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ABSTRACT

A method 1is proposed for the control of nonlinear systems. The method
consists 1in computing and approximating desired trajectorieé"in'the state
space, and then tracking these trajectories. The method is applied to second
order nonlinear systems. A stability analysis is performed, in which the
attractive region of the system is computed by the use of a numerical
technique. It is proved that if the nonlinearity is bounded and proportional
corrective control 1is applied to the system, the parameters of the
controller can be chosen so as to guarantee stability. The case of time
optimal control is examined in particular detail, and estimates of the
performance deterioration are given. In particular, it is shown that if the
system tracks the desired trajectories closely enough, the deterioration of
performance is only due to the fact that the available control input is
split in two parts: a bang-bang component, and a corrective component.
Further, a relationship is developed to approximately compute the increase

of total time required to reach a target state. Finally, extensions to

higher order systems are discussed.




\ CHAPTER 0: INTRODUCTION

0.1 MOTIVATION : Industrial manipUlators ( robots ) are strongly nonlinear

systems. As interest in them has been increasing in the last years, so has
the awareness that we do not have a general method for the control of
nonlinear systems. The case of time optimal control is of particular
interest. In that case we obviously want to drive the maniﬁulator at high

speeds that exacerbate the nonlinearities.

In this document we will present a control method for nonlinear systems.
The task we want to accomplish is to get from one initial state ( 1.e. one
point of the state space ) to another final state . Our main céncern will be
with gross motion control,that 1is control of movement over long distances,
at high speeds . In gross motion control we are trying to bring the system
close to the target state. Once the system is in a neighborhood of the
target state, it can be operated at lower speeds, in a linear terminal

control mode that can be as accurate as necessary.

The main idea of our method is that we track in the state space the

trajectory that describes the desired response. Mo§§ specifically, our
. !

method consists of the following stages:




1. WQ formulate a model of the physical system under invéstigation
and we obtain a control law that will get us from the initial to the final
state. There may be more than one such control and we may be interested in
choosing that control that will also ensure additional properties, e.g. time
optimality.

2. We simulate the system using the model and the appropriate control
law and record the trajectory it follows in the state space.

3. We store the coordinates of the trajectory for future reference. We
use some form of function approximation to facilitate this.

4. We operate the actual physical system using the precomputed control of
stage 1 and an additional corrective control that depends on the error, i.e.
the difference between the recorded simulated trajectory and the actual
trajectory of the physical system. This corrective control can be, for

example, proportional to the error.

This permits a linearization around the nominal trajectory. We show that
for a certain class of systems the error is guaranteed to be bounded. A
case of particular interest is time optimal control, where we want to
minimize the time required to get from initial to final state without too
greatly missing the target final state. .

In this document we will deal with second ordér systems, discrete or
continuous in time. The major thrust of our analysis is in setting the
foundation for a practical "scheme for the control of real, high-order,

strongly nonlinear industrial manipulators. We are particularly interested




in time optimality and the usefulness of superimposing additional control
methods (namely, tracking control ) onto bang-bang control. We also want
to keep on-line computations at a minimum so as to permit zdequately rapid
sampling rate. We will make maximum use of off-line combutation, that can
demand significant resources, but does not slow down or complicate the

actual on-line control process. So we will be interested in this trade-off

of on- and off-line computation.




CHAPTER 1: PRELIMINARIES

1.1. THE SYSTEM: We will look at the following type of systems:

1.1.1 Xy =Xg

1.1.2 %o f(x1,x2)+u

This is the equation of motion of a mechanical system of one degree of

freedom, where f is a function of x, 9 generally nonlinear. In addition
2

1

we will assume that 1f]<A1. If we were considering actual industrial

manipulatqrs, we would be dealing with at least three degrees of freedom
and all the additional coupling terms between these three degrees of
freedom. In that case we would have three groups of two equations each,
like (1.1.1-.2) oﬂe for each degree of freedom. In.all we would have six

state variables.

The coupling applied to one degree of freedom can actually be modelled as

part of the nonlinear function f, except that £ will be a function of all

six state variables in the general case. In particular, we can visualize an

g?

extension of the 2-D method to higher dimensional cases, where the'coupling

5




terms can be Qonsidered as: disturbances, uncertainties'(in the sense of df
that we mention in Chapter 2 )h etc. If we can justify a boundedness
assumption for these extra terms, our analysis of the 2-D case is highly
relevant for higher dimensional systems. However, in this work we will
limit ourselves to the one degree of freedom system. A particular example we

will use a lot 1in the following 1is
1.1.3 X=X,

1.1.4 x2=Aslnx1+Bx2+u

These are the equations of a damped nonlinear pendulum with torque applied

to control its angular position ( see Fig. [1.1.1}). O0f course this can be

thought of as an elementary industrial manipulator.




Figure 1.1.1: A driven pendulum
X)=Xg

iQ:Asinx1+Bx2+u




1;2‘_BANG—BANG' CONTROL: Let us now implement the second step of our method.

Assume we want to find a control u(t) ( 0<t<tf) with |u(t) |<U, so as to get
from state .zizz(O) to State.i-;z(tf) in such a way that ts is minimum.

There is a classical real world problem associated with industrial
manipulators and productivity improvement that can be cast in this fora :
given that the actuators of a manipulator have a bounded force/torque
output, find the ‘input schedule that will minimize the time it takes the
end effector to get from one rest position to another.

The system is linear 1in the input and so, using Pontryagin’s maximum
principle, we can find the control u(t) ( see e.g. [1,2]). It turns out.

that
1.2.1 u(t)=Usgn(g(x))
Where sgn(x) is the signum function:

1.2.2 sgn(g(x))=+1 1f g(x)>0

1.2.3 sgn(g(x))=-1 1f g(x)<O

Obviously, u can take two values only, U and -U. In addition ( see for

example Athans ([3]) for a second order system linear in thé>control, there

8




is only one switch ( at time t_ ) from one value to the other. In

principle, "we can solve the problem either'anaiytically or numerically and

determine what the switching time-ts will be. Then, when we operate the
physical system we can switch the sign of the control at time ts' This 1s

an open loop control scheme, since there 1s no feedback, and is fraught with
all the problems of open loop contfol, in particular sensitivity to
parameter variations . It is has been shown ( e.g. Dubowsky [4]) that small
errors in the timing of the switching-can lead to large errors in the final

state.

/ﬁe
/

The other traditional way to implement bang-bang control is to compute the
value of g(x) at successive times and when that changes sign to switch the
sign of the control as well. However, small variations in the system
parameters can lead to limit cycles, an infinite number of switchings and
the system’s never reaching the target state. See , for example,

Fig.[1.2.1]. Such considerations are the subject of several papers [6-11].

Our scheme follows a middle road between the two traditional schemes. We
have a totally preprogrammed control component, which in the ideal case
ensures time optimality and reachability of the target state. And we algo
have a corrective control that ensures that the actual system state never
drifts too far away from the nominal trajectory. vWe will deal more

extensively with the time optimality question and related topics in Chapter

3.




SWITCHING

N\
N //LlNE
\\\

usl So

Figure 1.2.1: Limit cycles due to parameter variation

Note it takes an infinite time for the system to reach the target state.
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1.3 ‘SIMULATION AND APPROXIMATION: In this section we deal with the

preliﬁinaries necessary to apply the control method proposed. We simulate
the system (1.1.3-.4) on a digital computer and record the trajectory. In
fact we perform several simulations, differing in the specific control

function applied.

