Lehigh University
Lehigh Preserve

Theses and Dissertations

1985

Design of an interactive computer graphics
simulator of VAL-I], the programming language of

Unimation's PUMA robot

Seied Abrishamchian Langrudi
Lehigh University

Follow this and additional works at: https://preservelehigh.edu/etd

b Part of the Mechanical Engineering Commons

Recommended Citation

Langrudi, Seied Abrishamchian, "Design of an interactive computer graphics simulator of VAL-II, the programming language of
Unimation's PUMA robot /" (1985). Theses and Dissertations. 4594.
https://preservelehigh.edu/etd/4594

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an

authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

https://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F4594&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F4594&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F4594&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=preserve.lehigh.edu%2Fetd%2F4594&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd/4594?utm_source=preserve.lehigh.edu%2Fetd%2F4594&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

o~

DESIGN OF AN INTERACTIVE COMPUTER
GRAPHICS SIMULATOR OF VAL-II, THE
PROGRAMMING LANGUAGE OF UNIMATION'S

PUMA ROBOT

BY

SEIED ABRISHAMCHIAN LANGRUDI

A thesis
presented to the Graduate Committee
of Lehigh University
in Candidacy for the Degree of

Master of Science

in

Mechanical Engineering

Lehigh University

1985

CERTIFICATE OF APPROVAL

This thesis is accepted and approved
in partial fulfillment of the requifements
for the degree of
Master of Science
in

Mechanical Engineering:

(21085 Mv_ P &ZV

Jffofessor in charge
/
f

Chairman of Department

!
¢
.

ACKNOWLEDGEMENTS

I wish to give sincere thanks to Dr. John Ochs for his

support and supervision throughout the course of this work.

I would also like to thank Dr. Tulga Ozsoy for his

valuable suggestions and technical advise.

The continuous encouragement extended to me by my
parents during my graduate syudies is especially

appreciated.

<

Finally, I thank Greg Loney, Drew Landman and Jack

Wentz who made my stay at Lehigh more enjoyabl'e.

TABLE OF CONTENTS

‘page

ABSTRACT.;ooooooooooooooooooooooooooooooooo,i';“o,f-.p;i_’pj_'_o’;.ooooool

ol el

> W

NV DDNNDNDNDN
® o & o o o ¢ o o

OO WN -

WWWwWwwWw
e o o o o

B W N

L
e o o

N

o O0r O
e o o

N

- CHAPTER 1

INtrodUCtion. cceeeeescccscossscssccssosscsscscssssascscsd
Problem Statement....ccccecscessscccsssscsscssssscscsd
Project HiStory.ceeeeeeeeocsssccsetccoscsncconccsesed
Approach to PYODleM. cocoeocsccososossssscscssscsssacsossd
Organization of Thesis...ceeeerceenccccerccnnnnseeal

CHAPTER 2

Features of The SysSteM....eeeecescccesscsscccccssssld
Model and Workpiece Representation.................14
Interactive FeatUreS....cccceeeeesscscsssossccsccsesl8
Hidden-Surface Removal...cececesosscccsccscsscsscsesl0
Robot KinematicS....ccceceerescsscccscssoscsnscssvesld
Transformation of User-Defined Objects.....c.ecc....45
Simulation Speed...cceesscccecccssssosssscscsccsacssd?
Collision Detection...ccceceeesoescccssccscccsacscscd8
Directory Information......cceceeessscccccccsccssssd3

CHAPTER 3

Pendant MOde ®© 06 060000 0 006 000 0 060 0 0 0 0 0 0 ® © 95 06 06 06 0 © 06 06 06 0 0 0 0 o 54
JOint ROtat ion © 0 0 006 06060 0 00606 006 0 06 06 8 0 ¢ 0 0 0 00 ® 0 6 6 6 06 06 06 06 0 o 5 6
World MOde ®© © 06 02 0060 0 06 06 ¢ 0 0 8 0 ¢ 0 0 00 0 0 0 0 e 0 06 06 06 06 06 06 0 © 0 O 0 0 0 o 57

Tocl MOdeQ......OQ......‘.......C...........0.....058
Clamp Position and Robot Status.......cecceeeeess..60

CHAPTER 4

Manipulaticn MOAE..ccocveeccoccancscscsascsssnssssessasbl
Component Repositioning Via Keyboard...ecececeaess 62
Component Repositioning Via User-Defined

INCTEMENtS. ceveescessosressssssscssssssssssssocssssbb

CHAPTER 5

Edit MOde...........................'..00000000000067
Program Creation e e 0 © 00 060 0 00 0 0 0 0 0 © ©6 0 00 0 00 060 8 0 0 0 0 00 69
Program MOdification e 0 0 60 © 86856 0 06 0 006 0 0 0 0 0 e O . e 6 o ¢ 0 O . o O O 7 o

iv

ANOAOAOAAANOAONO OV O
® e o o o © o o o
O NN WN -

NNNNNN
e e o e o o
b WN -

8.
8.1
8.2

CHAPTER 6

VAL=-IT ComMMANAS . ccccoccsccscccscccncsssscscsscsscscssscell
Location COMMANAS..cceccccsccssocescsassscsssccccaseld
Motion COMMANAS. cccocesscssascscssoscscssscscscscccscsseel8
Hand CommandS.cccsecscesscsccocsscsccssososscsscssscsssscoesdl
Program Control..cccececscsesscccccsscscsccscccsessB84
Configuration Control...ccceeeeessscccccsccsscseessd0
Trajectory Control...cccecesescescscsccscccscscccessdl
Assignment Instructions....cccceceesccccccccceccess92
Miscellaneous CommMANAS.ccescccscsscsscscsccssscsssseI

CHPATER 7

Case StUdY..ceccesscscsccsccsoscasssssscscscsssccecsesdb
Part Transfer.cccccececccsscscsccscsosssssscssssssscssscceelb
Part Repositioning....cceceeeeeaccccscccccccccessalOl
Location Data@.cceecccsssccsccsssosssscsosccssccssscssel02
SimUlaAtor USCeeecoeesesoccsssscssscssssssssscscssocsssslOb
ObServVationNS.ceceecececsscccsscsssscssscscssscsscsscsseslO7

CHPATER 8

Summary. ® ©6 © 0 0 0 06 © 0 @ 06 0 0 06 0 0 0 0 06 0 060 0 8 000 0o ® © 06 &6 6 0 58 0 6 070 0 0 o 112
Limitations ® 00 0 6 00 © 086 9 006 0 060 0 0606 06 0 0 0 0 ¢ 0 0o ® © ¢ 0 &6 06 &6 & 0 & 113
Future EffcrtSO © 0 6 0 @0 0 06 6 © 88 06 000 0 006 0 0 0 0 8 0 0 & 0 0 0 0 ¢ & o o 114

R:E'FERENCES.......O.....O...........0000000000000000000116

Appendix A....O..........‘.....Q......................119

Appendix B.....O........O.........Q.....ﬁ..........0000134

Appendix c..'...................Q......O.......000000“.0140

Vita.................O.Q.......................Q..0000188

LIST OF FIGURES

Figures < | | page
1-1 ' PUI!IA and s imulator MOdel ® © © 0 06 0 0 06 0 06 ¢ 0 © O 06 ¢ ° 0 0 o 0 [] ‘. ® lo
2-1 _ Examples of wire-frame extruded |

convex polyhedronsS...ccceeecescsscscscscsscasscscelb
Main MeNU..ceceeeoeeeccesvossaassssscssassasscsald
Keyboard MENU.:eoeeoeocccccossssosssssscnssscssssscsecll
Solid Model Representation of PUMA....ccceeseeee23
Alternate Display SchemeS......cccceeeecsscssese2d
Definition of JointS..ccceeeceecenccoccssonaccsedl .
Two dimensional Stick-figure
joint-coordinated motion....ccceeeeeecieceecaeee3S
Various PUMA arm configurations......ccccececc..38
Zero angle convention ‘
according to Le@...ccecececcccccccncassssessessadl
2-10 Zero angle convention | ,

according to the simulator......ccccceeeveceececscd2
2-11 Zero angle convention

according to PUMA...ceescscccevscossoasossssesscdd
2-12 Ccoarse Collision CheCK...eeeecescsssacecsassesssdl
2-13 Coarse Collision CheCK...cececesccssacsosccascsssd0
9-14 a Fine Collision CheCK...ceeeeecsosssesccssaasessedd
2-14 b Fine Collision CheCK...ceeeeceeaasscacccsaassssad2

MNMNVNNDNDNMDN
|
SN OO WN

NN
|
O

3-1 PendantMenu....................................55
4-1 Manipulation Menu..............;................64
4-2 MOVing User-Defined ObjeCtsooooooooo00000000000'65
5-1 Editor Menu OptiOnS.......-..................-o-70

Setup data file for program PROCESS...:.cesess+299
Simulator Output Image for program PROCESS.....103
Location data file for program PROCESS.........105
Command data file for program PROCESS.:.........108,
Simulator Gutput Image for program PROCESS.....109
Simulator Output Image for program PROCESS.....110

\l\l\'l\l\l\l
ANANOTLdWN -

A-1 Subroutine Monitor flow diagram......:.........119
" A-2 Subroutine IGESCONV & UGIICONV flow diagram....120
3

A- Subroutine PICTUR flow diagram......ce.ceeeesse.12l
A-4 Subroutine ELBOW flow diagram....ccecocceeeess.122
A-5 Subroutine FOREARM flow diagram......ccececeee...123
A-6 Subroutine INVERSE flow diagrame..cecececccecscee 124
A-7 Subroutine IATCH flow diagram............ee0.0.125
A-8 Subroutine DETACH flow diagrme.cececeec..es ceeesl26
A-9 Pendant Mode flow diagram.....cccceeocceccces ees127

| vi .

!

A-10
“A-11
A-12
A-13
A-14
A-15

C-1
C=-2
C-3
C-4
C-5
C-6
C-7
C-8
Cc-9
C-10
C-11
C-12

C-13
C-14
C-15
C-16
C-17
C-18

C-19
C-20

c-21
c-22
c-23
c-24
c-25
C-26

C-27

MOVERINC & MOVERKEY flow diagram....128
EDITOR flow diagram..cccecccecceceoceesel29
UNTIL flow diagram..cccecececcccacoeacl30
LOGIC flow diagram...ccccecoeceesecsesesl3l

WHILE flow diagram...cceecceececesesesl32
HELP flow diagram....ccccceeeececes.l33

Subrouitne
Subroutine
Subroutine
Subrouitne
Subrouitne
Subroutine

Flow diagram.e.ccccecceccccccssscsscsesal63
Output Image for Example....ccccccs..164
Output Image for Example..c.cccsececee..165
Output Image for Example....cccceceee.166
Output Image for Example......ccece0.167
Output Image for Example....cccceces..168
Output Image for Example...c..ccceecs..169
Output Image for Example.....ccceee..170
Output Image for Example...ccocceseeesl7l
Output Image for Example....cccceee0e.172
Output Image for Example...ccccceeeeel?3

Simulator
Simulator
Simulator
Simulator
Simulator
Simulator
Simulator
Simulator
Simulator
Simulator
Simulator
a, b, ¢, d
Simulator Output Image for Example....cccceecse..174
Simulator Output Image for Example..:..ccceces.175
Program PROCESS Setup data file.....ccccece0...176
Program PROCESS Location data file...cc.eceee..177
Program PROCESS Command data file.....cco0e0e00.177
a, b, ¢, d
Simulator Output Image for Example...c.c.ccceee..178
a, b, c
Simulator Output Image for Example....ceceeeee.l79

Program CONV1l Command data file.......cccce....180

Program CONV2 Command data file

(Subroutine)................‘OO................181

Example Program Location data file.....ccee00..181

Example Program Setup data file......ccecc0000..182
a, b

Simulator Output Image for Example.....ccces00.183
a, b

Simulator Output Image for Example....ccccecc...184
a, b |

Simulator Output Image for Example...cceeeeees.185
a, b |

Simulator Output Image for Example.....ccccc...186
a, b '

Simulator Output Image for Example.......cce...187

vii

Tables

TNNN
i .
WN

B-2
B-3
B-4
B-5
B-6

C-1
C-2

LIST OF TABLES

page

Display Algorlthm Logic...........................30
Rotation Matrices used for each j01nt.c...........32
Example of orientation Mtrices for

straight-line motion..............................46

List
List
List
List
List
List

Step
Step

Step

of
of
of
of

Common BlOCKS:.:cecoscoccscsscscscsscscocscseclld
Commoned VariablesS.....ccccccecesvececeesal3d
commoned VariableS...ceceececccccosccsscsal3b
commoned vVariableS..cccccccecccccsccceeealld?
commoned VariableS..cececececcecscocscacesesl3B
commoned VariableS..cccescecccccceccccesal3d9

Step Example SeSSiOh. ® & & & 0 O .b e 6 ® © 6 06 &6 6 6 0 0 0 o 160
Step Example SeSSion. ® & 06 6 06 0 006 06 06 0 8 6 0 06 0 0 0 0 0 161
Step Example SesSSion..cccccececccsccscessl62

viii ‘ -

ABSTRACT

Industrial Robots have gained wide acceptance in
industry due to their flexibilty and reliability ass well‘
as their ever increasing ease of teaching ahd programming.
The key factor for their further acceptance in
contemporary programﬁable automation is the improvements in
the capabilities and“efficiency of robot language. Language
simulators such as VAL-II SIMULATOR for Unimation's PUMA
are valuakle toels for teaching, developing and testing

robot control prograns.

VAL-II SIMULATOR is a real-time, interactive, computer
graphics package which simulates the off-line programming
language, VAL-II. It employs a Lehigh developed graphics
packaQe to provide display of the robot behavior upon
execution of key VAL-II commands. The simulator is menu-
driven with an on-line help feature for all control levels.
Information regarding robot configurations is available to
the user at any time. Arithmetic and logical expressions
are also available for decision making. Three levels of
collision detection are available to the user and the
simulator has a simple sensor interface. User-defined
geometries may be interactively retrieved from other

Computer-Aided Design (CAD) data-bases using the

International Graphics Exchange Standard (IGES) and then

easily repositioned in the PUMA's work environment through
'a. manipulation feature in the simulator. The simulator can
/be used to design and experiment with a variety of setups,
investigate assembly tasks and develop varidus programming
possibilities. Once a work-cell is created and the VAL-II
. program is developed and tested with the simulator, the

program may be down-loaded to the PUMA controller for fi'hal

testing and verification.

