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ABSTRACT 

In this thesis report, interactive algorithms to aid Jn the· 

analysis of fluid flows ar,e presented. Special functions and 

algorithms to average, smooth, and calculate the similarity 

between digitized curves were developed. The developed routines 

process the images in the spatial domain, thereby eliminating 

the need to calculate discrete Fourier and inverse Fourier 

transforms. The algorithms are effective, efficient, and fast. 

_ ... 

As an integr~l part of the algorithms, special data buffer routines 

for the effective data manipulation of curves, as well as cursor 

routines, were developed. An arbitrary set of frames consisting 
. 

of curves,. or an arbitrary set of curves, can be averaged or 

smoothed. Cutves can be smoothed with a modified, variable 

convolution filter. A special function makes it possible to express 

the similarity of two curves in a numerical value. This technique 

can be used to study time effects in fluid flows. Noise reduction 

can be obtained by averaging and smoothing a set of curves. 

-1-
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1. INTRODUCTION 
' 

This report describes the und~rlying theories arid algorithms 

for an interactive image processing and pattern recognition program 

that can be used in the anaJy·.sis of digitized flow patterns. To. 

aid in fluid flow analysis, a television/computer system is.set up 
' -

in the .. fluid mechanics laboratory of the Meci1anical Engineering 

Department of Lehigh University. The actual setup is described 
. 

and explained in Chapter 2. 

Noise and disturbance reduction through successive averaging 

of images is one of the main goals of the program. For this purpose 

the digitized images are stored in a mass storage device and are 

processed off-line. l,n the future, it should be possible to extract 

fe.atures from the flow patterns that can be used in the generation 

of a data base. The setup will facilitate the analysis process by 

lncreas.ing speed and accuracy and by providing th·e possibi llty of 

·new analysis techntques. 

Currently the hardware and software to generate digitized 

curves from the actua.l flow patterns is in place. Chapter 2 

describes the flow visualization technique that is used in 

conjunction with a television system and synchronized lighting. 

The television images are digitized, then preprocessed, and 

algorithms employed to generate the digitized curves in binary form. , 

Once the curves are in this form, lt is possible to tarry out a 

number of bperations on them. 

-2-

.. 

. " 

.. 



• 

r· 

. . . , . 
,' 

"ll . 

The objectlves of the thesis work presented In this report 

are to: .. 

a) develop theory and algorithms to average a set of curves. 

b) develop theory and algorithms which make it possible to 

f i 1 ter/smooth a curve •. 

c) develop theory and algorithms that are capable of expressing 

the similarity between two curves in a numerical value. 

d) combine the above in a flexible and intera~ctive software 

program that can aid in the analysis of flow patterns. 

A selection from among the presently available analysis and 

processing techniques has to be made in order to find the most 

suitable one. Additionally, it is necessary to develop new 

principles for those. functions that cannot be performed by currently 
• 

known techniques .. Capaci.ty, in terms of the number of frames and 

curves that should be processed, as well as efficiency and accuracy 

requirements, are important considerations during the selection of 

the methods. 

Based upon previous wor·k done at Lehigh Uni·versity, and the 

scope of this thesis, several assumptions were made. The first 

assumption is that the digitized curves are available. This means 

that there is a tomplete set of frames available, each containing 

well defined digitized curves. Secondly, it is assumed that these 

curves are stored in a chaincode representation (see Chapter 3). 

Finally, a highly interactive program is required for further 

-3-
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analytical work. Chapter 2 describes the system setup, the 

presently known analytical techniques, the more sui.table methods 

for fluid flow analy·sfs. Chapter 3 deals with the data 

representation and tnteractive routines that were developed. to 

facilitate the processing, filtering, and recognition of digitized 

curves in an efficient manner. Chapters 4 and 5 deal with the 

developed processing and recognition techniques. Chapter 4 

discusses the averaging routines actually used, while Chapter 5 

presents the theories and algorithms that were developed so the 
,._, 

digitized curves ca~ be filtered/smoothed and recognized. Future 

work and conc.lusions are discussed in Chapter 6. The actual program 

codes can be found in Kerstens (1985) • 

• 

/' 

a .. 
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2. IMAGE PROCESS·1NG 

2.1 System Setup 

2.1.1 Flow visualization ------------------
The fluid mechanics laboratory of the Mechanical Engineering 

. 
Department at Lehigh University is equipped with the setup of 

a, 

Figure 2.1·. ·The experimental setup consists of a-channel through 

which a fluid (water) flows from left to right. A conducting wire 

is inserted at the beginning of the channel, and a pulsed high 

voltage is connected to the wir.e. This c~ses electrolysis of the 
/ 

/ 

water passing over the wire and generar~s hydrogen bubbles. The 
\ 

hydrogen bubbles propagate with the fluid~and form the ttmelines. 

The triangular obstruction in the middle of Figure 2.1 • IS a 

stationary or oscillating body that distorts the fluid flow and thus 

the timelines. The timelines contain information about the fluid 

f 1 ow (ve 1 oc i ty, both amp.l i tude. and direction) and can be used to 

characterize and analyze the ·flow. Light is reflected at the 

timelines and regions of high intensity are created at their position. 

A video camera is placed above the channel and r·ecords the illumtnated 

timelines. The times at which pictures are taken, can be triggered 

in such a way that they are sync_hronized with a particular pos.it,J-on 

of the oscillating body. After recording on the television, the 

image of timeli~es is digitized by an analogue/digital converter 

(ADC) with 256 quantization levels (8 bits). The resolution per 

j' -.5-
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frame ts 211 x 165 ~txels. A frame grabber grabs the frames 

,. which are then stored on tape. 

A good introduction and explanation of several important 

aspects of image.processing· can be found in Pavlidis (1982). The 
.. 

digitized image must be p:rocessed before the actual curves can be 

retrieved (see Figure 2. l). Severa 1 methods are ·current 1 y in use. 

In the first method (Gumas 1985) the signa·l is filtered and then 

operated upon by a threshold operation, which results in the 

generation of a binary image. The resulting timelines are, however, 

still relatively wide. The thickness can be reduced by thinning 

a·lgorithms (Pavlidis 1982 and Gumas 1985). The resulting pictures 
. 

have a quantization of 1 bit (2 levels) and contain the timelines. 

!n the second method (Gumas 1985) a curve tracking algorithm 

processes the original frames with 8 bit quantization levels and 

11 tracks11 the timelines. The output of this algorithm is a set of 

curves (timelines) in chain code form (·see Chapter 3). An interest­

ing method re 1 eva{t to the foregoing is presented In Rao ( 1980). 

Fingerprint patterns are very simi-lar to flow patterns and a 

complete system for the clas.sification of fingerprints is p~esented 

in Lerner (1983). 

2.1.3 Available hardware and software 
-------------------------------

The preprocessed images are stored in computer files on the 
~ 

/ 
' 

-6-
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VAX 11/780 computer of the Mechanical Engineering Department of 

Lehigh University. Several high resolution color terminals (VS11) 

are conr:1ected to thl s computer and .are used In the advanced 

processing of the flow patterns. The resolution of the terminals 

is 512 x 480 pixels and they are capable of displaying 16 colors 

(of which one is the ba.ckground color). Some.graphics routines., 

for d i s p 1 a y l n g bcJ s i c en t ·i t le s ( 1 i n es , c i r c 1 es , s p 1 i n es , po i n ts , 

windows, labels, etc.) are available and are well explained in 

Ozsoy (lab 1983). 

To enhance the interactiveness of the developed progr~m, and to 

increase its flexibility, it was necessary to develop some·additional 

graphics routines. ·A set of windows was created (Kerstens 1985) 

to display the curves and related information, as well as to display 

system messages. Special buff:er routines, that can display and 

remove arbitrary curves i-n an efficient manner, had to be implemented. 

Another requirement was a special cursor routine for picking curves~ 

These routines are explalned in Chapter13· 

2.2 Analysis Techniques 

There are at least three techniques available that could be 

used in the analysis of flow patterns: Fourier descriptors, 
- .. 

classification techniques, and spatial averaging. The remainder of. 

this section will brief·ly -discuss each of these techniques. 

-7-
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Fourier descriptors are often used in pattern recognition 

appllcations because special, modified techniquei using Fourier 

descriptors make the descriptors independent of orientation, 

position, or scale of the object to be described. They can be made 

solely a functioh of the shape ~f the object (Granlund 1972 and 

Zahn 1972). To understand how Fourier_descriptors can be used in 

the analysis of flow pattern.s, consider Figure 2.2. The shape of the 

shown curve is completely described by its "tangent angle function'': 

where 

1£ [o, L] 

t(1) is the tangent angle of the uniform continuous curve 

at point 1t[9,~. 

(2. i) 

is the length ·measured along the curve from its starting 

point to the point of intere~t~ 

L is total length of the curve measured along the curve. 

The tangent angle function together with the start coordinates of 

the curve uniquely specify the curve. 

that: 

* Defi-ning a function-t such 

c1>*(i + nl) = cj>(R.) - f<c1>(L) - cj>(o)} for 
1£[ o, L] 

n = o·, ± 1 , ±2, ••• 
(2.2) 

* The function t is periodic and can be expanded in a complex Fourier 

series: 

..... 

-8-
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, where, 

and, 

t*(t) = f c exp. (Jny) 
-co n n · 

C 
n 

1 -- -L 

L 

/~*(1) exp ( - j ny ) d R, 
n 

•.I 

.- , 

The set of c 'sandy 1 s are called the Fourier descrJptors: 
n n 

(2.3) 

(2.4) 

(2. 5) 

00 { c , y } . • I n re a 1 i t y , we have to work w i th a t run ca ted ( f i n i t e) 
n n n=-00 

set of Fourier descriptors: 

{c }N 
n'Yn n=-N 

(2.6) 

When this truncated set ls used in the reconstruction of the original 

curve, the result will be an approximation., and the difference 

depends on the number of coefficients that is included in the set. 

Averaging of curves can be performed by averaging the Fourier 

descriptors. The curves can be filtered by truncating the set of 

Fourier descriptors and/or by multiplying them with a weighting 

function (Gumas 1985). Sim·ilarity coefficients can be derived if 

the Fourier descriptot~ are made independent of th~ orientation and 

position of the curve. 

The followi_ng discussion is mainly based upon the works of 

Rao (1980) and Lerner (1983). Fluid flows and fingerprints seem 

to have a lot in common in terms of their image structure. Both 

-9-

r ' " . 

·-~·u..-~~ 
,, 
' 



,. 

, ·'. . .. 

...·, 

fluid flow patterns and- fln.gerprint patterns consist of a set of 

curves or ridges that are to some extent parallel in nature. 

Imperfections can cre~te gaps in the curves. of both patterns and 

it may be di ff i cu 1 t to tt:ack the curves .d:u.e t·o .some ambiguity i'n: 

di rect ton ( Guma s , 1985; Rao,· 1980) • 

In fingerprint ·classification systems, a preprocessor first 

ave~ages over small areas of the image to find a mean level and 

then a threshold operation divides the points into two levels: 

black and white. After completion of this operation, directional 

operators determine the direction of the ridges, and ridge points 

are 1 inked up to eliminate. 1111'.nor· breaks caused by poor inking or 

sk-lri pt>.r:es.·. 1·.n th.e next ·ste-Jj: featu,res are extracted.- These features 

mark the endp:oi nt:-s .aJrd t_be: .points ·where the 1 i ne:s that form a ridge 

·ma::ke: c.Hl angle· wi·t.h· each o:t-:her :{see: Figure 2. _3}. Ana 1 ys is of the 

,ex·tr.~rcted_ feature.s :rna'·kes i·t. pp·s,slQ.:le to classify the prints. 

