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ABSTRACT 

A method is proposed for the control of nonlinear systems. The method 

consists in computing and approximating desired trajectorie~·- in the state 

space, and then tracking these trajectorie$. The method is applied to second 

order nonlinear systems. A stabiljty analysis is performed, in which the 

attractive region of the system • 
1S computed by the use of a numerical 

technique. I.t is proved tha.t if t.he nonlinearity is bounded and proportional 

corrective control is applied to the system, t·he parameters of the 

controller can be chosen so as to guarantee stability. The case of time 

optimal control is examined in particular detail, and estimates of the 

perf6rmance deterioration are given. In particular, it is shown that if the 

system ttacks the desired trajectories closely enough, the deterioration of 

performance is ortly due to the fact that the available control input is 

split in two parts: a bang-bang component, and a corrective component. 

Further, a relationship is developed to approximately compute the increase 

of· total time required to reach a target state. Finally, extensions to 

higher order systems are discussed. 
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CHAPTER 0: INTRODUCTION 

... 

0.1 MOTIVATION _: Industrial manipulators (robots) are strongly nonlinear 

systems. As interest in them has been incre~sing in the last years, so has 

the awareness that we do not have a general method for the control of 

nonlinear systems. The case of time optimal control is of particula.r 

interest. In that case we obviously want to drive the manipulator at high 

speeds that exacerbate the nonlinearities. 

In this document we will p_resent a contr.o1 method for nonlinear systems. 

The task we want to accomplish is to get from one initial state ( i.e~ one 

point of the state space) to another final state . Our main concern will be 

with gr.oss motion c.ontrol, that is control of movement over long distances, 

at high speeds. In gross motion .control we are trying to bring the system 

close to the target state. Once the system is in a neighborhood of the 

target state, it can be operated at lower speeds, in a linear terminal 

control mode that can be as accurate as necessary. 

The main idea of our method is that we track in the state space the 

trajectory that describes the desired response. 

method consists of the following stages·: 

(, 

2 ,, 

More specifically, our 
!\ 



1. We formulate a model of the physical sy,stem under investigation 

and we obtain a control law that will get us from the initial to the final 

state. There may be more than one such control ~nd we may.be interested in 

choosing that control that will also ensure additional properties, e.g. time 

optimality. 

2. We simulate the system using the model and the appropriate control 

law and record the trajectqry it follows in the state space. 
1 

3. We store the coordinates of the tiajectory for future reference. We 

use some form of function approximation to facilitate this. 

4. We operate the actual physical system using the precomputed control of 

stage 1 and an additional corrective control that depends on the error, i.e. 

the differenc~ between the recorded simulated trajectory and the actual 

trajectory of the physical system. 

example, proportional to the error. 

This corrective control can be, for 

This permits a linearization around the nominal trajectory. We show that 

for a ce~tain class of systems the error is guaranteed to be bo-unded. A 

case of particular interest • 
lS time optimal control, where we want to 

minimize the tim~ required to get from initial to final state without too 

greatly missing the target final state. () 

In this document we will deal with second order systems, discrete or 

conti·nuous in time. The • maJor thrust of our analysis is in setting the 

foundation for a practical scheme for the control of real, high-order, 

strongly nonlinear industrial manipulators~ We are particularly interested -, 

3 
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in time optimality and the usefulness of superimposing additional control 

methods (namely, tracking control) onto bang-bang control. We also want 

to keep on-line computations at a minimum so as to p.ermit G.,dequately rapid 

sampling rate. We will make maximum use of off-line comptrtation, that· can 

demand significaht resources, but does not slow down or complicate the 

actual on-line tontrol process. So we will be interested in this trade-off 

of on- and off-line computation-. 

4 
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CHAPTER 1: PRELIMINARIES 

1.1. THE SYSTEM: We will look at the following type of systems: 

1 .1.1 • 
xl -x - 2 

1.1.2 
. f(x 1 ,x2)+u X = 
2 

This • 
1S the equation of ~otion of a mechanical system of one degree of 

freedom, where £ • function of generally nonlinear. In addition 1S a XI 2 ' ' 
we -will assume that :If J <A1 . If we wer.e consid:ering actual industrial 

manipulators, we would be dealing with at least thre~ degrees of freedom 

and al 1 the add:i tiona1 coupling terms between these three degrees of 

freedom. In that case we would have three groups of two equations each, 

like (1.1. 1-. 2) , one for each degree of freedom. In .all we would have six 

state variables. 

The coupling applied to one degree of freedom can actually b~ modelled as 

part of the nonlinear function f, except that f will be a function of all 

s·ix state variables in the general case. In particular, we can· vis·ualize an 
.;,r ,,~ . ' 

extension of the .2-~D method to higher dimensional cases, where the· coupling 

5 

I. 



terms can be considered as('. disturbances, uncertainties (in the sense of df 

that we mention in Chapter 2 ) etc. If we can justify a boundedness 

assumption for these extra terms, ou~- analysis of the 2-D case is highly 

relevant for higher dimensional systems. However., in this work we will 

limit ourselves to the one degree of fre.edom system. A particular example we 

will use a lot in the following is 

1.1.3 

1.1.4 

These are the equations of a damped nonlinear pendulum with torque applied 

to control its angular position ( see Fig. [1.1.1]). Of course this c~n be 

thought of as an elementary industrial manipulator. 

( 

6 
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Figure 1.1 .. 1: A driven pendulum 
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1.-2 BANG-;BANG CONTROL: Let us ·now implement the second step of our method. 

Assume we want to find a con£tol u(t) ( O<t<tf) with lu(t) l<U, so as to get 

• from state x.=x(O) 
-1 -

to state xf x(tf) in such a way that tf 
. .. . 
1s m1n1muiµ. 

There is a classical real world problem associated with industrial 

manipulators and productivity improvement that can be cast ip this for.!!: 

given that the actuators of a manipulator have a bounded force/torque 

output, find the :input schedule that will minimize the time it takes the 

end effector to get from one rest positioh to another. 

The system • 
1S linear in th·e input and so, using Pontryagin '-s maximum 

principle, we can find the control u(t) ( see e.g. [1,2]). It turns out, 

that 

1.2.1 u(t)=Usgn(g(x)) 

Where sgn(x) is the sign um function-: 

·1. 2. 2 sgn(g(x))=+l if g{x) >0 

• 

1.2.3 sgn(g(x))=~l if g(x)<O 

Obviously, u can take two values onlyJ U and -U. In addition ( see for 

example Athans [3]) f"br a second order system linear in the control, there 

8 
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• only switch ( at time t ) from value to the other . In 
lS one one 

s 

principle, we can solve the problem eit-her analytically or numerically and 

determine what the switching time t will be. 
s 

Then,. when we operate the 

physical system we can switch the sign of the control at time ts. This is 

loop control scheme, • there • feedback, and • fraught with an open since lS no lS 

all the problems of l.oop control, • particular sensitivity to open 1n 

parameter variations It • has been shown ( 'Dubowsky [4]) that small 
• 1S e.g~ 

er-rors in the timing of the switching can lead· to large errors in the final 

state. 