......

CHAPTER 1

1. INTRODUCTION

Due to great technological advancements in recent
years, industrial robots have become an integral part of
flexible automation with somé thousands of robots at work
in the United States. Robots now perform many of the tasks
formerly done by humans. Robots are able to work longer,
handle heavier payloads, do repetitive tasks, and operate
under conditions that are considered hazardous to human
health. During the past decade automation equipment has
become both more complex and costly to.put in place. The
ability to simulate the selection, installation and
| operation of this equipment through the use of software
offers great potential for time-saving and added the
assurance of maximum efficiency in manufacturing
operations.

The ability to use an off-line language to program a
robot externaliy, withoutvtying the robot from the
production-line, or using a "spare" robot, 1indeed
contributes to both safety and efficiency.

Due to their ease of programming, their ever

‘increasing flexibility and reliability, robots have»gained

acceptance by industry. However, a key factor to their

further acceptance as a programmable device is the
availability of off-line robot languages and this means to
learn these languages quickly and to develope and test
réliable application programs. i .
Since robots are computer-controlled, they are only as
smart as the person programming them. Thus, the method of
programming is a source of error in developing i’lexible
manufacturing applications. Off-line programming may hold
the answer to many programming difficulties. Off-line
programming is the programming method by which a robot is
programmed via a language. This language has certain
vocabulary, grammer and symbols which can be checked by the
use of a so called compiler or interpreter. Once the off-
line program is checked by the compiler it can be loaded
into an existing robot to produce the &programmed motions.
By using off-line programming, the time dedicated to
program a robot is more effectively spent, because robot
program logic is more likely to be correct, since it is
implemented off-line, not under the pressure of a downed
production line. Therefore, the programmer has the time to
"walk through"'the program, checking for errcrs in the
logic. Also, the work area may be more suitable to the
programming task, and an individual has ready access to

resources. »7

Many robot control languages have been developed by robot

builders and research laboratories to perform complex

assembly and machine loading tasks. Some of the more
important ones are: AL (Stanford University), AML (IBM
Corporation), HELP (General Electric Corporation), JARS
(Jet Propulsion Laboratory), MCL (McDonnel Douglas
Corporation), RAIL (Automatix 1Inc.), RPL (SRI
International), and VAL (Unimation Inc.).

An important aspect in the development of robot
programming languages is the use of Dyhamic-lnteractive
computer-graphics. Computer graphics is one method which
has proven effective for evaluating manufacturing systens,
and determining the relative merits, efficiency and
effectiveness of manufacturing systems design. Simulation
packages can aid an engineer in testing and designing
various work-cell layouts, and studying motion and dynamic
characteristics of industrial robots. The use of these
special simulation packages provides significant time-
saving in the layout and modeling of robot work-cell
components and confirming that the final installation will
perform as intended. Graphics simulators can also be
utilized as an instructional and training tool to give a
better insight into roboé kinematics and dynamics in a
three dimensional environment.

Various robot simulation programs that employ
Intéractive Computer Graphics have been developed in

universities, research institutions, industrial

laboratories, and CAD/CAM houses [1-8]; Most of them are

based on Wire-frame modeling for object presentation.
Examples include VAL SIMULATOR developed by Clifton and -
Ochs [3], GRASP by Derby'[4i, PLACE and ANIMATE by Kretch
[5]. Some are based on solid modeling techniques. For
example, EMULA developed by Meyer [6], was based on GDP
[9], a solid modeler representing objects using polyhedral
approximations, and the work by Soroka [7] was based on
generalized cones for describing 3D objects. A survey on

robot simulation can be found in reference [10].
l.1 PROBLEM STATEMENT

The general thrust for all these efforts is to develope
an inéxpensive, user friendly, interactive, computer-
graphics simulator of robotic work-cells, robots, and their
off-line control languages which would feature the
following:

1) Create suitable design tools for robot programming.

2) Help the robot user in'developing and evaluating
program'sequences.

3) Be an instructional instrument for learning the off-
line programming language.

4) Help the robot user obtain a better insight into the

mathematical description of robot kinematics.

5) Provide a linkage with other CAD data-bases to allow

part transfer and work-cell component repositioning.
6) Evaluate complete manufacturing work-cells.

7) Evaluate mechanical systems for ease of assembly.

1.2 PROJECT HISTORY

To develop a general purpose graphic¢s simulator capable
of‘ featuring all of the above objectives is a monumental
task avnd certainly beyond the scope of one master's thesis.

Initially, under the supervision of the Lehigh
University CAD/CAM program an interactive computer-graphics
wsimulator of the VAL language [11] was developed. VAL is an
off-line programming language for Unimétion's PUMA robots.
VAL and PUMA were chosen for their fundamental
representative attributes. VAL's Englishlike mnemonics and
elementary structure made it a " versatile, commercially
available, off-line programming language and a strong
candidate for a graphical simulator. The PUMA 600 (Figure
1.1) is an anthropomorphic robot with six rotational joints
capable of joint-interpolated and straight-line motions.
VAL SIMULATOR [12] uses a wire-frame or edge repreéentation
_sgcheme to éraphically display the kinematic behavior of
PUMA robot upon execution of key VAL commands. Algorithms

for joint-coordinated and straight-line motions, and

collision detection were developed.

. 1.3 APPROACH TO PROBLEM

‘Although VAL SIMULATOR [12] offeréd some fundamental
features, it lacked the flexibilityfand effectiveness a
simulation package must retain. A major improvement was
necessary to make the package as versatile and user-
friendly as possible. Arithmetic and logical expressions
needed to be simulated in order to adequately increase the
level o\f programming control, which would then be enhanced
by enabling the operator to call user-defined subroutines.
The limitation on the number of workpieces to be used
needed to be relaxed, .since the latter had introduced major
difficulties in that only simple tasks could have been
simulated. The linkage with other CAD systems had to be
added, which would in turn confine the user in generating
various work-cell components. While using VAL SIMULATOR the
simulator had to be exited to create or modify user-
generated robot programs. This would result in the loss of
the location data and setups.

In 1984 Unimation Introduced VAL-II [14], a new robot
control system and pi:ogramming language. In addition to its
fundamental programming and control features of VAL, it
also includes: network communication capability which
enables a remote computer to totally supervise the

operation of robot systems, computational and logical

statements 1like those found in high-level computer

languages, a general method including sensory information,
- real-time path control and concurrent procéss control.

The VAL-II SIMULATOR is written in FORTRAN 77 and
consists of a series of inter-related subroutines. This
approach to the organization of the software allows for
easy modifications and future expansions of any individual

routines without involving major changes in the other parts

of the software.

VAL-II SIMULATOR was developed in the Computer-Aided
‘Design Laboratory of Lehigh University. It employs an
internally developed graphics package GRAPH3D.LU [15], to
graphically display the model and robot work-cell
components. It currently runs on DEC VAX 11/780
minicomputer with VMS operating system and VS1ll graphics
terminals. The VSl1l1l is a relatively inexpensive color
raster display that features direct memory access
capability and a dual buffered memory option to allow
smooth motion of the model. It retails for approximately
$15,000 as opposed to Vector Generators upon which
commercially available simulators run, which sell for over
$70,000.

'VAL-II SIMULATOR is an Interactive Computer-Graphics
Simulator of one robot and one language, written in a way
that allows for future expansion in order to simulate other
robots and languages. The simulator is a very effective

instrument for teaching various functions of the language

©® ¥y,

: ro \.‘t—"'J“-:- \-.¢'

[l

't

\\/
U

Figure 1-1. Unimation's PUMA 600 robot and simulator model
in the same configuration.

10

4

to a robot user. It uses wire-frame presentation to
'display the kinematic _behavior of a PUMA robot (Figure 1l-
1). All data is stored in polyhedron form with appropriate
topology. The program is menu-driven and features on-line
HELP at all control levels. Moreover, information
regarding the Config?ration Indicators is available at any
time. With the simﬁl%fbr a user is able to design and
evaluate a variety of work-cell setups, locations and
program possibilities. If needed, user preated geometries
may be retriéved from other CAD data-bases using Initial
Graphics Exchange Standard (IGES) conversions or through
the interface with program POLYGON [19].Then, any
individual part may interactively be repositioned inside
the work environment,awith a constant readout of the
positional data of the part under question plus the part
number. Arithmetic and logical expressions, like those
found.inihigh-level computer languages are available for
decision making, performing repeating tasks, making
branching or Jjumps, as well as some lim@; sensory
interfacing. Also collisions between the robot and the
workpieces are detected automatically. Once program and
locations have been verified on the simulator they may be

~down-loaded to the PUMA controller for final testing and

implementation.

11

1.4 ORGANIZATION OF THESIS

The thesis presented here, provides a thofough treatise
of VAL-II SIMULATOR. It describes clearly the fundamental
concepts and algorithms, the code for each simulated
command, and how to use the simulator. For a more effective
approach, figures, tables and examples are presented
throughout the work. Chapter 2 includes model and workpiece
representation, and a description of the intefactive
features. These features include information on hidden-
surface removal, robot kinematics, transformation of user-
defined objects, simulation speed, and collision detection.
Chapter 3 provides a thorough description of the feature
which graphically displays the functions of a "Teach
Pendant" for the PUMA robot. VAL-II SIMULTAOR provides the
linkage with other CAD systems. Once the parts are
transfered to the VAL-II environment, they may
interactively be repositioned within the robot work-cell.
In the simulator this is done through the so called
MANIPULATION MODE, which is fully describedl in Chapter 4.
Chapter 5 provides»a complete description of VAL-II
SIMULATOR "EDIT MODE", which covers all the functions
related to this mode. Chapter 6 considers each VAL-II
command that is simulated. It describes how each command is
decoded and then implemented. A brief description of key

VAL-ITI commands is also presented. The Case Study is.

12

presented ih Chapter 7, followed the Dby Conclusion,
chapter 8, which includes a discussion of the limitations
of the simulator and recommendations for further study.
Programs use _flow charts, and flow diagrams for Kkey
subroutinés are provided. At the end and in the appendices

a User's Manual with some examples appears.

13

. CHAPTER 2

Ll

2. FEATURES OF THE SYSTEM
2.1 MODEL AND WORKPIECE REPRESENTATION

A language simulator which uses. computer-graphic
representation of the robot and its surroundings is
valuable to the robot designer and end user in many
applications. Thses may include: 1) Performance Evaluation,
2) Robotics Training, 3) Work-Cell Layout, 4) Assembly of
Parts, etc.

Geometric representation of robot related data may be
in the form of a two-dimensional (planar) figure, a three-

dimensional edge representation (wire-frame), or a color
shaded representation. The storage of the geometric data is
key to the ease in which various representations can be
generated. This is particularly true when real-time
interactive dynamic graphics is required. At the same time
collision detection and realistic representation require
that the geometric data contain more than just edge
information. (See [16] for a collection of papers

on the subject and [17] for text.)

The apparent motion in a graphicslgimulator is achieved
by transforming the present locations tb desired ones,

quickly erasing the screen, updating the display data, and

14

displaying the entities. The process of entity
transformation is a time consuming one. Obviously, there is
a direct relationship between the number of entities to be
transformed and the time required to perform the entity
transformation and the speed of the resulting display of
motion.

Two diménsional stick figures are easy to draw, and
quick to transform, but provide very limited visualization.
Three dimensiénai colored solid models are desirable,
because the display is clear and collisions may be detected
visually. Then resulting motion is very slow however, since
each solid model requires several seconds to dxraw, unless
expensive, dedicated processors are used. For the simulator
the various criteria applied to evaluate the several
representations were:

* Amount of storage space needed

* Ease of transformation

* Cost of the equipment

* Display smoothness

* Level of collision detection

As a result, it was decided to utilize extruded wire-
frame convex polyhedrons (Figure 2-1). By»definition, a
polyhedron is a volume completely enclosed by polygons
[18]. The polygbns are generated by simply connecting the
corresponding vertices. In the simulator, the PUMA robot is

represented by a collection of a series of polyhedrons,

15

FIGURE 2-1. EXAMF’LES OF WIRE-FRAME EXTRUDED
CONVEX POLYHEDRONS

16

connected at specific locations to define revolute joints.
The robot work-cell may also contain other sets of
polyhedrons to represent the sugrounding work environment.
The advantages of this approach may be sumnrarized as
follows: ~
1) Hidden-faces may be eliminated by simple and quick

computations

2) Since surfaces are defined, interferences may easily

b; checked

3) Skewed and tapered polyhedrons may be drawn

4) Most objects may be approximated by circumscribed
parallelepipeds, so only the coordinates of eight vertices
need to be specified

Another element which plays a vital role in a graphics
representation is the type of display terminal to be used.
Expensive vector generator terminals with dedicated
processors are available for animation, but are unnecessary
for language simulators. Storage tubes are attracti;e due
to their low cost, but are unsuitable for animation
purposes, since even the simplest geometries require
several seconds to draw. Raster scan terminals are the
obvious compromise, since, they are relatively inexpénsive

and provide fast and clear visualization.