1. First we look at the optimal time problem. If the initial and target

states ( X, Xg respectively ) and the control bound (U in 1.2.1) are given,
then the control is completely characterized by the switching time ts.‘ We
find this by integration of  the egs.(1.1.3-.4) forward in time from

initial value x. with u=U and backwards from initial value'_)g_f with u=-U
We get the solutions y(t) and w(t) respectively. We check to see at what

times tsand oy ||X(ts)-y(tsb)|| ¢ e , where e is a small enough positive

number. Ideally, y=w, but since this is a numerical method we can only
examine distinct points. The two trajectories intersect ( or, anyway, are
closer than e ) at the point X;g,’whidh'however.is characterized by a
different time variable for each of %the two trajectories. So we have to

"¢transform t so that tsb transforms to ts. The transformation used is
t=t+ts—tsb. This ensures, as the reader can check, that if at time b, we

switch the sign of u the system will move forward 1in time to the target

state x,. The trajectory 1is also illustrated in Fig.1.3.1.

11




9. The second input we use is constant: u(t)=U for t>0 . With this
input we generate a trajectory to test the tracking performance for longer
time intervals, where errors and instabilities accumulate. This trajectory

is illustrated in Fig.(1.3.2).

3 1n the third case the input is a square pulse train. The motivation in
the selection of th# input is to test the tracking performance for a
trajectory which has lots of transients. This trajectory is illustrated in

Figs. (1.3.3a) ( state space plot ) and (1.3.3b-d) (as a function of time).

0f course we could go on, testing our method with lots of different inputs,

but the three inputs we use are a fairly representative sample.

Obviously the simulations are performed on a digital computer and the time

domain is discrete. Now, we have the values ofix1 0 at the times b,
2 |

i=1,2,... which we want to use as a reference input for the tracking phase
of our method. So we have two options: either (1) store this amount of
numerical data, which can be quite significant, especially if we want to
apply the method to larger scale systems, or (2) find a suitable

approximation scheme which we will use to obtain values of Xy 2'at times ti.
-

We experimented with several sets of approximating functions, such as
polynomials, exponentials and splines. The splines gave the best
approximation by far, with quite modest parameter storage requirements .

Namely, (see, for example, Ahlberg et.al. [12]), a spline of n intervals 1s

completely ~ characterized by 3n44 parameters. A 4-interval spline is

12 o *
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characterized by 16 pafameters.l If each parameter can be stored in two
bytes of computer memory all the data we need can be stored in 2x16=32
bytes. Also the computation necessary for evaluating a spline at a point
is modest: we _need‘ four' additions and three multiplications for one
evaluation.

We list these facts to show that the reference input for-our‘COntrol'scheme
can be computed quickly, with modest demands in computing power. This 1is
crucial, because 1t shows we can implement a coﬁtrol scheme with little
hardware ( e.g. a microprocessor, 2 few hundred bytes Qf'memory ) and

accomodate a fast sampling rate.

There is something else that is nice about splines: they guarantee
approximation mnot only of the function but also of its first and second

derivatives. The relevant error equations are

f

1.3.1 5, PP 1=o(1 1D, 117P) p=0,1,2
.k

where SD is the spline of intervals Dk and f(p) are the approximated
k

function, its first and second derivatives, and Dk is the length of the k-th
interval. But actually these bounds are really conservative. The IMSL
spline fitting routine that we used provided error estimates which were

significantly below the bounds of egs.(1.3.1-.3). Besides 1t 1s easy to

check the error during the off-liné comphtation phase. In Fig.[1.3.4-.7] we

13




present the approximation of one trajectory of the system of egs. 1.1.3-.4.
We can see the error 1is virtually negligible. Note, in these figures, that
we present 2-, 4- and 8- interval splines. For comparison purposes we also
present an approximation by a 12—th!order polynomial. This polynomial is
characterized by twelve coefficients, that is fewer than those needed fér a
spline, but it takes twelve multiplications and thirteen additions to
evaluate it. And, visibly, the fit is much worse than that of the 4- and 8-

interval splines.

14
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Figure 1.3.3a: Trajectory with square pulse input

17

2.R00




@
«
()

)

QU

I O
‘—
=

p

[}
g
—

0.000 | 4. 100
TIME

Figure 1.3.3b: Input u(t)

( plotted vs. time )

9 | 18




(@2
)

S
¢?
v | l r ! ! |
0.000 4.£00
T1ME
,

Figure 1.3.3c: X,

as a function of time

- 19




)
-
W)

O

—d

I
0.000

TIME

Figure 1.3.3d: Xz(t)
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1.4 TRACKING;‘Once we have the approximatidns of the trajectories, we track

them b& the use of some form of corrective control. In the selection of
the particular control law, we will be guided by several requireménts.
Foremost, we want good stability properties, that is, we do not want the
tracking error to grow too much. If we cannot ensure asymptotic stability
for the errbr,~ we might be satisfied with boundedness. We examine this
question in Chapter 2 in greater détail. 0f the many publications on the
subject, we mention [13-20]. In Chapter 3 we present an analysis of time
6ptimality deterioration with the decrease of maximum control input. As we
point out, when we commit some of the available input for correétiVe control
purposes, less is available for bang-bang control. Also, we want some form
of robustness to parameter variations (see [13,16-18]). The robustness
question is related to the stability of the system ( see e.g.[20]). A
special case of robustness 1is the sensitivity of time optimality to

parameter variations [6-10].

Further desirable characteristics of the control law are low computational
demand and the ability to accomodate a high sampling rate. These
requirements are complemeﬁtary.i We must be able to perform the necessary
control computations in the time interval between two measurements. To
assure that we can either use a control scheme that can work with few
measﬁrements (.iideally' at the minimum sampling rate determined by the

dynamics of the system ), or a control scheme that requires little

35




computation, or even better, a combination of the two. At the present time,
the dynamic control of industrial manipulators involves dedicated
mainframes; we are aiming for a microprocessor implementation. To realize
this goal, we must maintain a relatively small number of computations
between taking two successive measurements. This means low sampling rate

4

and/or few computations are required.
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CHAPTER 2: STABILITY

2.1 NOTATION AND_ASSUMPTIONS;:_ Given the system 1.1.1-.2, assume that we

have the nominal trajectories, characterized by the state variables as

functions of time ( in closed or tabulated form ): xnl(t), xn2(t). Also
assume that we have an approximation of xnl(t), xn2(t) ( again in closed or
tabulated form ): Xsl(t),:xSQ(t). In the following we will often drop the

time argument, where it is clear from the context. Then we have the

following notation:

2.1.1

X1, X actual system state variables
2.1.2 X 4 ,X nominal system state variables
nl’ " n2 -
-2.1.3 X 11%X59 approximation to X 10 X,9

We also define the differences

2.1.4 '6sltxsl—xn1 (approximation error)

2.1.5 o

-X

(correction signal)

37

nlzxsl 1




- 2.1.6 61:x1—xn1 (tracking error)

2.1.7 6’2:x82-xn2 (approximation error)
2.1.8 | 6n2:x52—x2 (correction signal)
2.1.9 62:x2—xn2 (tracking error)

Note that

2.1.10 612651‘6n1

2.1.11 62:652—6n2

We hope ( on the basis of equation (1.3.1) and Figs. 1.3.4-1.3.6, that

631 <o are bounded and in fact quite small. We write
2.1.12 1681|<esl
2.1.13 Ids2|<€s2

Now we will write the equations of the simulated system ( in nominal
operation ) and the equations of the actual system when an additional

corrective control is being appiied.