The other traditional way to implement bang-·bang control is to compute the 

value of g(x) at successive times and when that changes sign to switch the 

sign of the control as well. However, small variations in the system 

parameters can lead to limit cycles, an ·infinite number of switchings and 

.the system's never reaching the target state. See 
' 

for example, 

Fig.[1.2.1]. Such considerations are the subject of several papers [6-11]. 

Our scheme follows a middle road between the two traditional schemes. We 

have a totally preprogrammed control component, which in the ideal case 

ensures time optimality and reachability of the target state. And we also 
• 

have a corrective control that ensures that the actual system state never 

drifts too far away from the nominal trajectory .. We will deal more 

extensively with the time , optim·ali ty question and related topics in Qhapter 

3. 

9 
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u • -1 

' ' r 

u • l 

SWITCHING 
LINE 

Figure 1.2.1: Limit cycles due to parameter variation 

Note it takes an infinite time for the system t.o reach the target state. 
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1. 3 SIMULATION AND APPROXIMATION: In this· section we deal with the 

' 

preliminaries necessary to apply the control method proposed. We simulate 

the system (1.l.·3-.4) on a digital computer and record the trajectory. In 

fact we perf arm several simulations, cliff ering in the specific contr-ol 

function applied. 

1. First we look at ·the optimal time problem. If the initial and target 

states ( x1 ,xf respectively) and the control bound (U in 1.2.1) are • given, 

th.en the control is completely characterized by the switching time t . · We 
s 

find this by integration of the eqs.(1.1.3-.4) forward in time from 

initial value xi with u=U and backwards from initial value xf with u.=-U . 

We get the solutions y(t) and w(t) respectively. We check to see at what 

times t and t 
s sb I ly(ts)-w(tsb) 11 < e , where e is a small enough positive 

number.. Ideally, y w, but since th-is is a numerical method we can only 

examine distinct points. The two trajectories intersect ( or, anyway, are 

closer than e ) at ·the point y_ w, which however is characterized by a 

different time variable for each of the two trajectories. So we have to 

· transform t so tbat transforms to t. The tran~formation used is 
s 

t=t+t -t b. This ensures, as the reader can check, that if at time t we 
s s s 

switch the sign of u the system will move forward in time to the target 

state xf. The trajectory is also illustrated in Fig.1.3.1. 

11 
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2. The second input we use • 
lS constant: u (t) =U for t)O . With this· 

input we generate a trajectory to test t.he tracking performance for longer 

time intervals, where errors and. instabilities accumulate. This trajectory 

is illustrated in Fig.(1.3.2). 

3. ln the third case the input is a square pulse train. The motivation in 

the selection of thil, input is to test the tracking perf·orm·ance for a 

trajectory which has lots of transients. This trajectory is illustrated in 

," 

Figs. (1.-3. 3a) ( sta.te space plot ) and (1. 3. 3b~d) (as a function of time) . 

Of course we could go on, testing our method with lots of different inputs, 

but the three inputs we use are a fairly· repre$entative sample. 

Obviously the simulations are performed on a digital computer and the time 

domain • 
1S discrete. Now, we have the val·ues of x1 2 at the times ti' 

' 
i=l, 2, . . . whic·h we want to use as a reference input for the tracking phase 

of our method. So we have""two options: either (1) store t-his amount of 

numerical data, which can be quite significant, especially if we want to 

apply the method to larger scale systems, or (2) find a suitable 

approximation scheme which we will use to obtain values of x1 , 2 at times ti. 

We experimented with several sets of approximating function-s, .such as 

polynomials, exponentials and s.plines. The splines gave the best 

approximation by far, with quite modest parameter storage requirements . 

Nam·ely, (see, for example, Ahlberg et. al. [12]), a spline of n intervals is 

completely . characterizea by 3n;4 . parameters·. 

12 
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characteri-zed by 16 parameters. If each parameter can be stored in two 

bytes of computer memory all the data we need can be stored in 2*16=32 

bytes. Also the computation necessary, for evaluating a spline at a point 

is modest: we need four additions and three multiplicatioris for one 

evaluation. 

-
We list these facts ·to show that the reference input for our control' scheme 

can be computed quickly, with modest demands in computing power. This ·is 

crucial, because. it shows we can implement a control scheme with little 

hardware ( e.g. • a microprocessor, a few hundred bytes ~f memory) and 

accomodate a fast sampling rate. 

There 
. 
lS something else that • 

1S 
. 

nice about. splines: they guarantee 

ap.proximation not only of the function but also of its first and second 

derivative-~. The relevant error equations are 

1.3.1 

where SD 
k 

' 
I SD (p) -f (p) I =o ( 11 Dk J J 2-p) p=O, 1, 2 

·k 

is the spline of intervals Dk and f{p) are the approximated 

function, its first and second derivatives, and Dk is the length of the k-th 

interval. But actually these bounds are really conservative. The IMSL 

spline fitting routine that we used provided error estimates which were 

significantly belo~ the bounds of eqs. (1.3.1-.3). Besides it is easy to 

" 

check the error during the off-lin~ computation phase. In Fig. [1.3.4~.7] we 

13 

,, ' ~ ........ ~ ' ... '-! 



present the approximation of one trajectory of the system of eqs. 1.1.3-.4. 

We can see the·error is virtually negligible. Note, in these figures, that 

we present 2-,. 4- and 8- interval splines. For comparison purposes we also 

present an approximation by a 12-th order polynomial. This polynomial is· 

characterized by twelve coefficients, that is fewer than those needed for a 

~pline, but it takes twelve multiplications and thirteen additions to 

evaluate it. And, v·isibly, the fit is much worse than that of the 4- and 8-

interval splines. 

.f_( 
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1.4 TRACKING: Once we have the apprqxim~tions of the trajectories, we track 

them by the use of some f6rm of corrective control. In the selection of 
,, 

the particular control law, we will be guided by several requirements. 

Foremost, we want good stability properties, that is, we do not want the 

tracking error to grow too much. If we cannot ensure asymptotic stability 

for the error, 1 we might be satisfied with boundedness. We examine this 

question in Chapter 2 in greater detail. Of the many publicatiOns on the 

subj e-ct, we mention [13...,20] . In Chapter 3 we present an analysis of time 

I 

optimality deterioration with the decrease of maximum control input. As we 

point out, when we commit some of the available input for corrective control 

purposes, less i~ available for bang--,bang control. Also, we want some form 

of robustness to parameter variations (see [13,16-18}). The robustness 

question • 
1S related to the stability of the system ( see e.g. [20]) .. A 

special case of robustness is t-he sensitivity of time optimality to 

param~ter variations [6-10]. 