17

v
v . x AT W » " thd | A v oo ¥ by BATRY v , SOMTESY 3 1t L N $22 :'!1‘.! ol £) s v & !
m‘f‘""’i'"'?"!n:k*ﬂf?'- IR Y f’f?.‘-.»ﬂz‘k. IS A% B ~“-.m!*.' N\T’Mﬁm i \"7'% VWE’* ﬂ. e éf“‘.ﬁ"}ﬂ;y_{ﬂ._? -,".Wffur:;.‘ o TR T AR R A ks Tt AT vt i SS.or L wg:o»‘.. .r<.‘.§'-'5¢m SRS 2'

. 3 ’
e R R T e e G SR L WA SRR MO TN RS DAL s R

2.2 INTERACTIVE FEATURES

VAL-II SIMULATOR was developed to enable the user to
- position cell components, display the motion of various
robot components, check robot reach limits, simulate moving
objects, detect collisions, and other functions, all
through an interactive, and user-friendly graphics package.
The simulator is menu-driven, which means that a list of
options are available at all control levels. The options
are convenient and easy to use. The user is often required
to do no more than press a single key to enter a command.
Upon initiali%ation of a session, a user is prompted

whether it is required to read an IGES file, or a
UNIGRAPHICS-II (UGII) file, or an existing setup file. It
is often the case that cell components are created in a
different CAD system and the user would like to transfer
the parts to VAL-II SIMULATOR environment for use. If this
is the case, and a part file has already been converted to
IGES format, the user may interactively transfer the part
and position it inside the robot work-cell. Using the IGES
output from any three-dimensional CAD system the part data
is transfered to another program called POLYGON.LU which
converts the three-dimensional wire-frame to a boundary
representation polyhedron form [19]. This file can then be
read into the VAL-II SIMUALTOR and parts be positioned

interactively in the work-cell. A work file for a given

18

MARIN MENU

ENTER SUBMEINUS BY FRESSING:

K_E'YBOARD . TO KEYBDARD CHMONITORY MODE

M_ANIPULATION : TO MANIPULATE WORK PIECE LOCATIUNS FROM THE KEYBORRD

P_ENDANT . TO PENDANT MODE

E_DITOR . TO EDIT HODE

U_FfL-11 . TD DISPLARY R LIST OF EXECUTABLE UAL-I1 COMMANDS
OR PRESS:

R_ETURN . 70 RETURN TO PICTURE OF MODEL AND UICE WERSA

B_EGIN . 70 START OVER -

I_NITIALIZE : TO INITIALIZE WITH SRME SETUP FILE

S_TOP . TO EXIT PROGRAM AND CLERR SCREEN

H_HARDCIIPY . TD CREATE A PRINTOUT FILE

6_ENERATE . TO GENERRTE POLYGON INPUT FILES

Figure 2-2. Main Menu

19

cell can then be manipulated and saved. The operator may
also wish to read an existing setup file. In any case, the
specific file will be opened and read, and user-defined
objects displayed. The user is then directed to the MAIN
MENU (Figure 2-2). At this point a user has several easy
options from which to select. A user may select to enter
the KEYBOARD Mode (also called Monitor Mode, Figure 2-3)
MANIPULATION Mode, PENDANT Mode, EDIT Modes, or VAL-II Mode.
While in the MAIN MENU, a user may reinitialize theﬁwork,-
cell setup, or begin with a new setup file. Also, one is
able to get hardcopies of the cell layoutj While in éhis
mode, a user may display, for convenient reference, a list
of VAL-II commands and switch between this list, the model,
and the menu. In the Main Menu, files may also be created
automatically to be used as input to POLYGON.LU [19] to
generating color shaded pictures (Figure 2-4). Whenever an
error is encountered an informative warning message will be
displayed. Other interactive features include: Hidden-
surface removal Céllision Detection, and directory

information, which will be discussed later in this chapter.

2.3 HIDDEN-SURFACE REMOVAL

In the raster scan terminals the screen is redrawfn many
times each second. So, as the number of entities to draw .

decreases, the smoothness of the display is enhanced.

20

1¢

KEYBOARD -MENU
ENTER COMMAHDS EY FRESSING:

L_I'ST = THEMH TY¥IFE LISTP PROIE. HAME: VAL-TI FILE I.ISTIMG
L_LIST - THEH TYIFE LISTF: UHL-IT FROGEAMS LIST
L.I!3ST - THEHM TYPE LISTL: WAL~-I1 LOCATION DATA FILES

FOSITION @ TO IXISFILAY FOSITION OF CLAMP
SMOOTH » COLILISION CHECKS COMA/OFF)

F_RZES . BRACIC FRCES <(ONZLFF)
O.RIENT : CALILS ORIEMT1 T SCALE, TRAMSLATE OR FROTIATE MOCEL
L A g » COORDINRTE FRAMIES COM/OISF)

R_ETLEN P TO RETURM T THIE TP OF A MIENU
M_ODEL i TO LISFILAY THE MODEL :
MLAIL=IT @ BEFJRE EMTERING R WAL OMMIAND

Figure 2-3, Keyboard Menu -

To reduce the number of lines being drawn and tocreate
an illusion that the interior region of a displayed surface
is opaque, it must be ensured that the sections of the
object which would be hidden from an dbservef by the opaque
surface are not displayed. As explained before, the
simulator uses the flat faces, which introduces the
property for the vertices of the bounding polygon that they
all lie on one and the same plane. More strictly, in the
simulator, it is stipulated that the objects be not only
plane-faced, but also convex. In this case, a simple
calculation of the normal of a surface is sufficient for
determining whether this face is a "front face" and
potentially visible, or a "back face" and thus invisible
[20]. Those polygons whose normals point into the
terminal's screen are not displayed. Needless fo say,\this
algorithm only removes a face(s) which is hidden by the
volume of the polyhedron it belongs to.

This process of eliminating the back surfaces makes
two important contributions. With this algorithm all of the
polygons are drawn separately, so that they may be
displayed selectively. Sometimes, this causes an edge to be
duplicéted, unless the wire-frame polyhedrons are drawn
efficiently. It is often the casé that the number of lines
" that are not.displayed is equal to that of those that are
duplicated’(Figure 2-5)..Thérefore, for either display, the

number of actual lines drawn is the same. Hence, the

22

. ' . . ’ # ¥
» b.-.a-....-«o«.n-l- ot
. .
‘co{‘ %.fn‘ltl
L}
.

Q
. . . L] .‘ ® . "
«* .-.. .-
.
A}

,.// /// ///Mv/

// /,/ /,/4 z/;ﬁ////‘.«h
RS W , NN

 ROARAD T lrr//

»

L)
N
00 .

2 SRR
.o.- oY 2 AL

NN 7%%

////// //.. . \

e b YN WP

DN AN W

T SRR
1..,/,V%C7A¢ mm&ﬁz

SN L ,.,,%%/,
/” W ty . ,.//1/’

Figure 2-4. A Color Shaded Solid Model

representation produced by interface to

GEOMOD through POLYGON

23

<

| statements determining which polygons to display have a
significant effect upon the simulation display speed.

This so called back-face elimination algorithm requires
the calculation of the coordinates of normals for all of
' the polygons. At the .pa beginning of each VAL-II session,
the simulator uses the first three gertices (numbered
.clockwise) of any polygon to define lines in the plane of
"the polygon. The next step is to determine their vector
cross products, which define the normal lines to these
polygons. Then, in the 'subroutine PICTUR (Appendix A) and
before the polygons are drawn, the coordinates of the
normals are checked to see if they point into the
terminal's screen or not. “his is done by looking ét the
value of the Z component of the coordinate of a normal. If
this value is less than zero, the normal points into the
display screen, a flag is set, and as a result the polygon
is not displayed. The faces and their normals define a
coordinate system in each face of a polyhedron. This means
that, whenever a polyhedron definition data is rotated, so
are the coordinates of the respective normals. However,
this is done only when the flags are set for hidden-surface
elimination. Thus, the coordinates of normals are not

rotated when the full wire-frame display option is used.

24

€33.-,

POLYGON BY POLYGON
FOR HIDDEN-SURFACE

REMOVAL

. FIGURE 2-5. ALT

REPRESENTATION

ERNATE DISPLAY SCH

Py y
=M
—— |

-@'f:’
3

SEGMENT BY SEGMENT
FOR WIRE -FRAME

=S.

R e ~M,;ﬂ_’,'{:,:'»,‘%\,’;‘"‘.’ﬁ

2.4 ROBOT KINEMATICS

As indicated above, the PUMA has been modeled by a
series of extruded polyhedrons. The simulation of PUMA
Imotion is based on the method of coordinate transformation
[21] for describing robot kinematics and manipulating'
graphics objects. A coordinate frame is assigned to each
robot link using the Denavit-Hartenberg convention [22].
Themethod used here has already been presented in [3], but

for continuity will be given here. The column vector

(u) = ﬁ i | (1)

\ W

S~

represents a point in space. It can also be represented as

A A A

u = (x/w)i+ (y/w)j + (z/w)k (2)

A A A

where x, y, and z are the components in the i, j, and k
directions andAw is a scale factor. Given the point {(u},

its transformation (v} is represented by the matrix product
(v} = [H] * (u} (3)