2.1.14 xnlzxnz




2.1.15 | ih2=f(xn1,xn2)+u

And
2.1.16 iIZXZ‘
. . * \ :
2.1.17 x2:f (xl)xz)+(U+uC )

(where u is the corrective control )

Now, f and t* are different functions. The reason we choose two different

functions 1is to represent the possibility of inexact modelling. The

difference between f and £* may be small or great. For example, in the

context of the pendulum ( egs. (1.1.3-.4)), we could have

2.1.18 f(xl,xz)zAsinx1+Bx2+u

2.1.19 £ (x,,%,)=A"sinx, +Bx,+(uru )

X

And the discrepancy would be just numerical, e.g. A=20., A =21. O0f course

. . . 2 o
we could have more serious discrepancies, e.g. we could have an X1 term in

the second equation, or some totally different function. Practically, we
hope that our modelling of the system will be quite accurate. Anyway, we

will make the assumption that

2.1.20 | |6f|<60 for all X) o

where

2.1.21 5f=1" -1 39




And
?.1.22 |f|<-A1 - for allxl,2
Note that this also implies
- E
2.1f123 | £ |<A2—A1+60

Now, we want to choose u, in eq.(2.1.17) so as to ensure some form of

stability. In essence, we want to track the nominal trajectory of the

-

system. To quantify the problem we need to develop the tracking error (61,2)

equations . We do that in the following fashion. Write the equations of

the actual system
2.1.24 X

. . ¥ g
2.1.25 x2=f (xl,.x2)+uf+-u¢:f(xl,x2)+6f(x1.,x2)+u+uC

Let us repeat that 6f can have any functional form, very different from that

of f. This means that we can even deal with the case where our modelling

function £ is quite "wrong", that is, our model is quite different from the
actual system, which is characterized by the function f. All we require, 1s
that the difference 6f between the two functions be bounded. However, what
is usually the problem, and what we are particularly interested in, is the
case where we know the functional forn of f, but we are not quite certain of
some parameter’s numerical value. To invoke the example of the pendulum,

the constant A depends on the mass of the bob. If we make a mistake in the
measurement, or eéfimation, of the mass, the forms of f and f* will still be

identical. The first one will be Asinx1 and the second will be A*ginxl.

40




However, the two numerical constants _A and A" might have different values.

Now, in eq.(2.1.25) we have separated the "real" function £* in two parts:
the modelling function f and the difference function 6f. We would like to
develop an error equation, 1n which f would disappear entirely. A way to
échieve this, is to subtract eq.(2.1.14-.15) from egs.(2.1.24-.25)
respectively. In that case, f would appear only in the difference f-f,

which will hopefully vanish. Unfortunately, the difference is f(xl,xz)—

f(xnl,xn2). In other words, the arguments are different and the difference

does not equal zero.

However, we can always write a Taylor series for the function f, around the

trajectory X 17X 0" To do this, note that from egs.(2.1.6,.9) we have

X1:'n1+51, X2=Xn2+52, and substitute these values in eqs.(2.1.24-.25)
2.1.26 xlzxn2+52
2.1.27 x2=f(xn1+61, xn2+62)+6f(x1,x2)+u+uc

Now, write the Taylor series for f, considering f a function of X 1 n9°
)

2.1.28 xlzxnzféz
2.1.29 ox=f(x L ,x o)+ Qi-(x X o) (X;-%X_4)
T 2 " ''nl’"n2 anl nl’"n2/ ‘1 "nl’
f (X_4,%X o) (Xo-X_o)+...+0f (x,,x,) +u+u
6xn2 nl’"n2/'\"°2 "n2/ """ TTM1T20 7

41
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The purpose of all this maneuver is to develop equations for the error d1 9

Where the dots stand for Taylor terms of higher order. Subtracting
eq.(2.1.28) from eq. (2.1.24) and eq.(2.1.29) from eq.(2.1.25) and using

the tracking error equations (2.1.6-.9) we get

2.1.30 6,5,
2.1.31 5. =08 (> 16.+9% (x )6yt ..+ (x, %) +u
- 1. %978x_*n17%n2)%1 ax {*n1n2 11%g) U,

-2

in which only known, or measurable quantities will occur. We had no way of

knowing f*, so we had to express it in terms of the known model [unction f

(in this case 1its derivatives) and the known-to-be-bounded funttion 6f.
Note, that the nominal trajectory, X 1 09’ is known functions of time and
4 9 114

so the partial derivatives in eq.(2.1.31) are, as well, known functions of

time.

So far what we have been doing is ordinary linearization around a nominal
operating trajectory. We will not use this approach to the end but will
now follow an alternative approach in the following section, where we will

consider tracking methods and their stability properties.

Before we end this section, let us note that when treating discrete time
systems we can proceed in exactly the same way and obtain exactly analogous

equations for the tracking error.
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2.2 STABILITY PROPERTIES EXEMPLIFIED BY THE PROPORTIONAL CONTROL SCHEME: In

this section we will assume the control'uC is proportional to the tracking

error and, using this as an example, we will discuss the stability
propefties of the systemn. In this section we will discuss the subject
analytically  just for the case of continuous time. We will propose and use
a numerical method in the next section, which, even though based on the same

ideas is more tracta?le and efficient.

Ideally we would wish that the error system described by egs.(2.1.30-.31)
be globally asymptotically stable, but this turns out that to be too strong
a requirement. However, boundedness of the error would be almost as good,
especially if we can control the bounds by proper adjustment of the

controller’s parameters.

Assume then that

2.2.1 uc:k16n1+k26n2
Remember that 6 .=x .-x,, ©6,=x_,-x1. It is clear why we use the nominal
nl "s1 71 1 "nl
error 0 | instead of the actual 6 : we really have available for
nl,n2 1,2

comparison only Xs1,s2 and not X1 ,n2" That is why we want a reasonably

good approximation to make sure we do not use a totally misleading reference
trajectory. Indeed we will perform an analysis that shows the role of the

approximation error in the boundedness of  the tracking error.

Let us first note that inl Lo are given functions of time. Then we can
' ’

consider a function f(xnl’xn2) of the nominal state variables as a
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function of time, g(t)zf(xhl(t),xnz(t)). Using this fact, equation (2.2.1)

and eqs.(2.1.30-.31) we can write

2.2.2 6,=0

1 72
2.2.3 | 62;(g1(t)—k1)61+(g2(t)—k2)62
+5f(xl;X2)+k1551+k26s2+(Taylor terns of order 2 and

higher )
Here we have considered the first partial derivatives of f as functions of
t. TIf we assumed the higher order terms to be negligible, we would end up
with a linear time varying system. We could investigate stability of this
system, trying for example to find a Lyapunov function, or exploit the

boundedness of the time dependent terms (e.g. see Takahashi [22], and also

23 1)

Alternatively, we can follow another path. This is our proposed new method
of analysis. Instead of assuming that Taylor terms are negligible, we will
instead show they are bounded. In fact we will show boundedness for Taylor

terms of order 1 and higher.

2.2.4 |f(x1,x2)L;If(xnl,xn2)+TaylorJ>|Tay10r|—|f(¥n1’xn2)|+

2.2.5 | |f(x1,x2){+[f(xnl,xn2)|>|Taylorl
But now using eq.(2.1.22)

2.2.6 A1+A1=C >|Taylox|
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So we see the Taylor terms of order 1 and higher ( that includes first

order partial derivatives, i.e. g 2(t) ) are bounded. Let us use matrix
y

notation and write the system of eqs.(2.2.2-.3) as follows:

2’ . 2 . 7 ézéé‘fh
Wl;erﬂe 4
2. 23. 8 _: _g —l];
kg Tk
| ‘r - '- -
2.2.9 b= O | bl

| Taylor+6f+k 6  +ky6 o | |by

Let’s take the Euclidean norm (||h||=(b?+b§+...+bi)1/2). In the case of b
as given by (2.2.9) we have ||h||=|b2|, and we can write
2.2.10 ||h||<’(C+eo+k.1 esl+k2¢s)2

Let us now consider another norm, or better let us investigate when the

following form is a norm.

