Lehigh University
Lehigh Preserve

Theses and Dissertations

1986
Interactive imaée processing and pattern
recognition of digitized flow patterns /

Pieter J. M. Kerstens
Lehigh University

Follow this and additional works at: https://preservelehigh.edu/etd
& Part of the Manufacturing Commons

Recommended Citation

Kerstens, Pieter J. M., "Interactive image processing and pattern recognition of digitized flow patterns /" (1986). Theses and
Dissertations. 4593.
https://preservelehigh.edu/etd /4593

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an

authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

https://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F4593&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F4593&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F4593&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/301?utm_source=preserve.lehigh.edu%2Fetd%2F4593&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd/4593?utm_source=preserve.lehigh.edu%2Fetd%2F4593&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

INTERACTIVE IMAGE PROCESSING AND PATTERN

o RECOGNITION OF DIGITIZED FLOW PATTERNS
by

Pieter J. M. Kerstens

A Thesis
Presented to the Graduate Committee
of Lehigh University
in Candidacy for the Degree
Master of Science
in-

Manufacturing Systems Engineering

Lehigh University
1986

This thesis is accepted and approved in partial fulfillment of’
the requirements for the'degreg of Master of Science in

Manufacturiné Systems Engineering.

/2 Zoa /g(

(ddte)

'Zvﬁ

Prpfgssor in charge

L}

- W\Aafﬁ‘
Directgn] of MSE Profram
Lo YA

Chairman of CSEE Depa tment

ACKNOWLEDGEMENTS

| would like to thank Professor Doﬁald Rockwell of the
Mechanical Engineefing Department for his support and guidance,
and for carefully reviewing this thesis report. | would also
like to thank JoAnn Casciano for patiently typing this report
and Carlos Gomez, Professor Roger Nagel, and (he staff and
secretaries of the MSE Program for their kindness, advice, and
help during this year. In addition, | thank Philips Laboratories
for their support and for letting me join this worthwhile program.
Last, but not least, | would like(;o thank my wife, Anja, for her
patience and warm support, without which this work would not have

been possible.

Section

TABLE OF“CONTENTS = -~

Title

Acknowledgements

Glossary of Notation ~

Abstract
Introduction
Image Processing

System Setup

Flow visualization

Preprocessing

Available hardware and software
Developed graphics software
Analysis Techniques

Fourier descriptors
Classification techniques
Spatial averaging

Method Selection
Daté.Representation and Interactive Routines
Curve Parameterization

Chain codes

Element length

Program input

Freeman's corner cutter matrix

Display Routines

-iv-

Page
it

vii

11
11
14
14
14
15
15
17
18

Table of Contents (Continued)

Section Title | - Page
3.3 Curve Storage Buffer | 19
3.3.1 Buffer pointers | 19
3.3.2 Stored curve data - 24
3.3.3 Buffer routines | 26
3.3.4 Display map . 27
3.4 Cursor Routines 28
3.4.1 Search routine 28
3.4,2 Displayiupdate 32
L Curve Processing 33
4,1 Length Calculations 33
L.1.1 Normalized versus shortest curve lengths 33
L.1.2 Length data) 34
4.1.3 Resolution considerations 35
L.1.4 Binary search for sections of equal length 35
4.2 Curve.Averaging» 37
4.2.1 Location of averaging points " 38
h,2.2 Calculation of the average curve' . 39
L.2.3 Results Lo
5 | Curve Filtering and Recognition 43
5.1 Curve Smoothing | 43
5.1.1 ' Sﬁoothing in the spatial versus FrequenCy domain 43
5.1.2 Smoothing algorithm - L

/

—v-

Table of Contents (Continued) .

Section Title | Page
5.1.3 Results | | | 53°
5.2 Similarity Calculations | | 53
5.2.1 Similarity calculated over shortest curve 54

versus normalized length

5.2.2 Cross-correlation measurements 54
5.2.3 Similarity function ‘ 57
5.2.4 Results 63
6 Conclusions | . 66
Figures " 68
Referenees | | 110
Apgendix A: SPATAVE, an interactive image 112

processing and pattern recognition program for
the analysis of fluid flow patterns

Appendix B: Author's Biography 119

tw‘.“ .

';Symbol

x=

A (k)

A(k,T)

x,old

X, new

y,new

$199

R, . (1)
919

s(2)

619,

GLOSSARY OF NOTATION

Description

Interval limit for length of curve

Interval limit for number of samples in curve

Element similarity

Element similarity for shifted curves

Fourier coefficient

Absolute displacement of original curve
Absolute displacement of smoothed curve
Absolute displacement of original curve
Absolute displacement of smoothed curve
Continuous filter function

discrete filter function

Curve length

Curve length of shortest curve

Curve length of longer curve

Length parameter '

Number of elements in curve

Interval limit for shift parameter
Cross-correlation function

Normalized cross-correlation function
Smoothed curve

Similarity function

-vii-

in

in
in

in

x direction
x direction
y direction

y direction

Symbol
R .
s, . (1)
hit2

8(e)

Glossary of Notation (Continued)

Description

Similarity function for shifted curves .
Modified similarity function for shifted curves
Continuous x coordinate function

Smcothed continuous x coordinate function

x coordinate of point i of average curve

x coordinate of point i of curve]
Relative discrete displacement in x direction

Smoothed,Ax(k)

Modi fied smoothed Ax(k)

Continuous y coordinate function

Smoothed continuous y coordinate function

y coordinate of point i of average curve

y coordinate of point i of curve j

Relative discrete displacement in y direction
Smoqthed’Ay(k)

Modified smoothed Ay (k)

Interval limit for length of filter

Interval limit for number of samples in filter

“Weighting factor for curve]

Direction function for larger semicircle
Direction function for smaller semicircle

Angle with unit of radians

viii-

Glossary of Notation (continued)

Symbol Description

A i Integiration variable

u | Integration variable

T Shift variable

o(2) - Continuous tangent angle-funttion

¢*§2) Continuous function, periodic with period L
¢ (k) Discrete tangent angle function

lol] Norm of ¢

ABSTRACT

In thfs thesis report, interactive algorithms to aid .in the’,—»~
analysis'of fluid flows are presenfed. Special functions and
algorithms to average, smooth; and calculate the similarity
between digitized curves were developed. The developed routines
process the images in the spatial domain, thereby eliminating
the need to calculate discrete Fourier an@ inverse Fourier
transforms. The algorithms are effective, efficient, and fast.
As an integral part of thelalgorithms, special data buffer routines
for the effective data manipulation of curves, as well as cursor
routines, were developed. An arbitrary set of frames consisting
of curves, or an arbitrary set of curves, can be averaged or
smoothed. Curves can be smoothed with a modified, variable
convolution filter. A special function makes it possible to express
the similarity of two curves in a numerical value. This technique
can be used to study time effects in fluid flows. Noise reduction

can be obtained by averaging and smoothing a set of curves.

(o

1. INTRODUCTION

This repoft describes the underlying theories.and algofithms
for an interactive image processing and pattern recognition program
that can be used in the analysis of digitized flow patterns. To -
aid in fluid flow analysis, a television/computer system is set up
in the fluid mechanics laboratory of the Mechanical Engineering
Department of Lehigh Univeréity. The actual setup is described
and explained in Chapter 2.

Noise and disturbance reduction through successive averaging
of images is one of the main goals of the program. For this purpose
the digitized images are stored in a mass storage device and are
processed off-line. In the future, it should be possible to extract
features from the flow patterns that can be uSed in the generation
of a data base. The setup will facilitate the analysis process by
increasing speed and accuracy and by providing the possibility of
new analysis techniques.

Currently the hardware and software to generate digitized
curves from the actual flow patterns is in place. Chapter 2
describes the flow visualization technique that is used in
conjunction with a television system and'synchronized lighting.

The tefevision images are digitized, then preprocessed, and
algorithms employed to generate the digitized curves in binary form.
Once the curves are in this form, it is possible to carry oQt a |

number of operations on them.

o

The objectives of the thesis work presented in this report
are to:
a) develop theory and algorithms to average a set of curves.
b) develop theory and algorithms which make it possible to
filter/smooth a curve.
c) develop theory and algorithms that are capable of expressing
the similarity between two curves in a numerical value.
d) combine the above in a flexible and interactive software
program that can aid in the analysis of flow patterns.
A selection from among the presently available analysis and
processing techniques has to be made in order to find the most
suitable one. Additionally, it is necessary to develop new
principles for those,functioqs that cannot be performed by currently
known techniques. Capacity, in terms of the number of frames and
curves that should be processed, as well as efficiency and accuracy
requirements, are important considerations during the selection of
the methods. |
Based upon previous work done at Lehigh University, and the
scope of this thesis, several assumptions were made. The first
assumption is that the digitized curves are available. This means
that there is-é compléte set of frames available, each containing
well defined digitized curves. Secondly, it is assumed that these
curves are stored in a chaincode representation (see Chapter 3).

Finally, a highly intefactive program is required for further

analytical work. Chapter 2 describes the system setup, the
presently known analytical techniques, the more suitable methods
for fluid flow analysis. Chapter 3 deals with the data
representation and interactive routines that were developed.to
facilitate the processing, filtering, and recognition of digitized
curves in an efficient manner. Chapters LU and 5 deal with the
developed processing and recognition techniques. Chapter L
discusses the averaging routines actually used, while Chapter 5
presents the‘}heories aﬁd algorithms that were developed so the
digitized curves can be filtered/smoothed and recognized. Future

work and conclusions are discussed in Chapter 6. The actual program

codes can be found in Kerstens (1985).

2. IMAGE PROCESSING

2.1 System Setup

2.1.1 Flow visualization
The fluid mechanics laboratory of the Mechanical Engineering
Department at Lehigh University is equipped with the setup of
Figure 2.1. The experimental setup consists of a channel through
which a fluid (water) flows from left to right. A conducting wire
is inserted at the beginning of the channel, and a pulsed high
voltage is connected to the wire. This causes electrolysis of the
water passing over the wire and generatég/hydrogen bubbles. The
hydrogen bubbles propagate with the flu}d\and form the timeline;._
The triangular obstruction in the middle of Figure 2.1 is a
statiénary or oscillating body that distorts the fluid flow and thus
the timelines. The timelines contain information about the fluid
flow (velocity, both amplitude and direction) and can be used to
characterize and analyze the flow. Light is reflected at the
timelines and regions of high intensity are created at their position.
A video camera is placed above the channel and records the illuminated
timelines. The times at which pictures are taken, can be triggered
in such a way that they are synchronized with a particular positign
of the oscillating body. After recording 6n the television, the

image of timelines is digitized by an analogue/digital convertor

(ADC) with 256 quantization levels (8 bits). The resolution per

frame is 211 x 165 pixels. A frame grabber grabs the frames

which are then stored on tape.

A good introduction and explanation of several ihportant
aspects of image processing can be found in Pavlidis (1982). The
digitized imagevmﬁst be processed Before:the actual curves can be
retrieved (see Figure 2.1). Several methods are currently in use.
In the first method‘(Gumas 1985) the signal is filtered and thén
operated upon by a threshold operation, which results in the
generation of a binary image. The resulting timelines are, however,
still relatively wide. The thickness can be reduced by thinning
algorithms (Pavlidis 1982 and Gumas 1985). The resulting piétures
" have a quantization of 1 bit (2 levels) and contain the timelines.
In the second method (Gumas 1985) a curve tracking algorithm
processes the original frames with 8 bit quantization levels and
Wtracks'' the timelines. The output of this algorithm is a set of
curves (timeliﬁes) in chain code form (see Chapter 3). An interest-
ing method relevqgt to the'foregoing is bresented in Rao (1980);
Fingerprint patterns are very similar to flow patterns and a
complete system for the classificatioh.of fingerprints is presented

in Lerner (1983),

.....

VAX 11/780 computer of the Mechanical Eng!neerlnglbepartment of
Lehigh University. Several high resolution color terminals (Vs11)
are conrected to this computer and are used in the advanced
processing of the flow patterns. The resolution of the terminals
is 512 x 480 pixels and they are capable of displaying 16 colors
(of which one is the background color). Some graphics routines,
for displaying basic entities (lines, cirCIes,.Splines; points,
windows, labels, etc.) are available and are well explained in

Ozsoy (lab 1983).

To enhance the interactiveness of the developed program, and to
increase its flexibility, it was necessary to develop some additional
| graphics routines. A set of windows was created (Kerstens 1985)
to display the curves and related information, as well as to display
system messages. Special buffer routines, that can display and
remove arbitrary curves in an efficient manner, had to be implemented.
Another.requirement'was a special cursor routine for picking curves.

These routines are explained in Chapter,3.

2.2 Analysis Techniques

There are at least three techniques available that could be
used in the analysis of flow patterns: Fourier descriptors,
classification techniques, and spatial averaging. The remainder of

this section will briefly discuss each of these techniques.