·rhe preprotessi.ng te~hniques used in fingerprint analysis seem 

t:o be directly applicable to fluid flow analysis. However, the 

tlassification techniques that are used are a syntactrc approach to 

th:e identification prob·l-en1-. Therefore, this technique might be useful 

in identifying c¢rtai·n fluid flows, but It cannot be used for 

detai lecf an~ly·si:~: bf the fluid flows. It is also impossible to 

averag·e curves 'O'-t to calculate similarity coefficients with this 

:t:e.c,hn.Jque.. ihe ·pre·processor used in this techntque provides some 

means of smoothrng or filtering the curves by averaging the direction 

of the curves over small areas of the image. 

-10- ·~---' ... 
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In spat I a 1 ave rag t ng, the curves .a·re: ave.raged d I rect 1 y In the 

·spat i a 1 doma t n. By taking spec i ·t:··i c po'I nt~:' ·on two· curves ·c see 

:Chapters 3 ti·nd' :4). and taking the .. av·erages: of ·corresponding po I nts 

on :both CtJry~.~,: the- average cutv:e. rs calculated. The data 

.,c~,repre~.:ent~tiQn that .. ls u~ed r:n. t'he averaging process can also be 

.u.sed lr, t:fie devel.oped .s:mt,othi,.ng ahd similarity calculation 

·.?fl :gor:lthrns (see' Chapte·r 5) :. ·The technique is very accu.rate, 

·clitv:es. 

2.3 Method Selection 

. . 

The Foutier descrlpt:or meth·od :r.e·qui.res the calculations of 

:d·:·t.s-c:rete ·Fourier tra·ns-f·o,~.ms and discrete inverse Fourier transforms .. 

These: ~ompu tat Ions are relative 1 y time con.s.um i'ng and cost 1 y. 

,·Furt:·hermore, smoot·h f.n:g :or f i 1 ter ing t>'f the curves by t run cat i ng the 

s~t: of Fourier ci:~s~r,iptors wi l.l riot preserve the endpoJnts of the 

:p.urv.es {Gµrnas,. 19.85).. Data s:t:orag.e :t·.equi rements ca:n, l1e reduced by 

s.tor·i.-ng· only ·a few· :o,f t:he :f':ot.fr.ler .des·c:r:iptors .P.~r cµrve where one 

.s·t·or-ed and the accuracy: of the. :representation. However, these 

savings might not be ·as la·r·g·e: as originally envisioned. Consider the 

following example. S.uppose one gets a satisfactory representation 

by only ~taring 10% of the Fourier coefficients. Since every 

coefficient contains ·both amplitude and phase Information, it is 

-11-
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represented by two real numbers (two Fourier descriptors out 

of the set defined in paragraph 2.2. 1). In standard precision 
I 

FORTRAN 77, each real number requires four bytes of m~mory. So if/· 

N is the number of coefficients, then one needs 0.18 x N x 2 x ~ = 

0.80 N bytes of m~mory to store 10% of the coefficients. Representing 

the curve by cl c.ha:incode (see ·Ch~_pt-~r j) l~ possible with one byte 

of memory pet e·lement, because .-each :.cha:in·c:ode element is an integer 

number between one and eight (see Chapter 3) and thus the total 

amount of memory needed is N bytes. Similarity calculattons are 

not eas i 1 y imp 1 emented with Fou-r i er descriptors, slnc_e. :l'n pr inc i p 1 e 

these coefficients are dep~rrd·~nt. o.n s·uch factors as scaling, rotation, 

* and translation. However, t:h~ spe·cial function <f> , that was defined 

in paragraph 2~2.-1, is indepehd~nt ·of the orientation of the curve 

and is a p:r tnc.l pa 1 candidate fu·n·.t,t l.on for'· use :in s i mi 1 a r i ty 

measu'rements. 

Classification te,c:hn.·lq,_ue:S:-are not: ~very accurate and cannot ·1:>_e. 

used for averaging c_urve-s... This meth·od .al,so c_annot be used to 

ca 1 cu 1 ate the s imilatr:,i:ty between two c.urv·e:s:. Spat i a 1 averaging on 

·the, ot:her hand' seerns to overcome a·ll the shortcomings of the other -

methods. 1·t is very accurate and fast. The data tepresentation 

that is used in this method ls very efficient and preserves the 

original curves, including th~-start and en·dpoints. The developed 

smoothing algorithm proves that it is possible to smooth/filter 

curves in the spatial domain while preserving the start and endpoint.s: 

-12-
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(see Chapter 5). Ffnal ly, siml larlty calculations c.an also be 

performed directly in the spatial domain (see Chapter ·5) and 
f 

this method_ is, therefore, the most suitable of the three techniques 

for the analysis of fluid flows . 

.. 

-13~ 
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'3. DATA REPRESENTATION AND INTERACT I V1E ROUTINES 

I 

In this chapter several asp~cts of the curve data representation 

. . 

~re explained. Some special routl.nes were developed for the 

~fficlent storage of curvest and fbr the interactive selection . 

of the curves ·from a terminal screen. Al 1 these routines a.re: 

presen~ed:: l-11 t_..:n.r,s- chapter as we 11. 

·) .• l :c:u.rv:e parameter i zat i OJl 

':_3-. l. l Chain codes -----------
Every curve consists of a :se·t of pixels. They lie next to 

e·ach other and together form one particular curve. One way to 

rep,rese-nt .eac·h· .curve could be a reco·r..dJng of t.h·e x a·nd y coordinates 

of _t:he ·ce·n,te'r ·o.f -~a~h pi xe 1. The·: :dl.s·adv.an:tage'. of this technique 

t·s. t-ha·t we. ·have tp. ,S ~:.or~: tWQ ~n.·,t· l t fe.·$ per pi xe 1 (see Figure 3. 1) • 

Ant>ther tethn.iq~~ trs·~_:$ c.:haiJl codes (Pavl idi s 1982). r=·Jg~re 3.2 shows 

h:a .. s at reas·t one neighbor_. 
. . . 

The ne i:gh·b.or·· :pixel can: be· any one of the 

.,e:ig-ht ne·.:lg:·_hbor pixels shown in Fl::g·ure :J~2. J3y as·s:ig_n-Jng a different 

number to each of the e-lgh.t ;p:i.xels; :one C'a"tt tin.Jqu~ly Identify where .. 

the neighboring pixel i.s positioned.: :Each cu'r~e :is tracked from it$ 

start point to its en.d point, and .the ·po.s'l:tlon of each pixel is 

recorded in the form of a chain cod·e that is derived from the 

position of the pixel with respect to }ts preceding piiel. The only 

exception is the starti.ng pixel. Since this pixel does not have a 
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predecessor, Its x andly coordinates are recorded. Figure 3.3 

shows a curve .. and the so derived chain code repre~entatlon. 
I 

It is obv.l ous that the cha In code rep·resentat I 011 Is a d I screte 

representation. However, no Information ts lost since the 

orig i na 1 curve was a 1 ready dig It i zed by the video pr.ocess 1 ng 

equipment. Since only one element per pixel is stored (with 
'l 

exception of the starting point), the data or curve representation 
-

is very efficient. A disadvantage is that one cannot directly 

relate a pixel's chain code value to a particular position on the 

screen. One always has to track the curve from its starting point 

to find out where a particular p·txel is located. 

Each cu.rve consists of a number of elements, where an element 

is defined as that part of the curve represented by the connecting 

line between the centers of two succeeding pixels. The length of 

each element depends on the configuration of the two pixels. 

Considering ~igure 3.4, one can see that the distance between the 

two centers of two succeeding pixels is equal to 1 (after normali­

zation) if they have one sid~ in common and equal to If if they 

have only one common corner. By adding the length of all elements 

that form a curve, one can calculate the total length of the curve. 

3. 1.3 ~rQgr~~-l~e~~ 
\ 

I 
I 

The starting point and chain code representation of each curve 
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are Inputs to the program. The end of a chain code representation· 

Is Identified by 11 011 • For each curve.the ,program generates three 

arrays. The first ·two arrays contain the x and y coordinates of 

each pixel. The third array stores the length, measured along the 
• 

curve, of that part of the curve that 'is located In between the 

pixel of interest and the curve 1 s starting point. If one uses array 
. . 

L for this purpose (see.Figure 3.5), then the value of L(l) ts 

either 1 or If depending on now the second pixel is located with 

respect to the first. The value of L(-2) is either 2, 1 + 4, or 

2f'i depending on the location of the second pixel on the curve with 

respect to the first pixel and the location of the third pixel with 

respect to the second one. There is another possibility: L(2) can 

a 1 so equa 1 .. 0 if the curve consists of only two pixels. 

The so formed arrays are used in the averaging, smoothing and 

correlation routines (see Chapte-rs 4 and 5). 

However, a different notation ls sometimes more useful;~:, In this 

nbtation the chain code values are converted Into two arrays contain­

ing the ~x and ~Y values of all the chain codes that form a 

particular curve. This is shown in Figure 3.6. Each chain code 

element simultaneously represents a /1x and ~y value that can be 

equal to either -1, 0, or +1. A chain code value of 9 Is Included 

to represent thos~ cases where the next pixel is actually on top of 

Its predecessdr. Thl5 can occur during the smoothing and averaging 

operations (see Chapters 4 and 5). Since these points do not 
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contain useful Information, they are usually· removed from the chain 

code representation. Figure 3.7 shows how'a set consisting of flx 

and fly values can be converted to a chain code description • 
I. • 

Because FORTRAN does not accept negat·tve or z~ro subscript values, 

the value 2 is added to the Ax and Ay values and the corresponding 

chain code value is found by looking in an array containing these 

values. The first subscript of this array is the Ax+ 2 value and 

the second subscript is the Ay + 2 value. 
I ' 

The (Ax,Ay) representation is especially useful in the 

available display routines, because they require the incremental 

x and y values as input variables (Ozsoy 1983). 

3.1.4 Freeman's corner cutter matrix ---------------------·--------·-
By using Freeman's corner cutter matrix (Freeman, 1961; Gumas, 

1985), one can remove the jaggedness of a c-urve. Figure 3.8 shows 

that certain pixels can be removed (the black pixels in this figure) 

without significant loss of information. In fact the curves look 

much smoother after this toutine is applied (see Figure 3.8). After 

applying this routine, the curves never change direction over more 

than ±45° going from the precee~ing two pixels (giving the current 

direction) to the next pixel in the curve. The ~ethod repeatedly 

,,replaces two adjacent chain tode elements by the new element(s) 

found in Freeman's matrix (see Figure 3.9). The second (or only) 

new element is used in the next replacement step. In Figure 3.10 

the routine is applied to the curve of Figure 3.8. Sometimes a 
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s·lngle i:terat~ton =1.s not e,nough and the routine has to be repeated 

untll tbe:? chain code ho longer changes. Although the routine 

$mooths =the curves, it only does so on a local basis. Freeman 

(1961) also shows how t:he routine can·be used to find the shortest 

path between the curve's startpoint and endpoint. Thls m~thod 

provides maximum: smoothing of the curve. However, unlike the 

alg_orithm ptesertt.ed in Ch.apter 5, no means of arbitrary $:lllQQt]tln~ 

3·. 2:· '·D.Ls·pJ·a·y routines 

Alt·hough some baslc g=r.ap·h:ic routines are already available 

(Oz·soy l983.l, some: twet1ty-five additional graphic routines were 

dev-e·loped: to a·l·d :fn the fluid flow analy-sis process (Kerstens 1985). 

