

of the numbers 1 through 6 on the keyboard to move the

corresponding joints. The joints have been numbered from

the supporting base (link O) to the robot end-effector

(link 6), as in Figure 2-6. The rotation algorithm is the

same as that explained in chapter 2. Also, two special
l',.

cases of the straight-lin1e motion, namely: World and Tool

modes are simulated, by which the robot clamp may be moved

along a straight-line parallel to any one of the axes of

the World or Tool Coordinate Systems. This may be done by

simply pressing 'W' (W_ORLD), or 'T' (T_OOL) followed by

'X', 'Y', or 'Z' to move the clamp along the respective

axes of the correspo~ding coordinate systems.

The Speed in this mode is independent of that in VAL-II

54
i . ,w • .j~ . -~-.

I : . \

) ··,:

1 u,
U1

,,. -:,,

..

·9c.

•

•
Et·11·E~: C~(tt1t·1f tt·~t·~:; E:''(F .,;-.1~~;~3 J t~(,:

• 1 - ('-,c, It •r 1) r,:, R,:rrt-=tTE ABCll .. fT l-U1 I:;;, .

2 - ,: ~r,:, It 11· i:::, TIJ F.~tJ'TATE RE:C1fJT ~:1-H)IJLl)EF~

::: - (1.ICr I ttT :3) T(J F.:1)'TATE AE:t.)tJT EI_BOl-J

4 - (-.1(1 I t·IT •4) TIJ ~:CfftiTE f!BC•IJT F1JF~E..-il:::r 1

S - (1.ICt 1 t·tT !5) Tl) R,:,· f RTE (·L At··1F· 1_11:· t:·1t ~I) C:etJf .. Jt~

: '

..

. ..

:.~

G - < ~10 I t·tT 15) Tt.l ~~Cl'TFfTE CLA:·1p (1::LC•C:l<lJI ~;1:: .. ,·c:OIJt·~TEr;:,::Lcu: •·:l-J I ~:;E)

,-, -- < t•Pl:l~ > ·r,J ,:,1=·r:r t ·rHE ,::LFtr-11=·

'-. -· ... ((:L•J~;E) TO ·-~· L OSI:: ·rH1:: c~L,=tt·1F·

lJ_(tl~L[)

T _c11:,L
: TO 1··1(1lJF. t·1Ct[)l::l. I l··t 1.J,:11:.:t.C• 1··1(rC•E

: TO 1··11)•..JE t·1c1t)l~L I I·-~ TO•JL r·11:1t:1E
, .

I t.,, ... ~.EA-·::E
-- 1 ... ,r.. ·-

l. E1··r:-E -:.,-.E ·- .. ··i .. _t1-:,:.

: l c, l t lC:F.:l;;t~lSE' 1·Hc Rc,r,=,r I (11·-~ftL I t·tCRl:.f·lEt·fT

: 1·0 l)(:~:r<:l::flSE THE F.~(ITf~T [l)l··tr-tL I t·tCF.:l:]·1Et·rr

R_E.TI..IRt·f

t.J_AI--I I
: TO 1;;:F:: TIJl:.:t·t r,:, THr:: TOI=> (IF t-=t t11::t·tll

: BEFt)P.E t::t·~ TEI:~ I l·tt3 A IJAL ~:or·1r·11=1t·~D

figure 3-1. PENDANT Menu

.....

....

..

; .·-.., .

()

•

•

·•.

j '

'·
.,

·-~--

·1
,

\
... ·-.

..
I

Mode. However, the rotational increment may interact! vely

be changed by pressing 'I" (_I_NCREASE)' or· 'D' (D_ECREASE)

to increase or decrease the rotational increment,

respectively. Also, the direction of joint rotations may be

changed by simply pressing 'N' (N_EGATIVE), which switches

from clockwise rotation to counterclockwise, or vice versa.

The clamp of the robot may be displayed in either

"OPEN", or "CLOSED" position by pressing 10 1 (0 PEN), or -
'C' (CLOSE), respectively. -

..

To keep the user updated on positional data of the

robot and also robot status, at all levels the position of

the clamp, Euler orientation angles, and configuration

indicators may be displayed.

3.1 JOINT ROTATIONS

The exact •ethod to teach an industrial robot the

points on its path is to move each link of the robot

independently of others to reach the desired position and

orientation and then storing it in the computer memory

[26].

In the simulator each of the six joints may be rotated

by pressing any one of the numbers 1-6 on the keyboard to

· rotate the corresponding links in the joint-coordinated

motion.

No display data for the vertices of model polyhedrons

56
.(

'·

. -~- ~-

are calculated unless n.ecessary. For example, if a rotation

of joint 1 (WAIST) is required, the display data for all

1 the subsequent joints needs to be updated. However, if

the FOREARM. is to be rotated, the display data for the

polyhedrons of the Waist and Shoulder need not be

recalculated, since they remain stationary during the

coarse of this motion, but the display data for the rest of

the joints (3, •• ,6) must be calculated. (Refer to chapter 2

for more detailed information.)

The default joint rotation increment is set arbitrarily

to 8_ degrees, and may interactively be increased or

decresed by pressing 'I' (I_NCREASE), or 'D' (D_ECREASE),

respectively. If a switch in the direction of joint

rotation is required one may press 'N' (N_EGATIVE) to

switch from clockwise to counterclockwise or vice versa.

3.2 WORI,D MODE

World mode is a special case of straight-line motion.

In this mode the clamp of the robot may be moved along

straight-line parallel to any one of the axes of the World

Coordinate System (WCS), while maintaining the same
•

orientation. This may be done by pressing 'W' (W_ORLD)

followed by 'X', 'Y', or 'Z' to move along the

corresponding direction. For this motion, Lee's algorithm
<\

is app·lied to determine the final joint angles. Initially,

57

··.r:..

... . -,

the orientation matrix is formed using the current joint

angles. Also, user specified position along the TCS's z

axis is referenced. The next desired position is determined

by adding the increments along the appropriate axes of the

WCS to the referenced current position.

In the PENDANT Mode, the simulator does not use thr

user-defined configuration indicators. Instead it

temporarily redefines these configuration indicator values

to the theoretical ones for the current position and

oi-·entation. Lee's solution is then applied to compute the

final joint angles using the theoretical values obtained,

thus far, as well as the final position and current

orientation matrix. once the joint angles are predicted,

they are checked to see if they do not exceed the joint

angles stop limits. If they are valid, the display data is

calculated and the new model configuration displayed.

Otherwise, the PUMA controller does not allow any motion

and a warning message is displayed.

3.3 TOOL MODE

This is another special case of straight-line mot,ion,

by which the clamp may be moved along straight-line

parallel to any one of the axes of the Tool Coordinate

System, (TCS). This may be done by pressing 'T' ·(T_OOL) and

the • x •, • y •, or • z' to move in the corresponding

58

~·

,I '

..

direction. As in the World Mode, the clamp maintains the

same orientation during the motion.
u,

To determine the final joint angles, current user

specified position along the TCS's z-axis and the

orientation matrix is used. Initially, the position along
t'

the TCS's z-axis is a~igned with the z-axis of the scs.
This is done by premultiplying the coordinates of the

position data by the inverse of the current clamp matrix
-1

[TS] • Once aligned with the scs, the point is shifted by

user controlled increment size along th~ appropriate axis.

The incremented position is transformed back to the TCS by

premultiplying it by [TS]. (One property of the

transformation matrix used here is that its inverse is the

same as its transpose.)

At this point, the simulator temporarily redefines the

configuration indicators' values, and checks the validity

of the solution obtained. If the joint angles do not exceed

their prespecified stop limits, the new display data is

calculated, and the arm is displayed in the new

configuration. Otherwise, a warning message will appear on

the screen and PUMA controller will not allow any motion.

In both, World and Tool Modes, before displaying the

model, it is also checked to see if the predicted motion is·
.~

inside the robot work volume. This is done by comparing the

interactive joint angle rotation increment to the magnitude

of joint angle 3 (ELBOW). If the angle is smaller than the

59

user defined rotational increment, links 2 and 3 are nearly

aligned •

. 3.4 CLAMP POSITION AND ROBOT STATUS

In order to keep the operator updated on robot

configuration (LEFTY, RIGHTY, ABOVE, •••) and also the

clamp position and oientation, also its status (OPEN, or

CLOSED), the proper information may be displayed on the

screen, upon user's request.

At any time, the position of the clamp, Euler

orientation angles, joint angles and configuration

indicators may be displayed by pressing 'P' (P_OSITION) and

then 1 1 1 , 1 2 1 , or '3' corresponding to position along the

TCS's z-axis at the origin, LED sensor and clamp tip,

respectively.

.·· .
.;·" ••' .:

;

60

·:,-,:.

• •

,. ·• -• .·.: i'' ,>,· ! o.o , "'I.·- f;:,'' ,C ~~, , .

'·· .,

CHAPTER 4

4. MANIPULATION MODE

The first step in the ·manufacturing engineering process

is the design and layout of the work-cell. The manual

process is often quite laborious and time-consuming.

Perhaps, the most critical factor is the designer's real

lack of knowledge of the three dimensional spatial

relationship of the cell components as related to the

required motion of the robot.

As mentioned before, VAL-II SIMULATOR is a language

simulator and not a drafting package, meaning that, it does

not duplicate the features of a CAD geometric modeler. For

this reason, other CAD systems capable of JD modeling must

be used in order to create robot work-cell components.Once

the cell-components are created they must be transfered to

VAL-II environment. VAL-II SIMULATOR allows geometries to

be transfered via an IGES software link or UNIGRAPHICS-II

files (UGII files must first be interfaced with program

POLYGON (19], to generate file.DAT, which is used by VAL-II
',)

SIMULATOR) .

This portion of the simulation program was dev~loped to

enable th• user to reposition cell components, as a

simulation tool for designing and evaluating work-cell

61
-·1:

layouts. The key direction of this section .is the off-line

simulation and checkout of the part positioning or flow

before installation.

Upon completion of part transfering process, and after

entering the MAIN MENU, one may wish to reposition any one~

of the cell-components inside the work environment. This

may be done by pressing 'M' (M_ANIPULATION) to enter the

MANIPULATION MODE. This mode enables the user to translate

or rotate a user specified part. The operator may select to

move the individual part by system defined increments, thru

pressing 'K' (K EYBOARD), or by user defined increments, by -
pressing 'I' (INCREMENTS). For convenience, the coordinate -
axes display may be turned ON or OFF. Also, during the

coarse of part translation, a constant readout of the

positional data of the moving workpiece with respect to

both, the World and the Screen Coordinate Systems is

displayed. Whenever, a part is repositioned,

its new display data is calculated and the part will be
,

displayed in the new position. At the end of a MANIPULATION

session, the user may save the new setup under the same or

a new user-defined name. A flow chart describing various

levels of this mode is shown in Appendix A.

4.1 COMPONENT REPOSITIONING VIA KEYBOARD

If the keyboard option is used, a menu will appear on

62

,(·

... --.

. . . ,.

' ..

the screen (Figure 4-1). In order to avoid complexity a~nd

also for a neater display, and since often users memorize

various options under this menu, the menu ·is not displayed

at all times unless the operator requests for its display.

While in this mode, any individual part may be tran·slated

along straight-line parallel to any one of three axes of

scs. This may be done by pressing 'B' (BACKWARD), 'F' -
(F_ORWARD), 'U' (U_PWARD), 'D' (D_OWNWARD), 'L' (L_EFT),

or 'R' (R_IGHT) to move the part in positive or nrgative

direction of the X, Y, or z axes of the fixed scs,
respectively. A constant readout of the positional data,

with respect to both, the World and Screen Coordinate

Systems, ,plus the moving part number are displayed during

the part repositioning process. The default increments are

set to <5 mm> for each key depression. Upon each key

depression the new display data of the part is calcual ted

and the part is displayed in the new position:At any time

the user may decide to end repositioning one part and start

with another •
.

Upon completion of a MANIPULATION session, the user is

asked whether it is required to save the new setup or not.

If affirmative, the new setup file may be saved undr~r a new

file-name, or the old one will be updated.
l

At this time, the control wiJ.l be transfered to the top
\

of the program, namely the MAIN MENU.

63

,.

,'.

: ae,:.

•.

MANIPULATION MENU

LI_F·I..JAF.~D

t>-01 .. J~~WARD

R_l(3HT

L_EFT

F_ORWARD
B_Fu::•(IJAl~D

;::_RIJT

"t·._RIJT

Z_Rt)T

A 1.11-~· =-~
S_ T1Jp

'

•

• t101 • .JE Tl-IE PART 1.IPWARD •

• MO•JE Tl-iE Pl~RT DOWt--11..JARD •

• MO•JE Tl-iE Pt,RT TO RIGHT •

• MO• . .JE Tl-IE PART TO LEFT •

. r·1C1• • .JE Tl-IE F·1=iRT FORL~U=tRD •

• 110'~..IE TJ;E Pt=-tRT BAC•(L~AF~D •

: Ro·rATE THE PART AB1)UT :~-AXIS

: ROTATE THE PART ABOUT Y-AXIS
: F~o·rATE THE PART ABt)UT Z-AXIS

: C01JRD I f'-IATE AXE:~ < Ol~r .. OFF)

: RETURN TO MAIN MENU

Figure 4-1. Manipulation Menu

,;.

. I.

64

., '--··

,,

..

•

UOJ.t.0 COORC• I HATES F"OR F·~P.T HO.

SCf.·EEH COOf.~DINFtTES FOR PART HO.

•

•

~.l

1101:1.D C:QORc,JHftTES FOR F'ftAT NO.]

sc"·EEM COOJ;:O INF1TES FOR PART HO. 1

V

aJ

1
~

1

)(I.I ""' zu
21a. ee see. ea 184. 48

X V z
see. ee l38. 48 21e. ee

-

a.

)OJ vu zu
s1e. ea see. &a 184. •e

)(y z
see. ea 138. 48 s1e. oe

•

..

•

b.

Figure 4-2. Moving user-defined workpiece

65

•

•

.,

I ' ..
·-.

· 4.2 COMPOND1' REPOSITIONING VIA USER-DEFINED INCREMENTS

The user may also select to move the part by specified
-

.. increments with respect to .fixed scs. Conveniently, the

user may turn the coordinate axes display ON or OFF.

As before translations and rotations are allowed. The

user may select to translate the specified ·part parallel

to any one of the scs axes. He is then asked if it is

required to rotate the part. If so,the rotation increrments

are entered by the user and the new display data

calculated, and the part will be displayed in the new

position (Figure 4-2). A constant readout of the moving

part positional data, ·along with the part number is

displayed, at all times. At any point, the user may decide

to start repositioning anot!1er part. At the end of the

session the user is allowed to save the new setup under the

same or a new user-defined name. The control is then

transfered to the MAIN MENU.

66
j

~ '

j •

I

. ''

•

CHAPl'ER 5 . "\, •:

5. EDIT MODE

• J .

In the recent years manufacturing tasks have become

complex and costly. As a result of this, robot programs
I_

specially those written for complex and sophisticated

product assembly, now require more logic, functional

checking, and programming constructs.

In a robot program which has been written using any one

of the robot programming languages, the logic and

conventional programming constructs form a significant

portion of the code as opposed to "geometric move"

commands. Even in a highly geometric application, such as

automobile spot welding, the robot program resembles a

traditional computer program (27]. In ·one existing

automobile plant there are more than one hundred spot

welding robots programmed in a high-level language. The
I

programs consist of 500 to 1000 steps, of whidh the weld

path is only 20 steps. Here, the geometric ~ortion is less

than 51 of the total program. Although, this is not typical

of t.oday•s spot welding programs, it is an indication of

the future direction of robot programming (28].

In order to make the program editing in VAL-II

67

-·,

.•.
.. :, . '.·~

...

' '

SIMULATOR as easy and user-friendly as possible, a

considerable amount of effort was devoted d·uring the

initial design of the EDIT Mode. The task was to make

.
certain that, like other, sections of the package, this mode

was easy to use, but yet powerful enough to provide all of

the desired functionality. The major design criterion was

that a user, with some knowledge of VAL-II programming,

could effectively use the EDITOR of VAL-II SIMULATOR (EVS),

by only spending a few minutes of reviewing the Editor Menu

Options (EMO).

The Editor of VAL-II SIMULATOR (EVS) is menu-driven,

which means that a list of options is available at all

times. The user may start out with an existing VAL-II

program for further extension, or modification. It is also

possible to create new programs. For convenience, each line

within a progra11 is referenced to by a unique step number.

Steps are numbered consecutively, and numbers are

automatically adjusted by the editor, whenever program

lines are deleted or new ones inserted. These step numbers

are 1 ikely to be changed as a program evolves, hence they

would not be useful for identifying steps for program

controlled branching. (For this reason, program steps can

contain step labels.) The Editor continuously checks the

syntax of a program while it is being created or modified.
jl

Tniat is, when the user completes a program-line by pressing ·
I .

the RETURN key (<CR>), the editor checks to make sure the
1.., • .,.,.,,

I 68
,·::.f''.

·' ,

,,

I

syntax of the line is acceptable. The line is rejected and

an error message is output, if any error is found •
. • ~\

The Edit session may be invoked by pressing 'E' . (E_DIT)

and the corresponding menu (Figure 5-1) is displayed. The

commands associated with the VAL-II editor are listed in

this menu. These editing commands can be used fo~ creating

and modifying user programs. The menu consists of several

options. One may press 'C' (CREATE) to invoke the progrm -
creation mode. Any program line may be deleted, or a new

lines inserted, by pressing 'D' (D_ELETE), or 'I'

(I NSERT), respectively. At the end of each session, one -
may press •s' (S AVE) to save a new or modified version of -
a program, or 'E' (EXIT) to exit from the Edit Mode and -
return to the MAIN MENU. A flow diagram of the EDITOR

structure is shown in Appendix A.

5.1 PROGRAM CREATION

The EVS a .. llowsr -the user to create VAL-II robot

programs, without having to exit the VAL-II SIMULATOR

environment, hence preservingthe programs, setup, and

locations. A file may be created by typing EDIT followed by

the program name, file.DAT. The EVS will first open the

file DATFILER.DAT and checks to see whether the user

defined program name matches one of the entries in the

69
\•

I,

: '
I .

,,
i
I

'

•

,..

E [) I T C) F-~ C O f"I r-·1 A t--~ D S

El) I ·r

C_F.·1::ATE

J _t·t:3ERT

D_EI_ETE

S_A•.JE

•
• • I t·4l.J()I ~ES f:'.D IT f·1Ctf)I:°:

• : I t·~IJOl<ES 1:;F:EA"T I C•f'~ t1Cr()f~

: l~LLCII.JS F1:1R LI t-~E I t·~SEl~:T l 01··~

: 1~LLC1I.J;.:; F•)R · LI t·~E l)ELE"T I Crt·~
: . ~:;AlJE:.; Tt-tl:: FI f_E

: Et~DS TfaJE EC• I ·r SE:;s I OJ-~

Figure 5-1. Editor Menu Option$

70

•. ..l!,,--,
• ··\.'-'.r

-~

·,

•

c: ..

4

,

list. If it does, it means thit the file is an old one,

hence it will be opened and the content of it displayed on

the screen. However, if the file is a new o~e, a flag is

set, the user is notified that the input file does not

exist, and therefore, a new file under the user-defined

name will be initialized. In this case, the new program

name is added to the list, and the content of th~ file

DATFILER.DAT is updated. The system continuously checks the

syntax of the program-lines as they are entered. If a line

is acceptable, it will be added to the file, and the user

may proceed to the next step. Otherwise, the line is

rejected and an error message is displayed.