Fourier descriptors are oftep,used in pattern recognition
applications because special, modified techniques using Fourier
descriptors make the descr}ptors independent of orientation,
position, or scale of the object to be described. They can be made
solely a function of the shape of the object (Granlund 1972 and
Zahn 1972). To understand how Fourier descriptors can be used in
the analysis of flow patterns, consider Figure 2.2. The shape of the
shown curve is completely described by its ''tangent angle function'':

o(2) te [o,L] -* (2.1)

‘.,."

where
¢(£) is the tangent angle of the uniform continuous curve
at point fefo,L].
%2 is the length measured along the curve from its starting
point to the point of interest.
L is total length of the curve measured along the curve.
The tangent angle function together with the start coordinates of
the curve uniquély specify the curve. Defining a function"¢* such

that:

(
ge[o,L]

n=0,+1,+2,... (2.2)

¢*(2 + nL.) = o(2) - %{‘b(L) _ ¢(0)} fFor 1

L

The function ¢ is periodic and can be expanded in a complex Fourier

series:

b (1) =31 c, exp (Jny) (2.3)
" where,
o 2m fa 1A
y 2 (2.4)
and,

' L
I Y R PR
< =T [cb (2) exp(-JnYn)d-SL (2.5)

The set of cn's and yn's are called the Fourier descriptors:

©o

{c ,v }

Yo In reality, we have to work with a truncated (finite)

set of Fourier descriptors:
N ;
{Cn’Yn}n=-N (2.6)

When this truncated set is used in the reconstruction of the original
curve, the result will be an approximation, and the difference
depends on the number of coefficients that'iS'included in the set.
Averaging of curves can be performed b;averaging the Fourier
descriptors. The curves can be filtered by truncating the set of
Fourier descriptors and/or by multiplying them with a weighting
function (Gumas 1985). Similarity éoefficients can be derived if

the Fourier descriptors are made independent of the orientation and

position of the curve.

The following discussion is mainly based upon the works of
Rao (1980) and Lerner (1983). Fluid flows and fingerprints seem

to have a lot in common in terms of their image structure. Both

-9-

fluid flow patterns andzftdgérprint pattérns consist of a éet of
curves or ridges that,areoto some extentpérallel in nature.‘
Imperfections can creaté-gaps in the curves of both patterns and
it may bé difficult to track the curves due to some ambiguity in
direction (Gumas, 1985; Rao, 1986).

In fingerprintfclassification systems, a preprocessor first
averages over small areés of the image to find a mean level and
then a threshold operatfon divides the points into two levels:
black and white. After completion of this operation, directional
operators determine the direction of the ridges, and ridge points
are linked up to eliminate minor breaks caused by poor inking or
skin pores. In the next step features are extracted. These features
mark the endpoints and the points where the lines that form a ridge
make an angle with each other (see Figure 2.3). Analysis of the
extracted features makes it possible to classify the prints.

The preprocessing techniques used in fingerprint analysis seem
to be directly applicabfe to fluid flow analysis. However, the
classification techniques that are used are a syntactic approach to
the identification probkem; Therefore, this technique might be useful
in identifying certain fluid flows, but it cannot be used for

detailed analysis of the fluid flows. It is also impossible to

average curves or to calculate similarity coefficients with this
technique. The preprocessor used in this technique provides some

means of smoothing or filtering the curves by averaging the direction

of the curves over small areas of the image.

-10-

In spatial averaging, the curves are averaged directly in the.
spatial domain. By taking specific points'on‘tWO'cufves (see
Chapters 3.aﬂth):and taking the averages of corresponding points
on both curves, the average curve is calculated. The data

'ﬂ*representatfon that is used in the averaging process can also be
used in the developed smoothing and similarity calculation
algorithms (see Chapter 5). The technique is very accuratég

relatively fast, and can be applied to an arbitrary number of

2.3 Method Selection

The Fourier descriptor method requires the calculations of
" discrete Fourier transforms and discrete inverse Fourier transforms.
These computations are relatively time consuming and costly.
Furthermore, smoothing or fflteringzbf thé;curveS by truncating the
set. of Fourier descriptors will not preServe the endpoints of the
curves (Gumas, 1985). DétaAstorage-requirements<xnrbe reduced by
storing only a few of the Fourier descriptors per curve where one
has to make a trédérdffzbetween the number of descriptors to be
stored and the accuracy of the representation. However, these
savings might not be as large as originally envisioned. Consider the
following example. Suppose one gets a satisfactory representation
by only storing 10% of the Fourier coefficients. Since every

coefficient contains both amplitude and phase information, it is

| ' -11-

represented by two real numbers (fwo Fourier descrietors out

of the set defined»in paragraph 2.2}1). In standard precieion

FORTRAN 77, each real number requires four bytes of memory. So if.-

N is the number of coefficients, then one needs 0.10 x N x 2 x 4 =
0.80 N bytes of memory to store 10% of the coefficients. Representing
the curve by a chaincode (see'chapter'S) is possible with one byte

of memory per e1ement; because each chaincode e1ement is an integer
number between one and eight (see Chapter 3) and thus the'fotal

amount of memory needed is N bytes. Similarity calculations are

not easily implemented with Fourier descriptors, sTneelin'prineiple
these coefficients are dependent on such factors as scaling, rotation,
and translation. However, the special function ¢*, that was defined
in paragraph 2.2.1, is independent of the orientation of the curve

and is a principal candidate function for use in similarity
measurements.

Classification techniques:- are not very accurate and cannot be
used for averaging curves. This,methcd.aiﬁQcannotbe used to
calculate the similarity between two curves. Spatial averaging on
the other hand seems to overcome all the shortcomings of the other
methods. It is very accurate and fast. The data representation
that is used in this method is very efficient and preserves tﬁe
original curves, igcludieg thé-start and endpoints. The developed
smoothing algorithm provee that it is possible to smooth/filter

curves in the spatial domain while preserving the start and endpoints

-12-

(see Chapter 5).' Finally, Similarity calculations can also be
performed directly in the spatial domain (see Chapter 5) and

this method_fs, therefore, the most suitable of the three techniques

for the analysis of fluid flows.

3. DATA REPRESENTATION AND INTERACT I VE ROUTiNES

In this chapter severai aspects of the curve data rebresentation
are explained. Some speciaj routfneé were develop;d for the
efficient storage of curves, and for the interactive selection
of the curves from a terminal screen. All these foutines are

presented in this chapter as well.

3.1 Curve parameterization

Every curve consists of a set of pixels. They lie next to
each other and together form one particular curve. One way to
represent each curve could be a recording'ofzthé X and y coordinates
of the center of each pixel. The disadvantage of this technique
i's that we have to store two entities per pixel (see Figure 3.1).
Another technique uses chain codes (Pavlidis 1982). Figure 3.2 shows
how the chain code elements are derived. Each pixel inithe=curve
has at least one neighbor. The neighbor pixel can be any one of the
eight neighbor pixels shown in Figure 3.2. By assigning a different
number f; each of the.eﬁght;pixels,;one,tahlbhiqueiyldentify where
the neighboring pixel ié positioned. Each curve is tracked from itsh
start point to its end point, and the position of each pixel is
recorded in the form of a chain co&eithat is derived from the
position of the pixel with respect to jts preceding pixel. The only

exception is the starting pixel. Since this pixel does not have a

-14-

predecessor, its x and y coordinates are recorded. Figure 3.3
shows a curve.and the so derived chain code representétion.

It is obvious that the chain code representation is d discrete
representation; However, no information is lost since the .
original curve was already digitized by the video processing
equipmgnt. Since only one element per pixel is stored (with
égfeptiOn of the starting point), the data or curve representation
is very efficient. A disadvantage is that one cannot directly
relate a pixel's chain code value to a particular position on the
screen. One always has to track the-curve'from its starting point

to find out where a particular pixel is located.

Each'curvehconsiSts of a number of elements, where an element
is defined as that part of the curve represented by the connecting
line be;ween the centers of two succeeding pixels. The length of
each element depends on the configuration of the two pixels.
Considering Figure 3.4, one can see that the distance between the
two centérs of two succeeding pixels is equal to | (after norhali-
zation) if they have one side in common and equal to Y2 if they
have onlyuone common corner. By adding the length of all elements

that form a curve, one can calculate the total length of the curve.

3.1.3 Program_input | »

The starting point and chain code representation of each curve

\

-15-

afe inputs to the program. The end of a chain céde representation
is identified by ''0''. For each curve the program generates three
arrays. The first two arrays contain the x and y coordinates of
each pixel. The third array stores the length, measured along the
curve, of that part of the curve that is located in between the |
pixel of interest and the curve's starting point. |f one uses array
L for this purpose (see Figure 3.5), then the valge of L(1) is
either 1 or V2 depending on now the second pixel is located with
respect to the first. The value of L(2) is either 2, 1 + Y2, or
ZVEfdepending on the location of the second pixel on the curve with
respect to the first pixel and the location of the third pixel with
respect to the second one. There is another possibility: L(2) can
also equal 0 if the curve consists of only two pixels.

The so formed arrays are used in the averaging, smoothing and

correlation routines (see Chapters 4 and 5).

However, a different notation is sometimes more usefuly In this
notation the chain code values are converted into two arrays contain-
ing the Ax and Ay values of all the chain codes that fbrm a
particular curve. This is shown in Figure 3.6. Each chain code
element simultaneously represents a Ax and Ay value that can be
equal to either -1, 0, or +1. A.chain code value of 9 is included
to represent those cases where the next pixel is actually 6n top of
its predecessor. This can occur during the smoothing and‘averaging

operations (see Chapters 4 and 5). Since these points do not

-16-

‘contain useful information, they ére usually removed from the chain
code representatidn. Figure 3.7 shows how a set consisting of Ax
and Ay values can be converted to alchain code description.
Because FORTRAN does not accept negative or'zéfo subscrfpt values,
the value 2 is added to the Ax and Ay values and the corresponding
_chain code value is found by looking in an array containing these
values. The first subscript of this array is the Ax + 2 value and
the second subscript is the Ay + 2 vélue. ”
The (Ax,Ay) representation is especially useful in thé
available display routines, because they require the incremental

x and y values as input variables (0zsoy 1983).

By using Freeman's corner cutter matrix (Freeman, 1961; Gumas,
1985), one can remove the jaggedness of a curve. Figure 3.8 shows
that certain pixels can be removed (the black pixels in this figure)
without significant loss of information. In fact the curves look
much smoother after this routine is applied (see Figure 3.8). After
applying this routine, the curves never change direction over more
than ihSO going from the preceeding two pixels (giving the current
direction) to the next pixel in the curve. The method repeatedly
.replaces two adjacént chain code elements by the new element(s)
found in Freeman's matrix (see Figure 3.95. The second (or only)
new element is used in the next replacement step. In Figure 3.10

the routine is applied to the curve of Figure 3.8. Sometimes a

-17-

single fteration 1s not enough and the routine Has to behrepeafed
-untii the chain code no longer changes. Although the routine
smooths the curves, it only doés so on a local basis. Freeman
(1961) also shows how the routine can be used to find the shortest
path between the curve's startpoint and endpoint. This method
provides maximum smoothing of the curve. However, dnlike the
élgorithm presented in Chapter 5, no means of arbitrary smoothing

is provided by Freeman's matrix.

3.2 Display routines

Although_some'basfc,granhic routines are already available
(OZSOY'1983),isbme'twenty—five additional graphic routines Qere
developed to aid in the fluid flow analysis process (Kerstens 1985).
These routines create a very interactive environment, set up and
clear the screen, allow the user to change the center of display
and scaling factors, provide many options, and quickly allow the
user to display/average/smooth/correlate (an) arbitrary frame(s)/
curve(s) etc. Most of these routines are explained in Kérstens
(1985).

However, in order to keep track of which curves are displayed
where on the screen, in an efficient manner, and to enable the
implementation of the averaging, smoothing, and correlafion routines,
special buffer and cursor routines were déveloped.q Since these
routines are fairly complicatéd.and represent a major part of the

1.

total FORTRAN code, the developed algorithms are presented and

explained in-the»remarnﬂng'twcvpafégrabhs'of this chapter.

3.3 Curve stdragg buffer

After a curve is displayed on the screen, it is often used in
gome further processing. Suppose the displayed curve is the
output of previous processing routines; then it is necessary to
store the relevant data of this curve so one can use it in the .
special bﬁffer routines that store all relevant data of the curves
displayed on the screenwere:deyeloped. Figure 3.11 shows the
setup of the buffer while Tts-tﬁmPOnents are explained in the

remainder of this paragraph.