Further desirable char·acteristics of the control law are low computational 

demand and the ability to accomodate a high sampling rate. These 

requirements are complementary._ We must be able to perform the necessary 

control computations in the time . ·t· . 1 1n e.rva~ betw~en two measurem~nts. To 

assu.re that we can either use a control scl1eme that can work with few 

measurements ( ideally · at the minimum ·sampling rate determined by the 
~ 

dynamics of the system ), or a control scheme that requires little 

35 
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computation, or even better, a combination of the two. At the present time, 

the dynamic control of. industrial manipulators involves dedicated 

mainframes; we are aiming for a microprocessor implementation. To realize 

this goal, we- must ·maintai-n a relatively small number of computations 

between taking two successive measurements. This means· low sampling rate 

and/or few computations are required. 
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CHAPTER 2: STABILITY 

2.1 NOTATION AND ASSUMPTIONS: Given the system 1.1.1-.2, assume that we 

have the nominal trajectories, characterized by the state variables as 

functions of time { in closed or tabulated form): xn1{t), xn2 (t). Also 

assume that we have an approximation of x .1 (t) , x 2. ( t) ( again in closed or n n · 

tabula.ted farm ) : xsl (t), xs2(t). In the following we will often drop the 

time ~rgument, where it is clear from the context. Then we have the 

following notation: 

2.1.1 

2.1.2 

2.1.3 

x 1 ,x2 actual system state variables 

x 
1

,x 2. nominal system state variables n · n 

We also define the differ·enc~s 

2.1.4 

2.1.5 6n1=xsl-xl (correction signal) 
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2.1.6 

2.1.7 

2.1.8 

2.1.9 

I 
i 
' 

Note that 

2.1.10 

2.1 .. 11 

(tracking error) 

6s2=xs2-xn2 (approximation error) 

(correction signal) 

We hope ( on the basis of eqt,ation (1.3.1) and Figs. 1.3.4-1.-3.6, that 

6 ··l 2 are bounded and in fact quite .. small. We write 
s 's . 

.- --~-... 

2.1.12 I c5 I (E . 
sl sl 

2.1.13 

Now we will write the equations of the s·imulated system ( in nominal 

operation ) and the equations of the actual system when an additional 

corrective control is being applied. 

2.1.14 • X ·=X nl n.2 



• 

2.1.15 

And 

2.1.16 

2. 1. 11· 

x 2=f (x 1 , x .2) +u n. , n n 

, 

(where u is th~ corrective control) 
C 

, 

Now, f and f* are different functions. The reason we choose two different 

functions is to repre~ent the possibility of ine~aGt modelling. The 

difference betw-een f and * f may be -small or gr.2at. For example, in the 

context of the pendulum ( eqs. (1.1.3-.4)), we could have 

2.1.18 

2.1.19 

t\nd the * discrepancy would be just numerical, e.g. A=20., A =21. 

we could have more serious discrepancies, e.g. we could have an 

Of course 

2 . 
x1 term 1n 

the second equation, or some totally different function. Practically, we 

hope that our modelling of the system will be quite accurate. Anyway, we 

will make the assumption that 

for .all x1 2 
' 

where 

2.1.21 of=f*-f 39 



And 

2.1.22 If I <Al ·• 

Note that this also implies 

2.1.123 

/ 

fo:r all x1 2 
' 

Now, we want to choose u in eq. (2.1.17) so as to ensure some form of 
·C 

stability. In essence, we want to track the nominal trajectory of the 

system. To quantify the problem we need to.develop the tracking error (612) 
. ' 

equations • We do that in the fallowing fashion. Write t.he equations of 

• 
the actual system 

2.1.24 • 
X ....:.x 

1 2 

·2 .1. 25 

Let us repeat that 6f can ·have any funct·iona} form, very different from that 

of f. This means that we can even deal with the case where our modelling 

function ·f* is quite "wrong", that is, our model is quite different from the 

actual system, which is characterized by the function f. All we require, is 

that the difference 6f between the two functions be bou~ded. However, what 

is usually the problem, and what we are particularly interested in, is the 

case where we know the functional forn off, but we are not quite certain of 

some parameter's numerical value. To invoke the ~xample of the pendulum-, 

the constant A d~pends on the mass of the bob. If we make a mistake in the 

measurement, or es·timation, of the mass 1 the forms of f · and f * will still be 

identical. The first one 11 b d h d ·11 b A*'· wi e Asinx1 an t e secon w1 ·e. s1nx1 . 
(' 
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However, the- two numerical constants A and A* might have. different values. 

Now, in eq.(2.1.25) we have separated the "real" function f* in two parts: 

the modelling function f and the difference function 6f. We would like to 

develop an error equation, in which f would disappear entirely. A way to 

achieve t.his, • 
lS to subtract e-q. (2 .1.14- .15) from- eqs .. {2 .1. 24-. 25) 

respectively. In that case, f would appear only in the difference f-f, 

which will hopefully vanish. Unfortunately, the difference is f(x1 ,x2)-

In other words, the arguments are different and the diff~rence 

does not equal zero. 

However, always write Taylor • for the function f' around we can a se.r1es 

trajectory X 1,·x 2. To do this, note that from e q s . (2 . 1 . 6 , . 9) we 
n -n 

2.1.26 *1=xn2+62 

2.1.27 

Now, write the Taylor series for f, considering fa function of xnl,n2 . 

2.1.28 
• 

2 .1. 29, 
of 
~-- (x l'x 2) (xl-x 1) ux01 n n n · 

+~f (x 1 ,x 2)(x2-x 2)+ ... +6f(x1 ,x2)+u+u 
uxn

2 
n n · n · .. · c 

41 

the 

have 



Where the dots stand for Taylor terms oi higher brder. Subtracting 

eq. (2.1.28) from eq. (2.1.24) and eq. (2.1 .. 29) from eq. (2.1.25) and using 

the tracking error equations (2.1.6-.9) we. get 

• 

2.1.30 

2.1.31 

The purpo.s·e of all this maneuve.r is to develop equations for the erro:r d1 2 ., 

in which only known, or measurable quantities will occur. We had no way of 

k . f*., now1ng so we had to express it in terms of the known model 1u.11ction £ 

(in this cas.e its derivatives-) and the known-to.-cbe~bounded fun\:tion 6f. 

Note, 

so the 

time. 

that the nominal trajectory, X nl,n2' 

partial derivatives in eq. (2.1.31) 

is known functions of time and 

are as well, known functions of 
. ' 

So far what we have been doing is ordinary linearization around a nominal 
I 

operating trajectory. We will not use this approach to the end but will 

now follow an al ternati v·e approach in the fallowing section_, where we will 

"" consider tracking methods and their stability properties. 

Before we end this section, let us note that when treating discrete time 

systems we can proceed in exactly the same wa_y and obtain exactly analogous 

equations for the tracking error. 