where [H] is a 4 by 4 homogeneous matrix representing any

combination of rotation, translation, perspective or

26

Figure 2-6. Definition of joints

27

~~~~~~~




scaling transformatidns. In “the simulator 3 by 3
transformation matrices are used, sincg all of the PUMA
joinﬁé are revolute and only rotations are required. As an
example, let a=x/v, b=y/w, c=z/w be the coordinates‘of a

point in space. Then, a rotation by an angle 0, about the

/ - o
a' Cos © 0 Sin 6 a

ﬁb' = 0 1l O |+ b ) (4)
c! -Sin © 0 Cos © c

) = )

The rotated data (a', b', c') have been obtained by
premultiplying the definition data by the homogeneous
transformation matrix. Similar rotation matrices exist for
rotations about X and Z axes. Referring to Figure 2-6, one
5ees that rotating the first joint (WAIST) requires
Premultiplying the coordinates of the first polyhedron by
the above transformation matrix. However, the rotation of
joint two (SHOULDER) requires a transformation with respect
to the first joint and not with respect to the fixed SCS.
Thus, the rotation about the X-axis, shifted to the
rotation axis of the second polyhedron, follows the
rotation about the vY-axis. Therefore, the transformation
matrices must be multiplied together to obtain the
concatenated transformation matrix for each joint. The
shift to the second rotation axis or translation may be

included in the concatenated matrix as in the Denavit-

28




%

Hrtenberg convention [22]. As pointed out, in the simulator
instead of 4 by 4 transformation matrices; 3 by 3
homogeneous matrices have been used and the respective
translations are included later. This has the advantage in
that it makes the élgorithm easy to follow and also results
in quicker response, hence smoother motion, in the price of
making the transformation subroutine less applicable to
other robots.

To understand this algorithm in more detail, consider
the first two links, namely the Waist and the Shoulder of
the model and Table 2-1. The polyhedra definition
coordinates are stored in an array DEF DAT, the rotated
data in an array ROT DAT, and the display data in another
array called DIS_DAT. Using the above algorithm, to obtain
the rotated data, ROT DAT, the coordinates of the
polyhedrons in DEF_DAT must be premultiplied by the
appropriate transformation matrix. Then, to determine the
display data, DIS DAT, the appropriate translations are
added to the rotated data. Column 5 labels the points
stored in the various arrays, DEF DAT, ROT DAT, DIS_DAT.
Each polyhedron of the model is marked by a reference or a
pivot point (REF1l, REF2,...). Column 1 contains the
appropriate transformation matrices which multiply the
reference points and coordinates of the vertices of the
polyhedron definition data, in the manner of equation (4).

| Fofming the transformation matrices requires a great deal

29




- n 2 3 ' 4 5
0
F; definitlion rotated disploy
. N (1) ) tal,bl,cl) . lol,bl,cl) 2REF | REF|1

] )
:"" (TL) ® la2,b2,c2) s (6'2,0'2,c'2) 0°'2,0°2,C°2)+REF |
O ITL} ) (@3,03,c3) 2 (0'3,0'3,¢'3) sROTDAT} (@'3,0°3,c' 3 *REF | sDISDAT!I POLY!
U
‘:g I1T1) ® ‘C‘.b‘.C" 8 ‘O".b"oc.q' ‘°'4|b.4|°.4'*m‘ .
L |
- o e | .
) e ° L

w r

< 8 i T1) ° (on,bn,cn) 3 (e'n,b'n,c’'n) SREF2 REF2
m | © |
: (T2 ¢ lontl,bnrl,ecntl) 2 (o'n+i,b'ntl,c'nell la’nel,b'nrl,e’ne ) +REF | +REF2
I )
< T21  » (on42,6n42,cn2) 1+ 1a°ne2,b"ne2,6°N+2] sROTOATZ (0'N*2,b°N+2,6"'N+2) *REF | +REF2 sDISDAT2 POLY2
S (12) * (on*3,bn*3,.cn+3) = (e*°n+3,b'n+3,c ' n+3) (6°N*3,b°n+3,c'n*31 +REF | +REF2 |
o |
(") L )

(T2 1 ¢ lontm,bn*m,en*ml ¢ (a°N+3,b°n+3,c'nN*+3) sREFI REF3




of sine and cosine calculations of various angles. So, to
minimize the time required for these computations, the
sines and cosines of angles are computed once and stored.
For example, if the rotated data for the second
polyhedron (POLY2) 1is required, .the concatenated
transformation is obtained by multiplying the

transformation matrices together, as follows:

cL o0 81 1 0 0 |?:1 S1S2 S1C2

{(T2] = |0 1 O|*] O C2 -S21F5 O C2 -S2 (5)

-s1 0 cC1 0 S2 C2 rél C1S2 ClC2

Note that, in obtaining the concatenated matrix, the order
of multiplication 1is critical. Also, here for ease of
notation, Sj = Sin (joint angly j), and Cj = Cos (joint
anglej) (Table 2-2).Now, the rotated dataisobtained by
premultiplying the definition data of the coordinates of

the corresponding polyhedron by the above homogeneous

transformation matrix

a' Cl S$1S2 S1C2 a
n+i n+i
b L =] 0 c2 -s2| * )b (6)
{ n+i n+i o
J | | |
c! -S1 C1S2 clc2 c
n+i | n+i
L ) |

where (i=1,2,..,m) represents the indices of the

coordinates of the second polyhedron (POLY2) and the

31




Ct 0 SIi
[(T11= 10 | o)
-S1 0 C! |
C1 SiszZ2 SiIC2
[ T21 = 0O C2 -S2
- =S1 CIs2 CiC2
Cl Si1S23 SIC23
(T31= 0 CZ23 -523
-S1 C1S23 Cl1C23
CIC4+51S52354 -C1S4+51523C4 SIC23 Mil MI2 M)3
(T4]) = C2354 C23C4 -S23 | = | M21 M22 MzZ3
-S1C4+C1S23S4 S1S4+Ci1S23C4 CIC23 M3l M32 W33
M] 1CB8+M12C556+M1 35556 -M1 1SB+MI12CSCE+M13S5CE6  -M12S5+M13CS
(TS1 = M2 | CE+M22CSS6+M235556 -M21S6+M22C5C6+M23S5C6 -M2255+M23C5
M3 1CB+M32C5S6+M33S5SB -M31S6+M32C5C6+M3355CE8  -M32S55+M33CS
where Sij = SIN longle i + angle ]
ond Cij = COS (ongle i + angle )

ROTATION TERMS FOR BOTH JOINTS S & 6 ARE (NCLUDED IN [ TS
OR THE CLAMP TRANSFORMATION MATRIX, SINCE A ROTATION ASOUT EITHER
ONE, ONLY TRANSFORMS THE CLAMP.

. TABLE 2-2. ROTATION MATRICES USED FOR EACH JOINT

32




reference point for the third polyhedron, (POLY3). Now, in
order to obtain fﬁ; display data for the second polyhedron,
DIS_DATZ, the rotated data is added to REF1 and REF2. For
example, the display data of a point in the array DIS DAT2
is

a" - a' -+ a +a' ] (7)
n+l n+l 1 n |

b" = b + b +b! (8)
n+l n+l 1l n

c" = ¢! +c dc! | p (9)
n+1 n+1 1 n o~

Similarly, we can determine the subsequent polyhedrons
display data. However, the process of obtaining the
transformation matrices is a complicated and time-consuming
one. The amount of computations must be minimized as much
as possible to provide a fairly quick response and smooth
motion. As explained earlier, PUMA has 6 revokute joints.
If we consider a rotation about the waist of the model, the
display data must be computed for the first polyhedron as
well d;\er all of the subsequent ones. But, for example, a
rotation about joint three does not affect joints 1 and 2,
and so on. For this reason; dedicated routines have been
used so that no display data is computed unless necessary.
For instance, if the FOREARM is to be rotated, a subroutine
named ELBOW (in Appendix A) is called. This routine
calculates all the sines and cosines of corresponding

-

33

ey,




angles and forms the cor'responding transformation matrix,
and obtains the.rotated data. It then calls another
subroutine called FOREARM (in Appendix A)Tand process
continues until all the data is computed for all joints. At
this point a flag is checked to see whether the clamp is to
be displayed in the "OPEN" or "CLOSE" position and a
subroutine is called to calculate tyg display data. This
rouitne also checks to see if any user defined object is to
be rotated. Lastly, the reference points are added to the
respective rotéted links and object data and the new model

configquration is displayed.
2.4.1 JOINT-COORDINATED MOTION

The above rotation algorithm has been used to simulate
joint-coordinated motion. In the simulator, the algofithm
for this type of motion has been codéd so that, initially,
the largest joint angle difference is computed. It is then
divided by a speed dependent increment to determine the
number of configurations to be displayed between the
current and final desired configurations.Then, based upon
the number of increments, a step size is calculated for
each joint's rotation angle difference. At this point all
the joint angles are incremented simultaneously by the
corresponding step size, and the necessary display data

generated for each intermediate configuration until the

%
34

*ekeae,



[N

% * o 0 y re

N \ . . & ebte e .
A B e, 0t
PRI e

TWO DIMENSI
NT-COORDINAT

35 "

ONAL STICK-F IGURE
ED MOT ION

0001




final desired configuration is readhed. With joint-
coordinated motion, the7c1amp‘speed is not constant, since
it follows a complicated three dimensional space-curve. To
understand the method used here, refér to Figure 2-7. It
shows how this method is applied to a two dimensional stick
figure model. In the configuration drawn the first link is

oriented 60 degrees from the horizontal and the second link
is 30 degrees from the first one. In the final desired
configuration, assume that they both are horizontal.
Suppose that in this case, the speed dependent increment is
20 degrees. The largest joint angle difference is 60
degrees, hence, the number of steps is easily determined
to be 3. The second joint angle difference, 30 degrees, is
then divided by the number of steps to yield a sgep size of
10 degrees. This procedure may be repeated if there are
more joints. Upon computation of all step sizes, the links
are rotated simultaneously by the respective incremental
amounts and the result, in this case, is displayed at two
intermediate locations and the final configuration. If the
calculated number of steps is not a whole number, the
increment between the last intermediate and the final

configuration for each joint is adjusted to a size

proportional to the remainder.

| 3 6 ' 4.;;« ,




. 2.4.2 STRAIGHT-LINE MOTION

| g
For controlling manipulator arms which exhibit

anthropomorphic geometrical and mechanical characterist&cs
(i.e. an arm with solely rotating joints and with redundant
degreas of freedom) it is necessary to solve inverse
kinematics equations which is a very difficult task [23].

In the simulator, straight-line motion uses the inverse
kiﬁématic solution by Lee [24], to invert between the
PUMA's location data format and the joint angles.

Lee's geometric approach, determines various arm
configurations of a PUMA robot, based on the link
coordinate systems and human arm geometry, with the help of
three configuration indicators. These indicators enable one
to find a solution from the possible four solutions for the
lfirst three joints, and a solutibn from the possible two
solutions for the last three j;aints, for a six-link PUMA
robot. This method can be extended to any robot arm with
rotary joints. Orthogonal coordinate frames are defined at
each joint with the Z-axis pointing in the direction of
motion and the X-axis points away from and is normal to the
previous Z-axis. The labeling of the coordinate systems
begins from the supporting base to the end-effector of the
PUMA arm (Figure 2-6). As ihdicated above, associated with

thevjoint solution are three indicators, two with the

solution of the first three jeints (either a LEFT or RIGHT

37




—,
&b/
r
K-
<34
hg+-
i

o

&
&

LA

OPENED XH YH r 44 o R T OPENED XH Yr ZH (o) A T
RI1GHTY 338. 53 3534. 32 -865. 81 163. 19 42. 95 170. 03 RIGHTY 249. 46 494. 67 -S552. 86 167. 32 82. 54 156. 35
ABOLE JT 1§ JT & JT 3 JT 4 JT S JT 6 BELOW JT 1 JT & JT 3 JT.4 ' JT.S JT.G
HOFLIP -108.62 172 08 19, 34 -1. 32 -39. 64 -9. 54 NOFLIP -100. 062 102. 63 168. 66 -0.33 -84. 24 ~18 95

Py
[

1=t - oy
A e e
R R

*g-7 2an3T1d

d

I

8¢t

SsuoT3IeiIN3TIUuOod WIB VYJ{1d SNOTIE®A

a. | b.

OPENED X Y 2u 0 A T OPENED XH YH zu 0 A T

LEFTY  -%37. 29 61.79 -610. 80 65 00 89. 00  ©. 00 LEFTY -511.68 175 40 -616.60 S2:64 69.08  ©.00
ABOVE JT 1 T e T3 JT 4 TS JITE BELOM JT 1 JTg JI3 JT4 JTS JTE
NOFLIP 156. 36 8.18 1539. 13 -179. 90 ~13. 68 1.2 ' NOFLIP 144. 00 76. 14 20. 67 =179. 98 -84, 89 1.3




hand afm.configuration, and either elbow ABOVE or BELOW the
wrist configuration, Figure 2-8), and one with the last
three joints (FLIP or NOFLIP). These configurations are
prespecified by the user for finding the inverse solution.
To determine the first joint ahgle, the projection of the
position vector in the X -Y, plane from the WCS origin to
the intersection point of the last three joint axes is
found. The first joint angle is determined from the
equations which result from eqﬁating the components of the
projection of the position vector desired by the
appropriate concatenated transformation matrix. The second
configuration indicator specifies an elbow ABOVE or BELOW
the wrist. For joint two, the projection of the same
position vector is made onto the X -Y plane. Joint two is
determined with the equations which result from the
geometry in this plane and the second configuration
indicator. For joint three, we project the same position
vector onto the X, =Y, plane. The third joint angle is
obtained from the resulting geometfic equations and the
first two configuration variables. Knowing the first three
joint angles, we can find the solution of the last three
joints. The solution of the last three joints of PUMA robot
arm can be found by setting these joints to meet the
following criteria:

1) Set joint 4 such that a rotation about joint 5 will

align the axis of motion of joint 6 with the given approach

39




OFENED

LEFTY
HECE
MHOFLIP

DI Be 158, 7S G, 90 39, @9 a6, 29 0. 0v
JT 1 AT 2 JT 2 4T 4 JT S JT &
9. g Q. a0 29. A9 £, a9 Sl a. 0o

Figure

P I ZI 0 A T

‘f -—
T ..\\‘ﬁ.b
.\.—__x
: ‘E_ o]
!
——
e -~ T mat L SS—
J_of'.. [ - /] - -~
——\%\/

2—-9 . Three zero angle convention
according to Lee

40




- vector |
2) Set joint 5 to align the axis of motionLofljoint'6
wiéh the approach vector '

3) Set joint 6 to align the given.orientation vector
and normal vector
For a better understanding of the inverse algorithm, refer
to Lee's paper [24], and subroutine INVERSE in Appendix A.

In the simulator, three zero angle position conventions
are used. Lee's geometric solution takes advantage of the
angle convention which defines the horiz~ntal robot
configuration as the zero position (Figure 2-9). The
simulator uses the widely accepted statically balanced
vertical configuration [21] which defines the zero position
for each joint mid-way between the stop limits (Figure 2-
10). The PUMA's convention is different and uses a
combination of the other 2 (Figure 2-11). Presumably, this
convention was chosen for stepper motor convenience. To
conveniently calculate the inverse solution, to rotate
model efficiently, and to display data in the format
familiar to PUMA users, in the simulator, conversions are
made between the three conventions mentioned above. The
simulator determines the joint angles in Lee's convention
for the current configuration by simply adding 90 degrees
to the second joint in the simulator convention.

Straight-line motion is more involved, and requires

more computations, and thus is slower than joint-

41

™




QOFEHED 4 YLl

2 O H T
RIGHTY - BB 156 IS 299, &4 FBd -9n @y 6. 09
REIUE JT 1 JT & HT 073 JT 4 JT S JT 6
HOFLIP 9. 48 —9n a9 0. an Q. a9 0. 0 9. 6o

Figure 2-10. Three zero angle convention

according to the Simulator

42




T T LT R T T T DR T AP T R TR Y
[

coordinated motion. It is used in WORLD. and TOOL and VAL-II
modes. For straight-line motio:n the first step 'i's to
determine the joint angles in Lee's convention as described
above. The joint,angles for the final desired configuration
are determined by applying the inverse kinematic solution
to the corresponding Lee's convention data. Once known, the
joint angles are used to calculate orientation matrices and
theoretical configuration indicators [24]. In the VAL-II
mode, the user defined configuration indicators and the
next predicted configquration values are compared. If they
disagree, no move is made. The same procedure is followea
while in PENDANT mode. The theoretical configuration
indicators at the current and the next predicted
configuration are compared. Again, if there is a
disagreement between the corresponding values, PUMA
controller will not allow any motion, and an informative
warning message is displayed. Just like in the joint-
coordinated motion, for the straight-line motion along an
allowable path, differences between the beginning and the
end positions and entities in the orientation matrices are
calculated. At this point, the number of steps is
determined by dividing the maximum position coordinate-
differences by a speed dependyent increment. Once the number
of steps is known, differences for each position coordinate
and each 6rientation matrix are incremented from the

current to the next desired configuration by the

