
Lehigh University
Lehigh Preserve

Theses and Dissertations

1986

Interactive image processing and pattern
recognition of digitized flow patterns /
Pieter J. M. Kerstens
Lehigh University

Follow this and additional works at: https://preserve.lehigh.edu/etd

Part of the Manufacturing Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Kerstens, Pieter J. M., "Interactive image processing and pattern recognition of digitized flow patterns /" (1986). Theses and
Dissertations. 4593.
https://preserve.lehigh.edu/etd/4593

https://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F4593&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F4593&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F4593&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/301?utm_source=preserve.lehigh.edu%2Fetd%2F4593&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd/4593?utm_source=preserve.lehigh.edu%2Fetd%2F4593&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

., . ,,,lo

•

INTERACTIVE IMAGE PROCESSING AND PATTERN '

RECOGNITION OF DIGITIZED FLOW PATTERNS

by

Pieter J. M. ·Kerstens

A Thesis

Presented to the Graduate Committee

of Lehigh University·

in Candidacy for the Degree

Mast~r of Sciente

.. In ..

Manuficturing Systems Engineering

Lehigh University
,•

1986

.... -- .

...

;

. '

This thesis is accepted and approved in partial fulfillment of~

the requirements for the degree of Master of Science in
I

~

Manufacturing Systems Engineering.

It
-

Chairman of CSEE

.J

,,

,. .

• •
. '

'
_)

..

ACKNOWLEDGEMENTS
I

I would like to thank'Professor Donald Rockwell of the

Mechanical Engineering Department for his support and guidance,

and for carefully reviewing this thesis report. I would also

like to thank JoAnn Casciano for patiently typing this report

and Carlos Gomez, Professor Roger Nagel, and the staff and

secretaries of the MSE Program for their kindness, advice, and

help during this year. In addition, I thank Philips Laboratori.es

fo'r their support and for letting me join this worthwhile program.

Last, but not least, I would like(i·o thank my wife, Anja, for her

patience and warm support, without which this work would not have

been possible .

. ,
:,

, ..

:~ . .. ·-"-•·\ .":IIW>t',:..\,: ~ •.. !

-·-

. J '

Section

1

2

2. 1

2. l. 1

...
'

TABLE OP'",.'CONTENTS

Title

Acknowledgements

Glossary of Not~tion

Abstract

Introduction

Image Procesc;ing

System Setup
<--

Flow visualization

. . . -· - ---:-·· .

Page
; .

i i i

• • VI I

1

2

5

5

5

2.1.2 Preprocessing 6

2.1.3 Available hardware and software 6

2. l.4 Developed graphics s·oftware 7

2.2 ··· Analysis Techniques 7

2.2.1 Fourier descriptors 8

2.2.2 Classification techniques 9

2.2.3 Spatial averaging ·11

2:. 3 Method Select ·ion 11
.

3 Data Representation and Interactive Routines 14

3 . 1 Cu rve Par ame te r i z at i on 14

3. 1 • ·1 Chain codes 14

3. 1. 2 Element length 15

3. 1. 3 Program input 15

3. 1. 4 Freeman's corner cutter matrix 17

3. 2 .. Display Routines l8

• -,v-
' I

. ' ..

•, ' t , n . • ' . .

'I

"'

Section

3.3

3.3. l

3. 3 ... 2

3.3.3

3.3.lt

3.4

3. 4. 1

3.4.2

4. 1

4. 1 • 1

4. 1. 2

4. 1. 3

4. 1 •· 4

4.2

4.2. l

4.2.2

4.2.3

5

5 •. 1

5. 1 • 1

5. 1. 2

'

Table of Contents (Continued)
I .

Title

Curve Storage Buffer

Buffer pointers

Stored curve data

Buffer routines

Display map

Cursor Routines

Seatch routine

Display update

Curve Processing

19

19

24

26

27

28-

28

32

33

Length Calculations 33

Normalized versus shortest curve lengths 33

Length data 34-

Resol ut ion considerations 35

Binary search f·or sections of equal length 35

Curve Averaging 37 ,.

Location of averaging points 38

Calculation of the average curve 39

··Resu 1 ts 40

Curve Filtering and Recognition 43

Curve Smoothing 43

Smoothing in the spatial versus frequency domain 43

Smoothing algorithm 44
J

-v-

t •

. \

., ' ' .

'f'"'::.

l •

Section

5. 1. 3

5.2

5. 2. 1

5.2.2

5.2.3

5.2.4

6

. .

Table of Contents (Continued)

Title

Results

Similarity Calculations

Similarity cal cu lated over shortest

versus norma 1 i zed length

Cross-correlation measurements

Similarity function

Results

Cone 1 us i o.ns

Figures

References

curve

Page

53 6

53

54

54

57

63

66

,-- 68

110

Ap~ndix A: SPATAVE, an interactive image 112

processing and pattern recognition program for

the analysis of fluid flow patterns

Appendix B: Author 1 s Biography 119

' ,.

I

• -v,-

' '~ '' ' f, ,' .• ;

i ' '

I Symbol

A

Ak

* A (k1

A(k ,r)

C n

D x,old

D x., new

D y,old

D y,new

f(R,)

f(k)

.L

Ll

L2

N

R

*
s~ ~

1 2

GLOSSARY OF·NOTATION

Des c r i pt I on

Interval 1 lmi t for length of curve

Interval 1 imi t for number of samples • ,n

Element similarity

Element similarity for shifted curves

Fot..rier coefficient

Absolute displacement of original curve

Absolute displacement of smoothed curve

Absolute displacement of original curve

Absolute displacement of smoothed curve

Continuous f i 1 ter function

discrete filter function

Curve length

Curve length of shortest curve
0

Curve length of longer curve

Length parameter

Number of elements in curve

Interval limit for shift parameter

Cross-correlation function

Normalized.cross-correlation function

Smoothed curve

Similarity function

• • -v I 1-

..

' .

curve

• ,n X

in X

• In y

• 1n y

•• ' .. •, .

direction

direction

direction

direction

4" !

. .

·,.

I

_.·symbol.,
_:1 . ' s~

1
<1>

2
.(tl

s<t> l <t>2h}
:-X (t.)

-X. 'Ci)
''·$. . .

X·.
1 ,ave

X • •
I J

Ax(k)
J..

:Ax
0 :(k.)
s

A·X Ck.J s

y(t-}

.··. ·(1)·· y$ ·,.

·y •· . . rJ

ny.(k):

,·~ ·c·). -& . 'k:. Ys, ..

Ay- (.k.:)· . s .:

W·

w.
J

-~{·:Q;):

a(::1)

·y
n

•

tlossary of Notation (Continued)

Description

Similarity function for shifted curves .

Modified similarity function for shifted curves

Continuous~ ~o6rdinate function

Smoothed contlnuoll:S· :X coordinate function

x coord ir,ate .of· ptti r,t: i of aver~ge curve

Smoo-t.hed Ax(k)-

Modl:fle·d smo.othed Ax(k)

C.qntfnuous y·· c:oord i nate f.,u.nc=tFon·

Smoothed :conti_nuou:-s y coordl n.a:t~ f1Jn·ct.lon

:Y .coord.J·nate of :poln·t i t>"f -av:e:r~.-9.~ cu··rve

y coord i n.ate: .. o,f· po f n·t r of c;u·r-v;~ j

Re 1 at i ve dls.cte·t·e· d.lspJ:a.c.·ement ·t n y d t rect ion

Smoothed AY (k=)

Modified smoofh:ed .~y(k):

I n t e rv a 1 1 i m i t f o.-r] en _g th: of f i 1 te r

Interval limit for :nun,ber of samples in: fil't.e:r:

'Weighting factor fat turve j

O.irection functldh:·for larger sem.icircle

Direction f unct:i art ·f·or sma 11 er semi c ire 1 e

Ang 1 e with unit :of r:ad i ans

• • • VI I I -

. ..:1. ·=' ~.

-•..

.'4 ..

Symbol

µ

.T

;'c
4> (i)

4> (k)

ll<t>II

.J

•

Glossary of Notation (continued)

Description
4

Integration variable

Integration variable

Shift variable

Continubus tangent angle function

Continuous function, per·i od i c with per I ad L

Discrete tangent angle function

Norm of <f>

..

• -1x-

:"'.

\

ABSTRACT

In this thesis report, interactive algorithms to aid Jn the·

analysis of fluid flows ar,e presented. Special functions and

algorithms to average, smooth, and calculate the similarity

between digitized curves were developed. The developed routines

process the images in the spatial domain, thereby eliminating

the need to calculate discrete Fourier and inverse Fourier

transforms. The algorithms are effective, efficient, and fast.

_ ...

As an integr~l part of the algorithms, special data buffer routines

for the effective data manipulation of curves, as well as cursor

routines, were developed. An arbitrary set of frames consisting
.

of curves,. or an arbitrary set of curves, can be averaged or

smoothed. Cutves can be smoothed with a modified, variable

convolution filter. A special function makes it possible to express

the similarity of two curves in a numerical value. This technique

can be used to study time effects in fluid flows. Noise reduction

can be obtained by averaging and smoothing a set of curves.

-1-

,,

/

..
. .

1. INTRODUCTION
'

This report describes the und~rlying theories arid algorithms

for an interactive image processing and pattern recognition program

that can be used in the anaJy·.sis of digitized flow patterns. To.

aid in fluid flow analysis, a television/computer system is.set up
' -

in the .. fluid mechanics laboratory of the Meci1anical Engineering

Department of Lehigh University. The actual setup is described
.

and explained in Chapter 2.

Noise and disturbance reduction through successive averaging

of images is one of the main goals of the program. For this purpose

the digitized images are stored in a mass storage device and are

processed off-line. l,n the future, it should be possible to extract

fe.atures from the flow patterns that can be used in the generation

of a data base. The setup will facilitate the analysis process by

lncreas.ing speed and accuracy and by providing th·e possibi llty of

·new analysis techntques.

Currently the hardware and software to generate digitized

curves from the actua.l flow patterns is in place. Chapter 2

describes the flow visualization technique that is used in

conjunction with a television system and synchronized lighting.

The television images are digitized, then preprocessed, and

algorithms employed to generate the digitized curves in binary form. ,

Once the curves are in this form, lt is possible to tarry out a

number of bperations on them.

-2-

..

. "

..

•

r·

. . . , .
,'

"ll .

The objectlves of the thesis work presented In this report

are to: ..

a) develop theory and algorithms to average a set of curves.

b) develop theory and algorithms which make it possible to

f i 1 ter/smooth a curve •.

c) develop theory and algorithms that are capable of expressing

the similarity between two curves in a numerical value.

d) combine the above in a flexible and intera~ctive software

program that can aid in the analysis of flow patterns.

A selection from among the presently available analysis and

processing techniques has to be made in order to find the most

suitable one. Additionally, it is necessary to develop new

principles for those. functions that cannot be performed by currently
•

known techniques .. Capaci.ty, in terms of the number of frames and

curves that should be processed, as well as efficiency and accuracy

requirements, are important considerations during the selection of

the methods.

Based upon previous wor·k done at Lehigh Uni·versity, and the

scope of this thesis, several assumptions were made. The first

assumption is that the digitized curves are available. This means

that there is a tomplete set of frames available, each containing

well defined digitized curves. Secondly, it is assumed that these

curves are stored in a chaincode representation (see Chapter 3).

Finally, a highly interactive program is required for further

-3-

,.. ... , t. , ,
,:

•

1:'f'

...

'.
•

analytical work. Chapter 2 describes the system setup, the

presently known analytical techniques, the more sui.table methods

for fluid flow analy·sfs. Chapter 3 deals with the data

representation and tnteractive routines that were developed. to

facilitate the processing, filtering, and recognition of digitized

curves in an efficient manner. Chapters 4 and 5 deal with the

developed processing and recognition techniques. Chapter 4

discusses the averaging routines actually used, while Chapter 5

presents the theories and algorithms that were developed so the
,._,

digitized curves ca~ be filtered/smoothed and recognized. Future

work and conc.lusions are discussed in Chapter 6. The actual program

codes can be found in Kerstens (1985) •

•

/'

a ..

-4- ..

; '

\

<,

•

'

•

2. IMAGE PROCESS·1NG

2.1 System Setup

2.1.1 Flow visualization ------------------
The fluid mechanics laboratory of the Mechanical Engineering

.
Department at Lehigh University is equipped with the setup of

a,

Figure 2.1·. ·The experimental setup consists of a-channel through

which a fluid (water) flows from left to right. A conducting wire

is inserted at the beginning of the channel, and a pulsed high

voltage is connected to the wir.e. This c~ses electrolysis of the
/

/

water passing over the wire and generar~s hydrogen bubbles. The
\

hydrogen bubbles propagate with the fluid~and form the ttmelines.

The triangular obstruction in the middle of Figure 2.1 • IS a

stationary or oscillating body that distorts the fluid flow and thus

the timelines. The timelines contain information about the fluid

f 1 ow (ve 1 oc i ty, both amp.l i tude. and direction) and can be used to

characterize and analyze the ·flow. Light is reflected at the

timelines and regions of high intensity are created at their position.

A video camera is placed above the channel and r·ecords the illumtnated

timelines. The times at which pictures are taken, can be triggered

in such a way that they are sync_hronized with a particular pos.it,J-on

of the oscillating body. After recording on the television, the

image of timeli~es is digitized by an analogue/digital converter

(ADC) with 256 quantization levels (8 bits). The resolution per

j' -.5-

..------~.

.,

--....

'· ~.-,,~

\ ..
I •

frame ts 211 x 165 ~txels. A frame grabber grabs the frames

,. which are then stored on tape.

A good introduction and explanation of several important

aspects of image.processing· can be found in Pavlidis (1982). The
..

digitized image must be p:rocessed before the actual curves can be

retrieved (see Figure 2. l). Severa 1 methods are ·current 1 y in use.

In the first method (Gumas 1985) the signa·l is filtered and then

operated upon by a threshold operation, which results in the

generation of a binary image. The resulting timelines are, however,

still relatively wide. The thickness can be reduced by thinning

a·lgorithms (Pavlidis 1982 and Gumas 1985). The resulting pictures
.

have a quantization of 1 bit (2 levels) and contain the timelines.

!n the second method (Gumas 1985) a curve tracking algorithm

processes the original frames with 8 bit quantization levels and

11 tracks11 the timelines. The output of this algorithm is a set of

curves (timelines) in chain code form (·see Chapter 3). An interest

ing method re 1 eva{t to the foregoing is presented In Rao (1980).

Fingerprint patterns are very simi-lar to flow patterns and a

complete system for the clas.sification of fingerprints is p~esented

in Lerner (1983).

2.1.3 Available hardware and software

The preprocessed images are stored in computer files on the
~

/
'

-6-

• .t. " r" ,

VAX 11/780 computer of the Mechanical Engineering Department of

Lehigh University. Several high resolution color terminals (VS11)

are conr:1ected to thl s computer and .are used In the advanced

processing of the flow patterns. The resolution of the terminals

is 512 x 480 pixels and they are capable of displaying 16 colors

(of which one is the ba.ckground color). Some.graphics routines.,

for d i s p 1 a y l n g bcJ s i c en t ·i t le s (1 i n es , c i r c 1 es , s p 1 i n es , po i n ts ,

windows, labels, etc.) are available and are well explained in

Ozsoy (lab 1983).

To enhance the interactiveness of the developed progr~m, and to

increase its flexibility, it was necessary to develop some·additional

graphics routines. ·A set of windows was created (Kerstens 1985)

to display the curves and related information, as well as to display

system messages. Special buff:er routines, that can display and

remove arbitrary curves i-n an efficient manner, had to be implemented.