2.2 STABILITY PROPERTIES EXEMPLIFIED BY THE PROPORTIONAL CONTROL SCHEME: In 

this section we will assume the control· u is proportional to the tracking 
C 

error and, using this as an example, we will discuss the stability 

properties of the system. In this section we will discuss the subject 

analytically just for the case of continuous time. We will propose and use 

a numerical method in the next section, which, even though based on the same 

ideas is more tractable and efficient. 
iJ 

Ideally we would wish that the error system described by eqs.{2.1.30-~31) 

be globally asymptotically stable, but this turns out that to be too strong 

a requirement. However, boundedness of the error would be almost .as good, 

esp.ecially if we can control the bounds .proper adjustment of the 

controller's parameters. 

Assume then that 

2.2.1 u_ =k1-_o 1+k2o _2 c n ·· n 

Remember that on1=xs1-x1, 61=x01-xl. It is clear why we use the nominal 

error 6 nl,n2 instead 

c·omparison only X sl,s2 

of the actual o1 2 : we really have available for 

' 
and not xnl,n2· That is why we want a reasonably 

good approximation to make stire we do not use a totally misleading reference 

trajectory-. Indeed we will perform an analysis that shows the role of the 

approximation error in the boundedness of the tracking error. 

Let us first note that X nl,n2 are given functions of time. Then we can 

consider a function f(xnf'xn2) of the nominal state variables as a 
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function of time, g(t)-f(xn.1(t},xn2(t)). Using this fact, equation (2.2.1) 

and eqs.(2.l.30~.31) we can write 

2.2.2 61=62 

2.2.3 

higher) 

Here we have considered the first partial derivatives off as functions of 

t. If we assumed the higher order terms to be negligible, we would end up 

with linear time • system. We could investigate stability of this a varying 

system, trying for example to find a Lyapunov f\lnction, or exp1·oi t. the 

boundedness of the time dependent terms (e.g. see Taka.hashi [22] , and also 

[23' ] ) . 

Alternatively, we can follow another pa·th. This is our proposed new method 

of analysis. Instead of assu.ming that Taylor terms are negligible, we will 

inst.ead show they are bounded. In fact we will show boundedness for Taylor 

terms of 6rder 1 and higher. 

2.2.4 If (x1 ,x2) L, If (xnl, xn2) +Taylor.I> I Taylor 1-1 f (xnl ,xn2) I+ 

But now using eq. (2.1.22) 

2.2.6 
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So we see the Taylor terms of order 1 and higher ( that includes first 

order partial deri~atives, i.e. g1 2 (t) ) are bounded. Let us use matrix 
' 

notation and write the system o.f eqs.(2.2.2-.3) as follows: 

2.2.7 

where 

•T. 

2.2.8 

2.2.9 

• 

6=A6+b ---· 

A- 0 1 
--.-k -k 

1 2 

b= 0 b . 1 

Let's take the Euclidean norm (I lb] l=(b~+b:+ ... +b:)1/ 2). In the case of b 

as given by (2.2.9) we have I lbl l=lb2 1, and we can write 

2. 2 .10 

Let us now consider another norm, or better let us investigate when the 

following form is a norm. 

2.2.11 V=6TB6 

where B is a matrix. Here V ··is a quadratic form and it is a norm if B is 

positive definite ( see, e.g. Wiberg, [21] ) . We can al ways symmetrize B if 



t 

it is not symmetric, so the positive definiteness conditior is equivalent to 

positivity of the e~genvalues. Furthermore,(see again Wiberg, [21]), we h~ve 

that 

2.2.12 A I I {j I 1
2> V > A . I I {j I 1

2 
max -. min -

where X . ,X are the minimum and maximum eigenvalues of B, respectively. 
m1n max 

This means that if we can somehow establish that Vis bounded then we are 

assured that I 161 I is also bounded. Let us now give the following result, 

which is easily verified with a little algebra. 

- ~ 0 1 0 -k p q p 1 -t 
• 

2.2.13 q r -k 
~ 1 -k ·2 1 -k 

2 
_q 

when t.his equation is true and k1)) l, t.hen 
y 

2.2.14 

2.2.15 

2.2.16 r=k/k2 
) 

ql k 0 
-2 --

r 0 k 

As can be verified by solving the ~quation. Let us write (2.2.13) in matrix 

notation 

2 .. 2. 17 
T BA+A B=~W 

(
/ 

I 

Where it is clear what matrices A,B and W stand for. In fact notice that A 

is the system matrix in eq. (2.2.8) 

• 

Now we will calculate V. 
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2. 2 .18 

2.2.19 

2.2.20 

No·w we can use the result of 2.2.14-.16 for B, write Was given by (2.2·.13, 

~17) and write bas given by (2.2.6) 

·2.2.21 

2.2.22 

• 

where q and r are given from eqs. (2.2.15-.16). Now, Vis a function of 

c51 2 . There are sets .of values of c51 2 , which is equivalent to saying there 

' ' 

• 

ar~ parts of the c51-c52 space, for which Vis negative. In these regions, 

V m-ust be decreasing. However, we can always choose k,k1 2 such that B is 
' 

positive definite_,i.e. V is always posit_ive and hence a norm. First of all, 

i 
take k to be positive. Then, from eqs.(2.2.14-.16), for B to be positive 

de.finite (equivalently for B to have positive eigenvalues) we must have p+r 

positive 2 
and pr-q positive. An easy way to ensure this is to take 

·k1>>k-k2>1. (Check this in the eqs. (2.2.14-.16)). Since V is a norm, it is 

always greater from 
. 2 

A· llc511, min- -
and since X .. is a constant, .11·0: 11 must 

min 
I 

also be decreasing. In other words, there are regions of the c51-c52 space 

where I I c5 I I tends to decrease . Indeed, from looking at relationship 

(2.2.22), we can see that,. with k positive, when I 161 I is large the second 
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order term dominates the first order term and, since k is positive, Vis 

certainly negative and consequently V and I 161 I tend to decrease~ This 

seems to imply asymptotic stability, but we also note that as I 161 I gets 

• 

small the first order terms <5 1 2 dominate, and V takes the sign of q,r. 

' 
But because of the way we selected k1 2 , q and r will be positive. So there 

' 
is a region close to the origin, w-here I .16. I I tends to increase. However, as 

soon as the system escapes. this region, 11611 tends to decrease and it 

returns • Now, the exact shape of this attractive region, is not easy to 

determine analytically. It depends on several parameters. First it depends 

on that • is, the gains of the controller. As k1 2 tend to ififinity 1 

' 
the attractive region shrinks and the system tends to be asymptotically 

stable. It • 
lS also clear that if the approximation error becomes 

comparable to the tricking error, then essentially we get in relationship 

(2.2.22) a second quadratic form, the sign of which may be positive or 

• 

negative. So, the ·sign of V depends on ·the modelling error, and this 

dependenc • 
1S expressed by the bounds e0 , Con 6f and the Taylor terms, as 

well ~son the approximation errors E 1 .2 . Since the. bounds on the absolute 
s 's 

values of these terms multiply th·e first order terms in 2.2.21, so they tend 

to increase the size of the attractive region(= tend to increase the size 

of the instability region). Let's clarify this-: the attractive region .is the 

instability region~ when the error vector is in there it tends to escape. 