The stack contains the main curve data. It contains the Ax
aﬂd Ay arrays, the curve's startpoint,‘the;curVe’S»color,gand a
lot of other information for each curve that fS'displayed on the
screen (see Figurej3111). Since curves are continuously reﬁoved
and added to the list of displayed curves, the stack continuously
changes. So the stack has to be updated quite frequently, and one
has to keep track of where a particular curve is stored. Suppose
the current number of displayed curves is N. One way of storing
the curves would be to store them in the first N positions of the
buffer (see stack in Figure 3.11), in the order they appeared on the

screen, and to remember the current number of displayed curves N.
: S f

Assume, however, that oﬁe wants to remove one of the first curves
in the stack from the screeh. Since this curve is no longer shown
on the screen, it also has to be removed from the stack (otherwise
a stack overflow would quickly occur). This In turn creates a gap
in the stack that has to be closed. Suppose the third curve stored
in the stack is removed from the screen. To close the created gap,
the N-3 curves that were placed on the screen, -after the third cdrye
was put on the screen, have to be shifted down one position in the
stack because the third curve was removed. Since each curve can
contain over 200 data points, this algorithm would be very
inefficient.

An alternative would be to remember where each curve is stored
in the stack, remember where there are gaps in the stack, and to
FilTl up the gaps with data of the new curves being displayed on the
screen. Basically the new curve data would overwrite the old curve
data. This is a very efficient algorithm in which no data is re-

"positioned in tbéjstack. Implementatiop of this algorithm requires
that one keeps track of where the curve dafa is positioned. To
understand how this can be done efficiently, one first has to
consider how the buffer is going to be used. -

As mentioned in Chapter 2, the data is generated in the form
of frames each consisting of several curves. Therefore, it is more

than likely that at some time one wants to display simultaneously

a complete frame, or a complete set of curves for that matter. I f

-20-

this 15 the case, a sequence of cUrQes shoutd-be sﬁofed in the
buffer. Keeping track of the sequenceswoﬁld make it possible to
delete any par£icular sequence from thé‘buffer (and thus the
rScreen). So every sequence of curves is stored and rembved in

one shot. However, if this is the case, the only thing'to remember
is the stack addresses in which the curves of'particular sequence
are stored and the total number of sequences that are currently
displayea on the screen. Figure 3.11 shows how this is implemgnted.
The stack addresses of the stored curves is stored in a one- -
dimensionél array in the same order as they appear on the screen.
This is the array labeled '"curve-addresses' in Figure 3?11. Every
curve of every displayed sequence is stored in this array. To keep
track of wheré a particular sequence starts in the "curve-addresses'
array, a second one-dimensf;nal array, containing the sequence
positions in the '"address-array'', was created. This array is also
shown in Figure 3.11 and is labeled ''sequence-position'". Stored in
this array is the address of the last curve out of each sequence
in the "cufve-addresses' array.

Suppose the address of the last curve of sequence N-1 is stored
in position x of the 'curve-address" array and the address of the
last curv;lof sequence N is stored in position Y of the '‘curve-
address' array. Then the total numberlof curves iﬁsequénce N is

Y = X. So by keeping track of the'lésg address of each sequence in

the'“address-array“, it is possible to locate the stack-addresses

of all_the curves in a particular'sequence. The‘only exception

Is the first sequence. One cannot find the number of curves in

this sequence by substracting the position of the last curve in

the previous sequence from the position of the last curve in this
sequence, since this sequence does not have a predecessor. However,
For this sequence the number of ;Urves is equal to the pointer value
and one can use this value Instead. The pointer value of the current
sequence is updated each time one adds a curve to this Sequence.
After completion, the sequence is displayed on the screen (note:

a sequence was defined to be a set of curves that are transferred

to the screen simultaneously). This results in a new sequence being
started and this in turn means that the pointer in the ''sequence-
array'' that was identifying the last curve of the then current
sequence, is now pointing to the last curve of the just completed
sequence. A ''sequence-counter' is keeping track of the number of
sequences and is pointing to the position of the sequence-position
pointer of the current sequence in the ''sequence-position'' array
(see Figure 3.11). As mentioned before, to keep track .of the curve's
stack-addresses is not enough. It is a]so important to keep track
of the gaps in the buffer, because new curves have to be stored in
these positions of the stack. To do so efficiently, the available
stack-addresses are stored in a one-dimensional array called
"available-addresses' (see Figure.3.ll). A pointer keeps track of

how many of the addresses are still available. Each time a new

i
CY

curve is stored, an address Is removed from the ‘top of the
”available-aadresses“ array, the pointer valﬁe (pointing to this
array) is lowered by one, thereby pointing to the next available
stack-address, the sequence-position pointer is incremented'by

one, thereby pointing to the next pAos'itiqn in the ''curve-addresses'’
array, and the_address that was just removed from the "available-
addresses'' array is stored in the “curve-addresses“-array, thereby
pointing to the gap in the stack where the data of the new curve ‘
will be stored.]

So, a minimum of data manipulation takes place each fime a new
curve is stored. All the relevant curve data are now stored in the
stack.

If a curve is removed froﬁ.the stack, a similar routine takes
place. One can remove any sequence from the screen and thus the
stack. |If a séquence is removed, the stack-addresses of all the
curves in that sequence are removed from the “curve-addressés” array
and stored In the "available-addresses'' array. The pointer to the
Yavailable-addresses'' array is updated and is thus still pointing to
the first available-address in that array. The gap in the "eurve-
addresses' array is removed by shifting up all the curve-addresses
of the curves in the sequences that followed!the removed sequence.
Accordingly, the sequence-position pointers to these sequences are
adjusted. The gép in the “sequence-position“ array (createdaby the

removal of the pointer to the removed sequence) is removed in a

-23-

.....

similar fashion. Since one sequence was reméved, the “seqaence-
counter' value is decremented by 1. The data of the curves that
were removed is not removed from the stack. If a new cufvé is

!
stored at this position in the stack, its data will simply be
written over thg old curve data. Again a minimum amount of data
manipulation was requfred to remove a complete sequence'of curves
from the stack and thus the screen.

The buffer routines form an integral part of the image
processing algorithms, They provide a means of efficient curve
manipulation and data storage. Without them the flexibility of the
routines would be greatly reduced and the implementation of

similarity measurements (see Chapter 5) would become a very

difficult task.

3.3.2 Stored curve data

The stack consists of three arrays (see Figure 3.11). When a
curve is stored, the data of the curve is divided over the three
arrays. The stack-address of the curve is the same for all three
arrays. The first array stores the Ax and Ay values (see section
3.1.3) of the curves. This is a three-dimensional integer array.
The three subscripts of this array are: curve-address (first
subscript), Ax or Ay (second subscript is 1 for Ax and 2 for Ay),
and pixel number (third subscript). The §econd array is a two-

dimensional integer array that stores other relevant data of a

curve. The two subscripts of this array are: curve-address (first

-2}-

subscript), and felevant‘data number (secbnd subscript). The
rgievant data is always stored in the same order (see Figure 3.11).
The first data element is reserved for the x-coordinate of the
startpoint 6f the curve. The second daté element stores the y-
coordinate of the startpoint of the curve. Also §tored are the
cufrent color of the curve, the number of Ax elements (or Ay elements)
in the curve (this number is equal to the number of pixels in the
curve -1), the label-type, label-switch, curve number, frahe number,
and window of display. A curve can be identified by looking at its
curve and frame number. Each frame has a unique number and each
curve within a par;icular frame also has a unique number. The curve
numbers are displayed either above or below the starting points of
the curves. Studying Figure 2.1 reveals why this is convenient.

The general direction of the curves in the upper half of the screen
is always downwards while the general direction of the curves in the
bottom half of the screen is always upwards. So curve labels can
always be put above the startpoint.of thewcurve if the curve is in
the upper half of the screen and below the startpoint if the curve
is located in the bottom half of the screen. The curve labels
consist of the curve's number and an optional character telling if
the curve is the output of an averaging (see Chapter L4) or smoothing
(see.Chapter 5) operation. This informat§on results in a unique -

label code that is stored in the label-type location of the second

stack array. A label can be switchéd_on or off and its current

o 25_

a8
ﬂf
"W
ey .
"

b

o

status is stored in the label-swltch’locat{on of the second stack

array. The display-window location of the stack array keeps track
of the window in which the curve is displayed (either full screen

or not, see Kerstens 1985).

The third stack array is a two-dimensional real array. It
contains the scaling factor and center of display (x and f
coordinate) for each curve. These values can be changed by the
user which enables him to zoom-in on particular portions of a
curve or to reposition the curves on the screen. Rather than
recalculating all the new Ax, Ay, and startpoint coordinate values,
these display parameters are store? instead. Again, the first
subscript is the curve address, while the second subscript is

pointing to the data location of interest.

3.3.3 Buffer_routines r

[

There are four buffer routines: BUFINIT, BUFSEND, BUFDISP,
and BUFERASE. The first routine, BUFINIT,'initializes the buffer.
It resets all the pointers and fills up.the ""available-addresses'
array with all the stack-addresses. This routine is called in the
beginning of the main program and in the clear-screen routine. The
second routine, BUFSEND, stores all the relevant data.-of a curve in
the buffer. It generates warning messages when the number of
sequences reaches its maximum (currently lO)Jor Qhen the number of
curves reaches its maximum (currently 30). |If the capacity of the

buffer is exceeded, no curve data is stored, no additional curves

-26-

are displayed, and the user is notiffed of the fact that, either
the stack is fﬁll or the number of sequences has reached its
maximum, and that no data was stored. The dimensions of the
appropriate arrays can be increased, if necessary, to facilitate
- the user's storage requirements.
The third routine, BUFDISP, displays the curves in the current
sequence and updates Ehe '"sequence-counter''.
THe.last routine, BUFERASE, will erase a specified sequence
(set of curves) after some specified delay. It also has a refresh
option. Curves are removed from the screen by redisplaying them
in the background color. Therefore, if one of the removed curves
crosses a displayed curve, the 1attef will have a gap after the
‘removal process is completed. By refreshing the screen (redrawing
the still displayed curves in their own color) after the removal
operations, these gaps disappear. Finally, during the refresh

operation, the labels can be either removed or displayed.

3.3.4 Display_map

An exact copy of the displayed curves on the screen is maintained
in a two dimensional byte array. The resolution of this ""display-
map'' array is the same as that of the screen: 512 x 480 locations.
Each time a pixel of a cur?e is displayed on (removed from) the
screen, the stack-address of that curve is stored in (removed from)
the corkesponding location of the "display-map'' array. By just

'storing the stack-address of the curve, it is possible to keep the :

-27-

B

size of the “dlsplay-map“ array down to a relatively modest value,
while one can still find all the relevant curve data by looking
at the stack locations that correspond with this stack-address.
These operations take place in the BUFDISP and BUFERASE routines.
The "'display-map'' is used in the developed cursor routines which

are discussed in the next paragraph.

3.4 Cursor routines

The similarity routines require that the curves, between which
a similarity value is calculated, are picked from the screen by the
user. The reason for this is simple: to give the user the
flexibility of calculating the similarity between arbitrary curves,
originals, averaged, smoothed, or a mix of them. A different type
of implementation would probably be a burden to the user and would
not give him the flexibility of a cursor routine. However, such a
routing was not available and had to be developed. A routine that
returns the x and y cpordinétes of the picked pixel is available

(0zsoy 1983) and is used in the curve picking routine.

3.4.1 Search routine

The seérch routine must be fast and efficignt, have a high
resolutionh (meaning i£ must be able to differentiate between two
curves that are c{dse to-eACh other), and find the curve that is
‘qlosest to the cursor. To find a curve, the cursor is shown on
ihg screen and the x and y coordinates of the pixel picked by the

user are returned to the search routine. The search routine uses

-28-

b
these values to look in the display map (see section 3.3.4) to

see if this pixel bélongs to a curve. <This is -the black center
pixel of Figure 3.12. |If it finds a stack-address (é number # 0)
in the display map the curve is found, and its stack-address is
used to find the required curve data in the stack. |If no.stack-
address is found, the search routine will séarchhfor the nearest
pixel that is part of a cUrve, its equivalent; moreover, it will
look for the nearest location in the display map ar?aycontafning
a stack-address. Figure 3.12 shows the ofder in which the
locations are checked. The locations with the number 1 in them
are the ones closest to the center location and are checked first.
They are checked in a counterclockwise fashion starting with the
location in the second quadrant. |f no stack-address is found,
the locations numbered two and three are checked in a similar
fashion (starting with two). If still no address is found, the
locations numbered four are checked. Figure 3.12 shows that each
quadrant contains two locations that are numbered four (both
locations are equally far from the center logation). Again these
locations are checked in a counterclockwise fashion. For each
location in the second quadrant with a number between one and
forty-one (see Figure 3.12), its relative coordinates with respect
to the center locatidn a;estbred in a look up table. Figure 3.13
shows part of this table. The relative coordinates of the first
four numbers (five locations) in each quadraht are shown in this

table. From the table one can see that the relative coordinate

..29..

e e
L e

-—

- values of the locations in the third QUadrant can be obtained from

the relative coordinate values of the equivalent location in the
second quadrant. The-requfred transformation routine is: invert
the sign of the relative y coordinate and flip this value with the
relative x coordinate. The relative coordinate values of the
locations in the fourth quadrant can also be obtained from the
values in the second quadrant. The transformation required here is:
invert the sign of both the relative x and y coordinates. Finally,
to obtain the relative x and vy coordinates;of the locations fh the
first quadrant from the values in the second quadrant, one has to
invert the sign of the relative x coordinate and flip this value
with the relative y coordinate.