Another requirement was a special cursor routine for picking curves~

These routines are explalned in Chapter13·

2.2 Analysis Techniques

There are at least three techniques available that could be

used in the analysis of flow patterns: Fourier descriptors,
- ..

classification techniques, and spatial averaging. The remainder of.

this section will brief·ly -discuss each of these techniques.

-7-
"

','., .. ,

, .

. ,,, ··~

•

"'

Fourier descriptors are often used in pattern recognition

appllcations because special, modified techniquei using Fourier

descriptors make the descriptors independent of orientation,

position, or scale of the object to be described. They can be made

solely a functioh of the shape ~f the object (Granlund 1972 and

Zahn 1972). To understand how Fourier_descriptors can be used in

the analysis of flow pattern.s, consider Figure 2.2. The shape of the

shown curve is completely described by its "tangent angle function'':

where

1£ [o, L]

t(1) is the tangent angle of the uniform continuous curve

at point 1t[9,~.

(2. i)

is the length ·measured along the curve from its starting

point to the point of intere~t~

L is total length of the curve measured along the curve.

The tangent angle function together with the start coordinates of

the curve uniquely specify the curve.

that:

* Defi-ning a function-t such

c1>*(i + nl) = cj>(R.) - f<c1>(L) - cj>(o)} for
1£[o, L]

n = o·, ± 1 , ±2, •••
(2.2)

* The function t is periodic and can be expanded in a complex Fourier

series:

.....

-8-
',

, where,

and,

t*(t) = f c exp. (Jny)
-co n n ·

C
n

1 -- -L

L

/~*(1) exp (- j ny) d R,
n

•.I

.- ,

The set of c 'sandy 1 s are called the Fourier descrJptors:
n n

(2.3)

(2.4)

(2. 5)

00 { c , y } . • I n re a 1 i t y , we have to work w i th a t run ca ted (f i n i t e)
n n n=-00

set of Fourier descriptors:

{c }N
n'Yn n=-N

(2.6)

When this truncated set ls used in the reconstruction of the original

curve, the result will be an approximation., and the difference

depends on the number of coefficients that is included in the set.

Averaging of curves can be performed by averaging the Fourier

descriptors. The curves can be filtered by truncating the set of

Fourier descriptors and/or by multiplying them with a weighting

function (Gumas 1985). Sim·ilarity coefficients can be derived if

the Fourier descriptot~ are made independent of th~ orientation and

position of the curve.

The followi_ng discussion is mainly based upon the works of

Rao (1980) and Lerner (1983). Fluid flows and fingerprints seem

to have a lot in common in terms of their image structure. Both

-9-

r ' " .

·-~·u..-~~
,,
'

,.

, ·'. . ..

...·,

fluid flow patterns and- fln.gerprint patterns consist of a set of

curves or ridges that are to some extent parallel in nature.

Imperfections can cre~te gaps in the curves. of both patterns and

it may be di ff i cu 1 t to tt:ack the curves .d:u.e t·o .some ambiguity i'n:

di rect ton (Guma s , 1985; Rao,· 1980) •

In fingerprint ·classification systems, a preprocessor first

ave~ages over small areas of the image to find a mean level and

then a threshold operation divides the points into two levels:

black and white. After completion of this operation, directional

operators determine the direction of the ridges, and ridge points

are 1 inked up to eliminate. 1111'.nor· breaks caused by poor inking or

sk-lri pt>.r:es.·. 1·.n th.e next ·ste-Jj: featu,res are extracted.- These features

mark the endp:oi nt:-s .aJrd t_be: .points ·where the 1 i ne:s that form a ridge

·ma::ke: c.Hl angle· wi·t.h· each o:t-:her :{see: Figure 2. _3}. Ana 1 ys is of the

,ex·tr.~rcted_ feature.s :rna'·kes i·t. pp·s,slQ.:le to classify the prints.

·rhe preprotessi.ng te~hniques used in fingerprint analysis seem

t:o be directly applicable to fluid flow analysis. However, the

tlassification techniques that are used are a syntactrc approach to

th:e identification prob·l-en1-. Therefore, this technique might be useful

in identifying c¢rtai·n fluid flows, but It cannot be used for

detai lecf an~ly·si:~: bf the fluid flows. It is also impossible to

averag·e curves 'O'-t to calculate similarity coefficients with this

:t:e.c,hn.Jque.. ihe ·pre·processor used in this techntque provides some

means of smoothrng or filtering the curves by averaging the direction

of the curves over small areas of the image.

-10- ·~---' ...

. ·.: J

/·

.
In spat I a 1 ave rag t ng, the curves .a·re: ave.raged d I rect 1 y In the

·spat i a 1 doma t n. By taking spec i ·t:··i c po'I nt~:' ·on two· curves ·c see

:Chapters 3 ti·nd' :4). and taking the .. av·erages: of ·corresponding po I nts

on :both CtJry~.~,: the- average cutv:e. rs calculated. The data

.,c~,repre~.:ent~tiQn that .. ls u~ed r:n. t'he averaging process can also be

.u.sed lr, t:fie devel.oped .s:mt,othi,.ng ahd similarity calculation

·.?fl :gor:lthrns (see' Chapte·r 5) :. ·The technique is very accu.rate,

·clitv:es.

2.3 Method Selection

. .

The Foutier descrlpt:or meth·od :r.e·qui.res the calculations of

:d·:·t.s-c:rete ·Fourier tra·ns-f·o,~.ms and discrete inverse Fourier transforms ..

These: ~ompu tat Ions are relative 1 y time con.s.um i'ng and cost 1 y.

,·Furt:·hermore, smoot·h f.n:g :or f i 1 ter ing t>'f the curves by t run cat i ng the

s~t: of Fourier ci:~s~r,iptors wi l.l riot preserve the endpoJnts of the

:p.urv.es {Gµrnas,. 19.85).. Data s:t:orag.e :t·.equi rements ca:n, l1e reduced by

s.tor·i.-ng· only ·a few· :o,f t:he :f':ot.fr.ler .des·c:r:iptors .P.~r cµrve where one

.s·t·or-ed and the accuracy: of the. :representation. However, these

savings might not be ·as la·r·g·e: as originally envisioned. Consider the

following example. S.uppose one gets a satisfactory representation

by only ~taring 10% of the Fourier coefficients. Since every

coefficient contains ·both amplitude and phase Information, it is

-11-

.......

.'.

-~-........

represented by two real numbers (two Fourier descriptors out

of the set defined in paragraph 2.2. 1). In standard precision
I

FORTRAN 77, each real number requires four bytes of m~mory. So if/·

N is the number of coefficients, then one needs 0.18 x N x 2 x ~ =

0.80 N bytes of m~mory to store 10% of the coefficients. Representing

the curve by cl c.ha:incode (see ·Ch~_pt-~r j) l~ possible with one byte

of memory pet e·lement, because .-each :.cha:in·c:ode element is an integer

number between one and eight (see Chapter 3) and thus the total

amount of memory needed is N bytes. Similarity calculattons are

not eas i 1 y imp 1 emented with Fou-r i er descriptors, slnc_e. :l'n pr inc i p 1 e

these coefficients are dep~rrd·~nt. o.n s·uch factors as scaling, rotation,

* and translation. However, t:h~ spe·cial function <f> , that was defined

in paragraph 2~2.-1, is indepehd~nt ·of the orientation of the curve

and is a p:r tnc.l pa 1 candidate fu·n·.t,t l.on for'· use :in s i mi 1 a r i ty

measu'rements.

Classification te,c:hn.·lq,_ue:S:-are not: ~very accurate and cannot ·1:>_e.

used for averaging c_urve-s... This meth·od .al,so c_annot be used to

ca 1 cu 1 ate the s imilatr:,i:ty between two c.urv·e:s:. Spat i a 1 averaging on

·the, ot:her hand' seerns to overcome a·ll the shortcomings of the other -

methods. 1·t is very accurate and fast. The data tepresentation

that is used in this method ls very efficient and preserves the

original curves, including th~-start and en·dpoints. The developed

smoothing algorithm proves that it is possible to smooth/filter

curves in the spatial domain while preserving the start and endpoint.s:

-12-

. 1':

, •I ...

(see Chapter 5). Ffnal ly, siml larlty calculations c.an also be

performed directly in the spatial domain (see Chapter ·5) and
f

this method_ is, therefore, the most suitable of the three techniques

for the analysis of fluid flows .

..

-13~

ll ·-

' .

·.--.....

'3. DATA REPRESENTATION AND INTERACT I V1E ROUTINES

I

In this chapter several asp~cts of the curve data representation

. .

~re explained. Some special routl.nes were developed for the

~fficlent storage of curvest and fbr the interactive selection .

of the curves ·from a terminal screen. Al 1 these routines a.re:

presen~ed:: l-11 t_..:n.r,s- chapter as we 11.

·) .• l :c:u.rv:e parameter i zat i OJl

':_3-. l. l Chain codes -----------
Every curve consists of a :se·t of pixels. They lie next to

e·ach other and together form one particular curve. One way to

rep,rese-nt .eac·h· .curve could be a reco·r..dJng of t.h·e x a·nd y coordinates

of _t:he ·ce·n,te'r ·o.f -~a~h pi xe 1. The·: :dl.s·adv.an:tage'. of this technique

t·s. t-ha·t we. ·have tp. ,S ~:.or~: tWQ ~n.·,t· l t fe.·$ per pi xe 1 (see Figure 3. 1) •

Ant>ther tethn.iq~~ trs·~_:$ c.:haiJl codes (Pavl idi s 1982). r=·Jg~re 3.2 shows

h:a .. s at reas·t one neighbor_.
. . .

The ne i:gh·b.or·· :pixel can: be· any one of the

.,e:ig-ht ne·.:lg:·_hbor pixels shown in Fl::g·ure :J~2. J3y as·s:ig_n-Jng a different

number to each of the e-lgh.t ;p:i.xels; :one C'a"tt tin.Jqu~ly Identify where ..

the neighboring pixel i.s positioned.: :Each cu'r~e :is tracked from it$

start point to its en.d point, and .the ·po.s'l:tlon of each pixel is

recorded in the form of a chain cod·e that is derived from the

position of the pixel with respect to }ts preceding piiel. The only

exception is the starti.ng pixel. Since this pixel does not have a

-14-

~ :.,.: ..

'

....

,-· -1"
\" ,:·.

I
!

('>-i

I .

.·--.

predecessor, Its x andly coordinates are recorded. Figure 3.3

shows a curve .. and the so derived chain code repre~entatlon.
I

It is obv.l ous that the cha In code rep·resentat I 011 Is a d I screte

representation. However, no Information ts lost since the

orig i na 1 curve was a 1 ready dig It i zed by the video pr.ocess 1 ng

equipment. Since only one element per pixel is stored (with
'l

exception of the starting point), the data or curve representation
-

is very efficient. A disadvantage is that one cannot directly

relate a pixel's chain code value to a particular position on the

screen. One always has to track the curve from its starting point

to find out where a particular p·txel is located.

Each cu.rve consists of a number of elements, where an element

is defined as that part of the curve represented by the connecting

line between the centers of two succeeding pixels. The length of

each element depends on the configuration of the two pixels.

Considering ~igure 3.4, one can see that the distance between the

two centers of two succeeding pixels is equal to 1 (after normali

zation) if they have one sid~ in common and equal to If if they

have only one common corner. By adding the length of all elements

that form a curve, one can calculate the total length of the curve.

3. 1.3 ~rQgr~~-l~e~~
\

I
I

The starting point and chain code representation of each curve

-15-

,,

• •

...
. . .

are Inputs to the program. The end of a chain code representation·

Is Identified by 11 011 • For each curve.the ,program generates three

arrays. The first ·two arrays contain the x and y coordinates of

each pixel. The third array stores the length, measured along the
•

curve, of that part of the curve that 'is located In between the

pixel of interest and the curve 1 s starting point. If one uses array
. .

L for this purpose (see.Figure 3.5), then the value of L(l) ts

either 1 or If depending on now the second pixel is located with

respect to the first. The value of L(-2) is either 2, 1 + 4, or

2f'i depending on the location of the second pixel on the curve with

respect to the first pixel and the location of the third pixel with

respect to the second one. There is another possibility: L(2) can

a 1 so equa 1 .. 0 if the curve consists of only two pixels.

The so formed arrays are used in the averaging, smoothing and

correlation routines (see Chapte-rs 4 and 5).

However, a different notation ls sometimes more useful;~:, In this

nbtation the chain code values are converted Into two arrays contain

ing the ~x and ~Y values of all the chain codes that form a

particular curve. This is shown in Figure 3.6. Each chain code

element simultaneously represents a /1x and ~y value that can be

equal to either -1, 0, or +1. A chain code value of 9 Is Included

to represent thos~ cases where the next pixel is actually on top of

Its predecessdr. Thl5 can occur during the smoothing and averaging

operations (see Chapters 4 and 5). Since these points do not

-16-
.. ; . ~"

0

...

.i

' ·.
' #

.... -

contain useful Information, they are usually· removed from the chain

code representation. Figure 3.7 shows how'a set consisting of flx

and fly values can be converted to a chain code description •
I. •

Because FORTRAN does not accept negat·tve or z~ro subscript values,

the value 2 is added to the Ax and Ay values and the corresponding

chain code value is found by looking in an array containing these

values. The first subscript of this array is the Ax+ 2 value and

the second subscript is the Ay + 2 value.
I '

The (Ax,Ay) representation is especially useful in the

available display routines, because they require the incremental

x and y values as input variables (Ozsoy 1983).

3.1.4 Freeman's corner cutter matrix ---------------------·--------·-
By using Freeman's corner cutter matrix (Freeman, 1961; Gumas,

1985), one can remove the jaggedness of a c-urve. Figure 3.8 shows

that certain pixels can be removed (the black pixels in this figure)

without significant loss of information. In fact the curves look

much smoother after this toutine is applied (see Figure 3.8). After

applying this routine, the curves never change direction over more

than ±45° going from the precee~ing two pixels (giving the current

direction) to the next pixel in the curve. The ~ethod repeatedly

,,replaces two adjacent chain tode elements by the new element(s)

found in Freeman's matrix (see Figure 3.9). The second (or only)

new element is used in the next replacement step. In Figure 3.10

the routine is applied to the curve of Figure 3.8. Sometimes a

-,17-

.,

b .

\ ..

s·lngle i:terat~ton =1.s not e,nough and the routine has to be repeated

untll tbe:? chain code ho longer changes. Although the routine

$mooths =the curves, it only does so on a local basis. Freeman

(1961) also shows how t:he routine can·be used to find the shortest

path between the curve's startpoint and endpoint. Thls m~thod

provides maximum: smoothing of the curve. However, unlike the

alg_orithm ptesertt.ed in Ch.apter 5, no means of arbitrary $:lllQQt]tln~

3·. 2:· '·D.Ls·pJ·a·y routines

Alt·hough some baslc g=r.ap·h:ic routines are already available

(Oz·soy l983.l, some: twet1ty-five additional graphic routines were

dev-e·loped: to a·l·d :fn the fluid flow analy-sis process (Kerstens 1985).