The_s~1 ro .. lfti.nes cr~:ate a very inter-att,ive environment, set up and 

c_le:a_r :the. s·creen, a·t "low :th·e= us.et ·~o :C·hange the c.ertter of display 

a-n·d s:caling .factors, .p,rovld.·e man_y ,option·s., ·and quickly al low the 
.· . . . 

us:er ·to _display/aver.ag:e/$.mooth/correla·te·· (a·n) arbitrary frame(s)/ 

ttftve{.s} etc ... Most of' t,:he·s·e routines are- explained in Kerstens 

·fl985)-~ 

How_e,/er,. ·t:n ord.er to keep track of whi..ch curves are displayed 

where on the screen, in an efficient manner, and to enable the 

implementation of the averaging, smoothing, and correlation rou~lnes, 

special buffer and cursor routine$ were developed. Since these 

rout .. ines are fairly complicated: .and: represent a major part of the 
r 

·tota 1 FORTRAN code, the dev·e:J;"or.>""ed. a 1 gor i thms are presented and 
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3.3 Curv.e storage buffer 

After a curve is d lsplay.ed .oh "t·.he screen, it is often used in 

-some further processing. Suppose the displayed curve is the 

.output of previous processing routines; then it is necessary to 

store the relevant data of tbi·s curve so one can use it in the 

:future without having to re_c:_a_:lculate it. To accommodate this, 

spec la 1 buffer rout rne:s th,rt store a 11 re 1 evant data pf t:he· cur"ves 

displayed on the screen were ·de.veloped. Figure 3-:l .. 1 ~hows the: 

setup of the buffer wh I l·e its c001ponents a re expl)~·fned it1 :tn:e: 

rerna:i nder of this par·a_gra_p:h. 

·3:.-3. 1 Buffer eo i nte:rs· ---- -- - -- -- -·.~:-

·tot of othe·r '.J·.of:orrnat·lon for each cu_rv·~.: ·t'.hat ·is displayed on the 

screen (see F-l:gu.re :3.11). Since cllrve-s ~re· continuously removed 

a_nd add.ed: t"<:> the lls.t .of displayed 'curves, the stack continuously 

c·h-43,rrge:~-. ·So tlte: :s-tac::k h.a:·s t-o be updated quite frequently, and one 

_ha:s-. to ::keep: t.rac,k ·o:f where .a. pa.rt i cu 1 ar curve is stored. Suppose 

the current number .of dls._p.layed curves is N. One way of storing 

the curve.s wo~.rl.d :b~. to store them in the first N posit i ans of the 

buffer (seE?. ~'t-ciG·k i.ri Figure 3. 11) , in the order they appeared on the 

scre·en, .-and· to. r.·e.member. the current number of d.i sp 1 c,yed curves N. 
' I 

'· 

! 
l I 
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Assume, however, that one wants to remove one of the first curves 
I 

In the stack from the screen. Since thls curve Is no longer .shown 

on the screen, it also has to be removed from the stack (otherwise 

a stack overflow would quickly occur),. This In turn creates a gap 

In the stack that has to be closed. Suppose the third curve stored 

In the stack Is removed from the _screen. To close the created gap, 

the N-3 curves that were placed on th~ screen, ·--after the thl rd curve 

was put on the screen, ·have· to be shifted down one position in the 

stack because the third curve was removed. Since each curve can 

contain over 299 data points, this algorithm would be very 

·inefficient. 

An alternative would be to remember where each curve Is stored 

in the stack, remember where there are gaps in the stack, and to . 

fill up the gaps with data of the new curves being·displayed on the 

screen. Basically the new curve data would overwrite the old curve 

data. This is a very efficient algorithm in which no data is re-
0 

positioned in t~e stack. lmplement~tion of this algorithm requires 

that one keeps track of where the curve data is positioned. To 

understand how this can be done efficiently, one first has to 

consider how the buffer is going to be used. 

As mentioned in Chapter 2, the data is generated in the form 

of frames each consisting of several curves. Therefore, it is more 

than likely that at some time one wants to display simultaneously 

a complete frame, or a complete set of curves for that matter. If 
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this Is the case, a sequence-.of curves shoutd--.be stored In the 

buffer. Keeping track of the sequences would make it possible to 

delete any particular sequence from the buffer (and thus the 

screen). So every sequence of curves Is stored and removed in 

one shot. However, if this is the case, the only thing to remember 

is the stack addresses in w.hich the curves of particular sequence 

are stored arid the total number of sequences that are currently 

displayed on the screen. Figure 3. 11 shows how this is implemented. 

The stack addresses of the stored curves is stored in a one-· 

dimensional array in the ~ame order as they appear on the screen. 

This is the array labeled "curve-addresses" in Figure 3]11. Every 

curve of every displayed sequence is stored in this array. To keep 

track .of where a particular sequence starts in the "curve-addresses" 

array, a second one-dimensional array, containing the sequence 

posit i ans in the ''address-array", was .created. This array is a 1 so 

shown in F:i gu re 3. 11 and is 1 abe led "sequence-pas it ion". Stored in 

this array is the address of the last curve out of each sequence 

in the "curve-addresses" array. 

Suppose the address of the last curve of sequence N-1 is stored 
< 

in position x of the "curve-address" array and the address of the 

last curve of seq':,lence N is stored in positi.on Y of the "curve-
.. 

address'' array. Then the total number of curves in sequence N is 
~ 

,. 

Y -· X. So by keeping track of the las.t. address of each sequence in 

the "address-array", it is possible to locate the stack-addresses 

L_, ' 
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of ~11 the curves In a par.tlcular sequence. The only exception 
I 

Is the first sequence. One cannot find the number of curves In 

this sequence by substractlng the position of the last curve In ' 

the previous sequence from the position of t·he .last curve iri this 

sequence, since this sequence does not have a predecessor. However, 

lor this sequence the number of curves is equal to the pointer value 

and one can use this value Instead. The pointer value of the current 

sequence ls updated each time one adds a curve to this !equence. 

After completion, the sequence is disp·layed on the screen (note: 

a sequence was defined to be a set of curves that are transferred 

to the screen simultaneously). This results in a new sequence being 

start.ed and this in turn means t.hat the pointer in the "sequence­

array'' that was identifying the ·1ast curve of the then current 

sequence, is now pointing to the last curve of the just completed 

sequence. A "sequence-counter" is keeping track of the number of . 

sequences and is pointing to the position of the sequence-position 

pointer of the current sequence in the 11 sequence-position11 array 

(see Figure 3.11). As mentioned before, to keep track.of the curve's 

stack-addresses is not enough. It is also important to keep track 

of the gaps in the buffer, because new curves have to be stored in 

these p6~itions of the stack~ To do so efficiently, the available 
. 

stack-addresses are stored in a one-dimensional array called 

"available-addresses" (see Figure 3.11). A pot·nt.er keeps track of 
"'t 

.. 
how many of the addresses are still available. Each time a new 

• 

' ,, 
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curve Is stored, an address Is removed .from the ·top of the 

11avall~ble-addresses11 array, the pointer value (pointing to this 

array) is lowered by one, thereby pointing to the next available 

stack-address, the sequence-position ·pointer is incremented by 

one, thereby pointing to the next position in the t•curve-addresses" 

array, and the address that was just removed from the "available­

addresses" array is stored in the "curve-addresses" array, thereby 

pointing to the • the stack where the data of the gap In new curve 

-wi 11 be stored. ' .... ' .. 

So, • • of data manipulation takes place each time a minimum a new 
"' 

curve is stored. All the relev.ant curve data are now stored In the 

stack. 

lf a curve is removed from the stack, a similar routine takes 

place. One can remove any sequence from the screen and thus the 

stack. If a sequence is removed, th~ stack-addresses of all the 

curves ln that sequence ~_re removed from the "curve-addresses" array 
~ .... 

. and stored tn the· "avai lab·le-addresses" array. The. pointer to the 

''ava i lab 1 e-addresses'' array is updated and is thus st i 11 pointing to 

the first available-address in that array. The gap in the ncurve­

addresses'' array is removed by shifting up all the curve-addresses 

of the curves in the sequences that followed the removed sequence. 

Accordingly, the sequence-position pointers to these sequences are 

adjusted. The gap in the "sequence-position" array (created by the 
. ' 

removal of the pointer to the removed sequence) is removed in a 

• 1\ 

[} ' 

(_,., I 

' ,. 

' 
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Since one sequence was removed, the "sequence-

counter" value Is decremented by 1. The data of the curves that 

were removed is not removed from the stack. If a new curve Is 

stored at thls. position in the stack, its data will simply be 

written over the old curve data. Again a minimum amount of data 

manipulation was required to remove.a complete sequence -of curves 

from the stack and thus the screen. 

The buffer routines form ~n integral part of the image 

processlni algorithms- They provide a means of efficient curve 

maniptilation and data storage. Withoot them the flexibility of the 

routines would be greatly reduced and the implementation of 

similarity measurements {see Chapter 5) would become a very 

difficult task. 

3.3.2 Stored curve data ------------------
The stack consists of three arrays {see Figure 3.11). When a 

curve is stored, the data of the curve is divided over the three 

arrays. The stack-address of the curve is the same for all three 

arrays. The first array stores the /J.x and ~y values (see section 

3.1.3) of the curves. This is a three-dimensional integer array. 

The three subscripts of this array are: curve-address (first 

subscript) , /J.x or /J.y ( second subscript is 1 for /J.x and 2 for /J.y) , 

and pixel number (third subscript). The second array is a two­

dimensional integer array that stores other relevant data of a 

curve. Th·e two subscripts of th1$ arr~y are: curve-address (first 
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subscript), and relevant-data number (second subscript). The 

relevant data Is always stored In the same order (see Figure 3. 11) • 

. 

The first data element is reserved for the x-coordl~ate of the 

startpolnt of the curve. The second data element stores they­

coordinate of the startpoint of the curve. Also stored are the 

current color of the curv~, the number of '1x elements (or '1y elements) 

in the curve (this number is equal to the number of pixels in the 

curve -1), the label-type, label-switch, curve number, frame number, 

and window of display. A curve can be identified by looking at its 

curve and frame number. Each frame has a unique number and each 

curve within a particular frame also has a unique number. The curve 

numbers are displayed either above or below the starting points of 

the curves. Studying Figure 2.1 reveals why this is convenient. 

The general direction of the curves in the upper half of the screen 

is always downwards while the general direction of the curves in the 

bot.tom half of the screen is always upwards .. So curve labels can 

always be put above the startpoint of the curve if the curve ts in 

the upper half· of the screen and below the startpoint if the curve 

is located in the bottom half of the screen. The curve labels 

consist of the curve's number and an optional character telling if 

the curve is the output of an averaging. (see Chapter 4) or smoothing 
... 

(see Chapter 5) operation. This information results in a unique 

l·abel code that is stored in the label-type location of the second 

stack array. A label can be switched on 6r off and Its current 
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status Is stored In the label-switch location of the second stack 

array. The display-window location of the stack array keeps track 

of the wl ndow In which the curve is d I sp 1 ayed · (either fu 11 screen 

or not, see Kerstens 1985). 

The third stack array is a two-dimensional real array. It 

.contains the scaling factor and center of display (x and y 

coordinate) for each curve. These values can be changed by the 

user which enables him to zoom-in on particular portions of a 
• 

curve or to reposition the curves on the screen. Rather than 

recalculating all the new h.x, h.y, and startpoint coordinate values, 

these display parameters are store~ instead. Again, the first 

subscript ·is the curve address, while the second subscript is 

pointing to the data location of interest. 