5.2 PROGRAM MODIFICATION

.
For program debugging purposes, it is often necessary

to delete or add VAL-II program lines. As mentioned

previously, each line within a program has a unique step

number referenced to it. In order to delete a program line,

one must type 'D' (D_ELETE) followed by the step number.

Program line insertion may be done in more or less the same

method. To insert a line one must type 'I' (I_NSERT)

followed by the corresponding step number. This may be

repeated for as many time as necessary. Whenever, lines are

inserted or deleted, the step numbers are automatically

adjusted by the EVS.

..

/

Upon any program-line removal or insertion, the

modified version of the VAL-II program will be displayed

for user verification. During program modification,

whenever, a wrong key is depressed an informative message

is displayed, notifying the user of his input and the
I\

modified file will automatically be saved.

·-. The Editor of VAL-II SIMULATOR, constantly checks the

syntax of a program while it is being modified. A line is

rejected and an error message is displayed if any error is

encountered. Otherwise, the program line is accepted and is
~

automatically added to the program, immediately adjusting

the step numbers •

,.. ,L

72
,.

i

·.,..,,.._-:..l ·-

.· .::·

CRAP'l'ER 6
i•

6. VAL-II COMMANDS

I ,

As mentioned in·the first chapter, VAL-II SIMULATOR

utilizes· some of the basic concepts and fundamental

structure of its predecessor, VAL SIMULATOR [12]. Also,

some of the simulated commands which were developed for the

VAL SIMULATOR, have been made compatible with VAL-II

SIMULATOR. However, the main emphasis of this thesis was to

focus on more advanced features in terms of programming

control and graphics display. Therefore, a great deal of

consideration has been given to this type of VAL-II

commands. For completeness, some of more important commands

and those which have been made compatible with the VAL-II

SIMULATOR are also discussed below. In the simulator, the

VAL-II commands are grouped into eight categories: 1)

Location, 2) Motion Control, 3) Hand Control, 4) Program

Control, 5) Configuration Control, 6) Trajectory Control,

7) Assignment Instructions, and 8) Miscellaneous Commands.

The following information is provided for each command:

1) The specific command syntax

2) An indication of when the command can be used

3) A description of the operation performed by the

command

In addition to these, it is also explained how the FORTRAN

73

·•

...

n-

• J

"DECODE'' statement is used to read in the user input. VAL

II commands consist of a command name, usually followed by

one or more command argu~ents. An optional comment can be

included on a command line by preceding it with a

semicolon. Thus, the general command syntax is

<COMMAND name> {<space><argument>} {<space>;<comment>

For cl'arity, all VAL-II SIMULATOR command names are shown

in uppercase in this chapter. Command arguments which are

to be supplied by the user are shown in lowercasse. Also,

some shortened notations are used as well. Angle brackets,

< >, are used- to enclose a description of the actual

argument to appear. Note that, these brackets are used for

clarification and are never to be included as part of a

command. In this chapter, optional arguments are enclosed

in brace-s, { }. If there is a comma following such an

argument, the comma must be retained if argument is

omitted. For oue example, the BASE command has the form

BASE {<dx>}, {<dy>}, {<dz>}, {<z rotation>}

To specify a 300 millimeters translation in the z-axis, the

operation could be entered in any one of the following

ways:
.•

BASE 0,0,300,0 or . BASE- , , 300,

74 . .,

·.l

·l

6.1 LOCATION COMMANDS

The three location commands, namely: HERE, WHERE, and

·BASE are monitor commands and specially important, at the

same time very powerful, and provide significant

flexibility in VAL-II programming. These instructions can

be used to define or understand • various robot
..

config1.4rations during a VAL-II program execution.

! .. '

6.1.1 HERE <location variable>

HERE is a monitor command and as the mnemonic implies

i~ defines a particular position and clamp orientation for

future references. The simulator reads the HERE command

followed by location variable and immediately converts the

joint angles from current simulator joint angles data

format to those of PUMA convention and Euler orientation

angles defined with respect to the current wcs. It then

associates them to the user-defined location variable and

stores the converted joint angles in an array.

6.1.2 WHERE

Upon execution of this command, the current location

and clamp orientation of the robot with respect to the WCS

is displayed. The Cartesian World Coordinates are displayed
'j

75

.
· in millimeters and the joint angles in degrees •. Note,

depending upon the clamp,path, rotation angle values

displayed may be shifted by 360 degrees. That is a value

shown as 170 degrees can also be interpretted as -190

degrees.

In the simulator, WHERE command is more consistant and

provides more information than the PUMA controller. In the

simulator the angles displayed · for a particualr

configuration are always the same regardless of the paths

followed.As discussed in section 3.4, there are several

position display options. Depending upon the one chosen by

the user, the position display may be any one of three

points along the TCS's z-axis. The information on robot

clamp status and configuration indicators as well as Euler

and joint angles are displayed in addition to the above

information.

6.1.3 BASE {<dx>}, {<dy>}, {<dz>}, {<z rotation>}

Upon progra• initialization, the origin of the World

Coordinate Systea, of the robot is assllllled to be located at

the interset:tion of the axes of joints 1 and 2, with the X,,

Y, and Z axes f i:x:ed in spac~,. The BASE command off sets and

rot~tes the reference frame as specified. It is used in

VAL-II •ode to perfor• specified tranformations with)

resp~ct to the fixed wcs and user-defined work-cell.

76.

' _;,

,. ,,

..

'l'ransfor•ations are· done tirith respec·t to scs. For this

reason, the definition and rotated object data (Table 2-1)

is rotated and then translated back to its position with

respect to the wcs•s initial orientation. This is done

first, because the BASE com•and prescribes the

transforaations to take place w·ith respect to the initial

wcs frame; then, to determine the value of the shift and

rotation increments, DECODE statement of FORTRAN language

is used. During the next step, the original object data is

shifted by subtracting the incre•ent and then rotating the

object in the negative direction. Xn the same way, data for

the wcs frame is read from a file and transfor•ed. The

robot •odel, however, re•ains centered on the screen at all

ti•es, and the shifts and rotation transformation are

perforaed on the user-defined work-cell components. Note,

before i•ple•entation of the BASE co•mand, the si•ulator

checks to see if any user-defined object is attached to the
'·

cla•p. If this is the case, the sa•e transf oraat.ion for the
'

robot and user-defined objects will be perfor•ed
• •

separately.

· 6.1.4 SET <location variable>• <location varibale>

This co••and sets the value of the location variable on

the left equal to the location variable on the right of the

equal sign. The si•ulator stores the configuration data for

77

'

. ,,

...

J

...... "'., - ..

the right hand na•e also with the first name.

6. 1.·s SHIFT <pointA> BY { <dx>}, { <dy>}, {<dz>}

.This coaaand :modifies the respective user-defined

incre•ents along the axes of the wcs. If the position does

not violate the robot reach limits and does not exceed the
. .

allowable joint rotation limits, the modified

configuration will be displayed. Otherwise, the robot

controller will not allow any •otion and an error message

will be displayed on the screen. In this case where the

configuration specified by •point A" does not exist, a

si•ulator error aessage will be displayed.

6.2 MOTION COMMANDS
. l

6.2.1 MOVE <location>/ MOVES <location>

These comm~ds cause the robot to •ove to the position

and orientation specified by •location.• In the si•ulator

the location naae is decoded and the corresponding PUMA

data obtained and converted to si•ulator joint angle

format. Inter•ediate configurations are determined using

the joint-coordinated or straight--line •otion discussed in

Chapter 2. The si•ulator first co•pares the user-defined

configuration indicators for the final desired loca.tion

78.

v •
- ,J~

... '• ,-: ' a. •I ... -'" -r' ' ~ I

/. .

with the theoretical ones. If the solution is not vitlid, no

•otion is allowed, ana an error aessage is displayed.

6.2.2 ALIGN

This command causes the tool to be rotated so that its

z-axis is aligned parallel to the nearest axis of the wcs,

hence, forming an orientation aatrix that contains only

zeros and ones. This instruction is primarily helpful for

lining up the tool before a series of locations are taught.

Again, the user-defined configuration indicators and the

theoretical ones are first compared. The motion is then

si•ulated only if the solution is valid and the path

possible.

6.2.3 APPRO <location>,<mm> / APPROS <location>,<mm>

These co•aands •ove the tool to the position and

orientation specified by •location,• using joint

coordinated or straight-line aotions, respectively, but

orfset along the tool z-axis by the distance given in

•illiaeters. A positive distance sets the tool "back•

(negative tool-Z) from the specified location; a negative

distance offsets the tool •forward• {positive tool-Z). The

offset along the TCS's z-axis is analogous to shifting a

•illing aachine tool to a clearacne plane. These coamands

79

i
C,

'
:,

·' :.

·'
'

. . -- ...

,_ -........... -. .

are very iaportant for insuring that while ·approaching the

location no collision will take place.

6.2.4 DEPART <mm>/ DEPARTS <mm>

/

These commands •ove the tool (by joint-coordinated or

straight-line) the distance given in ailli•eters, along the

current z-axis of the tool. A positive distance aoves the·

tool back: a negative distance •oves the tool forward.

These co••ands are useful specially when the halld grasps an

object and departs fro• alocationin such a way that the

object does not collide with the table or fixture fro•

which it is taken. It is also used to avoid collision

between the claapa and an object when departing with the

cla•ps open after releasing an object at a given location. I

6.2.5 DRIVE <joint>,<change>,<speed>

./,

Thi.a co••and operates- the single specified joint

changing its joint variable by "change• a•ount (in degrees)

at the •speed• percent of full speed. The joint nuaber,

•joint• can be 1,2,;.,6. In the siaulator, first the joint

nu•her is decoded and then the 11cbange• aaount followed by

the ~speed.• The si•ulator defines a nev location by

adding the a•ount •change• to the joint variable. :rt ther.,

80

. '

''

uses the joint-coordinated aotion and aeta the aiaulation ·

speed as described in Chapter 2.

• '7"

6.2.6 READY

This co••and aoves the robot into the statically

balanced vertical configuration. At this point all the

configuration indicators, naaely IARII, IELBOW, and IWRIST

have positive values. As explained before, the si•ulator

takrA..s advantage of t;he angle convention and defines zero

joint angles in this position. The siaulator then creates a

location for the zero position and moves the ar• to this

location using joint-coordinated aotion.

6.2.7 DELAY <time>

This comaand causes the robot aotion to stop for the

specified period of tllle.

6.3 HAND CONTROL

The robot tool frequently has the fora of so•e kind of

a grasping device, refered to as a hand. Here, it is

assuaed that the robot has electrically driven proportional

hands [13].

81

6.3.l OPEN {<hand opening>}/ OPENI {<hand opening>}

In the si•ulator OPEH and OPBHI behave in the saae

fashion, and the hand opening is changed to the •hand

opening" percent of fully open position. To open the cla•p

in the specified a•ount, the definition data for the

reference vertices of the polyhedrons re·:presenting the two

cla•p faces are translated by the user-defined incre•ent to

achieve the desired hand opening. Here, it is assumed that
,_.

no object sticks to the clamp. The detach algorith•

explained in section 2.5 is used and the flags are set so

that the objects are redefined with respect to the fixed

scs •.

6.3.2 CLOSE <hand opening>/ CLOSEI <hand opening>

These com•ands operate in a way siailar to OPEN and

OPENI co••ands. Here, the definition data for the reference

vertices of the cla•p polyhedrons are translated by the

user-defined incre•ents, to achieve the desired closing

position. As poited out previously, the fine check

algorith• is used to see if it is possible to grasp a user

defined workpiece, by checking to see if the LED line

segment has intersected any of the polygons belonging to

the polyhedrons representing the hand. If it has, the flag

is set a=".ld the attach algorithm described in section 2.5,

82·

l

_J \

. /
n.

is applied. Confusion aay arise when two s•all objects are

placed near one another, or a collision warning was ignored

by the user; in either case one aay expect the robot to /-'

attach both objects to the claap. However, the siaulator

only attaches the cla•p to the lowest numbered object

polyhedron (the object nu•her is deterained by its location

in the SE'l'OP data file). For efficiency, the si•ulator does

not repeat these steps when the cla•p is already closed.

6.3.3 GRASP <hand opening>,{<label>}

In VAL-II this instruction causes the hand to close

i1t- aediately, and then checks to see if the final opening is

less than specified a•ount.If it is, the program branches

to the step specified by the program label. Otherwise, it

vill close the clamp 1001 and continues with the very next

step. In the si•ulator, however, a flag is checked to see

if the LED sensor has intersected any of the user-defined

polyhedrons~ If it has, it closes the claap by the

specified a•ount, and branches to the step specified by the

label. Otherwise, the progra• execution will continue vith

the next step. Thus, this instruction si•ply provides a

one-step •ethod of grasping a pa.rt and then branching to a
I

.

different part of the prograa, soaething which nor•ally

requires two individual steps.

83 : .. ; ... · .~ \ ..

\
'

6.4 PROGRAM CONTROL

The following instructions control the sequence in
r which user pr_ogra• instructions are executed. Thus, they

· can be used to control the logical flow within user

programs.

6.4.1 GOTO <label>

This command performs an unconditional branch to the

progra• step identified by "label.• The si•ulator, first

decodes the label and then rewinds the active file

searching for the specified step label. Zf it is found, the
..

progra• execution will continue fro• that step. Otherwise,

an error •essage is displayed, and the program execution

will continue vith the progra• step following the GOTO

statement.

6.4.2 CALL <program>

This co••and teaporarily suspends the execution of

current progra•, and execution continues at the first step

of the indicated user program, which is then considered a -

sub1:outine. In the simulator, this is done by si•ply
. "

~

openin~r the file •prograa•.DAT while the active _progra~ is

already opened. Execution autoaatically returns to the .. --·

84

.. '
• .. - -0 --- •

current progra• when a RBTURlf instruction is executed in
. ' '

the subroutine.

6.4.3 RETURN

Ter•inates execution of the current subroutine and

resuaes execution of the last-suspended program at the step

following the instruction which caused the subroutine to be

invoked.

6.4.4 PAUSE <MESSAGE>
,.

This co•mand causes an executing VAL-II progra• to

te•porarily stop execution. After a PAUSE com•and is

executed and the active progra• stopped, for

implementation, a user may enter any VAL-II co•mand. The

siaulator will decode the user input, and accepted

co•mands are i•plemented until the PROCEED co•mand is

encountered, at which ti•e control is returned to the VAL

II progra.

6.4.5 STOP <MESSAGE>/ HALT <MESSAGE>

These com•ands ter•inate the execution of the user

prograa unless more loops are to be coapleted, in which

case, the control will return to the first step o,f the

85

progra•. I:t can be.said that the STOP instruction aarka the

end of a VAL-II program execution pass. In the PUKA

controller, however, the HALT instruction ter•inates the

progra• execution regardless of any nu•ber of loops

re•aining to be completed. In the siaulator, this coa•and

is regarded in t.he sa•e manner as the STOP co••and. These

commands •ay be followed by.inforaative •essages which are

printed for the user on the screen.

6.4.6 DO ••• UNTIL

This structure provides a way to control the execution

of a group of instructions based on a control expression.

The syntax for the DO structure is as follows:

DO

{<group of instructions>}

UNTIL <logical expression>

In the si•ulator, the group of instruction oteps are

executed, then the UNTIL statement is encountered, and the

logical expression is evaluated. If the logical condition

is not satisfied, the progra• is rewinded and the DO

statement is found and the progra• execution continues at

the first step following the DO statement. Otherwise, the

very next step following the UNTIL statement is executed.

Note th~t, the group of instructions within the DO

86

•.

structure is always executed at least one tiae (Appendix A) •.

6.4.7 IF .•. THEN ••• ELSE • • • END

·~

This form of IP instruction provides a •eans for

conditionally executing a group of instructions, or

alternating groups. The complete syntax is:

IF <logical expression> TBEN

<first group of steps>

ELSE

<second group of steps>

END

In the simulator, when IP command is encountered, the

logical expression is exa•ined. If it is satisfied, the

first group of ste·ps is executed, and the control will be

transfered to the first step following the EHD step.

Otherwise, the second group of instructions is executed,

and the control will transfer to the first step following

the END state11ent. The siaulator first decodes the variable

na•ea followed by the •athe•atical condition used. It -then

opens the file CBBCK.DAT to see if the first variable na•e

exists in the list, and if it does it obtains its value.

The saae thing is done for the second variable naae. It

then co•pares the two values obtained thus far, and decides

whether the logical e:xpres·sion holds or not; and based on

87

·,

' ~

'·
,·

'f

-.
;;

~· the result the corresponding group of instructions is

executed. In any .case, if either one of the variabl,a naaes

vas not declai-ed be:f ore an error message is displayed and

the control is transfered to the very rirat line following

the END step (Appendix 1~) •

6.4.8 WHILE ••• DO ••• END

This structure provides another means for executing a
·.t.·.

group of instructions until a control condition is

satisfied. The complete syntax for the WHILE structure is:

WHILE <logical condition> DO

{<group of instructions>}

END

In processing the WHILE structure,. first the logical

expression is.evaluated. If the logical condition is

satisfied, the group of steps is executed and the control

is transfered to the step containing the WHILE co••and to

re-exa• the logical condition. However, when the logical

condition is not satisfied, the program execution will

continue at the first instruction af·ter the END step. In

the si•ulator, the variable names a~d the matheaatical

condition are first decoded. Then, the file CHECK.DAT is

opened to exa•ine the validity of the variable na•es. If

('.)

88

·1'·

,. '

I'

the na•es app~ar in the list, their corresponding.values

are immediately deter~ined.Then, the logical condition is

examined and results obtained.Whenever, anyone of the

varibale naaes does not appaar in the file CHECK.DAT, an
~ .

error •essage is displayed, and the WHILE structure is

ignored (Appendix A).

6.4.9 EXECUTE <program>,<loops>

This co••and causes the specific program to be executed

•loops• ti•es. In the siaulator, upon decoding the EXECUTE

coaaand the file llprogra••.DAT is opened and the content of

it executed step after step. Whenever, a STOP or HALT

co•.mand is encountered, an execution loop is terminated.

Just before opening the llprogra•• data file, the interrupt

flag is set, so as to enable the user to abort the progra•

execution without leaving the VAL-II SIIIUIATOR envirollllent.

As the coa•ands are processed, they are read, decoded and

i•plemented,one by one, each coaaand is scrolled. on the

display terainal, for evaluation and co•parison purposes

vith the actual PUll robot's behavior. If the nuaber of

loops is negative, the PUJIA controller executes the VAL-II

progra• indefinitely. However, in such a case, the

silllulator repeats the program 1000 times.

89

~ .. ,_, ,

/'~.

6.4.10 ABORT

This command terainates eJCecution of the active robot

progra•, i••ediately after coapletion of the step currently

being siaulated. The siaulator does not accept this

co•mand, but has the same capability. In the si•ulator, a
6'·

display terminal is used to simulate the behavior of the

PUJIA upon execution of VAL-II co:mmands. Hence, to si•ulate

the effects of an ABORT instruction, one aay depress the

•cTRL" and •c• keys, si•ultaneously. This will interrupt

the active program execution and sets.the corresponding

flag which is checked before reading and decoding each VAL

II command fro• the file. Interrupting a progra• execution

by the use of •cTRL" and •c• keys preserves the user

defined locations and setups.