The_s~1 ro .. lfti.nes cr~:ate a very inter-att,ive environment, set up and

c_le:a_r :the. s·creen, a·t "low :th·e= us.et ·~o :C·hange the c.ertter of display

a-n·d s:caling .factors, .p,rovld.·e man_y ,option·s., ·and quickly al low the
.· . . .

us:er ·to _display/aver.ag:e/$.mooth/correla·te·· (a·n) arbitrary frame(s)/

ttftve{.s} etc ... Most of' t,:he·s·e routines are- explained in Kerstens

·fl985)-~

How_e,/er,. ·t:n ord.er to keep track of whi..ch curves are displayed

where on the screen, in an efficient manner, and to enable the

implementation of the averaging, smoothing, and correlation rou~lnes,

special buffer and cursor routine$ were developed. Since these

rout .. ines are fairly complicated: .and: represent a major part of the
r

·tota 1 FORTRAN code, the dev·e:J;"or.>""ed. a 1 gor i thms are presented and

·-·1'8-. ..

o'.

(
I

I

' '"1'

r•.

'i

3.3 Curv.e storage buffer

After a curve is d lsplay.ed .oh "t·.he screen, it is often used in

-some further processing. Suppose the displayed curve is the

.output of previous processing routines; then it is necessary to

store the relevant data of tbi·s curve so one can use it in the

:future without having to re_c:_a_:lculate it. To accommodate this,

spec la 1 buffer rout rne:s th,rt store a 11 re 1 evant data pf t:he· cur"ves

displayed on the screen were ·de.veloped. Figure 3-:l .. 1 ~hows the:

setup of the buffer wh I l·e its c001ponents a re expl)~·fned it1 :tn:e:

rerna:i nder of this par·a_gra_p:h.

·3:.-3. 1 Buffer eo i nte:rs· ---- -- - -- -- -·.~:-

·tot of othe·r '.J·.of:orrnat·lon for each cu_rv·~.: ·t'.hat ·is displayed on the

screen (see F-l:gu.re :3.11). Since cllrve-s ~re· continuously removed

a_nd add.ed: t"<:> the lls.t .of displayed 'curves, the stack continuously

c·h-43,rrge:~-. ·So tlte: :s-tac::k h.a:·s t-o be updated quite frequently, and one

_ha:s-. to ::keep: t.rac,k ·o:f where .a. pa.rt i cu 1 ar curve is stored. Suppose

the current number .of dls._p.layed curves is N. One way of storing

the curve.s wo~.rl.d :b~. to store them in the first N posit i ans of the

buffer (seE?. ~'t-ciG·k i.ri Figure 3. 11) , in the order they appeared on the

scre·en, .-and· to. r.·e.member. the current number of d.i sp 1 c,yed curves N.
' I

'·

!
l I

I ' 1·,J-'-(J. ·' '

{

. I

''

Assume, however, that one wants to remove one of the first curves
I

In the stack from the screen. Since thls curve Is no longer .shown

on the screen, it also has to be removed from the stack (otherwise

a stack overflow would quickly occur),. This In turn creates a gap

In the stack that has to be closed. Suppose the third curve stored

In the stack Is removed from the _screen. To close the created gap,

the N-3 curves that were placed on th~ screen, ·--after the thl rd curve

was put on the screen, ·have· to be shifted down one position in the

stack because the third curve was removed. Since each curve can

contain over 299 data points, this algorithm would be very

·inefficient.

An alternative would be to remember where each curve Is stored

in the stack, remember where there are gaps in the stack, and to .

fill up the gaps with data of the new curves being·displayed on the

screen. Basically the new curve data would overwrite the old curve

data. This is a very efficient algorithm in which no data is re-
0

positioned in t~e stack. lmplement~tion of this algorithm requires

that one keeps track of where the curve data is positioned. To

understand how this can be done efficiently, one first has to

consider how the buffer is going to be used.

As mentioned in Chapter 2, the data is generated in the form

of frames each consisting of several curves. Therefore, it is more

than likely that at some time one wants to display simultaneously

a complete frame, or a complete set of curves for that matter. If

-20-

,

~
. J,

this Is the case, a sequence-.of curves shoutd--.be stored In the

buffer. Keeping track of the sequences would make it possible to

delete any particular sequence from the buffer (and thus the

screen). So every sequence of curves Is stored and removed in

one shot. However, if this is the case, the only thing to remember

is the stack addresses in w.hich the curves of particular sequence

are stored arid the total number of sequences that are currently

displayed on the screen. Figure 3. 11 shows how this is implemented.

The stack addresses of the stored curves is stored in a one-·

dimensional array in the ~ame order as they appear on the screen.

This is the array labeled "curve-addresses" in Figure 3]11. Every

curve of every displayed sequence is stored in this array. To keep

track .of where a particular sequence starts in the "curve-addresses"

array, a second one-dimensional array, containing the sequence

posit i ans in the ''address-array", was .created. This array is a 1 so

shown in F:i gu re 3. 11 and is 1 abe led "sequence-pas it ion". Stored in

this array is the address of the last curve out of each sequence

in the "curve-addresses" array.

Suppose the address of the last curve of sequence N-1 is stored
<

in position x of the "curve-address" array and the address of the

last curve of seq':,lence N is stored in positi.on Y of the "curve-
..

address'' array. Then the total number of curves in sequence N is
~

,.

Y -· X. So by keeping track of the las.t. address of each sequence in

the "address-array", it is possible to locate the stack-addresses

L_, '

-21-

_.,.,. ..

•· .; ;,
.:.. I

• I

'• ,

of ~11 the curves In a par.tlcular sequence. The only exception
I

Is the first sequence. One cannot find the number of curves In

this sequence by substractlng the position of the last curve In '

the previous sequence from the position of t·he .last curve iri this

sequence, since this sequence does not have a predecessor. However,

lor this sequence the number of curves is equal to the pointer value

and one can use this value Instead. The pointer value of the current

sequence ls updated each time one adds a curve to this !equence.

After completion, the sequence is disp·layed on the screen (note:

a sequence was defined to be a set of curves that are transferred

to the screen simultaneously). This results in a new sequence being

start.ed and this in turn means t.hat the pointer in the "sequence

array'' that was identifying the ·1ast curve of the then current

sequence, is now pointing to the last curve of the just completed

sequence. A "sequence-counter" is keeping track of the number of .

sequences and is pointing to the position of the sequence-position

pointer of the current sequence in the 11 sequence-position11 array

(see Figure 3.11). As mentioned before, to keep track.of the curve's

stack-addresses is not enough. It is also important to keep track

of the gaps in the buffer, because new curves have to be stored in

these p6~itions of the stack~ To do so efficiently, the available
.

stack-addresses are stored in a one-dimensional array called

"available-addresses" (see Figure 3.11). A pot·nt.er keeps track of
"'t

..
how many of the addresses are still available. Each time a new

•

' ,,

-22-

. .. .

,·.. ,.
'\

l . \

. ,.. -. . .

curve Is stored, an address Is removed .from the ·top of the

11avall~ble-addresses11 array, the pointer value (pointing to this

array) is lowered by one, thereby pointing to the next available

stack-address, the sequence-position ·pointer is incremented by

one, thereby pointing to the next position in the t•curve-addresses"

array, and the address that was just removed from the "available

addresses" array is stored in the "curve-addresses" array, thereby

pointing to the • the stack where the data of the gap In new curve

-wi 11 be stored. ' ' ..

So, • • of data manipulation takes place each time a minimum a new
"'

curve is stored. All the relev.ant curve data are now stored In the

stack.

lf a curve is removed from the stack, a similar routine takes

place. One can remove any sequence from the screen and thus the

stack. If a sequence is removed, th~ stack-addresses of all the

curves ln that sequence ~_re removed from the "curve-addresses" array
~

. and stored tn the· "avai lab·le-addresses" array. The. pointer to the

''ava i lab 1 e-addresses'' array is updated and is thus st i 11 pointing to

the first available-address in that array. The gap in the ncurve

addresses'' array is removed by shifting up all the curve-addresses

of the curves in the sequences that followed the removed sequence.

Accordingly, the sequence-position pointers to these sequences are

adjusted. The gap in the "sequence-position" array (created by the
. '

removal of the pointer to the removed sequence) is removed in a

• 1\

[} '

(_,., I

' ,.

'

-23~
, I

,~, J j • , .. ' ~ ' .

..

' ,•

s I m I 1 a r fas h I on •
\

Since one sequence was removed, the "sequence-

counter" value Is decremented by 1. The data of the curves that

were removed is not removed from the stack. If a new curve Is

stored at thls. position in the stack, its data will simply be

written over the old curve data. Again a minimum amount of data

manipulation was required to remove.a complete sequence -of curves

from the stack and thus the screen.

The buffer routines form ~n integral part of the image

processlni algorithms- They provide a means of efficient curve

maniptilation and data storage. Withoot them the flexibility of the

routines would be greatly reduced and the implementation of

similarity measurements {see Chapter 5) would become a very

difficult task.

3.3.2 Stored curve data ------------------
The stack consists of three arrays {see Figure 3.11). When a

curve is stored, the data of the curve is divided over the three

arrays. The stack-address of the curve is the same for all three

arrays. The first array stores the /J.x and ~y values (see section

3.1.3) of the curves. This is a three-dimensional integer array.

The three subscripts of this array are: curve-address (first

subscript) , /J.x or /J.y (second subscript is 1 for /J.x and 2 for /J.y) ,

and pixel number (third subscript). The second array is a two

dimensional integer array that stores other relevant data of a

curve. Th·e two subscripts of th1$ arr~y are: curve-address (first

-24-

I .

' ' -
~

',. ----

/

subscript), and relevant-data number (second subscript). The

relevant data Is always stored In the same order (see Figure 3. 11) •

.

The first data element is reserved for the x-coordl~ate of the

startpolnt of the curve. The second data element stores they

coordinate of the startpoint of the curve. Also stored are the

current color of the curv~, the number of '1x elements (or '1y elements)

in the curve (this number is equal to the number of pixels in the

curve -1), the label-type, label-switch, curve number, frame number,

and window of display. A curve can be identified by looking at its

curve and frame number. Each frame has a unique number and each

curve within a particular frame also has a unique number. The curve

numbers are displayed either above or below the starting points of

the curves. Studying Figure 2.1 reveals why this is convenient.

The general direction of the curves in the upper half of the screen

is always downwards while the general direction of the curves in the

bot.tom half of the screen is always upwards .. So curve labels can

always be put above the startpoint of the curve if the curve ts in

the upper half· of the screen and below the startpoint if the curve

is located in the bottom half of the screen. The curve labels

consist of the curve's number and an optional character telling if

the curve is the output of an averaging. (see Chapter 4) or smoothing
...

(see Chapter 5) operation. This information results in a unique

l·abel code that is stored in the label-type location of the second

stack array. A label can be switched on 6r off and Its current

-25·-

·~····

..... ..
' •'' • •

I \ .•

. ·'
'

status Is stored In the label-switch location of the second stack

array. The display-window location of the stack array keeps track

of the wl ndow In which the curve is d I sp 1 ayed · (either fu 11 screen

or not, see Kerstens 1985).

The third stack array is a two-dimensional real array. It

.contains the scaling factor and center of display (x and y

coordinate) for each curve. These values can be changed by the

user which enables him to zoom-in on particular portions of a
•

curve or to reposition the curves on the screen. Rather than

recalculating all the new h.x, h.y, and startpoint coordinate values,

these display parameters are store~ instead. Again, the first

subscript ·is the curve address, while the second subscript is

pointing to the data location of interest.

3-3~3 Buffer routines -----------~---
There are four buffer routines: BUFINIT, BUFSEND, BUFDISP,

and BUFERASE. The first routine, BUFINIT, initializes the buffer.

It resets al 1 the pointers and fi 1 ls up the "available-addresses''

array with all the stack-addresses. This routine is called in the

beginning of the main program and in the clear-screen routine. The

second routine, BUFSEND, stores all the relevant data.of a curve in

the buffer. It generates warning messages when the number of

sequences reaches its maximum (currently 10), or when the number of

curves reaches its maximum (currently 30). If the capacity of the

buffer is exceeded, no curve data is stored, no additional curves

-26-
"

''·~-~-....
I I.

'-·--··. ~ J

'' I

.:

' '

L_,

: ,

are displayed, and the user is notified of the fact that, either

the stack is full or the number of sequences has reached its

maximum, and that no data was stored. The dimensions of the

appropriate arrays can be increased, if necessary, to facilitate

the user's storage requirements.

The third routine, BUFDISP, displays the curves in the curr~nt

seque~ce a·nd updates the ''sequence-counter" • .
..

The last ro~tine, BUFERASE, will erase a specified sequence

(set of curves) after some specified delay. It also has a refresh

option. Curves are removed from the screen by redisplaying them

in the background color. Therefore, if one of the remov·ed curves

crosses a displayed curve, the latter will have a gap after the

removal process is completed. By refreshing the screen (redrawing

the still displayed curves in their own color) after the removal

operations, these gaps disappear. Finally, during the refresh

operation, the labels can be either removed or displayed.

'
.

3.3.4 Ql~e!~r-~~e
An exact copy of the displayed curves on the screen is maintained

in a two d.i mens i ona 1 byte a r·ray. The= reso 1 ut ion of this "di s_p 1 ay

map• 1 array is the same as that of the screen: 512 x 480 locations.

Each time a pixel of a curve is displayed on (removed from) the

screen, the stack-address of that curve is stored in (removed from)

the corresponding location of t~e "display-map" array. By just

storing the stack-address of the curve, it is possible to keep the

,.::

' .. ' .

J
(

• _, ...

size of the "display-map" array down to a relatively modest value,

while one can still find all the relevant curve data by looking

at the stack locations that correspdnd with this stack-address.
-

These operations take place In the BUFDISP and BUFERASE routines.

The "display-map" is used in the developed cursor routines which

are discus~ed in the next paragraph.

3.4 Cursor routines

The similarity routines require that the curves, between which

a similarity value is calculated, are picked from the screen by the

user. The reason for this is simple: to give the user the

flexibility of calculating the similarity between arbitrary curves,

originals, averaged, smoothed, or a mix of them. A different type

of implementation would probably be a burden to the user and would

not give hlm the flexibility of a cursor routine. However, such a

routing was not available and h~d to be developed. A routine that

returns the x and y coordinates of the picked pixel is available

(Ozsoy 1983) and is used in the curve picking routine.

3.4.1 Search routine --------·- -----
The search routine must be fast and efficient, have a high . '

resolutiah (meaning it must be able to differentiate between two

curves that are close to each other), and find the curve that is

G:Josest to the cursor. To find a curve, the cursor is shown on
'

the screen and the x and y coordinates of the pixel picked by the

user are returned to the search routine: The search routine uses

-28-

,. I

'·'

\

. '

these values to look in the display map (see section 3.3.4) ·to
.

see If this pi xe 1 be 1 ongs to a curve. ·This Is · the b 1 ack, center

pixel of Figure 3.12. If it finds a stack-address (a number~ 0)

in the display map the curve is found, and its stack-address is
. .

used to find the required curve data in the stack. If no stack

address is found, the search· routine will search for the nearest -
pixel that is part of a curve, fts equivalent; moreover, it will

..

look for the nearest location in the display map array containing

a stack-address. Figure 3. 12 shows the order in which the

locations are checked. The locations with the number 1 in them

are th~ ones closest to the center location and are checked· first.

They are checked in a counterclockwise fashion starting with the

locatlon in the second quadrant. If no stack-address is found,

the locations n~mbered two and three are checked in a similar

f·ashion (starting with two). If still no address is found, the

locations numbered fou_r are checked. Figure 3.12 show_s that each

quadrant contains two locations that are numbered four (both

locations are equally far from the cente·r location). Again th_ese

locations are checked in a counterclockwise fashion. For each

location in the second quadrant with a number between one and
. ~

forty-one (see Figure 3.12), its relative coordinates with respect

to the center location are stored in a look up table. Figure 3.13

shows part of this table. The relative coordinates of the first

four numbers {five location$) in each quadr~nt are shown in this

table. From the table one can see.that the relative coordinate .