So, the small~st we can make it, ·the smaller are the bounds on the error. 
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Given the parameters C, k1 .2 , e0 1 2 , we can analytically determine the 
. , . ,s ,s.· 

" 

shape of s·ome attractive region. We say "some" , because in the process· we 

increase several inequalities and we ,get an excessiv-ely .big, that is 

excessively conservative, estimate~ We do that in the Appendix . However, 

th~re is a better and easier way to determine the attractive region; we can 

• 

numerically compute the value of V for a sufficiently broad range of 61,62 

and for 'given values k1 2 . If we want, we can experiment with several 

' 
different values· and choose the most satisfact·qry configuration. We can 

also .investigate the influence of modelling uncertainty by changing e0J C, 

and of approximation accuracy by changing£ .l 2 . We give the results with 
s 's . 

several different combinations of parameters in the following sections. What 

is clear is that there are attractive regions that can be made almost 

arbitrarily small. 

The reason we cannot shrink the attractive region to zero is that every 

dynamical system is subject to random disturbances and random variations of 

its parameters. In fact, this is the reason that we introduce feedback. We 

have in our analysis taken care of the variation in parameters, by 

introducing the 6f term. we have showed that we can ensure the 

existence of a bounded attractive region for the trackin.g error. But we 

should also consider the effect. of random dis·turbances. Sure enough, their 

effect cannot be too. great, especially in the case of an industrial 
,. 

manipulator, which is a quite deterministic device. However, they will be 

above a certain treshold most of the time. All this is rather bad 

probability theor·y, since 6 are random variables and can take, at least 
pl,p2 49 



theoretically, any value. One way or another, by appealing to common sense, 

or by introducing some kind of· argument with variances, equivalence of time 

and phase means and so on, w-e can write the inequalities (2. 2. 25-. 26) .. We 

·express this by assuming bounds on the probabilistic error 6 Lobk at 
pl,p2· 

·this error as part of 61 .2 . ( For example the 'approximation error 6 is 
, sl,s2 

a random error which does not go to zero, but is not too big, either.) In 

other words, assume 

2.2.23 

2.2.24 

2.2.25 

2.2.26 

<\ =Opl +O dl 

6.2·=0 p2+D d2 

Where 6 dl, d2 stands for de erministic error, tha-t is erro·r due to parameter 

variation, approximation ( Of course, in the final analysis this 

type of error is as probabilistic as 6 1 2 but,at least, it is· given and 
P,P 

determined in the course of the control process) 

It is useful for future analysis, to recognize the existence of randomness. 

For example; we might have taken • pains to .tighten the bounds of our 

attractive • region as much as possible, but we would realize t·hat after a 

point the deterministic error is bounded to values comparable to what the 

ubiquitous probabilistic error will ·be and we cannot db any better than 

that. This is not only a philosophical argument, either. We can see in the 

n~merical studies of the attractive regions, and also in the analytical 

considerations of this section, that a way to shr~qk the attractive region 
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is to increase the gains k12 . This would be an ideal solution, since the 

' ... , 

deterministic error decreases 1in such a way that the product k1o1+k2o2=uc 

would go to zero. See for example Fig.2.2.1. This would be true if we could 
' 

ensure that the probabilistic error goes to zero as well, but this cannot be 

done. The only problem then is that we cannot increase the gains more than a 

certain level, bec~se then the product k16p1+k26p2 would be too high. In 

other words we would have to commit too .. much control for corrective action, 

which woul.d leave .too little for bang-bang, time optimal control. We will 

deal with this problem in section 3.1. However, let us. note that in 

accordance to the gross motion control objective we stat~d in the 

Introduction, we can delineate a sufficiently small neighborhood around the 

nominal trajectory, in which the system will always lie. 

The reader has certainly noticed the similarity of this method to Lyapunov 

stability concepts. In fact our V function i$ a Lyapunov function candidate, 

but unfortunately does not fulfill all the requirements, at least n.ot in all 

of the 61-<52 space. However it does quite a lot for us. In fact, as far as 

we, know this is quite an original method of determining sta-bility regions, 

and even though it does not allow for very fine delineation of the stability 

region, its simplicity· makes it quite attractive. There are several other 

works on the determination of stability . . regions, either bya analytic 

methods (e. g [23-27]), or . by numerical methods, e.g. [28-31] ). 

s.1 
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' I 

2.3 NUMERICAL STABILITY ANALYSIS: Here we proJ)fJle a numerical method for the 
.. 

determination of stability regions. We start by rewriting eq.{2.2.22). 

2·. 2. 22 

This inequality determines one stability • region bf the ~ystem. In the 

Appendix we enhance the ine.qu-ality and determine a bigger region, which is 

also a .. stability region. However, it is clear that we would like t.o use a 

method that will place tight bounds on this region~ Now, what we can do is 

actually compute the values of the right~hand part of {2.2.22) and see for 

• 

what points (c51 ,o2) it is negativ·e. Then V will also be nega.tive. For given 

values of k,k1 2 we can compute B. and make sure it is positive definite.Then 

' 
we will have determined a stability region. Compari~g with the analytical 

method of the Appendix, we see that indeed the numerical method provides 

tighter b.ounds. 

There is one more point to notice: i.n the right hand of' (2. 2. 22), everything 

is known, except 6 Actually, we could compute these too, but since 
sl,s2" 

t_hey are quite negligible , except when really close to the origin, we will 

just use the bounds fsl s2 . 
' 

. . 
In summary then, we construct a grid of points 1 J (c51,c52), and compute the 

these points. We present the results for some sets of parameters. In all the 

52 ,, 
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cases, the starred • region is the attractive region. When the .system gets 

outside of this, it returns to it. The estimation is conservative, so in 

reality the system might stay in a sub-regioh of the starred (attractive) 

region. 
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The preceding ~alysis can be performed for a discrete time system as well. 

I 

An anal)'tical method would prove quite tedious, because there is an added 

parameter, the sampling ti-me h. · However, numerical treatment does not 

present any particular problems . . 

The equations for a discrete time system, in matrix form are 

2.3.1 

Where the matrix A* is --

2. 3 .. 2 

1. h 

-hk l 1-hk 2 

And c-hb. b is the same as in the continuous time case and his the time 

s-tep. 

Now, define V(6k) and /1V(Qk+l 'Ok) 

2.3.3 
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2.3.4 

And after some computation, we can write 

2.3.5 

Now, we can try to determine values of h,k1 2 , such that the matrix equation 
' 

2·. 3. 6 

is satisfied, where I is the unit matrix, k is a positive constant and Bis 

positive definite, hence a norm. Then, the same kind of arguing as for the 

continuous time case indicates that Vis a norm. Write d-cBTA*. Then we can 

again write 

2.3.7 

And if ~Vis negative in a region of the 6-space, this implies the norm V of 

is decreasing. So • again we have defined an attractive r.egion. In the 

following figures we present the shape- of attractive regions for some 

combinations of param.eters ·h, k1 2 . 
' 
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CHAPTER 3: TIME OPTIMALITY 

3.1 THEORY: T.his chapter is devoted to a study of the time optimality 

characteristics of our method. Specifically, the prob.lem is as fallows: 

Suppose that we. design a control schedule u(t) so as to minimize the 

transition time tf from an initial state xi(O} to a target state xf (tf). 