2.2.11 | V=6"B6

where B is a matrix. Here V is a quadratic form and it is a norm if B is

positive definite ( see, e.g. Wiberg,[21] ) . We can:alwaysnsymmetriZe‘B 1f
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it is not symmetric, so the positive definiteness condition is equivalent to

positivity of the eigenvalues. Furthermore, (see again Wiberg, [21]), we have

that
2.2.12 \ ||§||2> Vo> . |‘|_5_-||2
max min
where A . ,A  are the minimum and maximum eigenvalues of B, respectively.

min’ max
This means that if we can somehow establish that V 1is bounded then we are
assured that ||§|| is also bounded. Let us now give the following result,

which is easily verified with a little algebra.

™ qif0 1710 -kp q) k0]
P9 o 1 A
2.2.13 g rllk k)l kla T 0 k|

when this equation is true and k1>>l, then
; |

2.2.14 P:k(ki/kz;kQ/kl)
2.2.15 a=k/k,
2.2.16 r=k/k,

As can be verified by solving the %quation. Let us write (2.2.13) in matrix

. p
notation /

/

2.2.17 A+ATB=—¥

Where 1t 1s clear what matriceslé,g_and ﬂ:stand;for. In fact notice that A_

is the system matrix in eq.(2.2.8)

Now we will calculate V.
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2.2.18 V=6"B6+6B 6

2.2.19 V=(A0+b) 'B6+5 B (AS+b)
. | Co T T
2.2.20 V=5 (BA+A B) 6+25 Bb

Now we can use the result of 2.2.14-.16 for B, write W as given by (2.2.13,

.17) and write b as given by (2.2.6)

) o 91 Q:_z(k||§||2-qb261—rb262)

2.2.22 V<—2(klIQI|2—(q|61|+r|62])(k1551+k2582+0+€0))

where q and r are given from egs.(2.2.15-.16). Now, V is a function of

61 9- There are sets of values of 51 2,-which is equivalent to saying there
) )

are parts of the 51—52 space, for which V is negative. In these regions,
V must be decreasing. However, we can always choose k,k1 9 such that B is
. -

positive definite,i.e. V is always positive and hence a norm. First of all,
{ | |
take k to be positive. Then, from egs.(2.2.14-.16), for B to be positive

definite (equivalently for B to have positive eigenvalues ) we must have p+r

positive and pr—q2 positive. An easy way to ensure this 1is to take

-k1>>k~k->1. (Check this in the egs. (2.2.14-.16)). Since V is a norm, it 1s

2

always greater from \_. |l5||23 and since A . is a constant, ||6|| must
min''= min =

also be decreasing. In other words, there are regions of the 61—52 space

where ||§|| tends to decrease. Indeed, from looking at relationship

(2.2.22), we can see that, with k positive , when ||6]| is large the second
47 |




order term dominates the first order term and, since k is positive, V is
certainly negative and consequently V and ||6|| tend to decrease. This

seems to imply asymptotic stability, but we also note that as | 10]] gets

small the first order terms 61 2 dominate, and V takes the sign of q,r.

)

But because of the way we selected-k1 0 q and r will be positive. So there

is a region close to the origin, where ||6|| tends to increase. However, as
soon as the system escapes this region, ||d8|| tends to decrease and it

returns . Now, the exact shape of this attractive region, 1s not easy to

determine analytically. It depends on several parameters. First it depends

on k1 o) that is, the gains of the controller. Askl_2 tend to infinity,

the attractive region shrinks and the system tends to be asymptotically
stable. It is also clear that if the approximation error becomes
comparable to the tracking error, then essentially we get in relationship

(2.2.22) a second quadratic form, the sign of which may be positive or

negative. So, the 'sign of V depends on the modelling error, and this

dependenc is expressed by the bounds €0 C on 6f and the Taylor terms, as

well as on the approximation errors €1 <2 Since the bounds on the absolute
, S

values of these terms multiply the first order terms in 2.2.21, so they tend
to increase the size of the attractive region (= tend to increase the size
of the instability region). Let’s clarify this: the attractive region is the

instability region- when the error vector is in there it tends to escape.

So, the smallest we can make it, the smaller are the bounds on the error.
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Given the parameters C,'kliz, 60,51,52’ ‘we can analytically determine the

shape of some attractive region. We say "some", because in the process we
increase several inequalities and we get an excessively big, that is
excessively conservative, estimate. We do that in the Appendix . However,
there is a better and easier way to determine the attractive region; we can
numerically compute the value of V for a sufficiently broad range of 61,62 |
and for .+ given values k1 5 If we want, we can experiment with several

)

different values and choose the most satisfactory configuration. We can

also investigate the influence of modelling uncertainty by changing €07 C,
and of approximation accuracy by changing €1 52 We give the results with
51,52

several different combinations of parameters in the following sections. What

is clear is that there are attractive regions that can be made almost

arbitrarily small.

The reason we cannot shrink the attractive region to zero is that every
dynamical system is subject to random disturbances and random variations of
its parameters. In fact, this is the reason that we introduce feedback. We
have in our analysis taken care of the variaticn 1in parameters, by
introducing the 6f term. And we have showed that we can ensure the
existence of a bounded attractive region for the tracking error. But we
should also consider the effect of random disturbances. Sure enough, their
effect cannot be too great, especially in the case of an industrial
manipulator, which 1is a quite deterministic dev}ce.'However, they will be

above a certain ”treshold most of the time. All this is rather bad

probability theory, since 0 1 o9 2Te random variables and can take, at least




theoretically, any value. One way or another, by appealing to common sense,
or by introdﬁéing some kind of argument with variances, equivalence of time
and phase means and so on, we can write the inequalities (2.2.25-.26). We

express this by assuming bounds on the probabilistic error 6p1 02" Look at
' N o

this error as part of 0, . ( For example the approximation error 0 is
- 1,2° % » sl,s2

. random error which does not go to zero, but is not too big, either.) In

other words, assume

2.2.23 61:6p1+6d1
2.2.24 62:6p2*6d2
2.2.25 e <0 < €
pl pl
2.2.26 € <0 < Ep2
T p2 p2°
Where 5d1 d2_stands for de¥erministic error, that is error due to parameter

variation, approximation grfor etc. ( 0f course, in the final analysis this

type of error 1is as probabilistic as 0 1 2 but,at least, it is given and

determined in the course of the control process)

It is useful for future analysis, to recognize the existence'of_randomness.
For example; we might have taken pains to tighten the bounds of our
attractive region as much as possible, but we would realize that after a
point the deterministic error is bounded to values comparable to what the
ubiquitous probabilistic  error will be and we cannot do any better than
that. This is not only a philosophical argument, either. We can see in the

numerical studies of the attractive regions, and also in the analytical

considerations of this section, that a way to shrink the attractive region
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is to increase the gains k1 o This would be an ideal solution, since the
, |

deterministic error decreases 'in such a way that the product k161+k262=uc

would go to zero. See for example Fig.2.2.1. This would be true if we could
ensure that the probabilistic error goes to zero as well, but this cannot be
done. The only problem then is that we cannot increase the gains more than a

certain level, because then the product k16p1+k26p2 would be too high. In

other words we would have to commit too. much control for corrective action,
which would leave too little for bang-bang, time optimal control. We will
deal with this problem in section 3.1. However, let wus note that in
accordance to the gross motion control .objeCtive we stated in the
Introduction, we can delineate a sufficiently small neighborhood around the

nominal trajectory, in which the system will always lie.

The reader has certainly noticed the similarity of this method to Lyapunov
stability concepts. In fact our V function is a Lyapunov function candidate,
but unfortunately does not fulfill all the requirements, at least not 1in all

of the 61—62 space. However it does quite a lot for us. In fact, as far as

we. know this is quite an original method of determining stability regions,
and even though it does not allow for very fine delineation of the stability
region, its simplicity makes it quite attractive. There are several other
works 6n. the determination of stabiiity fegiOns, either bya analytic

methods (e.g [23-27]), or by numerical methods, e.g. [28-31] ).
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2.3 NUMERICAL STABILITY ANALYSIS: Here we prop#de a numerical method for the

determination of stability regions. We start by rewriting eq.(2.2.22).