3-3~3 Buffer routines -----------~---
There are four buffer routines: BUFINIT, BUFSEND, BUFDISP, 

and BUFERASE. The first routine, BUFINIT, initializes the buffer. 

It resets al 1 the pointers and fi 1 ls up the "available-addresses'' 

array with all the stack-addresses. This routine is called in the 

beginning of the main program and in the clear-screen routine. The 

second routine, BUFSEND, stores all the relevant data.of a curve in 

the buffer. It generates warning messages when the number of 

sequences reaches its maximum (currently 10), or when the number of 

curves reaches its maximum (currently 30). If the capacity of the 

buffer is exceeded, no curve data is stored, no additional curves 
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are displayed, and the user is notified of the fact that, either 

the stack is full or the number of sequences has reached its 

maximum, and that no data was stored. The dimensions of the 

appropriate arrays can be increased, if necessary, to facilitate 

the user's storage requirements. 

The third routine, BUFDISP, displays the curves in the curr~nt 

seque~ce a·nd updates the ''sequence-counter" • . 
.. 

The last ro~tine, BUFERASE, will erase a specified sequence 

(set of curves) after some specified delay. It also has a refresh 

option. Curves are removed from the screen by redisplaying them 

in the background color. Therefore, if one of the remov·ed curves 

crosses a displayed curve, the latter will have a gap after the 

removal process is completed. By refreshing the screen (redrawing 

the still displayed curves in their own color) after the removal 

operations, these gaps disappear. Finally, during the refresh 

operation, the labels can be either removed or displayed. 

' 
. 

3.3.4 Ql~e!~r-~~e 
An exact copy of the displayed curves on the screen is maintained 

in a two d.i mens i ona 1 byte a r·ray. The= reso 1 ut ion of this "di s_p 1 ay­

map• 1 array is the same as that of the screen: 512 x 480 locations. 

Each time a pixel of a curve is displayed on (removed from) the 

screen, the stack-address of that curve is stored in (removed from) 

the corresponding location of t~e "display-map" array. By just 

storing the stack-address of the curve, it is possible to keep the 

,.: ... .: 
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size of the "display-map" array down to a relatively modest value, 

while one can still find all the relevant curve data by looking 

at the stack locations that correspdnd with this stack-address. 
-

These operations take place In the BUFDISP and BUFERASE routines. 

The "display-map" is used in the developed cursor routines which 

are discus~ed in the next paragraph. 

3.4 Cursor routines 

The similarity routines require that the curves, between which 

a similarity value is calculated, are picked from the screen by the 

user. The reason for this is simple: to give the user the 

flexibility of calculating the similarity between arbitrary curves, 

originals, averaged, smoothed, or a mix of them. A different type 

of implementation would probably be a burden to the user and would 

not give hlm the flexibility of a cursor routine. However, such a 

routing was not available and h~d to be developed. A routine that 

returns the x and y coordinates of the picked pixel is available 

(Ozsoy 1983) and is used in the curve picking routine. 

3.4.1 Search routine --------·- -----
The search routine must be fast and efficient, have a high . ' 

resolutiah (meaning it must be able to differentiate between two 

curves that are close to each other), and find the curve that is 

G:Josest to the cursor. To find a curve, the cursor is shown on 
' 

the screen and the x and y coordinates of the pixel picked by the 

user are returned to the search routine: The search routine uses 

-28-

,. I 

'·' 



\ 

. ' 

these values to look in the display map (see section 3.3.4) ·to 
. 

see If this pi xe 1 be 1 ongs to a curve. ·This Is · the b 1 ack, center 

pixel of Figure 3.12. If it finds a stack-address (a number~ 0) 

in the display map the curve is found, and its stack-address is 
. . 

used to find the required curve data in the stack. If no stack­

address is found, the search· routine will search for the nearest -
pixel that is part of a curve, fts equivalent; moreover, it will 

.. 

look for the nearest location in the display map array containing 

a stack-address. Figure 3. 12 shows the order in which the 

locations are checked. The locations with the number 1 in them 

are th~ ones closest to the center location and are checked· first. 

They are checked in a counterclockwise fashion starting with the 

locatlon in the second quadrant. If no stack-address is found, 

the locations n~mbered two and three are checked in a similar 

f·ashion (starting with two). If still no address is found, the 

locations numbered fou_r are checked. Figure 3.12 show_s that each 

quadrant contains two locations that are numbered four (both 

locations are equally far from the cente·r location). Again th_ese 

locations are checked in a counterclockwise fashion. For each 

location in the second quadrant with a number between one and 
. ~ 

forty-one (see Figure 3.12), its relative coordinates with respect 

to the center location are stored in a look up table. Figure 3.13 

shows part of this table. The relative coordinates of the first 

four numbers {five location$) in each quadr~nt are shown in this 

table. From the table one can see.that the relative coordinate . 
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values of the locations In the third quadrant can be obtained from 

the relative coordinate values of the equivalent location in the 

second quadrant. The· required transform~tlon routine is: invert 

the sign of the relative y coordinate and flip this value with the 

' 
relative x coordinate. The relative coordinate values of the 

locat:ions in the fourth quadrant can als·o be obtained from the 

values in the second quadrant. The transformation required here • 
I S : 

invert the sign of both the. relative x and y coordinates-. Finally, 

to obtain the relatfve x and y coordinates of the locations iri the 

first quadrant from the values in the second quadrant,one has to 

invert the sign of the relative x coordinate and flip this value 

with the· relative y coordinate .. 

So only the relative coordinates of the second quadrant have to 

be stored in the look up table since the other values can be 

obtained with a s-imple transformation. The first forty-one numbers 

in the second quadrant represent seventy-five locations (see Figure 

3.12). So by looking at the .seventy-five locations in the second 

quadrant and the t~o hundred twenty-five locations in the other 

three quadrants,. the search routine looks at three hundred locations 

(p-lus the center location) to find a curve. The total screen 

consists of 512 x 480 = 245,760 pixels so the search routine is 
. '• 

checking approximately lout of 800 pixels. For a thirteen inch 

monitor with an aspect ratio of 3:4, the total viewing area Is 

7.8 x 10.4 = 81.12 square inches .• So the total area checked by 

-30-
..,.,. C. 

I ' 



the routine • I 5 : 

----. ... 
301 

245,760 x 81.12 ~ 0.1 square inches (3. ') 
.. 

Since the checked area approx·imates the shape of a circle, the 

diameter of this area is approximately: 

2x/¥ = 0.36 inches .. 
· (3. 2) 

This provides more than enough resolution and will make It easy 

r for the user to pick the desired curve even if the curves are very 

close to each other. 

The routine will find the curve that i·s closest to the center 

of the cursor. However, if a curve is further than approximately 

.18 inches from the center of the cursor, the routine will not find 

the curve. To compensate.for this, the search Is expanded to check 

the locations on the horizontal, vertical, and two diagonals going 

through the center of the cursor (see Figure 3.1·4). Again, the 

routine checks the locations in a counterclockwise fashion. After 

completion of the local s~arch, it starts with the relative 

coordi.nate.s (0, 10) above the cursor, then checks the location 

(-10, 10) on the diagonal, then the location (-10, 0) on the 

horizontal, etc. Although the routine skips a lot of locations 

(to keep it efficient), it generates a "star" of checked locations 

and should almost always find a curve. If still no curve is found, 

the· user has to try again. In the worst case when no curve is 

found, the cursor is positioned in the center of display, the 

l . . . 
. l. 

... 
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additional numbe~ of checked positions Is equal to 1872 and the 

total number of checked locations is 1872 + 301 = 2173. So 

approxlniately 1 out of 113 pixels Is checked In the worst case 

situation (le~s than 1%) keeping the routine still very efficient. 

As soon as a curve is found by the search routine, the routine 

is t~rminated and the curve's stack-address is returned. Because 

the curve's stack-address is known. all relevant data can be found 

in the stack. This data is used to redisplay the curve in a 

different color immediately after it is found. The user can accept 

or reject the curve. If the curve is rejected, it ts again 

redisplayed in its old co·lor. If the curve is accepted, its data 

is used in the qperation described in the following1 

• 

.. . 

, 
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4. CURVE PROCESSING 

One of the main objectives of this ·thesis was to develop an 
" 

algorithm capable of averaging a set of curves. The developed 

algorithm and the required support routines are presented in-

this chapter. 

4.1 Length calculations 

- I 

, 

Before any averages can be calculated, some consideration has 

to be given to the relevant length of the curves. It is also 

important to find the right points on each curve that must be 

used in the averaging operation. In the remainder of this paragraph 

the.se topics are discussed. 

4.1.1 ~2r~~!!~~~-Y~r§~~-!b2r!~§!_~YrY~-l~~gfb~ 

Two curves almost never have the same length (see Figure 2.1). 

Therefore, before two or more curves are averaged, some thought has 

to be given to how the difference in length is to be handled. One 

canreither norma-lize the curve's lengths or one can average the 

curves over the ·tength of the shortest curve. 

If two or more curves...are averaged, a number of points on one 
i6 

curv~ .are c6mpared with the same number of points on the other 

curves. If the· length of the curves is normalized, these points 

are spread out over the entire curve. The length of a section 

between two of the points (me~ured along the curve) is the same 

for all sections of one curve. So if one curve is longer than 

-33-
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another curve, these sect Ions a.re a 1 so longer. A Just t f I cat I on, 

for using normalized lengths could be the-assumption that the curves 

started out to have the same length, but the disturbance In the 

flow stretches some curves more than oth~rs. By normalizing the 

curve's length (spreadl-ng out the points over the entire length of 

the curve) one can compensate for this effect. This is shown in 

Figure 4.1. Another possibility is to ·assume that the length of . 

a section between two points does not change from curve to curve. 

So a longer curve Just has .more points. Averaging requires that 

the same number of points on each curve is used. So if the shortest 

curve has N points, only the first N points of the other curves are 

used. Since the other points are not available for the shortest 

curve, one cannot average the remaining points on the longer curves. 

This is shown in Figure 4. 2. 

To find the locatlon of the points on each curve (see paragraph 

4.2), it is important to know for each pixel what the length of the 

curve section enclosed by this pixel and the startpoint of the curve 

is. Therefore, this value ls calculated for each pixel in each 

curve and stored in a special array for each curve •. If this value 

is known for pixel N, the value for pixel N + 1 is found by adding 

the distance between the center:s of pixel N and- pixel N + 1 (either· 

l or If, see sections 3. ·1.2 and 3. 1.3) to the value of pixel N. 

. . 
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4.1.3 R~solutlon considerations -------------------------
Since the same number Qf points of each curve ts used In the 

average calculations, it is not inmediately obvious how many points 

per curve have to be calculated. Too many points would make the 

algorithm inefficient, while res~lution would suff~r If the number 

' 

,. 

of points is not high enough. Therefore, when normalized lengths 

are used, the number of points is mad~ equal to th~ number of 

s~mples (pixels} in the curve with the highest ~umber of samples. 

When lengths equal to the length of the shortest curve are used, the 

number of samples in the part of each curve that is being· osed in 

the averaging routine, is counted and. the number of points is 

made equal to the highest number of samples in any one of those 

sect ions.· 

When the length of the shortest. curve is used as a reference to 

determine what part of the longer curves is to be used in the 

averaging calculations, one has to calculate the number of relevant 

samples (pixels) in those curves~ The length of, and the number of 

pixels in, the shortes:t curve are known. For each pixel, the 

distance (measured along the curve) to the curve's startpoint is 

known (see section 4. 1.2). At some pixel, for every curve, this 

length will be approximately equal to the length of the shortest 

curve. The maximum error is !12 which is half of the maximum 

distance between the centers of two pix~ls (see section J.1.2).· 

. . 
...... 
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This pixel is found by means of a binary search (very efficient). 