So only the relative coordinates of the second quadrant have to
be stored in the look up table since the other values can be
obtained with a simple transformation. The first forty-one numbers
in the second quadrant represent seventy-five locations (see Figure
3.12). So by looking at the seventy-five locations in the second
quadrant and the two hundred twenty-five locations in the other
three quadrants, the search routine looks at three hundred locations
(plus the center location).tg find a curve. The total screen
consists of 512 x 480 = 245,760 pixels so the search routine is
checking approximately 1 out of BOO pixels. For'a thirteen inch

monitor with an aspect ratio of 3:4, the total viewing area is

7.8 x 10.4 = 81.12 square inches. So the total area checked by

-30;

2

the routine is:

5 go; 5 X 81.12 = 0.1 square inches~ (3.1)

Since the checked area approximates the shape of a circle, the

diameter of this area is approximately:

2x /-Q-;r-]- = 0.36 inches o | | (3-2)

This provides more than enough resolution and will make it easy
for the user to pick the desired curve even if the curves are very
close to each other. ‘

The roufinewill find the curve that is closest to the center
of the cursor. However, if a curve is further than approximately
.18 inches from the center of the cursor, the routine will not find
the curve. To compensate .for this, the search is expanded to check
the locations on the horizontal, vertical, and two diagonals going
throﬁgh_thevcenter of the cursor (see Figure 3.14). Again, the
routine checks the locations in a counterclockwi se fashion.d After
completion of the local search, it starts with the relative
coordinates (0, 10) above the cursor, then checks thé location
(-10, 10) on the diagonal, then the lTocation (-10, 0) on the
horizontal, etc. Although the routine skips a lot of locations
(to keep it efficient), it generates a '"'star' of checked locations
and should almost always find a éurVe. If still no curve is found,
. the user has to try again. In the worst case when no curve is

fodnd, the cursor is positioned in the center of display, the

_3] -

A

.
e €

additional number of cheéked posltlons is equal to 1872 and the
total number of checked locations is 1872 + 301 = 2173. So
approximately 1 out of 113 pixels is checked in the worst case

situation (less than 1%) keeping the routine still very efficient.

3.h.2 Display_update ﬂ

As Soon as a curve is found by the search routine, the routine
is terminated and the curve's stack-address is returned. Because
the curve's stack-address is known, all relevant data can be found
in the stack. This data is used to redisplay the curve in a
different color immediately after it is found. The user can accept
or reject the curve. |f the curve is rejected, it is again

redisplayed fn its old color. |If the curve is accepted, its data

is used in the qperation described in the following.

-32-

L. CURVE PROCESSING

One of the main objectives of this thesis was to develop an
algd}ithm capable of averaging a set of curves. fhe developed
algorithm and the required support routines afe presented in

this chapter.

4.1 Length calculations

Before any averages can be calculateq, some consideration has
to be given to the relevant length of thé'curves. It is also
important to find the right points on each curve that ﬁust be
-uSed in the averaging operation. In the remainder of this paragraph

these topics are discussed.

4.1.1 Normalized versus_shortest_curve_lengths

Two curves almost never have the same length (see Fiqure 2.1).
Therefore, before two or more curves are averaged, some thought has
to be given to how the difference in length is to be handled. One
can-either normalize the curve's lengths or one can average the
curves over the length of the shortest curve.

|f two or more curves -are averaged, a number of points on one
curve are compared with the same Hﬁmber'of'points on the other
curves. |If the length 6f the curves ié ngrmalized, these points
are spread out over the entire curve. The length of a section

between two of the points (me&Sured along the curve) is the same

for all sections of one curve. So if one curve is longer than

-33-

another curve, these sections are also longer. A justification

for using normalized lengths could be the-assumption that the curves
started out to have the same length, but the disturbance in the

flow stretches some curves more than others. By normalizing tﬁe
curve's length (spreading out the points over the entire length of
the curve) one can compensate for this effect. This is shown in
Figure L.1. Another possibility is to assume that the length of

a section betweeﬁ two points does not change.from curve to curve.
So a longer curve just has more points. Averaging fequires thaf

the same number of points on each curve is used. So if the shortest
curve has N points, only the first N points of the othér curves are
used. Since the other points are not available for the.shortest
curve, one cannot average the remaining points on the longer curves.

This is shown in Figure 4.2.

To find the location of the points on each curve (see paragraph
4.2), it is important to know for each pixel what the length of the
curve section enclosed by this pixel and the startpoint of the curve
is. Therefore, this value is calculatea for each pixel in each
curve and stored in a special array for each curve. If this value
is kno@n for pixel N, the value for pixel N + 1 is found by adding
tﬁe distance between the centers of pixel N and pixel N + f (eithérv

1 or V2, see sections 3.1.2 and 3.1.3) to the value of pixel N.

-3b4-

Since the same number of points of each curve is used in the
average calculations, it is not immediately obvious how ;;ny points
per curve have to be calculated. Too many points would make the
algorithm inefficient, while resolution would suffer if the number
of points is notﬁhigh enéugh. Therefore, when normalizé& lengths
are used,-theAnumber of points is madé equal to the number of
samples (pixels) in the curve with the highest ‘number of samples.
When lengths equal to the length of the shortest curve are used, the
number of samples in the part of each curve that is being used in
the averaging routine, is counted and the number of points is

made equal to the highest number of samples in any one of those

sections.

When the length of the shortest curve is used as a reference to
determine what part of the longer curves is to be used in the
averaging calculations, one has to calculate the number of relevant
samples (pixé]s) in those curves. The lengtﬂ‘of, and the number of
pixels in, the shortest curve are known. For each pixel, the
distan;e (measured along the curve) to the curve's startpoint is
known (see section 4,1.2). At some pixel; for every curve, this
length will be approximately equal to the length of the shortest

curve. The maximum error is 1v2 which is half of the maximum

distance between the centers of two pixels (see section 3.1.2).

.

This"pfxel is found by means of a blnary search (very gfficient).
Suppose thére are N + 1 pixels in the shortest curve. Starting

at the startpoint of the curve, eaghpixel is assigned a number.
The startpoint pixel is pixel 0 and the endpoint pixel is pixel N.
Then the shortest curve consists of N elements where an element

is the connecting line between the centers of two adjacent pixels.
The length of each element is either | or /f'(see section 3.1.2).
'So the total length of the'shbrtest curve is a value between N

and NV2. |If the shortest curve is a straight horizontal or vertical
line, its length is N. A different curve having the same length
has at least N/v2 pixels. (I1f this quantity is not an integer, the
value is rounded to the nearest integer that is smaller than this
value). The only time this minimum is reached is ff the second
curve makes an angle of 45° (or 1350) with the horizontal. This is
shown in Figure 4.3.

On the other hand if the shOrtest'curve makes an angle of MSO
with the horizontal, its lendth reaches.the maximum value of NvV2
(theshortest curve consisted of N elements). A different curve
having the same length has at the most NvV2 pixels (if this number

is not an integer, it is rounded to the nearest integer that is

a

larger than this value). The only time this maximum is reached is
if the second curve is a horizontal orkvertical line (see Figure
L.4)., If the position or shape of the shortest curve is different

from the ones described above, the minimum and maximum values will

36

not be reached. So if the number of elements in the shortest curve
is N, the number of elements in the other curves being used in the

averaging calculations is within the range:
IN/V2} < elements used < [NV2] (4.1)

Within this range there is a pixel whose distance to the curve's
startpoint igiéqual to the leﬁgth of the shortest curve L. This

is shown in Figure 4.5. The exact location of this pixel is found
with a binary search routine. Figure 4.6 shows this technique. The
range of possible pixels is divided in two. The distance of the
curve's starting point to this pixel is compared with the length of
the shortest curve. |f this length is less than the length of the
shortest curve, this pixel becomes the new lower limit ofsthe range
of possible pixels. |f the lengtH was larger than the length of the
shortest curve, this pixel becomes the new upper limit of the range
of possible pixels. By repeating this technique, the rfght pixel
will be found very quickly (see Figure h.6),_after which the number

of pixels to be included in the averaging calculations is known.

4.2 Curve averaging

Averaging of curves is performed by averaging a large number
of points on each curve. The number of points is equal to the
max imum number of pixels in the curves (see section 4.1.3) and their

location is found by the method that is presented in the next section.

The averaging routine requires a number of points that are
spaced équally over the'part of the curve that is to be included
in the averaging operation. The .spacing between the points is
found by dividing the length of the section of the curve one is
interested in (see section 4.1.1) by the total number of points
minus one (see section 4.1.3). ~Since both the number of points
per curve and the spacing between the points is now known, it is
possible to calculate the absolute x and y coordinates of each
point. Suppose there are N + 1 points numberéd O through N. The
distance (measured along the curve) between a'certain point and the
startpoint of the curve is equal to the points number multiplied
with the interpoint spacing. Tracking the curve over this distance
will give the point's position and thus coordinates. For each
point and each pixel the distance to the startpoint is known. So
it is possible to find the two pixels on each side of the point
that are closest to that point. Since the x and'y coordinates of
each pixel are also kﬁown, it is now possible to calculate, by linear
interpolation, both the location and coordinates of each point.
This position usually does not éoincide with any of the pixel
.centers. As an e#ample consider Fiqure 4.7. The curve in this
figure consists of seven pixels or six elements (only the centers of
the pixels are shown). The length of the curve is 3 x 1 + 3 x V2 =

3(1 + v2). |If seven points have to be equally spaced over this

38

curve, the spacing between them is equal to 3(1 + v2)/(7-1)
21,2, The point locations are shown in Figure 4,7. Clearly the
interpoint spacings are constant over the entire curve and onl§
the first and last point coincide with a pixel center (this is

always the case).

the average _curve

The average curve of a set of curves is found by évergging‘
the equally spaced points one by one. To average a particular
point on all these curves, the averages of both the x coordinates and
the y coordinates of this point are calculated. Weighting factors
can be assigned to each curve. By assigning equal weighting
factors (# 0) to each curve, an unweighted average is obtained.

Thus the coordinates of a point on the average curve are calculated

by:
n |
X, =TI X, .W, (L.2)
i,ave . . 1,]) J
=1
n
L Wj
j=1
n 0
y;save =.§] Yi % (4.3)
J_
— n ;
I W, §//\
j=1 |
where
X: ave the x coordinate of point i of the average curve
9
Yi ave the y coordinate of point i of the average curve
’

..'39_

X, . = the x coordinate of point i of curve j

the y coordinate of point i of curve j

<
il

the weighting factor for curve j

n = the total number of curves that are averaged
This process is répeatedforball the poinfs of section 4.2.1 and
for the startpoints of all the curves. The points on the average
curve will not be equally spaced anymore. However, since the |
original curves are smooth, the distance between the points on the
average curve can be represented by two pixels (the factor 2 results
from rounding to integer values). Most of the time the distance :
‘can be represented by one pixel or even ze}o pixels, which occurs
when two points are almost on top of each other. (This happens
when curves move in opposite directions.) The average curve is
represented by a continuous string of pixels that closely approximates
the calculated point locations. Redundant pixels are removed by

applying Freeman's corner cutter - routine (see section 3.1.4).

4.2.3 Results *

The average curve's data is stored in the buffer and displayed
on the screen. The curVes.a]so are assigned a label consisping of
a number and the character A (for Average, see Figures §.15 and
4.16). “\x

Figure 4.8 shows three curves. The curve on the left and right

of the figure are the original curves. The one in the center is the

average curve that results from unweighted normalized averaging

~L0-

(see section 4.1.1). Figure 4.9 shows the same two original
curves, but the curve in the center is now the cﬁrvelthat results
from an unweighted average over the length of the shortest curve.
Note the difference between Figures 4.8 and 4.9. Weighted averages
of the same original curves are shown in Figures 4.10 and 4.11.