6.5 CONFIGURATION CONTROL

For an anthropo•orphic aanipulator arm (i.e. an ar•

with solely rotating joints and redundant degree of

freedo•) like a PUMA 600, •ost po:lnts in its wotk space aay
-

be reached by specifying one of the eight possible spatial

configurations (13]. Hor•ally, the robot remains in the

default configuration, those set upon progra•

initialization, until the user requestsfora different

config,uration, or when a READY instruction is executed.

90

. "\..;,·

,·:

The first two configuration indicators, RIGBTY and
-

LEFTY, request a change in the robot configuration so that

the first three joints of the robot resemble a huaan•s

right or left ar•,respectively. The second two, ABOVE and

BELOW, control t..he configuration so that the •elbow• of the

robot is pointed up (ABOVE), or down (BELOW) (Figure 2-8) a

The last two, HOFLIP and FLIP, change the range of

operati<>{l of joint 5 (wrist rotation) to positive (NOFLIP)
,.,,

or negative {FLIP) angles. This is the difference between

the cla•p pointing upward or downward.

In the simulator, these co••ands are being i•ple•ented

by setting the sign of the configuration indicators I.ARM,

IELBOW and I WRIST, for the three joints -in question.

Positive values for the configuration indicators a~e

assigned for RIGHTY, ABOVE, HOFLIP; negative values

correspond to LEFTY, BELOW, and FLIP. It •ust be kept in

--mind that, joint angles obtained by Lee's approach to the

inverse kinem~tic solution [24] is effected by changing

t__hese configuration indicators.

6.6 TRAJECTORY CONTROL

6.6.l SPEED <percent>

The speed of the ar• is set by this coamand. In joint

coordinated motion, this command sets th:~ rotation time for

. 91·

'-1' ' ·.~".'.'

,,

the largest joint angle difference, na•ely for~ joint

which •aves fart.best. In straight-line aotion it sets the

clamp speed. In the si•ulator the incre•ent size used by .

joint-coordinated and straight-line •otions is set by the

SPEED comaand. If the requested speed is less than 101 or

aore tban 1001 of maxi•u• speed, the speed is automatically

set to 101 or 100% of maximum speed, ~f!Spectively. Also,

when the SPEED command is decoded, the speed dependent

error •argin is aslo calculated (the speed dependent error

•argin was discussed when ve talked about coarse collision

check algorithm).

6.7 ASSIGNMENT INSTRUCTION

I•plicit assignment instructions are aslo simulated in

the VAL-II SIMUIA'l'OR. For example, a variable "Row• may be

declared to have a value of 10, by typing •ROW=10•.

Variable names •ay be up to 9 characters long. In the

si•ulator, whenever this situation is encountered, the file

CHECK.DAT is opened and its contents are checked. If the

variable na•e already exists, its corresponding value vill
"

be updated. Otherwise, the new name will be added to the

1ist of file CHECK.DAT, and its value stored. Also, other

forms of assignment statements such as: 8 ROW=ROW+x•, or

9 ROW=ROW-Y9 aay be included in the VAL-II programs.

92 ··.:.. · .
. ;;· ·.

s.~~ .. • ,

)

' ~ : .

6.8 MISCELLANEOUS COMMANDS

6.8.1; {<character string>}

•

This provides a •co••ent• line in a VAL-II progra•. The

co••ent lines are used only for the progra••er•s benefit,

and are ignored when a program is executed.

6.8.2 TYPE {<character string>}

This co•,mand operates aore or less in the sa•e way as

the•;• (remark) comaand; in that it provides a coament

line in a VAL-II program, and the •essage which appears

following this state•ent is ignored by the siaulator, and

is only for the programmer's benefit.

6.8.3 TYPE {<variable name>}=

Upon execution of this co•wand, the infor•ation

described by the output specification is displayed on the

terainal. In the siaulator, the inforaation is liaited to

the values of various variable naaes declared during a VAL

II session. When this coaaand is executed, the file_
'

CHECK.DAT is opened and the entries in the list read, one

by one. If the variable na•e exists in the 11st, its 1ast

93

,:,,.·

declared value is retrieved, arid its last declared value ·1s·

displayed. Otherwise, an error message is displayed. Rote

that, if thew=• sign is oaitted, the simulator will

regard this com•and as a siaple 'l'YPB stateaent explained in

section 6.8.2.

6.8.4 STATUS

Upon execution of this coa•and, status information for

the systea, and the user robot control program being

executed is displayed. In the si•ulator, this includes the

speed of the robot set by the last SPEED comaand, the

nu•her of program execution loops completed and those still

remaining.

6.8.S HELP

This co••and provides on-line help for the VAL-II

SIMULATOR users. Upon execution of this com•and the HELP

MENU appears on the screen. The operator is then asked

whether he needs •ore inforaation on a specific topic. If

the answer is •yes•, the user will then be asked to input

the topic for which help is needed. The user input is then

decoded and a file called HELPER.DAT, which contains a list

of all the help topics, is opened. The user input is

checked against individual entries in this list. Whenever,

[':)'~ . ,r~.> C ..•

: :~~.;J

94

the user input •atches one of the entries in the file, a

pointer is set and the corresponding information is

displayed on the screen. A flow chart is provided for

better understanding of hov this progra•

operates in Ap_pendix A. The following inforaation is

provided for each topic: 1) the specific command syntax; 2)

a description of the operation performed by the coaaand; 3)
•..

an indication of when the co~mand can be used. Help is

available for all VAL-II com•ands and so•e of the Monitor

co•mands. Since, it is very difficult to memorize all the

entries in the HELP MENU, the user is frequently asked

whether it is necessary. to display the HELP MENU or not.

95

··l
I
,: ...

• ~ I

CHAPrER 7

. ~- l'IJ'

7. CASE S'tODY

In order to explain how the simulator may be used, a

simple part processing task is shown, in a step by step

manner. It will be explained how the parts which have

already been created using a UNIGRAPHICS-II system, were
~

transfered to VAL-II SIMULATOR environment, through IGES

interface. Also, preparation of location data and

instructions for VAL-II SIMULATOR use are given.

7.1 PART TRANSFER
.,

Part files may be transfered to the VAL-II SIMULATOR

environment either via IGES interface, or through POLYGON

[19] interface. It is assumed that the parts have already

been created using a CAD system capable of JD modeling. In

order to use IGES interface, the part file data format must

first be converted to IGES format via mea~s provided by the

individual CAD system. Once the file is written in IGES

format and the file "program.IGS" is generated, one can

start a VAL-II session. After the copy right information is

displayed, the following menu is displayed:

96

·~··

!•',

,.

,._.
I(.,

I GES FILE -
U GII FILE -
EXISTING FILE -
INPUT "I"' "U", OR "E":

Except in the Eitor and VAL-II modes, most of the commands

only require single key inputs from the user. In this

example,· only IGES interfaceis used, hence, the input

should be "I." This requests the initialization of the

section of the package which interactively reads in the

"program.IGS", and places the parts at the origin of the

user specified coordinate axes. Then, the following

question will be displayed on the screen:

ENTER IGES FILE NAME TO BE READ:

Th"e name of the IGES file created is input, "program. IGS".

The IGES file is then opened and read in, and converted to

a format which may then be read and used by VAL-II

SIMULATOR. This file will have a <.SET> extension. This

file may have a different name from the IGES file. For this

reason, the user is asked to input the desired setup file

name:

. ENTER SET-UP FILE NAME:

This file will contain all the geometric data, in a format

which can be used by the VAL-II SIMULATOR. In order to

successfully complete writing this file, the following

information is required: a) the number of workpieces in the

work-cell, b) the units of the workpieces, which could

97

,,..,_.,.-.
'!•

,
~ '' •i...

:.

either be in millimeters (MM), or in inches (IN), and c)

the location of the of the reference coordinate system in

which the data have been defined. This information is
'

input by answering the following questions:

ENTER THE NUMBER OF WORKPIECES IN CELL:

ENTER UNITS OF WORKPIECES (MM/IN):

ENTER COORDINATE AXES SYSTEM (W/S):

If the data are input properly, the SIMULATOR will write

the file and a message is displayed, informing the user

that the file xxx.SET has successfully been written. At any

point if a wrong answer is input, an error message will be

displayed, and the user asked, whether or not he wishes to

continue the part transfer. The part(s) will be placed at ·

the origin of the coordinate axes system specified by the

user. A setup file corresponding to our example is shown in

Figure 7-1. The first line contains the number of user

defined objects in the work-cell, in the example 14. The

object coordinates may be in millimeters or inches. The
I

second line specifies the units of workpieces; either "MM",

or "IN" is used. The third line, shows the coordinate

system with respect to which the object data is defined. A

''W" will designate the wcs, and a "S" will specify the scs.

Following the third line of each setup file, lines of data,

one corresponding to each user-defined object appear to

indicate each object's size; this is specified by giving

the number of vertices belonging to one polyhedron. The

98

•

1~
1111
w
l, 8 1, e
. 440.00 -50.00 -3~0. 00 575.00 -600.00 -320. 00

0.00 0.00 0.00 20.00 o. 00 0. 00

0.00 0.00 70. 00 .?0.00 0. 00 -2,0. 00

0.00 30.00 70.00 ~0.00 20. 00 -250.00

0.00 30.00 0.00 20.00 20.00 0.00

S0.00 0.00 0.00 0.00 0. 00 0.00

50.00 0.00 70. 00 0.00 o. 00 -250.00

50.00 30.00 70. 00 0.00 20. 00 -250. 00

50.00 30.00 0.00 0.00 20. 00 o.oo
1, e 1, B

440.00 105.83 -320. 00 575. 00 200.00 -320.00

0.00 0.00 0.00 20.00 0.00 0.00

0.00 0.00 70.00 20.00 0.00 -;?50. 00

0.00 30.00 70. 00 20.00 20.00 -250. 00

0.00 30.00 0.00 20.00 20.00 C' 00

,o.oo . o. 00 0.00 0.00 0. 00 o. 00

,o·.oo 0.00 70 00 0.00 o. 00 -250.00

50.00 30.00 70. 00 0.00 20.00 -250.00

50.00 30.00 0.00 0.00 20. 00 0.00

1, a 1, 8

-4b3.5l 500. 00 -320. 00 345. 00 200.00 -320. 00

0.00 0.00 0.00 20.00 0. 00 0.00

0.00 0.00 40. 00 20.00 0. 00 -250. 00

0.00 600.00 40.00 20.00 20.00 -2,0.00

0.00 600.00 0.00 20.00 20.00 0.00

500.00 0.00 0.00 0.00 0.00 0.00

500. 00 0.00 40. 00 0.00 0.00 -~50.00

500.00 b00.00 40. 00 0.00 20.00 -250. 00

500.00 600.00 0.00 0.00 20. 00 0. 00

1, 8 1, a
-4b3.5l ~0.00 -320.00 345. 00 -600. 00 -3:!0. 00

40.00 0.00 0.00 20.00 0. 00 0.00

40.00 0.00 -2~0. 00 20.00 0.00 -250.00

40. 00 40.00 -;?50. 00 20.00 20. 00 -250.00

40.00 40. 00 0.00 20. 00 20. 00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 -2,0. 00 0.00 0. 00 -~so. oo
0.00 40.00 -250. 00 0.00 20. 00 -~50.00

0.00 40. 00 0.00 0.00 20. 00 0.00

1, 8 1, B

-4b3.51 lObO.CO -320.00 495.00 400.00 -~0.00

40. 00 0.00 0.00 0.00 0.00 0. 00

40. 00 0.00 -250. 00 0.00 0.00 -lS0.00

40. 00 40. 00 -~~o. oo 176.78 176. 78 -1,0. 00

40. 00 40. 00 0.00 176.78 176.78 0.00

0.00 0.00 0.00 -176.78 176.78 0.00

0.00 0.00 -250. 00 -176.78 176.78 -1,0.00

0.00 40. 00 -;?50.00 0.00 353.56 -150. 00

0.00 40. 00 0.00 0.00 353.50 0.00

l, 8 1, B

-2.,1 1060. 00 -320.00 495.00 400. 00 -470. 00

40.00 0.00 0.00 0.00 0.00 0.00

40.00 0.00 -250. 00 0.00 0.00 -100. 00

40.00 40, 00 -;?50. 00 176.78 176.78 -100. 00

40. 00 40. 00 0.00 176.78 176.78 0.00

0.00 0.00 0.00 -176. 78 176. 78 0.00

0.00 0.00 -;?50.00 -176.78 176.78 -100.00

o.oe 40. 00 -250. 00 0.00 353.56 -100. 00

0.00 40.00 0.00 0.00 353.56 0.00

l, B
-2.,1 :,oo.oo -320.00 .

'

40.00 0.00 0.00
-

40.00 0.00 -250. 00

40.00 40.00 -~50.00

40.00 40.00 0 00

0.00 0.00 0.00 Figure
0.00 0.00 -250.00 7-1. Example Program
0.00 40.00 -250.00

0.00
.

0.00 40. 00 Setup --
data file

1, e
595.00 -600.00 -320.00

0.00 0.00 0.00

0.00 0.00 -20.00
0.00 800. 00 -20. 00

0.00 800.-00 0.00

-250.00 0.00 0.00

-250.00 0.00 -20.00

-2,0.00 800.00 -20.00

-250.00 800. 00 0.00
99

! .

~ .

arrays ·have been adjusted so that up to 30 objects,

excluding the robot model itself, may be used in each work

cell, with hidden-surfaces properly removed. To have the

collisions checked for all the parts, the dimension of the

INDEX array is set to 1100. In our example, each object has

8 vertices, as shown in Figure 7-1. This is shown by

specifying the first and last vertex with a comma

separating them (1,8). Due to the data format chosen, the

first digit should be 1, and the last one an even integer

larger than 6. As explained in previous chapters,

associated with each object is a ref~rence point (the first

corner). The set of data following the number of vertices

for the first polyhedron is the coordinates of the

reference point, namely the first corner of the first

object. Following this line, the coordinates of each vertex

is given with respect to this reference point, given in

(X, Y,Z) order separated by commas or spaces, corresponding

to prespecified coordinate system. As mentioned in Section

2.1, the simulator uses polygons to form convex polyhedron

env~lopes which r~present objects. The vertices

representing the front and back faces must be given either

in a clockwise, or counterclockwise,order, when looking
·~

toward the origin along the line of the normal axis. When a

counterclockwise convention is used, the magnitude of the

coordinates along the normal axis, for the first polygon is

larger than that of the second one, and vice versa, when a

100

''1 . .
,,r,:,,. ~·-::-·:. ·~,-{ .···:-; ..

····''J~·1·,~·--:.'

.,., .. ,. ~ ·•- . - .

clockwise ordering is used •.
()

7.2 PART REPOSITIONING

The user is then directed to the MAIN MENU. Since, the
. . '

objects are all at the origin, they must be moved to the

desired locations in the work-cell to represent the

designed layout. To move to MANIPULATION Mode, 'M' ...,

(M_ANIPULATION) is pressed on the keyboard. A menu is then

displayed which corresponds to manipulation mode using the

system defined increments. The user is first asked, the

part number to be moved. Parts are numbered l, 2, ... , n

consecutively, according to their location in the setup

file, where n is the total number of parts in the work

cell. After the part number is input, the following menu is

displayed:

INCREMENTS

KEYBOARD -
RETURN

ENTER COMMAND#
,.

A single key input is required. The operator may select to

use the KEYBOARD option by pressing 'K' from the keyboard',

and then by depressing 'U' (U_PWARD), 'D' (D_OWNWARD), etc.

to move the individual part in the desired direction, until

the final desired location is reached. If the locations. are

precisely known, one may pref er to move the individual part

101

,.

I

by specifying the proper translational and rotational

increments. If the latter is chosen, by pressing 'I', it is

then asked whether the user would like to have the

coordinate axes display ON· or OFF. The user is then asked

to input the corresponding translational and rotational
l

increments. The translations and rotations are performed
,..

with respect to the scs and a readout is available along

with the part numb~r for reference. Once done with

repositioning one part, one may start to move another by

answering 'NO' to question which asks whether it is desired

to continue moving the current object. In our case the

proper translational and rotational increments are input

for all the parts so that the work-cell will be displayed

as shown in Figure 7-2. The end of a Manipulation session

is marked by answering 'NO' to the question which asks
,:

whether it is desired to move another part. We want to save

the new setup, so we answer 'YES' to question

DO YOU WANT TO SAVE THE NEW SET-UP FILE (Y/N) ?:

and it is then asked, whether it is prefered to use the old

setup file name or a new one is to be speci,fied. The file

name may contain up to 9 characters and must be followed by

a " . SET". The control is th'en returned to the MAIN MENU.

7 • 3 LOCATION DATA

The functions of the "Teach Pendant" may be used to

102

I
.·

J.

·-. ...
. " "~ _.-~---ri -

.__.l,-.-.~·---i.11,,
'· ·"'· ·---·-- -- --...

Figure 7-2. Simulator Output Image for Program Process

,. , .. ., ·: :•

103

. J

... . :

.i

..

" .

! ' ' ' • ,_."

..
. .

·independently move each link of the PUMA robot by pressing

any one of the numbers 1-6 on the keyboard for the

corresponding link. This is the exact method, a real

industrial robot is taught points in its space (26]. Once a

desired location is reached, one may save that location by

entering the VAL-II mode and typing " HERE <point name>".

There is a quicker method to define and store locations,

and that is to write them in a "program.LOC" file, by

looking at the positions of the objects defined in the

setup file. (However, to take advantage of this method, the

user must leave the VAL-II SIMULATOR environment.) Any

location data contains the positions and orientation

angles. In the file, each location is identified bythe

label, POINT, followed by a space and then an appropriate

name of up to 9 characters long, a comma, and the position

and orientation data separated by commas (Figure 7-3).

7.4 SIMULATOR USE

The simulator may be used in an interactive manner to

perform the following tasks:

-to move the end-effector to different locations,

-to orient the end-effector,

-to open and close the gripper,

-to perform repeating tasks,
.·, ..

-to make conditional and unconditional branching or

104

' I

.....

POINT A,465. ,-45. ,-245. ,89. ,91. ,0.
FG!NT B, 465., 120. ,-245. ,90. ,90. ,0.
POINT C, -180. , 600., -204. 16, 90., 90. , -90.
POINT D, -100. , 600., -204. 16, 90., 90., -90.
POINTE, 425. ,590. ,-220., 90., 90. ,-45.
POINT F, 425. ,590. ,-400. ,90. ,90. ,-45.

..

Figure 7-3. Example Program Location data file

.,,

,(' ;-

,,.,. ..

...

..,

,()'.:

... , .

jumps.

The order in which the individual instructions are to be

executed is critical to simulate a manufacturing

application effectively and efficiently. Oftentimes,

several iterations are necessary to find the most suitable

locations, work-cell setups and the optimum VAL-II program.

