Lehigh University
Lehigh Preserve

Theses and Dissertations

1985

An automatic data acquisition system for
microelectronic test structure evaluation /

Phillip Mark Goldman
Lehigh University

Follow this and additional works at: https://preservelehigh.edu/etd

b Part of the Electrical and Computer Engineering Commons

Recommended Citation

Goldman, Phillip Mark, "An automatic data acquisition system for microelectronic test structure evaluation /" (1985). Theses and
Dissertations. 4587.
https://preservelehigh.edu/etd /4587

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an

authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

https://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F4587&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F4587&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F4587&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=preserve.lehigh.edu%2Fetd%2F4587&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd/4587?utm_source=preserve.lehigh.edu%2Fetd%2F4587&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

AN AUTOMATIC DATA ACQUISITION SYSTEM FOR
MICROELECTRONIC TEST STRUCTURE EVALUATION
by

Phillip Mark Goldman

A Thesis
Presented to the Graduate Committee
of Lehigh University
in Candidacy for the Degree of
Master of Science
n

Electrical Engineering

December 9, 1985

Certificate of Approval

This thesis is accepted and approved in partial fulfillment of the

requirements for the degree of Master of Science.

chér 20, /A

date

rofessor 1 C e

| Chalrman of 'I\)):;iam'\g‘_\

11

Acknowledgm'ents ‘*-

I would like to thank Dr. Marvin White for his support, both academic
and financial, without whom this work would not have been possible. Thanks
are also extended to the following people: Dr. Robert Vogel and Floyd Miller
for the knowledge of semiconductor processing; Ebrahim Khalily of Hewlett-
Packard Company for enduring the endless questions about the original TECAP
program; Tom Krutsick for supplying the completed wafers measured here; Rich
Booth for consulting about general programming; and all of the graduate

students of Sherman Fairchild Labs for their frequent yet constructive criticisms.

i

Table of Contents

1. Introduction

2. Common Test System Strategies

2
4
2.1 Why Measure At All? 4
2.2 Manual versus Automatic Measurement 5
2.3 Automatic Measurement System Strategies 6
2.4 Typical Structure of a Programmable Measurement System 8

0

2.5 Software Strategies 1

8. Sherman Fairchild Laboratory Measurement Systems 13
3.1 System Diagrams and Component Description 14
3.2 TECAP2 Program Capabilities 17
3.3 Prober Control Modification to TECAP2 21
3.4 Mapping Extensions to TECAP2 22
3.4.1 Map Data Internal Structure 23

3.4.2 Command Structure of the Map Extension 24

3.4.3 Map Reporting Formats 26

3.5 Test Pattern Design 27

4. Detailed Operation of the TECAP Extensions 29
5. Sample Measurements from TECAP2 Mapping 34
5.1 Models and Extraction Methods used in TECAP2 34
5.2 Substrate Doping NSUB 36
5.3 Threshold Voltage VTO 37
5.4 Surface mobility UO : 37
5.5 Channel narrowing due to lateral diffusion, the WD parameter 38

6. Capacitance-Voltage Measurement System Development 40
7. Conclusions and Recommendations 42
References 44
Appendix A. Measured Wafer Data 46
Appendix B. C-V Station Program Ver 1.2 User’s Manual 68
B.1 Introduction To C-V Version 1.2 68
B.2 Quickee User’s Guide 70
B.3 Detailed Operation Guide 71
B.4 Sample Outputs 76
B.4.1 Plot and Results 76

B.4.2 Printout of Actual Data 77

B.5 Equations Used in C-V 78
B.6 Program Listings 80

Appendix C. TECAP2 Prober Control Update Manual - RK681 84
- for TECAP 1C.00

C.1 Routines Needed To Add An Unsupported Prober To TECAP 85
C.2 Prober Driver Routines for the RK681 Prober 87
C.3 File for Linking Prober to System . 90

1v

Appendix D. User Module Code 02
Vita 117

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

2-1:
2-2:
3-1:
3-2:
3-3:
3-4:
A-1:
A-2:

A-4:
A-5:

A-7:
A-8:

A-10:
A-11:
A-12:
A-13:
A-14:

List of Figures

Typical automated test system configurations
Components of a Comprehensive Software System
Block Diagram of System Hardware

Sherman Fairchild Laboratory Measurement System

TECAP2 Internal Data Structure and Data Paths
Test Pattern for Mapping

NMOS
Walfer
Wafer
Walfer
Walfer
Walfer
Wafer
Wafer
Walfer
Walfer

Wafer
Walfer
Wafer
Wafer
Wafer

B7
B7
B2
B2
B7
B7
B2
B2
B7

Substrate Doping Distribution (NSUB)
Substrate Doping Map (NSUB)
Substrate Doping Distribution (NSUB)
Substrate Doping Map (NSUB)
Threshold Voltage Distribution (VTO)
Threshold Voltage Map (VTO)
Threshold Voltage Distribution (VTO)
Threshold Voltage Map (VTO) |
Bulk Mobility Distribution (U0)

B7 Bulk Mobility Map (UO0)

B2 Bulk Mobility Distribution (U0)

B2 Bulk Mobility Map (UO)

B7 Channel Narrowing Distribution (WD)

B7 Channel Narrowing Map (WD)

Vi

11
15
16
19
28
48
49
o1
92
o4
35
57
o8
60
61
63
64
66
67

Table
Table
Table
Table
Table
Table
Table
Table

> 5 B
OO b N

1:

List of Tables

Resolutions of Major System Components |7|

Wafer
Wafer
Wafer
Wafer
Wafer
Wafer
Wafer

B7
B2
B7
B2
B7
B2
B7

Substrate Doping Data and Statistics (NSUB)
Substrate Doping Data and Statistics (NSUB)
Threshold Voltage Data and Statistics (VTO)
Threshold Voltage Data and Statistics (VTO)
Bulk Mobility Data and Statistics (UO)

Bulk Mobility Data and Statistics (UO)

Channel Narrowing Data and Statistics (WD)

Vil

18
47
50
53
56
o9
62
65

Abstract

A microcomputer-based full wafer characterization system has been
implemented based on TECAP2, an interactive CAD/CAE software package
from Hewlett-Packard Company. The system consists of a HP9836 Computer,
RK681 Computer Controlled Wafer Prober, and a HP4145 Semiconductor
Parameter Analyzer. This system enables the user in a research environment to
fully measure and evaluate the DC simulation parameters on finished wafers
from a semiconductor line. The characterizations are performed over the entire
surface of a finished wafer, with the data presented as a distribution plot (wafer
map) or statistical plot (histogram) at the user’s request.