-29-

I

!

...
11

values of the locations In the third quadrant can be obtained from

the relative coordinate values of the equivalent location in the

second quadrant. The· required transform~tlon routine is: invert

the sign of the relative y coordinate and flip this value with the

'
relative x coordinate. The relative coordinate values of the

locat:ions in the fourth quadrant can als·o be obtained from the

values in the second quadrant. The transformation required here •
I S :

invert the sign of both the. relative x and y coordinates-. Finally,

to obtain the relatfve x and y coordinates of the locations iri the

first quadrant from the values in the second quadrant,one has to

invert the sign of the relative x coordinate and flip this value

with the· relative y coordinate ..

So only the relative coordinates of the second quadrant have to

be stored in the look up table since the other values can be

obtained with a s-imple transformation. The first forty-one numbers

in the second quadrant represent seventy-five locations (see Figure

3.12). So by looking at the .seventy-five locations in the second

quadrant and the t~o hundred twenty-five locations in the other

three quadrants,. the search routine looks at three hundred locations

(p-lus the center location) to find a curve. The total screen

consists of 512 x 480 = 245,760 pixels so the search routine is
. '•

checking approximately lout of 800 pixels. For a thirteen inch

monitor with an aspect ratio of 3:4, the total viewing area Is

7.8 x 10.4 = 81.12 square inches .• So the total area checked by

-30-
..,.,. C.

I '

the routine • I 5 :

----. ...
301

245,760 x 81.12 ~ 0.1 square inches (3. ')
..

Since the checked area approx·imates the shape of a circle, the

diameter of this area is approximately:

2x/¥ = 0.36 inches ..
· (3. 2)

This provides more than enough resolution and will make It easy

r for the user to pick the desired curve even if the curves are very

close to each other.

The routine will find the curve that i·s closest to the center

of the cursor. However, if a curve is further than approximately

.18 inches from the center of the cursor, the routine will not find

the curve. To compensate.for this, the search Is expanded to check

the locations on the horizontal, vertical, and two diagonals going

through the center of the cursor (see Figure 3.1·4). Again, the

routine checks the locations in a counterclockwise fashion. After

completion of the local s~arch, it starts with the relative

coordi.nate.s (0, 10) above the cursor, then checks the location

(-10, 10) on the diagonal, then the location (-10, 0) on the

horizontal, etc. Although the routine skips a lot of locations

(to keep it efficient), it generates a "star" of checked locations

and should almost always find a curve. If still no curve is found,

the· user has to try again. In the worst case when no curve is

found, the cursor is positioned in the center of display, the

l . . .
. l.

...

-31-- ..

' I

..

.. ..
. .

additional numbe~ of checked positions Is equal to 1872 and the

total number of checked locations is 1872 + 301 = 2173. So

approxlniately 1 out of 113 pixels Is checked In the worst case

situation (le~s than 1%) keeping the routine still very efficient.

As soon as a curve is found by the search routine, the routine

is t~rminated and the curve's stack-address is returned. Because

the curve's stack-address is known. all relevant data can be found

in the stack. This data is used to redisplay the curve in a

different color immediately after it is found. The user can accept

or reject the curve. If the curve is rejected, it ts again

redisplayed in its old co·lor. If the curve is accepted, its data

is used in the qperation described in the following1

•

.. .

,

-.32-

\• .. '~-' ~
r . ':'>· __ -.,.-.... ,~_,-

. I . ' ,, ... ""r
,;-

_

. , .

~- -- --·--------~--- -~--,-- ---- .

-~ . , .

' ~· t

I . "

4. CURVE PROCESSING

One of the main objectives of this ·thesis was to develop an
"

algorithm capable of averaging a set of curves. The developed

algorithm and the required support routines are presented in-

this chapter.

4.1 Length calculations

- I

,

Before any averages can be calculated, some consideration has

to be given to the relevant length of the curves. It is also

important to find the right points on each curve that must be

used in the averaging operation. In the remainder of this paragraph

the.se topics are discussed.

4.1.1 ~2r~~!!~~~-Y~r§~~-!b2r!~§!_~YrY~-l~~gfb~

Two curves almost never have the same length (see Figure 2.1).

Therefore, before two or more curves are averaged, some thought has

to be given to how the difference in length is to be handled. One

canreither norma-lize the curve's lengths or one can average the

curves over the ·tength of the shortest curve.

If two or more curves...are averaged, a number of points on one
i6

curv~ .are c6mpared with the same number of points on the other

curves. If the· length of the curves is normalized, these points

are spread out over the entire curve. The length of a section

between two of the points (me~ured along the curve) is the same

for all sections of one curve. So if one curve is longer than

-33-

''· .. , ·_-: . !

I.

. ,,
. '.

another curve, these sect Ions a.re a 1 so longer. A Just t f I cat I on,

for using normalized lengths could be the-assumption that the curves

started out to have the same length, but the disturbance In the

flow stretches some curves more than oth~rs. By normalizing the

curve's length (spreadl-ng out the points over the entire length of

the curve) one can compensate for this effect. This is shown in

Figure 4.1. Another possibility is to ·assume that the length of .

a section between two points does not change from curve to curve.

So a longer curve Just has .more points. Averaging requires that

the same number of points on each curve is used. So if the shortest

curve has N points, only the first N points of the other curves are

used. Since the other points are not available for the shortest

curve, one cannot average the remaining points on the longer curves.

This is shown in Figure 4. 2.

To find the locatlon of the points on each curve (see paragraph

4.2), it is important to know for each pixel what the length of the

curve section enclosed by this pixel and the startpoint of the curve

is. Therefore, this value ls calculated for each pixel in each

curve and stored in a special array for each curve •. If this value

is known for pixel N, the value for pixel N + 1 is found by adding

the distance between the center:s of pixel N and- pixel N + 1 (either·

l or If, see sections 3. ·1.2 and 3. 1.3) to the value of pixel N.

. .

!' - .Tr I ..

"'! .. '.

.J

'. ~~'
.

4.1.3 R~solutlon considerations -------------------------
Since the same number Qf points of each curve ts used In the

average calculations, it is not inmediately obvious how many points

per curve have to be calculated. Too many points would make the

algorithm inefficient, while res~lution would suff~r If the number

'

,.

of points is not high enough. Therefore, when normalized lengths

are used, the number of points is mad~ equal to th~ number of

s~mples (pixels} in the curve with the highest ~umber of samples.

When lengths equal to the length of the shortest curve are used, the

number of samples in the part of each curve that is being· osed in

the averaging routine, is counted and. the number of points is

made equal to the highest number of samples in any one of those

sect ions.·

When the length of the shortest. curve is used as a reference to

determine what part of the longer curves is to be used in the

averaging calculations, one has to calculate the number of relevant

samples (pixels) in those curves~ The length of, and the number of

pixels in, the shortes:t curve are known. For each pixel, the

distance (measured along the curve) to the curve's startpoint is

known (see section 4. 1.2). At some pixel, for every curve, this

length will be approximately equal to the length of the shortest

curve. The maximum error is !12 which is half of the maximum

distance between the centers of two pix~ls (see section J.1.2).·

. .
......

-35-

1',
/ .

•I!'

This pixel is found by means of a binary search (very efficient).

Suppose there are N + 1, pixels in the shortest curve. Starting

at the startpoint of the curve, each pixel ls assigned a number.
,,

The startpolnt pixel is pixel O and the endpoint pixel ts pixel N.

Then the shortest curve consists of N elements where an element

is the connecting line b~tween the centers of two adjacent pixels~

The length of each element is either 1 or Ii (see section 3. 1.2).

So the total length of the.shortest curve is a value between N

and Nfi. If the short~.st curve is a ·straight horizontal or vertical

line, its length is N. A different curve having the same length

has at least N/12 pixels. (If this quantity is not an integer, the

value i.s rounded to the nearest lnteger that is smaller than this

value). The only time this minimum is reached is if the ~econd

cu·rve makes an angle of 45° (or 13-5°) with the horizontal. This is

shown in Figure 4.3.
0

On the other hand if th~ shortest curve makes an angle of 45

with the horizontal, its length reaches the maximum value of Nlf

(the shortest curve consisted of N elements). A different curve

having the same length has at the most Nil pi"xels (if this number

·;

is not an integer, it is rounded to the nearest integer that is

la~ger than this value). The only ti.me this maximum is reached is

if the second curve is a horizontal or vertical line (see Figure ..
4.4). If the position or shape of the shortest curve is different

from the ones described above, the minimum and maximum values will

-36-

· ..

• ,....... - 1

.. . . .
' ' .. '

. ,'

not be reached. So if the number of elements In the shortest curve

ts N, the number of elements in the other curves being used In the

averaging calculations is within the range:

l N//iJ S elements used ~ f Nfil (4. 1)

Within this range there is a pixel whose distance to the curve's

startpoint is equal to the length of the shortest curve L. This

is shown ln Figure 4_. 5. The exact 1 ocat ion of this pi xe 1 is found

with a binary search routine. Figure· 4.6 shows this technique. The

range of poss i b le p.i xe 1 s i ·s d i v i d ed i n two. The d i stance of the

curve's starting point to this pixel is compared with the length of

the shortest curve. If this -length is less than the length· of the

shortest curve~ this pixel becomes the new lower limit o~the range

of possible pixels. If the length was larger than the length of the

shortest curve, this pixel becomes the new upper limit of the range

of possible pixels. By repeati~g this technique, the right pixel

will be found very quickly (see Figure ~.6), after which the number

of pixels to be included in the averaging calculations is known.

4.2 Curve avera9ing

Averaging· of curves is performed by -averaging a large number

of points on each curve. The number of points is equal to the

maximum number of pixels in the curves (se~ section 4.1.3) and their

location is found by the method that is presented in the next section.

-37-

,~.- I I . , ., ..
' ..

'

The averaging routine requires a number of points that are

spaced equally over the part of the curve that Is to be included

in the averaging operation. The ,spacing between the points is

found by dividing the length of the section of the curve one .Is

interested in (see section 4.1.1) by the total number of points

minus one (see section 4. 1.3). Since both the number of points

per curve and the spacin:g between the points is now known, it is

. possible to calculate the absolute x and y coordinates of each

point. Suppose there are N + 1 points numbered O through N. The

distance {measured along the cu.rve) between a certain point and the

startpoint of the curve is equal· to the points number multiplied

with the interpoint spacing. Tracking the curve over this distance

will give the point's position and thus coordinates. For each

point and each pixel the distance to the startpoint Js known. So

-it ·rs possible to find the two pix-els on each side of the point
. '

that are closest to that poi-nt. Since the x and y coordinates of

each pixel are also known, it is now possible to calculate, by 1 inear·

interpolation, both the location and coordinates of each point.

This position usually does not coincide with any of the pixel

centers. As an example tonsider Figure 4.7. The curve in this

figure consists of seven pixels or six elements (only the centers of

the pixels are shown). The length of the curve is 3 x 1 + 3 x l'i. =

3(1 + 12). If seven points ha-veto be equally spaced over this

-38-

·' ~.. . .. ,

•

. •, .

....

curve, the spacing between them ts equal to 3(1 + 12)/(7-1)

c=l .24 The _point locations are shown in Figure 4.7. Clearly the ,
I

1nterpoint spacings are constant over the entire curve and only

the first and last point coincide with a pixel center (this ts

always.the case).

The average curve of a set of curves is found by aver~ging

the equally spaced points one by one. To average a particular

. ' ' ...

point on all these curves, the averages of both the x coordinates ahd

they coordinat~s of this point are calculated. Weighting factors

can be assigned to each curve. By assigning equal weighting

factors (# 0) to each curve, an unweighted average is obtained.

Thus the coordinates of a point on the average curve are talculated

by:

where

x.
1 ,ave

Yi ,ave

n
x 1 = r x •. w.

, ave j = 1 ·1 , J J

y i , ~ve

= the X

n
• L WJ

j=l
"

n
= E

j=l
n
l:

j=l

y. .w
I ,J y

w.
J

coordinate of point

the coordinate of • = y point

~39-

(4.2)

(4.3)

• of the I average curve

• of I the average curve

.-,~· ,·-

·-.. . / . .

x 1 • = the x coordinate of point i of curve j ,J

yi.,j =they coordinate of point i of curve j

wj = the weighting factor for curve j

n = the total number of curves that are averaged
. . .. _

This process is repeated for all the points of section 4.2.1 and _

for the startpoints of all the curves. The points on the ~ver.age

curve will not be equally spaced anymore .. However, since the

original curves are smooth, the distance between the points on the

average curve can be represented by two pixel·s (the factor 2 results

from rounding to integer values). Most of the time the ~istance

can be represented by one pixel ot even zero pixels, which occurs

when two points are almost on top of eac·h other. (This happens

when curves move in opposite directions.) The average curve is

represented by a continuous string of pixels that closely approximates

the calculated point locations. Redundant pixels are removed by

applying Freeman's corner ~utter-routine (see section 3.1.4).

4.2.3 Results ... -------
The average cu.rve's- data is stored in the buffer and displayed

on the screen. The curves. also are .. assigned a label consisting of

a number and the character A (for Average, see Figures 4.15 and

4. 16) .

Figure 4.8 shows three curves. The curve on the left and frght

of the figure are the original curves. The one in the center is the

average curve that results from unweighted n6rma1 ized_averaging

-40-

fl.. ,.

•

'>

•

'f

(see sect I on 4. 1. 1). F lgure 4. 9 shows ·the same two or I g Ina 1
I curves, but the curve tn the center ts now the curve that results

from an unweighted average over the length of the shortest curve.
Note the difference between Figures 4.~ and 4.9. Weighted averages
of the same original curves are shown in Figures 4. 10 and 4. 11.

The weighting factor for the curve on the left is 1 while the

weighting factor for the curve on the right ts 1/3,. 1, and 3. This
results in the average curves that are shown in the middle and that
depend on the weighting factor of the curve on the right. The

higher the weighting factor for the curve on the right, the more

the average curve resembles this curve and the more the average
<.::

curve's position is sh i ·fted towards the curve with the h I gher

weighting factor (see Figure 4. 10 and 4. 11). The averages shown in
Figure 4. 10 are obtained from a normalized averaging operation and • ' •••. ;I

the averages in Figure 4.11are obtained from averaging each curve

over the length of the shortest curve. The routine is very efficient
and the ·results are shown almost instantaneously on the screen

(averaging of two frames with ten curves each takes less than one

second for a moderately used VAX 11/780 computer). The routine is

capable of averaging each curve on a particular frame with the

corresponding curves on many other.frames. The whole process can
'

be performed in one operation and is shown in Figure 4.12. It

enables the user to eliminate disturbances and noise {by averaging)
as well as modulation effects that occur over a longer time.

-41-
1 \ ·,

:J

,,

• I

ft' ' '

. ..

Figures 4.8 through 4.11 show averages of curves taken from·

· actual fluid flows. Figure_s .4.13 and 4.14 show the top half of

a fluid flow image. As shown in Figure 2.1, the bottom half of

such an image is usually very similar to the top half. In the

actual analysis, both halves have ~o be included (which is possible

with the current version of the program). Finally, Figures 4.15

and 4.16 show the top half of an average frame obtained from

averaging the frames shown in Figure 4.13 and 4.14. Figure 4.15

shows the average frame obtained by a normalized length average,

w.hile Figure 4.16 shows the average frame that is obtained by a

shortest length average.