43




OFEHED w14 Yid Zh s A T

RIGHTY 423 66 15€. 75 S558.89 - 99. 09 90 29 9. 09

AECUE JT 1 JT & JT 3 JT 4 JT S JT 6
20 8. 39 8. 0B 0. 69

HOFLIP 9. L9 8. BY -0,

- -—.
-,

o

'-‘-‘_b-.-

x’. . -
&——:?-—r-f:,f’

f

Figure 2-11. Three zero angle convention
gure « according to the PUMA

44




appropriate step sizes. Table 2-3 shows ah example
beginning, two intermediate, and a final desired
orientation matrix for a straight-line PUMA robet motion.
"AS can be seen the only elemntﬁthat is changes is the
" translational elemnt and the rest remain the same.

2.5 TRANSFORMATION OF USER-DEFINED OBJECTS
¢

The simulator can be used to move user-defined objects
inside the robot work-cell. This is one of the important
features of VAL-II SIMULATOR. This process of grasping an
object, moving it, and then detaching from it is all
simulated in a user-friendiy fashion. Once the LED sensor
is intersected by any of the workpieces, a flag is set and
a wrist to object reference point (first corner) distance
is calculated. As mentioned previously, the transformations
are done with respect to the fixed SCS, which means that
the object must be shifted to SCS. This is essentially done
by subtracting the coordinates of the refereﬁce vertex for
the object from all of the vertices display data. At this
point the object definition data which is redefined with
respect to SCS, must be redefined. This is done Dby
premultiplying the object data by transpose of the clamp
traneformation matrix, [T5]1?. Now, to redefine the object

with respect to the wrist, and make it a part of the
clamp, the redefined object definition data must be

45




-0.62 0.15 -0.77 |2.84
-0.07 0.97 O0.24 21.11
0.79 0.20 '0059 24.71

0.00 0.00 0.00 1.00

-0.62 0.1S5 -0.77 12.84
-0.07 0.97 0.24 18.50
0.79 0.20 -0.59 24.7]

0.00 0.00 0.00 1.00

0.79 0.20 -0.59 24.7]

-0.62 0.15 -0.77 12.84 /
-0.07 0.97 0.24 15.89 |
0.00 0.00 0.00 1.00

0.79 0-20 -0-59 24.71

-0.62 0.15 -0.77 12.84
"0007 0.97 0.24 13027
: 0.00 0.00 0.00 1.00

O TABLE 2-3. EXAMPLE ORIENTATION MATRICES FOR
el STRAIGHT-LINE MOTION

e ‘_o”. ® .




premultiplied by the clamp matrix, [T5], and then shifted
by the sum of all of the reference distance calculated in

the first step. A reverse procedure is followed to detach ‘
an object from the clamp. When the flags are properly set
to detach an object, the distance between the object and
the SCS origin is calculated. The rotated object data is
redefined, so that, when this new reference distance is
added to the reference vertex of the object, it is
displayed in the same place as it was when defined with
respect to the wrist. To better understand this process,

refer to subroutine LATCH .pa and DETACH in Appendix A.

2.6 SIMULATION SPEED

One major difference between the PUMA robot and its
simulation is in that the dynamic effects such as
acceleration, deceleration, or gravity  and inertia
effects have not yet been included in the simulator.

One of the advantages of robots is that they may be run
at high speeds. Robots of course, follow a continuous path,
as opposed to the simulator which displays the model at
discrete positions along a segmented path. When this is
: done quickly, the regetitive images are blended to create
the apparent motion. The speed variations in the simulator
are based upon a relative speed and not a true one. |

The PUMA controllér allows »the speed to be set in the

47




monitor mode, and then fine-tuned with the teach pendant or
the VAL-II mode. But in the simulator the speed set in
the pendant mode is independent of that in the VAL-II
- mode. In the simulator while in the pendant mode, the
default speeds have been chosen sothat the resulting
‘motion is slow to be fully observable. In joint-coordinated
mode, the default speed corresponds to an adjustable joint

rotation increment of 8 degrees for each key depression.
Similarly, in the VAL-II mode, the default speeds for
joint-ceordinated and straight-line motion are adjusted
with VAL-II commands. In the VAL-II mode, the default value
for the largest joint angle rotation increment (full speed)
is 12 degrees. This was chosen arbitrarily to produce
segmented displays which run slowly enough to be easily
observable, yet quickly to minimize turn-around time while

debuggqing VAL-II programs.
2.7 COLLISION DETECTION ALGORITHM

As explained earlier in this chapter, the simulator
uses extruded wire-frame convex polyhedrons to represent
the_'robot model and the user-defined workpieces. One
disadvantage of this geometric modeling scheme is that,
when one objeCt extends over and covers a part of another,
it is very difficult to verify visually, whether one object

is in front of, behind, or intersecting another. In order

48




to detect precisely, any unWanted collisions between the
robot model and workpieces, between moving and stationary
objects, and between the different parts of the robot
itself the simulator uses both a coarse and a/fine
mathematical intersection check. These algorithms are
valuable tools for robot users, since many undesired
collisions may be prevented during VAL-II program debugging
and location definition.

The coarse check algorithm, "grows" all possible
obstacles using a speed dependent error margin to form a
parallelepiped envelope around them. This method was
suggested by Pieper [25]. It then checks to see if the
midpoint of the clamp or any other moving polyhedron is
inside any of these parallelepiped envelopes. In the case,
when a midpoint lies inside one of these parallelepipeds,
the fine check algorithm is used. Refer to Figure 2-12 to
better understand this algorifhm. At the beginning of a
VAL-II session, the radii of circumscribed spheres, shown
in yellow, for every polyhedron and clamp are calculated.

For the coarse check algorithm, the radius of moving
polyhedron is added to the extreme coordinates of the
vertices of each stationary polyhedron to form the vyellow
box shown. Simultaneously, a speed dependent margin is also
added to form the lavender box. The coarse check compares

the coordinates of the center point of a moving polyhedron

49




RED
J\ f

Y

| YELLOW l

X

LAVENDER

-~

Figure 2-12. Coarse Collision Check
"growing" a Polyhedron

+  Rec <+ ReD
+ HHITE 4 4 ufﬂ't:-: 4
4 4 _ Ty
T T =+ <+ +
+ _F + +
LAUENDER
LAVENDER

Coarse Collision Check

igure 2-13. .
o Adding Speed Dependent Error Margin

A
v

50




nd the meximum and minimum coordinates of the lavender
box. A yell_ow warnlng message is displayed, when the
coordinates of the moving center-point are inside the
envelope, at which time the fine check algorithm is
applied.

In order to provide precise results and quick display
response, a speed dependent error margin is necessary. To
understand the use of this error margin refer to Figure 2-
13. In the figure the same object is shown surrounded by a
small and a large ljavender box. Also, a fast and a slow
clamp ipath is shown for each, represented by a series of
red and white cross hairs. -If the box is small and the
distance between the steps along the path represented by
Cross hairs large, there will not be sufficient warning

time between the imminent and actual cclllSth. Oon the
other hand, if the boxX is large and the distance between
the steps along the path small, the fine check algorithm is
applied more often than necessary, thusi slowing down the
display speed of the simulator. The error margin has been
selected arbitrarily to provide a good conpromise.

As mentioned before, when the midpoint of a moving
polyhedron is inside a paralleleniped, the program applies
the fine check algorithm. This algorithm is applied when we
need to determine if a line segment of a polyhedron has
jntersected a plane of a polygon of another polyhedron or

vice versa. The problem is solved by first determining if

51




CKING THE INTERSECTION
TRIANGLES




and thén where the prqjection of a line segment intersects
the plane of a polygon. There are three possibilities,
since if there are line segments parallel to the plane of a
polygon, there must also be lines in a direction which
intersects the plane (Figure 2-14 A and B). The algorithm
first checks to see if the intersection point of the line
and the plane lies on the lins segment. If it does, lines
are drawn from the intersection point to adjacent vertices
of the polygon, resulting in generation of some triangles.
Then the areas of these triangles are summed. If the sum of
the areas is larger than the area of the polygon, the point

is outside the bounds of the polygon, otherwise a collision

has taken place.
2.8 DIRECTORY INFORMATION

Information regarding'the names of individual robot
control programs created in the VAL-II environment, as well
as information on location data files may be obtained while

in this mode. Also, the content of any VAL-II programs may

be displayed on the screen.

53




CHAPTER 3

3. PENDANT MODE

This chapter of the thesis is dedicated to discussion
of the PENDANT mode (figure 3-1) of the VAL-II SIMULATOR.
This portion of the simulation program was developed to
graphically display the functions and usage of the "Teach
Pendant" for a six-link PUMA Robot.

While in this mode, each of the 6 joints of the PUMA
may be rotated independently of others, by pressing any one
of the numbers 1 through 6 on the keyboard to move the
corresponding joints. The joints have been numbered from
the supporting base (link 0) to the robot end-effector
(link 6), as in Figure 2-6. The rotation algorithm is the
same as that explained in chapter 2. Also, two special
cases of the straight-line motion, namely: World and T;ol
modes are simulated, by which the robot clamp may be moved
along a straight-line parallel to any one of the axes of
the World or Tool Coordinate Systems. This may be done by
simply pressing 'W' (W_ORLD), or '7' (T _OOL) followed by
X', 'Y', or 'Z' to move the clamp along the respective

axes of the corresponding coordinate systems.

The Speed in this mode is independent of that in VAL-II

- 54




1

FERDRNT MOD
EMVER COMMEHLS BY FRESSING:

1 = CUOIHT 1) T ROTATE REOUT WAIST

& = CUIIHT 2> T ROTATE AEQIT SHOULDEFR

T~ CUDINT 2> T BOTHTE REOUT ELLEOM

G = CIOIHT 4> T ROTATE RBOUT FORERISH .

= = CIDINT 55 T3 ROTATE CLAME 1= BN OOLIN P
> = CUOIHT ) T ROTHTE CLAMP QILOCHNISIEACOUMTERCLOC FHTSE

D = CORIZHY T CFEH THE CLANE
Co- CCLDZEDY TO ULOSIE THE CLIEHE

H_iRLD ;o TO MOVE MODEL. TH HORLD MOCE
| T ;o TO MOVE HODIEL I TOOL MOCE

I.HCRER:ZE : TO LHCRIEASE THE F?dTFITIIZ?I"ML INCRIEMEMT
LLECRERZIE @ T0 IMECFERASE THE ROTATIOMAL IMHCRIEMEMY
CHOESATIVE @ 70 CHAMGE SIGH OF THE FOTAT IOMAL IHZREMIZEMT

R-ETURH  : TO FRETUIRM TO THE TOP OF R MEHU
U_AL-I1  : BEFORE EHTERIMG A WAL SOMHIAMD

Figure 3-]. PENDANT Menu |




B R IO - , PSSR AT . Lroae o BN '
. B Y pe - L . PRI R St TN [ R L RN SE
g ...Lh‘w&‘,..&.t)ﬂl.;.u AN TR RSN RV SIS /D S DUV POV SR AR TR SIS Y

O T e RN ST S L) = "
B LY P ) PR s [ AP SR Y 4
BT R I T T L T T A
ORI U MAETLe Y GNAERY A Ac S = Rty o
LI Y [ Itll !} &fh—'\h'b 3 e 7 e N »

/

Mode. However; the rotaﬁibnal increment may Iinteractively
be changed by pressing 'I" (_I_NCLREASE), ‘or ‘D' (D_ECREASE)
to increase or decrease the rotational increment,
respectively. Also, the direction of joint rotations may be
changed by simply pressing 'N' (N _EGATIVE), which switches
from clockwise rotation to counterclockwise, or vice versa.

The clamp of the rokot may be displayed in either
"OPEN", or "CLOSED" position by pressing '0' (O_PEN), or
'C' (C_LOSE), respectively.

To keep the user updated on positional data of the
robot and also robot status, at all levels the position of

the clamp, Euler orientation angles, and configuration

indicators may be displayed.

3.1 JOINT ROTATIONS

The exact method to teach an industrial robot the
points on its path is to move each link of the robot
independently of others to reach the desired position and
orientation and then storing it in the computer memory
[26]. '

In the simulator each of the six joints may be rotated

> by pressing any one of the numbers 1-6 on the keyboard to

" rotate the corresponding links in the joint-coordinated

motion.

No display data for the vertices of model polyhedrons

| : 56



are calculated unless necessary. For example, if a rotation
4 of joint 1 (WAIST) is required, the display data for all
' the subsequent joints needs to be updated. However; if
the FOREARM is to be rotated, the display data for the
polyhedrons of the Waist and Shoulder need not be
recalculated, since they remain stationary during the
coarse of this motion, but the display data for the rest of
the joints (3,..,6) must be calculated. (Refer to chapter 2
for more detailed information.)

The default joint rotation increment is set arbitrarily
to 8 degrees, and may interactively be increased or
decresed by pressing 'I' (I_NCREASE), or 'D' (D_ECREASE),
respectively. If a switch in the direction of joiht
rotation is required one may press 'N' (N EGATIVE) to

switch from clockwise to counterclockwise or vice versa.

3.2 WORLD MODE

World mode is a special case of straight-line motion.
In this mode the clamp of the robot may be moved along
straight-line parallel to any one of the axes of the World
Coordinate System (WCS), while n‘x’éintaining the same
orientation. This may be done by pressing 'W' (W_ORLD)
followed by 'X', '¥', or 'Z' to move'along the

corresponding direction. For this motion, Lee's algorithm

is applied to determine the final joint anbles. Initially,

57

%
4




A

‘the orientation matrix is formed using the current joint
angles. Also, user specified position along the TCS's Z-
axis is referenced. The next desired position is determined
by adding the increments along the appropriate axes of the
WCS to the referenced current position.

In the PENDANT Mode, the simulator does not use thF
user-defined configuration indicators. Instead it
temporarily redefines these configuration indicator values
to the theoretical ones for the current position and
oientation. Lee's solution is then applied to compute the
final joint angles using the theoretical values obtainedq,
thus far, as well as the final position and current
orientation matrix. Once the joint angles are predicted,
they are checked to see if they do not exceed the joint
angles stop limits. If they are valid, the display data is
calculated and the new model configuration displayed.
Otherwise, the PUMA contfoller does not allow any motion

and a warning message is displayed.
3.3 TOOL MODE

This is another special case of straight-line motion,
by which the clamp may be moved along straight-line
parallel to any one of the axes ofvthe Tool Coordinate
system, (TCS). This may be done by pressing 'T' (T_OOL) and

the 'xX', '¥', or 'Z' to move in the corresponding

58




direction. As in the World Mode, the clamp maintains the

same orientation during the motion.

To determine the final joint angles, current user
specified position along the TCS's Z-axis and the
orientation matrix is used. Initially, the position along
the TCS's Z-axis is aligné& with the Z-axis of the ScCSs.
This is done by premultiplying the cobrdinates of the
position data by the inverse of the current clamp matrix
{T5]-l. Once aligned with the SCS, the point is shifted by
user controlled increment size along the appropriate axis.
The incremented position is transformed back to the TCS by
premultiplying it by [T5]. (One property of the
transformation matrix used here is that its inverse is the
same as its transpose.)

At this point, the simulator temporarily redefines the
configuration indicators' values, and checks the validity
of the solution obtained. If the joint angles do not exceed
their prespecified stop limits, the new display data is
calculated, and the arm is displayed in the new
configuration. Otherwise, a warning message will appear on
the screen and PUMA controller will not allow any motion.

In both, World and Tool Modes, before displaying the
model, it is alsoﬁchecked to see if the predicted motion is’
inside the robot Qork volume. This is done by comparing the

interactive joint angle rotation increment to the magnitude

of joint angle 3 (ELBOW). If the angle is smaller than the

59



user defined rotational increment, links 2 and 3 are nearly

aligned.

3.4 CLAMP POSITION AND ROBOT STATUS