In addition, software has been written to drive an automatic capacitance-
voltage measurement system in the processing lab itself. This software is also
Interactive 1n nature, and provides full C-V and bias-temperature stress
measurement capabilities. It is based on an MSI Data Station and an HP85
Desktop computer. A manual for its operation is provided.

This thesis presents the operational procedures for the wafer mapping

system, extensions to the TECAP2 manual for such operation, and sample

measurements demonstrating the usefulness of such a program.

Chapter 1

Introduction

With the increasing complexity and variability of semiconductor
manufacturing there must be convenient and flexible systems for device and
f)rocess characterization. DC parametric testing is one very common, if time
consuming way to insure the quality and consistency of a fabrication facility’s
output.

Nowhere is this more critical than in a small research facility, where
equipment budgets are low and processing and design are subject to rapid
variation. A small laboratory must have a system sufficiently flexible to allow
many different types of measurement to take place, but not so flexible as to be
overly complex and therefore too expensive. For a laboratory with a changing
staff, like a university lab, the software must also be as self-explanatory as
possible to allow each new staff member to be able to use the system with a
minimum of training time.

Historically systems such as this have been built up as "modular” systems
made up of many different components. These are then interconnected together
and controlled through a small computer to take the data from a device and
store 1t. The data is then transferred to a more powerful computer for data
reduction and report generation. Because of the many translations of data this
method is prone to error and data loss. If an error occurs during measurement
it may not be found until the data is transferred and analyzed, which is often
enough time to insure the conditions of the experiment cannot be recreated.

Often, both machines must translate data into a communications format which

is awkward for the systems to handle , again slowing the process of analyzing

the data.

With the growth in power of microcomputers or desktop minicomputers
comes a néw way to implement these systems. Now it is practical, from both a
time and a budget .point of view, to use the same computer which controls the
instrumentation to store and analyze the data. This would eliminate the need
for the slow data transfers, and allows the results of a test to be known in
time to correct errors in the procedure. Also, by keeping the data in a constant
convenient format, the task of comparing or analyzing data from different
measurements is simplified. The measurement environment becomes more
interactive, and the system user becomes more involved in the workings of the
system making it much more adaptable to device conditions.

This thesis describes the selection and extension of such a system for
transistor characterization. Fully menu driven, modular in construction, and
capable of full measurement and parameter extraction, this system meets all of
the standards mentioned above. It allows tracking of such critical parameters as
threshold voltage, leakage current, or substrate doping. It produces reports on
these data in various formats, from simple list data to wafer mapping.

First, some background information about such characterization systems 1s
given. Next, a detailed explanation of the new developments for this thesis are
give. Finally, some examples of the measurements performed by this system are
given. The appendixes contain the detailed information not included in the
main body of the thesis. This document should provide adequate background

for the user familiar with device characteristics to use the programs and their

extensions.

Chapter 2

Common Test System Strategies

Recently the specification of test systems for tracking the variations in
process parameters has been a common topic in many of the professional
journals. Most often it is concerned with tracking variations in the actual
processing which will affect the yield of a commercial product line. This
document concentrates developing a system suitable for a research environment
where these changes are induced in the process to determine their effect on the
final devices, or where the precise values of theses parameters is needed for
comparison with other research results. Much of what has been written is
directly applicable to this task; these design ideas will be discussed in this

chapter.

2.1 Why Measure At All?

If one makes a product, it is only logical that one would like to know
how well he (or she) is making that product. Measurement, or parametric
testing, is one way to assure the quality of the product. DC parametric testing
is used at various points in the process sequence to determine if the
intermediate steps have proceeded correctly; measurements made after the
process is complete screen out the defective chips from a lot before the costly
process of packaging is begun. These results are the used to improve the yield
in subsequent process runs.

Most commonly parametric tests are performed on specially designed test

dice placed at strategic places on the actual product wafer. This pattern may

include transistors, resistors, capacitors, or specialized process monitoring

structures. These few chips placed within a run of product chips indicate the
relative quality of the chips on the wafer. Variations from lot to lot are noted,
and adjustments are made to keep yield as high as possible. [6]

That scheme is mainly to characterize yield in a commercial line. In a
research env%rqnment the final product is information; what variations in
processing do to the wafers in the end product. For this type of situation
dedicated test wafers are used. These are wafers fully covered with test
patterns to evaluate the desired parameters. Because there are many of these
(typically more than 30) even on a small wafer, statistically significant data
may be taken on the processing variations within a wafer instead of only lot by

lot. [11]

2.2 Manual versus Automatic Measurement

The question of manual or automatic measurement is a central question to
this topic. Obviously since this paper is about automatic full wafer
characterization there is a preference for automatic measurement here, but why?
To understand this an example of each is given below.

A manual measurement system generally consists of a collection of sources,
meters, and generally a curve tracer, strip chart recorder, or X-Y plotter. Each
system generally consists of only the equipment needed to perform a given task;
when the task is completed the equipment is used in another task. Each
experiment is constructed individually and often requires as much set-up time as
actual measurement time. Taking data requires the attention of the tester
throughout, since the tester (the human tester) must record each data point by

hand, or make adjustments to the system as the device under test warrants.

Since this is a manpower-intensive, repetitive system, it is also prone to human

error. The amount of time involved often precludes the accumulation of large
quantities of data. Finally, data taken in this manner is awkward to store,
retrieve, and analyze.