The weighting factor for the curve on the left is 1 while the
weighting factor for the cﬁrve on the right is 1/3, 1, and 3. This
results in the average curves that are shown in the middle and that
depend on the weighting factor of the curve on the right. The
higher the weighting factor for the curve on the right, the more
the average curve resembles this curve and the more the average

curve's position is shifted towards the curve with the higher

weighting factor (see Figure 4.10 and 4.11). The averages shown in
Figure 4.10 are obtained from a normalized averaging operation and
the averages in Figure 4.11are ob;aiﬁed from averaginé each curve
over the length of the shortest curve. Thg routine is very efficient
and the results are shown almost inSténtaneously on the screen
(averaging of two frames with ten curves each takes less than one
second for a moderately used VAX 11/780 computer). The routine js
capable of averaging each curve on a particular frame with the
corresponding curves on many otheerrames. The whole process can
be performed in one operation and is shown in Figure h.12. 1t
enables the user to eliminate disturbances and noise (by averaging)

as well as modulation effects that occur over a longer time.

»

. 7"“]"

Figures 4.8 through L.11 show averages of curves taken from
“actual fluid flows. Figures 4.13 and 4.1k show'the top half of
a fluid flow image. As shown in Figuré 2.1, the battom half of
such an image is usually very similar to the top half. In the
actual analysis, both halves have .to be incluéed (which is possible
with the curfent version of the program). Finally, Figures h,15
and 4.16 show the top half of an average frame obtained from
averaging the frames shown in Figure 4.13 and h.ih. Figure 4.15
shows the average frame obtained by a normalized length average,
while Figure L4.16 shows the average frame that is obtained by a
shortest length average.

For ease of viewing, the scaling factor for the curves in
Figures 4.8 through 4.11 and 4.13 through k.16 was set equal to three.
This results in displayed curves that contain more pixels than
the actual curves which might leave the viewer with the thought

that further improvement is possible. However, since all operations
'd
@

use the original data, this is neither possible nor necessary, and

the curves are shown with the highest possible resolution. ”

Y

-L42-

5. CURVE FILTERING AND RECOGNITIbN

Filtering or smoothing of curves might be required.for a
number of reasons. Additional noise or disturbance reduction
might be needed or one might want to retrieve the basic or
fundamental shape of the curves. For this reason a special smoothing
algorithm was developed and this algorithm is presented in the next
parégraph.

The second algorithm presented in this chapter calculates
a similarity value to express the similarity between a number of
curves. This enables the user to calculate how much a curve is
changing as a function of time or position. Another application
might be to use these similarity values to recognize a frame or

5.1 Curve smoothing

A special smoothing algorithm operating in the spatial domain
was developed and is presented in the remainder of this paragraph.
The differences between smoothing in the spatial or frequency domain

are discussed in the foilowing section.

The discussion in paragraph 213 remains valid here. The
calcuiation of Fourier transforms and inverﬁe'Fourier transforms is
relatively iime consuming and costly. Filtering of the curve in
the'frequency domain is performed by multiplying the curve's

transform with the desired filter function. However, the same

-1i3-

operation cah be performed in the spatial domain by means of a
convolution operation between the curve's runction and the inverse
transform of the desired filter function’(Carlson, 1975). In

terms of computation and effort, both operations are comparable
(excldding the Fourier transform and inverse Fourier transform
operations). So in terms of speed the spatial domain is clearly
preferable. The filter operation in the frequency domain will

have a dramatic effect on the location of‘the endpoints of the
curves (see Gumas, 1985). The endpoint locations depend on the
filtering operation and will be different from the original location.
Due to the interchangeability of the convolution operation in the
spatial domain and the multiplication operation in the frequency
domain, this is also true for the smoothing operation in the

spatial domain. However, with a specially developed modification

of the convolutlon operation, it is possible to keep the endpornts
fixed. For these reasons, the spatial domain approach is preferred.

The deveIOped.algorithms are presented in the next section.

As mentioned in section 3.1.3, the Ax and Ay values for each
curve are either -1, 0, or +1. Figure 5.1 shows the Ax and Ay
sequences for a particular curve. The curve itself is shown in
Figure 5.2. The absolute displacement in the x direction is hx(-1)
42 x 1 = -2, Since there are eight elements in this curve, the

average displacement per element in the x direction is -2/8 = -.25,

_L k-

Similarly, the absolute and average displacements in the y direction
are +4 and .5 respéctively. The cumulat}ve averages are also shown

in Figure Stl. The cumulative averageg are rounded to the nearest
integer. (A value that is exactly between two integer values is
rounded to the nearest integer that is smaller than this value.)

These rounded cumulative averages are also shown in Figure 5.1.

From the latter, the newly smoothed Ax and Ay values are derived

(see Figure 5.1). From these values the smoothed curve is derived;

it is shown in Figdre 5.2. By averaging the Ax and Ay values over

the entire length of the curve, all resolution is lost (the average
deviation is the same for all elements) and thus no further smoothing
is possible. This method is essentially the same as the Freeman
- (1961) routine thaf finds the shortest path between the curve's
startpoint and endpoint. However, both forms of smoothing produce

the same curve for all those original curves that have the same start-
point and endpoint (see Figure 5.3) because the cumulative Ax and)
Ay values are the same for all these curves. This is not always TB
desired. Often one likes to maintain the ''fundamental'' shape of the
curve. ‘Besides, <ince no convolution operation was involved, it is
not really clear what kind of filtering operation was applied. By
averaging the X and py values over the entire curve, each element

of the original curve contributed to the value of each element in

the smoothed curve. |t seems logical that if this range is reduCed,
the smoothing will also be reduced. This is accomplished by the

modified and unmodified convolution operations that-are described next.

-L5-

For a continuous tangent angle function and filter function,
the filtering/smoothing operation can be described with a convolution

‘integral (Carlson 1975):

A
s(2) = J¢(x).f(z'- A) dn r (5.1)
-A |
where:
s(g) = the smoothed function (curve); s(g) = 0 for e[- (A+W),
(A+W)] '
.4 (%) = tangent angle function of curve; ¢(2) = 0 for Lé[-A,A]
f(2) = filtering/smoothing function; f(2) = 0 for 24 -W,W]
A = integration variable

Also f(2) is normalized so that:
W
f f(e) de =1 (5.2)
-W |
The second equation is needed to obtain unit gain. If the tangent

angle function is a constant (straight line) and the filtering
function is a constant,'then'the smoothed value at 2 = 0 should
haveighe same tangent angle as the original curve. This is true
because equation 5.1 is equivalent to the averaging operation that
was described in the beginning of this section. This result is
obtained by the following constraint:
W<A | (5.3)

| f equationsxs.l through 5.3 are valid, the smoothed curve tangent

angle at £ = 0 will be equal tao the constant tangent angle of the

-6~

original curve. To prove this, consider the following tangent
angle function:

(6 for 2 [-A,A] |
$(2)= | (5.4)
o for 2& [-A,A]

Then with equations 5.1 through 5.3, one gets for the smoothed

curve:
A A
(o) = J¢(x) flo-2) dA = ¢ I fF(-1) dA
-A -A
-A A

= -4 J f(u) du= ¢ J f(u) du ,

A -A

"’
= ¢J flu) du =¢.1 =4 (5.5)

-W

If A=W, the width of the filter and the tangent angle function are
the same. This, in fact, is the averaging operation presented at
the beginning of this section. For W < A equation 5.5 is still
valid, but the width of the filter function i; less than the width
of the tangent angle function resulting in a local average. So

~ the convolution operation is a local averaging operation.

Figure 5.4 shows the smoothed function when the tangent éngle
and filter functions are rectangular pulseﬁ. Note that both
equationsé?.Z and 5.3 are valid for these functions. Studying the
smoothed function reveals two undesirable effects. First, the

'"length'' of the smoothed curve is longer than that of the original

q7

curve (2A + 2W) and secondly the ends of the tangent angle:functlon"
of the smoothed curve taper off. The latter results in errors .
at the end and start of the smoothed curve. This is shown in
Figure 5.5 for the functions of Figure 5.4 with ¢ = 7 (meaning that
the original curve is a horizontal line of length 2A with its
startpoint at the right). The shape Qf the smoothed curve dépends
on the tangent angle of the original line (compare Figures 5.5 and
5.6).

The reason for these errors is the local averaging operation.
The oEeration averages the original tangent angle function over a
fixed region. At the ends of the curvé, the tangent angle function
is not available anymore over the entire regfon, while it is still
averaged over this fixed region. This causes a gradual drop in
the calculated average.

|nstead of applying the smoothing operation to the tangent
angle function, it is also possible to operate on the x and y

coordinate functions of the original curve. This would give:

A A

xs(z);= :J x(1) f(2-A) dr and ys(z) = J y(A) f(2-2) dr (5.6)
..A "'A
where:
XS(Q) = the x cbordinate function of the smoothed curve
ys(z) = the y coordinate function of the smoothed curve
x(2) = the x coordinate function of the original curve
y(2) = the y coordinate function of the driginal curve

8-

4

and:

0 for 2f[-(A+W), (AHW)]

x (1) =
ys(z) = 0 for 24[-(A+W), (A+W)]
x(e) =0 forzi[-A,A]

y(e2) = 0 for z&[—A,Aj
Equations 5.2 ahd'5.3 remain valid. So if x(2), y(g), and f(2)
are again rectangular pulses, ihe smoothed functions look similar to
s(¢) in Figure 5.4 and are shown in Figure 5.7. The absolute
displacements in the x and y direction (from startpoint to eﬁdpoint)

for the original curve are equal to:

) A
p Dx,oldv= J x(l) de = 2AX
A (5.7)
Dy,old = [y(2) dg = 2AY
where -A

x,old = the absolute displacement of the original curve in

the x direction
Dy,old = the absolute displacement of the original curve in

the y direction

But the absolute displacements for the x and y coordinates of the

smoothed curve are (see Figure 5.7):
(A+W)

= J xs(l) ds
- (A+W)
(A+W)
= J ys(z) de = 2AY
- (A+W)

X, new 2AX

(5.8)
%y ,new

where:
Dx,new = théabsolute displacement of the smoothed curve in
the x direction
Dy,new = the absolute displacement of the smoothed curve in
the y direction
So the absolute displacement between the startpoint and endpoint of
both the original and smoothed curve is the same. Since both curves
have the sametstartpoiht, the endpoints are also the sam;. This is
true in general, as long as equation 5.2 is satisfied.
In the actual implementation, the x and y functions are the
discrete Ax and Ay functions that were defined in section 3.1.3.

The smoothed X and Yo functions will be approximated by the similar

discrete functions AxS and Ays. The equivalent of equation 5.2

" becomes:

"})
£ F(K) = 1 (5.9)

k==-W,

The equivalents of equations 5.6 become:

%, Ao . ; |
x (k) = £ ax(n) f(k - n) -(5.10)
> k=-A
and,
% Ak
y (k) = 2% ay(n) flk - n) (5.11)
=-A,

Finally, the equivalent of equation 5.3 becomes:

' (¥ ;
wk < Ak . (5.12)

..50..

Because |Ax|<1, |Ay|<1, and equation (5.9) élso [szlfj and

|Ay:|<l. The,Ax: and Ay: values represent the displacement in

number of pixels and thus have to be integer values. Let Ax: and

Ay: be the nearest integer values to x: and y: where the difference
between the rounded and original values is carried over to the next
sample to avoid cumulative errors. Then Ax: and Ay: are either

-1, 0 or +1. So the smoothed curves can be approximated with a
continuous string of pixels. An example, with W, =5, A =T, f(k) =
1/11 for all k, and Ax(k) = 1 for ke[-7,7] is shown in ?fgure 5.8.
Correcting for cumulative errors causes gaps in the Ax: function in
this particular case. This can cause an undesired effect. Consider
the data of Figure 5.9. The Ax and Ay are the same as the Ax function
in Figure 5.8. So the Ax: and Ay:functions are also the same as the
Ax::function of Figure 5.8. Both the original and smoothed curves
are plotted in Figure 5.10. The gaps cause no problem here since
they occur at the same samples for both the Ax: and Ay: function.

If the Ay string is shortened by two samples (one on each side), the

L.

gaps in Ay are shifted by one position (either to the right or to

S
the left depending on which side of the curve they are on. The data
of these curves is shown in Fiqure 5.11. Both curves are shown in

\ Figure 5.12. The gaps do cause a problem this time. The ''smoothed"
curve is actually less smooth than the original curve. To avoid

these problems, the smoothing operation is modified. Consider

Figure 5.13The tapered ends of the x(%2) and y(2) functions are

-61-

divided at £ = A and % = -A'respectively.' The values at thé ends
of the taéered ends are mirrored with respect to the dividing
lines ana added to the corresponding original function values.
This is shown in Figure 5.13. This process has two advantages.
First it guarantees that t-he-AxS énd AyS strings have the same
length as the original x and vy string. And sgcond]y, the gaps that
were present in Figure 5.8'are removed. In fact for the. particular
Ax of Figure 5.8, Ax and'AxS are the same. The modified AxS and Ays
have to be rounded to the nearest integer value. Again the
difference between the actual and rounded value is carried over to
the next sample to avoid cumulative errors. Significant errors can
result if this is not done. For example, if the values are
continuously rounded to a value that is smaller, the total absolute
displacement will not be the same anymore and a differént-endpoint
will result.