We have already mentioned that for the type of systefus we treat in this work 

( linear in the control , second ordt::r} the appropriate control is bang­

bang ( See Athans [3], Bellman et. al. {32] ) with one switch in the sign 

of the control function. Now, we have already explained that there a·re at 

le~st three ways to implement the control. The first is switching surface 

control: a function of the state variables is cpntinuously computed, the 
; 

sign of which determines the sign of the control. The second· method i:s 

preprogrammed control: compute the switching time offline and perform the 

sign switch at that time; this is open loop c6htrol. We proposed a third 

intermediate method. We use th~ preprogrammed control, but we also add the 

correetive control .that ensures. that the actual sy~tem trajectory never goes 

too far away from the nominal trajectot·y. 

We will be interested in the sensitivity of the time optimality in each of 

the three methods. We will merttion some results relevant to the first 

two, and then we will give the anglysis for our own method. 
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There are severa1 p~pers ( [5--10]) dealing with the closed l·oop cas.e ( first 

case ). The problem is that variations of the system parameters may render 

the method inadequate, in the sense that as the system approaches the target 

stat-e ·we may have an infinite sequence of swi tch.ings. Then the system enters 

a limit cycle, revolving around the target state but never reaching it ( see 

Figs.3.1.1). Obviously, in that case, the time tf. goes to infinity. Since 

the system might never get close enough to ti1e target state we can not claim 

eve·n sub-optimality. The system simply perf arms inadequately. 

In the. second method, the cont~ol is applied, by definition, exactly for ~ 

time tf. 

Dubowsky 

However, there is no guarantee of arrival at the target state. 

brings this point • up. 1n [4] : slight variations in the system 

parameters can cause sharp variations in the final state. We performed 

several simulations to investigate this effect. See Fig~ (3.1~2), where it 

is clearly demonstrated that small changes in the control can bring a 

significant change in the final position. 

We wcr.e motivated to introduce our· method to remedy this si tuati.on. The 

addition of the corrective control u can guarantee that the tracking error 
C 

will remain boun·ded. The bound will be the greater of two quantities: the 

maximum value of the deterministic error and the maximum value of the random 

.error ( as given in eqs. (2~2~25-.26)). For the following analysis of time 

optimality, we will only need 62 to be bounded, so let us write, assuming 

., 

we have designed the controller so as to get an appropriate attractive 

region and taking into consideration the existence of a prooabilistic error, 
,, 
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3.1.1 

We will also 
,. 

require that the state variable x will be g.reater than a 
·2 

" 

positive number. Let us justify this assumption. First of all, it is clear 

that 
.. 

since the control is time optimal, t-he state x2 , which is essentially 

the "speed" of our system, will always .be of one sign (fora proof see 

Athans [3]).So we can take it to be nonnegative without loss of generality. 

We also assume that it will not be zero. Often, in tiwe optimal problems, we 

want the system to start from a state of rest (x2~o) and end at a state of 

rest (x2 0). However, as we have mentioned, we are interested in gross 

motion control, so we want to start in a neighborhood of the initial state 

and end in a neighborhood of the target state. As will be clear soon, all 

we need is that 

3.1.2 for all t, O<t<tf 

3.1.3 

A possible objection is that the system starts exactly from a ·state of rest 

( x2(0)=0 ). Even in that case, as soon as it starts moving away from x2=0, 

(3.1.2) is satisfied, so our time optimality analysis is valid for the rest 

of the path. 

r:~ 

The· fact we want to demonstr~te is that if the system moves along a given 

path at approximately the prescribed speed, it will at its 

destination at approximately the prescribed time. 
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• 
Let us· start wi.th the observation that the state va-riables x1 , x2 are 

functions of the indepedent vatiable t, that is x1=x1(t), x2-x2(t)~ If we 

take parts of the trajectory where the state variables are monotone 

"" 
functions of time, we can also invert either one of the two functions and. 

express t as a .function of one of the two state variables. So for the 

description of the actual system we can use as the independent variable 

either t, x1, or x2 . The same holds true for the nominal system. Denote by 

t andt the time variables for the nominal and actual systems, respectively. 
n 

Assume the nominal total time is tnf and the actual total time is t-f. --.­

Finally, t
0

f=Jdtn, tf=Jdt. Let us then rewrite eqs. (2.1.14-.1-6) 

3.1.4 

3.1.5 
dx 
dt 

n 
- X 

n2 

Equival-ently ( remember x2 , x02 are greater than zero) 

3.1.6 

3.1.7 

dx 
X 2 

dx 
c:-.­-,, 

= dt 

•· 

Now, let us take the independent variables to be ~1·, x01 . Since this is just 

a dummy variable, we can write On the other hand, x2 (x1) is a 

taking x1=x
01

, combining eqs.(3.1.6-.7) and writing c5t:t
0 

-t, which also 

,. ; 

implies d(6t)=dt ~dt, we get 
n 

Q 
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·3.1.8 

3.1.9 

3.1.10 

dx(. X · - - 1- ..- 2) = d ( c5 t) 
x2 xn2 

X -6 
X
d~l (1- _n2 __ n2_)=d(6t) 
2 xn2 

dxl -6n2 =d(6t) 
x2 xn2 

And taking absolute values we get 

3.1.11 
6 

dx n2 I --1 I 1--- 1-1 dot I 
x.2 xn2 · 

Now, note that ix2=dt, tis always positive and Jldxl>Jdlxl. Using these 
2 

facts and ou·r boundedness assu-mptions ( eqs. (3. l. 2~. 3)) we get 

3.1.12 

And integrating 

3. 1.13 

f 

dt,/>d I 6t I 
X 

The meaning of this relationship is clear: when the speed error is not great 

(in -particular when it is considerably smaller then the gross motion speed) 

then the transition time tf +c5t. cannot cliff er by m-uch from the. optimal time. 

Ho.we~er, this i-s not totally fair, b·ecause we have ignored the fact that we 

~ 

have commi ted a portion of the control to correctiv·e action. If we used all 
,. 
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the available control for bang-bang control, what wotild the improvement in 
. 

time optimality be? We will answer this question analytically just for the 

case of the pendulum, as described by eqs.(1.1.3~.4), but this will offer 

insights for a general numerical solution. 