By comparison, an automatic measurement system, regardless of approach,
consists of a controller (commonly a desktop computer), sources and
measurement units under the control of this unit, some programmable way of
making the device connections to allow for flexibility, and some way of storing
the data. Often too, this system can perform some fairly complex data
reduction without the aid of a larger system. The system is generally able to
handle a great many measurement tasks due to the flexibility gained by using a
computer, thus cutting down drastically on setup time. Many data points may
be taken and stored conveniently (and exactly) without the tedium of involving
the human user in point-by-point recording. Several different approaches are
used to implement an automatic test system, whether it is for functional (go/no
go) testing or detailed parametr’ic’{ analysis; each approach maintains its

advantages over manual testing.

2.3 Automatic Measurement System Strategies

Three common strategies exist in developing automated testing. Since this
thesis is more concerned with parametric testing, however, only those approaches
which pertain directly to parametric testing will be considered. These can be
summarize as 1) use of functional testers to e:val.ua‘te device parameters, 2)
design and construction of custom systems meant for a specific measurement
task, and 3) a general system consisting of "smart instruments” connected to a
controller to allow for more general purpose activity.

Often an integrated circuit manufacturer wishes to perform parametric

6.

testing on the output of his plant in order to track the quality and consistency
of his product. Since very often he has functional testers already in-house for
quality assurance purposes he wishes to make this very expensive equipment do
extra duty. By reprogramming these systems it is sometimes possible to allow
this, but often the functional tester lacks the necessary sensitivity to perform
the parametric analysis. It is designed to drive large voltages and currents
(normal operation conditions for the products under test). In addition, revision
time on software for such a system could easily rival the demands of the
manual approach.

Design and construction of a custom system will overcome the sensitivity
problem, but will often require many man-hours to implement, still with no
guarantee that the system will perform the desired task. In addition, the
equipment used in such a system is then dedicated to one task for its useful
lifetime. Finally, duplication of a working system for a similar operation may
be as time-consuming as the original design, especially if the system contains
much custom hardware. This approach may be appropriate if the system will
be used in a dedicated fashion, such as a capacitance-voltage measurement
station used to track the quality of oxides in a production facility. This
approach fails to meet the needs of a small research environment though, where
flexibility is a prerequisite of a useful measurement system.

The most viable solution for the research lab is using some of the ”smart
instruments” available for purchase in the instrumentation catalogs. These
pieces of equipment often provide some data storage or analysis capability in

addition to the flexible programming of its operation. When combined with a

small computer as a controller/coordinator, a smart system becomes an

extremely useful, often indispensable tool for parametric analysis.

2.4 Typical Structure of a Programmable Measurement System
Shown below are two examples of typical programmable parametric test
systems. On the left is a diagram of the system as a whole, including the
common software modules used. [10] On the right is a block diagram of the
hardware and interconnections involved. |6] The typical elements of a

measurement system consist of:

1. Sources: Voltage, Current

2. Measurement Instruments: Voltage, Current, Capacitance
3. Switching Matrix

4. Probing Equipment to allow contact with the DUT

5. Controller (commonly a desktop computer)

6. Disk or Tape Storage

7. Comprehensive software for measurement, storage, and data reduction.

TEST PROGAAN - -

—— s -

. .'\. .. \ .1- . ':'l § FD
N R : l/ostcnol K‘D

- -
r ’ : ! ;
A r g .
L) .
G AL
z " 2 L,
. >
[V Sy V] g’ Wy [%
‘“?gz%u
PYARR ? S . L

K] smules ‘
.| - susmovT.: ,

l .“, ' - '~ . v .) ' |) 3
". Y“t:lsq}t o b MEASUREMENT ———-'-{ —o—! MEASUSEMENT | ;‘\'
F PRI N B IR L LAE INSTRUMENTS [{z

| PRORER | [TV s
- SUBROUT. jman{ PROBER CONTR. g
, . 1 L001C _
b s DATA
Csae || mepucTion | oaTA
i) rmogRAm STORAGE

. COMPUTER ,

L sninven

Figure 2-1: Typical automated test system configurations

The sources are used to force the known conditions on the device under

test to perform the desired analysis. For DC parametric analysis the current
supplies should have a precision typically on the order of 100 picoamperes
minimum (or smaller) with a full scale current capability of 100 milliamperes or
more. All six decades of range should be selectable by software, to a precision
of about 0.1% of full scale. Similarly, the voltage supplies should have a
resolution of 1 to 10 millivolts, with a supply range swing of 50 to 300 volts.

The measurement instruments should be able to handle the full range of
the forcing sources with a precision of better than 0.05% of full scale. In an
intelligent instrument system these devices should also be auto-scaling and self-
calibrating.

A switching matrix 1s used to make the connections from the sources and
measurement units to the device under test. This generally contains a series of
low noise relays under program control. Low noise refers to the low
thermoelectric noise and current offsets, which may limit the sensitivity of the
measurement system. This matrix (ideally) should also make some provisions
for avoiding "hot switching” (moving the contacts under operational conditions)
to preserve the life of the relays under high current or voltage conditions.

The heart of the measurement system is the central processing unit. It is
typically a desktop computer with the ability to communicate easily with all of
the equipment in the measurement system. It should have the capability of a
higher level language (BASIC or FORTRAN are most common) to allow for the
flexible programming of new measurement schemes. It should also possess
adequate data storage media to contain the necessary programs and data for

detailed measurement.

The probing equipment is necessary when analyzing devices which have not

yet been packaged. A probing station often has the capability of moving the
sample under test in precise steps, controlling the temperature of the sample,
and, in some cases, load and unload the sample automatically. The probing
system also must provide some method for aligning.the wafer along the axes of
movement of the stage, most commonly a microscope or television camera and
monitor.

Finally, the system software is where all the pieces come together. This
software allows for the flexible configuration of all of the devices in the
measurement system, the data acquisition (sometimes on a real-time basis) and
the storage of data. Sophisticated software may even reduce the data on the
controlling computer without having to transmit that data to a larger system.