Figure 5.14 shows what is established by the modification.

In this example W 2. The arrows show to which displacement values

k
in the smoothed curve the displacement values of the original curve
contribute. The dashed arrows show the folded back contributions.
The pixels near the end of the original curve contribute more to the
pixels near the end of the smoothed curve. Closer to the end,

fewer pixels of the original curve are contributing to the displace-

ment values of the smoothed curve. This, in fact, results in a

reduction in smoothing at the ends of the curve. This can be

-52-

justified by noting that less information is available for the -
ends qf,the original curve. |In the middle of the original curve,
the shape of the curve is known on both sides of the pixels oné

is looking at. This is less and less the case for the pixels near

the end.

The minimum filter width is one pixel wide (wk = 0). If this
filter is used, the original curve is left unchanged. The max imum
filter width is constrained by equation 5.12. Maximum smoothing
is obtained for wk = Ak. Intermediate values of wk give different
smoothing values. Figures 5.15 through 5.18 show the smoothing of
two curves obtained by different values ofwk. The shape of the
filtering function was a rectangular pulse, resulting in a sinc (with
sinc x = sin(mx)/(mx)) filter function in the frequency domain.
The routing could be modified for other filters. However, as can
be seen from Figures 5.15 thréughS.lB, excellent smoothing
characferistics are obtained, giving the user a lot of flexibility

in terms of decidingfh6W‘much smoothing should be used.

5.2 Similarity calculations

As an aid in the analysis of fluid flows, it would be nice if
one could express the similarity between two curves as a numerical
value. In the remainder of this paragraph such a technique will

be presented.

-53-

BasicaIly the discussion in paragraph Lk.1.1 also appfies’to this
case. So again the user is given the option to calculate the
similarity value over either the full lengths of the curves (which
theh have to be normalized to obtain an equal amount of measurement
points per curve) or ovér the length of the shortest curve. This
choice is decoupled from the choice of either method in the averaging
algorithm for two reasons. First, one might want to measure the
similarity value between two of the original curves. Second, if an
average curve was obtained from a set of original curves by using
the shortest length method, one might still want to compare one of

.] .
the complete original curves with the average curve.

At first glance, a cross-correlation measurement between two
curves will give the desired similarity value. Suppose we have
two curves with the tangent angle functions ¢l(2) and ¢2(2). The
cross-correlation value (Carlson 1975) between these two curves

is equal to:
A A
R¢1¢2(T) = I 6,(2) ¢,(2-1) do = J 6,(2) ¢,(2-1) da (5.13)
' -A -A
where
&2*(2) = the complex conjugate of ¢2(2) which is equal to

¢2(2) because ¢2(£) (and ¢](2)) is a real function

s

¢1(2) = 0 for g4 -A,A]

¢2(z) = 0 for 2¢[-A,A]
t = a shift operator
Now suppose ¢l(2) = - %— and ¢2(2) =-%<for nef;A,A]. Their
R ¢i¢2(0) =\Am2/h. If.¢3(2) = -%;-for ge[-A,A], then R¢]¢3(0) =
3Ad /b So R¢]¢2(0) = 3R¢‘¢ (0). The three curves are shown in
Figure 5.19. This result :s3undesirab]e. R¢]¢é(0) should equal
R¢]¢3(0) because in fluid flows the differgnce between ¢2 and ¢]

is equal to the difference between ¢3 and ¢]. Alsb if the camera
in the set-up of Figure 2.1 is rotated over !800, the timelines
propagate from right to left and the fluid flow is a mirrored image
of the oné shown in Figure 2.1. This is shown for curves ¢l and ¢2
in Figure15;20:w The mirrored image of curve ¢1(¢;) is equal to its
original while the mirrored image of curve ¢2(¢;) is equal to curve
¢3 in Figure 5.19. So a simple rotatfbn of the camera.wéuld give
different similarity value if this method is. used, which is
undesirable.
inst;éa of using»the.horizontal as the line of reference for
measuring the curve angles, one can‘use a vertical line. This is
shown in Figure 5.21. Now ¢](2) = 0, ¢2(2) = %-and ¢3(2) = "E
for le[-AfA]. So both R¢]¢2(0) and R¢]¢3(0) are equal to zero.
Both result in the same value, but so would any other correlationj

invoiVing curve ¢]. So no matter what the shape of the other

curve is, if it is correlated with ¢], the result will be zero.

55

This is clearly undesirable. The solution seems to lie in fhe
normalization of equation 5.13. To do so, equation 5.13 is

divided by the norm of both_¢] and by Thus

A,
¢1¢2(r) --[\ ¢1(2}7 b, (L-1) d
[To, [e, 1] -
.\ ._
= J ¢ 1,:(.2_) ¢-2_(2-_T) de
Y-A . : :
T ’ =
[loy@1%a. | 1o, %a
-A A
A
= J ¢,() ¢,(n-1) d2
_A -
- - (5. 14)

J 02(2) dn.f 62(1) d2

and with Schwarz' S-Ai nequality:

|5:1¢2(T)|5.1 (5.15)

So with‘the same ¢y, ¢, and ¢3 as before, one now obtains

||¢ || = V2A + ©/2, ||¢2|| - w/k4, and ||¢3|| = J2A - 3n/h.

And thus R (0) = 1 and R (0) = 1. So both values are equal
b12 4"”3

as desired. However, any two angles that are not equal to zero

would have given the same result. So for the curves in Figure

5.22, both R (0) and R (0) are equal to one. Different
¢]¢2 ¢]¢3

values for R are only obtained if the general shape of both curves

-56-

is different. Since both are straight lines of thé same.length;
the value for R* is always one. Again, this-is.not a desired
characteristic. In terms of fluid flows the similarity between
| ¢] and ¢2 of Figure 5.22 shbuld be different from the similarity
between ¢, and ¢3, So a different similarity function had to be

developed. This function is presented in the next section.

Similar to the technique described in section 4.2.1, each
curve is chopped up in an equal number of elements all of the same
length. Again, either the full length of the curves or only a
part of the curve with a length equal to the shortest curve is v
used. |t is now possible to compare the direction of corresponding
elements on each curve. The difference in angle between one element
of each curve is expressed as a numerical value. In analogy with
equation 5.15 this value is normalized to a value between -1 and +1.
Figure 5.23 shows two curves consisting of seven elements each.

The element similarity function is defined as:

AT(k) =1 - 2 (5.16)

180°

where

L

A" (k)

similarity between elements k of curve 1 and 2. This
function is plotted in Figure 5.24k. If the element of curve 1
'(¢](£)) i< used as reference (pointing straight up in Figure 5.2h)

a point of the element of curve 2'(¢2(2)) lies anywhere on the circle.

~

- | ...‘57..

e

The element slmi]ar!ty values are linearly distributed over this
circle and a few of them are shown. In particular the value Is
equal to 1 if the elements have thesaﬁe direction, -1 if they

are pointing in opposite directions (note each element has a
startpoint and endpoint that depends on the direction of the curve),
and 0 if they are perpendicular; By summing all these values for
all elements, one ends up with a value between -N and +N whefe N

is the number of elements. The normalized similarity value is now

defined as: N

' %
£ A (k)
% k=1 _
S¢ b = N (5.17)
172 N
where:
SA = the normalized similarity value
1?2
ands;1¢2 has a value between -1 and +1. Consider again the

| * |
three curves in Figure 5.19. Then § = 0.5 and

¢1¢2 . ¢1¢3
for the curves in Figure 5.22 one obtains S; b = 0.75 and
172

L

0.5. So, as desired, this function expresses the difference

between curves ¢, and-¢3 in Figure 5.22, while it also expresses
the similarity between curves ¢, and ¢3 in Figure 5.19. Now

consider the two jagged curves of Figure 5.25. For these curves

very similar. The zero value results from the fact that each

(both with ten elements) S = 0, while the curves are in fact

element in curve 1 is perpendicular to the corresponding elements

in curve 2. |f one would shift either of the curves one element up
%
1%,

the fact that now one element of each curve is not contributing to

or down, a value of S = .9 would result. The .9 results from

-58-

the finel result eny longer while the other elements are all
‘aligned. Thieresuit is also shown fn Figure 5.25. |f one'

wou ld define the number of eleménts equal to 9 for this case,
SZ]¢2 would equal 1. However, this is not done to express the
slight difference Between this case and the one where the elements
of the two jagged curves would have lined.up. To enable this

shift a modified similarity function is defined as:

N |
I A(k,T)

= oy A k=1

¢ 1}¢ 2 N

wher e

|¢l(k) - ¢, (k1)

1-2. _ ——— for (k=1)e[1,N]

180° . --
Alk,T) & ¢ (5.19)

s for (k-t)e[1,N]

v = the shift operator (number of elements shifted)
Finally, consider Figure 5.26. Shown are three curves with
different lengths of which the first two have the same general
shape. After normalization the similarity between curves 1 and 3
or between curves 2 andi3~w?uld'result in the same value. Also
S$]¢2(0)-= . It woqu?be.désirable if the difference in length
could also be expressed in the similarity value since in terms of

fluid flows, curve 1 and 2 of Figure 5.26 are not the same. To do

SO, S; b (t) is multiplied'with the length of the shortest curve
172 ‘

-59-

Y-

(L]-here) divided by the geometric mean of the length of the

two curves (L,L, here). So the new similarity function is defined

2
as: N
A L ke Aller), L
¢]¢2(T) = ¢1¢2(t)/l_-_l_|___2_ . N V-"-z_ (5.20)

where

Ll'= the length of the shortest curve

L2 = the length of the longest curve
Note that still

»I S¢_1¢2(T) | <1 (5.21)

The ecual sign is only valid if two curves are exactly the same
(both in shape and length). ‘

The justification for this particular modification is given in
terms of an example. Figure 5.27 shows two semicircles, one having
twice the radius of the other. The similarity value is now
calculated over the length of the shortest curve. Since the length
of the larger semicircle is twice the length of the smaller one,
only half of this semicircle contributes to the similarity value.
Suppose the first part of each semicircle with fength L is
aPProximatedmwf}h one element (see Figure 5:28). Use of equation

5.20 and 5.19 with L, = L2 = L gives a similarity value of:

|- g k80 - 0

(0) = 7 180° =0.5
¢1¢2 -

-60-

Approxfailing the same parts of the.semicfrcles with two elements

(see Figure 5.29) gives a value of:

67 5 - 45, 67.5
(0) = (1 - 2. 180) + (' } 2 “8"“° _0.75 + 0.25 _

¢ 192 2 ' 2
which is the same value as before. |If the curves are approximated

with infinitesimal small elements, the following result is obtained
(see Figure 5.30). The angle ¢, at a particular point on the larger
semicircle is equal to (see Figure 5.30):

6, (2) = 90° - a(2)
where

(o) = X qg°

o) L.90
and 2= the distance measured along the curve from the point one is

looking at to the startpoint of the curve; %¢o,L]

Similarly,

¢,(2) = 907 - (%)

where
2’ ‘
B(e) = i: ~80
and thus -
[6,(8) - 6, (9] = £.90° _ (5.22)

If the summation in equation 5.20 is replaced with an integral, N

is replaced by L/d%, L, = L, = L and equation 5.19 is replaced with

| -
its continuous equivalent, then one gets with equation 5.22:
| L £.90° L
1 - 2.— _ 1 2
¢1¢2(0) J _180° JL 1 J (h-p &
0 - L 0 ,
L / de |

-61-

= -L-(--R."" -i-L-) = '"(L = —") = .5 : (5°23)

Note that the square root term did not.affect the final value. So
again the same result is obtained. Now consider Figure 5.31. The
similarity value (using equatigghé.ZO) for curves 1 and 2 is 0.5
(see equétion 5.23). I'f one compares curve 1 with itself, the
similarity value is 1. Finally, the simila;ity value for curves 1
and 3 (using equation 5.20 and normalizations) gives fhe value

Y% = V2 = 0.71. Physically, curve 3 is less similar to curve 1
than curve 1 itself is (because their lengths differ), but is
definitely more similar to curve 1 than curve 2 is. The obtained
values express this difference (values of 0.71, 1, and 0.5 were
obtained respectively) and the additional term in equation 5.20

is thereby justified. Of course, the term only influences the
measurements on normalized curves.