Suppose there are N + 1, pixels in the shortest curve. Starting 

at the startpoint of the curve, each pixel ls assigned a number. 
,, 

The startpolnt pixel is pixel O and the endpoint pixel ts pixel N. 

Then the shortest curve consists of N elements where an element 

is the connecting line b~tween the centers of two adjacent pixels~ 

The length of each element is either 1 or Ii (see section 3. 1.2). 

So the total length of the.shortest curve is a value between N 

and Nfi. If the short~.st curve is a ·straight horizontal or vertical 

line, its length is N. A different curve having the same length 

has at least N/12 pixels. (If this quantity is not an integer, the 

value i.s rounded to the nearest lnteger that is smaller than this 

value). The only time this minimum is reached is if the ~econd 

cu·rve makes an angle of 45° (or 13-5°) with the horizontal. This is 

shown in Figure 4.3. 
0 

On the other hand if th~ shortest curve makes an angle of 45 

with the horizontal, its length reaches the maximum value of Nlf 

(the shortest curve consisted of N elements). A different curve 

having the same length has at the most Nil pi"xels (if this number 

·; 

is not an integer, it is rounded to the nearest integer that is 

la~ger than this value). The only ti.me this maximum is reached is 

if the second curve is a horizontal or vertical line (see Figure .. 
4.4). If the position or shape of the shortest curve is different 

from the ones described above, the minimum and maximum values will 
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not be reached. So if the number of elements In the shortest curve 

ts N, the number of elements in the other curves being used In the 

averaging calculations is within the range: 

l N//iJ S elements used ~ f Nfil ( 4. 1) 

Within this range there is a pixel whose distance to the curve's 

startpoint is equal to the length of the shortest curve L. This 

is shown ln Figure 4_. 5. The exact 1 ocat ion of this pi xe 1 is found 

with a binary search routine. Figure· 4.6 shows this technique. The 

range of poss i b le p.i xe 1 s i ·s d i v i d ed i n two. The d i stance of the 

curve's starting point to this pixel is compared with the length of 

the shortest curve. If this -length is less than the length· of the 

shortest curve~ this pixel becomes the new lower limit o~the range 

of possible pixels. If the length was larger than the length of the 

shortest curve, this pixel becomes the new upper limit of the range 

of possible pixels. By repeati~g this technique, the right pixel 

will be found very quickly (see Figure ~.6), after which the number 

of pixels to be included in the averaging calculations is known. 

4.2 Curve avera9ing 

Averaging· of curves is performed by -averaging a large number 

of points on each curve. The number of points is equal to the 

maximum number of pixels in the curves (se~ section 4.1.3) and their 

location is found by the method that is presented in the next section. 

-37-
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The averaging routine requires a number of points that are 

spaced equally over the part of the curve that Is to be included 

in the averaging operation. The ,spacing between the points is 

found by dividing the length of the section of the curve one .Is 

interested in (see section 4.1.1) by the total number of points 

minus one (see section 4. 1.3). Since both the number of points 

per curve and the spacin:g between the points is now known, it is 

. possible to calculate the absolute x and y coordinates of each 

point. Suppose there are N + 1 points numbered O through N. The 

distance {measured along the cu.rve) between a certain point and the 

startpoint of the curve is equal· to the points number multiplied 

with the interpoint spacing. Tracking the curve over this distance 

will give the point's position and thus coordinates. For each 

point and each pixel the distance to the startpoint Js known. So 

-it ·rs possible to find the two pix-els on each side of the point 
. ' 

that are closest to that poi-nt. Since the x and y coordinates of 

each pixel are also known, it is now possible to calculate, by 1 inear· 

interpolation, both the location and coordinates of each point. 

This position usually does not coincide with any of the pixel 

centers. As an example tonsider Figure 4.7. The curve in this 

figure consists of seven pixels or six elements (only the centers of 

the pixels are shown). The length of the curve is 3 x 1 + 3 x l'i. = 

3(1 + 12). If seven points ha-veto be equally spaced over this 
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curve, the spacing between them ts equal to 3(1 + 12)/(7-1) 

c=l .24 The _point locations are shown in Figure 4.7. Clearly the , 
I 

1nterpoint spacings are constant over the entire curve and only 

the first and last point coincide with a pixel center (this ts 

always.the case). 

The average curve of a set of curves is found by aver~ging 

the equally spaced points one by one. To average a particular 

. ' ' ... 

point on all these curves, the averages of both the x coordinates ahd 

they coordinat~s of this point are calculated. Weighting factors 

can be assigned to each curve. By assigning equal weighting 

factors (# 0) to each curve, an unweighted average is obtained. 

Thus the coordinates of a point on the average curve are talculated 

by: 

where 

x. 
1 ,ave 

Yi ,ave 

n 
x 1 = r x •. w. 

, ave j = 1 ·1 , J J 

y i , ~ve 

= the X 

n 
• L WJ 

j=l 
" 

n 
= E 

j=l 
n 
l: 

j=l 

y. .w 
I ,J y 

w. 
J 

coordinate of point 

the coordinate of • = y point 
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x 1 • = the x coordinate of point i of curve j ,J 

yi.,j =they coordinate of point i of curve j 

wj = the weighting factor for curve j 

n = the total number of curves that are averaged 
. . .. _ 

This process is repeated for all the points of section 4.2.1 and _ 

for the startpoints of all the curves. The points on the ~ver.age 

curve will not be equally spaced anymore .. However, since the 

original curves are smooth, the distance between the points on the 

average curve can be represented by two pixel·s (the factor 2 results 

from rounding to integer values). Most of the time the ~istance 

can be represented by one pixel ot even zero pixels, which occurs 

when two points are almost on top of eac·h other. (This happens 

when curves move in opposite directions.) The average curve is 

represented by a continuous string of pixels that closely approximates 

the calculated point locations. Redundant pixels are removed by 

applying Freeman's corner ~utter-routine (see section 3.1.4). 

4.2.3 Results ... -------
The average cu.rve's- data is stored in the buffer and displayed 

on the screen. The curves. also are .. assigned a label consisting of 

a number and the character A (for Average, see Figures 4.15 and 

4. 16) . 

Figure 4.8 shows three curves. The curve on the left and frght 

of the figure are the original curves. The one in the center is the 

average curve that results from unweighted n6rma1 ized_averaging 
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(see sect I on 4. 1. 1). F lgure 4. 9 shows ·the same two or I g Ina 1 
I curves, but the curve tn the center ts now the curve that results 

from an unweighted average over the length of the shortest curve. 
Note the difference between Figures 4.~ and 4.9. Weighted averages 
of the same original curves are shown in Figures 4. 10 and 4. 11. 

The weighting factor for the curve on the left is 1 while the 

weighting factor for the curve on the right ts 1/3,. 1, and 3. This 
results in the average curves that are shown in the middle and that 
depend on the weighting factor of the curve on the right. The 

higher the weighting factor for the curve on the right, the more 

the average curve resembles this curve and the more the average 
<.:: 

curve's position is sh i ·fted towards the curve with the h I gher 

weighting factor (see Figure 4. 10 and 4. 11). The averages shown in 
Figure 4. 10 are obtained from a normalized averaging operation and • ' •••. ;I 

the averages in Figure 4.11are obtained from averaging each curve 

over the length of the shortest curve. The routine is very efficient 
and the ·results are shown almost instantaneously on the screen 

(averaging of two frames with ten curves each takes less than one 

second for a moderately used VAX 11/780 computer). The routine is 

capable of averaging each curve on a particular frame with the 

corresponding curves on many other.frames. The whole process can 
' 

be performed in one operation and is shown in Figure 4.12. It 

enables the user to eliminate disturbances and noise {by averaging) 
as well as modulation effects that occur over a longer time. 
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Figures 4.8 through 4.11 show averages of curves taken from· 

· actual fluid flows. Figure_s .4.13 and 4.14 show the top half of 

a fluid flow image. As shown in Figure 2.1, the bottom half of 

such an image is usually very similar to the top half. In the 

actual analysis, both halves have ~o be included (which is possible 

with the current version of the program). Finally, Figures 4.15 

and 4.16 show the top half of an average frame obtained from 

averaging the frames shown in Figure 4.13 and 4.14. Figure 4.15 

shows the average frame obtained by a normalized length average, 

w.hile Figure 4.16 shows the average frame that is obtained by a 

shortest length average. 

For ease of viewing, the scaling fa~tor for the curves in 

Figures 4.8 through 4.11 and -4.13 through 4.16 was set equal to three. 

This res~lts 1n displ-ayed curves that contain more pixels than 

the actual curves whlch might leave the vfewer with the thought 
', 

that further improvement is possible. However, since all operations 
<' 

• 
use the original data, this is neither possible nor necessary, and 

the curves are shown with the h lghest poss i b.-1 e reso 1 ut ion. 
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5. CURVE FILTERING AND RECOGNITION 

Filtering or smoothing of curves might be required for a 

number of reasons. Additional noise or disturbance reduction 

might be needed or one might want to retrieve the basic or 

fundamental shape of the curves. For this reason a special smoothing 

algorithm was developed and this algorithm Is presented in the next 

paragraph. 

The second algorithm presented In this chapter calculates 

a similarity value to express the similarity between a number of 

curves. This enables the user to calculate how much ·a curve is 

chang·ing as a function of time or position. Another application 

might be to use these similarity values to recognize a frame or 

curve. 

' 
5. 1 Curve smooth i J'l9 

A special smoothing algorith~ operating in the spatial domain 

was developed and is pre~ented in the remainder of this paragraph. 

The differences between smoothing· in the spatial or frequency domain 

are discussed in the following section. 

.. 
The discussion in paragraph 2.3 remains valid here. The 

c~lculation of Fourier transforms and inverse Fourier transforms is 

relatively time consuming and costly. Filtering of the curve in 

the frequency domain is performed by multiplying the curve's 

transform with the desired filter function. However, the same 
f 
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operation can be performed in the spatial domain by means of a 

convolution operation between the curve's function and the Inverse 

transform of the desired filter function (Carlson, 1975). In 

ter·ms of computation and effort, both operations are comparable 

(excluding the Fourier transform and inverse Fourier transform 

operations). So in terms of speed the spatial domain is clearly 

preferable. The filter operation in the frequency domain will 

have a dramatic effect on the location of the endpoints of the 

curves (see Gumas, 1985). The endpoint locations depend on the 

filtering operation and will be different from the original location. 

Due to the interchangeability of the convolution operation in the 
f 

spatial domain and the multiplication operation in the frequency 

domain, this is also true for the smoothing operation in the 

spatial domain. However, with a specially developed modification 

of the convolution operation, it is possible to keep the endpoints 

fixed-. For these reasons, the spat i a 1 domain approach is preferred. 

The developed algorithms are presented in the next section. 

As mentioned in section 3.1.3, the ~x and ~y values for each 

curve are either -1, O, ·or +l. Figure 5.1 shows the ~x and '1Y 

sequences for a particular curve. The curve.itself is shown in 

Figure 5.2. The absolute displacement in the x direction t~ 4x(-1) 

+2 x 1 = ".'"2. Since there are ei-9-{it elements in this curve, the 

average displacement per element in the x direction is -2/8 = -.25. 
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Similarly, the .absolute and average displacements In they direction 

• 

are +4 and .5 respectively. The- cumulative averages are also shown 

.. 
ln Figure 5.1. The cumulative averages are rounded to the nearest 

integer. (A value that is exactly between two integer values Is 

rounded to the nearest integer that is smaller than this value.) 