This software is considered in more detail.

2.5 Software Strategies

A comprehensive software system 1s needed to control and coordinate all of
the operations of a measurement system. It must control the system equipment,
transfer data to and from the peripherals, disks, and user data base, and allow
for the creation of test programs. A diagram of the system software is given
below.

Several components of the software bear elaboration. Under the real-time
operating system exist the programs that may be used for system resource
management and language support. Disk operations, file management, report
generation, and measurement system configuration are carried out by the
operating system. The programming languages which control the measurement

system may also be expected to make heavy use of the operating system’s

facilities.

10

" REAL-TIME OPERATING SYSTEM

- SYSTEM MONITOR
- UTILITY ROUTINES
- PERIPHERAL HANDLERS

- LANGUAGE SUPPORT
N , IMMEDIATE
FORTRAN ‘ ' MODE
- LANGUAGE . PROCESSOR
PROCESSOR) (IMP)
PARAMETRIC SELF-TEST AND
CALIBRATION
TEST SOFTWARE SOFTWARE

Figure 2-2: Components of a Comprehensive Software System

Listed in the figure is a FORTRAN language processor. This is not the
only type of language environment used, but it is typical. The high level
language supplied with the controller is augmented with new commands to
handle the measurement devices, or a library of pre-tested routines are made
available. Another alternative is to write an new measurement language, but
this is a very manpower-intensive operation, and is generally not justified by the
complexity of the measurements to be made.

Most of the time involved in writing the parametric test software is
therefore involved in writing the subroutines to perform the basic measurement
system functions. These functions can be classified into four main categories:
CONNECTIONS, which instruct the relay matrix to make or break certain
connections within the measurement system; FORCING, which sets the source
units to the values needed to make a give measurement; MEASUREMENT,
which instruct the instruments to take data and return it to the controller; and

DELAY, which allows for time dependent operations to take place, like settling

11

time or long-term applied stresses. These routines are generally standard
FORTRAN subroutines which may be called directly from small FORTRAN
code, which in turn may also contain analysis routines. All that is required of
a test then is a knowledge of the tests to be made, and some basic high-level

language programming.

12

Chapter 3
Sherman Fairchild Laboratory

Measurement Systems

Now that several possible design ideas for a measurement system have
been considered, the topic of this work, the structure of the existing
measurement system may be discussed. Each topic will be taken in turn,
resolving the differences between our measurement system and those ideals
discussed previously.

Obviously, from the title of this document, the system 1s an automatic
measurement arrangement. What should be kept in mind is that the system is
primarily used by graduate students in ailding them in doing original research.
These graduate students require the system to be immediately useable, self-
explanatory, and consistent.

TECAP2 [16], a program from Hewlett-Packard Design Aids Division, was
found to possess many of the qualities so useful in a research environment.
This program was supplied to us in compiled form from Hewlett-Packard, and,
along with the capability to add user control procedures and models, allowed
the project to be completed. This chapter will focus on the structure of the
measurement system, its operations, and extensions for use in Sherman Fairchild

Laboratory.

13

3.1 System Diagrams and Component Description
Figure 3.1 shows the layout of the Sherman Fairchild Laboratory

Measurement system. Its components are:

1. Sources and Measurement Units: A HP4145A Semiconductor
Parameter Analyzer provides the source and measurement unit
capability. The unit is essentially a ”smart curve tracer” consisting
of four Stimulus-Measurement Units (SMU’s). Each SMU is capable
of supplying a constant voltage or current and monitoring the current
or voltage flowing through them. The resolution of the SMU’s is
given in Table 3-1 . The HP4145 has a test fixture associated with "
it which can handle packaged devices in a variety of housings, along
with managing the connection of the SMU’s to the pins. The SMU’s
are assignable through program control at the unit’s front panel, or,

as in this system, under computer control.

2. Switching Systems: Currently only the software assignments of the
four SMU’s is permitted. This is discussed more fully under Future

Recommendations.

3. Probing Equipment: The probing system co,ns,ists; of a Rucker and
Kolls Model RK681A Computer Controlled Prober. The system 1is
controlled by the computer over the interface bus exclusively;
parameters are again set up in the main TECAP2 program. It is
capable of stepping in the X and Y directions as well as raising and

lowering the probes to the wafer surface. Resolution of movement is

14

MEASUREMENT SYSTEM: COMPONENTS

HP3836 COMPUTER

1.0 MBytes Memory

HP3135 Disk Drive
5.8 MByte Capacity

HP4145A Semiconductor HP?478R Plotter
Parameter HfAnalyzer .

HP ThinkJet Printer
Rucker and Kolls

RKEB8IA Automatic Prober

:1-¢ 2an3rg

212A Compatible
Modem to Lehigh’s
Cyber 7230

ST

E.
o
@)
~
S
(oY
oQ
-
Q’
3
o
i—ﬁ,

RO
<
]
H
®
=
o
sV
-4
Q.
s
o
-4
4]

|
i
|
i

Figure 3-2: Sherman Fairchild Laboratory Measurement System
.001 mm. 1n both the x and y directions. New control software was

written to handle this instrument.

. Controller: The system controller 1s a Hewlett-Packard HP9836
Desktop Computer running the HP-Pascal Operating System Version
2.0. The system contains 1.0 megabytes of main system memory,
two floppy disk drives, and a black-and-white combined text/graphics
display CRT. The system controls the external instruments by way
of the HPIB (Hewlett - Packard Interface Bus), a version of the

IEEE-488-1975 bus specification.

. Disk Storage: A HP9136 Winchester Hard Disk Drive stores the

program and configuration files, Pascal utilites, and help files for ease

16

of access and speed. The drive has a 5 megabyte Winchester fixed-

media disk and a 5.25 inch floppy disk for backup purposes.

6. Software: The maimn body of software is supplied as TECAP2, which

will be discussed in detail.