2.2.22 V< —2(k||6||r+(q|61|+r|52])(k1651+k2682f0+60))

This inequality determines one stability region of the system. In the
Appendix we enhance the inequality and determine a bigger region, which is
also a stability region. However, it is clear that we would like to use a
method that will place tightﬁbounds on this region. Now, what we can do is

actually compute the values of the right-hand part of (2.2.22) and see for

what points (51,62) it is negative. Then V will also be negative. For given

values of k,k we can compute_g_and-make sure it is positive definite.Then

1,2
we will have determined a stability region. Comparing with the analytical
method of the Appendix, we see that'indged the numerical method provides
tighter bounds.

There 1is one more point to notice: in the right hand of (2.2.22), everything

is known, except 651 <2 Actually, we could compute these too, but since
)
they are quite negligible , except when really close to the origin, we will

just use the bOUHdS‘Esl o

y S

In summary then, we construct a grid of points (5;,6%), and compute the

values of the ‘expression J(g):—Z(kI|6||2—(q61+r62)(k1651+k2682+0+60)) for

these points. We present the results for some sets of parameters. In all the
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cases, the starred region 1is the attractive region. When the system gets
outside of this, it returns to it. The estimation is conservative, so in
reality the system might stay in a sub-region of the starred ( attractive )

region.

53




- 1.8

+

+

KAk¥KE . KXEKEKXK
KEEERKRREK « KKKKRKKREKK
AR R AR OO RO RO KK
KK OR AR R OKKOR R KRR ARk KK
I SEESESSEFDEILLE IS EFEL P
KK KK K KK K K KKK K K K K K ROk KK K
FARAOK IR RO RGO R Aok Aok ok
XK KK KKK K KOR AR KKK KKK KO OK R AR K
RO RO OO R Ok
3K KKK SR K KK KK K 3K SOk K KOOK ok K Ok
KKK AR OR KOO R ok R o Rk
~ KK K 0OK KKK K KKK K KK KR KKK SOX00K
~3.0 Stk ok R ook ok 3.
ch e et e er e et bbb o s KERKEKEKERKEKKEKKRKEREKKEEER o v o v o v v v v 0t v 6004
R AR OGRS K
KA KRR KK A7 K KKK K KR HOK KK KKK ARk
KA R R 3 AR KOKCROK IR KR R R ROk
KRR KK HOK KK 2K 30K KK 2K 0K K KK K KKK K0
A ORI KR OKKOK KOKOR ROk
3K KKK KK KK KOK 0K KK KKK KR KK 4Ok Kk
3 AKOKCKOK KOKCE 3K A RO O K Ok
¥ KK RO X KK KK IOR JOR KKK KKK KKK KRk
¥R R KR RO KRR RO K AR
3OKCK R KRR K OK XK KK X K 0K K K A
ARRCE R OO AR CEOOO R K dCkk
, AROR ROk ok ok
(/ XRERKK o KRKRHK

+
+
’

-1.8

Fig. 2.3.1a: Guaranteed stability fegion'for k1 2=~20,, C=4O.,-e0=-.

b

54




. 1.8

$K Ok koK ok ok
ok KK R OK KK K K
JROK Ok kK Ok K
% SR KOk S K OK KOKOK K R KOk k
ek K K ARk Ok ok K
KKK KRR R OR K SOR KOK
K OO R KOO Ok X
-3.0 S 40SKOK K K K KK KK oK K K K f 3.0
¢4+f+ff*#fe&ftoooq****#*****ﬁ****ﬁﬁo;oce;¢f§;qo+*wo+*oq
KK R OR KR Ok ok K K KK
ko R OK kKRR Ok ko
SRR R kK AR R OK
Ok KOk OKOK K ROR R RO
SOK K Sk oK s ROR ROk K Ok Kk
22222222 2¢82S
SR KKK OO KKk
ok koK Ok kK

''-1.8

Fig. 2.3.1b: Guaranteed stability region for kl 2=~504,”C=40., e0= ,
6 ? |

55




1.8

+
¥ KKK
-3.0 Kook kK 3.0
.0.0#9600&'0_&i-l_-#0fféifff}ét#&f*****b#f&_#'fttfﬁff'féf_ffffI'i-f(-fi-kéf-
KKk ¥
FOK KX

¥ —l.8

Fig. 2.3.1c: Guaranteed stability region for k1 =-100., C=40.

2 » €5

56




+ 1.8

%

.
-3.0 E & & 3.0
7 ©. N
. Y 7R FARN)
"Of_bﬁ"_-‘i00000'0.‘)#9i_&_\f-f"%0"«*“’«00_00"fi'f’004*”0'3'0’**0.0’
Xk W
L
.

+

-1.8
Fig. 2.3.1d: Guaranteed stability region f‘orik1 2=e200., C=40., e0=5.
1

57




- 1.8

X E KR F
| EEETE S o
-3.0 | 8K KKK 3.0
\‘.4‘*#'&010.001i’#ii##f%0i+0i»&;‘(;ﬁ_*:*'*'*.'*tfiii9"**’***%\iéi‘_iti6i~lfi0+
ES TR E
WK KKK KK
KK AR

' -1.8

Fig. 2.3.1e: Guaranteed stability region for k1’2=~100-; C=40., 60?20-

58




The preceding analysis can be performed for a discrete time system as well.

An analytical method would prove qu{te-tedious, because there is an added

parameter, the sampling time h. However, numerical treatment does not

present any particular problems.

The equations for a discrete time system, 1n matrix form are

| - ke
2.3.1 b, ,17A ) c

Where the matrix ﬁ* is

| =
i

2.3.2

L -k, 1-hk,

And c=hb. b 1s the same as in the continuous time case and h is the time

step.

Now, define V(§,) and AV(dy .8}

| N
2.3.3 V(g =L, B8
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2.3.4 " W=V (8, )-V(E,)

And after some computation, we can write

2.3.5 av=5, (A*"BA*"-B) 6, -2cB'A"5, ¢ <

Now, we can try to determine values of h,k1 o) such that the matrix equation
)

s

2.3.6 A "BA -B=-klI

is satisfied, where I is the unit matrix, k is a positive constant and B is
positive definite, hence a norm. Then, the same kind of arguing as for the

T, *

continuous time case indicates that V is a norm. Write d=cB"A A . Then we can

again write

2.3.7 BV< k| 1811242146, |+1dy8,1)+cTey

And if AV is negative in a region of the 6-space, this implies the norm V of
0 1s decreasing. So again we have defined an attractive region. In the

following figures we present the shape of attractive regions for some

combinations of paraméters'h,kl 9-
)
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CHAPTER 3: TIME OPTIMALITY

3.1 THEORY: This chapter is devoted to a study of the time optimality

characteristics of our method. Specifically, the problem is as follows:

Suppose that we design a control schedule u(t) so as to minimize the

transition time te from an initial statelgi(O) to a target state x, (tf).

We have already mentioned that for the type of systems we treat in this work
( linear in the control , second order ) the appropriate control is bang-
bang ( See Athans [3], Bellman et. al. [32] ) with one switch in the sign
of the control function. Now, we have already explained that there are at
least ‘three ways to implement the control. The first is switching surface
control: a function of the state variables is continuously computed , the
sign of which determines the sign of the control. The second method is
preprogrammed control: compute the switching time offline and perform the
sign switch at that time; this is open loop control. We proposed a third
intermediate method. We use the preprogrammed control, but we also add the

corrective control that ensures that the actual system trajectory never goes

too far away from the nominal trajectory.