In order to keep the operator updated on robot
configuration (LEFTY, RIGHTY, ABOVE, ...) and also the
clamp position and oientation, also its status (OPEN, or
CLOSED), the proper infofmation may be displayed on the
screen, upon user's request.

At any time, the position of the clamp, Euler
orientation angles, joint angles and configuration
indicators may be displayed by pressing 'P' (P_OSITION) and
then 'l', '2', or '3' corresponding to position along the
TCS's Z-axis at the origin, LED sensor and clamp tip,

respectively.

60




CHAPTER 4
4. MANIPULATION MODE

The first step in the manufacturing engineering process
is the design and layout of the work-cell. The manual
process is often guite laborious and time-consuming.
Perhaps, the most critical factor is the designer's real
lack of knowledge of the three dimensional spatial
relationship of the cell components as related to the
required motion of the robot.

As mentioned before, VAL-II SIMULATOR is a language
simulator and not a drafting package, meaning that, it does
not duplicate the features of a CAD geometric modeler. For
this reason, other CAD systems capable of 3D modeling must
be used in order to create robot work-cell components.Once
the cell-components are created they must be transfered to
VAL-II environment. VAL-II SIMULATOR allows geometries to
be transfered via an IGES software link or UNIGRAPHICS-II
‘files (UGII files must first be interfaced with program
POLYGON [19], to generate file.DAT, which is used by VAL-II
SIMULATOR) . |

This portion of the simulation program was developed to
enable the user to reposition cell components, as a

simulation tool for designing and evaluating work-cell

61




Ry

layouts. The key direction of this section is the off-line

- simulation and checkout of the part positioning or flow

before installation.

Upon completion of part transfering process, and after
entering the MAIN MENU, one may wish to reposition any one
of the cell-components inside the work environment. This
may be done by pressing 'M' (M_ANIPULATION) to enter the
MANIPULATION MODE. This mode enables the user to translate
or rotate a user specified part. The operator may select to
move the individual part by system defined increments, thru
pressing 'K’ (K_EYBOARD), or by user defined increments, by
pressing 'I' (I_NCREMENTS). For convenience, the coordinate
axes display may be turned ON or OFF. Also, during the
coarse of part translation, a constant readout of the
positional data of the moving workpiece with respect to
both, the World and the Screen Coordinate Systems is
displayed. Whenever, a part is repositicned,
its new display data is calculated and the part will be
displayed in the new position. At the end of a MANIPULATION
session, the user may save the new setup under the same or
a new user-defined name. A flow chart describing various

levels of this mode is shown in Appendix A.
4.1 COMPONENT REPOSITIONING VIA KEYBOARD

If the keyboard option is used, a menu will appear on

62




the screen (Figure 4-1). In order }:o avoid complexity and
also for a neater display, and sin;e often users memorize |
various options under this menu, the menu is not displayed
at all times unless the operator requests for its display.
While in this mode, any individual part may be translated
along straight-line parallel to any one of three axes of
SCS. This may be done by pressing 'B' (B_ACKWARD), 'F!
(F_ORWARD), 'U' (U_PWARD), 'D' (D_OWNWARD), 'L (L_EFT),
or 'R' (R_IGHT) to move the part in positive or nrgative
direction of the X, Y, or 2 axes of the fixed scs,
respectively. A constant readout of the positional data,
with respect to both, the World and Screen Coordinate
Systems, -plus the moving part number are displayed during
the part repositioning process. The default increments are
set to <5 mm> for each key depression. Upon each key
depression the new display data of the parf is calcualted
and the part is displayed in the new position.” At any time
the user may decide to end repositioning one part and start
with aﬁother.

Upon completion of a MANIPULATION seséion, the user is
asked whether it is required to save the new setup or not.
I1f affirmative; the new setup file may be saved under a new
file-name, or the old one will be updated. n

At this time, th§e control will be transfered to the top

of the prcgrafh, namely the MAIN MENU.

63




MHNIPULATION MENU

U_FLIARD
D_OLHMHARD
R_IGHT

L_EFT

F_ORHARD
E_RICKNRIRD

&-ROT
YoRIOT

Z_ROT

-l

~Ti

5

F

M D
)

-

EHTER COMMANDS BY FPRESSING:

MOLE THE PART LIPUARD
MOVE THE PART DOWHIIARD
MOVE THE PHRRT TO RIGHT
MQLIE TiHE PART TO LEFT
HOWE THE FPSRT FORMARD
HMolle THE PART BRCKWARD

ROTSETE THE PRART ABOJUT #-AX1S
FOTRTE THE FART ABODUT Y-AXIS
ROTHTE THE FART ABOUT Z-AXIS

COZRDINRTE RHES (ONCZOFF>
FETURM TO MAIN MEHIJ

¥

Figure 4-1. Manipulation Menu

64




UORLD COORC'INRTES FOR FRRT NO. 1 i Yu 2u
“ 210.00 S00.00 104. 40

SCREEN COORDINATESZ FOR FRRT NO. 1 x Y 4
S00. 80 130. 48 210. 00

o

4

S/
a.
il
HORLD COORCINMTES FOR FARRT NO. ’\ x®d Yi! <i
| S10. 80 S00. 60 104. 40
SCREEN COOFRDINFITES FOR PRRT NO. b | X Y 4

SO09. 00 120 .90 S10. 08

Figure 4-2. Moving user-defined workpiece

65




. 4.2 COMPONENT REPOSITIONING VIA USER-DEFINED INCREMENTS

- The user may also select to move-the part by specified
.increments with respect to fixed SCS. Conveniently, the
user may turn the coordinate axes display ON or OFF.

As before translations and rotations are allowed. The
user may select to translate the specified :part parallel
to any one of the SCS axes. He is then asked if it is
required to rotate the part. If so,the rotation increrments
are entered by the user and the new display data
calculated, and the part will be displayed in the new
position (Figure 4-2). A constant readout of the moving
part poéitional data, along with the part number is
displayed, at all times. At any point, the user may decide
to start repositioning another part. At the end of the
session the user is allowed to save the new setup under the
same or a new user-defined name. The control is then

transfered to the MAIN MENU.

66




CHAPTER 5
5. EDIT MODE

In the recent years manufacturihg tasks have become
complex and costly. As a result of this, robot programs
specially those written for complex and sophisticated
product assembly, now require more 1logic, functional
checking, and programming constructs.

In a robot program which has been written using any one
of the robot programming languages, the logic and
conventional progrémming constructs form a significant
portion of the code as opposed to "geometric move"
commands. Even in a highly geometric application, such as
automobile spot welding, the robot program resembles a
traditional computer program [27]. In one existing
automobile plant there are more than one hundred spot
welding robots programmed in a high-level language. The
programs consist of 500 to 1000 steps, of which the weld
path is only 20 steps. Here, the geometric rortion is less
than 5% of the total program. Although, this is not typical
of today's spot welding programs, it is an indication of
the future direction of robot programming [28].

In order to make the program editing in VAL-II

67




SIMULATOR as easy and user-friendly as possible, a
considerable amount of effort was devoted during the
initial design of the EDIT Mode. The task was to make
certain that, like other sections of the package, this mode
was easy to use, but yet powerful enough to provide all of
the desired functionality. The major design criterion was
that a user, with some knowledge of VAL-II programming,
could effectively use the EDITOR of VAL-II SIMULATOR (EVS),
by only spending a few minutes of reviewing the Editor Menu
Options (EMO).

The Editor of VAL-II SIMULATOR (EVS) is menu-driven,
which means that a list of options is available at all
times. The user may start out with an existing VAL-II
program for further extension, or modification. It is also
possible to create new programs. For conirenience, each line
within a progran is referenced to by a unique step number.
Steps are numbered consecutively, and numbers are
automatically adjusted by the editor, whenever program
lines are deleted or new ones inserted. These step numbers
are likely to be changed as a program evolves, hence they
would not be useful for identifying steps for program-
controlled branching. (For this reason, program steps can
contain step labels.) The Editor continuously checks the
syntax of a program while it is being created or modified.
ThHat is, when the user completes a program-line by pressing'

the RETURN key (<CR>), the editcr checks to make sure the

. 68




Syntax of the line is acceptable. The line is rejected and
an error message is output, if any error is found.

The Edit session may be invoked %ﬂr pressing 'E' (E_DIT)
and the corresponding menu (Figure 5-1) is displayed. The
commands associated with the VAL-II editor are listed in
this menu. These editing commands can be used for creating
and modifying user programs. The menu consists of several
options. One may press 'C' (C_REATE) to invoke the progrm
creation mode. Any program line may be deleted, or a new
flines inserted, by pressing 'D' (D _ELETE), or 'I'
(I_NSERT), respectively. At the end of each session, one
may press 'S' (S _AVE) to save a new or modified version of
a program, or 'E' (E _XIT) to exit from the Edit Mode and
return to the MAIN MENU. A flow diagram of the EDITOR

structure is shown in Appendix A.
5.1 PROGRAM CREATION

The EVS allows the user to create VAL-II robot
programs, without having to exit the VAL-II SIMULATOR
environment, hence preservingthe programs, setup, and
1oc.Jations. A file may be created by typing EDIT followed by
the program name, file.DAT. The EVS will first open the
file DATFILER.DAT and checks to see whether the user-

defined program name matches one of the entries in the_

69




EDITOR COMMAMDS
LEGAL EDITIMS COMMEHD S
- ) EDIT L IMUOIES EDIT MODIZ

C_FEATE : IHUOKES CREATION MODE
I_HSERT  : ALLOMS FOR LIME IMSERTION
D_EILETE : P[LLOWE FioR LINE ELETICH
S _AIUE : SAUVES THIE FILE

E_XIT,  : ENDS THE ECIT SESSION

TVPIZ "EDITY Akl THEN FRISGRAM NAME T STRRT EDIT SESSICH

Figure 5-1. Editor Menu Options

70




list. If it does, it means that the file is an old one,
hence it will be opened and the content of it displayed on
the screen. Howevér, if the file is a new one, a flag is
set, the user is notified that the input file does not
exist, and therefore, a new file under the user-defined
“name will be initialized. In this case, the new program
name is added to the list, and the content of the file
DATFILER.DAT is updated. The system continuously checks the
syntax of the program-lines as they are entered. If a line
is acceptable, it will be added to the file, and the user
may proceed to the next step. Otherwise, the 1line is

rejected and an error message is displayed.
5.2 PROGRAM MODIFICATION

For program debugging purposes, it is often necessary
to delete or add VAL-II program lines. As mentioned
previously, each line within a program has a unique step
number referenced to it. In order to delete a program line,
one must type 'D' (D _ELETE) followed by the step number.
Program line insertion may be done in more or less the sane
method. To insert a'line one must type 'I' (I _NSERT)
followed by the corresponding step number. This may be
repeated for as many time as necessary. Whenever, lines are
inserted or deleted, the step numbers are automatically

adjusted by the EVS.

71




Upon any progfam-line removal or insertion, the
modified version of the VAL-II program will be displayed
for user verification. During program modification,
whenever, a wrong key is depressed an informative message
is displaYed, notifying the user of his input and the
modified file will automatically be sav;d.

" The Editor of VAL-II SIMULATOR, constantly checks the
syntax of a program while it is being modified. A line is
rejected and an error message is displayed if any error is
encountered. Otherwise, the program line is accepted and is
automatically added to the pfogram, immediately adjusting

the step numbers.

72




CHAPTER 6
6. VAL-II COMMANDS

As .mentioned in the firsta chapter, VAL-II SIMULATOR
utilizes some of the basic concepts and fundamentai
structure of its predecessor, VAL SIMULATOR [12].‘A1so,
some of the simulated commands which were developed \for‘ the
VAL SIMULATOR, have been made compatible with VAL-II
SIMULATOR. However, the main emphasis of this thesis was to
focus on more advanced features in terms of programming
control and graphics display. Therefore, a great deal of
consideration has been given to this type of VAL-II
commands. For completeness, some of more important commands
and those which have been made compatible with the VAL-II
SIMULATOR are also discussed below. In the simulator, the
VAL-II commands are grouped into eight categories: 1)
Location, 2) Motion Control, 3) Hand Control, 4) ?rogram
Control, 5) Configuration Control, 6) Trajectory Control,
7) Assignment Instructions, and 8) Miscellaneous Commands.
The following information is provided for each command:

1) The specific command syntax

2) An indication of when the command can be used

3) A description of the opsration performed by the

command

In addition to these, it is also explained how the FORTRAN

73




“D'ECODE" statement is used to read in the user input. VAL-
IT commands'consist of a command name, usually followed by
one or more command arguments. An optional comment can be
included on a command line by preceding it with a

semicolon. Thus, the general command syntax is
<COMMAND name> {<space><argument>} {<space>;<comment>

For clarity, all VAL-II SIMULATOR command names are shown
in uppercase in this chapter. Command arguments which are
to be supplied by the user are shown in lowercasse. Also,
some shortened notations are used as well. Angle brackets,
< >, are used to enclose a description of the actual
argument to appear. Note that,”these brackets are used for
clarification and are never to be included as part of a
command. In this chapter, optional arguments are enclosed
in braces, { ). If there is a comma following such an
argument, the comma must be retained if argument is

omitted. For oue example, the BASE command has the form

BASE (<dx>)}, {<dy>}, {<dz>}, {<z rotation>)

©

To specify a 300 millimeters translation in the Z-axis, the
operation could be entered in any one of the following
ways:

p/

BASE 0,0,300,0 : or " BASE ,,300,

74




6.1 LOCATION COMMANDS

The three location commands, namely: HERE, WHERE, and

‘BASE are monitor commands and specially important, at the

same time very powerful, and provide significant

flexibility'in'V%L-II programming. These instructions can
be used to define or understand various robot

configuratibns during a VAL-II program execution.
6.1.1 HERE <location variable>

HERE is a monitor command and as the mnemonic implies
it defines a particular position and clamp orientation fof
- future references. The simulator reads the HERE command
followed by location variable and immediately converts the
joint angles from current simulator joint angles data
format to those of PUMA convention and Euler orientation
angles defined with respect to the current WCS. It then

associates 'them to the user-defined location variable and

stores the converted joint angles in an array.

6.1.2 WHERE

Upon execution of this command, the current location
and clamp orientation of the robot with respect to the WCS

is displayed. The Cartesian World Coordinates are displayed

ey
oy

75




in millimetérs and the joint angles in degrees. Note,
depending upon the clamp ‘path,' rotation ahglem\ values
displayed may be shifted by 360 degrees. That is a value
shown as 170 degrees can also be interpretted as =190
" degrees.

In the simulator, WHE?E command is more consistant and
provides more information than the PUMA controller. In the
simulator the angles displayed for a particua‘lr
configuration are always the same“regardless of the paths
followed.As discussed in section 3.4, there are several
position display options. Depending upon the one chosen by
the user, the position display may be any one of three
points along the TCS's Z-axis. The information on robot
clamp status and configuration indicators as well as Euler