For ease of viewing, the scaling fa~tor for the curves in

Figures 4.8 through 4.11 and -4.13 through 4.16 was set equal to three.

This res~lts 1n displ-ayed curves that contain more pixels than

the actual curves whlch might leave the vfewer with the thought
',

that further improvement is possible. However, since all operations
<'

•
use the original data, this is neither possible nor necessary, and

the curves are shown with the h lghest poss i b.-1 e reso 1 ut ion.

-42-

• I •

',., ,

..

•

' .

5. CURVE FILTERING AND RECOGNITION

Filtering or smoothing of curves might be required for a

number of reasons. Additional noise or disturbance reduction

might be needed or one might want to retrieve the basic or

fundamental shape of the curves. For this reason a special smoothing

algorithm was developed and this algorithm Is presented in the next

paragraph.

The second algorithm presented In this chapter calculates

a similarity value to express the similarity between a number of

curves. This enables the user to calculate how much ·a curve is

chang·ing as a function of time or position. Another application

might be to use these similarity values to recognize a frame or

curve.

'
5. 1 Curve smooth i J'l9

A special smoothing algorith~ operating in the spatial domain

was developed and is pre~ented in the remainder of this paragraph.

The differences between smoothing· in the spatial or frequency domain

are discussed in the following section.

..
The discussion in paragraph 2.3 remains valid here. The

c~lculation of Fourier transforms and inverse Fourier transforms is

relatively time consuming and costly. Filtering of the curve in

the frequency domain is performed by multiplying the curve's

transform with the desired filter function. However, the same
f

-43-

. ' '
. '

L .

. ,

•

"

.,, ..

operation can be performed in the spatial domain by means of a

convolution operation between the curve's function and the Inverse

transform of the desired filter function (Carlson, 1975). In

ter·ms of computation and effort, both operations are comparable

(excluding the Fourier transform and inverse Fourier transform

operations). So in terms of speed the spatial domain is clearly

preferable. The filter operation in the frequency domain will

have a dramatic effect on the location of the endpoints of the

curves (see Gumas, 1985). The endpoint locations depend on the

filtering operation and will be different from the original location.

Due to the interchangeability of the convolution operation in the
f

spatial domain and the multiplication operation in the frequency

domain, this is also true for the smoothing operation in the

spatial domain. However, with a specially developed modification

of the convolution operation, it is possible to keep the endpoints

fixed-. For these reasons, the spat i a 1 domain approach is preferred.

The developed algorithms are presented in the next section.

As mentioned in section 3.1.3, the ~x and ~y values for each

curve are either -1, O, ·or +l. Figure 5.1 shows the ~x and '1Y

sequences for a particular curve. The curve.itself is shown in

Figure 5.2. The absolute displacement in the x direction t~ 4x(-1)

+2 x 1 = ".'"2. Since there are ei-9-{it elements in this curve, the

average displacement per element in the x direction is -2/8 = -.25.

-44-

:-;: ..

"

..
(I 1•~. A~•

Similarly, the .absolute and average displacements In they direction

•

are +4 and .5 respectively. The- cumulative averages are also shown

..
ln Figure 5.1. The cumulative averages are rounded to the nearest

integer. (A value that is exactly between two integer values Is

rounded to the nearest integer that is smaller than this value.)

These rounded cumulative averages are also shown in Figure 5.1.

From the latter, the newly smoothed 6X and 6Y values are derived

(see ·Figure 5. 1). From these values the smoothed curve rs der ive·d;

it is shown in Fi·gure 5.:2. By averag_ing the 6X and· 6Y values over

·.'

the entire length of the curve, all resolution is lost (the average

deviation is the same for all elements) and thus no further smoothing

is possible~ This method is essentially the same as the Freeman

. (1961) routine thaf finds the shortest path between the curve's

startpoint and endpoint. However, both fo·rms of smoothing produce

the same curve for all those origihal turves that have the same star~

point and en.dpoint (see Figure 5.3) because the cumulative 6X and

6Y values are the same for all these curves. This is not always

desired. Often one likes to mainta.in the "fundamental" shape of the

..
cur·ve. Besides, since no convolution operation was involved, it is

not rea·]-ly clear what. kind of filtering operation was applied. By

averaging the AX and /j y va 1 ues over the en·t ire curve, each e 1 ement

of the original curve con tr i bu.ted to the value of each e 1 ement in

the smoothed curve. It seems logical that if this range is reduced,

.
the smoothing wi 11 als·o be reduced. This is accomplished by the

modified and unmodi-fied convolution operations that-are described next.
"

-45-

'

I ," '. ,
' ' ! ' .

., ... I

-~

. .
' .

. '.

For a continuous tangent angle function and filter function,

the filtering/smoothing operation can be descri·bed wlth a convolution

· l nteg ra 1 (Car 1 son 1975) .:

A

S (1) = J 4> (A). f (1 - A) dA (5 .• 1)

-A
where:

s(1) = the smoothed function (curve); s(R,) = 0 for .e,~[-(A+W),

(A+W)]

, 4> (1) = tangent angle function of curve; 4> (1) = 0 for t~[-A,A]

f(1) = fi ltering/smc>othing function; f(.e,) = 0 for 14[-W,W]

= integration variable

Also f(!) ls normalized so that:

w
f f(1) d1 = l (5.2)

-w
The second equation is needed to obtain unit gain. If the tangent

angle functi·on is a constant (straight line) and the filtering

function is a constant, then the smoothed value at 1 = 0 should

have the same tangent angle as the original curve. This ts true

because equation 5.1 is equivalent to the averaging operation that

was described in the beginning of this section.

obtained by the following constraint:

W < A

This result is

(5.3)

If equations 5.1 through 5.3 are valid, the smoothed curve tangent

angle at R, = 0 wi 11 be equal to_ the constant tangent angle of the

1',,

. ..
.. .. t

t I•'

·.

-~

• • .

•

original curve. To prove thls,. consider the following tangent

angle function:

cl> for Re: [-A, A]

o for 1, [-A ,A]
(5. 4)

Then with equations 5~1 through 5.3, one gets fot the ·smoothed

curve:

S(o)

A

= f cf>(A)

-A

-A

= -(j) J
A.

w

A

f(o-A) dA =. f f(-A) dA
-A

A

f(µ) dµ - • ff(µ) dµ

-A

= •J f(µ) dµ = •• 1 =.
-w

I

(5. 5)

If A= W, the width of the filter and the tangent angle function are

the same. This, in fact, is the averaging operation presented at

the beginning of this section. For W < A equation 5.5 is still

valid, but the width of the filter function is less than the width

of the tangent angle function resulting in a local average. So

the convo 1 u ti on ope.ration is a loca 1 averaging _operation.

Figure 5.4 shows the smoothed function when the tangent angle
,

and filter functions are rectangular pulses. Note ·that both

equations 5.2 and 5.3 are valid for these functions~ Studying the
R~

'
smoothed function reveals two undesi'rable effects. First, the

.
"length" of the smoothed curve is longer than that of the original

,_

curve (2A + 2W) and secondly the ends of the tangent angle function

I

of the smoothed curve taper off. The latter results In errors
I

at the end and start of the smoothed curve. This is shown In

Figure 5.5 for the functions of Figure 5.4 with t = n (meaning that

t-he original curve ls a horizontal line of l~ngth 2A with Its

startpolnt at the right). The shape of the smooth~~ curve depends

on the tangent ang 1 e of the orig i na 1 1 i ne (compare Fi gu.res 5. 5 and

5.6).

The reason for these errors is the local averaging operation.

The operation averages the original tangent angle function over a

fixed region. At the ends.of the curve, the tangent angle function

is not available anymore over the entire region, while it Is still

averaged over thi$ fixed region. This causes a gradual drop in

the -calculated average.

Instead of appl.ying the smoothing operation to the tangent

angle function, it is also possible to operate on _the x and y

coordinate functions of the original curve. This would give:

where:

XS (i)

y s (t")

~(R,)

y(-t)

A A

= ,f ~(l) f(l-l) dl and y
5

(1) =

-A

J y(l) f(l-1) dl

-A

= the X coord i,nate function of the smoothed curve
·, ,

= they coordinate function of the smoothed curve

- the X coordinate function of the original curve -
-

- the y coordinate function of the original curve -

-48-·

/

(5.6)

' ,._ -
' .

r

. . ..J

and:

.. .. , . . .

X (1)
s

y s (1)

X (1)

(1) y .

Equations

- 0 fof 1f [-(A+W) , (A+W)] -

- 0 .for 1f [- (A+W) , (A+W)] -
- 0 for 1t[-A,A] -
- 0 for 1f [-A ,A] -

5.2 and 5.3 remain va 1 t·d. So If x(1), y(i), and f(1)

are again rectangular pulses, the smoothed functions look similar to

s(1) in Figure 5.4 and are shown in Figure 5.7. The absolute

displaceme~ts 1n the x and y direction (from startpolnt to endpoint)

for the origin~l ~urve are equal to:

A

D = f. x (1)_
X, 0.1 d

D y,o-ld

where:

-A
-A.

= I y c .e.)

-A

d1 = 2AX

(5.7)

d1 = 2AY

D = the absolute displacement of the original curve in x,old
•

the x direction

D ,old= the absolute displacement of the original curve in
·Y

they direction

But the absolute displacement~ for the x and y coordinates of the

smoothed curve are (see Figure 5.7):
(A+W)

D = J x
5

(1) d1 = 2AX x,new
-{A+W)

(A+W)

D = J y
5

(1) d1 = 2AY y,new
-(A+W)

-49-

'
I , .

(5 .. 8)

·~ ',-t .

' -

•

where:
I

D = the absolute displacement of the smoothed curve tn
x,new

the x direction

D = the absolute displacement of the smoothed curve tn
y,new

they direction

So the. absolute displacement between the startpoint and endpoint of

both the original and smoothed curve is the same. Since both ctirves
0

have the same startpoint, th_e endpoints are also the same. This is

true in general, as long as equation 5.2 is satisfiedo

In the actual implementation, the x and y functions are· the

discrete ~ and fly functions that were defined in section 3. 1. 3 .
•

The smoothed x and y functions will be approximated by the similar
S S.

discrete fun-ctions Ax and fly • The equivalent of equation 5.2
s s

- becomes:

w
Ek f (k) = 1

k=-Wk

The equivalents of equations 5.6 become:

and,

* J\,k
x (k) = E llx(n) f(k - n)

s k=-Ak

1, Ak .
y (k) = E lly(n) f(k - n)

s k=-A . k

Finally, the equivalent of equation 5.3 becomes:

-so-
..

. ~
_,, .. --~···

(5.9)

· (5. 10)

(5. 11)

(-)}
- "' (5. 12)

•

,I

\

t·

1 I f ' ,• rl I

..
. '

Because I t.x l!.1 , .I '1Y l!.1 , and equation (5. 9) also j 6x: l!.1 and

* I Ay I< 1 • s
,1c *

The Ax and Ay· values represent the displacement In (s s

number of pixels and thus have to be integer values. * Let flx and
s

* * * Ay be the nearest integer values to x and s s y where the difference s

between the rounded and original values is carried over to the next

sample to avoid cumulative errors. M * * Then '1x and Ay are either s s

-1, 0 or +1. So the smoothed curves can be approximated with a

continuous string of pixels. An example, with Wk=

1 / 1 l for a 11 k , and 6x (k) = l for k t.[- 7 , ·7.] i s shown

Correcting for cumulative errors causes gaps in the

5,

• tn

Ax *
s

Ak = 7, f(k)

Figure 5.8 .

function In

--

this particular case. This can cause an undesired effect. Consider

the data of Figure 5.9. The ~x and 6y are the same as the Ax function
.,_ .,\. ,, ,,

.in Figure 5.8. So the 6x · and 6y · functions are also the same as the s . . s
...

llx
O

function of Figure 5. 8. Both the orig i na 1 and smoothed curves
s

are plotted 1n Figure 5.10~ The gaps cause no problem here since

* * t·hey occur at the same samples for both the llx and Ay function.
s s

If the 6y string is shortened by two samples (one on each side), the
..... ,,

gaps in fly are shifted by one position (either to the right or to
s

the left depending on which side of the curve they are on. The data

of these • shown • Figure 5. 11 • Both shown • curves IS In curves are 1n

Figure· 5.12. The gaps do cause a problem this time. The ''smoothed''

curve is actually less smooth than the original curve. To avoid

these problems, the smoothing operation is modified. Consider
'

Figure 5.lJJhe tapered ends of the x(t) and y{!) functions are

-51-

·,
·,.

"~!4~t...,;.":; .•

i'

\

divided at 1 = A and 1 = -A·respectively. The values at the ends
I

of the ta~ered ends ~re mirrored with respect to the dividing

lines and added to the corresponding original function values.

This Is shown in Figure 5.13. This process has two advantages.

First it guarantees that the Ax and Ay strings have the same s s

\

length as the original x and y string. And secondly, the gaps that

were present In Figure 5.8 are removed. In f~ct for the.particular

Ax df Figure 5.8, Ax and ~xs are the same. The modified ~x and ~y s s

have to be ~ounded to the nearest Integer value. Again the

difference between the actual and rou·nded value is carried over to

the next sample to avoid cumulative errors. Significant errors can

result if this is not done. For example, if the values are

continuously rounded to a value that is smaller, the total absolute

displacement will not be the same anymore and a different endpoint

wi l 1 resu 1 t ..

Figure 5.14 shows what is established by the modification.

In this examp-le Wk= 2. The arrows show to which displa<;ement values

in the smoothed curve the displacement values of the original curve

contribute. The ·das:hed arrows show the folded back contributions.

The pixels near the end of the original curve contribute more to the

pixels near the end of the smoothed curve. Closer to the end,

fewer pixels of the original curve are c~ntributing to the displace

ment values of the smoothed curve. This, in fact, results in a

reduction in smoothing at the ends of the curve. This can be

-52-

'

justified by noting that less Information Is available for the··

ends of the original curve. In the middle of the original curve,

the shape of the curve is known on both sides of the pixels one

'

is looking at. This is less and less the case· for the pixels near

the end.

5. 1.3 Results -------
The minimum f'lter width is one pixel wide (Wk= 0). If this

filter ts used, the original curve is left unchanged. The maximum

filter width is constrained by equation 5.12. Maximum smoothing

is obtained for Wk= Ak. Intermediate values of Wk give different

smoothing values. Flgures :5.15 through 5.18 show the smoothing of

two curves obtained by different values of Wk. The shape of the

..
.

filtering function was a rectangular pulse, resulting in a sine (with o

sine x = sin(1Tx)/(1Tx)) filter function in the frequency domain.

The routing could be modi-fied for other filters. However, as can

be seen from Figures 5.15 through 5.18, excellent smoothing

characteristics are obtained, gfving the user a lot of flexibility

in. terms of deciding how much smoothing should be used.

5.2 Similarity calculations

As an aid in the analysis of fluid flows, it would be nice if

one could express the similarity between two curves as a numerical

value. In the remainder of this paragraph such a technique will

be presented.

...53-

\

s.2.1 §!mll!r!~l-~~!s~l!!~~-2Y~r_!b2r!~!~-~~rY~-Y~r~~!_n2r~!l!~!~

!~!:!9Sb
Bas1ca11y the discussion rn paragraph 4.1.1 als·o appl,tes' to this

case. So again the user is given the option to calculate the

similarity value over either the full lengths of the curves (which

then have to be normalized to obtain an equal amount of me·asurement

points per curve) or over the length of the shortest cu·rve. This

choice is decoupled from the choice of either method in the averaging

algor.ithm for two reasons. First, one might want to measure the

similarity value between two of the origi_nal curves. Second, if an

average curve was obtained from a set o.f original curves by using

the shortest length method, one might still want to compare one of
• .

the complete origlnal curves with the average curve.