We will be interested in the sensitivity of the time optimality in each of
the three methods. We will mention some results relevant to the first

two; and then we will give the analysis for our own method.
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There are several papers ([5-10]) dealing with the closed loop case ( first
case ). The problem is that variations of the system parameters may render
the method inadequate, in the sense that as the system approaches the target
state we may have an infinite sequence of switchings. Then the system enters
a limit cycle, revolving around the target state but never reaching it ( see

Figs.3.1.1). Obviously, in that case, the time t. goes to infinity. Since

the system might never get close enough to the target state we can not claim

even sub-optimality. The system simply performs inadequately.

In the second method, the control is applied, by definition, exactly for -

time t,. However, there 1is no guarantee of arrival at the target state.

Dubowsky brings this point up .in [4]: slight variations in the system
parameters can cause sharp variations in the final state. We performed
several simulations to investigate this effect. See Fig.(3.1.2), where 1t
is clearly demonstrated that small changes 1in the control can bring a

significant change in the final position.

We were motivated to introduce our method to remedy this situation. The

addition of the corrective control u_can guarantee that the tracking error

will remain bounded. The bound will be the greater of two quantities: the
maximum value of the deterministic error and the maximum value of the random
error ( as given in egs. (2.2.25-.26)). For the following analysis of time

optimality, we will only need 62 to be bounded, so let us write, assuming

we have designed the controller so as to get an appropriate attractive

region and taking into consideration the existence of a probabilistic error,
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3.1.1 : 62<£d

We will also require that the state variable.x2 will be greater than a

positive number. Let uégjustify this assumption.4First of all, it is clear

that since the control is time optimal, the state Xg) which is essentially

the "speed" of our system, will always be of one sign ( for a proof see
Athans [3]).So we can take it to be nonnegative without loss of generality.
We also assume that it will not be zero. Often, in time optimal problems, we

want the system to start from a state of rest (XZ:O) and end at a state of
rest (XQ:O). However, as we have mentioned, we_afe interested in gross

motion control, so we want to start 1in a néighborhbod of the initial state
and end in a neighborhood of the target state. As will be clear soon, all
we need is that

3.1.2 € (lx

« 2| for all t, 0<t<tf

3.1.3 ed<e

X
A possible objection is that the system starts exactly from a state of rest

( x2(0)=0-), Even in that case, as soon as it starts moving away from x2=0,

(3.1.2) is satisfied, so our time optimality analysis is valid for the rest

of the path.

Y

2 Q

The fact we want to demonstrate is that if the system moves along a given
path at approximately the prescribed speed, it will arrive at 1ts

destination at approximately the prescribed time.
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Let us: start with the observation that the state variables Xy, Xo aTe
functions of the indepedent variable t, that is xlle(t), xz:x2(t)‘ If we

take parts of thg"trajectory where the state variables are monotone
functions of time, we can also invert either one of the two functions and.
express t as a function of one of the two state vafiables. So for the
description of the actual system we can use as the independent variable

either t, Xy, OF xz.'The same holds true for the nominal system. Denote by
-tn andt the time variables for the nominal and actual systems, respectively.

Assume the nominal total time 1s tnf and the actual total time 1is tf’

Fin@lly,'tnfzjdtn, tfzjdt. Let us then rewrite egs.(2.1.14-.16)

- dx _
| dx _

Equivalently ( remember,xz, X o are greater than zero )

3.1.6 g’.-‘ = dt
X,
X . n
n2

Now, let us take the independent variables to be Xy X g Since this 1s just

a dummy variable, we can write x =x

17X On the other hand, xz(xl) is a

different function from 'xnz(xl) and the same holds for‘t(xl), tn(xl). So,

taking X{=X 1) combining eqgs.(3.1.6-.7) and writing 6t:tn -t , which also

implies d(6t)=dtn~dﬁi we get :
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X X
2 n2

dx n2_6n2

,3.1,9 4,1 (1_ ________ )=d(6t)

X X
2 n2
2 n2

£

And taking absolute values we get

o
3.1.11 19X111.22)= | d6t |
2 “n2
Now, note that g§2=dt, t is always positive and [|dx|>[d|x|. Using these
| 2

facts and our boundedness assumptions (egs. (3.1.2-.3)) we get

“d
3.1.12 vdtg->d|5t|
X
And integrating
3.1.13 ‘ted/§s>5t

The meaning of this relationship is clear: when the speed error is not great
(in particular when it is considerably smaller then the gross motion speed )

then the transition time~‘tf+5t cannot differ by much from the optimal time.

However, this is not totally fair, because we have ignored the fact that we

have commited a portion of the control to corrective action. If we used all [
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the available contr01 for bang-bang centrol, what would the improvement in
time optimality be? We will answer thisvéuestion analytically just for the
case of the pendulum, as described by egs.(1.1.3-.4), but this will offer

insights for a general numerical solution..

Consider then, two systems of the form of egs.(1.1.3-.4), with inputs Uy, U
respectively, both of which are driven in the bang-bang mode, u, being
equal to +U for the first one (system 1) and u, being equal to +(U+6U) for

the second one (system 2). The initial and target states are identical, and
there is mno parameter variation or probabilistic errors. The appropriate

switching times tSI’ts2 are calculated for each system and the switchings
take place exactly at the right times. What is-5t=tf1—tf2? Here we choose
to treat the state variable X, 2s the indepedent variable, and so 3.1.14

tflzjdtl(xz): th:Idtz(x2)°

Note that we can take 8U positive, so that 6t will be positive. Second,
write expressions for dt for each system. For system 1

3.1.15 dtzdxz/(Asinx1+Bx2+u1)

and for system 2

3.1.16 dtzdxz/(Asinx1+Bx2+u2)

Now, use the following shorthand notation

3.1.17 . Q=Asinx+Bx,+U

3.1.18 'R:—|A|+Bx2+U
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U

S=Asinx 9~ | .

1+Bx

Obviously, if U is big enough Q and R will be positive and S will be

negative. Also, fér’all U, R(Q,-sé we can write ( for U big enough )

3.1.17 SC 0< RC @ for all Xy o

H
Now, dxz/dt is equal to @ for t(tslzand is equal to S for >t - We assumed
that U 1is great enough that for t<t s dxz/dt is always positive and for

tOt dxz/dt is always negative ( This has indeed been the case in all our

sl’

simulations).

Then for each piece of the trajectory, xz(t) is a one-to-one, monotone
function, that can be inverted and written as t(x2). To find then the total

time t all we have to do is to integrate each part of the trajectory

f1 "’
individually, find the times and add them. The same holds true of teo- 0f

course, if we go to all that trouble, we could as well run the simulation of

the system with inputs U and U+6U and see what the total times tfl o aTe.
bR

Indeed we will use this technique in what follows. For the time being,

however, it is enough to know that there are such times tsl,s2’ tfl,f2 that

can be computed if necessary.

To show how the method would work, we will only deal with the first part of

the trajectory. Things work out exactly the same for the second half.Now,
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we will 1limit the discussion to the +time interval O<t<tsl <0 In that -

)

interval,indxz/dt. And we can write

3.1.20 tp=fdxy/Q D

./

We integrate then with respect to X from O to'XSZ(tsl)’ Note that for this

portion of the  path @>0 . We will drop the integration limits from now

on. Then, in the same spirit as eq.(3.1.20) we can write

3.1.21 t =] dxo/Q
3.1.22 t_o=] dx,/(Q+6U)
3.1.23 =] dx,/Q(1+6U/Q)

=] (dx,/Q) (1- (8U/Q) + (80/Q) - ..)

By dévelopingjthe term 1/(1+6U/Q) in a Taylor series and retaining only the
first order term, we strictly decrease the right hand term of (3.1.23) (no
approximation in this! ). Then we can write
3.1.24 t82>f(dx2/Q)(1—5U/Q)

6, (dx,/Q)-f (dx,/07)
2

3.1.25 b gPtsq-0Uf dxy/0

3.1.26 6t1<6U.f dxz/QQ

Where we denote tsl—tSQ:ﬁtl. Now, we will further increase the ineqﬁality

by decreasing the denominator of the integrand to R2} Then

3.1.27 5t1<5U_fdx2/R =5U7£?x2/(|A|+Bx2+U)




3,1:28 5t1(5U(x52/((-1A|+U)(Bx82—|A|+U)2))

Things work out exactly the same way for the other part of the trajectory.