The original flow (see Figure 2.1) shows significant syhmetry
between the bottom and top half of the flow. However, equation 5.20
cannot directly be used to measure the symmetry. The general
direction of the curves is opposite to each other, but the individual
elements are not opposite to each other. This is shown in Figure -

5.32. |f one of the curves is mirrored with respect to a vertical

kS

-62-

line, perfect.symmetry with respect to é horizontal line would
yield that the individual elements of curve 1 and the corresponding
elements of the mirrored image of -the ofher curve 1' would always
point in opposite directions (see Figure 5.32). This in turn
results in a similarity value of -l.' Less than perfect symmetry
would resuit'in a value larger than -1 (but less than +1). This
option is provided to the user, so he can measure the symmetry of
the fluid flow. The user also can specify a shift range over which
S¢‘¢2(T) is calculated. lThe algoritﬁm will return the maximum
magnitude value that was found in this range. So finally the

similarity between two curves is defined as:

Similarity between 2 curves = sign{$ (1)} max|$S (t)| (5.24)
192 9%
where: 1 /
1e[-R,R]

R = shift parameter (integer-value equal to the number of
pixels one wants to shift curves over)

S, . (t) = defined in equation (5.20)
¢ ¢2 b

|f more than two curves have to be averaged, the algorithm will
return all the individual values (obtained from the comparisons
of two curves), the mean of these values, and the standard deviation

of the set of values.

b
5.2.4 Results

- The similarity measurements shown in Figures 5.33‘through

-63-

5.36 and Figure 5.38 are obtained by using the ncrmalized length
option while the measurement in Figure 5.37 is obtained by using the
shortest curQe length option.

The similarity value resulting from a comparison between a
curve with itself is shown in Figure 5.33. Figure 5.34 shows
a similarity measurement between two different curves while
Figure 5.35 shows a measurement involving three curves. -Shown
are the mean value of the two measurements involved ahd thé
standard deviation. ‘The number of curves could be increased to
the maximum number that can bedisplayéd on the screen which is
constricted by the size of the buffer (see paragraph 3.3). The
user can pick any curve that is displayed on the screen (original
curve, smoothed curve, and averéged curve) with the special cursor
routine (see paragraph 3.4) and the similarity routine wil! retrieve
all the required curve data from the stack.

Figure 5.36 shows a similarity measurement between the same two
curves of Figure 5.34, but this time a shift range equal to 20% of
the length of the curve was specified. 'The routine returns the
maximum similarity value it finds in this range. Figure 5.37, again
shows the similarity between the curves of Figure 5.34 (with zero
shift), but this -ime the shortest curve length option was used
in the calculation. Finally,'Fjgure 5.38 shows'the similarity
between a curve and the;smootheﬂ curve that ‘was obtained by a

max imum smoothing operation on the same original curve. A similarity

-64-

value of 1 should result if the curves are the same (Figure 5.33),

@ value of -1 results if the curves have the same shape and length

but their directions are shifted over 1800, and a value of zero should
result if the curves are totally dissimilar (averaging out of

the individuéi'element valuec will occur in this case). This

is established by the algorithm presented in this chapter. It is

capable of measuring the similarity between arbitrary curves

and frames.

6. CONCLUSIONS

The feasibility of K image processing and pattern recognition
of flow patterns has been shown in this investigation. With the
aid of fhe developed algorithms and routines, the user can perform
averaging, smoothing ahd similarity operations on arbitrary curves
and frames. With a specially developed algorithm, it is possible
to express the similarity between two curves in a numerical value.

The developed code provides a highly interactive program.

The program is very flexible andprevides the user with many options.
He can process complete frames and curves at once to speed up the
process, or he can perform operations on just a single curve which
gives him maximuﬁ flexibility. The program is user friendly,
practically menu driven, and almost "idiot proof' in terms of that
it rejects inconsistent data inputs.

The algorithm and routines are very efficient in the sense that
maximum attention was given to competational efficiency and use of
the most effective theories. Averaging and smoothing of curves was
established without the use of discrete Fourier transforms. All of
this also results in relatively fast routines where the results
(even if a large number of frames or curves is involved) are availa-
ble almost instantaneously. This in turn increases the interactive
use of the program.

Efficient data storage and manipulation is achieved by means
of specilly developed buffer and cursor routines. These routines

form an integral part of the whole program.

~66 -

Future work'should include the integration of the program
with the data acquis]tion and preprocessing equipment and routines.
As a special feature, the user might be provided with an option
in which a set of previously defined manipulations is operating
on the frames automatically. The capabilities of* the program
(in terms of the maximum number of frames, the maximum number of
curves per frame, and the maximum number of points per curve) can
be suited to the user's need by changing the appropriate dimension
statements.

Of course, the application of the program in fluid flow

analysis is one of the immediate future goals.

‘,J

fluid flow

2%

VAX 11/780 computer

VS1l1l color
terminal

advanced
processing

storage of
digitized
curves

-g9-

curvetracking

preprocessor

i | video
trigger |
camera

digitizer

mass frame
storage grabber

Figure 2.1 Fluid flow analysis setup.

RETAKE

The Operator has
Determined that the
Previous Frame is
Unacceptable and‘ Has

- Refilmed the Page

in the Next Frame.

VAX 11/780 computer fluid flow

&

VS1l1l color
terminal

advanced | \\\\L)
processing |

storage of
digitized
curves

-89 -

curvetracking

preprocessor

i video
trigger .
camera

'mass frame
storage grabber

digitizer

Figure 2.1 Fluid flow analysis setup.

Lp |
/
) $ (L) / ,
/ /
; /

Figure 2.2 Uniform continuous curve ¢ (L).

® endpoint

O change in direction

Figure 2.3 Feature extraction in fingerprints.

1 2 | n
Figure 3.1 Recording x and y coordinate of each pixel.

-69- | . L

Figure 3.2 Chain code representation.

start: (x,y)
chain codes:

PUONNOEHENNWWN

Figure 3.3 Curve representation with chain codes.

+

\ :
S

Figure 3.4 Element length.

L(L) =1
L(2) = 2 |
L(3) =2 + V2
L(4) = 2 + 22
L(5) = 3 + 2V2
L(6) = 3 + 3V2
L(7) =0
Figure 3.5 Length array data. -
chain code value A X AY
1 1 0
2 1 1
/}!” 3 0 1
oy’ 4 -1 1
AX 5 -1 0
6 -1 -1
7 0 -1
8. 1 -1
9 0 0
0 end of curve

Figure 3.6 Chain code to px/ay conversion.

Ay + 2

AX + 2

Figure 3.7 AX/ay to chain code conversion.,

71

Figure 3.8 Rembving redundant pixels.

Figure 3.9 Freeman's corner cutter matrix.

N~ —P NN —P
~ 77_8 00 = 00
— vl_

— '1_1 | —p
— '1_11 > —
™ > ol N —P I
— - —p —i} —

~ —— i NN »
O e (N N

N =P NN M — N
N —P NI N —
) v
o o
O @)
@) &)
= o
o ol
(4] o
= L
O o
— =
qs] Q-
= =
ol
)

ord

~

o

Figure 3.10 Freeman's corner cutter applied to the curve

of Figure 3.8.

-72-

-¢L-

SEQUENCE-

POSITION

CURVE-
ADDRESSES
SEQUENCE-
COUNTER
start X
start y
POINTER | color
n # of samples
labeltype
label switch
AVAILABLE- ;”rve ﬁ
ADDRESSES trame

I\

display window

x0
y0
scale

ol ol

L ot L)

L = 9

r
—P L]

ﬂ- L)

s i o =

L od L o -den

dr- ﬂp -P L) L L

enguw L - =

= =5 L = =9

T T 7T

L i nles

-—p

¢

<t—>
<+

e

}

Figure 3.11 Buffer setup.

CURVE-
INFORMATION

41 40 38 [37 | 36
39 |35|33[31]30]29
A JEEENE
38 |34 |30] 27| 262423
- T
|38 32 |28 |25 22|20]19]18
\ |
39 |34 |28 |24 |21 |17 |15 |14 |13 j14] 15
41 135 130 {25 |21 |16 13|12 10| 9 Jroj12]13
—1— —+
0 133 [27 122 f17 (w31 | 8] 7| 6 Q7| 81113
——%—— i
38 |31 |26 |20 {15 |12 | 8| 5| 4] 3Qaf 5| 81211
37 |30 |26 |19 |1a 10| 7] 4] 2] L §2] 4 7[10]14
13191 6] 311 1| 3| 6| 9|13
wlwol 71 s 2F 22| & 7]10]14
T
15112 sl s | «f3|al 5f 812015
1311 8| 7} 6
13 {12 |10 § 9

Figure 3.12 Cursor search routine.

Pixel Quadrant

Figure 3.13 Search (look=-up) table.

Figure 3.14 Expanded search routine.

Figure 4.1 Normalized length.

..}75-.

Figure 4.2 Shortest curve length.

shortest curve longer curve

length N

N length
pixels N

Figure 4.3 Minimum number of pixels in second curve,

shortest curve longer curve

/ \
I}I(\a/%gth < >ggels
N o Y

Figure 4.4 Maximum number of pixels in second curve.

76

distance from

IN/V2] startpoint = L
| elements ¢ ~ " ydistance from
- ntsy, gl ,
longer - startpoint = L
curve NV
elements

shortest curve

N elements *Ndistance from startpoint = L

Figure 4.5 Location of last pixel to be included.

LN/ V2 | L [NV2]
lst 2nd
guess guess
3rd
guess |
4th
guess

Figure 4.6 Binary search for exact pixel.

® pixel center
X point location

Figure 4.7 Location of points that will be averaged.

..77...

- X

d##,//{]orlglnal

| curve
< average
curve

« original
curve

[00 YoU WANT A COPY? (Y/N)

.M

Figure 4.8 Unweighted average of two curves (using normalized lengths).

<« average
<« original curve
curve

-6L-

<« original
curve

DO YOU WANT R COPY? (Y/N)

- 08 -

- — H‘
~

ﬂ
<« original

or1glna1 > |
curve
(weight =
1
- - -3
- 3 1
average curves
curve

i | (weight = ;,1 3)

|

DO YOU WANT A COPY? C(Y/ZND

Figure 4.10 Weighted average of two curves (using normalized lengths).

H .

M M M

2
‘

1 e 3
| ' |
original - | '
curve -
(w/éight=1) « -]-'- « 1 « 3
3

average curves

-,

-18_

% original
curve
- | A
(weight ='%,1,3) |

DO YOU WANT A COPY? (Y/N)

Figure 4.11 Weighted average of two curves (using shortest curve length).

curve

curve curve

frame 1

frame 2

frame m

average frame

Figure 4.12 Averaging the curves of a set of frames.

8.
g

-82-

DO YOU WANT A COPY? CY/N)

Figure 4.13 Top half of a fluid flow image.

{18

DO YOU WANT A COPY? CY/N)

Figure 4.14 Top half of a fluid flow image (not equal to Figure 4.13).

¥

-

DO YOU WANT R COPY? <(Y/ND

i

LM

Figure 4.15 Top half of average frame (using normalized lengths).

-98_

DO YOU WANT A COPY? CY/N)

A‘M

Figure 4.16 Top half of average frame (using shortest curve length).

Figure 5.1 ax and ay sequences a particular curve.

element 1) 3 4 5 6 7 g .absolute .average

¥ displacement | displacement
AX 1 1 0 |-1 o (-1 |-1 |-1 -2 -2/8 = -'%
AY | 0 1 1 | 1 1 |1 0 | -1 +4 418 = %
cumulative 1| 1| 3 T 171,31, , 1
average 4X 4 | 2 4 ! y 17 4 : ° 4
cumulative 1 1 1 1 1
average Ay 2 l 13 : %3 0 > ‘ _+4__ 2
rounded o o |-1 |-1 |-1 |-1 |-2 |-2 -2 - 2
_cumulative aX 1 | . _ 4
rounded o |1 |1 |22 |3]|3]us 7 1
cumulative ay 1 2
smoothed o o |-1 o o o |-1]0O -2 -
AX - R 4
smoothed o |1 o |1 o |1]o |1 4 H
8y 2

endpoint

- original curve

--—-= smoothed curve

startpoint

Figure 5.2 Original curve and smoothed curve.

endpoiint

-

original curves

—— original curves
-—-- "smoothed" curve,

startpoint shortest path

Figure 5.3 Shortest path between startpoint and endpoint
of original curves.

-88-

¢(2)I W<A — 1
2W
— ¢ /
I , +
-A A Q -W W g
5(2)1
— ¢
| I
} t - '
~(A+W) -(A-W) A-W A+W 2'
Figure 5.4 Convolution operation.
(A+W)___. smoothed
2w [, } hw curve -(A-W)

original curve

A | -A

¥ |
Figure 5.5 Smoothed curve with ¢=T .

(A+W)
A 2W } i
| s m
(A-W) |
o smoothed CUrvé\\]
original |
curve !
—_ -(A-W
™ + (A-W)
— ‘
~A ~(A+W)

Figure 5.6 Smoothed curve with ¢.=-;—.'

_8_9_

~06-

f(l)I .
W
x(2) 1 Y(2)1 .
— X
11 _ .
-A A)] -W W [} -A A]

¢ = arctan Y/X

-(A+W) =(A-W) (A-W) (A+W) 4 (A+W) =-(A-W) (A-W) (A+W) 2

Figure 5.7 Smoothed x and y coordinate functions.