C9nsider then, two systems of the form of. eqs. (1.1. 3-. 4), with inputs u1 , u2 

respectively, both of which ar~ driven ip the bang-bang mode, u1 being 

e·qual to +U for the first one (system 1) and u2 being equal to + (U+OU) for 

the second one (system 2). The initial and target states are identical 1 and 

there is no parameter variation or probabilistic errors·. The appropriate 

switching times t .1,t 2 are calculated for each. system and the switchings 
s s 

take place exactly at the right times. What is 6t=tf1-tf2? Here we choose 

to treat the state variable x2 as the indepedent vatiable, and so 3.1.14 

Note· that we can take 8U positive, so that 6t will be positive. Second, 

write expressions for dt for each system. For system I 

3.1.15 

and for system 2 

3.1.16 

Now, use the following shorthand notation 

3.1.17 

3.1.18 R=-IAl+Bx2+U 
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Obviously, if u • 
1S big enough Q and R will be positive and Swill be 

' . 

negative. Also, for ·all U, R(Q, so we can write ( for U big enough) 

3.1.17 S< O< R< Q for all x1 2 , 

Now, dx2/dt is equal to Q for t<tsl and is equal to S for t)tsl· We assumed 

that U is great enough that for t(tsl' dx2/dt is always positive and for 

t)tsl' dx2/dt is always negative ( This has indeed been the case in all our 

simulations). 

The.n for each • piece of the trajectory, x2 (t) is a one-to-one, monotone 

function, that can be inverted and written as t(x2). To find then the total 

time tfl ' 
all we have to do is to integrate each part of the trajectory 

individually1 find the times and add them. The same holds true of tf2 . Of 

course, if we go to all·that trouble, we could as well run the simulation of 

the system with inputs U and U+6U ·and see what the total times til f 2 are. 
' 

Ind·eed we will use this technique in what follows. For the time be.ing, 

however, it is enough to know that there are such times t t that sl,s2' fl,f2 · · 

can be computed if necessary. 

To show how the method would work, we will only deal with the first part· of 

the trajectory. Things work out exactl-y the same for the second half. Now, 
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we will limit the d.iscussion to the time .interva,,l O(t(t 1 .. 2. In that·· 
s ,s 

interval, Q=dx2/dt. And we can write 

3.1.20 
,~ 

We -integrate then with respect to x2 frdm Oto x52 (ts1). Note that for this 

portion of the · path Q>O . We will drop the integration limits from now 

on. Then, in the same' spirit as eq.(3.1.20) we can write 

3.1.21 

3.1.22 

3.1.23 

l' 

ts1=f dx2/Q 

t 52=f dx2/(Q+6U) 

=f dx2/Q(l+c5U/Q) 

. .. . 2 
=J(dx2/Q)(l-(oU/Q)+(6U/Q) - ... ) 

By developing the term 1/(l+oU/Q} in a Taylor series and retaining only the 

first order term, we strictly decrease the right hand term of (3.1.23) (no 

approxim~tion in this!). Then we can write 

3.1.24 t 62> J{dx2/Q) (1-611./Q) 

3.1.25 

3.1.26 

Where we denote t 51-t52=c5t1. Now, we will further incre-ase the ineq'Uality 

by d·ecreasing the denominator of th.e inte_grand to R2 . Then 

3.1.27 6t1<6U Jdx2/R2=6U Jdx2/(IAl+Bx2+U) 
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3.1.28 

Things work out exactly the same way for the other part of the trajectory. 

If we add the two times, we get ~t~K6U, wh~re K=2x52/(U-IAl)(U-IAl+Bx52) .. 
, ... 

This shows that the dependence of decrease in time to increase in input is 

bounded by a linear function of 6U. We can eas·ily show that the same will 

hold true for all systems linear in the control, except it may be harder or 

impossible to evaluate the integral that yields the factor K. However, we 

can take, say, two simulati·ons with different controls and interpolate a 

linear relationship between 6t,6U. 

If we take- more than two simulations, we will see that our linear 

relationship holds for a neighborhood around a nominal control, but far away 

from this it becomes nonlinear. This is only to be expected, since ·we have 

made a hidde:n assumption. In eq. (3 .1. 24) the integral J dx-2 /Q would be t_51 

if the up.per limit of integration were x2 {t81 ). Instead, it is x2(t52). 

However, if 6U is not very big, then we expect x2 not to change much in 
0 

maximum value (of course the total 6t might still be quite significant, if 

small dif f eren.ces in speed accrue over an interval of time) . In particular, 

in our pe:ndulum e_xample ,· ,the (1/ (xs2+a)) 
- e 

function tends to further smooth 

, ·variations • 
1Il x2. So for a fairly wide range of 6U we get a linear 

time/control relationship, which is ascertained from the simulations . 

•.. 
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• 

3.2 NUMERICAL CONSIDERATIONS; Even though we developed a bound for dt, we 
-· 

could tr~at the problem numerically right from the beginning: In this 

section we present some results of this numerical study. What we did was to 

run the optimal time system (1.1.3-.4) for several dif·ferent values of the 

input U. Since we · have been • using the pendulum example for all our 

simulations in past chapters, we also used it in this case. We summarize 

·our results in the £.allowing Table 3. 2 .1 

.... 

TABLE 3.2.1 

u 

10. 

12. 

14. 

15. 

16. 

*16. 9 

18. 

.605 

.535 

.·515 

.475 

..44.5 

.425 

.415 

19. . 405 

20. .395 

22. . 375 · 
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. 

We also exhibit these results in Figs. 3 .. 2.la,b. Here we have plotted the 

11 pairs o:f dt-dU, equivalently the 11 pairs t:r-U, which we list in Table 

3.2.1. In Fig. 3.2.la we just plot the ~iscrete points, whereas in Fig. 

3~2.lb we interpolate for intermediate points so as to get a smoother curve. 

We see that around the point U=16. 9, which is the value used for U in th·e 

simulations of Chapter 4 ' 
we have a fairly linear behavior, so we can 

.-i, ' I .,. 

assume that for intermediate values from these actually computed, we can 

interpolate linearly. 
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CHAPTER 4:SIMULATIONS 
.. 

4.1 SIMULATIONS: In this Chapter we will present the results of several 

numerical simulations that we performed and point out several conclusions 

that can be drawn from them. 

There are some particular characteristics of each one of the simulations. 

The following factors characterize each particular simulation: 

(a) The task we want the system to perform. 

(b) The 

(c) The 

(d) The 

(e) The 

(f) The 

(g) The 

(h) The 

(i) The 

differenti~l equation of the model. 

dif·f erential equation of the actual s.ystem. 

nominal initial position of the system. 

actual initial .. position of the system. 

actual switching time ( if any ) of the system. 

nominal switching time ( if any). of the system. 

sampling rate • 

approximation functions used. 

Item (a) is fully characterized by the preprogrammed control u. Item (b) 

is characterized by the fact we always use the equation 

4.1.1 
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4.1.2 

Item (c) is characterized by df. Items (d), (e),(f},(g),(h) are clearly 

C 

characterized by one numerical value each. For item (i), we always use 

splines of eight. intervals . 