If we add the two times, we get 6t=K6U, where K=2x52/(U—lA|)(U—[A|+Bx52),

Yol

Thas ‘shows that the dependence of decrease in time to increase in input 1is
bounded by a linear function of 6U. We can easily show that the same will
hold true for all systems linear in the control, except it may be harder or
impossible to evaluate the integral that‘yields the factor K. However, we
can take, say, two simulations with different controls and interpglate a

; linear relationship between 4t,6U.

If we take- more than two simulations, we will see that our linear
relationship holds for a neighborhood around a nominal control, but far away
from this it becomes nonlinear. This is only to be expected, since we have
made a hidden assumption. In eq.(3.1.24) the integral jdxz/Q would be toq
if the upper limit of integration were x2(tsl), Instead, it 1is x2(t52)'
However, if 6U is not very big, then we expect lenot to change much in

o]

maximun value (of course the total &t might still be quite significant, if
small differences in speed accrue over an interval of time). In particular,

in our pendulum example, the (1/(x82+a)) function tends to further smooth
variations in x,. So for a fairly wide range of OU we get a linear

time/control relationship, which is ascertained from the simulations.
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3.2 NUMERICAL CONSIDERATIUNSi Even though we developed a bound for dt, we

could treat the problem numérically right from the beginning. In this
section we present some results of this numerical study. What we did was to
run the Optimal time system (1.1.3-.4) for several different values of the
input U. Since we  have been using the pendulum example for all our
simulations in past chapters, we also used 1t in this case. We summarize

our results in the following Table 3.2.1

'TABLE'3,2,1
U tf
10. . 605
12. .535
14. .515
15. 475
16. . 445
*16.9 .425
18. .415
\ 19. . 405
20. .395

22. 375
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We also exhibit these results in Figs. 3.2.la,b. Here we have piotted the

11 pairs of dt-dU, equivalently the 11 pairs tf%U, which we list in Table

3.2.1. In Fig. 3.2.1a we just plot the discrete points, whereas 1in Fig.
3.9.1b we interpolate for intermediate points so as to get a smoother curve.
We see that around the point U=16.9, which is the value used for U in the
simulations of Chapter 4 , we have a fairly linear behavior, so we can
assume that for intermediate values from these actually'computed, we can

interpolate linearly.
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CHAPTER 4:SIMULATIONS

4.1 SIMULATIONS: In this Chapter we will present the results of several
numerical simulations that we performed and point out several conclusiors

that can be drawn from them.

There are some particular characteristics of each one of the simulations.

The following factors characterize each particular simulation:

(a) The task we want the system to perform.

(b) The differential equation of the model.

(c) The differential equation of the actual system.

(d) The nominal initial position of the system.

(e) The actual initial position of the system.

(f) The actual switching time ( if any ) of the system.

(g) The nominal switching time ( if any) of the system. !
(h) The sampling rate .

(i) The approximation functions used.

Ttem (a) is fully characterized by the preprogrammed control u. Item (b)

is characterized by the fact we always use the equation

4.1.1 X

=X
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4.1.2 X,=-16.6 sinx,-.2xy+u

Item (c) is characterized by df. Items (d), (e),(f),(g),(h) are clearly
characterized by one numerical value each. For item (i), we always use

splines of eight intervals.

For each of the simulations we list each of these factors, except (b) ard

\
(1), which, as we said, are always the same. Then we present plots of the

following seven functions of time: xl(t) and_xnl(t), superimposed in the
same plot, 'x2(t) and XnZ(t) , again superimposed, dl(t), d2(t) and
u(t)+uc(t). The superposition is used to display how well the system

performs 'the required task. In the next section (4.2) we comment on the

results.




Figure 4.1,1: Ideal conditions simulation
Here we have an "ideal" setup, in which all of the model ﬁarameters agree

completely with the actual system.

Input: Bang-bang ( nominal tS=.21 sec)

df:O.

nominal initial position: xnl(O):—,G : XHQ(O):O,
actual initial position: xl(O):—,G , xz(O)ZO.
actual tS:.21

sampling interval h=.01
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Figure 4.1.2 Different initial positions simulation
Here we experiment with the initial position. Namely, we simulate a system
which starts from a different initial position than the nominal

Input: bang-bang ( nominal tS:.21_)

df=0.

nominal initial position: xn1(0)=—.6 , XDQ(Q):O°'
actual initial position: xl(O):—.5~, x2(0)=0.
actual t =.21
S

sampling interval h=.01
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Figure 4.1.2 Different initial positions simulation
Here we experiment with the initial position. Namely, we simulate a system
which starts from a different initial position than the nominal

Input: bang-bang ( nominal tS=.2i )

df=0.

nominal initialbposition: xnl(O):—,ﬁ , xnz(O)zO.
actual initial position: xl(O)z—,S , x2(0)=0.
'actual-tsz.Zl

sampling interval h=.01
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Figure 4.1.3 Different switching time simulation
~ Here we experiment with the switching time.
Input: bang-bang ( nominal ts=.21 )
df=0.
nominal initial position: xnl(O):—.G : xn2(0)=0;

actual initial position: xl(O):—.G.,ix (0)=0.

P
rmed

actual ts;-21

sampling interval h=.01
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Figure 4.1.4 Difference in modelling function simuiation

Here we take df to be nonzero.

Input: bang-bang ( nominal tS:-21 )

df=-3.

nominal initial position: xnl(O):+.6 , xnz(O):O.
actual initial position: xl(O):—.G : %2(0)20.
actual t =.21
S

sampling interval h=.01
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Figure 4.1.5 "Long term" tracking simulation
Here we use constant preprogrammed control and see how

well the system tracks nominal trajectories over long times.

Input: Constant
df=0.

nominal initial position: xnl(O):—.S : an(O):O'
actual initial position: xl(O):—.S , x2(0)=0.

sampling interval h=.01
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Figure 4.1.6 Square pulse input simﬁlation
Here the prerogrammed control is a square pulse train.
We use this type of input to test the system in quick changes.
Input: Square pulse train.
df=0.

nominal initial position: xnl(O)z-.S , an(O):O'
actual initial position: xl(O):—LS ; x2(0)=0.

sampling interval h=.01
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4.2 CONCLUSIONS What conclusions can we draw from the simulations

presented 7

It is clear that we have good tracking properties. This is certainly true
for the ideal case ( wee Figs.(4.1.1)), but in addition, our method has good
robustness properties. It certainly can handle errrors 1in initial position,
as well as in switching time ( this latter is essentially a form of initial
position error- ). It also gives good results in the case of parameter
uncertainty ( &f= 0. ). This last case is, also, the most interesting one,
since in the case of manipulators, changes in the payload, which are in part
unknown , are an essential part of the operation. A method that can handle

this kind of problem has a good potential for applications.

Also, we use a sampling rate that 1is relatively low to the spectral density
of the system, especially in consideration of 1its nonlinearity.The only
available results that can be really compared in a meaningful fashion with
ours, are these of [16], where a sampling period of .00001 sec, as opposed
to our .01, is used. In conjunction to the very modest on line computation

required, the sampling rate we propose 1is quite acceptable, indeed.

As a final point, let us consider the applicability to higher order systems.
Though this has not been tested yet, there does not seem to be any major

obstacle to the use of our method for the control of higher order systems.