These rounded cumulative averages are also shown in Figure 5.1. 

From the latter, the newly smoothed 6X and 6Y values are derived 

(see ·Figure 5. 1). From these values the smoothed curve rs der ive·d; 

it is shown in Fi·gure 5.:2. By averag_ing the 6X and· 6Y values over 

·.' 

the entire length of the curve, all resolution is lost (the average 

deviation is the same for all elements) and thus no further smoothing 

is possible~ This method is essentially the same as the Freeman 

. (1961) routine thaf finds the shortest path between the curve's 

startpoint and endpoint. However, both fo·rms of smoothing produce 

the same curve for all those origihal turves that have the same star~­

point and en.dpoint (see Figure 5.3) because the cumulative 6X and 

6Y values are the same for all these curves. This is not always 

desired. Often one likes to mainta.in the "fundamental" shape of the 

.. 
cur·ve. Besides, since no convolution operation was involved, it is 

not rea·]-ly clear what. kind of filtering operation was applied. By 

averaging the AX and /j y va 1 ues over the en·t ire curve, each e 1 ement 

of the original curve con tr i bu.ted to the value of each e 1 ement in 

the smoothed curve. It seems logical that if this range is reduced, 

. 
the smoothing wi 11 als·o be reduced. This is accomplished by the 

modified and unmodi-fied convolution operations that-are described next. 
" 
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For a continuous tangent angle function and filter function, 

the filtering/smoothing operation can be descri·bed wlth a convolution 

· l nteg ra 1 (Car 1 son 1975) .: 

A 

S (1) = J 4> (A). f (1 - A) dA (5 .• 1) 

-A 
where: 

s(1) = the smoothed function (curve); s(R,) = 0 for .e,~[-(A+W), 

(A+W)] 

, 4> (1) = tangent angle function of curve; 4> (1) = 0 for t~[-A,A] 

f(1) = fi ltering/smc>othing function; f(.e,) = 0 for 14[-W,W] 

= integration variable 

Also f(!) ls normalized so that: 

w 
f f(1) d1 = l (5.2) 

-w 
The second equation is needed to obtain unit gain. If the tangent 

angle functi·on is a constant (straight line) and the filtering 

function is a constant, then the smoothed value at 1 = 0 should 

have the same tangent angle as the original curve. This ts true 

because equation 5.1 is equivalent to the averaging operation that 

was described in the beginning of this section. 

obtained by the following constraint: 

W < A 

This result is 

(5.3) 

If equations 5.1 through 5.3 are valid, the smoothed curve tangent 

angle at R, = 0 wi 11 be equal to_ the constant tangent angle of the 

1',, 
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original curve. To prove thls,. consider the following tangent 

angle function: 

cl> for Re: [-A, A] 

o for 1, [-A ,A] 
(5. 4) 

Then with equations 5~1 through 5.3, one gets fot the ·smoothed 

curve: 

S(o) 

A 

= f cf>(A) 

-A 

-A 

= -(j) J 
A. 

w 

A 

f(o-A) dA =. f f(-A) dA 
-A 

A 

f(µ) dµ - • ff(µ) dµ 

-A 

= •J f(µ) dµ = •• 1 =. 
-w 

I 

(5. 5) 

If A= W, the width of the filter and the tangent angle function are 

the same. This, in fact, is the averaging operation presented at 

the beginning of this section. For W < A equation 5.5 is still 

valid, but the width of the filter function is less than the width 

of the tangent angle function resulting in a local average. So 

the convo 1 u ti on ope.ration is a loca 1 averaging _operation. 

Figure 5.4 shows the smoothed function when the tangent angle 
, 

and filter functions are rectangular pulses. Note ·that both 

equations 5.2 and 5.3 are valid for these functions~ Studying the 
R~ 

' 
smoothed function reveals two undesi'rable effects. First, the 

. 
"length" of the smoothed curve is longer than that of the original 



,_ 

curve (2A + 2W) and secondly the ends of the tangent angle function 

I 

of the smoothed curve taper off. The latter results In errors 
I 

at the end and start of the smoothed curve. This is shown In 

Figure 5.5 for the functions of Figure 5.4 with t = n (meaning that 

t-he original curve ls a horizontal line of l~ngth 2A with Its 

startpolnt at the right). The shape of the smooth~~ curve depends 

on the tangent ang 1 e of the orig i na 1 1 i ne ( compare Fi gu.res 5. 5 and 

5.6). 

The reason for these errors is the local averaging operation. 

The operation averages the original tangent angle function over a 

fixed region. At the ends.of the curve, the tangent angle function 

is not available anymore over the entire region, while it Is still 

averaged over thi$ fixed region. This causes a gradual drop in 

the -calculated average. 

Instead of appl.ying the smoothing operation to the tangent 

angle function, it is also possible to operate on _the x and y 

coordinate functions of the original curve. This would give: 

where: 

XS ( i) 

y s ( t") 

~(R,) 

y(-t) 

A A 

= ,f ~(l) f(l-l) dl and y
5

(1) = 

-A 

J y(l) f(l-1) dl 

-A 

= the X coord i,nate function of the smoothed curve 
·, ..... , 

= they coordinate function of the smoothed curve 

- the X coordinate function of the original curve -
-

- the y coordinate function of the original curve -
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and: 

.. .. , . . . 

X ( 1) 
s 

y s (1) 

X (1) 

(1) y . 

Equations 

- 0 fof 1f [ -(A+W) , (A+W)] -

- 0 .for 1f [- (A+W) , (A+W)] -
- 0 for 1t[-A,A] -
- 0 for 1f [ -A ,A] -

5.2 and 5.3 remain va 1 t·d. So If x(1), y(i), and f(1) 

are again rectangular pulses, the smoothed functions look similar to 

s(1) in Figure 5.4 and are shown in Figure 5.7. The absolute 

displaceme~ts 1n the x and y direction (from startpolnt to endpoint) 

for the origin~l ~urve are equal to: 

A 

D = f. x ( 1)_ 
X, 0.1 d 

D y,o-ld 

where: 

-A 
-A. 

= I y c .e.) 

-A 

d1 = 2AX 

(5.7) 

d1 = 2AY 

D = the absolute displacement of the original curve in x,old 
• 

the x direction 

D ,old= the absolute displacement of the original curve in 
·Y 

they direction 

But the absolute displacement~ for the x and y coordinates of the 

smoothed curve are (see Figure 5.7): 
(A+W) 

D = J x
5

(1) d1 = 2AX x,new 
-{A+W) 

(A+W) 

D = J y
5

(1) d1 = 2AY y,new 
-(A+W) 
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where: 
I 

D = the absolute displacement of the smoothed curve tn 
x,new 

the x direction 

D = the absolute displacement of the smoothed curve tn 
y,new 

they direction 

So the. absolute displacement between the startpoint and endpoint of 

both the original and smoothed curve is the same. Since both ctirves 
0 

have the same startpoint, th_e endpoints are also the same. This is 

true in general, as long as equation 5.2 is satisfiedo 

In the actual implementation, the x and y functions are· the 

discrete ~ and fly functions that were defined in section 3. 1. 3 . 
• 

The smoothed x and y functions will be approximated by the similar 
S S. 

discrete fun-ctions Ax and fly • The equivalent of equation 5.2 
s s 

- becomes: 

w 
Ek f (k) = 1 

k=-Wk 

The equivalents of equations 5.6 become: 

and, 

* J\,k 
x (k) = E llx(n) f(k - n) 

s k=-Ak 

1, Ak . 
y (k) = E lly(n) f(k - n) 

s k=-A . k 

Finally, the equivalent of equation 5.3 becomes: 

-so-
.. 

. ......... ~ 
_,, .. --~··· ..... 

(5.9) 

· (5. 10) 

( 5. 11) 

(-)} 
- "' ( 5. 12) 

• 
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Because I t.x l!.1 , .I '1Y l!.1 , and equation (5. 9) also j 6x: l!.1 and 

* I Ay I< 1 • s 
,1c * 

The Ax and Ay· values represent the displacement In ( s s 

number of pixels and thus have to be integer values. * Let flx and 
s 

* * * Ay be the nearest integer values to x and s s y where the difference s 

between the rounded and original values is carried over to the next 

sample to avoid cumulative errors. M * * Then '1x and Ay are either s s 

-1, 0 or +1. So the smoothed curves can be approximated with a 

continuous string of pixels. An example, with Wk= 

1 / 1 l for a 11 k , and 6x ( k) = l for k t.[ - 7 , ·7.] i s shown 

Correcting for cumulative errors causes gaps in the 

5, 

• tn 

Ax * 
s 

Ak = 7, f(k) 

Figure 5.8 . 

function In 

--

this particular case. This can cause an undesired effect. Consider 

the data of Figure 5.9. The ~x and 6y are the same as the Ax function 
.,_ .,\. ,, ,, 

.in Figure 5.8. So the 6x · and 6y · functions are also the same as the s . . s 
... 

llx 
O 

function of Figure 5. 8. Both the orig i na 1 and smoothed curves 
s 

are plotted 1n Figure 5.10~ The gaps cause no problem here since 

* * t·hey occur at the same samples for both the llx and Ay function. 
s s 

If the 6y string is shortened by two samples (one on each side), the 
..... ,, 

gaps in fly are shifted by one position (either to the right or to 
s 

the left depending on which side of the curve they are on. The data 

of these • shown • Figure 5. 11 • Both shown • curves IS In curves are 1n 

Figure· 5.12. The gaps do cause a problem this time. The ''smoothed'' 

curve is actually less smooth than the original curve. To avoid 

these problems, the smoothing operation is modified. Consider 
' 

Figure 5.lJJhe tapered ends of the x(t) and y{!) functions are 
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divided at 1 = A and 1 = -A·respectively. The values at the ends 
I 

of the ta~ered ends ~re mirrored with respect to the dividing 

lines and added to the corresponding original function values. 

This Is shown in Figure 5.13. This process has two advantages. 

First it guarantees that the Ax and Ay strings have the same s s 

\ 

length as the original x and y string. And secondly, the gaps that 

were present In Figure 5.8 are removed. In f~ct for the.particular 

Ax df Figure 5.8, Ax and ~xs are the same. The modified ~x and ~y s s 

have to be ~ounded to the nearest Integer value. Again the 

difference between the actual and rou·nded value is carried over to 

the next sample to avoid cumulative errors. Significant errors can 

result if this is not done. For example, if the values are 

continuously rounded to a value that is smaller, the total absolute 

displacement will not be the same anymore and a different endpoint 

wi l 1 resu 1 t .. 

Figure 5.14 shows what is established by the modification. 

In this examp-le Wk= 2. The arrows show to which displa<;ement values 

in the smoothed curve the displacement values of the original curve 

contribute. The ·das:hed arrows show the folded back contributions. 

The pixels near the end of the original curve contribute more to the 

pixels near the end of the smoothed curve. Closer to the end, 

fewer pixels of the original curve are c~ntributing to the displace­

ment values of the smoothed curve. This, in fact, results in a 

reduction in smoothing at the ends of the curve. This can be 
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justified by noting that less Information Is available for the·· 

ends of the original curve. In the middle of the original curve, 

the shape of the curve is known on both sides of the pixels one 

' 

is looking at. This is less and less the case· for the pixels near 

the end. 