In addition to the basic measurement system, a modem and RS232C
capability has been added to communicate with the Cyber‘ 730 computer
belonging to the Lehigh University Computing Center. First, TECAP2 is used
to extract the SPICE program parameters. Through a virtual terminal program
data or parameters may be transfered to the mainframe for circuit simulation.
In this way we may verify the parameter extraction or try to predict the

reaction of devices under test and their operation in finished circuit.

3.2 TECAP2 Program Capabilities

TECAP2 is a product of Hewlett-Packard’s Design Aids/ Engineering
Productivity Division in Palo Alto, California [16]. It is designed for designers
and process engineers to measure semiconductor test structures and extract
device model parameters for circuit simulators. The program has many
capabilities which are convenient for the researcher in a small lab to use.
Modularity of design allows for ease of user modification and understanding.
The Internal Data Base is used by all functions of TECAP. This section will
discuss the original internal structure of TECAP and its capabilities.

TECAP2 provides the capability of 1) Precise and flexible measurement of
DC characteristics of transistors, 2) Extraction of model parameters, directly
finding the HPSPICE model parameters, and using an optimizing simulation for

parameters of user-specified models, and 3) Simulating the device performance

17

A

Table 3-1: Resolutions of Major System Components (7]

4
| - 4
.\ .Curren; _Range T Resolution | | »,Ac’curacy M;rc- Voltage)
| 20V (>50mA)
+100mA _' 100uA 40V (>20mA)
+10mA - 1 0pA 0.3%+(0.140.2+V0/100) %
410000 A
+100pA 100nA
100A 'IOnA. 100V (S20mA)
~ £1000nA 1nA | |
. ' 0.5%+(0.1+0.2+Vo/100)%
+100nA 100pA
+10nA 10pA | |
- 1%+4(0.1+40.2+Vo/100) %+5pA
ﬂ +1000pA 1pA ' n
Vol;agg Rang_e, 1 Resolution | Accuracy T Max . Currént
o s200 | 1mv‘_ | N . 100mA
£40V | 2w ©0.1%+0.05%+0.40+I0 5omA
a0y | swv 20mA
|

18

TECAP INTERNAL STRUCTURE

:g-¢ aan3rg

CONTROL SECTION MERSUREMENT

INTERNAL DATA STRUCTURE

OUTPUT CONTROL

61

—
=]
Q
>
e,
N
o)

c*
®

-
o
e
U_
o
-
oY)
0P
c*
-
c

ig)

L ad
c.
|
®
(aV
=
Q.
w
o
o>
&V
"U'
oV
H.
=
n

using the models built in. TECAP2 supports the HPSPICE models for MOS,
BJT, and DIODE equations. The extracted parameters can be printed in the
form of a SPICE .MODEL card for simulation on a mainframe computer.

The modular internal structure of the TECAP2 program allows for the
flexibility and ease of programming which TECAP éxhibits. This data structure
is shown in Figure 3-3 . The internal data structure contains the setup,
measurement, simulation, and filing information being used by each phase of the
TECAP program.

On the upper left of the structure is the user interface section of the
program. All measurement, filing, data management, and simulation commands
are 1ssued through this section. Each selection is menu driven or graphically
displayed on the screen. The various routines check the internal data base and
store the user’s requests in the data base. Parameters such as voltage sweep
settings, current parameter values for a given model, which devices are
connected to the bus, and where the current data is coming from are stored
there. When the commands to perform a certain operation are given, the data
1s taken from the data structure instead of repeatedly polling the user. Any
data in this structure may be stored to disk for later usage.

The User Interface also provides a fundamental programming capability.
Commands given at the keyboard may be a string of command characters which
can be stored to disk for later use. There is a single branch condition and a
basic looping structure for repeated commands to be used. This feature was used
for the parameter mapping extensions made at Fairchild Labs.

On the upper right of Figure 3-3 are the subroutines which drive the

individual measurement devices. They are analogous to the specialized

20

subroutines presented as part of the FORTRAN code in Chapter 2. Each
device has its own set of device drivers, which allow the user to set parameters
and retrieve data from each device without having to know the c%rgnmand
structure for the individual device. The measurement subroutines extract the
necessary data from the internal data base to accomplish the measurements and
stores the measured data back in the data structure.

On the lower left of the diagram are the extraction and simulation
routines. Both sets of programs use the setup data (voltage sweeps,
compliances, etc.) to measure transistors, but the simulation routines measure a
”software transistor”, a built-in subroutine which mimics a transistor with the
given parameters from the database. Parameter extraction is accomplished by
minimizing the RMS error between measured data and simulated results,
changing the simulation parameters to accomplish the agreements. These move
on to the output control where the data is printed, plotted, or written out in a
format which a circuit simulator (not a part of TECAP) can use.

These program capabilities work for a single device or single set of devices
for a given set of parameters. They _g_ive_ no indication of device to device or
wafer to wafer variations. Adding this capability is the purpose of this thesis

work. First, the capability to examine an entire wafer needed to be added.

3.3 Prober Control Modification to TECAP2

As supplied, TECAP2 Ver 1C.00 supports only the Rucker and Kolls 1032
Probing Station. This station is much too expensive for a university research
environment and as such could not be used for our measurement system. A
much less expensive option, the Rucker and Kolls 681 Prober, would also meet

our needs, but was not supported by the system software. Furthermore, the

21

actual code for the RK1032 drivers is for Hewlett-Packard Internal Use Only
and could not be obtained for modification. This necessitated writing new code
drivers for TECAP2 and the RK681 code, substituting this code into the
already compiled code of Hewlett-Packard without doing damage, and re-loading
the software.

The modification was done with only a minimum on knowledge of the
internal structure of the program. When disassembling the import and export
tables of the'_ module PROBE DRIVER (the sections ,which establish the linking
conventions with outside routines) the names of the several prober-dependent
routines were found. Mr. Ebrahim Khalily was kind enough to specify a partial
functional description of these modules, which allowed us to write Pascal code
to mimic these operations for the RK681 prober.

The final code version of the new PROBE DRIVER along with the
installation manual and linking code are provided in the appendixes of this

document.