There are two interestiﬁg points. The one is the method to be used for the

approximation of trajectories. But jf we consider these as functions of
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time, we are again faced with the problem of'approximating functions of one
independent variable, and the solution can be provided by splines. The
second innt concerns the bounded nonlinearity hypothesis. It may be that
there are unbounded nonlinear terms coupling the states of a high order
system ( a typical example is the industrial manipulator ). Note, however,
that the stability analysis of Chapter 2 can still be performed and provide
insights on the appropriate selection of a stabilizing control method. A
possible solution of the problem wouid be decoupling of the parts of the
system ( e.g. the links of a manipulator ), which would be £ealized by an
input approximately equal to the nonlinearity, and of opposite sign. Then
the nonlinear part of the system equation would be close to zero, and we

would get back to the boundedness hypothesis.
In conclusion, the simulations give quite encouraging rerults for the

application potential of our method and it is not hard to foressee possible

generalizations of these results.

118




REFERENCES

1. B.K. Kim, K.G. Shin ," Suboptimal Control of Industrial Manipulator with
a Weighted Minimum Time-Fuel Criterion" , IEEE AC-30, n.1, pp.1-10, January

1985

2.M.E. Kahn, B. Roth," The Near Minimum Time Control of Open Loop

Articulated Kinematic Chains ", ASME JDSMC, Sept. 1971, pp.164-172

3. M. Athans, P.L. Falb, Optimal Control, McGraw-Hi11l, New York, 1966

4. S. Dubowsky, IEEE Robot Dynamics and Control Videoconference, Feb. 1985

5. N. Becker,"A Note on Performance Index Sensitivity of Time Optimal

Control Systems ", IEEE AC-25, pp.819-823, 1980

6. E.P. Ryan," On the Sensitivity of a Time Optimal Switching Function" ,

IEEE AC-25, n.2, pp.274-279, April 1980

7. A.S.I. Zinober, A.T. Fuller, "The Sensitivity of Nominally Time Optimal
Control Systems to Parameter Variation" , Int. Journal of Control, vol.17,

n.4, pp.673-703, 1973

8. W. Hejmo," Sensitivity to Switching Function Variations in a Time Optimal
Positional Control System" , Int. Journal of Control, vol.39, n.1,pp.19-3C,

1984

119




9 W. Hejmo, "On the Sensitivity of a Time Optimal Positional Control" ,

IEEE AC-28, n.5, pp.618-621, May 1983

10. J. Rootenberg, R. Courtin, "Sensitivity of Optimal Control-Systems with

Bang-Bang Control" , Int. Journal of Control, v.18, n.3, pp.537-543, 1973

11. P.M. Lynch," Minimum Time Sequential Axis Operation of Cylindrical Two

Axis Manipulator", Proceedings of the JACC, 1980

12. J. Ahlberg, E. Nilson, J. Walsh, The Theory of §Blines and Their

Applications, Academic, New York 1967

13. G. Ambrosino, G. Celentano, C. Garofalo," Robust Model Tracking for a

Class of Nonlinear Plants", IEEE AC-30, n.3, pp. 275-279, March 1985

14. I.V. Emelyanov,"Reproduction of a Reference Input by Astatic Tracking
Systems with Variable Structure", Automation and Remote Control, n.1, pp.62-

72, 1965

15. J.J. Slotine, S.S. Sastry, "Tracking Control of Nonlinear Systems Using
Sliding Surfaces, with Applications to Robot Manipul®,ors , Int. Journal of

Control, vol.138, n.2, pp.464-492

16. G. Leitmann, "On the Efficacy of Nonlinear Control in Uncertain Linear

Systems" , ASME JDSMC, June 1981, vol.102, pp.95-101

120




{

17.  J.N. Singh, A.A.R. Coelho,"Nonlinear Control of Mismatched'Uncertain
Linear Systems and Application to the Control of Aircraft" , ASME JDSMC,

~ Sept..1984, vol. 106, pp.203-210

18. S. Jayasuriya, M.J. Rabins, R.D. Barnard," Guaranteed Tracking Behavior
in the Sense of Input-Output Spheres for Systems with Uncertain Parameters’
. Dec. 1984, ASME JDSMC, vol. 106, pp.273-279

19. S. Gutman, "Uncertain Dynamical Systems, a Lyapunov Min-Max Approach ',

IEEE AC-24, n.3, June 1979, pp.437-443

20. @. Leitmann," Guaranteed Asymptotic Stability for Some Linear Systems

with Bounded Uncertainties", ASME Trans., vol.101, Sept. 1979, pp.212-216

21. D.M. Wiberg, State Space and Linear Control Systems, MsGraw-Hill, New

York, 1970

22. Y. Takahashi, M.J. Rabins, D.M. Auslander, Control and Dynamic Systems,

Addison-Wesley, Reading, 1970

23. G.P. Szego, " On the Application of Zubov’s Method of Comstructing
Lyapunov Functions for Nonlinear Control Systems ", ASME Trans., vol.85,

June 1963, pp.137-142

24. S.G. Margolis, W.G. Vogt, " Control Engineering Applications of V.I.

Zubov’s Construction Procedure for Lyapunov Functions " IEEE AC-8, n.2,

April 1963, pp.104-113

121




25. S. Gutman, " Uncertain Dynamical Systems - A Lyapunov Min-Max Approach

" IEEE AC-24, n.3, June 1979, pp.437-442

26. S. Weissenberger, "Stability Regions of Large Scale Systems ",

J

97. R. Genesio, A. Vicino, " Some Results on the Asymptotic Stability of

Automatica, v.9, pp.653-663

Second-Order Nonlinear Systems " , IEEE AC-29, n.9, September 1984, pp.857-

863

28. M. Hayashi, Y. Ohsawa, "Transient Stability Region of Power System Using
Series Expansion of Lyapunov Functions ", Int. J. Control, vol. 29, n.6,

~

June 1979, pp.1059-1066

29. J.R. Hewitt, C. Storey, " Comparison of Numerical Methods in Stability
Analysis ", Int. J. Control, v.10, n.6, June 1969, pp.687-701

30. E.J. Davison, K.C. Cowan, " A Computational Method for Determining
Stability Regions of a Second Grder Nonlinear Autonomous System ", Int. J.

Control, v.9, n.3, March 1969, pp.349-357

31. M. Abu Hassan , C. Storey,"” Numerical Determination of Domains of
Attraction for Electrical Power Systems Using the Method of Zubov ", Int. J.
Control, v.34, n.2, February 1981, pp.371-381 ‘ .

N

32. R. Bellmann,I. Glicksberg, 0. Gross, " On the Bang-Bang control problem

" Quarterly of Applied Math.,v.14.n.1, March 1956.
122




APPENDIX

In this appendix we will give an analytical estimate of the attractive

region of the system discussed in section 2.2

q L

The relevant inequality 1S 1S 2.2.22, which we rewrite
: %4\-2

AP.1 V<-2(k||6]| —(q|61|+r|62|)(k1651+k2652+0+60))

However,

AP .2a T51|<||é||

AP.2b |60 1<I1811

So we can write the following inequality in ||} ]

AP.3 k| |8]1%-h||6]]>0

Where

AP .4 h=(q+r)(k1651+k2682+A+60)

The solution to this inequality 1is

AP.5 0<| |8 | <h/k
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And this defines one attractive region of the system, i.e. a region of the

61—52 plane , such that, when the,éystem is otside of it , it tends to go

back into it. O0f course, a more sophisticated analysis, would shrink

the bounds of this region and hence find another, "better" attractive

region.




ON_NOTATION

Underlined capital letters indicate matrices, e.g. A.

1

Underlined lowercase letters indicate.vectors, e.g. a.

Subscripted lowercase letters indicate elements of either matrices ( two

substripts ) or vectors ( one subscript ). E.g. 35 4 is an element of the
matrix A, but ‘ai-is an element of the vector a. If two or more subscripts
are separated by a comma, this indicates two or more elements of a vector.

E.g., a. . i1ndicates a., a..
1,] | 1 J
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