5.2.2 Cross-correlation measurements ------------------------------
At first glance, a cross-correlation measurement between two

curves will give the desired similarity value. Suppose we have

two curves with the tangent ~ngle functlons • 1(1) and • 2(1). The

cross-correlation value (Carlson 1975) between these two curves

is equa 1 t--o:
A

R~ ~ (-r)
'+' 1 'f' 2

= J •1<1)

-A

A

.;(JI.-T) d1 = J t1(1)

-A
(5.13)

where

~
2
*(.e.) = the complex conjugate of t 2(1) which is equal to

t
2

(1) because t 2(t) (and t 1(1)) is a real function

-54-

\

.. / .

I •.• ~ •...

,.• ... ,.,

.. , .. ,' .i'I.·,
.,,.

;

.. ,

cf> 1 (R,) = 0 for !f [-A ,A]

cf>2(t) - 0 for 1~[-A,AJ -

'T = a shift operator

Now suppose ct> 1(1) =

2

- f and t 2(1) = - i for 1£f;A,A]. Their

R t t (0) = A'lf / 4 .
! i

3A ir /4.

If t 3(1) = - ~ for 1~[-A,A], then Rt t (0) =
1 3

Figure

So Rt 1t 2 (o) = 3Rt t (0). t'he three curves are shown in
1 3

5.19. This result is undesirable. Rt t (0) should equal
1 2

Rt t (0) because in fluid flows the difference between t 2 and t 1
1 3

is equal to the difference between cf> and cp 1• Also if the camera
3

in the set-up of Figure 2.1 is rotated over 180°, the timellnes

propagate from right to left and the fluid flow is a mirrored image

of the one shown in Figure 2. 1. This is shown for. curves cp 1 and <1> 2
/ I

in Figure 5. 20.<, The mirrored image of curve ct> 1 {<1> 1) is equal to its
I

original while the mirrored image of curve <1> 2(<1> 2) is equal to curve
,·

t
3

In Figure 5.19. So a simple rotation of the camera w~ld give

different similarity value if this method is.used, which is

undesirable.
·p

Instead of uslng the horizontal as the line of reference for

measuring the curve angles, one can use a ve.rtical line~ This is

shown in Figure 5.21.

for !e:{-A,A]. So both Rtlt2(o) and RtltJ (0) are equal to zero.

Both result in the same value, but so would any other correlation

involving curve cf> 1• So no matter what the sha·pe of the other
r

curve is, if it is correlated with <1> 1, the result will be zero.
''

-55-

• '

·-
. . . • . ,

This Is clearly undesirable. The solution seems to lie In the

normalization of equation 5.13. To do so, equation 5.13 ts

div I ded by the norm of both <!) 1 and 4> 2• Thus · '

A

R; 1 ell 2 h) = J ell 1 (t) ell 2 (R. -,:) dR.

-A

l lc11 1 I I. I lc11 2 I I
A

= J ell 1 {R.) ell 2 (R. -T) d R.

-A

A

A

J l c11 2 (.e. > I
2

d i

-A

= J cj) l (t) cj) 2 fa - -r) d .l

-A
A A

J cj) ~ (R.) d .l • J cj) ~ (R.) d .l

and with Schwarz' i~nequal ity;A

So with the same c11 1, c11 2 , and c11 3 as before, one now obtains

;·----
, .

(5. 14)

(5. 15)

11 cj) 1 11 = .ffA . 'Tf / 2 ' 11 cj) 211 = /'EA • 'Tf / 4 ' and 11 cj) 311 = ./'l:A • 3'Tf / 4 .

* * And thus R (0) = 1 and R · (0) = 1. So bqth values are equal
<I> 1 <!> 2 4> le!> 3

as desired. However, any two angles that are not equal to zero

would have given the same result. So for the curves in Figure

. * . * 5.22, both R (0) and R (0) are equal to one. Different
<1>14>2 4>14>3 .
* ' values for R are only obtained if the general shape of both curves

--56-

I

,,

-

. \

' "'',- ,·,',J,,

\.

~·

is different. Since both are straight lines of the same. length,

* the value for R is always one. Again, this is not a desired

characteristic. In terms of fluid flows the, similarity between

+1 and +2 of Figure 5.22 should be different from the similarity

between t 1 and t3 . So a different similarity function had to be

developed. This function is presented in the next section.

Similar to the technique described in section 4.2.1, each

curve is chopped up in an equal number of elements all of the same

length. Again, either the full length of the curves o·r only a

part of the curve with a length equal to the shortest curve is

used. It is now possible to compare the d·irection of correspondin.g

elements on each curve. The difference i.n angle between one element

of each curve is exptessed as a numerical value. In analogy with

equation 5.15 this value is normalized to a value between -1 and +1.

Figure 5.23 shows two curves consisting of seven elements each.

The element similarity function is defined as:

..i..

A,, (k) - l - (5. 16)

..

where
J.

A, .. (k) = s i tn i 1 a r_-i ty between e 1 ements k of curve l and 2. Th.is

function is plotted in Figure 5.24. If the element of curve 1

(c1>
1

(R.)) is used as reference (pointing straight up in Figure 5.24),

a point of the element of curve 2 (t2(.e.)) lies anywhere on the ci.rcle.

-57-

........

(j
_)

t

ll ·'

•.• ~·d· , , •. ' ,,1

•

..

The elem.ent stmi larlty values are 1 lnearly distributed over this
l

circle and a few of them are shown. In particular the value Is

equal to 1 if the elements have the same direction, -1 If they

are pointing in opposite directions (note each element has a

startpoint and endpoint that depends on the direction of the curve);

and O if they are perpendicular •. By summing all these values for

all elements, one ends up with a value between -N and +N where N

is the number of elements. The normalized similarity value is now

defined as: N
E

k=l

* A (k)

(5. 17) --
N

whe-.re:
.,_
"' S = the normalized similarity value

.,_ <f> 1 <P 2
I\

and S<f>l<f>2 has a value between -1 and +1. Consider again the

* * three curves in Figure 5.19. Then S <f> <P = S<f> <P = 0.5 and
1 2 * 1 3

for the curves in Figure 5. 22 -one obtains S <f> cf> = 0. 75 and
1 2

= 0.5. So, as desired, this function expresses the difference

between curves <t>_2 and <t> 3 in Figure 5. 22, wh i 1 e it a 1 so expresses

the similarity between curves <t> 2 and t 3 in Figure 5.19. Now

consider the two jagged curves of Figure 5.25. For these curves

(both with ten * elements) S• • = 0, while the curves are in fact
1 2

very similar. The zero va.lue results from the fact that each

element in curve 1 is perpendicular to the corresponding elements

in curve 2. If one would shift either of the curves one element up

-/(
a value of S• • = .9 would result. The .9 results from

1 2
or down,

the fact that now one element of each curve is not contributing to

-58-

\. . ..

·'

("' '·'" '

: 1·

II',

the final result any longer while the other el~ments are all

. a 1 i gned. This result is a 1 so shown in Figure 5. 25. , If one

would define the number of elern.ent::s equal to 9 for this case,

* S<1>
1

<1>
2

would equal 1. However, this ls not done to express the

slight difference between this case and the one w.here the elements

of the two jagged curves would have lined up. To enable this

sih l ft a mod i f i ed s i mi 1 a r i ty
N
t A(k;r)

function is defined as:

'I ~ k=l
Sf lij> 2 (•) = --N-___,.;.

· whErre_·-: ·

1 -
I 4> (k) - <t> . :(k-T)I• 1 2 · .. ·

2. -for" -C k-~~t).$, _[1 -,-~]:
180°

A(k,-r) ~:·

·o f°o·r- (k--r) s [1 , N]

t:'. ·= t:be- :shlft operator (.rtumbe.r :of· element's ,shifted)

(5. 18)

(;5:-.-19-l·

F:i na 11.y ~ c·o:n-s lder Figure 5. 2:6. s:hown are· ttrree curves with

di ff eren·t l--e.ngths of which the ·fl rst: tw9 h:~V~ th·e same genera 1

shape. A.f-ier nprmalizatio_n t:he: similarity between curve·s land 3 ·

or between curves 2 and 3 weuld result in the same value.

s~ ~ (o} = 1.
l 2

It would :be. d:e:sl ra::b 1 e if the difference in
. ..

Also

length

could also be expre$Jed :in the similarity value since in terms of

fluid flows, curve 1 and 2 of Figure 5.26 are not the same. To do

so, S ~l <1>
2

(t} is mu 1 tip 1 i ed with the 1 ength of the shortest curve

-59-

.:- ... --·
i,.j_' ;....::.··

\.

•

/

. I

(L1 here) divided by the geometric mean of the length of the

two curves (L,L2 here). So the new similarity function ls defined

as:

where

Note

N
r A(k,r)

s"' "' (T) ~ s, h) L1 = _k=_l ___ • f
'f' 1 'f' 2 <I> 1 <I> 2 . ./,,_L -L- N 2

Ll - the length -

L - the length -2

that still

Is~~ (t>I 2 1
l 2

1 2

of the shortest curve

of the longest curve

(5.20)

,,

(5.21)

The eqn~l sign is only valid if two curv.es are exactly the same

(both in shape and length).

The justification fat this particular modification ls given in

terms of an example. Figure 5.27 shows two semicircles, one ·having

twice the radius o·f the other. The similarity value is now

calculated over the length of the shortest curve. Since the length

of the larger semicircle is twice the length of the smaller one,

only half of this .semicircle contributes to the similarity value.

Suppose the first part of each semicircle with length Lis
~

approximated with one element (see Figure 5:28). Use of equati·on

5.20 and 5. 19 with L1 = L2 = L gives a similarity value
45°" - o0 . .

1-2----
1 S (0) • . 1_8.o0

· ~1~2 . = -----
1

of:

= 0.5

-60-

'., ...

I

Approx mating the same parts of the semict·rcles with two elements

(see Figure 5.29) gives a value of:

(1 _ 2.67.5 - 45'). + (1· _ 2 67.5)
' 180 .· .·180 = 0.75 + 0.25 = .5

2 2

which is the same value as ·before. If the curves are approximated

with infinitesimal small elements, the following result is obtained

(see Figure 5.30)~ The angle t1 at a particular point on the larger

semicircle is equal to (see Figure 5.30):

where

a(1) = !. 90°
L

and 1 = the distance measured along the curve from the point one is

looking at to the startpoint of the curve; .te:[o,L]

Similarly,

where

R, 0 e(i> = r· ,ao

and thus•. x:..:;,,.,.

1~1 <1> - ~2<1> I = f.90° (5.22>

If the summat lon in equat·i on 5. 20 is rep 1 aced wt th an 1 ntegra 1 , N

is replaced by L/d.t, L1 = L2 = L and equation 5.19 is replaced with

its continuous equivalent, then one gets with equation 5.22:

L f-.90° L
3

1
1 1 I - &.) - 2 •..

s~ ~ (o) = 180° ff
-· - (1 d.t - L L

l 2 0
L / di

-61-

•

....

"

....
12

L
L2 1 1 (5. 23) = I(.e,- 2L) = -(L - rr> - .5 -L

0

Note that the square root term did not affect the final value. So

again the same result is obtained. Now consider Figure 5.31. The
,,,. .. ! . • .

similarity value (using equation· .. ·5.20) for curves 1 and 2 ts 0.5

(see equation 5.23). If one tompares curve 1 with itself, the·

similarity value is 1. Finally, the similarity value for cur~es 1
"

and 3 (using equation 5.20 and normalizations) gives the value

·I!= !fl:! 0.71. Physically~ curve 3 is less similar to curv.e 1
....

than curve 1 itself is (because their lengths differ), but is

definitely more similar to curve 1 than curve 2 is. The obtained

values express this dlfference (values of 0.71, 1, and 0.5 were

obtained respectively) and the additional term in equation 5.20

ls thereby justified. Of course, the term only influences the

measurements on normalized cu~ves.

The original f.Jow (see Figure 2.·1) shows significant symmetry·

between the bottom and top half of the flow. However, equation 5.20

cannot ·directly be used to measure the symmetry. The general

direction of the curves is opposite to each other, but the individual

elements are not opposite to each other. This is shown in Figure

5.32. If o~e of the curves is mirrored with respect to a vertical

,Ii

-62-..

\.

.-

. '

If o I .. .,

•

. ,

.. •.'

line, perfect syrrmetry with respect to a horizontal line would

yield that the individu~l elements of turve 1 and the corresponding

elements of the mi~rored Image of~the other curve 1' would always

point In opposite directions (see Figure 5.32). This in turn

results in a similarity value of -1. Less than perfect synmetry

would resul.t in a· value larger than -1 (but less than +1). This

option is provided to the user, so he can measure the symmetry of

the fluid flow. The user also can specify a shift range over which

S~ ~ (T) is calculated. The algor·ithm will return the maximum
'f' 1 't' 2

magnitude value that was found in this range. So finally the

similarity between two curv~s is defined as:

Similarity between 2 curves= sign{Scf>. cf> (T)}·maxl~cf> cf> h)j (5.24)
1 2 t 1 2 .

where: \

)"
\

te:-[-R, R]

R = shift parameter {i·nteger value equal to the number of

pix~ls on.e wants to shift curves over)

Scf> cf> (t) = defined in equatlon (S.20)
l 2

/

If more than two curves have to be av·eraged, the algorithm will

return all the individual values (obtai·ned from the comparisons

of two curves), the mean of these values, and the standard deviation

of the set of values.

t,.

5.2.4 Results --------
· ·T·he similarity measurements shown in Figures 5.33 through

-63-

..

. ' . . . ' .

,

5.36 and Figure 5.38 are obtained by uslng the· ncrmallzed length

option while the measurement in F'igure 5.37 Is obtained by using the

shortest curve length option.

The similarity value resulting fr.om a comparison.between a

curve with itself is shown tn Figure 5.3,3. Figure 5.31+ shows

a similarity measurement between two different curves while

Figure 5.35 shows a measurement involving three curve·s. -Shown

are the mean value of the two measurements involved and the

standard deviation. The number of curves could be incteased to
..

the maximum number that can be displayed on the screen which is
·~

constricted by the size of the buffer (see paragraph 3.3)~ The

user can pi ck any curve that is· di sp 1 ayed on the screen (orig i na 1

curve, smoothed curve, and averaged curve) with the special cursor

routine (see paragraph 3.4) and the similarity routine wil~ retrieve

all the required curve data from the stack.

Figure 5.36 shows a simi la.rity rrieas.ureme·nt between the same two

curves of Figure 5.34, but this time a shift range equal to 20% of

the length of the curve was specified. The routine returns the

maximum similarity value it finds in this range. Figure 5.37, again

shows the simllarity between the curves of Figure 5.31t (with zero

shift), but this :ime the shortest curve length option was used

in the calculation. Finally, F.igure 5.38 shows the similarity
r

between a curve and the smoothed curve that~as obtained by a
i

maximum smoothing operation on the same original curve. A similarity

-64-

',' ~-

•

G

I

...

'

·v.a lue o.f '1 s·.t,_ou:l:d: resu 1 t if the curves are the "same (Figure 5. 33-).,
I

~a value of -1 results if the curves have the same shape and lengfh

but their directions .are shifted over 180°, and a value of z~ro should

result !f the curves are totally dissimilar (averaging out of

the individ~a1 ~lement value~ will occur in this case). This

is .e.stabli--s-h.ed· .by- the algorithm presented in this chapter. It· is

cap··a·bl~ of rneijs~ring the s imi·larity between arbitrary curv.e·.~

a:n.d. t·rarnes.