. For each of the simulations we list· each of these factor-s, except (b) aP..d 
\ 

(i), which, as we said, are always the same. Then we present plots of the 

following seven functions of time: x1 (t) and_xn1(t), superimposed in the 

same plot, x2 (t) and xn2 (t) , again superimposed, d1 (t), d2 (t) and 

u(t)+uc(t). The superposition • 
lS used to- display how well the system 

performs the required task. In the next section {4.2) we comment on the 

results. 
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• l 

Figure 4.1~1: Ideal conditions simulation 

Here we have 
~ 

an "ideal" setup, in which all of the model parameters agr.ee 

completely with the actual system. 

Input: Bang-bang ( nominal t =.21 sec) 
s 

df=O. 

nomin·al initial position: xnl (0)=-. 6 , xn2 (0) ..:...Q. 

actual initial position: x1(0)--.6 , x2 (0)=0. 

actual t =.21 
S· 

sampling interval h=.01 

.. 
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Figure 4~1.2 Different initial positions simulation 

Here we experiment w~ th th.e initial position. Namely, we simulate a system 

which starts from a different initial position than the nominal 

Input: bang-bang ( nominal t =.21 ). 
s 

df=O. 

no~inal initial position: xn1(0)=-.6, xn2(o)~o .. 

actual initial position: xl(0)=-.5, x2(o)~o. 

actual t =."21 
s 

sampling interval h=.01 

,: 

. 0 
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Figure 4.1.2 Different initial positions simulation 

Here we experiment with the initial position. Namely, we simulate a system 

which starts from a different initial position than the nominal 

, 

'. 

Input: bang-bang ( nominal t =.21) 
s 

df=O. 

nominal initial~position: xn1(0)=-.6, xn2 (0)=0. 

actual initial position:· x1(0)--.5, x2 (0)-0. 

actual t =.21 . s 

sampling interval h=.01 
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• 

Figure 4.1.3 Different switching time simulation 

Here we experiment with the switching time. 

Input: bang-bang ( nominal t =.21) 
s 

df~o. 

nominal initial position: xnl (0)--.6, xii2 (0).:-0. 

actual initial position: x1 (0) =-. 6 , x'; (0)-0. 
,_, 

actual t =.21 
s 

\. 

sampling interval h=.01 
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Figure 4.1.4 Diff.erence in modelling function simulation 

He-re we take df to be nonzero. 

Input: bang-bang ( nominal t =.21) s . 

nominal 

actual 

initial 

initial 

df=-3. 

position: xn1(0)=~.6 
..... 

position: x1 (0)=~. 6 

actual t =.21 
s 

sampling interval h=.01 

99 

' 
xn2_(0)=0. 

' 
x2 (0)=0. 
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,.~ 

Figure 4.1.5 "Lortg term" tracking simulation 

Here we use constant preprogrammed control and see how 

well the system tracks nominal trajectories over long times . 

Input: Constant 

df~o. 

.. 

nominal initial position: xn1 (0)=-.6 , xn2 (0)=0. 

actua1 initial position: x1 (0)-.-.5 , x2 (0)=0. 

sampling interval h=.01 
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·Figure 4 .1. 6 Square pulse input simulation 

Here the prerogrammed contro1 is a square pulse train. 

We use this type. of input to test the system in quick changes. 

Input: Square pulse train. 

df ;-_~Q. 

nominal initial p6siti·on: x __ 1 (0)=-.6, x 2-(0)-0. n n 

actual initial position: x1 (0}--.5, x2 (0)=0. 

sampling interval h=.01 

0 
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4.2 .CONCLUSIONS What conclusions. can we draw from the simulations 

presented? 

It· • 
lS clear that we have good tracking properties. This is certainly true 

for the ideal case- ( [-:ee Figs. (4.1.1).), but in addition, our method has good 

robustness properties. It certainly can handle errrors in irtitial position, 

as well as in switching time ( this latter is essentially a form of initial 

position error. ) . It also • gives good results in the case of parameter 

uncertainty ( if~ 0. ) . This last case is, also, the most interesting one, 

. 

since in the case of manipulators, changes in the payload, whic·h are in part 

unknown 
' 

are an essential part of the operation. A method that can handle 

this kind· of problem has a good potential for applications. 

Also, we use a sampling rate that. is relatively low to the ~pectral den~ity 

of the system, especially in consideration of its nonlinearity.The only 

available results that can be really compared irt a meaningful fashion with 

ours, are these of L16], where a sampling period of .00001 sec, as opposed 

to our .01, is used. In conjunction to the very modest on line computation 

required, the sampling rate we propose is quite acceptable, indeed. 

As a final point, let us cons.ider the applicability to higher order systems~ 

Though this has not been tested yet, there does not seem to be any major 

obstacle to the us~ of our method for the control of higher order systems. 

There are two interesting points. The one is the method to be used for the 

approximation of trajectories. But if we consider these as functions of 

ll7 



.,, 

time, we are again faced with ·the problem of approximatin~ functions of one 

independent variable, and the solution can be provi.ded by splin·es·. The 

second point concerns the bound~d nonlinearity hypothesis. It may be t.hat 

there are unbounded nonlinear terms couplirtg the states of a high order 

system ( a typical example is the industrial manipulator). Note, however, 

that the stability analysis of Chapter 2 can still be performed and provide 

insights on the appropriate selection of a stabilizing control method. A 

possible solution of th~ problem would be decoupling of the parts of the 

system ( e.g. the links of a manipulator), which would be realized by an 

input approximately equal to the nonlinearity, and of opposi t·e .sign. Then 

the nonlinear part of the system equation would be close to zero, and we 

would get back to the boundedness hypothesis. 

In conclusion, the simulations • give quite encouraging rer-nlts for the 

application potential of our method and it is not h·-ard. to f oressee possible 

generalizations of these results. 
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APPENDIX 

In this appendix we will • give an analytical estimate of the attractive 

region of the system discussed in section 2.2 

The r-elevant 

AP .1 

However, 

AP.2a 

AP.2b 

inequality 

·161 1 < I 161 I 

1621<1161 I 

... 
• 
1S 

. 
lS 2.2.22, 

So we can write the following inequality in 11611 

AP.3 

Where 

AP.4 

The solution to this inequality is 

AP.5 O< 11 c5 I I <h/k 

l23 

.· 
' > 

which we rewrite 



And this defines one· attractive regi~n of the system, i.e~ a region of the 

' such that, when the system is otsid~ of it l it tends to go 

back into it. Of. course, a more sophisticated analysis, would shrink 

the bounds of this region and h~nce find another, "better" attractive 

• region. 
1 
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DN NOTATION 

.. 
Underlined capital letters indicate mat~ices, e.g. A. 

' 
Underlined lowercase letters indicate vectors, e.g. a. 

Subscripted lowercase letters indicate ilements of either matrice~ ( two 

subscripts 

matrix A, 

) or vectors ( one subscript). E.g. a .. is an element of the 
1.J 

but a. is an element of the vector a. If two or more subscripts 
1 

are separated by a comma, this indicates two or more elements of a vector. 

E~g., a. ~ indicates a., a .. 
1, J 1 J 

-.,·_7 
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