A program session may be started with no previous

setups or a previous session may be continued. In either

case tl1e Editor is used to develop the VAL-II program. To

invoke the EDIT Mode, from the MAIN MENU, one must press

'E' (E_DIT). This will cause the Editor Menu to be

displayed. Then to create a new program to perform the

part processing task, we type EDIT followed by the program

name, xxxxx.DAT. If this is a new session the following

message will appear on the screen:

INPUT FILE xxxxx.DAT DOES NOT EXIST

If you are continuing development of an existing file the

Editor will load your program. For a new session the file

is initialized, and one may press 'C' for CONTINUE, and tha

VAL-II program is then typed in step by step. End of each

line is marked by pressing the RETURN key on the keyboard,

and the next step may be input after pressing •c•. Once the

VAL-II program editing is completed, the file is saved by

pressing •s• (SAVE) and the Editor may be exited by typing -
'E' (E_XIT), which will transfer the control back to the

MAIN MENU. To test the program, we must enter the VAL-II

106
,,

.. ·:.)'
•· ,·
.;, ... ~

...

I

•.

mode. This specific program is written to pick up parts,

process them, and then place them on a table. The

processing task is simulated by inserting the part in a

part processor.

After the locations are taught tp the robot, we enter

the VAL-II mode. VAL-II commands are input to visualize the
I

performance of the PUMA. An example program edited in the

EDIT Mode appears in Figure 7-4. If any modification is

required, we may go back to the EDIT Mode, and delete lines

of instructions or add new ones. Figures 7-5 to 7-6 show

the simulation of the example program. In these figures

one part is picked up (Figure 7-5 a), moved straight up

(Figure 7-5 b), moved along straight line for processing

(Figure 7-5 c) and inserted in the part processor (Figure
;

7-5 d). Once processed, it is moved to a location which is

offset from the final location (Figure 7-6 a), the part is

released and the clamp departed from that location (Figure

7-6 b), and moved to grasp the second part (Figure 7-6 c).

once the program and locations have been verified on the

simulator, they may be down-loaded to PUMA controller for

final testing and implementation.

7.5 OBSERVATIONS

Since, the effects of changes in payloads due to clamp

velocity and acceleration are not simulated, and also, the

107

)

: ' ,,

; PROGRAM: PROCESS
; THIS PROGRAM SIMULATES·. A PART
READY
LEFTY
ABOVE
APPRO A,-50
TYPE PICK UP THE FIRST PART
MOVE A
CLOSEI 50
DEPARTS 100 ·
MOVES E
MOVES F
TYPE PROCESS -THE FIRST PART
DELAY 1
DEPARTS 200
APPROS C,-50
MOVES C
OPENI 100
DEPARTS 100
APPROS B,-50
MOVES B
TYPE PICK UP-THE SECOND PART
CLOSEI 50
DEPARTS 100
MOVES E
TYPE PROCESS THE SECOND PART
DELAY 1
SHIFT E,0,0,-200
MOVES E
APPROS D,-50
MOVES D
OPEN! 100
DEPARTS 100
READ"f
STOP

-..

PROC:ESSING APPLICATIOt,1

..

•

Figure 7-4. Example Program Command data file .
•

108 ·

,•

•. .,

. .,..

'

··~

C

-~-T ·-rs POSSIBLE TO GRASP THIS PART

I

·a,.·. . . -b:.

.. C •

·, t.Figure 7-5. Simulator Output Imag~s for Example
109

d.

, I

~-·

··,

.•,j,.·

C •.

Figure 7-6. Simulator Output Images for Example
110

.•.

b .. ' .. : ,· .

•

;;

··. -~

•:

,'

~.

·.
"

,,-,, .

c~~
(\

I J

~ . ~

location data in the simulator and those in the real work-
'"' I

cell environment are different, the successful simulation

does not guarantee foolproof VAL-II program implementation.

One serious limitation of the graphical simulation is that

the third link, FOREARM, is shown symmetrical and does not

show the assymetrical taper found on the actual PUMA. For

this reason the clamp is not located precisely ~here

predicted. This may cause problems in stacking parts.

As dj~cussed before, the simulation speed does not

directly correspond to actual speed. In the actual VAL-II

Language setting the speed to 25% of the full speed

prescribes a safe program execution and corresponds -to

approximately full simulation speed. However, if in the

simulator, the robot is run at full speed, a part may

appear to be placed in the precise specified location. But,

in the real work environment the part may reach its final

position too quickly and when it is placed in the specified

location, it is actually "thrown". Since the simulator does

not simulate the system dynamics, it is recommended that

the simulation speed be set so that it corresponds to a 25%

PUMA speed.

., .

111 ,.

:-' .. ., ..•.. "_,, ..
'

CHAPl'ER 8

8. SUMMARY

Due to great technological advancements in recent

years, ro"bot language simulators, like the VAL-II SIMULATOR

are being considered A most important assist in the

implementation of robot systems. These simulators are used

for off-line programming of robots. In addition the

simulators may be used as instructional instruments and

help in evaluating program sequences, · as well as designing

various work-cell layouts. In manufacturing, they may be

used for off-line programming, hence, minimizing the

production-line down time.

VAL-II SIMULATOR is menu-driven with an on-line help

feature for all control levels. VAL-II SIMULATOR utilizes

the basic concepts and fundamental structure of VAL

SIMULATOR and offers :11ore_ advanced features in terms of

programming control and finer graphics display. Information

regarding configuration indicators is available to user at

any time. Arithmetic and logical expressions are available

for decision making, for performing repeating tasks, and

for making unconditional or conditional branching or jumps.

Collisions are detected automatically and a simple sensor

. . ' 1.1:2·

,.

•1;

'

interface is p:r·ovided. C User-defined geometries may

interactively be retrieved from other CAD data bases using

the International Graphics Exchange Standard (JGES) and

then easily positioned in the PUMA's work environment. With

these features the simulator can be used to design and

experiment with a variety of work-cell setups,

investigating assembly tasks, and to develop various VAL--II
. ·~·

programming possibilities. Once a work-cell is created and

the VAL-II program is developed and tested with the

simulator, the VAL-II program may be down-loaded directly

to the PUMA controller for final testing and verification.

8.1 LIMITATIONS AND RECOMMENDED APPROACHES
'

The simulator does not currently change the

configuration indicators if needed. If the values of the

user-defined configuration indicators do not agree with the

theoretical ones, the motion is halted. Oftentim~s, t~e

user does not know whether the path is possible or not. In

such a case, an automatic change option would considerably

enhance the simulator's performance.

In the Simulator's VAL-II Mode, each input string must

first be decoded by the system to recognize the command for

implementation. Therefore, there is a short stop at each

instruction.·
"'

~ .,

The collision check algorithm requires a great deal of

113
' ..

computations ·to precisely inform the user of unwanted

events, hence, resulting in slower simulation display.

The simulator uses extruded wire-frame polyhedrons

which necessitates defining envelopes around the objects

rather than use the actual geometries.

It must also be kept in mind that VAL-II SIMULATOR is

not a robot emulator. The effects of gravity or inertia or

changing payloads, or dynamic effects such as accelerations

and decelerations are not simulated.

Very limitedsensory interface is available.

'.

8.2 FUTURE EFFORTS

VAL-II SIMULATOR has been written in FORTRAN 77, and

consists of a series of inter-related subroutines, which

allows for easy modification, or extension of individual

routines without involving major changes in the rest of the·

program.

The FRAME and INVERSE commands may be added by

introducing compound transformations.

For more programming control, IF-SIG commands may be

included. For the IF-SIG command to be practical, along

with the robot some hardware should also be simulated.

Routin~s may be developed to optimize clamp

trajectories.

A rouitne may be developed which would enable the

114

,i
;

·•

,:

.)
.

computation of estimated ctcle time$.

The simulator in its present form only simulates one

robot ~nd one language. A library may be created so that

other robots as well as their programming languages could

be simulated.

115

. '

J
'

>
' .
'

REFERENCES

[l] Leu, M.~. and Mahajan, R., "Simulation of Robot
Kinematics using Interactive Computer Graphics,"
Proceedings of ASEE 1983. Annual Conference, Rochester
Institute of Technology, NY, June 1983, pp. 34-39.

(2] Le1.1, M.C. and Park, S.H., "Use of Computer Graphics for
Robotics Instruction," Proceedings of ASEE 1983. Frontiers
in Education Conference, Worcester Polytechnique Institute,
MA, October 1983.

(3] Clifton, M.B. and Ochs, J.B.,"An Interactive Computer
Graphics Simulation of VAL, Programming Language of the
Unimation PUMA robot," Proceedings from the 26th IEEE
Computer Society International Conference, Arlington, VA,
September 25-29, 1983, pp. 193-200.

[4] Derby, S.J., "Kinematic Elast-Dynamic Analysis and
Computer Graphics Simulation of General Purpose Robot
Manipulators," Ph.D. Thesis, Rensselaer Polytechnique 1

•

Institute, Troy, New York, August 1981. ,,p

[5] Kretch, S.J.,"Robotic Animation," Proceedings of the
2nd International Computer Engineering Conference, ASME
Computer Engineering Division, August 15-J.9, 1982, pp. 87-
92.

[6] Meyer, J., '~An Em.ulation sy,tem for Prog~ammable sensory
Robots," IBM Journal of Research and Devel,i:,pmen.t, Vol. 25,
No. 6, Nov. 1981, pp. 955-962.

[7] Soroka, B.I.,"Debugging Robot Programs With a
Simulator," Proceedings SME Autofact West, CAD/CAM VIII,
Anaheim, CA, November 1980. ,,

[8] Tilove, R.B.,"Extending Solid Modeling Systems for
Mechanism Design and Kinematic Simulation," GM R~search
Publication GMR-4246, Jan. 1983.

[9] Wesley, ·M·.-A. ,· Loz·a110-Prez, T., Lieberman, L. I., Lavin,
M.A., and Grossman, D.D.,"A Geometric Modeling Systems for
Automated Mechanical Assembly," IBM Journal of Research and
Development, Vol. 24, No. 1., Jan. 1980, pp. 64-74.

[10] Derby, s.J.,"Computer Graphics Robot Simulation
Programs: A Comparisort," Published in th& bound volume
"Robotics Research and Advanced Applications," ASME Winter ...

116

L ,.

J

l .
;~ ,,

. .

-

Annual Meeting, Nove)Dber 1982, pp. 203-212.

[11] ''User's Guide to VAL", Unimation, Inc., Danbury,

Conn., June 1980.

[12] Clifton, M.~.,"VAL Robot Simu.:.ator," M.S. Thesis,

Lehigh University, Bethlehem, Penn., May 1984.

[13] ''User's Guide to VAL-II", Unimation, Inc., Danbury,

Conn., April 1983.

(14] "A Robot Programming System Incorporating Real Time

and Supervisory Control: VAL-II"

[15] Ozsoy, T., Ochs, J.B.,"Lehigh University's VS11-3D

Graphics Package," Proceeding from 1983 DECUS Meeting, st.
Louis, MO, May 26, 1983.

[16] Barnhill, R.E., Riesenfeld, R.F.,"Computer Aided

Geometric Design," Academic Press, New York, 1975.

(17] Faux, I.D., Pratt, M.J.,''Computational Geometry for

Design and Manufacturing," John Wiley, New York, 1979.

[18] Foley, J. D., VAN DAM, A., FUNDAMENTALS OF INTERACTIVE

COMPUTER GRAPHICS, Adison-Westly Publishing Company, Inc.,

1982, pp. 505-537.

[19] Oszoy, T., Ochs, J.B.,"An Interactive Modelling

Program for the Generation of Planar Polygons for Boundary

Type Solid Represen.tation of Wire-Frame Models,"

Proceedings from the Symposium on Computer Aided Geometry

Modeling, NASA Langley, Hampton, VA, April 21, 1983.

[20] Giloi, W.K., INTERACTIVE COMPUTER GRAPHICS, Prentice

Hall, Inco, Englewood Cliffs, NJ, 1978 •

(21] Paul, .R.P., "Robot Manipulator a: ,Mathematics,

Programming and Control", MIT Press, 1981.

[22] Denavit, J. and Hartenberg, R.S.,"A Kinematics

Notation for Lower Pair Mechanisms Based on Matrices,''

Journal of Applied Mechanics, Vol. 22, ASME Transactions,

Vol. 77, 1955, pp. 21s~221.

(23] Gaglio, s., Morasso, P., Tagliasso, V., Zaccaria,

R., "Co·mputation of Inverse Kinemat·ics and Inverse Dynamics

in Manipulate Arm Control," Proceedings from 11th

International Symposium on Industrial Robots, Tokyo Japan,

7. 8. and 9. October 1981.

.

117

I

..

[24] Lee, C.G.S .. , Ziegler, M.,"A Geometric· Approach in
solving the Inverse Kinematics of PUMA Robots," Proceedings
from the 13th International Symposium on Industrial Robots
and Robots 7, Vol. 2, April 17-21, 1983, pp. 16.1-16.18.

[2 5] Pieper, D.L., "Th'e Kinematics of Manipulators Under
Force Control," Ph.D. Thesis, Computer Science Department,
Stanford University, October 1968.

[26] Mahajan, R. and Mogal, J.S.,"An Interactive Graphic
Robotics Instructional Program !GRIP, A Study of Robot
Motion and Workspace Constraints" ·

[2 7] Jacobs, M.P., "Off-Line Robot Programming: A current
Practical Approach," Proceedings from Robots 8 Conference,
Vol. 1, Applications for Today, Detroit, Michigan, J-une 4-
7, 1984, pp. 4.1-4.11.

0

(28] Rossol, L.," Technological Barries in Robotics: A
Perspective from Industry" Presented at the First
International Symposium of Robotics Research, Bretton
Woods, New Hampshire, August 28- September 2, 1983.

118

:.,..,,
.. ' ., ._,,..;.~.

\·

"l. .
. . , . ·. ·.

.'

. .

. .

.

. ..

. , .

. . . , ·: . .
'• \

. • ! ' .. ~ . . ~ . .,
'. ' . ~~ . . .·., ..

. . . ·. . '.
• I • - • • •. • •

.

. .

. .

•

,•

. .

.

.
• I • • ,. •••

. . .
I .

.

. LISTP

READ PROGRAM
NAME

NO

\

DIRECTORY

ISTF

L (ST VAL- 1 I
FILES

RETURN

I

LIST LOCATION
FILES

FIGURE ~-1. SUBROUTINE MONlTOR FLOW O(AGRAM

• •

.
•' , . .

i.

.. . .

. .
•

. ._.· . .

..

•

.•. . .. ·

. -
. . .

...
.. -... :·· . . . •· ...

•. .. . ·=
..:.

~ : : -.- .•· • . ..
. '• ·.·.. •·:

• -~·_:-~.·.!"

:.-~ . ..
-- e: •. . - . . . •.....
··-. . -·· ·-·.Y ~· ~ ~

• • •. . !t ,I •. •

. ~...... .
.- :.... ~ ..

• i ~ ·" .•

.. ·.:_. .. : '. .. ·•· . . . •·

.•

-·· .

I r

ENTER Tt-£ r+EW
SETUP FILE NAME

I t

ENTER NUMBER 0,:
WORKPJECES JN CELL

, t

~ITS .OF WORKPIECES

I t

COCYl)INAT AXES

1 •

(llEN FJLE. IGS

. t

READ 11-E DATA

1 t

WRITE 1l£ DATA IN
FILE.SE1 IN VAL-II

Fa:MAT

I

INITIALIZE

1 •

IGES
UGI I

EXISTING

E

, .

u
1 t

ENTER THE NEW
SETUP FILE NAME

I

ENTER NUMBER OF
rORkPIECES IN CELL

I

LNITS CF WCR<PIECES

,

COOROINAT AXES

I '

CPEN FILE.DAT

READ 11-E DATA

I t

WRITE T.-e DATA IN
FILE.SET IN VAL·II

FCR.lt\T

...._-----~=RETURN~~-------~

...

FIGURE A-2. SUBROUTINES IGESCONV &
UGIICONV FLOW DIAGRAM

. •..

•. .

. "
.•._.

120 .•

. . ..
.. .. .• - ..

•' . •. .. ·-~ . . .· •.. •. . ~-.. . . :
:·~·

.• . . .

•.

.•.

..

·,.-:
•·

. •.

I

· .. ·. :.-,

.•... ~

· .. •

. ; •:. •
·-

. • .

. ~-

·,. PICTUR

I DRAW BI\SE

y N

-

•. . .. ·~ •... ~.

. . .
. .

. . ~.

--
..•. ~-

...

. ..

DRAW POLYHEDRONS OF MODEL
LINE BY L(NE DRAWP0LYHEDRONsQF9--..__...

POLYGON BY POLYGON

DRAW WORKPIECES
LINE BY LINE

:•

DRAW AXES

DISPLAY LED SENSOR

RETURN

FF

DRAW WORKPIECES
POLYGON BY POLYGCN

FIGURE A-3. SUBROUTINE PICTUR FLOW DIAGRAM

....

..
~ 1·21

~· ..
:.. . . .;

,,; :~~- i
. ,~ :' .

. . ~: ·-;;..._. ·~·, . ..
.

·•. ·.•· :-.·;_ ~: .
. . .
•v

·· ... · .-:·· .
• ··.~· .• ·e:. :~·:

...
•. 1 •.

y~
· -. . ,

.. ,. .~·. • ...
'•.• :

-~.· .. .".':, .

. ·• ..

.. . ~

...

. ..
•· . •.

\

.: .

.
: ~-

. ' .

·.•

•

. . .
. ••' .

.

. .

..
.

. -

.

.. • .
:•.

ELBOW

I •

CALCULATE
SIN & COS
OF ANGLE 3

,

TRANSFORM
FJART DATA

FOR LINK 4

I f

CALL FOREARfv11

} ..

•

,/ . . FIGURE A-4. SUBROUTINE ELBOW FLOW DIAGRAM .
. \ ' "'

• : \ . ,. . ·•:.

•
·• .. ,

.

.,.. -~· ·•···. ·- ·•

..
. . .

.

. ··.
~--...... .

. . .. :~~: :•. •···· , .

. ..;:~-~--·r· .· . •
. .. . ,,. ,. -.. •,;- .:

. ..-~:?.. ., . . •
~: ·• ~- : ' . ~· .

•I-...~:··• ~
• .. , I I• ,e •

. 1',...... ··-: .. • ,• -~,. .
~·:' . . , ~.
. .\ .·

... ·.
! .•.

...
.

-
......

. . .
"

• .. •• ra
• --~·- --~ •• 4111.·_ ---~ .

~: - . . '• •.· .

..
. '·

. • ..
. .

. . .
122

. ~· _ .. ·
. • !a'. ·.• ·_•;·41

_. . .

-.

-· •.

..
.• : .

:•·.·

.. .. ·-.. .- ...
·;

•.

·•

ii,:

•

·: .

.
~~-

· .
. . . . _ ..

.•· .. •.
.1

·•·

. .
·'

. .

.):
,. .•

• I -•.

:•' . •: . . .
:
: .. , ·.-.. .., .. ·•.

-~. ..

:• .

. .
. ... ~~

,,·

• • • !

.... · ..
. :.. .
! .. ·- -~ ,~··: :• ~- •. ~-· ::J·..

L_...,....'

. :•
·. ··.• :•

·--

. . ~.~:...:- . · .. :; ·-·~ ... •.: ~ '. · .. • -~-- .. •.,:. -~ . · ·. ..
• I • ,,: ·•

•· ~M· ·• ._,
. •

.•

-=
·i

..

•

. r·

CALCULATE
SIN & COS

OF ANGLE 4

FOREARM

DETERMINE
----e. RANSFORMATION

MATRIX

TRANSFORM
PART DATA

FOR LINK 5

·CALL WRIST

•.