3.4 Mapping Extensions to TECAP2

As currently supplied, version 1C.00 Qf TECAP2 has no provision for
creating a wafer map of the devices on a wafer even though it does have the
capability of stepping across the surface of a wafer to measure it. Because of

this limitation there is no insight provided into the device to device or wafer to

wafer variation of parameters, a useful observation to someone who is putting

together a new process or evaluating the quality of an established on. A
purpose of this thesis was to install the foundations of such a mapping system

into TECAP2.

22

/
\

3.4.1 Map Data Internal Structure

The data strle‘cture for the map is very simple to use and understand.
First and foremost, one must store the data to be mapped in the database.
Along with this some useful information like which parameter is being mapped
is good. Finally, some indication of the validity of the given data point is
necessary, since not all wafer coordinates will yield useful data.

The declaration for the map types of data is as follows:
type
{ points to date for map in the heap - dynamic }

map ptr = “map data;
{ data structure for the map itself:

-~ .data contains the numbers
- .setflg whether the data is valid }
map data = record
data:array[O..map x size, O..map y size] of
real;

setflg:array [O..map;x_size,o..map_y;size)
of boolean; |

end;
var
map array : map ptr;
map par_num: integer;
map allocated: boolean;

These variables 1In tandem with those a]iready declared in the Original
TECAP DATA BASE determine the mapping parameters for the new routines.
The data are kept in memory with a pointer to the data array to minimize
memory usage when mapping of parametérs 1s not taking place.
MAP ARRAY" points to the data, which is only valid when
MAP ALLOCATED is true. Each of the mapping routines refers to this
variable when it begins to access the map data segment.

MAP PAR NUM is an integer which points to the current mapping
parameter in the current active model. Both the model name and its u_n_it; are

already stored in TECAP2’s main data base.

23 '

d
/,,;/"

The actual data array consists of two parallel arrays of data. The
.DATA field contains the value of the parameter to be mapped; its
corresponding .SETFLG field indicates if the data field has been set to valid
data. These fields are set to 0.0000 and FALSE at initialization, respectively.

Each of these fields is saved in the disk file, along with the user’s name,
current active model number (with the string for readability), device geometry
and type, and a flag indicating it 1s map data. Note procedures
store_map data and fetch map_date in the appendix listing of these

prograrmms.

3.4.2 Command Structure of the Map Extension

This provides a brief overview of the functions of the mapping extensions.
For a user’s guide view of the added commands, please see the chapter later in
this document, Addendum to the TECAP2 User’s Guide.

The auxiliary menu for TECAP2 now appears as:

A) Store map data
Al) Select map param
A2) Initislize map
A3) Print map data
A4) Print stat data
Ab) Statistics plot
AB8) Wafer Surf. Plot
A7) Save/Fetch Map
A8) Release Prober

A10) Set supply vals
Al1l) Time delay (s)

The commands perform as follows:

A) Store map data
This procedure copies the parameter from the internal transistor parameter
array in active model and stores it in the map data array. It first checks to

see if the array has been allocated.

24

A1) Select map param
Allows the user to select the parameter from the current model which will

be mapped. Defaults to the current parameter, initially 1.

A2) Initialize map
Allocates the map data array and zeroes the elements (clears the map).

Warns if data already exist.

A3) Print map data

Lists all of the current map data to the current listing device (set in O5-

07).

A4) Print stat data
Prints the mean, standard deviation, 95% confidence interval (assuming
normal distribution) [4], minimum and maximum values of the map data to the

current, list device.

A5) Statistics plot
Plot a histogram (auto scaled) of the current map data with a normal

distribution curve superimposed. Labelled for easy identification.

A6) Wafer. Surf. plot
Plot a wafer map (auto scaled) of the current map data, with symbols
L

representing data in ten steps. Grids can be toggled to appear or not according

to the grid flag set in the P menu.
A7) Store/Fetch map

Used to retrieve and store the current map data.

A10) Set supply values
Will set any SMU or voltage source connected to the system to a given

value. Prompts for all answers.

Al11) Time delay (s)
Will delay doing anything for a given number of seconds. Prints a period
- on the screen every two seconds to let the user know the system 1is still

running.

3.4.3 Map Reporting Formats

There are four ways to report the data from the extensions to TECAP2:
1) A direct pr\ir\lting of the data, 2) Printouts of the statistical variations, 3)
plots of the distributions (histogram) and 4) a wafer map of the parameters.
See the section Sample Date from TECAP2 Mapping for more detailed

explanations.

26

3.5 Test Pattern Design

To fully extract the DC parameters from the device with TECAP a
collection of three devices of different geometries is needed. For the purpose of
generating maps of the final wafers produced at Sherman Fairchild Labs, a test
pattern of three PMOS and three NMOS devices was designed. These are
present once in each test chip, 28 times across the new wafer. Some working
samples of this pattern were made near the end of this research, but proved to
be unsuitable for automatic probing because of the thinne‘ss of the aluminum
deposited.

To extract the classical MOS device parameters | g Vversus Vg} data for a
large transistor are needed. For the channel width parameters the same
measurements are needed on a narrow channel device to force the effects to
become dominant. The channel shortening effects, then, require a device with a
very short channel.

The transistor dimensions (specified as gate width to length dimensions)
are 50 x 50 pm, 50 x 20 pum and 20 x 20 um. These devices, though they do
not press the processing into severe precision, should be sufficient to characterize
the processing of the wafers. Slight alignment or patterning problems should -
not prevent them from operating; rather, they should then be able to point out
the errors in the processing. Shown below is the pattern of the NMOS test

array; the PMOS pattern is completely analogous.