-16_

continuous case

11 -9 -7 -5 -3 -1. 1 3 5 9 11 ‘;f
| cumulative error error — —»
-1l =3 5| 1]-4| 1| 5]-3|-1 0' o lololo 1| -3 sl if-af {531 L],
17l Tl Tl T 11 f11f11] 11 T lIT|ITT T |iT |11 11|11 |11
11l-10l-91-8|-71-6|-5|-4]-3|-2|-1 o |1 }|2| 3]a]S5]6[7] 89110 11 |12
cnmee—p
k

Figure 5.8 Discrete smoothed curve.

sy |1 1] 1 11111.11‘11 11‘ 1

Figure 5.9 Original and smoothed curve data.

original curve

smoothed curve

Figure 5.10 Original and smoothed curves from data of Figure 5.9.

-92-

L FJ

Ay ol 1l rlatalabafafafafafafafrto

VY 1 1|1 IR NN ENE 11r|1i
S

Figure 5.11 original and smoothed curve data.

original curve

Figure 5.12 Original and smoothed curves from Figure 5.11.

~

I
|
|
¥
-(A+W) (A-W) | (A+W) 2

Figure 5.13 Modified smoothed tangent angle functilon.

f(k) T 1
-5
| e
- "k
AX OT AY T

| NN o
3 original piiels ‘\\\\\\ X 5\5 original pixels

; |) 4 original pixels g
contribute to this g P) contribute to these
| contribute to this |
value | values
value

Figure 5.14 Weighting of displacement values.

_9h-

<« smoothed and
-original curve

'

! (A. =39, W =0 -

) tﬁ | (’k ’ K)” smoothed and

’ . ; original curve
(A, =31, W, =0)

-

|oo vou wnAT A COPY? (Y/ND

Figure 5.15 Smoothed and origgnal curves (wk = 0).

B
it

!
«~ smoothed curve <« smoothed
curve
« original curve
(Ak=39’ wk= 9) {
| original curve
\O | =31 = 7
2 (Ak ,wk‘)

DO YOU WNAT A COPY? C(Y/N)

Figure 5.16 Smoothed and original curves (same as in Figure 5.15; wkﬁO.ZS X Ak).

E -
- "

_LS-

< original curve
(Ak=39’ wk=19)

2

e

<« smoothed

curve
a

original curve
(Ak=31, wk=15)

DO YOU WNAT A COPY? (Y/N)

Figure 5.17 Smoothed and original curves (same as in Figure 5.15; W =0.5 x Ak).

k

7))
r 4
-m?‘

<« smoothed

v A
d‘r;- smoothed curve curve

- original curve
= ' W =
(Ak 39, W 39)

t

original curve
(A, =31, W =31)

DO YOU WNAT A COPY? (Y/N)

Figure 5.18 Smoothed and original curves (same as in Figure 5.15; W = Ak)-_

Figure 5.19 Three different curves all with length 2A.

-

==l
.¢]—¢1)
|

Figure 5.20 Mirrored and original curves ¢1 and ¢2.

@

<4—— line of reference .

|¢1=0
P!

Figure 5.21 Curves of Figure 5519 with different line of reference.

99,

Figure 5.22 3 different curves all with length 2A.
curve 1

curve 2

Figure 5.24 Element similarity function.

‘]00

6, 4, P N ¢, shifted up 1

position

Figure 5.25 Two jagged vertical curves.

Figure 5.26 Three curves with different lengths.

L

| |
l
startpointp—//,! |L T\\s— endpoint
| |R|2R’

Figure 5.27 Two curves in the form of a semicircle.

-101~-

RGP

Figure 5.28 One element approximation of first part with
length L of curves.

e

Figure 5.29 Two element approximation of first part with
length L of curves.

e e —

Figure 5.30 Infinitesimal approximation of first part
: with length 1. of both: curves.

-102-

ey POV
i liaslm s oo

L . curve 3
curve 2

curve 1 |
.\
-+ - +

; - —

e I =

R 2R

Figure 5.31 Three different curves, all part of a circle.

startpoint

curve 1

@ RS

L 4 L~] ® L 3 ® L

curve 1' mirrored image of
curve 1'
startpoint startpoint

Figure 5.32 Mirroring of curves,

-103-

_170[..

THE SIMILARITY VALUE IS: 1.00604d

C(HIT ANY KEY TO CONTINUE)

Figure 5.33 Similarity between a curve and itself.

-501-

Y

S 6
\'\Bj w

THE SIMILARITY UALUE IS: @, 5968
(H1IT ANY KEY TO CONTINUED .

Figuré 5.34 Similarity between two curves.,

R,

-901-

R

THE MEAN SIMILARITY VALUE FOR THIS CURUE 1S: @.5278
WITH A STANDARD DEVIATION OF: Q.09795

CHIT ANY KEY TO CONTINUED '

e

—

_l

Figure 5.35 Mean similarity value (and standard deviation) for a set of 3 curves.

-[01-

THE SIMILARITY UALUE IS: @.6281 - -
CHIT ANY KEY TO CONTINUE)

S et S e S

F1gure 5.36 Similarity between two curves (using a shift range of 20%Z) applled to
the curves of Figure 5 34,

-801-

THE SIMILARITY VALUE 1S: ©.5820 -
(HIT ANY KEY TO CONTINUE)

.......

R R

Figure 5.37 Similarity between two curves (using the shortest curve length)
applied to the curves of Figure 5.34. |

......

maximum smoothed curve -

DR

< original curve

-601-

PUS—— ———
THE SIMILARITY VALUE IS: @.5351
(HIT ANY KEY TO CONTINUE)

R R O - R

Figure 5.38 Similarity between original and smoothed curve.

REFERENCES

Carlson, A; B., CommdnicationSystems, 2nd ed., McGraw-Hill,
1975. |

Freeman, H., '"'On the Encodingtof Arbitrary Geometric
Configurations', IRE Trans. on Electronic Computers; Vol. EC-10,
June 1961, PP 260-268.

Granlund, G. H., "Fourier Preprocessing for Hand Print Character

Recognition', IEEE Trans. on Computers, February 1972,

pp. 195-201.

Gumas, C. C., A General Pattern Recognition Technique for

Open Curves, Master of Science Thesis, Department of

Computer Science and Electrical Engineering, Lehigh University,
1985.

Kerstens, Pieter J. M., Manual for Spatave: An Image Processing

and Pattern Recognition Program for Fluid Flow Analysis,

Department-of‘Mechanical Engineering, Lehigh University,
September, 1985.
Lerner, E. J., "Sleuthing by Computer', IEEE Spectrum, July 1963,

pp. Lh4-49,

Ozsoy, T. M., Bhalla, S., Summer, R., VS11 Graphics Package

Reference and Example Manuals, CAD Laboratory, Lehigh University,

1983.

Pavlidis, T., Algorithms for Graphics and Image Processing,

Computer Science Press Inc., 1982.

-110- “ -

A

10.

Rao, K., Balck, K., "Type Classification of Fingerprints: A
Syntactic Approach', IEEE Trans. on Pattern Analysis and
Machine Intelligence, Vol. PAMI-2, No. 3, May l9§0, pp. 223-231.
Zahn, C. T., Roskies, R. Z., "Fourier Descriptors for Plane
Closed Curves'', IEEE Trans. on Computers, Vol. C-21, No. 3,

March 1972, pp. 269-281.

-111-

- APPENDIX A: SPATAVE, AN INTERACTIVE IMAGE PROCESSING AND PATTERN
RECOGNITION PROGRAM FOR THE ANALYSIS OF FLUID FLOW
PATTERNS ' |

In this appendix, the main structure of ‘the program '"SPATAVE"
(for SPATial AVEraging) is presented. For a more detailed
description, see Kerstens (1985). The program is written in
FORTRAN 77 and runs on a VAX 11/780 computer equipped with VS11
color monitors. For this progra£ the display is divided into
three parts (so-called windows). The first window hés a yellow
border and is displayed in the upper right corner. This window
will display all the curves (original, averaged, and smoothed
curves). The second window is positioned at the bottom of the
display and has a blue border. In this window all program messages
will be displayed. The third window also has a blue border and is
positféned at the left of the first window. This window is for -
fdfure use (display of additional data or menus). There is also
an invisible fourth window (with no border). This is used for full
screen displays (in which case the curves are shown on the whole
screen and the othec>windoWs are removed from the screen). The
windows are shown in Figure Al.

The set-up of the program is best understood by looking at
Figures A2, A3, and Ak. Although these flow éhartsvére not
exhaustive, they do contain all the necessary information. The flow

chart of the main routine is displayed in Figure A2. The

-112-

initialization block sets a number of variables to their initial
values and calculates somebasfc_parameters for each curve that

is an input. After some scaling (the user can piqk the scaling
factor and the center of display) the program will ask the user if
hé wants to display complete frames (a frame is a singlé image
containfng several curves and is obtained from one video image
taken at a particular point in time). |f the user decides to use
this option, the program will execute routine A. The program will
now ask the user if he wants to display just a single curve. Again
the user can decide to do so in which case‘the program will run
routine A'. The next option that is offered is averaging of complete
frames. The following option is averaging of a single curve on
several different frames. The final option makes it possible for
the user to average an arbitrary set of curves that can, but do

not have to be, on a single frame. Finally, the user can jump.back
to the beginning of the program and do some further processing.

The program is set up to give the user maximum flexibility
while still making it possible to get some quick results. In fact,
speed of operation decreases if one goes down in the flow chart
while flexibility increases. So if one wants to average complete
frames, the results can be obtained quickly. However, if one wants
to pick each of the curves that should be averaged (increased
flexibility), one has to do so by selecting the curves one by one

(decreased speed).

-1]3_

Figure A3 shows how the frames and curves are displayed

(routines A and A'). Among other things one can clear the window,

change the color of the next curve/frame (in fact change the shade

of green), and do a similarity test. This can be repeated as

many times as desired.

Figure ALk shows how the frames and curves are averaged.

Among other things one can again clear the window, average the

curves/frames, smooth the curves/frames, and calculate similarity

values

by picking some of the displayed curves. Again, this can

be repeated as many times as desired.

The reader should note that any of the following can be done

with the program SPATAVE in its current state:

display any frame(s) (with or without clearing the screen)

display any curve(s) (with or without clearing the screen) -

smooth any curve(s) (original or averaged)

aQerage any'of the original curves (on the same or on
different fram%?)

calculate the correlation/similarity value between any of the

displayed curves/frames (original, smoothed, or averaged)

With these capabilities, the program SPATAVE should be a useful

tool in the analysis of fluid flows.

f11h'

window 4

window 3 “ window 1

-SllL-

window 2

Figure Al Display setup.

INITIALIZE .

A
ROUTINE B yes
yes
. , AVERAGE
B ROUTINE B II A CURVE?

STOP

Figure A2 Flow chart of the main routine,

-116- -

AyA°
start

CLEAR WINDOW es ~ CLEAR

WINDOW?

e

CHANGE COLOR €5 __~CHANGE

‘ COLOR?

no

DISPLAY
FRAME / CURVE

CALCULATE
SIMILARITY

VALUES

yes

;

yes

A,A'*
end

o%

Figure A3 Flow chart aof routines A and A’'.

‘‘‘‘‘

CLEAR WINDOW [|Y©S

WINDOW?
o

'AVERAGE

FRAME / CURVE

DISPLAY
FRAME / CURVE
yes

SMOOTH CURVES
no

CALCULATE es
SIMILARITY SIMILARITY
no

[237D0 AGAIN?

no

Figure A4 Flow chart of routines B, B', and B".

-118-

APPENDIX B: Author's Biography

Pieter J. M. Kerstens received his Kandidaats degree and his Ir.
degree in Electrical Engineering from Eindhoven University of
Teéhnology, The Netherlands, in 1981 and 1983 respgctively. His
thesis work fncluded digital satellite transmissions in the 11 and
14 GHz bands, with the Orbital‘;;;E“Satellite; These transmissions
were the first digital satellite transmissions in The Netherlands.

" During his graduate studies, the author also worked on fiber
optic transmission and a three month project at the Israel Institute
of Technology, Haifa, lsrael. 1In 1983 he joined Philips Laboratories
in Briarcliff Manor, New York, where he was engaged in repeaterless
long wavelength aqd single mode fiber optic transmissions of FM
video signals. This work resulted in a paper that he presented
at the NCTA Conference, Las Vegas, Nevada, in June, 1985. He is
also author or co-author of several technical reports. The author's

current interests are in robotics, flexible automation, communication,

optimal control, and image processing.

Ly

-119-

	Lehigh University
	Lehigh Preserve
	1986

	Interactive image processing and pattern recognition of digitized flow patterns /
	Pieter J. M. Kerstens
	Recommended Citation

	tmp.1551116526.pdf.GSPll