FIGURE A-5. SUBROUTINE FOREARM
FLOW DIAGRAM

..

,•

. ' ..
. ,_ .. i .-,

• .. • .
123

·.

.-

·,

..

. .·
-~

,.•

·" -~- .•.
• .

...

. .

' ...

..

. . ' .. •,

..

. ' ,. •·

. . . .
. .

·•:

. .
-..

. i ,

..

.. . . . ·.. ·•.· ~ ..
. . •.. .. ·-· ., . . •:
. . •,: :··

_ .. ~:~~:.- -~ ~ -. -. .

.... · :· .

. .

·-· ·.~ :·.: ~-- .. _. -... .
~··-· . ~~ .,· .

:· ••.
. (.·

• ..-., • •.j . . •.. . .. • .- .

. ' .,.~·- : ...
'11111":· • • . •

• ;I •
;I\

I ,. • •
. . .- -: ·=-:~· ·•

•. . ·- ...

..

·.,,_. .
·•

·. ::

.•

.
: . .

.':'

:,

INVERSE

I

OBTAIN ~IENTATION MATR(X

'
OBTAIN WRIST POSITION VECTOR

~-

I •

CALCULATE .JOINT ONE
, .. .

, .

CALCULATE JOINT TWO

I ..

CALCULATE JOINT THREE

7
I

OBTAIN T3 MATRIX
WITH FlRSI THREE

JOINT ANGLES

'1

CALcu..A TE ~ l NT F~

. '

CAL.Cl.LATE JOINT f'IVE

I I

.

CALCULATE JJINT S[X

t '

RETURN

FIGURE A-6. SUBROUTINE INVERSE FLOW DIAGRAM

.•

~:-

.•. •· ·-· ...

· . 124 •.

.. . .-

:, ,
,.· ·'

.. . . ·· ;., •
..•

....

..

..
..

.• : ..

.•

. •

C

.. ..
.4i'
~- •·. ·,

...

. . .
. . .

,· · ..
·'

·,·

. " , ·c.)

I • • :

. . . ' . .

. . .

LATCH

CALCUALATE
WRIST-PART

DISTANCE

SHIFT PART
DATA TO SCS

ORIGIN

N

OBTAIN TRANSPOSE
OF CLAMP MATRIX

TRANSPOSE PART
DATA WITH
TRANSPOSE

.___

OEF'INE PART
WITH RESPECT

TO WRIST

RETURN

.....

. . .

FIGURE A-7. SUBROUTINE LATCH FLOW DIAGRAM

,,I,

,o$,.

125

-~-

. •

:•:

. o·

'·

..
.

.

. ·~ ..
.. •• 1

•• •! ••
I ,• . . ,.• .. --··· . ., . I . . .

.. '\ \.-.,.~
. .

. .
. . . . ··-·
•.,

.•

.
•

. . .
. .

•. ..• i ,. ,, : ' •
·.• ·~· •. ,.,

:, .. -~ -.•• .·: :: . ~I.: •.

; . .• . . .
,I I .• .•. I ·.·, I

. • ..
... . ·"' ..•. :

. •

.•

. : :, ... ,._., . ,. ·•
-~- ~·-··:

. . ~-.:
•

:•• . -~

. .• . . .

...
.# • .

·•
··: :.•

.• .
~ ..
•

.
• • • . .

. ·.
. .

..,

. . · ..

•

'

. . ..
..

DETACH

SET DETACH
FLAGS

y

CALCULATE
PART-SCS ORIGIN

DIFFERENCE

REDEFINE ROT.ATED
DATA W.R.T SCS

ORIGIN

RETURN

. . .

. . .

... ,.
.,. ~- ... ·- -
I • o • . •· ,,. ' . ..•. ~,. .

• • "t:·
.. . - ,

:, ,·. . . .
,• I •

. . ·
. '"':.· ... •.

. . ·- ' "' .. •* 1 • -

. .

..
.

. . .
. .
.. .

FIGURE .A-8. SUBROUTINE DETACH FLOW DIAGRAM

126

. . .

I • •

.
. . ..
• I

,. , ~·: ..• • .. ,·. ·.•
. ' .. ·i •
• ,1 • . ..•.. ··' ..

·:· ..

P.
N
~

....

i.

.
t • • I

• • • • : •' I ,,
!

. . ..
. ...

WORLD
X,Y,Z

TOOL
X,Y,Z

• •

JOINT
MODE -...._ _____ _...

LISTL
1 I

LOCATION FILES
LIST

·,:.,,. .

wx,wv.wz -

TX, TV, r-

-
44,5,6

MAIN MENU

p ,,
I

PENDANT
MODE

DIRECTORY

LISTP pr,og. NAME

PROGRAM
LIST

I OR O_
--

0 OR C_
-

INCREASE
DECREASE

OPEN
CLOSE

01
.PZ,~3 CLAMP POSIT I ON

LISTr
,

VAL· l I PROGRAMS
LIST

., F'IGURE A-9. PENDANT MODE FLOW DIAGRAM.-
• I

.
•'

•.

.

, . . .
,.

KEYBOARD

LEFT
RIGHT

UPWARD
DOWNWARD
FORWARD

BACKWARD
X ROTATION
Y ROTATl(J\J

Z ROTATION

SAVE

RETURN

FIGURE A-10.

MAIN MENU

INCREMENTS

YES

SUBROUTINES MOVERINC & MOVERKEY FLOW DIAGRAMS

12.8

1

·:··.,

·.

•

,,

'·

0
...--......- FL.AG

l
17

1 '

CONTINl.E START

--
-

--

ADD TO FILE

=.· ',

ao

DISPLAY
f" I LE CONTENT

t

....

.•

MA (N MEMJ --=~------1 EXIT -:
t

(EDITOR
I J

DISPLAY ME~

' ILE NAIE ~tE~•-------.
INITIALIZE

I r

r FLAG: 0 !a.----- -----... ~ FL/\G= I
j • I '

. .

-;• ·, ~ ...
. ~
. : ;·

. •.:
•.- ',• . ~ .

~
. ,.1:

.• •,I•

. .
.
. ..
. . .

•• !' • .: •
... . .
•·

:...- ·~ .• •. • I . .
, -:• C.. .,. • •

•...
:: .. : .·,

•

.

l·

I

....

• .

________________ c_.fNPtJT ~E ________________ ___

.__ __________________ ,;_;. _______ ~(I~ l ,..._ __________ __

t.------;==========·~; s •
JNSERl SAVE FILE

~ I

1 '

STEP NO. STEP NO.

-
AOO TO FILE DELETE FROM FILE

I~ ,,
.._--.1I._.,,...- I NPUT

, ' I 7

SAVE F'ILE .,____.. SA VE f' I LE .,____

\.

FIGURE A-11. SUBROUTINE EDITOR FLOW DIAGRAM

. 1:2:;9:.

•· :•.

..

•

. '!· •

•

.

. · .. , . ~'..:

.•. ·,
! : . .

~

·,

.

. . .. :· .. .
·,

. . ;

-~·

FALSE

. -....

:

:

. '·
.

DO

EXECUTE THE
GROUP OF

INSTRUCTIONS

UNTIL

SECOND
VARIABLE
EXISTS?

RETURN

. .

.

...

..

•

FIGURE A-12. SUBROUTINE UNTIL FLOW DIAGRAM

l-3:.()
···. ,' .

:,·,:_· ·.··
'·"-:·

. ..

. _.
I . ,• . •'.

• I .. I ~. ·~ ·-. ,• . . .~ •. ·lt1~ •.
. ~-~,
·- -··~f . ,· ~· . . ,.

··. ... -··
•: . :•. ··~·. \~. ·~· .

..

. ·•
' •· . . . ~· . . .

..... l;.a•.• ,· .
.

·'). ·.• ... ·.-..
' •. • i. •• • • •• . ··.-. . ., ;

• ,· • ,; I• . . .
.-~ :;

•

. ..
.•.·· •. .. .

.
.. - ..• _

.
. .

. . •· ..
·:•. . •.

'•.· .

. ...

~- \
. ~ •'· ...

.. -.. : .
•·• r .. -•-:-
;.• .

/ :·~

-.
. .

'

NO

EXECUTE THE
FIRST GROUP Or ,__ __

INSTRUCTIONS

EXECUTE THE
--~ SEC~ GROUP OF l I NSTRUCT IONS

-------t· ENO IF ~----

RETURN

. . ..

FIGURE A-13. SUBROUTINE LOGIC FLOW DIAGRAM

131

. .

..

.'• ~ ..
. . t· : ,. . .
!' ..,~, ..

.. 1-·· . . \•

. ,.•
.: . . . : -. r - .

• • • J - . . .
:. .. · .. . -..

• I • • : • •

..

.

. .

.

.
: .-
.

... .
' ..

:

~- i •.

•.

. .

. .

-..

...

NO

NO

WHILE

EXECUTE THE
GROUP OF

INSTRUCTIONS

END

RETURN

ALSE

.
.. .

... .
.•

:• •. .
·•,

..

.. ,..
• • ,. I I . . : ,,. .

. :.•' >.
'· r
: •...

JI>'

''· '.- I . (,·', . . ~' :
... •.. .. -·.• ·• .. ' \ ,

•. . ..
. ... : ~ ,

.

. , : ',·

~
. . . .

• .·•·· . . . ' . . . ·.~ .
. •- .• ; . ..

=~: ·.: ••

•· .

. . ..

. .- .

,;

.•

. .

FIGURE A-14. SUBROUTINE WHILE FLOW DIAGRAM

. •

:!3.2:

. .

. . .
·•··· - -._ . .

.. . . .

~. :: ..

•

. . .

-
"'
-..

, . . . :•

. . .

. ,
. .

..
-. ~:

.• .·
.. :

..

•

NO

F"IGURE A- 15.

MAIN MENU

•
VAL- 11 MODE

HELP MODULE

NEED
MORE

HELP?

DISPLAY
INFORMATION

tE.-V DISPLAY

. ,.,

SUBROUTINE HELP FLOW DIAGRAM

. ..

133

. . . .

,<)

•

APPENDIX B.

COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON

/ ANGLE/ ANG, THETA (b > , CE (b > , 5 (o >, AMAX (b, 2 > , LA5T (ts) , !Pe:e:D CC)>

/ARMS/ LPH,SF,CF,ARM<300,3),AC300,3),B<300,3),MVERT<30,3>
/CL.MP/ ICHE~ .. iLATCH, IPOS, t.JPART, ll-.TTACH(30)
/ CONF I G/ IARM, I ELBOW, I~ I Si, V,K

/G~OM/ A2,02,D4,D6,H,PI
/GROWTH/ RGROWC30),XH,YH, ZH
/LOOP/ !LOOP, IREMAIN, HELPER< 100)
/NORMS/ lHIDE, NuRM(3u, 2), HID(150, 3), HIDE< 150, 3)

/PER/ IPER, SP DERR, SPEEDM
/POS/ LPOINT, IEND, CHAR (100>, DATA< 100, 6>, C.OMM(70)-, L1STER<3>

/POS/ STAT< 100), rJUMB
/POS/ DATFILE<l00),POS1l,POS1TJON
/POSIT/ IND,~DXR, BDYR,BDZR~R!,CZ, SZ,WCS(7,3)
/POSTN/ XTEMr,YTEMF, ZTEMP
/ROTM/ R4(3,~>,~5(3,3>,R5TC3,3>
/ OtJT / IT I ME
/SINCOS/ S1.S2,S3,S4: 5S,Sb~S23,Cl,C2,C3,C4,C~,C6,C23
/FLAG/ IFLAG<10Q!3>
/VERINDI NPl(:-SO>, NLI<30), IFI!JDEXCSQO, 3>,Lit.:DEX<1100,2)

/SCPRMS/ SDXLNG,SDYLNG,CFAt~SRESX,SRESV
-·-

Table B-1. List of Common Blocks

134

..

. •,

~ ..

. .

'•

. . . .

. . . .

,·

,·.

. . :, : . • ..
• .•.

.. . ~·· . . . :.
.

:•-· .,•

~ ..•.
····.•r

....

'-·

BLOCK

ANGLE

ARMS

CLMP

VARIABLE

ANG

I

' .

FUNCTION

ro~a~ionol incr&ment-s in
PendcJnt Mode f rod i ans,

THETA t6J Joint angles in Simulator

CSfSI

'S (6J

AMAXf6,2l

LASTl6)

SPEEOtSJ

LPH
SF

CF

convent i on C rad i .ans J
cosine or Joint angles
in Simulator convention

sine or Joint angles
in Simulator convention

stop angles in PUMA·s
convention (degrees)

previous JOint angles in
simulator convention (rodionsl

to avoid redundon~ colcula~ions

ro·tat i ona·1 increment ror .JO int

during .. 'JO int;-coord i noted

mot-ion !rodionsl

total number or polyhedrons

scale ractor (pixel/inch)

conversion rac~or lmm/inchl

ARMSl300,3J derini~ion geometric doto finl

Af300.3J rotated geometric data fpixelsJ

display geometric doca (pixelsJ

MVERT (30 • 3) po I yhedron _i nde><" its beginning

and end vertex

ICHEI<

ILATCH

IPOS

clomp rtog: ope=O, close:!

LED rrog: grasp not possible=O
grasp possible =l

position r109: clamp bose=l
LED =2
c I omp t .i p = 3

TABLE B-2. List or commoned blocks

.
. . 135 ·.

.. •.

· ..
. :·,

. . .

..

...

. . .

·. ·. ~ • •

. .

.,

. .. · .
.:•· , ... ~.

' . ..

• . ··" .. •. ,i

:·. ;;.;. .•. . •· · .. : ~ •.

;
.,··
.. .. . ·"

'1
BLOCK

. CONFIG

GEOM

GROWTH

LOOP

PER

.. _,. 4

'
variable runction

.

lATTACHl301 attachment rlog: unottoched=O
attached, =I

IARM

IELBOW

IWRIST

A2

·02

04

06

H

Pl

RGR0Wf30J

XH,YH,ZH

(LOOP
(REMAIN

arm conrigurotion indicator
RIGHTY=l, LEFTY=-1

elbow

wrist

conriguration indicator
ABOVE= 1. BELOW= -1

conriguration indicator
NOFLIP=l , FL[P:. .. 1

joint 2 ~o Joint 3 orrset (inJ

JO int 1 to JO int 2 orrset I in)

Joint 3 to Join~ 4 orrset (inl

Joint 4 to clomp tip orrset fin)

WCS origin orrset f"rom
SCS or i g i n (i n)

3.1415927

radii or enclosing sphere
ror eoch polyhedron (pixels)

hand coordinates fpixelsJ

number or program loops

number or program loops
remoining~to be completed

PER (1001 help topics

IHIDE

IPER

SPEORR

hidden-surroce removal rlag:
back surroces not-·removed=O
bock surroces re~oved =l

percentage or moximu~
simulo~ion speed

hair or speed dependent error
motgin

TABLE B- 3. L i st or commoned var· i ob I es

..

136
' ·t.-

•

-

. ..

~- . _,

...
. .

. ..

:
. .

. • =-.. ~

9' ;,·.·

.. ..
-· -

. "'.. . •'

•.: ...

. '
..

::,

BLOCK

PCS

POS
POS

POSIT

POSTN

VARIABLE

SPEEDM

LPOINT

CHAR(1001
DATA(100.61

COMMC70J
STAT (1001

DATFILEf20)
posl 1

I)

posit-ion

1r.o

BDXR.

BDYR,

BDZR
RZ

CZ

sz
WC5(7,3l

XTEMP,
YTEMP,
ZTEJ.P

·~ .. ,

FUNCTION

max. rotational increment in
VAL-II mode (radians)
location name pointer
total no. or simulated commands
location names
location data (mm.degl

VAL-II Simulated commands
variable names declared by user

names or exist;ing VAL- I I r; les
-·

user declared variable name

user declared variable nome

used ror assignment instructions

index or positions along rcs•s Z-axis

coordinates or displacement
increment due eo BASE command

rotational increment due to

BASE command (degrees>
cosine or RZ

sine or RZ
coordinates or vertices which

rorm WCS rrame

temporor~ clomp position

..

TABLE B - 4 • L i st or commoned var i ab ·I es

...

• ..

137

. ' , .

. .

. . .

. . .
•

. . .
..

: .

. . . · ..
. -. :
·=··.
'· -. .,
. . : '. .. ,. ·.

!·

BLOCK

ROTM

OUT

SlNCOS

FLAG

.•.

VARIABLE

R4t3,3)
R513.3)

RS~(~.31
ITIME

51 .52,53,54.
55.56,523.
C l , C2 , C3 , C4 •
C5,C6,C23
I FLAG (I 00 ,31

...

..

·..__

FUNCTION

rotation motri>< l'or _pint 4
rotation matrix ror clomp

transpose or clomp rotation matrix

POLYGON output rlcgs:
f'irst out-put=O

subsequent output =I

sines & cosines respectivel~ or
~he Joint-angles in simulator
convention

/'Jogs :

lFLAG(l.11=0 position display OFF
(1,11=1 position display ON

..

(2.1)=0 motion continues

12,ll=l ~int angle exceeded

(2.2J:N no. or Joint angle exceeded
.•

(30,31 ::Q NUNIT=S

(30,31=1 NUNIT=4
(42,3):0 logical condition

satisried in WHILE
(42,3)=1 logical condition

not sotisried
, 43,3) :O group or instruct ions

should be
executed in WHILE

(43,3)=1 group or instructions
should not be

executed in WHILE
f 46,3) =O no VAL-1 l pr-ogrom is

be i ng execut'ed

(46, 3) = l VAL - I I pr-ogr-am execut' i on
continues

:_r

TABLE B-5. List or commoned variables
• • .

•,
. .

138; .•
. ..

: "···

·il.

"'· .· . . •.. •' .. -- -oef.=.-c-= -.,._., .. !>, =--·· ~ ·--, - '

'. . ··•
, . .

. .

. .,..

. . .

. ,•.
.. . . .

•

. . • ·- .. :;. :.
,"')'

. -·

BLOCK

VERI"°

SCPRMS

VARIABLE

. ,,,. ... ~ ~ ' . . '.~ ' . -• I .

.·,. •

,\

~- ..

FUNCTION

IFLAGf48.31=0 rile being edited
• as o new one

C4B.3l=1 rile already exists

161 .3) =O input i"s o VAL- I I
command

161 9 31=1 input is a assignment
instruction

. .

165.31=1 in editor-, the Sb"tax is
- checked (VAL- I I command I

(65.3) :Q in editor syntax is not;

~If 30)

checked lossignment-
i nstruct' i on I

(99.ll=O motion continues
(99,IJ=I impossible path

(100.l>=O col I ision check OFF
(100,3):Q Axes dispJo~ ON
(100.3t:Q Axes-display ON
1100,3)=1 Axes display OFF'

otherwise
IFLAG(l,11=0 no collision

f I • 1 I : l co I I i s i on
ll.2l=N near polghedron N
I I , 3 J : M near po I yh&Cron M

indices or polygons ror
a I I po I yhedrons

NLl 130) indices or I ine segments
ror- a I I po I yhedrons .

IPJNE.xceoo.3 indices or polyhedrons. pol1:19ons

and ver-tices
LINEXf400,3J indices or vertices ror fine segment

SOXLNG , used y VS I 130 graph i cs package
SDYLNG • to set the window
CFAC,
SRESX,
SRESY

-~·

•

TABLE 6-6. List o~ commoned variables-
' '

139 ...