and joint angles are displayed in addition to the above

information.

6.1.3 BASE {<dx>)}, {<dy>}, {<dz>}, (<z rotation>)

Upon program initialization, the origin of the World
Coordinate System of the robot is assumed to be located at
the intersection of the axes of joints 1 and 2, with the X,
Y, and Z axes fixed in space. The BASE command offsets and
rotates the reference fraﬁe as specified. It is used in
VAL-II mode to perform specified tranformations with’

respect to the fixed WCS and user-defined work-cell.

o

76




m7ransformations are done with respect to SCS. For this
reason, the definition and rotated object data (Table 2-1)
is rotated and then translated bhack to its position with
respect to the WCS's initial orientation. This is done
first, because the BASE command prescribes the
transformations to take place with respect to the initial
WCS frame; then, to determine the value of the shift and
_rotation increments, DECODE statement of FORTRAN lanquage
is used. During the next step, the original object data is
shifted by subtracting the increment and then rotating the
object in the negative direction. In the same way, data for
the WCS frame is read from a file and transformed. The
robot model, however, remains centered on the screen at all '
times, and the shifts and rotation transformation are
performed on the user-defined work-cell components. Note,
before implementation of the BASE command, the simulator
checks to see if any user-defined object is attached to the
clamp. If this is the case, the same transformation for the

robot and user-defined objects will be bez"forned'

separately.

" 6.1.4 SET <location variable> = <10cation varibale>

This command sets the value of the location variable on
the left equal to the location variable on the right of the

equal sign. The simulator stores the configuration data for

77




the right hand name also with the first name.
6.1.5 SHIFT <pointA> BY {(<dx>)}, (<dy>)}, {(<dz>)

This command modifies the respective user-defined
increments along the axes of the WCS. If the position does
not violate the robot reach limits and does not exceed the

allowable joint rotation limits, the modified
configuration will be displayed. Otherwise, the robot
controller will not allow any motion and an error message
will be displayed on the screen. In this case where the
configuration specified by "point A™ does not exist, a

simulator error message will be displayed.
6.2 MOTION COMMANDS
6.2.1 MOVE <location> / MOVES <location>

These commands cause the robot to move to the position
and orientation specified by "location.® In the simulator
the location name is decoded and the corresponding PUMA
data obtained and converted to simulator Jjoint angle
format. Intermediate configurations are determined using
the joint-coordinated or straight-line motion discussed in
Chapter 2. The simulator first compares the user-defined

configuration indicators for the final desired location

78




with the theoretical dnes. If the soiution is not valiqd, no

motion is allowed, and an error message is displayed.

6.2.2 ALIGN

This command causes the tool to be rotated so that its

z-axis is aligned parallel to the nearest axis of the WCS,
hence, forming an orientation matrix that contains only
zeros and ones. This instruction is primarily helpful for
lining up the tool before a series of locations are taught.
Again, the user-defined configuration indicators and the
theoretical ones are first compared. The motion is then

simulated only if the solution is valid and the path

possible.

6.2.3 APPRO <location>,<mm> / APPROS <location>,<mm>

These commands move the tool to the position and
orientation specified by Ylocation,” using Jjoint-
coordinated or straight-line motions, respectively, but
offset along the tool Z-axis by the distance given in
millimeters. A positive distance sets the tool "back"
(negative tool-2Z) from the specified location; a negative
distance offsets the tool "forward®™ (positive tool-Z). The
offset along the TCS's Z-axis is analogous to shifting a

milling machine tool to a clearacne plane. These commands

79




are very important for insuring that while ‘hpproaching the
location no collision will take place.

6.‘2 .4 DEPART <mm> / DEPARTS <mm>

These commands move the tool (by joint-coordinated or
straight-line) the distance given in millimeters, along the
current Z-axis of the tooi. A positive distance moves the
tool back; a negative distance moves the tool forward.
These commands are useful specially when the hand grasps an
object and departs from alocationin such a way that the
object does not collide with the table. or fixture from
which it is taken. It is also used to avoid collision
between the clamps and an object when departing with the

clamps open after releasing an object at a given location.

6.2.5 DRIVE <joint>,<change>,<speed>

This command operates the single specified joint
changing its joint variable by "change" amount (in degrees)
at the "speed" percent of full speed. The joint number,
"joint® can be 1,2,:.,6. In the simulator, first the joint
number is decoded and then the "change" amount followed by
the "speed.® The simulator defines a new location by

adding the amount "change® to the joint variable. It then

80




uses the jointé-coordinated motion and sets the sinuldfion '
| speed as described in Chapter 2.

6.2.6 READY

This command moves the robot into the statically
balanced vertical configquration. At this point all the
configuration indicators, namely IARM, IELBOW, and IWRIST
have positive values. As explained before, the simulator
tak~s advantage of the zngle convention and defines zero
joint angles in this position. The simulator then creates a
location for the zero position and moves the arm to this

location using joint-coordinated motion.
6.2.7 DELAY <time>

This command causes the rcbot motion to stop for the

specified period of time.
6.3 HAND CONTROL

The robot tool frequently has the form of some kind of
a grasping device, refered to as a hand. Here, it is
assumed that the robot has electrically driven proportional
hands [13]. '

81




6.3.1 OPEN {<hand opening>)} / OPENI {<hand opening>)

In the simulator OPEN and OPENI behave in the same
fashion, and the hand opening is changed to the "hand
opening” percent of fully open position. To open the clamp
in the specified amount, the definition data for the
‘reference vertices of the polyhedrons representing the two
clamp faces are translated by the user-defined increment to
achieve the desired hand opening. Here, it is assumed that
no object sticks to thé clamp. The detach algorithm
explained in section 2.5 is used and the flags ar; set so

that the objects are redefined with respect to the fixed

SCS.
6.3.2 CLOSE <hand opening> / CLOSEI <hand opening>

These commands operate in a way similar to OPEN and
OPENI commands. Here, the definition data for the reference
vertices of the clamp polyhedrons are translated by the
user-defined increments, to achieve the desired closing
position. As poited out previously, the fine check
algorithm is used to see if it is possible to grasp a user-
defined workpiece, by checkirig to see if the LED line
segment has intersected any of the polygons belonging to
the polyhedrons representing the hand. If it has, the flag

is set and the attach algorithm described in section 2.5,

82




is appliad. confusion may arise when two small objects are
placed near one another, or a collision warning was ignored
by the user; in either case one may expect the robot to
attach both objects to the clamp. nowevet, the simulator
only attaches the clamp to the lowest numbered object
polyhedron (the object number is determined by its location
in the SETUP dGata file). For efficiency, the simulator does

not repeat these steps when the clamp is already ~zlosed.

6.3.3 GRASP <hand opening>, {<label>}

In VAL-II this instruction causes the hand to close
ivmediately, and then checks to see if the final opening is
less than specified amount.If it is, the program branches
to the step specified by the program label. Otherwise, it
wili close the clamp 100% and continues with the very next
step. In the simulator, hovever, a flag is checked to see
if the LED sensor has intersected any of the user-defined
polyhedrons. If it has, it closes the clamp by the
specified amount, and branches to the step specified by the
label. Otherwise, the program execution will continue with
the next step. Thus, this instruction simply provides a
one-step method of grasping a part and then branching to a
different part of the program, something which normally

requires two individual steps.

83

CAR AP PRI TV, 1/ S RO TR S Y Tt




6.4 PROGRAM CONTROL

The following instructions control the sequence in
wvhich user program instructions are executed. Thus, they

~can be used to control the logical flow within user

programs.
6.4.1 GOTO <label>

This command performs an unconditional branch to the
program step identified by "label.®” The simulator, first
decodes the label and then rewinds the active file
searching for the specified step label. If it is found, the
program execution will continue from that step. Otherwise,
an error message is displayed, and the program execution

will continue with the program step following the GOTO

statement.
6.4.2 CALL <program>

This command temporarily suspends wthe execution of
current program, and execution continues at the first step
of the indicated user program, which is then considered a.
subroutine. Ih the simulator, this is done by simply
openin¢g the file "program".DAT while the ac%tive program _is

already opened. Execution automatically returns to the _

84




~current program when a RETURN instruction is executed in

the subroutine.
6.4.3 RETURN

Terminates execution of the curreﬁt subroutine and
resumes execution of the last-suspended program at the step
following the instruction which caused the subroutine to be

invoked.

6.4.4 PAUSE <MESSAGE>

This command causes an executing VAL-II program to
temporarily stop execution. After a PAUSE command is
executed and the active program stopped, for
implementation, a user may enter any VAL-II command. The
simulator will decode the user input, and accepted
commands are implemented until the PROCEED command is

encountered, at which time control is returned to the VAL~

II progrm.
6.4.5 STOP <MESSAGE> / HALT <MESSAGE>

These commands terminate the execution of the user
program unless more loops are to be completed, in which

case, the control will return to the first step of the

85




!

program. It can be said that the STOP instruction marks the

end of a VAL-II program execution pass. In the PUMA
’ controller, nowever, the HALT instruction terminates the
program execution regardless of any number of loops
remaining to be completed. In the simulator, this command
is regarded in the same manner as the STOP command. These
commands may be followed by informative messages which are

printed for the user on the screen.

6.4.6 DO ... UNTIL

This structure provides a way to control the execution
of a group of instructions based on a control expression.

The syntax for the DO structure is as follows:

DO
{<group of instructions>)

UNTIL <logical expression>

In the simulator, the group of instruction steps are
executed, then the UNTIL statement is encountered, and the
logical expression is evaluated. If the logical condition
is not satisfied, the program is rewinded and the DO
statement is found and the program execution continues at
the first step following the DO statement. Otherwise, the
very next step following the UNTIL s"tatenen.t is executed;

Note that, the group of instructions within the DO

86




structure is alwvays executed at least one time (Appendix A).

6.4.7 IF ... THEN ... ELSE ... END
This form of IF instruction provides a means for
conditionally executing a group of instructions, or

alternating groups. The complete syntax is:

IF <logical expression> THEN
<first group of steps>

ELSE

<gsecond group of steps>

END

In the simulator, when IF command is encountered, the
logical expression is examined. If it is satisfied, the
first group of steps is executed, and the control will be
transfered to the first step following the END step.
Otherwise, the second group of instructions is executed,
and the control will transfer to the first step following
the END statement. The simulator first decodes the variable
names followed by the mathematical condition used. It then
opens the file CHECK.DAT to see if the first variable name
exists in the list, and if it does it obtains its value.
Thé same thing is done for the sgconq variable name. It
then compares the two values obtained thus far, and decides

vhether the logical expression holds or not; and based on

87




the result the corresponding group of instructions is
executed. In any case, if either one of the variable names
- was not declared before an error message is displayed and

the control is transfered to the very first line following

the END step (Appendix 1).

6.4.8 WHILE ... DO ... END

This structure provides another means for executing a
group of instructions until a control condition is

satisfied. The complete syntax for the WHILE structure is:

WHILE <logical condition> DO

{<group of instructions>)

END

In processing the WHILE structure, first the logical |
expression is evaluated. If the logical condition is
satisfied, the group of steps is executed and the control
is transfered to the step containing the WHILE command to
re-exam the logical condition. However, when the logical
condition is not éatisfied, the program executionywill
continue at the first instruction after the END step. In
the simulator, the variable names and the mathematical
condition are first decoded. Then, the file CHECK.DAT is

opened to examine the validity of the variable names. If

88




the names appear in the list, their corresponding valueés
are immediately deterained. Then, the' logical condition is
examined and results obtained. Whenever, anyone of the
varibale names does not appaar in the file CHECK.DAT, an
error message is displayed, and the WHILE structure is

ignored (Appendix A).
6.4.9 EXECUTE <program>,<loops>

This command causes the specific program to be executed
"loops"™ times. In the simulator, upon decoding the EXECUTE
command the file "program®.DAT is opened and the content of
it executed step after step. Whenever,-a STOP or HALT
cokmand is encountered, an execution loop is terminated.
Just before opening the ®"program®™ data file, the interrupt
flag is set, so as to enable the user to abort the program
execution without leaving the VAL~II SIMULATOR environment.
As the commands are processed, they are read, decoded and
implemented,ocne by one, each command is scrolled on the
display terminal, for evaluation and comparison purposes
with the actual PUMA robot's behavior. If the humber of
loops is negative, the PUMA controller executes the VAL-II
program indefinitely. However, in such a case, the

simulator repeats the program 1000 times.

- 89




6.4.10 ABORT

This command . terminates execution of the active robot
program, immediately after completion of the step currently
being sinﬁlated. The simulator does not accept this
command, but has the same capability. In the simulator, a
display terminal is used to si;ulate the behavior of the
PUMA upon execution of VAL-II commands. Hence, to sinulatek
the effects of an ABORT instruction, one may depress the
"CTRL" and "C" keys, simultaneously. This will interrupt
the active program execution and sets the corresponding
flag which is checked before reading and decoding each VAL~
ITI command from the file. Interrupting a pfogran execution
by the use of "CTRL" and "C" keys preserves the user-

defined locations and setups.
6.5 CONFIGURATION CONTROL

For an anthropomorphic manipulator arm (i.e. an arm
with solely rotating joints and redundant degree of
freedom) like a PUMA 600, most polints in its wotk space may
be reached by specifying one of the eight possible spatial
configurations [13]. Normally, the robot remains in the
default configuration, those set upon program
initialization, until the user requestsfora different

configuration, or when a READY instruction is executed.

90




LEFTY, request a change in the robot configuration so thai:
the first three joints of the robot resemble a human's &
right or left arm,respectively. The second two, ABOVE and | 3
BELOW, control the configquratiocn so that the "elbow"™ of the |
robot is pointed up (ABOVE), or down (BELOW) (Figure 2-8).
The last two, NOFLIP and FLIP, change the range of
operation of joint 5 (wrist rotation) to positive (NOFLIP)
or negative (FLIP) angles.ﬁ This is the difference between
the clamp pointing upward or downward.

In the simulator, these commands are being implemented
by setting the sign of the configuration indicators IARNM,
IELBOW and IWRIST, for the three joints in question.
positive values for the configuration indicators are
assigned for RIGHTY, ABOVE, NOFLIP; negative values
correspond to LEFTY, BELOW, and FLIP. It must be kept in
“mind that, joint angles obtained by Lee's approach to the

inverse kinematic solution [24] is effected by changing

these configuration indicators.
6.6 TRAJECTORY CONTROL

6.6.1 SPEED <percent>

The speed of the arm is set by this command. In joint-

coordinated motiii"‘"n, this command sets the rotation time for

91




the largest joint angle d:lfference\,' namely for a joint
which moves farthest. In straight-line motion it sets the
clamp speed. In the simulator the increment size used by
joint-coordinated and straight-line motions is set by the
SPEED command. If the requested speed is less than 10% or.;
more than 100% of maximum speed, the speed is autonatically
set to 10% or 100% of maximum speed, respectively. Also,
when the SPEED command 'is decoded, the speed dependent
error margin is aslo calculated (the speed dependent error
margin was discussed when we talked about coarse collision

check algorithm) .
6.7 ASSIGNMENT INSTRUCTION

Implicit assignment instructions are aslo simulated in
the VAL-II SIMULATOR. For example, a variable "ROW"™ may be
declared to have a value of 10, by typing "ROW=10".
Vvariable nanes‘may be up to 9 charactets long. In the
simulator, whenever this situation is encountered, the file
CHECK.DAT is opened and its contents are checked. If the
variable name already exists, its corresponding value will
be updated. Otherwiose,- the new name will be added to the
list of file CHECK.DAT, and its value stored. Also, other
forms of assignment statements such as: "ROW=ROW+X", or

"ROW=ROW-Y" may be included in the VAL-II programs.

%

Q2 v




6.8 MISCELLANEOUS COMMANDS

6.8.1 ; {<character string>}

This provides a "comment" line in a VAL-II program. The
comment lines are used only for the programmer's benefit,

and are ignored when a program is executed.
6.8.2 TYPE {<character string>)

This command operates more or less in the same way as
the ";" (remark) command; in that it provides a comment
line in a VAL-II program, and the message which appears
following this statement is ignored by the simulator, and

is only for the programmer's benefit.

6.8.3 TYPE {<variable name>}=

Upon execution of this command, the information
described by the output speci.fication» is displayed on the
terminal. In the simulator, the information is limited to
the valuess of various variable names declared during a VAL-
II session. When this command is executed, the file
CHECK.DAT is opened and the entries in the list read, one

by one. If the variable name exists in the 1ist, its last

93




declared value is retrieved, and its last declared value is
displayed. Othérwise, an error message is displayed. Note
that, if the ¥ = " sign is omitted, the simulator will

regard this command as a simple TYPE statement explained in

section 6.8.2.

6.8.4 STATUS

Upon execution of this command, status information for
the system, and the user robot control progranm being
executed is displayed. In the simulator, this includes the
speed of the robot set by the last SPEED command, the
number of program execution loops completed and those still

remaining.
6.8.5 HELP

Thié command -‘provides on-line help for the VAL-II
SIMULATOR users. Upon execution of this command the HELP
MENU appears on the screen. The operator is then asked
wvhether he needs more information on a specific topic. If
the ahswer is "yes", the user will then be asked to input
the topic for which help is needed. The user input is then
decoded and a file called HELPER.DAT, which contains a list
of all the help topics, is opened. The user input is
checked against individual gntries in this 1ist. Whenever,

94




the user input matches one of the entries in the file, a
pointer is set and the corresponding information is
displayed on the screen. A flow chart is provided for
better understanding of how this progran
operates in Appendix A. The following information is
provided for each topic: 1) the specific command syntax; 2)
a description of the operation performed by the command; 3)
an indication of when the command can be used. Help is
available for all VAL-II commands and some of the Honif.or
commands. Since, it is very difficult; to memorize all the
entries in the HELP MENU, the user is frequently asked

whether it is necessary to display the HELP MENU or not.

95




CHAPTER 7

7. CASE STUDY -

In order to explain how the simulator-may be used, a
simple part processing task is shown, in a step by step
manner. It will be explained how the parts which have
already been created using a UNIGRAAPHICS-II system, were
transfered to VAL-II SIMULATOR environment, througi IGES
interface. Also, preparation of location data and

instructions for VAL-II SIMULATOR use are given.

7.1 PART TRANSFER

Part files may be transfered to the VAL-II SIMULATOR
environment either via IGES interface, or through POLYGON
[19] interface. It is assumed that the parts have already
been created using a CAD system capable of 3D modeling. In
order to use IGES interface, the part file data format must
first be converted to IGES format via means provided by the
individual CAD system. Once the file is written in IGES
format and the file "program.IGS" is generated, one can

start a VAL-II session. After the copy right information is

displayed, the following menu is displayed:

96




)

LI_GES FILE

U GII FILE

E XISTING FILE

INPUT “I®, “y", OR “E":

Except in the Eitor and VAL-II modes, most of the commands
only require single key inpuﬁs from the user. In this
example, only IGES interfaceis used, hence, the input
should be "}." This requests the initialization of the
section of the package which interactively reads in the
"program.IGS", and places the pérts at the origin of the
user specified coordinate axes. Then, the following
question will be displayed on the screen:

ENTER IGES FILE NAME TO BE READ:

The name of the IGES file created is input, "program.IGS".
The IGES file is then opened and read in, and converted to
a format which may then be read and used by VAL-II
SIMULATOR. This file will have a <.SET> extension. This
file may have a different name from the IGES file. For this

reason, the user is asked to input the desired setup file

name:
- ENTER SET-UP FILE NAME:
This file will contain all the geometric data, in a format

which can be used by the VAL-II SIMULATOR. In order to
successfully complete writing this file, the following
information is required: a) the number of workpieces in the

work-cell, b) the units of the workpieces, which could

97




either be in millimeters (MM), or in inches (IN), and c)
the location of the of the reference coordinate system in
which the data have been defined. This information gis\
input by answering the following questions:
ENTER THE NUMBER CF WORKPIFCES IN CELL:
ENTER UNITS OF WORKPIECES (MM/IN):
ENTER COORDINATE AXES SYSTEM (W/S):
If the data are input properly, the SIMULATOR will write
the file and a message is displayed, informing the user
that the file xxx.SET has successfully been written. At any
point if a wrong answer is input, an error message will be
displayed, and the user asked, whether or not he wishes to
continue the part transfer. The part(s) will be placed at
the origin of the coordinate axes system specified by the
user. A setup file corresponding to our example is shown in
Figure 7-1. The first line contains the number of user-
defined objects in the work-cell, in the example 14. The
object coordinates may be in millimeters or inches. The
second line specifies the units of wérkpieces; either "MM",
or "IN" is uﬂsed. The third line, shows the coordinate
system with respect to which the object data is defined. A
"Ww" will designate the WCS, and a "S" will specify the SCS.
Following the third line of each setup file, lines of data,
one corresponding to each user-defined object appear to
indicate each object's size; this is specified by giving

the number of vertices belonging to one polyhedron. The

98




35

W
1,8 1,8
' 440.00 -50. 00 -320. 00 $75. 00 -600. 00 -320. 00
0. 00 0. 00 0.00 20. 00 0.00 0. 00
0.00 0. 00 70.00 20. 00 0. 00 -250. 00
0.00 30. 00 70.00 . 20. 00 20. 00 -250. 00
0.00 30. 00 0.00 20. 00 20. 00 0. 00
$0. 00 0.00 0.00 0.00 0. 00 0. 00
%0. 00 0. 00 70.00 0. 00 0. 00 -250. 00
$0. 00 30. 00 7000 0. 00 20. 00 -250. 00
$0. 00 30. 00 0.00 0. 00 20. 00 0. 00
1.8 1.8
440. 00 105. 83 -320. 00 575. 00 200. 00 -320. 00
i 0. 00 0. 00 0. 00 20. 00 - 0. 00 0. 00
~ 0. 00 0. 00 70.00 20. 00 0. 00 -250. 00
0. 00 30. 00 70 00 20. 00 20. 00 -250. 00
0. 00 30. 00 0. 00 20. 00 20. 00 ¢ 00
50. 00 0. 00 0.00 0. 00 0. 00 0. 00
s0. 00 0. 00 70 00 0. 00 0. 00 -250. 00
50. 00 30. 00 70. 00 0. 00 20. 00 -250. 00
50. 00 30. 00 0. 00 | 0.00 20. 00 0. 00
1.8 1,8
~463. 51 $00. 00 -320. 00 345. 00 200. 00 ~320. 00
0. 00 0. 00 0.00 20. 00 0. 00 0. 00
0.00 0. 00 40. 00 20. 00 0. 00 -250. 00
0. 00 600. 00 40.00 20. 00 20. 00 -2%0. 00
0.00 600. 00 0. 00 20. 00 20. 00 0. 00
500. 00 0. 00 0.00 0. 00 0. 00 0. 00
500. 00 0. 00 40.00 0. 00 0. 00 -250. 00
500. 00 600. 00 40.00 0.00 20. 00 -250. 00
$00. 00 600. 00 0. 00 0. 00 20. 00 0. 00
1.8 1,8
-463. 51 $00. 00 -320. 00 345. 00 -600. 00 -320. 00
40. 00 0. 00 0.00 20. 00 0. 00 G. 00
40. 00 0. 00 -250. 00 20. 00 0. 60 -250. 00
40. 00 40. 00 -250. 00 20. 00 20. 00 -250. 00
40. 00 40. 00 0. 00 20. 00 20. 00 0. 00
0. 00 0. 00 0.00 0.00 0. 00 0. 00
0. 00 0. 00 -2%0. 00 0. 00 0. 00 -250. 00
0. 00 40. 00 -250. 00 0. 00 20. 00 -250. 00
0. 00 40. 00 0.00 0. 00 20. 00 0. 00
1.8 1,8
-463. 51 1060. GO ~-320.00 495. 00 400. 00 ~-320. 00
40. 00 0. 00 0.00 0. 00 0.00 0. 00
40. 00 0. 00 -250. 00 0. 00 0.00 -150. 00
40. 00 40. 00 -250. 00 176.78 176.78 -150. 00
40. 00 40. 00 0. 00 176.78 176.78 0.00
0. 00 0. 00 0.00 -176.78 176.78 0. 00
0. 00 0. 00 -250. 00 -176.78 176.78 ~150. 00
0. 00 40. 00 -250. 00 0. 00 353. 56 -150. 00
0. 00 40. 00 0.00 0. 00 353. 56 0. 00
1,8 1.8
-2. 91 1060. 00 -320. 00 495. 00 400. 00 -470. 00
40. 00 0. 00 0.00 0. 00 0. 00 0. 00
40. 00 0. 00 -250. 00 0. 00 -~ 0.00 -100. 00
40. 00 40, 00 -250. 00 176.78 176.78 -100. 00
40.00 40. 00 0. 00 . 176.78 176.78 0. 00
0. 00 0. 00 _ 0. 00 -176.78 176.78 0. 00
0. 00 0. 00 -250. 00 , -176.78 176.78 -100. 00
0. 00 40.00 -250. 00 ! , 0. 00 353. 56 -100. 00
0. 00 40. 00 0. 00 o 0.00 353. 5 0.00
1,8
-2. 91 $00. 00 -320. 00
40. 00 0. 00 0. 00
40. 00 0. 00 -2%0. 00
40. 00 40. 00 -250. 00
40. 00 40. 00 0 00
0. 00 0. 00 0. 00 Figure 7-1. E
0. 00 0. 00 -250. 00 -de Xam
0. 00 40. 00 -250. 00 ple Program
0. 00 40. 00 0. 00 1% ' = o o
g Setup data file
595. 00 -600. 00 -320. 00 4 o
0. 00 0. 00 0. 00
0. 00 0. 00 -20.00
0.00 800. 00 -20. 00
0. 00 800.-00 0. 00
-250. 00 0. 00 0.00
-250. 00 0. 00 -20. 00
-250. 00 800. 00 -20.00
-250. 00

800. 00 0.00
99




arrays have been adjusted so that up to 30 objects,
excluding the robot model itself, may be used in each work-
cell, with hidden-surfaces properly removed. To have the
collisions checked for all the parts, the dimension 6f the
INDEX array is set to 1100. In our example, each object has
8 vertices, as shown in Figure 7-1. This is shown by
specifying the first and last vertex with a comma
| separaﬁing them (1,8). Due to the data format chosen, the
first digit should be 1, and the last one an even integer
larger than 6. As explained in previous chapters,
associated with each object is a reference point (the first
corner). The set of data following the number of vertices
for the first polyhedron is the coordinates of the
'}eference point, namely the first corner of the first
object. Fdllowing this line, the coordinates of each vertex
is given with respect to this reference point, given in
(X,Y,Z) order separated by commas or spaces, corresponding
to prespecified coordinate system. As mentioned in Section
2.1, the simulator uses polygons to form convex polyhedron
envelopes which represent objects. The vertices
representing the front and back faces must be given either
in a clockwise, or counterclockwisenoider, when looking
toward the origin along the line of the normal axis. When a
counterclockwise convention is used, the magnitude of the

coordinates along the normal axis, for the first polygon is

larger than that of the second one, and vice versa, when a

100

o \..r":'- TN

B Gl




clockwise ordering is used.

¢

7.2 PART REPOSITIONING

The user is then directed to the MAIN MENU. Since, the
objects are all at-the origin, they must be moved to the
desired locations in the work-cell to represent the
designed layout. To move to MANIPULATION Mode, 'M'
(M_ANIPULATION) is pressed on the keyboard. A menu is then
displayed which corresponds to manipulation mode using the
system defined increments. The user is first asked, the
part number to be moved. Parts are numbered 1,2,...,Nn
consecutively, according to their location in the setup
file, where n is the total number of parts in the work-
cell. After the part number is input, the following menu is
displayed:

I_NCREMENTS

K_EYBOARD

R_ETURN

ENTER COMMAND#

A single key input is requifed. The operator may select to
use the KEYBOARD option by pressing 'K' from the keyboard,
and then by depressing 'U' (U_PWARD), 'D’ (D_OWNWARD), étc.
to move the individual part in the desired direction, until

the final desired location ig reached. If the locations are

precisely known, one may prefer to move the individual part

101




by specifying the proper translational and rotational
increments. If the latter is chosen, by pressing' 'I', it is
then asked whether the user would like to have the
coordinate axes display ON or OFF. The user is then asked
to input the correspohding translational and'rotational
increments. The translations and rotations are ’perfor'med
with respect to the SCS and a readout is available along
with the part number for reference. Once done with
repositioning one part, one may start to move another by
answering 'NO' to question which asks whether it is desired
to continue moving the current object. In our case the
proper translational and rotational increments are input
for all the parts so that the work-cell will be displayed
as shown in Figure 7-2. The end of a Manipulation session
is marked by answering 'NO' to the question which asks
whether it is desirea to move another part. We want to save
the new setup, so we answer 'YES' to question

DO YOU WANT TO SAVE THE NEW SET-UP FILE (Y/N) 7:

and it is then asked, whether it is prefered to use the old
setup file name or a new one is to be specified. The file
name may contain up to 9 characters and must be followed by

a ".SET". The control is then returned to the MAIN MENU.

7.3 LOCATION DATA

The fuactions of the "Teach Pendant" may be used to

102




L .
IiﬁEﬁPﬂ_. -kj—-:;=='j] i
—— o 1
-~ g — i ) I ) Qo] -_:::
i A, =™~
E_-._.__ AT niy- Vo

Fi 2. Sj ” |
gure 7-2. Simulator Output Image for Program Process

103




independently move each link of the PUMA robot by pressing
any onevof the number; 1-6 on the keyboard‘for the
corresponding l1ink. This 1is the exact method, a real
industrial robot is taught points in its space [26]. Once a
desired location is reached, one may savé that location by
"entering the VAL-II mode and typing " HERE <point name>".
There is a quicker method to define and store locations,
and that is to write them inv a "program.LOC" file, by
looking at the positions of the objects defined in the
setup file. (However, to take advantage of this method, the
user must leave the VAL-II SIMULATOR environment.) Any
location data contains the positions and orientétion
angles. In the file, each location is identifi<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>