;l·

.,..;;

(

: I .

';

'•-',

I':

:)
, ..

6. CONCLUSIONS

The feasibility of.Image processing and pattern recognition

of flow patterns has been shown 1.n this Investigation. With the

aid of the developed algorithms and routines, the user can perform

averaging, smoothing and similarity 9peratlons on arbitrary curves

and frames. With a specially developed algorithm, It ts possible

to express the similarity between two curves in a numerical value.

The developed code provides a highly interactive program.

The program is very flexlble and provides the us~r with many optforis~

He can process complete frames and curves at once to speed up the

process, or he can perform operations on just a single curve which

gives him maximum flexibility. The program is user friendly,

practically menu driven, and almost ''idiot proof'' in terms of that

it rejects inconsistent data .inputs.

The algorithm and routines are very efficient in the sense that

maximum attention was given to computational efficiency and use of
•

the most effective theories. Avera.ging and smoothing of curves was

established without the use of discrete Fourier transforms. All of

this also results in relatively fast routines where the results

(even if a larg~ number·of frames or curves is involved) are availa

ble almost instantaneously. This in turn increases the interactive

use of the program.

Efficient data storage and manipulation is achieved by means

of specilly developed buffer and cursor routines. These routines

form an integral part of the whole program.

-66-

d, ; '

·,

It

Future work should Include the lntegratlon of the program

with the data acqut~itlon and preprocessing equipment and routines.

As a special feature, the user might be provided with an option

In which a set of previously defined manipulations is operating

on the frames automatlcally. The capabilities o~ the program

(in terms of the maximum number of frames, the maximum number of

curves per frame, and the maximum number of points per curve) can

be suited to the user's need by changing the appropriate dimension

statements.

Of course, the application of the program in fluid flow

analysis is one of the immediate future goals.

\

-67-

.,

"

I
O'
(X)

I

VAX 11/780 computer

VS11 color
terminal

advanced
processing

storage of
digitized
curves

curvetracking

preprocessor

mass
storage

strobe
light

frame
grabber

Figure 2.1

•

trigger

digitizer

Fluid flow analysis setup.

video
cainera

(fluid flow

. '

\ ,/ I

The Operator has

Determined that the

Previous Frame is

Unacceptable and Has

Refilmed the Page

in the Next Frame.

t

,·

• ...

... ,.

_.

-<l'

I
O'
CX)
I

,l

VAX 11/780 computer

VSll color
terminal

advanced
processing

storage of
digitized
curves

curvetracking

preprocessor

· masz
stora.ge

\·
I

I

strobe
light

frame
grabber

trigger

digitizer

/"'··
___/' . \

Figure 2.1 Flµid flow analysis setup.

video
camera

- '•,3,- ..

•

~fluid flow

strobe
light

' .
'; ..

., --~-

.
•,• '

I)

I •,'

0

L

I
I
~ (R,) .
--

Figure 2.2 Uniform continuous curve t(R.).

• endpoint

,.
•

•

I

I
'

/
I

O change in direction

Figure 2.3 Feature extraction in fingerprints.

Figure 3.1

y ... -n
•
•

•

Yz --

~1 ,

- ---- - --

, \

• • • •

Recording x and y coordinate

-69-

,
I
I
I
I
I
I

• X n
of ea.ch pixel.

r ,.

. .

4 3 2

5 1

6 7 8

Figure 3. 2 Chain code represent·ation.

start: (x,y)

chain codes: 2
3

,
•

1 3 .L.

7
2
2
1

7 1
3 8

5 7

3 7
6
5
4

y-

I
X

Figure 3-. 3 Cur.ve represe~ntat ion with chain codes.

1

- '
'

Figure 3.4 Element length.

• n

-70-

. ' i • • -..

i(.

1(1) - 1 -
{i. 1(2) - 2 -

1(3) - 2 + {i -
L(4) - 2 + 2.fi. -
1(5) - 3 + 212

1 -
1(6) 3 + 3 .Ji --
L(7) - .0 -

1

Figure 3.5 Length array data~

~

chain code ·value AX ~y Cl

1 1 0

AY
2 1 1
3 0 1

,_,. , 4 -1 l
6X 5 -1 0

6 -1 -1
7 0 -1
8 l -1
9 0 0
0 ·end of cur·ve

Figure 3.6 CHain code to ~x/ay conversion.
h

...

3 4 3 2

AY + 2 2 5 9 1

1 6 7 8

1 2 3

6.X + 2

Figure 3.7 ax/~y to chain code conversion.

, -71-

,/ .

. . .

•·

Figure 3.8 Rembving redundant pixels.

1 2 3 4 5 6 7

1 1,1 1,2 2 3 1,5 7 8
2 2,1 2,2 2,3 3,3 3 2,6 1
3 2 3,2 3,3 3,4 4 5 3,7
4 3 3,3 4,3 4,4 4,S 5,5 5
5 5,1 3 4 5,4 5,5 5,6 6
6 7 6,2 5 5,5 6,5 6,·6 6,7
7 8 1 7,3 5 6 7., 6 7,7
8 8,1 1,1 1 8,4 7 7,7 ~,7

. •.•. ·,'

8

1,8
1,1

1
4,8

7
7,7
7,8
8,8

Figure 3,9 Freeman's corner cutter matrix.

original chain code:

. new chain code:

2 3 3 1 1 3 1 1 1 7 7

+ ~
2 3 !
2 3 3

3 3 1
2
2

2 3 2

1
LJ

Ll
2 1 1

1 1 1
1 1 7 -

Li
8 7

! l
2 1 1 8 7

Figure 3.10 Freeman's corner cutter applied to. the curve
of Figure 3.8.

-72-

j ' .

I
........
w

I

l't-

SEQUENCE-
POSITION

...

-........

SEQUENCE-
COUNTER

I ·.,

..

I

POINTER
1

AVAILABLE-
ADDRESSES -

--

..... ..

I

.
- I --

•
,

' • - I l
- I I I

' ' I

. • I
I I 1

I I I

' 1 I -.......
• I I

CURVE- I I I

I I I

ADDRESSES ' ~ I

I I I

' I I

.....___ • I I

t ·-

l t
start X

start y
color

it of samples
label type

label switch
curve ti
frame ti

display· window
i ' I i ' I,

xO
yo

scale
....

,
.....

Figure 3.11 Buffer setup.

)

~

.

• STACK • • • I I I I ' --. 1

I I I I I I •
I I I I I l I

I I I I I I I

' I I I I T -i

I I I I I t I

I I I I I I I -
I I I I I I - .
I I I I I I l

I I I I I I I

I I I I I I T -

-
I I I I I I I

I I I ' • I ' I I I

I I I I

1 t t t l1X~Y f l i

-j -

•

i i i ' . i i ,.
. .

.. .

. ~ j ~ 4 ~
CURVE-
INFORMATION

.=~ . '

I
.......
~
I

-r
II I

'- ~

-r
I III I

'- -

38

39 34

41 35 30

40 33 27

38 31 26

37 30 24

"

41 40 38 37 36

39 35 33 31 30 29

38 34 30 27 26 24 23

32 28 25 22 20 19 18

28 24 21 17 15 14 13 14 15

25 21 16 13 12 10 9 10 12 13 '

22 17 13 11 8 7 6 7 8 11 13

20 15 12 8 5 4 3 4 5 8 1·2 15
,

19 14 10 7 4 2 1 2 4 7 10 14

13 9 6 3 1 1 3 6 9 13
Q

14 10 ·7 4 2 1 2 4 7 10 14

15 12 8 5 4 3 4 5 8 12 15

13 11 8 7 6 7 8 11 13

13 12 10 9 10 12 13

15 14 13 14 15
..

' ~t1

Figure 3.12 Cursor search routine. ...

.. . ' . ' '

Pixel Quadrant (

41 ' II III IV I

1 0,1 -1,0 0,-1 1,0
I

2 -1,1 -1,-1 1,-1 1,1
I .

3 0,2 -2,0 0,-2 2,0

4 (a) -1,2 -2,-1 1,-2 2,1

4 (b) -2,1 -1,-2 2,-1 1,2

Figure 3.13 Search (look-up) table.

Figure 3.14 Expanded search routine.

Figure 4.1 Normalized length.

-75~

'

'

. , . ·' .,,
~

N
pixels

.. '
' f t 1 I

' . ' .. •.
I '

•

Figure 4.2 Shortest curve length.

shortest curve

-

-

length
N

length N

longer curve

'

'
.--N/fi. pixels

Figure 4. 3 Minimum number of pixels in· second curve.

N

pixels

'

shortest curve

'

length
Nfi.

length
Nfi

longer curve

-

-
a...-::,

Figure 9.• 4 Maximum numb~r of pixels in second curve •

-76-

N.fi
pixels

,. ' •.

.. - - .

!~

' ' . , '

I

distance from
LN/ fiJ startpoint = L ~

elemepts1a ~ _,," \distance from
longer .-.------~-----' -- ...,.- startpoint ;: L'
curve last/ fNV2l

elements
shortest curve

N elements 'distance from startpoint = L

Fi.gure 4.5 Location of last pixel to be included,

LN / fi J

1st
guess

3rd
guess

L

4th
guess

2nd
guess

fNfil

Figure 4.6 Binary search for exact pixel.

• pixel center
X point location

1

Figure 4.7 Location of points that will be averaged.

-77-

•

/

. ~

I
',J
co
I

.

. '

If'/"

DO

M
2 1 9
I I I

IC I ~

• original
curve • average

curve

'-·-
•

41- o·riginal
curve

.

. .
.

YOU ~NT A COPY? (V/N)

..
. ' .

'

Figure 4.8 Unweighted average of two curves (using normalized lengths).

. . . .

J
I

(. - ' - '

\ G_>
1 ,I

I
""1
\D

I

,

DO VOU 1$\NT A COPY? (Y/N)

2
I

original
curve·

-l " '' ·"

M
1
I

• average
curve

9
I

original
curve

-Figure 4.9 Unweigthed average of two curves (using shortest curve length),

....

.-

(.>

• ·•t----

,I

I
CX)
0
I

M
2 1
I I

original ..
curve

(weight= 1)
1· - -3

average curves

DO VOU l-.flNT A COPY? CV /N)

t1 H
2 3
I I

- 1 - 3

0

9
I

+ original
curve

1
(weight= 3,1,3)

Figure 4.10 Weighted average of two curves (using normalized lengths).

...
·, .-J

I
CX>
I

original•
curve

(w/ight=l)

DO YOU ""NT A COPY? (Y/N)

2
I

M
1.

I

1 ·-3

11
2
I

average curves

M
3
I

9
I

'- original
curve

. 1 .
(weight= 3,1,3)

Figure 4.11 Weighted average of two curves (using shortest curve length).

...

. . .

. I

curve
1

/

curve
2

• • • • •

I
I

• • • • • • •

•
•

•
•
•
•

curve
n

•

frame 1

frame 2

frame m

average frame

Figure 4.12 Averaging the curves of a set of frames •
...

-82-
/

l

., . ~,

·I
00
vJ

I

DO YOU UANT A COPY? CY/N)

l
I

2
I

3
I

4
I

Figure 4.13 Top half of a fluid flow ima$e•

1··.

s
I

6
I

7
I

8
I ' I

18
I

\

- -----·~· ··-

I

..

I
(X)
..r:-·
I

...

DO YOU ~t4T A COPY? (VIN)

1
I

2
I

3
I

4
I

s
I

6 7
I I

8 9 18
I I I

I

Figure 4.14 Top half of a fluid flGw image (not equal to Figure 4.13).

I
(X)
\.n

I

DO YOU ·&-.ANT A COPV? (Y/N)

A
l

I

'" I.

A
2
I

A
3
I

A
4
I

\-

A
5
I

A
6
I

A
7
I

A A
8 9
I I

Figure 4.15 Top half of average frame (using normalized length~). , 1

1)
q•

~ . ·~ ·'
, '";:. . -

A
1e
I

'

..
J

, • --, I

I
co
O'
I

•

I. '

DO YOU ~T A COPY? (V .IN>

A
l
I

A
e
I

A
3
I

A
4

'

..

A
s
I

A
6
I

A
7
I

A A
8 ' I I

•

Figure 4.16 Top half. of average frame (using shortest curve length).

,,

A
18
I

·[,,

I •

I·
.00
'-J

I

1:l.

element
1 2 3 4 5 6 7

4X 1 1 0 -1 0 -1 -1

4Y 0 1 1 . 1 1 1 0

curnula t ive: 1 1 3 -1
1 1 3

- - - - - - -1- -1- -1-
average ,x 4 2 4 4 2 4

cumulative 1 1.!. 2 2.!. 3 3.!. - 1
average 4Y 2 2 2 2

rounded
0 0 -1 -1 -1 -1 -2

cumulative 4X

rounded
0 1 1 2 2 3 3

cumulative 4Y ..

smoothed
0 0 -1 0 0 0 -1

AX

smoothed
0 1 0 1 0 1 0

/J y

Figure 5.1 4x and 4y sequences a particular curve.

·.

,.

8
absolute average

displacement displacement

-1 -2 -2/8
1 - - -- 4

-1 +4 4/8
1

= -
2

.

-2 -·2 1 - -
4

4 +4
1 -2

.

-2 -2
1 - -
4 ...

4 4
1 -2
1

0 -2 - -
.. 4

1 4
1 -2

. ..,

-,

(1

f

I

endpoint

' ' ')
I
~

' '

-1

)
I

startpoint ~~~

..

original curve

---- smoothed curve

" Figure 5 .• 2 O.riginal curve and smoothed curve.

endpo°i.nt

shortest

\
\

\
path\

\
\
\
\

startpoint

original curves

origi·nal curves
"smootheq." curve,
shortest path

Figure 5.3 S~ortest path between startpoint and endpoint
of original curves.

-88-

.... ,,
,;,-· .

! •

). f

-A

~

I •

W < A -
- ~

)

..

-~
I

-(A+W) -(A-W) A-W A+W

Figure 5.4 Convolution operation.

(A-W)

smooth·ect
curve

original curve

..

f (t) l
--... - .1. 2W

-w w i

-(A-W)

2W

-(A+W)

A -A
'\'
Figur.e 5. 5 Smoothed curve with <f>=1T •

(A+W)

A 1¥ + (A-W)

smoothed
-....____

curve l
•

~ . .
original

. .

curve + -(A-W) ~, 2W
1T '

-:A -(A+W)

Figure 5.6 Smoothed
1T

curve with ~= 2·

-89-

' .

'!I

·--· .,4.

•

/

I
\.0
0
I

f(i) l _ __ 1 -2W y(i) 1
x(t) 1 ___ _____ y

----+----.- X

-A A -w • w Q, -A • A Q,
...

· ~ = arctan Y/X

- y

X

..
-(A+W) -(A-W) (A-W) (A+W) i (A+W) -(A-W) (A-W) (A+W) i

Figure S. 7 Smoothed x and y coordinate fu.nctions.

i

I

4X(k) t
-1

• I I -. • ' ' • • • . • . • •
-7 -5 -3 -1 1 3 5 7

k

f(k) l
1 --11

' I • • ' • • -... I --. .. -
-5 -3 -1 1 3 5

k

cont

~·· f ~,,

•
~x (k)

:1nuous case 1
s

-1
i.. . - - -- - -· -- - ·~ ~ - - - - -

' • '
.. • l I I I I T ' I l I I I I ' • . • I • ..