.• ;. .. !

..

•.

..

•
... •

·,

. ".

APPENDIX C.

PROGRAM USER'S MANUAL

PROGRAM TITLE:

DATE:

AUTHOR:

PROGRAM LANGUAGE:

GRAPHICS PACKAGE:

MACHINE WRITTEN FOR:

OPERATING SYSTtM:

DISPLAY TERMINAL USED:

TABLE OF CONTENTS

.... •· . .t.

•
VAL-II SIMULATOR

NOVEMBER 24, 1985

S.A. LANGRUDI

FORTRAN IV

VS113D

DEC VAX 11/780

VMS

VS11

<'

page

1. INTRODUCTION 141

2. ORGANIZATION ••••••••••••••••••••••.•••••••••••••• 14 3

3 • SCOPE • 151

4. DATA PREPARATION ••••••••.•••••••••••• ~ ••••••••••• 155

5. SIMULATOR USE ••• ~ •.•••••..••••••••.•••••••••••••• 157

6. EXAMPLE SESSION •••••••••••••••..••• ~ .•••••••••••• 158

C COPYiIGHT Lehigh University, 1985.

"

* VAL-II is a trademark of Unimation,. Inc. ..

140

,..

. .
' .,

J ..

1. IN·l'RODUCTIOlf

The VAL-II SIMULATOR is an interactive computer

graphics simulator of VAL-II, the programming language of
"

Unimation's PUMA robot. The simulation program serves the

following purposes:

-moves the end-effector to different locations

-orients the end-effector

-opens and closes the gripper

-performs repeating tasks
(/

-makes conditional and unconditional branching or jumps

It employs an internally developed graphics package

called GRAPH3D.LU to display the PUMA behavior upon

execution of key VAL-II commands. The robot model and user

defined workpieces are presented using wire-frame or edge

representation graphics scheme. Planar polygons are used to

form extruded convex polyherdons. In order to create a more

realistic representation of the model and its work

environment, also to avoid complexity due to number of

lines to be drawn, hidden-surfaces are removed. Also,

algorithms for joint-coordinated and straight-line motions

are developed. Information regarding configuration

indicators and clamp status is available ·at any time.

Arithmetic and logical expressions, like those found in

141

'·< /

/

C

...
(I f.

i';

,•·

Q.

..

high-level computer languages are. available for decision ,

making and programming control. Collisions between moving

and stationary objects, between the robot clamp and

stationary objects, and between the robot links and
(

themselves are automatically detected. User-defined objects

may interactively be retrieved from other CAD data bases

using the International Graphics Exchange Standard (IGES)

and also using POLYGON (19] interface, and then easily

positioned in the PUMA's work-environment. With these

features, users may design and evaluate various work-cell

layouts, investigate assembly tasks, and test VAL-II

programming possibilitit?s. VAL-II SIMULATOR is menu-driven

which means that a list of options is available at_ all

control levels. Once a work-cell is created and the VAL-II

program is developed and tested with the simulator, the

VAL-II program may be down-loaded directly to PUMA

controller for final testing and verification.

The PUMA is a spherical robot with 6 revolute joints

and six axesG For an anthropomorphic robot such as PUMA

600, 3 configuration indicators must be specified to

gurantee one unique solution out of a possible four for the

first three links, and one valid solution out of two for

the last three joints. The first two configuration

indicators are associated with the first three joints. It ~

must first be specified whether the robot arm is to the

right of the base (~IGHTY robot) or to the left of the base

142 '•.

.,

..

(LEFTY robot); also, whether the elbow of the robot is

above the wrist (ABOVE), or below it (BELOW). The last.

configuration indicator determines whether the clamp is to

point upward or downward (FLIP or NOFLIP). Oftentimes, a

user may want to move the robot through an impossible path

which causes one or more of robot links to exceed their

prespecified allowable joint angle rotation limits. In most

cases, this may be taken care of by changing one or more of

the configuration indicators, or introducing some

intermediate locations. This however, requires a change in

the VAL-II program which can easily be done using the EVS

(Editor of VAL-II SIMULATOR).

Using the simulator can significantly reduce the amount

of time spent on robot programming and debugging. It also

does not require tying up a robot from the production-line

or using a "spare" robot. It can also contribute to both
---........ .

the safety of the operator and the industrial robot and

time-saving.

2 • ORGANIZATION

The simulator is menu-driven, which means that a list

of options is available at all control levels. Upon

initialization of a VAL-II session and aft~r the copy right

information is displayed, the user is asked to ·select a

setup file. The user may decide to retrieve part files from

143

. L

·1

....
..

other CAD data bases and reposition them in ·the work

environment. This can be done using an _IGES or POLYGON [19]

interface. In either case proper menus are displayed and
f

the user is required to input his commands using only

single key inputs from the keyboard. Simulation's flow

diagram is presented in Figure c-1. Once a setup file is

selected and the file read in and displayed, the user is

directed to the MAIN MENU (Figure C-2). From this menu, one

may move to MANIPULATION Mode, EDIT Mode, KEYBOARD Mode,

PENDANT Mode, and VAL-II Mode. This menu is also used to

automatically create files that may be used for hardcopy

printouts and for POLYGON [19] generated solid models.

While in this menu, it is possible to initialize the work

cell or begin with an entirely new setup file or retrieve a

different sets of parts from other CAD systems. Whenever,

any error is encountered informative messages are

displayed. To stop and exit the VAL-II environment, one may

press •s•. However, for protecting the new users, the

simulator does not exit and asks the operator whether he is

sure or not. From the MAIN MENU one may move to various

control levels and back. If it is required to reposition

any of the cell-components to design and test different

layouts, the user may wish to move to the MANIPULATION

Mode. The MANIPUMATION MENU is immediately displayed· as

shown in Figure c-5. While in this mode, any individual

part in the w·ork-cell may be moved by either the system

144

.,

defined, or user-defined increments, along any one of· the
0

axes of the fixed Screen coordinate System (SCS) to achieve .._,

the final desired positions. A constant readout of the
individual part .. positional data with respect to both the
scs and wcs as well as the part number is displayed on

,'I'

the screen. This level of the simulation program is menu
driven and like other parts very easy to use. Any time, an
error is encountered, an informative message is displayed.
Whenever, the user decides to end repositioning one part,
the simulator asks him whether he would like to save the -

.

new setup, and if so, whether he would like to save the new
setup file under a new name or the old file should be
updated. At this level, for convenience, the coordinate
axes display may be turned ON or OFF. Once done with
repositioning the part (s), the user may return to the top
of the menu. A flow diagram of the manipulation mode is
shown in figure·c-6.

The simulator offers many special features. These
interactive features are all presented in the KEYBOARD
Mode. To enter the Keyboard Mode from the MAIN MENU, one
must press 'K'. Following this input the KEYBOARD MENU will
be displayed as shown in figure C-3. VAL-II program files
and location files may be listed on the screen, while in
this mode. A user may obtain a l'ist of all the VAL-II robot
control ·programs· by· typing LISTF. Also, contents of VAL-II
program(s) may be d~splayed .on the screen for reference and

145 ..

,,

..

verification. A list of all location data·files used by

VAL-II programs may be displayed on the screen by typing

LISTL. In this mode, the position of the clamp may be

displayed by pressing 'P' followed by '1 1 , '2 •, or 1 3 •

corresponding to position along the TCS's z-axis at the
. \

origin, LED sensor, and clamp tip, respectively. One

drawback of using wire-frame or edge representation scheme

is that, it is very difficult to visually detect whether an

object is in front of, behind, or intersecting another one.

For this reason, algorithms for collision detections are

used. In order to create a more realistic work environment,
.

and to avoid complexity, the hidden-surf aces are

effectively removed upon user's request. Like any other

user friendly graphics package, the simulator allows the

user to translate, rotate and scale the entire work-view.
\ .

For convenience, the coordiante axes display may be turned

ON or OFF. At the end of a KEYBOARD session, the control

may be transfered to the top of the menu, MAIN MENU, by

pressing 'R' (R_ETURN). A flow diagram which describes this

mode is presented in Figure C-4.

One section of the simulation program has been

dedicated to graphically display the functions and usage of

a "Teach Pendant". This mode may be invoked by pressing 'P'
-

form the MAIN MENU. The PENDANT MENU, as shown in Figure C-

10 will ·then be dsiplayed on the screen. This mode allows

the user to move the PUMA joints independently of each

146

JI

f

other. This is the exact method an industrial robot is

taught points along various paths. The user is also enabled

to move the clamp along straight-line parallel to any one

of the axes of the wcs or TCS, by pressing 'W' or 'T'

followed by 'X', 'Y', or 'Z', to move in the corresponding

directions. The clamp may also be displayed in fully

'OPENP or 'CLOSE' positions. Unlike the real PUMA, the

speed set in Pendant mode and VAL-II mode are independent.

However, it is possible to increase or decrease the joint

angle rotation increment. by pressing 'I' or 'D',

respectively. It is also possible to change the direction

of the joint rotations by pressing 'N'. This operates as a

switch and changes the rotational sense from clockwise to

count~rclockwise and • vice versa. A flow diagram

corresponding to this mode is displayed in Figure c-11.

Another important feature of the simulator is its
•

Editing capabilities. The EVS is a so called "Line Edito~'

meaning that to make any changes on any given line, the

entire line must be retyped. Iri many situations, some of

' the most impossible paths are not known, until a robot

program is run once. One way to get around this problem is

to change one or more of# the configuration indicators, or
•

introduce some intermediate locations. ·In either case,

modification of VAL-II program is necessary; something

which can easily be done usin~the EVS. One may invoke the

EDIT Mode by pressing 'E', while in the MAIN MENU. The

147

,,I]

j

legal Editor commands are immediately displayed on the

screen (Figure c-s). For convenience, tl1is menuis

displayed on the screen at all times while in this mode. At

this point to start an Edit session, the user types in

"EDIT" followed by the program name, for exapmle, xxx.DAT.

The program name may be up to 9 characters long. The EVS

will search for the input file name in its directory. If

the name is matched with one of the entries in_ the list,

the file is an existing one, and the contents of it will be~

dislayed on the screen. Otherwise, the user is signalled by
If

displaying the following message:

INPUT FILE" xxx.DAT" DOES NOT EXIST

and the new name will be added to the entries in the list,
~

and the file will be initialized. If the file is a new one,

the user then presses 'C' to continue. In the EVS every

line is referenced by. a unique step number. Hence, upon

depression of the key 'C', <S. l> will appear on the

screen. The user may then type in a line of VAL-II

command(s) as desired. As a program evolves, many of the

lines may be deleted, or new ones inserted. As a result of

this, the step numbers are automatically adjusted.

Therefore, the step numbers should not be used as line-

((

addresses. Instead, the first four spaces in any line are

reserved for step labels. Step labels are optional, and if

the user does not wish to specify a step l~bel f~r a given

line, he must type in four spaces before typing in the VAL-

148

.. , -- '.

·,

C

II command. Conveniently,· the user may set the 'TAB' to

<5>, and if a step label is to be omitted, one must depress

the 'TAB' key before typing the VAL-II command. In the

case when a robot control program has already been

created and the user wishes to modify it, one may delete

or insert lines by pressing 'D', gr 'I' followed by

corresponding step number, respectively. To protect new

users, every time such modifications take place, the

updated version of the program will be displayed on the

screen. During program modification, if a wrong key is

depressed, the user is immediately informed of that, and

for protecting the modified version, the program is saved

at once. A flow diagram is shown in Figure c-11, which

clearly describes the functions a11:_d usage of this mode. To

exit the EDIT Mode, one may press 'E' which willtransfer

the control to the top of the program, namely the MAIN

MENU.

The most important feature of the Simulation program is

the VAL-II Mode. VAL-II commands are Englishlike and easy

to memor.ize. For this reason the· VAL-II Menu (Figure C-13)

display is optional. In this mode, users may enter a VAL-II

command and observe the PUMA's kinematic behavior upon

execution of that command. Like the EVS, in the VAL-II

mode, the first 4 spaces are.reserved for step labels, and

if the step label is to be omitted, 'the user may set the

'TAB' to <5>, and depress the !TAB' key when necessary, or

149

I

·_simply type in 4 Si>aces and start the VAL-II command from

. the fifth column. End of each line is marked by pressing

the RETURN key from the keyboard. The simulator will read
"

the command string, decode it, set a pointer, and display

the corresponding PUMA behavior. Following the execution of

each VAL-II command the user must press 'C' to continue

with the next line. In order to teach locations to robot

one must press 'D', at which point a menu will be displayed

which will ask the user whether he wishes to read the

locations from a data file, or they are to be input

interactively. If the latter is chosen, the user may input

the desired positions and orientation angles as desired,
(,;

and the robot will be displayed in those configuration. One

may store various locations in a data file and ask the

simulator to read the position and clamp orientation data

from that file. In this case, the user is required to inpµt

the name of the data file in which the locations are

stored. The simulator will open the file and start reading

the data. Every time a line of data is read, the robot will

be displayed in the corresponding position and clamp

orientation, and the user is asked to either accept the

location and continue with the next line of data, to reject
.

the location but continue with the rest of the file, or to

accept the location and quit reading the remaining lines of

data in that file. The user is required to specify his

choice by single key inputs. To wipe the 'TT' characters

150

' . .:..-- .

(

I

... _,

•

-·

~ ...

out one may .. press 'W' before typing the next VAL-II

command. Depression of 'R', transfers the control to the

top of the menu. While in the VAL-II Mode, if any error is

encountered, the user is immediately notified of that by

displaying the appropriate message. User programs may be

executed and use.r-def ined subroutines can be called to

accomodate various tasks and t9 increase programming

control. Conditional and unconditional branching or jumps

may be performed with limited sensory interface. To abort a

VAL-II program without leaving the Simulator environment,

and hence preserving the locations and setup, one may press

the keys "CTRL" and "C", simultaneously, w~ich acts as an

"ABORT" command in VAL-II language. At all control leve1-s,

on-line HELP is available for all the VAL-II and some

MONITOR commands. For each topic, the prper syntax, and a

description of the function performed are given.

3. SCOPE

The apparent motion in the simulator is achieved by

transforming the present location, to desired ones, quickly

erasing the screen, update t~e data and display the

entities in their new position. When this is done quickly,

one's eye blends the images to create the apparent motion.

Depending upon the distance between the current and the
---~

desired configuration, the intermediate locations are

151

i
\.
I ·' ..,.., "'

I ·• ., ..

-·~

,~ ..
r,

determined. ·The model is then displayed in the initial,

intermediate and final configurations. In the simulator,

the speed variations are based on the relative speed and

not the true one. The speed set in the Pend~nt Mode, and

the one set in the VAL-II mode are independent of each

other. The default speed, in the simulator, is set so as to

_provide smooth display. In the VAL-II mode, the default

value for maximum joint rotation increment is set to 12

degrees (full speed), which may be adjusted by VAL-II

commands. In the Pendant Mode however, the default value

for joint rotation is set to 8 degrees which may be

increased or decreased.

To create an illusion that the interior region of a

displayed surface • is opaque, and also for better

visualization, the hidden-surfaces may be removed. This is

done by calculating the coordinates of the normals of the

planar polygons, to determine whether the face is a "front

face" and potentially visible, or a "back face", and thus

invisible. It must be noted that, the algorithm used here,

only removes a face (s) which is hidden by the volume of the

polyhedron it belongs to.

One drawback of wire-frame representation is that, when

an object extends over, and covers a part of another
',-

object, it is very difficult to visually detect whether.one
..

object is in front of, behind, or intersecting another one.

For this reason, routines have been developed which use

152

. ~:

,.

. .;...

both the coarse and fine mathematical intersection check

algorithms which notify users of potential collisions.

Possible collisions between the moving and statipnary

objects, the robot links and themselves, and the robot

links and stationary obj~cts are checked, but impossible

ones are not.

The simulator also models the interaction between the

robot model and user-defined cell components. Latching

onto, ~oving and detaching from objects is simulated.

The on-line help feature is one of the most important

features of the VAL-II SIMULATOR and is available at all

control levels. This feature makes the simulator a reliable

and effective instructional instrument for training the

future robot user. Help is available for all VAL-II

commands and some Monitor commands. To increase the

flexibility and pr.ogramming control, the simulator takes

advantage of a two pass compiler to simulate conditional

and unconditional branching or jumps. In the first pass,

the simulator makes a record of the step label, variable

names, and examines the logical condition. In the second

pass, it finds the specified step and transfers the control

to that step. Also, limited sens·ory interface is available.

Editing features allow users to create and modify robot

control programs. The Edit Mode prov-ides a more suitable

work area for the programmer, so that the individual could
,. <

use his' resources more efficiently •

. ' ,

,j.·
153

. ~

..,,

r,

..

User-defined geometries may be retrieved from other CAD

systems using International Graphics Exchange standard

(IGES) interface or through POLYGON (190interface; they
. ,}

may then be repositioned in the PUMA's work environment

interactively.

It must be kept in mind that the VAL-II SIMULATOR is

not a robot emulator. It does not simulate the effects of

gravity nor inertia9 Dynamic characteristics such as

accelerations and decelerations are not included to

minimize the amount of computations, thus providing

smoother motion. One must also note that, the simulator

picks up objects when the LED line-segment is intersected

and the flag is set. The simulator does not know whether ·

the object is between the two faces of the clamp nor if it

is to heavy. So,the simulator picks up objects, when in

reality the robot misses the object, or the object slips

out, when they might be picked up.

Nearly, all the Location, Configuration, Motion

Commands, as well as hand and programming control commands

are simulated by VAL-II SIMULATOR. The simulator does

not simulate any hardware nor can it handle precision

points for compound transformations.

Other PUMA models may be simulated by modifying. the

present geometry data file. In order to simulate .the

kinematic behaviors of other robots which do not have six

revolute joints in an identical configuration,requires

154

... ··~

.. ,.,,.

diff•rent transformation matrices. Once, the dedicated
I

subroutine which forms a particular transformation matrix
/ .,

for a joint has been changed, the present method is used to
()

obtain the display data for the subsequent links.
,.

•

4 • DATA PREPARATION ·
·-•.,

The robot model is presented by a series of extruded

convex polyhedrons. The user-defined workpieces are shown

· by other polyhedrons. The simulator uses a wire-frame or

edge representation scheme. To form a ·polyhedron,

corresponding vertices of n-sided polygons are connected to

form planar polygons which enclose a volume. The cell

components may be defined by creating the parts I in a

different CAD system and then interactively retrieved and

positioned in PYMA's work-environment, or by creating

separate setup geometry file. A setup file is shown in

Figure c-20. The first line contains the number of

user-defined workpieces in the cell, 5. The object

coordinates may be given in millimeters or inches. Either

"MM" or "IN" may be used. The third line, shows· the

coordinate system with respect to which the object data is

defined. A "W" will designate the wcs, and a "S" will

specify the scs. Following the thi·rd line of each setup

file, lines of data, one corresponding to each user-defined

object appear to indicate each object's size; this is

155

..

specified l,y giving the number of vertices belonging to one

polyhedron. The objeqt size is shown by specifying the

first and last vertex with a comma separ,iting them (1,8).

Due to the data format chosen here, the first digit should

be l,and the lastone an even intege~ larger than 6.