5. 1.3 Results -------
The minimum f'lter width is one pixel wide (Wk= 0). If this 

filter ts used, the original curve is left unchanged. The maximum 

filter width is constrained by equation 5.12. Maximum smoothing 

is obtained for Wk= Ak. Intermediate values of Wk give different 

smoothing values. Flgures :5.15 through 5.18 show the smoothing of 

two curves obtained by different values of Wk. The shape of the 

.. 
. . . . . 

filtering function was a rectangular pulse, resulting in a sine (with o 

sine x = sin(1Tx)/(1Tx)) filter function in the frequency domain. 

The routing could be modi-fied for other filters. However, as can 

be seen from Figures 5.15 through 5.18, excellent smoothing 

characteristics are obtained, gfving the user a lot of flexibility 

in. terms of deciding how much smoothing should be used. 

5.2 Similarity calculations 

As an aid in the analysis of fluid flows, it would be nice if 

one could express the similarity between two curves as a numerical 

value. In the remainder of this paragraph such a technique will 

be presented. 
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!~!:!9Sb 
Bas1ca11y the discussion rn paragraph 4.1.1 als·o appl,tes' to this 

case. So again the user is given the option to calculate the 

similarity value over either the full lengths of the curves (which 

then have to be normalized to obtain an equal amount of me·asurement 

points per curve) or over the length of the shortest cu·rve. This 

choice is decoupled from the choice of either method in the averaging 

algor.ithm for two reasons. First, one might want to measure the 

similarity value between two of the origi_nal curves. Second, if an 

average curve was obtained from a set o.f original curves by using 

the shortest length method, one might still want to compare one of 
• . 

the complete origlnal curves with the average curve. 

5.2.2 Cross-correlation measurements ------------------------------
At first glance, a cross-correlation measurement between two 

curves will give the desired similarity value. Suppose we have 

two curves with the tangent ~ngle functlons • 1(1) and • 2(1). The 

cross-correlation value (Carlson 1975) between these two curves 

is equa 1 t--o: 
A 

R~ ~ (-r) 
'+' 1 'f' 2 

= J •1<1) 

-A 

A 

.;(JI.-T) d1 = J t1(1) 

-A 
(5.13) 

where 

~
2
*(.e.) = the complex conjugate of t 2(1) which is equal to 

t
2

(1) because t 2(t) (and t 1(1)) is a real function 
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cf> 1 (R,) = 0 for !f [ -A ,A] 

cf>2(t) - 0 for 1~[-A,AJ -

'T = a shift operator 

Now suppose ct> 1(1) = 

2 

- f and t 2(1) = - i for 1£f;A,A]. Their 

R t t ( 0) = A'lf / 4 . 
! i 

3A ir /4. 

If t 3(1) = - ~ for 1~[-A,A], then Rt t (0) = 
1 3 

Figure 

So Rt 1t 2 (o) = 3Rt t (0). t'he three curves are shown in 
1 3 

5.19. This result is undesirable. Rt t (0) should equal 
1 2 

Rt t (0) because in fluid flows the difference between t 2 and t 1 
1 3 

is equal to the difference between cf> and cp 1• Also if the camera 
3 

in the set-up of Figure 2.1 is rotated over 180°, the timellnes 

propagate from right to left and the fluid flow is a mirrored image 

of the one shown in Figure 2. 1. This is shown for. curves cp 1 and <1> 2 
/ I 

in Figure 5. 20.<, The mirrored image of curve ct> 1 {<1> 1) is equal to its 
I 

original while the mirrored image of curve <1> 2(<1> 2) is equal to curve 
,· 

t
3 

In Figure 5.19. So a simple rotation of the camera w~ld give 

different similarity value if this method is.used, which is 

undesirable. 
·p 

Instead of uslng the horizontal as the line of reference for 

measuring the curve angles, one can use a ve.rtical line~ This is 

shown in Figure 5.21. 

for !e:{-A,A]. So both Rtlt2(o) and RtltJ (0) are equal to zero. 

Both result in the same value, but so would any other correlation 

involving curve cf> 1• So no matter what the sha·pe of the other 
r 

curve is, if it is correlated with <1> 1, the result will be zero. 
'' 
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This Is clearly undesirable. The solution seems to lie In the 

normalization of equation 5.13. To do so, equation 5.13 ts 

div I ded by the norm of both <!) 1 and 4> 2• Thus · ' 

A 

R; 1 ell 2 h ) = J ell 1 (t) ell 2 ( R. -,:) dR. 

-A 

l lc11 1 I I. I lc11 2 I I 
A 

= J ell 1 {R.) ell 2 (R. -T ) d R. 

-A 

A 

A 

J l c11 2 (.e. > I 
2 

d i 

-A 

= J cj) l (t) cj) 2 fa - -r) d .l 

-A 
A A 

J cj) ~ ( R. ) d .l • J cj) ~ (R. ) d .l 

and with Schwarz' i~nequal ity;A 

So with the same c11 1, c11 2 , and c11 3 as before, one now obtains 

;·----
, . 

(5. 14) 

(5. 15) 

11 cj) 1 11 = .ffA . 'Tf / 2 ' 11 cj) 211 = /'EA • 'Tf / 4 ' and 11 cj) 311 = ./'l:A • 3'Tf / 4 . 

* * And thus R (0) = 1 and R · (0) = 1. So bqth values are equal 
<I> 1 <!> 2 4> le!> 3 

as desired. However, any two angles that are not equal to zero 

would have given the same result. So for the curves in Figure 

. * . * 5.22, both R (0) and R (0) are equal to one. Different 
<1>14>2 4>14>3 . 
* ' values for R are only obtained if the general shape of both curves 
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is different. Since both are straight lines of the same. length, 

* the value for R is always one. Again, this is not a desired 

characteristic. In terms of fluid flows the, similarity between 

+1 and +2 of Figure 5.22 should be different from the similarity 

between t 1 and t3 . So a different similarity function had to be 

developed. This function is presented in the next section. 

Similar to the technique described in section 4.2.1, each 

curve is chopped up in an equal number of elements all of the same 

length. Again, either the full length of the curves o·r only a 

part of the curve with a length equal to the shortest curve is 

used. It is now possible to compare the d·irection of correspondin.g 

elements on each curve. The difference i.n angle between one element 

of each curve is exptessed as a numerical value. In analogy with 

equation 5.15 this value is normalized to a value between -1 and +1. 

Figure 5.23 shows two curves consisting of seven elements each. 

The element similarity function is defined as: 

..i.. 

A,, (k) - l - (5. 16) 

.. 

where 
J. 

A, .. ( k) = s i tn i 1 a r_-i ty between e 1 ements k of curve l and 2. Th.is 

function is plotted in Figure 5.24. If the element of curve 1 

(c1>
1 

( R.)) is used as reference (pointing straight up in Figure 5.24), 

a point of the element of curve 2 (t2(.e.)) lies anywhere on the ci.rcle. 
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The elem.ent stmi larlty values are 1 lnearly distributed over this 
l 

circle and a few of them are shown. In particular the value Is 

equal to 1 if the elements have the same direction, -1 If they 

are pointing in opposite directions (note each element has a 

startpoint and endpoint that depends on the direction of the curve); 

and O if they are perpendicular •. By summing all these values for 

all elements, one ends up with a value between -N and +N where N 

is the number of elements. The normalized similarity value is now 

defined as: N 
E 

k=l 

* A (k) 

( 5. 17) --
N 

whe-.re: 
.,_ 
"' S = the normalized similarity value 

.,_ <f> 1 <P 2 
I\ 

and S<f>l<f>2 has a value between -1 and +1. Consider again the 

* * three curves in Figure 5.19. Then S <f> <P = S<f> <P = 0.5 and 
1 2 * 1 3 

for the curves in Figure 5. 22 -one obtains S <f> cf> = 0. 75 and 
1 2 

= 0.5. So, as desired, this function expresses the difference 

between curves <t>_2 and <t> 3 in Figure 5. 22, wh i 1 e it a 1 so expresses 

the similarity between curves <t> 2 and t 3 in Figure 5.19. Now 

consider the two jagged curves of Figure 5.25. For these curves 

(both with ten * elements) S• • = 0, while the curves are in fact 
1 2 

very similar. The zero va.lue results from the fact that each 

element in curve 1 is perpendicular to the corresponding elements 

in curve 2. If one would shift either of the curves one element up 

-/( 
a value of S• • = .9 would result. The .9 results from 

1 2 
or down, 

the fact that now one element of each curve is not contributing to 
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the final result any longer while the other el~ments are all 

. a 1 i gned. This result is a 1 so shown in Figure 5. 25. , If one 

would define the number of elern.ent::s equal to 9 for this case, 

* S<1>
1

<1>
2 

would equal 1. However, this ls not done to express the 

slight difference between this case and the one w.here the elements 

of the two jagged curves would have lined up. To enable this 

sih l ft a mod i f i ed s i mi 1 a r i ty 
N 
t A(k;r) 

function is defined as: 

'I ~ k=l 
Sf lij> 2 (•) = --N-___,.;. 

· whErre_·-: · 

1 -
I 4> ( k) - <t> . :(k-T )I• 1 2 · .. · 

2. . . . .. -for" -C k-~~t ).$, _[1 -,-~]: 
180° 

A(k,-r) ~:· 

·o f°o·r- (k--r) s [1 , N] 

t:'. ·= t:be- :shlft operator (.rtumbe.r :of· element's ,shifted) 

(5. 18) 

(;5:-.-19-l· 

_F:i na 11.y ~ c·o:n-s lder Figure 5. 2:6. s_:hown are· ttrree curves with 

di ff eren·t l--e.ngths of which the ·fl rst: tw9 h:~V~ th·e same genera 1 

shape. A.f-ier nprmalizatio_n t:he: similarity between curve·s land 3 · 

or between curves 2 and 3 weuld result in the same value. 

s~ ~ (o} = 1. 
l 2 

It would :be. d:e:sl ra::b 1 e if the difference in 
. .. 

Also 

length 

could also be expre$Jed :in the similarity value since in terms of 

fluid flows, curve 1 and 2 of Figure 5.26 are not the same. To do 

so, S ~l <1>
2 

( t} is mu 1 tip 1 i ed with the 1 ength of the shortest curve 
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(L1 here) divided by the geometric mean of the length of the 

two curves ( L,L2 here). So the new similarity function ls defined 

as: 

where 

Note 

N 
r A(k,r) 

s"' "' (T) ~ s, h) L1 = _k=_l ___ • f 
'f' 1 'f' 2 <I> 1 <I> 2 . ./,,_L -L- N 2 

Ll - the length -

L - the length -2 

that still 

Is~~ (t>I 2 1 
l 2 

1 2 

of the shortest curve 

of the longest curve 

(5.20) 

,, 

(5.21) 

The eqn~l sign is only valid if two curv.es are exactly the same 

(both in shape and length). 

The justification fat this particular modification ls given in 

terms of an example. Figure 5.27 shows two semicircles, one ·having 

twice the radius o·f the other. The similarity value is now 

calculated over the length of the shortest curve. Since the length 

of the larger semicircle is twice the length of the smaller one, 

only half of this .semicircle contributes to the similarity value. 

Suppose the first part of each semicircle with length Lis 
~ 

approximated with one element (see Figure 5:28). Use of equati·on 

5.20 and 5. 19 with L1 = L2 = L gives a similarity value 
45°" - o0 . . 