-11 -9 -7 -5 -3 -1. 1 3 5 7 9 11
k

cumulative error error

0
-1 -3 5 1 -4 1 5 -3 -1

0 0 0 0 0
-1 -3 5 1 -4 1 5 -3 1

0 - - - - - - - - - - - - - - - - - -
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11

-12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12
I ..

k

Figure 5.8 Discrete smoothed curve.

. • I " •'

i

·,·

I

k -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 ,2 '3 4 5 6 7 8 9 10
'

'
4X 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

.... . .,
4X 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

s

/J y 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

~·: '

6Y 1 1 1 1 1 1 1 1 .1 1 1 1 1 1 1
s

Figure 5.9 Original and smoothed curve data.

original curve
'.-.l'

smoothed curve

Figure 5.10 Original and smoothed curves from data of Figure 5.9.

)

-92-

l ' '
. ' -

. I

..

..
k -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

'

•

ax 1 1 1 1 1 1 1 1 1 l 1 i 'l 1 1

.,
ax 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

,• s

AY 0 1 1 1 1 1 1 1 1 1 1 1 1 1 ,0

., ..
"

AYS 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 5.11 original and smoothed curve data.

original curve

Figure 5.12 ·or.iginal and smoothed curves from Figure 5.11.

t -93-

,,

r·.

•
-(A+W) -(A-W) (A-\~) (A+W) 1

-A A

Figure 5. 13 Modified smoothed tangent angle funct·ion.

f(k) t 1 --5
-

.
k

r--.----i-. ___ -..--... -- - - -1, O, + 1

//
I I

k

I I 2

I I 5
I

\ smoothing
\

\
r. l T J_ ___ _.. ~ ~ _j ____ ~-,--1,0, 1

I I
I I •

..... -1.. ------ __ ._ __ ------ - _., k

. . ' .t ~' ' ' \ ~ 3 original pixels . . . ~5 original pixels
contribute to this 4 ori?inal pixel~ contribute to these

· 1.
contribute to this

va ue 1 . values
va ue

Figure 5.14 Weighting of displacement values.

-94-
I •

•

I
\..0
V,

I

00 YOU IJNAT COPY? (Y/H)

SM
1
I

+ smoothed and
- -·original curve

(Ak=39, Wk=O)

Figure 5.15 Smoothed and origJnal curves (Wk= O).

,,

SM
2
I

f
sn1oothed and
original curve-
(Ak=31, \vk=O)

- .• ~

~~-~ _:.._
dllLo..-

,
•,

I
U)

"' I

.

•

00 YOU i.NAT A COPY'? (Y /N)

SM
1

. I

smoothed curve

~· original curve
(A =39, W = 9) . k k

SM
2
I

smoothed

original curve
(A =31, W = 7)

k k

Figure 5.16 Smoothed a~ original curves (same as in Figure 5.15; wk~o.25 x Ak).

..

' \

I
U) .
'-J

I

DO YOU l,JNAT A COPY? CY l'N)

SM
1
I

sinoothed curve

... origin:al curve
(Ak =39, Wk=-19)

SM
2
I

.. smoothed
curve

t
origi11al curve
(Ak=31, Wk=l5)

Figure 5.17 S1noothed and original curves (same as in Figure 5.15; Wk:::0.5 x A
1
{).

..

...

I
\.!)
CX)
·I

...

...

00 YOU WNAT A COPY? CY/N)

-SM
l

I

' smoothed curve

o.riginal curve
(Ak =39·, Wk=.39)

SM
2
I

t

.....
. . .

smoothed
curve

original curve
(A =31, W =31)

k k

Figure 5.18 Smoothed and original curves (same as in Figure 5.15; Wk= Ak) •

r

···".ii •.
ii

..

()

- ----

.:n: .l[
4 4

~1=- !

....

,--

line of - - ----
JI
4

reference

~2=- .JI 4

,.

Figure 5.19 Three different curves all with length 2A.

~·=- 31T
2 4

.l[

4

I
•
I
•

11
4

• 1T
A,. -A,. I--.· '+' -· 'f - ---' 1 1 -2

I
Figure 5.20 Mirrored ~nd original·curves ~land ~2.

'IT
~ =--3 4

I

'IT 1T

q 4

1~1 =O
I .

it

line of reference

~ _7T
24

,,,.

Figure 5.21 Curves of Figure s~l9 with different lirte of reference.

-99-

. . .

I .

Figuie 5.22 3 different curves all with length 2A.

curve 2

-
Figure 5.23 Curve elements to be compared (7 elements here).

1 r<1>1 (i)

• 5

~2 (t)

0 0

-.s
-1

.. , ~- .

Figure 5.24 Element similarity function.

~100-

cf> 1

'•

- - -

- - -

,,

cf> 1 shifted up 1
position

Figure 5.25 Two jagged vertical curves.

cf> 2

len.gth length

12

~3

11 length
L

3

Figure 5.26 Three curves with different lengths.

L

I 21

startpointJ ! l 1 ~ endpoint

~ R + 2R •I

Figure 5.27 Two curves in the form of a semicircle.

-101-

.\

. .

' I f

-'-"";·'·'

,-
~-·.

L

·ti
R 2R

Figure 5.28 Ohe element approximation of first part with
length L of curves.

L

-

R lR

Figure 5.29 Two element approximation of first part with
length L of curves.

R 2R

Figure 5.30 Infinitesimal approximation of first part
with length 1. of both-curves.

-102-

7

-~

•

. .

I. r

I

L .. curve 3
curve 2

curve 1

I
-+- - --

.,
2R 2R

Figure 5.31 Three different curves, all part of a circle.

startpoint

curve 1

curve 1'
~

startpoint

•

•

•

•

•

I
•

I

mirrored image of
cu.rve 1'

startpoint

F'igure 5. 32 t-lirroring of curves.

-103- ·

,

·21

•

I
0
J:-
1

THE SIMILARITY VALUE IS: 1.1088
(HIT ANY KEY TO CONTINUE>

..

Figure 5.33 Similarity between a curve and itself.

\

6
I

t

I
~

0
V,

I

•

THE SINILARITV UALUE IS: 0.5.969
CHIT ANV KEY TO CONTINUE>

Figure 5.34 Similarity between two curves.

'l ·"

... .,.
5 6
I I

<:

r

I
0
O"
I

4 :S 6
I I I

THE MEAN SIMILARITY VALUE FOR THIS CURUE IS: a.5278
UITH A STANDARD DEVIATION OF: 0.897S

CHIT ANY KE'f TO CO~TINUE) .

Figure 5.35 Mean similarity value (and standard deviation) for a set of 3 curves •
•

I
~

0
.......

I

.. :;,:.

,. I .

THE SIHILARITV UA.LUE IS: 0. 6281
Ct,.IIT ANY KEY TO CONTINUE)

S 6
I I

Figure 5.36 Similarity between two curves (using a shift range of 20%) applied to
the curves of Figure 5.34.

-C,,
. , .

(·;:.-~.

, .•. ···;
,, ·-~~~

I
a
co
I

THE SlHlLARITY VALUE IS~ ta. 5828
(~IT AHY KEY TO CONTINUE)

.....

5 6
I I

·_,. l:'--

Figure 5.37 Similarity between two curves (using the shortest curve length)
applied to the curves of Figure 5.34.

...

/

\..

I
0
\.0

I

... ...

..
~

THE SINILRRJTY VALUE IS: 0. !5351
(MIT ANY l<EY TO CONTINUE)

Stt
1

I

'
\

maximum smoothed curve•

' + original curve

.. Figure 5. 38 Similarity between original and smoothed curve •

_I

1 -.. ,

'

REFERENCES

'

1 . Carlson, A. B., Communication Systems, 2nd ed., McGraw-Hill,

1975 ..

2. Freeman, H., "On the Encod·ing of Arbitrary Geometric

Configurations'', IRE Trans. on Electronic Computers, Vol. EC-10~

June 1961, pp. 260-268.

3. Granlund, G. H., "F-ou.rier Preproce.ssing for Hand Print Character

Recognition'', IEEE Trans. on Computers, February 1972,

pp. 195-201.

4. Gumas, C .• C., ~General. ~attern Recognition Technique for

Open Curves, Master of Science Thesis, Department of

Comp.uter Science and Electrical Engineerln·g, Lehigh University,

1985.

5. Kerstens, Pieter J. M., Manual for Spatave: An Image Processing

and Pattern Recognit.ion Program for Fluid Flow Analysis,

Department of Mechanical Engin~ering, Lehigh University,

September, 1985.

6. Lerner, E. J. , 0 S l euth i ng by Computer", IEEE Spectrum, July 19&3,
,.

pp. 44-49.

7. Oz.soy, T. M., Bhalla, S., Summer, R., VS11 Graphics Package

Reference and Examp 1 e Manuals,. CAD Laboratory, Lehigh -University,.·

19·83.

8. Pavlidis, T., Algorithms for Graphics and Image Processing,

Computer Science Press Inc., 1982.

-110-

'\

I

)...

' I

. ...

.. . .

· 9. · Rao, K., Balck, K., "Type Classtftcatt.on of Fingerprints: A

Syntactic Approach'', IEEE Trans. on Pattern Analysis and

Machine Intelligence, Vol. PAMl-2, No. 3, May 1980, pp. 223-231.
I

10. Zahn, C. T., Roskies, R. Z., "Fourier Descriptors for Plane

C 1 osed Curves", IEEE Trans. on Computers, Vo 1. c.-2·1 , No. 3,

March 1972, pp. 269-281.

-111-
p

I

'

..
'' I I >

..

APPENDIX A: SPATAVE, AN INTERACTIVE IMAGE, PROCESSING AND PATTERN

RECOGNITION PROGRAM FOR THE ANALYSIS OF FLUID FLOW

PATTERNS

In this appendix, the main structure of ·the program "SPATAVE"

(for SPATial AVEraging) is presented. For a more detailed

description, see Kerstens (1985). The program is written in·

FORTRAN 77 and runs on a VAX 11/780 c6mputer equipped with VS11

color monitors. For this program the display is divided into

three parts (so.-called -windows}. The first window has a yellow

border and is displayed in the upper right corner. This window

will display all the curves (original, averaged, and smoothed

curves). The second window is positioned at the bottom of the

display and has a blue border. In this window all program mess-ages

will be dlsplayed. The third window also has a blue border and is
,, .,

positioned at the left of the first window. This w·indow is for
•.

future use (display of additional data or menus). There is also

an inv is i b 1 e fourth window (with no .border). This is used for fu 11

screen displays (in which case the curves are shown on the whole

screen and the otheJ windows are removed from the screen). The

windows are shown in Fig~re Al.

The set-up of the program is best understood by looking at
(

Figures A2, A3, and A4. Although these flow charts are not

exhaustive, they do contain all the necessary information. The flow

chart of the main routine is displayed in Figure A2. The

-112·-

. -·. .
' .. ·-..:

inlttaltzation block sets a number of varlables to their initial

values and calculates some basic parameters for·each curve that

is an input. After some scaling (the user can pick the scaling

factor and the center of disp.lay} the program will ask the user if

he wants to display complete frames (a frame is a single image

containing several curves anc;J is obtained_ from one video image

taken at a particular point in time). If the user decides to use

this option, the. program will execute routine A. The program will

now ask the user if he wants to display just a single curve.· Again
..

the user can decide to do so in which case the program will run

routine A'. The next option that is offered is averaging of complete
,..

frames. The following option is averaging of a single curve on

several different frames. The final option makes it possible for

the use·r to average an arbitrary set of curves that can, but do
.

not have to be, on a single frame .. Fi.nally, the user can jump back

to the beg i·nn lng of the program and do some further processing.

The program is set up to give the user maximum flexibility

while still making it possible to get some quick results. In fa.ct,

speed of operation decreases· if one goes down in the flow chart

while flexibility increases. So if one wants to average complete

frames, the results can be obtained quickly. However, if one wants

to pick each of the curves that should be averaged (increased

flexibility), one has to do so by selecting the curves one by one

(decreased speed).

-113-

': ··~.

.,
I ' • •

..

Flgure A3 shows how the frames and curves are displayed

(routines A and A'). Among other_ things one can clear the window,

change the color of the next curve/fr~me (ln fact change the shade

of green), and do a similarity test. This can be repeated as.

many times as desired.

Figure A4 shows how the frames and curves are averaged.

Among other.things one can again clear the window, average the

curves/f·rames, ·smooth the curves/frames,and· calculate similarity

values by picking some of the displayed curves. Again, this can

be repeated as many times as desired.

with

The reader should note that any of the following can be done

the SPATAVE • its current state: prog·ram 1n

- display any f rame(s) (with or without clearing the screen)

- display a.n·y curve(s) (with or without clearing the screen)

- smooth any curve(s) (original or averaged)

- average any of the original curves (on the same or on

different frames)
~

- calculate the correlation/similarity value between any of the

displayed curves/frames (original, smoothed. or averaged)

With these capabilities, the program SPATAVE should be a useful

tool in the analysis of fluid flows.

~114-

. .

•

I -....
u,

I

window 4

window 3

window 2

window 1

..

.

.. ,, L_ __________________;... ___________ _

Figure Al Display setup.

•·· ..

I,.,..,.

,
• • t'

.....

,f

·,.

,

i'

ROUTINE A

ROUTINE A'

ROUTINE B

r ROUTINE B'

ROUTINE B"

START

INITIALIZE.

SCALING

HITE TO EXIT

STOP

. ..
'I

Figure A2'. Flow chart of the main routine.

. "
-116- ·

,-.·-

\

J

. . ..
\ ~.'

•

(

CLEAR WINDOW

CHANGE COLOR

~ULATE
SIMILARITY

VALUES

DISPLAY
FRAME/ CURVE

Figure A3 Flow· chart af routines A a·nd A'.

-117-

. ·.. ..

....

,

CLEAR WINDOW

SMOOTH CURVES

CALCULATE
SIMILARITY

VALUES

AVERAGE
FRAME/ CURVE

DISPLAY
FRAME/ CURVE

Figure A4 Flo-w chart of routines B, ·B' , ·and B".

., -118-
: ·"

·.-

{ I

APPENDIX B: Author's .Biography

Pieter J. M. Kerstens received his Kandldaats degree and his Ir.

degree in Electrical Engineering from Eindhoven University of

Techno 1 ogy, The Nether 1 ands, in 1981 and 19·83 respect 1 ve 1 y. His

fhesls work included digital satellite transmissions in the 11 and

-
14 GHz bands, with the Orbital Test Satellite. These transmissions

were the first digital satelli:te transmissions in The Netherlands.

During his graduate studies, the author also worked on fiber

optic transmission and a three mqnth project at the Israel Institute

of Tec.hno 1 ogy, Haifa, Is rae 1. In 1983 he Joined Phi 1 i ps Laborator les

in Briarcliff Manor, New York, where he was engaged in repeaterless

long wavelength and single mode fiber optic transmissions of FM

.v id.eo s i gna 1 s. This work resu·1 ted in a paper that he pr.esented

at the NCTA Conference, Las Vegas, Nevada, in June, 1985. He is

also author or co-author 6f several techn.ical reports~ The author's

current interests are in robot·ics, flexible automation, communication,

optimal control, and image proc~ssing.

..

.. -1 r9-

	Lehigh University
	Lehigh Preserve
	1986

	Interactive image processing and pattern recognition of digitized flow patterns /
	Pieter J. M. Kerstens
	Recommended Citation

	tmp.1551116526.pdf.GSPll