27

Figure 3-4: NMOS Test Pattern for Mapping

TECAP

NMOS

730 X 465 MIC

FILL: TECAPN
w-x 3 MC g‘g*:‘x‘ e 20 x 20 M:C ST 20 mic COMA

CONTACT
somcr

DRAN 30 X 30 MG | - soscr DRAN 1
5 X 3¢ MS 8T 2 wc 3 X 20 MIC S0 X 20 M

D]
O

28

Chapter 4
Detailed Operation of the TECAP

Extensions

Supplement to the TECAP2 User’s Guide and System Designer’s
Guides

This chapter contains the complete modifications which must be made to
the TECAP2 User’s Guide and System Designer’s Guide. All attempts were
made to keep the format already present in the 1C.00 version of the manuals,
so these pages may be added directly to the manuals. Reference to their

locations is made before each new section.

TECAP2 REFERENCE MANUAL ADDENDUM
For section 3.1 Auxiliary Commands

Commands Al through A7, A10, and All have been
implemented as part of the the user module code, and
allow for the manipulation of the map data.

A) Store map data

This command allows the user to store the extracted
parameter into the map data structure. This data will

be plotted or printed according to the commands A3

through A6. When the command is given the program reports
the current position of the probes (and where the data will

be stored) along with the value of the parameter being

stored. The display is maintained for a few seconds to allow
for reading. The flag indicating this position contains valid
data will also be sét. An error message will be generated if
no space for map data is allocated.

¥** WARNING! ****
This routine overwrites the data in the current map data base
at the given location. Care should be taken that this data

is correct and desired.

Al) Select Map Parameter

29

)

When this command is executed a list of the parameters
available from the current active model is displayed and the

user is prompted for the number of the parameter to be mapped.
The parameter already in effect is the default. If the active
model is changed the parameter is reset to number 1. This
command does not change or reset the map data structure in any
way; the data from previous assignments is still there - use
command A2 to reset the data base.

A2) Initialize Map Data

This command will allocate memory space for the map data if

1t already has not been done. If data space is already set

aside the routine asks the user if he really wants to destroy

the existing data, and will abort by default to preserve data.
The number of chips horizontally and vertically is calculated,

the data spaces in the map are set to 0.0 and all flags are

set to indicate no valid data. None of these parameters except
the map data are set by any other operations. See command Al
for storing map data.

A3) Print Map Data

This command prints the data stored in the map data base
to the current text output device (screen; printer, or file).
If data has not been set, the data field will read ’Not set’.
The coordinates referred to are mapped as follows:

A4) Print Stat Data

This will print the mean, standard deviation, value to a
95% confidence interval of the parameter of interest (assuming

30

~ a normal distribution) and the minimum and maximum value of
the mapped parameter. The values will be displayed at the
current text output device.

A5) Plot Stat Data

This command prints a histogram of the distribution of the
map data in ten steps (auto scaled and rounded) with mean
and standard deviation indicated, along with the corresponding
normal data distribution curve for the data (assuming a normal
distribution and adjusted for the amount of valid data

present in the system. The plot will be performed on the
current plot output device.)

A6) Wafer Surface Plot

This command plots a wafer map of the data stored in the current
map data base. The data is printed in ten intervals (corres-
-ponding to the steps in the histogram plot, with the same

limits). The ranges of the symbols are plotted nearby with

units. The plot is sent to the current plotting device (see
commands 01..03)

A7) Fetch and Store Map Data

This sequence will save the current map data base to disk
according to the system defaults (drive, extension, name).
If the operation is storage, the system will prompt for
file name. The .M’ suffix will be appended as with other
TECAP?2 files. (See the System Designer’s Guide for file
internal format). If the operation is fetch, the system
will execute the A2) Init Map command before loading.

A8) Release prober

This command releases the Rucker and Kolls 681 prober to
be operated from its own front panel instead of strictly
under TECAP2 control. Useful for alignment of the wafer.

A10) Set Supply Values

Allows any of the SMU’s, VS’s;, VM’s or CMU’s in the
measurement system to be set to a given value. Useful
for making non-standard measurements (stress or aging
measurements, programming devices, etc.) All values
are prompted, the <stop> key will leave all values
unchanged.

31

Al1) Time Delay

Simply does nothing for the number of seconds specified.
The value is trimmed to the nearest millisecond, and for
periods longer than 2 seconds a period is displayed to
indicate the computer’s continued operation and give an
idea of elapsed time.

TECAP2 SYSTEM DESIGNER’S MANUAL ADDENDUM
Under Chapter 5: FILE DESCRIPTION

Add: PROBE 681.TEXT contains the RK681 prober drivers
PMG USER.TEXT contains the map extension routines
PROBE__ 681.CODE contains the RK681 prober drivers
PMG USER.CODE contains the map extension routines

Stream file LINK 681 links modules with the RK681 drivers
Stream file LINK PMG installs the map modifications with
the drivers for the RK681

Under Chapter 6: SYSTEM CONFIGURATION

DEVEL: LINK 681.TEXT
PROBE 681.TEXT
PROBE 681.CODE
PMG USER.TEXT
PMG _USER.CODE
LINK PMG.TEXT

Under Chapter 17: DATA FILE STRUCTURE
Map Data File:

! MEASURED file, TECAP2 : 1C.02 {MAP DATA FILE

! User name

! ORD(Device _type)

! Device name

! Wafer name

! Wafer comment

! Device Length Device Width

! Source Area Drain Area Source_ Perim Drain_ Perim
! 0.00000E+000 0.00000E+-000

32

! Active Model Numer Active Model Name

! Map Parameter Number Map Parameter Name
! X Chip_ Size Y Chip_Size

! 1st Data_ point (0,0))

! 29nd Data_ point (0,1)

! Last data point (Xsize,Ysize)
! End-of-file

33

y

Chapter 5
Sample Measurements from TECAP?2
Mapping

Presented here are the first set of measurements made with the mapping
extensions to TECAP2. Regretfully, the working samples of the test pattern
designed for this purpose proved unsuitable for automatic probing because of thé. |
thinness of the aluminum layer deposited. The metal lifted awa;‘ from the field
oxide whenever the probe card tips touched the surface of the metal. Manual
probing was still possible, which showed that the devices worked, though the
samples had very high leakage currents. The tests presented here were made on
three wafers from TP200 (the second of the Sherman Fairchild Labs Student
Project Walfers), supplied by Thomas Krutsick. The threshold voltage VTO,
substrate doping NSUB, and surface mobility U0 were extracted from a 50pum
by 50um PMOS transistor in the transistor array designed by Richard Booth
and Thomas Krutsick. The channel width narrowing parameter WD was
measured on the same PMOS transistor array, devices measuring 50pum by

24 um.