1-2----
1 S (0) • . 1_8.o0 

· ~1~2 . = -----
1 

of: 

= 0.5 
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Approx mating the same parts of the semict·rcles with two elements 

(see Figure 5.29) gives a value of: 

(1 _ 2.67.5 - 45'). + (1· _ 2 67.5) 
' 180 .· .·180 = 0.75 + 0.25 = .5 

2 2 

which is the same value as ·before. If the curves are approximated 

with infinitesimal small elements, the following result is obtained 

(see Figure 5.30)~ The angle t1 at a particular point on the larger 

semicircle is equal to (see Figure 5.30): 

where 

a( 1) = !. 90° 
L 

and 1 = the distance measured along the curve from the point one is 

looking at to the startpoint of the curve; .te:[o,L] 

Similarly, 

where 

R, 0 e( i> = r· ,ao 

and thus ......•. x:..:;,,.,. 

1~1 <1> - ~2<1> I = f.90° (5.22> 

If the summat lon in equat·i on 5. 20 is rep 1 aced wt th an 1 ntegra 1 , N 

is replaced by L/d.t, L1 = L2 = L and equation 5.19 is replaced with 

its continuous equivalent, then one gets with equation 5.22: 

L f-.90° L 
3 

1 
1 1 I - &.) - 2 •.. 

s~ ~ (o) = 180° ff 
-· - (1 d.t - L L 

l 2 0 
L / di 
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L 
L2 1 1 (5. 23) = I(.e,- 2L) = -(L - rr> - .5 -L 

0 

Note that the square root term did not affect the final value. So 

again the same result is obtained. Now consider Figure 5.31. The 
,,,. .. ! . • . 

similarity value (using equation· .. ·5.20) for curves 1 and 2 ts 0.5 

(see equation 5.23). If one tompares curve 1 with itself, the· 

similarity value is 1. Finally, the similarity value for cur~es 1 
" 

and 3 (using equation 5.20 and normalizations) gives the value 

·I!= !fl:! 0.71. Physically~ curve 3 is less similar to curv.e 1 
.... 

than curve 1 itself is (because their lengths differ), but is 

definitely more similar to curve 1 than curve 2 is. The obtained 

values express this dlfference (values of 0.71, 1, and 0.5 were 

obtained respectively) and the additional term in equation 5.20 

ls thereby justified. Of course, the term only influences the 

measurements on normalized cu~ves. 

The original f.Jow (see Figure 2.·1) shows significant symmetry· 

between the bottom and top half of the flow. However, equation 5.20 

cannot ·directly be used to measure the symmetry. The general 

direction of the curves is opposite to each other, but the individual 

elements are not opposite to each other. This is shown in Figure 

5.32. If o~e of the curves is mirrored with respect to a vertical 

,Ii 
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line, perfect syrrmetry with respect to a horizontal line would 

yield that the individu~l elements of turve 1 and the corresponding 

elements of the mi~rored Image of~the other curve 1' would always 

point In opposite directions (see Figure 5.32). This in turn 

results in a similarity value of -1. Less than perfect synmetry 

would resul.t in a· value larger than -1 (but less than +1). This 

option is provided to the user, so he can measure the symmetry of 

the fluid flow. The user also can specify a shift range over which 

S~ ~ (T) is calculated. The algor·ithm will return the maximum 
'f' 1 't' 2 

magnitude value that was found in this range. So finally the 

similarity between two curv~s is defined as: 

Similarity between 2 curves= sign{Scf>. cf> (T)}·maxl~cf> cf> h)j (5.24) 
1 2 t 1 2 . 

where: \ 

)" 
\ 

te:-[ -R, R] 

R = shift parameter {i·nteger value equal to the number of 

pix~ls on.e wants to shift curves over) 

Scf> cf> (t) = defined in equatlon (S.20) 
l 2 

/ 

If more than two curves have to be av·eraged, the algorithm will 

return all the individual values (obtai·ned from the comparisons 

of two curves), the mean of these values, and the standard deviation 

of the set of values. 

t,. 

5.2.4 Results --------
· ·T·he similarity measurements shown in Figures 5.33 through 
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5.36 and Figure 5.38 are obtained by uslng the· ncrmallzed length 

option while the measurement in F'igure 5.37 Is obtained by using the 

shortest curve length option. 

The similarity value resulting fr.om a comparison.between a 

curve with itself is shown tn Figure 5.3,3. Figure 5.31+ shows 

a similarity measurement between two different curves while 

Figure 5.35 shows a measurement involving three curve·s. -Shown 

are the mean value of the two measurements involved and the 

standard deviation. The number of curves could be incteased to 
.. 

the maximum number that can be displayed on the screen which is 
·~ 

constricted by the size of the buffer (see paragraph 3.3)~ The 

user can pi ck any curve that is· di sp 1 ayed on the screen (orig i na 1 

curve, smoothed curve, and averaged curve) with the special cursor 

routine (see paragraph 3.4) and the similarity routine wil~ retrieve 

all the required curve data from the stack. 

Figure 5.36 shows a simi la.rity rrieas.ureme·nt between the same two 

curves of Figure 5.34, but this time a shift range equal to 20% of 

the length of the curve was specified. The routine returns the 

maximum similarity value it finds in this range. Figure 5.37, again 

shows the simllarity between the curves of Figure 5.31t (with zero 

shift), but this :ime the shortest curve length option was used 

in the calculation. Finally, F.igure 5.38 shows the similarity 
r 

between a curve and the smoothed curve that~as obtained by a 
i 

maximum smoothing operation on the same original curve. A similarity 
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·v.a lue o.f '1 s·.t,_ou:l:d: resu 1 t if the curves are the "same (Figure 5. 33-)., 
I 

~a value of -1 results if the curves have the same shape and lengfh 

but their directions .are shifted over 180°, and a value of z~ro should 

result !f the curves are totally dissimilar (averaging out of 

the individ~a1 ~lement value~ will occur in this case). This 

is .e.stabli--s-h.ed· .by- the algorithm presented in this chapter. It· is 

cap··a·bl~ of rneijs~ring the s imi·larity between arbitrary curv.e·.~ 

a:n.d. t·rarnes. 
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6. CONCLUSIONS 

The feasibility of.Image processing and pattern recognition 

of flow patterns has been shown 1.n this Investigation. With the 

aid of the developed algorithms and routines, the user can perform 

averaging, smoothing and similarity 9peratlons on arbitrary curves 

and frames. With a specially developed algorithm, It ts possible 

to express the similarity between two curves in a numerical value. 

The developed code provides a highly interactive program. 

The program is very flexlble and provides the us~r with many optforis~ 

He can process complete frames and curves at once to speed up the 

process, or he can perform operations on just a single curve which 

gives him maximum flexibility. The program is user friendly, 

practically menu driven, and almost ''idiot proof'' in terms of that 

it rejects inconsistent data .inputs. 

The algorithm and routines are very efficient in the sense that 

maximum attention was given to computational efficiency and use of 
• 

the most effective theories. Avera.ging and smoothing of curves was 

established without the use of discrete Fourier transforms. All of 

this also results in relatively fast routines where the results 

(even if a larg~ number·of frames or curves is involved) are availa­

ble almost instantaneously. This in turn increases the interactive 

use of the program. 

Efficient data storage and manipulation is achieved by means 

of specilly developed buffer and cursor routines. These routines 

form an integral part of the whole program. 
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Future work should Include the lntegratlon of the program 

with the data acqut~itlon and preprocessing equipment and routines. 

As a special feature, the user might be provided with an option 

In which a set of previously defined manipulations is operating 

on the frames automatlcally. The capabilities o~ the program 

(in terms of the maximum number of frames, the maximum number of 

curves per frame, and the maximum number of points per curve) can 

be suited to the user's need by changing the appropriate dimension 

statements. 

Of course, the application of the program in fluid flow 

analysis is one of the immediate future goals. 

\ 
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APPENDIX A: SPATAVE, AN INTERACTIVE IMAGE, PROCESSING AND PATTERN 

RECOGNITION PROGRAM FOR THE ANALYSIS OF FLUID FLOW 

PATTERNS 

In this appendix, the main structure of ·the program "SPATAVE" 

(for SPATial AVEraging) is presented. For a more detailed 

description, see Kerstens (1985). The program is written in· 

FORTRAN 77 and runs on a VAX 11/780 c6mputer equipped with VS11 

color monitors. For this program the display is divided into 

three parts (so.-called -windows}. The first window has a yellow 

border and is displayed in the upper right corner. This window 

will display all the curves (original, averaged, and smoothed 

curves). The second window is positioned at the bottom of the 

display and has a blue border. In this window all program mess-ages 

will be dlsplayed. The third window also has a blue border and is 
,, ., 

positioned at the left of the first window. This w·indow is for 
•. 

future use (display of additional data or menus). There is also 

an inv is i b 1 e fourth window (with no .border). This is used for fu 11 

screen displays (in which case the curves are shown on the whole 

screen and the otheJ windows are removed from the screen). The 

windows are shown in Fig~re Al. 

The set-up of the program is best understood by looking at 
( 

Figures A2, A3, and A4. Although these flow charts are not 

exhaustive, they do contain all the necessary information. The flow 

chart of the main routine is displayed in Figure A2. The 
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inlttaltzation block sets a number of varlables to their initial 

values and calculates some basic parameters for·each curve that 

is an input. After some scaling (the user can pick the scaling 

factor and the center of disp.lay} the program will ask the user if 

he wants to display complete frames (a frame is a single image 

containing several curves anc;J is obtained_ from one video image 

taken at a particular point in time). If the user decides to use 

this option, the. program will execute routine A. The program will 

now ask the user if he wants to display just a single curve.· Again 
.. 

the user can decide to do so in which case the program will run 

routine A'. The next option that is offered is averaging of complete 
,.. 

frames. The following option is averaging of a single curve on 

several different frames. The final option makes it possible for 

the use·r to average an arbitrary set of curves that can, but do 
. 

not have to be, on a single frame .. Fi.nally, the user can jump back 

to the beg i·nn lng of the program and do some further processing. 

The program is set up to give the user maximum flexibility 

while still making it possible to get some quick results. In fa.ct, 

speed of operation decreases· if one goes down in the flow chart 

while flexibility increases. So if one wants to average complete 

frames, the results can be obtained quickly. However, if one wants 

to pick each of the curves that should be averaged (increased 

flexibility), one has to do so by selecting the curves one by one 

(decreased speed). 
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Flgure A3 shows how the frames and curves are displayed­

(routines A and A'). Among other_ things one can clear the window, 

change the color of the next curve/fr~me (ln fact change the shade 

of green), and do a similarity test. This can be repeated as. 

many times as desired. 

Figure A4 shows how the frames and curves are averaged. 

Among other.things one can again clear the window, average the 

curves/f·rames, ·smooth the curves/frames,and· calculate similarity 

values by picking some of the displayed curves. Again, this can 

be repeated as many times as desired. 

with 

The reader should note that any of the following can be done 

the SPATAVE • its current state: prog·ram 1n 

- display any f rame(s) (with or without clearing the screen) 

- display a.n·y curve(s) (with or without clearing the screen) 

- smooth any curve(s) (original or averaged) 

- average any of the original curves (on the same or on 

different frames) 
~ 

- calculate the correlation/similarity value between any of the 

displayed curves/frames (original, smoothed. or averaged) 

With these capabilities, the program SPATAVE should be a useful 

tool in the analysis of fluid flows. 
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Figure A2'. Flow chart of the main routine. 
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CLEAR WINDOW 
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~ULATE 
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DISPLAY 
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Figure A3 Flow· chart af routines A a·nd A'. 
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CALCULATE 
SIMILARITY 
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AVERAGE 
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DISPLAY 
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Figure A4 Flo-w chart of routines B, ·B' , ·and B". 
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