Associated with each object is a reference point (the first

corner). Next line in the setup file, following the number

of the vertices for the first polyhedron is the coordinates

of the reference point, namely the first corner. Following
\ 0

this line, the coordinates of each vertex is given with

respect to the reference point, shown in alphabetic order

(X, Y, Z) separated by commas or spaces. The order in which

the vertices are defined is critical. The vertices
. .,,

representing the front and back faces must be given either
<::

in a clockwise or counterclockwise order, when looking

toward the origin along the line of the normal axis. This

1s very impottant for effectively removing the hidden

surfaces. When a counterclockwise convention is used, the

magnitude of the coordinates along the normal axis for the

first polygon is larger than that of the second one, and

vice versa, when a clockwise convention is used •

.. The locations may be defined interactively, by typing

the position and clamp orientation angles while in the VAL

II Mode. There is a quicker method to define locations, and

that is to write them in a data file. The position and

orientation angles may easily be determined by looking at

156

''-·

"'

the position of -the specific objects defined in a setup

file. A location data file is shown in Figure C-19. In
,1
/

this file, each location is signalled by the l'abel, POINT,

followed by a space, and then an appropriate name of up to

9 characters long, a comma, followed by the position and

clamp orientation angles, separated by commas. Once the

setup and location files are created, one may enter the

VAL-II SIMU'LATOR environment and observe the kinematic

behavior of the PUMA upon execution of various VAL-II

commands.

5. SIMULATOR USE

The simulator may interactively be used to serve the

following purposes:

-to move the end-effector to different positions

-to orient the end~effector

-to open and close the iripper

-to perform repeating tasks

-to make conditional and unconditional branching or

jumps

The order in which the VAL-II instructions are to be

executed ·1s critical to simulate a manufacturing task.

'

Oftentimes, several iterations are necessary to determine
~

the most efficient sequence of commands. The EVS may be

used to interactively create and modify VAL-II programs.
()

,..,

157

r

·.

•

..
Locations may be created either u.sing the Pendant or VAL-II

Modes.

Once programs and locations have been verified on the

simulator, they may be down-loaded to PUMA-controller for

final testing and implementation.

6. EXAMPLE SESSION

" :,:- , -,i; ~ t:b

,.

The following examples show, step by step, the features

of the simulator. Except for the EDIT Mode and the VAL-II

mode, user inputs are single key inputs. The proper syntax

of each command is checked when it is read in. At any time,

if any error is encountered, corresponding error messages

are displayed. If a VAL-II command does not match one of

the entries in the COMMAND.DAT file, it can not be

simulated and an error message is displayed. The EVS

continuously checks the syntax of the commands that are

input. ·If the command is not one of those which may be

simulated, the line is rejected and an error message will

be display~d. In the steps of the table below, "RETURN''

denotes a carriage return key, which marks the end of a

line. When more than one input or output is given, they are

separated by commas. In the format which is used here, the

first column describes the user's input or the program's

output; the second column gives a brief description of the

inputs or outputs on the corresponding line, and the third

158

•

"

column references the figure which corresponds to the

display produced by the, terminal. The first example,

PROCESS, uses some of the VAL-II commands that can be

simulated. The second example, CONVl, clearly shows the

functions and usage of arithmetic and logical expressions
I

used in the VAL-II SIMULATOR. The program listings,

location files, and setup files associated to these two

examples are given in the figures which appear at the end

of the chapter •.

0

159

•;,•,1

:, , .. , ,
, I

..
. '· . ..

. : . .

..
-.

. .
' ,

. . ..
.. , . . ,

....

INPUT/OUTPUT

"R ROBSIM .. ,
RETURN

E
.. DEM03.SET ..

RETURN
RETURN

K

F
F
A

A

R
M

1, RETURN

1

y
Y, 0,0.300
Y,0.0,45

N
Y.2,RETURN
Y,0,0,-200

N

N
Y, "TEST.DAT"

RETURN ·
E

"'EDIT TEST.OAT·

"
fl

C
MOVE A ..
t.40VE e•

EXPLANATION

RUN VAL-II SIMULATOR

read rrom existing setup rile

Main Menu display
Keyboard· Menu display

hidden-surroces not removed
hi dden-surroces rem~ .. ,ed
Axes display ON

Axes di sp t·oy OFF
return to Mein Menu
Manipulation Menu display

move port' no. I

coordinate axes ON

continue
translate part by 0,0.300
rotate part- about !:f 1:,y 45 deg.
stop moving rirst port
move part no. 2
translate b~ 0,0,-200

no rot;at;ion

end moving ports
save r i I e under the new name
bock to main menu
Edit Mode
edit; TEST.DAT -program
continue

FIGURE

Cl

C-2
C-3

C-5

C-7 0

C-7 b.

C-7 c

C-8
.

•

l.. Ct_OSE I 50 ..

L----~·-!O_~~"---A------'---~--------_. _______ _.

T ABL.E C-1 • STEP BY STEP EXl,~1.-PLE SESSION

160

_,.,.,.,,

•,

. .
. . .

• .
•

. . .

',

. . .
•• .I . •. ,• . ..

.

•

. .. ·· . . ,,.
.

·.

. :. . :

.•

. . . ~

. . ..

. I.·-•

. ..
. . .

·, .

"

INPUT /OUTPUT·

D.3. RETURN
I, 3,RETURN

MOVE E"
S.E

p
M
R
K

S,R
p
M

1 , l • 1 , l , I , I
3,3

1,1,1.1

3,3,3
I , I , I

3

3
2

EXPLANAT!ON
.. '

delete step 3
insert a new step instead
new step 3

saver; le & exit rrom editor
Pendant Mode
display model

bock to main menu
Ke!::lboord Mode
collision check ON, return
bock to pendant mode
modi display

rotate JO i.nt 1
rot-ate Joint 3
rotate Joint 1

rotate Joint 3
increase the rotational
increment
rotate Joint 3
rotate Joint- 3
rotate Joint 2

N c~onge direction or rotation
3 rotate Joint 3 . _

A,K,S,R turn collision chec~ orr-
e;E. PROCESS.SET begin with o new setup

. -
V VAL-II menu display
V VAL- 11 Mode

"LE~ lert~ robot
"AB" elbow above .

0,0
·PROCESS.LOC ..

~eod I ocot i ons rrom a dot'a r i I • •

RETURN
A

/\,A.,A·,A

E.w

.
location rile name

.

accept and continue
accept; and continue

accept, end reading the rile
wioe out TT characters

FIGURE

C· 10

C· lZ o
C-JZ b

C· 12 c

C· J2 d

, C· 14

C· 13

C· 15

•

TABLE C-2. STEP BY s·TEP EXAMPLE SESSION

161

·• •,

·.~ ·. ;

..

·-

·•··

. . .
···:

.. · .. .

\

"'

INPUT/OUTPUT EXPLANATION ,

·EXEC PROCESS,l"execute p,-ogram process. once
•READY"
•LE•
"AB•
"APPRO 6, • 50"
·MOVE A"
·CLOSEI so·
·DEPARTS 100,.
.. MOVES E ..
.. MOVES F ... -
·DEPARTS zoo•
·APPROS c,-so·
•MOVES c•
·OPEN[100•
·DEPARTS 100•
·APPROS B,:Y.o•
·MOVES B ..
·CLOSEI 50 ..
·DEPARTS 100 .. ·

1erty

approach A
move to locoion A
close t'he clomp
deport by l 00
move to E along straight line
move tor
depart arter part pr-ocessed
oppr"'Oach C
move to C
open the clomp
depart
approach B
move to B
grasp the part

"aAOVES E" move to E
•5t-HFT E,0,0,-lO)• shirt the location
"MOVES E- insert the port in processor
·DELAY 1• wait til I part processed
•oEPARTS 200" deport
.. APPROS D,-50 .. move to 0
·MOVES o•
·QPENI JOO ..

.. READY ..
.. STOP

R
s
y

open the clomp

stop
,...etUl"'n to main menu
ens the session
conf'irm

•..

FIGURE

C-16

.
C· 17 a

...

C· 17 b
C· J7 c
C· 17 d

C· 18 a

C- JS b

C· 18 c

TABLE C-3. STEP BY STEP EXAMPLE SESSION

162

L

•.

. .

' .

. . . ··: ..

: .
I '

. . .

. :
. ~

..
.. : . .
,. u

,,

I ,
. ., .

(

, 1 .
l.611 f"ILE NA~l

SETLP FILE NAME:
NO. OF' WORKPIECES:

·~ITS CF WORKPIECES:
COOROlNATE AXES SYSTEM:

KEYBOARD~

LISTI LISTP
LISTF
LISTL

POSITID'I
COLLISION

FACES
OOIENT

AXES
RETURN
K)[EL

VAL-II

MANIPULATION MENU
l.PWARO

DOWNWARD
RIGHT
L£fT

FORWARD
BACKWARD

X ROT
Y ROT
Z ROT
AXES
STCP

u

...

INllll\LIZE

~7
.

IGES rlLE
UGI I FILE

EXISTING rlLE
t:. \ /

I

SPECIFY SETUP FILE:

K

M
• • • i j T

DISPLAY '-OOEL

MAIN MEJ\IJ

t<EYBOARO
MANIPlLATICN

PENDANT
EDITOR
VAL· l I

RET~
BEGIN

INITIALIZE
STOP

HAROCOPY
GENERATE

VAL- I I COIMA~

E

' IGES FILE NAME:
SETUP FILE NAME:

~ NO. OF WORKPIECES 1
UNITS CF WCR<PIECES1

~INATE AXES SYSTEM:

PENlANT MENJ

f .X,(NT I J ROTATE
&JOINT 21 ROTATE
I.JOINT 31 ROTATE
I.JOINT 41 ROTATE
tJOINT 51 ROTATE

"'- IJOINT 6J ROTATE

V'

•

OPEN
CLOSE
WORLD
TCXL

INCREASE
DECREASE
~GATIVE

RETLRN
VAL· 11

EDIT MENJ

CREATE
INSERT
DELETE

SAVE
EXIT

-
Figure-Cl. Simulator rlow diagram

163

. '

,..

r.,

.;

·,

MAIN MENU ..
. ' - .

_ENTER SUBME~NUS BY ~RESS I HG:

K-E'fBOARD
t1_At"f I PULAT I OH
P_ENDAHT

E_DITOR

VJfL-II

R_E.TURt..r
B_E(3JH

I_HITIALIZE
S_ T1)P

H-~=tR[)(;r)PV

G_El-fERATE

Figu1·e c-2

: TO KEYBt)ARD (MONITOR> MODE

: TO MANIPULATE "-'ORK PIECE LOCATIONS FROM THE KEYBOARD
: TO PEHDAHT MODE

: TO EDIT MODE
: TO DISPLAY A LIST OF EXECUTABLE URL-II COMMANDS

: TO RETURN TO PICTURE OF MODEL AliD UICE •JERSA

: TO :;TART DUER
: TO I t-1 IT I AL I ZE LJ I TH SAME SETLIP F I LE

: TO EXIT PROGRAM AHO CLEAR S•:REEH

: ·To 1:::REATE A PRINTOUT FILE

: TO •3EHERATE POL 11"GON. I HPIJT F I LES

-

Simulator output Image for Example

164

I •

.. ,

1--'

°' Ul

:•

. '

i

•

I<. E \' BC) Af~D · i'IENLJ

L-I~3T - T~IEt·, T't1==·E LISTP PROt:3. t·~A1··1E: I.JAL- I I
L_I:3T - THEI·~ r·,·1:·E l. I ~3TF: lJt=tL- I I PR()GRAl'1S
L_ I ~3T - THEl·4 T°l''l~E L ISTL: IJ1=tL- I I LOa:~AT I 1:11··4

FILE 1-ISTit·4B
. ,/ ..

LIST
D1=tTA t=- I LE~3

P _1J~; IT I 1)t~ • . re, I) I SF'I_A'(1=·0s I ·r J Cit~ OF (~LAr11=>
S_t11)tJTH

F_A,:Es

O_R IEl·~T
A '-'f::c -···· ,
R_E.TIJRt~

t-1_0l)EL

'...'~Al--1 I

•
•

•
•

•
•
•

•
•

· CC•LI_ IS I t)t·4 Cl-iEC•<!; < 01··~ .. ,'0FI=)

BA•:I< FA•:ES (OH/1:rFF)

CALI_$ Of~ I EN"T 1 Tl) sci=1LE, 'TRAH:3LATE OR ROTt=ITE 110[:•EI._
c:c,01~[) l t~r~TE Ff;.:At11::s (1Jt~, .. ,c,1=F)

: TO l~F.Tt~l~t-~ Tt) THJ:: TOI=> OF A 1"11:7NU
: TO I) I SPI-AV "THE 1··10DEI_

: BEFl)RE 1::t~TEI~ I HG A 1...IAI.. ,:or1r·1r~t-tO

.. -
Figure C-3. !

Simulator output Image for Example '

It
~-,

·1
(

1-.
,·

..
, _

h
(

., .

,· ..
i

..

. '

e •• • I

" \ : . . \
' ' ·: ' ..

•, .. -, , ······ •, ..
',•t, ~ ; I f •' o I I I I I ... I I I •·i I

I I ,I. t •, :..,.. • I I I I I I • \

~
.. ·. . . . '

'•

. .

•

~-

.

. . .

..

. . '

. .

HIDDEN
SURFACE

--,OR I ENT
"'

-
COLLISION
DETECTION

. .

..

.. . .

. .

. ..

..

•

•'
. ' • t, ' •

• . .

A MAIN MENU r,,...._ MODEL
"J V DISPLAY

K
,

~ ~
.

A INTERACTIVE
" ~OINT, FETURES COORDINATED

I

A I

"' STRAIGHT
~ V LINE ~~-·

Figure C-4. Keyboard Mode Flow Diagram

,

'•--

. . ·.

·~-
•

·-

Et·4TE~: c;or1r·tf,t~Ds
••

LI_F·J,JAF.:D

D_Ol.-Jt-~l-JARD

R_l(3HT

L_Ef=T

F _Cif~:~JARl)

B_Fu:J-(1-JAi~:D

>::_R1JT

\'_FJ:11:

Z_Rr)T

0 ':.!t=-s r,~,

S_ T1JP

•

:: .

Blf F;,F~ESS I t~G:

• MC••,JE · Tl-iE PA~T I_IPWARD •

. t10'JE Ti-IE F·1~RT DO~JNWARD •

• 110•JE Tt-fE P1,RT TO RIGHT •
•

• MC•• . ..tE Tl-IE Pl=tF~T TO LEFT •

• r-101.)E Tl-tE F·1~RT FORLJliR[> •

• f10'.)E 1·1-1E F·a~RT 8AC~(i.JAF~D •

•·- RO·rATE THE PART A81JUT :~-AXIS.
···-

-. .f:Ca"ff,TE THE PART A81JUT 'l'-AXIS -~-.

·- :F~o·rATE THE F·flRT A81JIJT 2-AXIS ..

: CQrjRDI~~ATE A){E:3 (01~/0FF)

: F.:E·r LIF.:I~ TO MFII t~ MEt·tlJ

. .,.

Figure c--5.:~ Simula.tor ·Oatput Image for·Example

•

. ""-

167

•

•

..

. ,• .
.

•

• .

•

,· ..

•.

...

MAIN MENJ

KEYBOARD tN:REMENTS

LEFT

RIGHT
UPWARD

DOWNWARD
•

FORWARD-.~
- NO BACKWARD

X ROTATi(l\J
Y ROTATI~
Z ROTATJON

NJ

SAVE

RETURN

,

.•

1t

. -· . . - .•.,. •. . : · .

·•

Figure C-6. Manipulation Mode Flow Diagram

. ..

. ~-

168

-~·.·

.,,_. . . ·-

......... '

(

- . 'I

a.

• •

•

•

. •. :t::n.~.·-.~ ... , . .•~-·'

•" .,

z

b .

•

V

•

c.

Figure C-7 •. Simulator output Image for Example

169
•

·•

• El) I ·r

C_F.·1=.:ATE . I t-~lJOl<ES 1:F~£ft"f l (II'~ t·1C•DIE: .
I _t·4~3ERT . 1=tLLOI.JS Fa)R LI t-~E I t~SEl~T l 01·-t •

D_EI_ETE • t=tLLOI.J:.:; F1:1R LI t-~E l)ELE'T 1 Ot-.1 .
• s_A•.JE ·=-AUE·~ Ttil:: FII_E •

• . •J ·~·

E_;;-~ IT • 1::t~DS . TJalE EDI"f SE~3Sl 01·~ . .

•
T' ... PI:: ,:. El) I r·..... Rt;(, T MEI·~ F·R1JGF.:Ar1 t~A11E TIJ STi=tRT ED IT !;~s:; I c,t-~

Figure c-s. Simulator Output Image for Example

•

'- ,

, '0 4/

1>

-

.. .
• I • •

• ol
,I'. •

..

.
. -. .

.. . .
.

•
. .

..

0
F9LAG

.... ,,.
1

~ 7
" C'

-
~

.

MA IN MEN.J .,__ ___ _.,. EXIT .,__

w
I EDI TOR I

~7
CONTINLE Sl'ART DISPLAY MENU

•

.·

'•

I ADD TO f lLE I
~

\ OLO
't 7

DISPLAY
FILE CONTENT

w
I LE NAME ~NE--..... ~----.

~7 •'

~ ..._._C~ INPUT f FLAG= 0 :..._ ___ _

INITIALIZE

~7
_ ____ __, FLAG: l

•

. .

• ~7~7
~------------------~C~IN?\JT ~E ________________ __.

---------------~'~It• 4~1.._ _____ _
I S

tTT"--------a;:;::::::::::::::================:::!JIJ.12::::::::=:::::::==---------,,''
\I/ ''

INSERl

".17

STEP NO.

~,
ADD TO FILE

~~

SAVE FILE.,..___.

--..... DELETE

~t7

STEP NO.

~7
IDELETE FROM FILEI

~7

SAVE F'ILE t-....

Figure C-9. Edit Mode Flow Diagram

171

SAVE FILE
l

:·.

p
....J
,t..j
=: . ____ :

"{

.

..

•' ,.,.'

.:.·.,

.....

..

,.:

1 - (,JOlt,r
-:-._ - < ,JO I t-11·
,:,
·-· - ('-ICr I t-~T

4 - <: .JC• I t·-IT
ti;: .. , - (~IC• I t·~T
.- (~.10 I t·~T f.,:. -
.... - < C•Pl~t-~> -,-. < C:LtJSE) --·
,., _ c,1~L[)

T _1)1'.:IL

I t·,t•-·J:.·EA·=·E - ·-· ·. .. ·-·
t'• - E ,:: F~ E f-t ~ 5 E

t·~-E•3A1" I I..JE

R_r::·r1..1Rt I
• .. J_Al--1 I

•
•

•
•

•
•

•
•

•

\ '

1) Tl) Rt:rft1TE ABOI.IT L·Jt=t I$ 1·

·=- ') ·-. Tl) F.:O'TATE ABt)IJT ~:1-t(ILIL l)EF.:
·':! ... ·-· .. Tt~l ·F::O'TATE AE:t)IJT EI_BQL.J

·4) T1J S:~CfTtlTE ABCtlJT FIJF'.ErH~r 1

!5) TIJ RCffATE c·LAl'·1F' 1_11:· 1::1t 41) [;,,J 1 .• Jt1

15) TtJ RO.TATE CLAi·1p ',::LOC:1-(l,J I ~;f~,,'C:OIJt·~ TEl;:c:L c11:. ··~1-J I ~=~E)

·r•J c,1:·F.t I ·rHE 1:LAt·11=·

TO ,··t o~r\9 .. - ._, :.. THI=.'. C:L1=1t·1F'

TO 1· 1s:HJE t·1C•Dl::l. I l··t 1-JOl~l.C• 1··11)C:1E

TO 1··1j.)I..JE r·1c1c,1::L I,-~ TOt)L r11)t•E

10
1·0

1·0

"
1 t :c:F.:l:ASE l"'HC RCI r,:rr I 1.)1· lfiL I t·~C:R1:.r·1Et-rr

l)E~:r:~1::fl~::E THE F.~(1T1=tT l a:t1··tf1L I t·~Ct:.:1::r 1Et-rr
1::Hf'11-~(3F. SI Gt·~ 1:tF Tl1E ~'.tJl'FtT I Cll-~AI_ I t-11::REt·U:.~·tT

A IJFiL ~:Ot1t11=tt·ID

Figure c-10. Simulator output Image for Example

.. .,.

....

•

. . ~ . •' . . .
• ..:•'.I : • • • •

.
... . '

• • • • • I I I I • • ...

I

• • .. • I • I I •
,. I, ' I I'\ I t • ,, I I I I

o •• ' o I • f I • • I I ' I .. I I t I

• • • JI • ..., • • ••

°' I • • , ' , ' •
I It o I

. . ., '· .. .
• •. • ••• t

.. .

.
. .

WORLD
X,Y,Z

TOOL
X,Y,Z

JO I N'T
MODE

'

•

J!X,WY,WZ I

~

TX,TY,TL
~

.--11 , 2, 3
-.......J.

'4,5,8 ._ ______ ____
LISTL

, r .

LOCATION FILES
LIST

MAIN MENU

p
, '

PENDANT
MODE

, ,
DIRECTORY

L I STP pr; pg. Nf ME

PROGRAM
LIST

I OR Q
-

0 OR C_ -

INCREASE
DECREASE

OPEN
CLOSE

,,

~l ,PZ,~ CLAMP POSIT I ON

LISTF"

VAL· I I PROGRAMS
LIST

Figure c-11. Pendant Mode Flow Diagram

• .

••

•

. '

.•

.

•

•

CLAttP I';: ttEFtR Pt=1RT I 0

CLFtr tP If: HEF1R F·~1~T 10

I 9 C:C•LL I C·ES &JI TH 6

F·AP-1· 10 IS ~-IEAR PART' S

10 C-OLLIDES UITH S

•

a. ,

•

c.

f'

•

CLt1l !F· I!. tlEFtF! F·Ft~T I E•

10 C:(•LL J t·•E':: U 11 f-1 7

1 l' c·OLLJ c,e~ ~ITH . s

C'LAMP I~: tlEF1R PFlf.~ T t \J

10 ,:~O~L I C•ES U I TH 6

I '3 C'OLL I C•ES 111 Tt-1 "?

F·~1F:1' I 8 J ·; ~-:EAR PAP.l 5

le COLLJOES ~IT~ ,

b.

. d •

'.

..

~JF1L-1·1 ME~IU
ENTER C:Or1MFtt~[):~ ev TVP I t~Ei It~=

READY
HERE P
MOlJE P

MOUES f•
OPEUI (~:>
CLO~:EI <X>
SPEEDS
l-JHEJ::E

APPRO P., D

f1PPRCr; P ~ 0

STOF'

HALT
DEPART D

- VERTICAL COl"-fFIGIJRAT IOM •

- DEFINE COMFIGURATION P
- JOil-..iT COORDINATE TO P

- STRAIGHT-LINE TOP
- OPEi~ CLAMP E:Y x:~ •.

- CLOSE CLAt1P BY X~

- F'ER•:EHT OF FlfLL SPEED

- DISPLAY POSITIONAL INFORMRTIOH
- ._10 J HT coo~ I t--lATE APPROA1:H

- STRAIGHT LI 1·,rc: APPROl=tCH

- EHD URL- I I PF:OGRAM

- LIKE STOP <~;EE CTRL_C)

- .JO I liT COORD I t-lATE
DEPARTS D - STRAI6HT LINE DEPART
DELA'(H

PALISE

RIGHT'l"
LEFT'(

Al301..1E

BELC'I~
FLif>

t.irJFL IP

- DELAY PROSRt=tM H SEC1)t..fDS

- F~ETIJRH COt~TROL TO U:~ER

- RI GI-IT Ht=lt..fDED ROBOT

- LEFT HFtt--tDED ROB1)T

- ELBOW ~BOUE URIST
- ELBOW BELO~ URJST
- t~EGAT I t•E JO I t-lT 5 Ftt.f(SLES
- PO~: I TIUI:: JO It~T !5 At~1:;LES

UAL-II MENU CONTINUED
Ef·-lTER Ct.ff1MAt~D~~ EV TYP I HG I H:

;

TYF·E :<s
STFtTLt:;

SET P1•F'c!
l>R~ :-c, V .. :Z
DRil'E .J, A .. S

- BEFOP..E co,·1r1Et~TS

- URITES THE UALUE OF X
- '"'RITES ROBOT STATIJS <~SPEED., PROS. LOOP NO.
- E(;,UATE P 1 TO P2

- STRAIGHT LlHE IHCREMEHT
- M1)1JE .JT. J.. R DEG. AT SP. S

Bt~SE :~, Y .. z .. R - SI .. I FT flHD F:OTATE ROBOT
Sl-tlFT P, ><.• V, Z - SHIFT F"OS ITIOt·~ P
E!<ECUTE NAt1E., N- E:<ECUTE NJ~ME.. t-1 Tl MES
CTRL-C

GRASP X, t~JJf1

HELP

- TO FtBORT A lJAL-1 I PR0•3RAM

- CLOSE CLAf'1P B'l" i~:;~.. EL!SE GO TO STATEMENT t,tiJ. <NUM>
- 1-IRITES DE:;CRIPTION OF UAL-II COMMt~S

ALIGN - AI_JSt·lS THE T01)L Z-AXIS ~ITH NEAREST IJORLD COORDS. Z...R;<IS

UAR 1 • VAR 2 - SETS tJAF.:. ON THE LEFT EQUAL TO Ot£ OH THE RIGHT OF EdUAL SI8N

HELF·

C_OHT I t·tLIE

"-'-I f'E
R-ETUl~:H
f·LOt•EI_

C>_EFil·-~E

• ' • I I - . .C ' 1' ".\"' C ' '

- D I SPLA'(S HELP t1Et-,1_1

T1) C0t'1Tl t~IJE TYP I 1-.,13 IN UAL COMMANDS

: Tl) IJIPE THE t..JTJ00 CHARACTERS FROM THE SCREEN
: Tt) RETllRN TO THE TOP 1)F A MENU
: Tl) r, J ~SF'LA't THE MOC>EL

: TO DEFJHE ORJEHTATIOHS

Figure C-13. Simulator Output Image for Example

175

'

J

14
fVil
w
l, & 1.-1

440. 00 -50·00 -3~0.00 575.00 -oOO 00 -3~0 00
0.00 0.00 0 00 20.00 o. 00 0. 00
0 00 0 00 70.00 20.00 0.00 -~,o oo
0.00 30.00 70 00 20. 00 ~o oo -~50 00
0 00 30 00 0 00 20.00 20 .. 00 0. 00

50.00 0.00 0.00 0.00 0.00 0 00
,o.oo 0.00 70.00 0.00 0.00 -:!~C, 00
50 00 30.00 70 00 0.00 .?O. 00 -;?~O. 00
,o. 00 30.00 0.00 0.00 20.00 0. 00

1. II 1.:J
440.00 10583 -320.00 ,1,.w 200.00 -320. 00

0.00 0.00 0.00 20. 00 0.00 .-- 0.00

0 00 0. Oct 70.00 20.00 0. 00 -~50. 00
0.00 30.00 70 00 20.00 20. 00 -2,0. 00

0.00 30 00 0.00 20.00 20.00 0.00

50.00 0.00 0.00 0.00 0. 00 0 00

,o.oo 0.00 70 00 0 00 0. oo. -2,0. 00

~0.00 30.00 70.00 0.0'J 20. 00 -2,0. 00
,o.oo 30.00 0.00 o. (JO 20.00 o. 00

1. 8 l, 8
-463. 51 !100.00 -320.00 345. 00 200.00 -320. 00

0.00 0.00 0.00 20.00 • 0 00 o. 00

0.00 0.00 40_00 20 00 0.00 -2,0. 00

0.00 600.00 40.00 20 00 20.00 -250. 00
0.00 600.00 0.00 20.00 20.00 0. 00

~0.00 0 00 0.00 0.00 0 00 0.00

,oo. 00 0.00 40.00 0.00 0 00 -;:?50. 00

~00. 00 b00.00 40. 00 0.00 :!0.00 -250. 00

500. 00 600.00 0.00 0.00 20.00 0 00
•

l, I 1,.
-463.51 500.00 -320.00 345. 00 -600.00 -3:?0 00

40.00 0.00 0.00 20.00 0.00 0 00

40 00 0.00 -:?,o.oo 20. 00 0 00 -2~0 00

40. 00 40.00 -250 00 20.00 • 20 00 -~50. 00

40. 00 40.00 0.00 20.00 20. 00 0 00

0.00 0.00 0.00 0 00 0. 00 o. 00 •
0.00 0.00 -;?50.00 0.00 0.00 -250 00

0 00 40.00 -;?,o.oo 0.00 20.00 -~,o. oo
0.00 40. 00 0.00 0.00 20.00 0.00

1. a l, 8
-463.51 lOb0.00 -3~0.00 49,. 00 400.00 -3~0.00

40. 00 0.00 0.00 0.00 0.00 0.00

40 00 0.00 -:?50.00 0.00 0.00 -1~0. 00

"' 40.00 40.00 -~50.00 171:a. 78 176. 78 -1,0. 00

40. 00 40.00 0.00 176.78 176.78 0.00

0.00 0.00 . 0.00 -1,~. 78 176.78 0.00

0.00 0.00 -250.00 -176.78 176.78 -1,0. 00

0.00 40 00 -~,o.oo 0.00 353.~ -J50.00

0.00 40.00 0.00 0.00 353. 56' 0.00

1. 8 1. a
-2. ,1 1060. 00 -320.00 •• 5. 00 400.00 -470. 00

40.00 0.00 0.00 0 00 0.00 0.00

40. 00 0.00 -~~0.00 0.00 0.00 -100. 00

40. 00 40.00 -2,0.00 176.78 176.78 -100.00

40. 00 40.00 C '
o.oo l 76. 78 171:,.78 0.00

0.00 0.00 0.00 -176.78 176.78 0.00

· o. 00 0.00 -250.00 -17 •. 78 176.78 -100.00

0.00 40.00 -2,0.00 0.00 353. ~ -100. 00

0.00 40.00 0.00 0.00 353.,6 0.00

1. 8
-2.,1 ,oo.oo -320.00
40. 00, 0.00 0.00

40.00 0.00 -~50.00 . .
40.00 40.00 -;?!tO 00

,o.oo 40.00 0 00

0.00 0.00 0.00 Figure C-14. Program PROCESS
0 00 0.00 -250.00

0.00 40 00 -:?50.00

0.00 40.00 0.00

l, 8 '9-5 00 -320 00
Setup data file

-60000
0.00 0.00 0.00

" 0.00 0.00 -~o oo
0.00 800.00 -~o. oo
0 00 800.00 0.00

-250.00 0.00 0.00

-250.00 0.00 -20 00

-250.00 800 00 -20.00

-2!>0.00 800.00 0.00
176

-~·~·

,·

,·!"•

.. ·, ..

POINT A,4c:,'5. ,-45. ~4 , -c. 5. , B9. , 91. , 0.
FGINT B,465., 120. ,-245. ,90. ,90. ,0.
PGINT C,-180. ,600.,-204. 16,90.,90. ,-90.
P8It~T D, -100. , 600. , -204. 16, 90. , 90. , -90.·
POINT E,425., 590. ,-220. ,90. ,90. ,-45.

- POINT F, 425. , 590. , ·'-~00. , 90. , 90. , -45.

}\

Figure C-15. Program Process: l,_ocation data file

; PROQRAM: PROCESS
; THIS PROGRAM SIMULATES A PART PR:OCE:SSINQ APPLICATIOI
READY
LEFTY
ABOVE
APPRO A,-50
TYPE PICK UP THE FIRST PART
MOVE A
CLOSEI 50
DEPARTS 100
MOVES E
MOVES F
TYPE PROCESS THE FIRST: P.ART
DELA'\' 1
DEPARTS 200
APPROS C, -50
MOVES C
OPENI 100
DEPARTS 100
APPROS B, -50
MOVES B

.-

TYPE PICK UP THE SEC:OND PART
CLOSEI 50
DEPARTS 100
MOVES E
TVPE PROCESS THE SECOND PART
DELAY 1
SHIFT E,0,0,-200
MOVES E
APPROS D,-50
MOVES D
OPENI 100
DEPARTS 100
READY
STOP

Figure C-16.

,1

I ·.•

Program Process··

. 177

'

. .

F

'
I - ,_,, -....-

IT IS POSSIBLE TO GRASP THIS PART

,,

a. b.

-

c. d •
•

• •

Figure. C-17. Simulator Output Image for Example

178

...: ,·-·----

I· -.,

..: :•

·L

a.

,....

... •:

c.

·Figure e,..1s. simulator Output Image for Example

179

b. •

. '

' ,
' <

j
.•

,· .,

..

-,

; PROGRAM CONVl
; This progr•m ·sinaul•tes II anoving conv•vor b~lt.
READY
LEFTY
COL•l
ROW=3

100 COL•CCL+l
TYPE COL•
OPENI 100
NOFLIP
APPRO A,50
MOVE A
HOVE B
CLOSE! 50

,DEPARTS 100
MOVE F
OPENI 100
DEPARTS 100
IF COL.EG.2,Tt£N
GOTO 300
ELSE
APPRD C, -50

300 ENDIF
TYPE ROW•

·· WHILE COL. LT. RBW. DO
COLc:COL+l
TYPE COL=
MOVE C
CLOSEI 40
DEPARTS 100
MOVES L
OPEN! 100
DEPAij TS 150
END
DEPARTS 100
CALL CONV2
DO
MOVE L
CLOSEI 60
DEPARTS 100
MOVE C
OPENI 100
DRIVE 2,-30, 100
UNTIL COL. 'EG. ROW:
TYPE ROW•
TYPE COL•
RIQHTY
MOVE N
CLOSEI 50
DEPARTS l :)()
HOVE H
OPENI 100
DEPARTS ·100
HOVE A
RETURN
STOP

.,

.~,... Figure C-19. Example Program Command file

180

..

... '

"

..

. Al

,, .

-

; PR OGRAM CON"-'~ .
OPEN I 100
MOVE A
APPRO F,-50
MOVE F
CLOSEI 40
DEPARTS 150
M01.JES B
OPENI 100
DEPART 100
MOVE A
RETURN
STOP

•

. Figure c-20. Example Program Command file (subroutine)

•

PCINT A, -21~. 78, :)34. 31, -10~. 29, -174. ":)6. , 0.

POINT B, -218.37,475. 88,-262. 64,-173. ,73. ,0.
POINT_C,-294. ,475.,-262. ,-174.,60.,0.
POINT D,495. 58,274. 82,-430., 11. 75~74.44,3. 5
POINT F, 523. 58,274. 82,-430., 11. 75,74.44,3. 5
POINT G,479. 30,272. 54,-363. 59,96. 24, 57.09,-7.45
POINT H,396. ,308-,-421., 146. ,90. ,i48.
POINT L,464. 60,263. 35,-431. 12,5. 98,62.57,.27
POINT M,-369. ,450. ,-2S7. ,-156.,90.~27.52

Figure c-21. Example Program Location data file

181 '\
-/

5
tT1 .
w
1, 8 ..

;.,-.. \

-241. 00 400. 00 -330. 00
0. 00 0. 00 0. 00

- 0. 00 0. 00 70. 00
0. 00 200. 00 70. 00
0. 00 200. 00 0. 00

30. 00 0. 00 0. 00
30. 00 0. 00 70. 00
30.00 200. 00 70. 00
30. 00 200. 00 0. 00

.1. e
-311. 00 400. 00 -330. 00

0. 00 0. 00 0. 00
0.00 0. 00 70. 00

.. 0. 00 200. 00 70. 00
0. 00 200. 00 0. 00

l 30. 00 0. 00 0. 00
,·, 30. 00 0. 00 70. 00

30. 00 200. 00 70. 00
. 30.00 200. 00 0. 00

1, e
-381. 00 400. 00 -330. 00

0. 00 · 0. 00 0. 00
0.00 0.00 70. 00
0.00 200. 00 70. 00

.,

0.00 200. 00 0. 00
30. 00 0. 00 o. oo·
30. 00 0. 00 70. 00 I

30. 00 200. 00 70. 00
30. 00 200. 00 0. 00

1, e
-100. 00 390. 00 -330. 00

0.00 0.00 0. 00
0. 00 0. 00 -40. 00
0.00 250. 00 -40. 00

~ ··• 0.00 250. 00 0. 00
-1150.00 0.00 0. 00
-1150. 00 0.00 -40. 00
-1150. 00 250. 00 -40. 00
-1150. 00 250. 00 0. 00

1, e
595.00 -600.00 -500. 00

0.00 o. oc~ 0. 00
0.00 0.00 -20. 00
0.00 1000. 00 -20. 00
0.00 1000. 00 0.00

-250.00 0. 0() 0.00
-250.00 0.00 -20. 00
-250.00 1000. 00 -20. 00
-250. 00 1000. 00 0. 00 ' ...

• •

\,

·•

Figure c-22. Example Program Setup data file

/1 182
a

..,,,,

(\

. .

,•
. -·,

. '•

a.

: ..

. ·.

•

b.
·"':·

...

Figure C-23. simulator output Image for Example
•

' . • 183

.. ·

/
I

a .

•

b.

Figure C-24. Simulator output Image for Example.

{j . 184

-

''-

(.
a

•

,,

\.
)·
,.·

. ...f!·· a.

•

•

•· ··-':-

. "'~-------------
••

•

b.

Figure C-25 •. Simulator Output Image for Example

185
·.•

:,

;

......

. '•,,..: .. ~. ·.

•.

•.

·,

. a .

.•

. b.

Figure C-26. Simulato.r Output Image for Example

186

' .
I

/

·' ·:

.~ ..

.•.

a.

•

•

b.

Figure C-27. Simulator Output Image for Example

• 187

•

VITA

Seied Abrishamchian Langrudi is a research assistant in

the Computer-Aided Design Laboratory at Lehigh University.

His current interests include Automation, Dynamic Systems

Control and Finite Element Methods.

He received a B.S. degree in Mechanical Engineering

Technology from Point Park College in 1983.

He instructed several short courses in work-cell

simulation and computer-aided design. He s also a

teaching assistant for a graduate level course in Product

Design and Analysis.

Upon completion of his M.S. in Mechanie;al Engineering

he will become a member of the technical staff at Graham

Engineering Corporations.

•

()

188

	Lehigh University
	Lehigh Preserve
	1985

	Design of an interactive computer graphics simulator of VAL-II, the programming language of Unimation's PUMA robot /
	Seied Abrishamchian Langrudi
	Recommended Citation

	tmp.1551116526.pdf.fub3N