5.1 Models and Extraction Methods used in TECAP2

The parameters extracted by TECAP2 are the standard parameters for
HPSPICE [HPSPICE], a modification of SPICE Ver 2 from U.C. Berkeley.
Extracted in this thesis are the so-called Level 1 parameters, the classical MOS

parameters. The equations used are listed below.

Vi=VpotAfVVsb +20 —AfV20

where

34

N
- 2KT sub

V2 gN

81 sub

A=

=

oz

P2 R 1)

Z(Ji -
N oy
qNsub
]d;O
for Vgs’<VT-
. ”Coz’w 2 . 3 3
1=V, ~Vpg=28 =V 2V, — M (Vs +Vgg +20 J2— (Vg '+20)2))

for VGS’>VT and VDS,<VDSAT

| .“Coiw | 2 -3 | 3
==V ~Vep=22 ~Vpsar/ 2V psar 32 ((Vpgart Vg +22 2= (Vg +20)2)}

for Vog'>Vip and Vp>Vie, o
Note: L and W are device effective channel length and width; 1.e., after

subtracting 2x WD and 2xLD from device parameters.
I

, . i T | | o . J
VD-SAT i1s determined iteratively to be VDS when LXEcrit—.dl]_ e
4/%pg’
1 . 1
#—ﬂo-{ Vgs'I—Vt}{ Vdst }
1+ Vnorm t LxFEtra

Each of the parameters 1s used to compute the drain current for the
?software transistor” given the measurement settings for the actual transistor.
The simulation procedure is iterated until the: error between the simulated and
measured data is minimized, with the parameters of interest used to fit the
data.

The 'a-]gor'i'thm used to extract these parameters 1is the Levenberg-
Marqua‘rf]t method which uses the first derivative of the function of interest. It
combines the method of Steepest Descent and Gauss-Newton described below to

minimize the function 1, as a function of the paramters to be extracted.

35

.. The method of Steepest Descent is an iterative algorithm which senses the
direction of the steepest negative gradient in a function or array of points and
proceeds to move the solution to that point. This is a very fast, but not very
accurate method; it converges very quickly for initial conditions far from the
solution.

Gauss-Newton is a method for solving the same type of system in the
neighborhood of the final value. It assumes a quadratic function of the
variables near the solution and uses the first three terms of its Taylor series to
evaluate the minir;mm point. The first and second derivatives are approximated
from the data itself.

The Levenberg-Marquardt algorithm combines these methods to speed the
solution. The method of steepest descent is used tg find the neighborhood of

the solution and the answer is refined by Gauss-Newton. [TECAP2]

5.2 Substrate Doping NSUB

The doping characteristics were extracted by minimum the difference the
simulated and measured threshold voltages, using the doping as a fitting
parameter. The substrate doping extracted from the electrical parameters
_agreed fairly well with what was specified in the original material (5 ohm-cm
material). However, the values extracted varied greatly, with the standard
deviation V‘equal to half that of the mean value. This data is probably not very
meaningful numerically, the dis,tri.bution over the wafer surface is informative.
In wafer B7 the values on the upper half of the chip are fairly constant,
increasing as one goes down and to the left, while the data for wafer B2,
processed at the same time, shows a marked difference in pattern. Some

parameter of the doping steps seems to have been uneven here, but because

36

there are no records of the orientation of the wafers during processing, no
conclusions can be reached. For future runs with the test chips, orientation will

have to be monitored.

5.3 Threshold Voltage VTO

This parameter was extracted by a simple linear fit through an
approximated linear region of the I-V curve and is found at the x intercept.
The solution here is also iterated to find the best fit, and, along with NSUB
and UO, determines the fit of the extracted to measured curves. The threshold
voltage control on both wafers seems very good. Both are centered at about
-1.1 volts, and the variations across the wafer are typically a few millivolts.
Some of the devices show a marked difference in the threshold, but this is
probably due to some local defects and can thus be ignored for this treatment.
Note however that the data is bunched around the mean and tails off toward
the more negative threshold voltage. The curve resembles the distribution of
dopants as they diffuse into a substrate; this could show the profile of the
threshold voltage implant, that is, how well the depth of the implant is

controlled across the surface of the walfer.

5.4 Surface mobility U0

This is again used to fit the data to the simulation. The parameters of
interest are interrelated as in the equations above. The extracted surface
mobility is fairly constant across the wafer, which is not surprising since the
PMOS devices are fabricated into the perfect or nearly perfect N substrate.
There is no reason to expect the same good fortune for the NMOS devices.

For wafer B7 the mean of the data is very close to that reported in elementary

37

textbooks of 450 cm?/V-s. The variation is also not great from the mean
reported. The value for this parameter on wafer B2 is much much lower that
for B7, but there does not seem to be a difference between the measurement
approaches. Several repetitions of this experiment and extraction yielded the
same results. 1f we assume the data from wafer B7 to be correct, then we

have verified (statistically) the surface mobility for holes in silicon.

5.5 Channel narrowing due to lateral diffusion, the WD
parameter

This is a measure of the width reduction parameter of the finshed wafer
with respect to the designed width. The channel width is expressed as
W oetfective — WdesigneddeD._ The data seems to show that the dopant from the
surrounding material narrows the channels by 8um on a side for a total of
16um. This would suggest that a channel cannot exist in any device designed
to be narrower than 16um.

This data is probably not valid, however. The extractions were performed
on devices which were made in a non-self-aligned process, so the assumptions of
the gate geometry made for this may not be true. Also, since data for
intermediate parameters was made on physically different devices, the parameters
may be incorrect for the location mapped. These possible sources of error add
up to a rather unbelievable result as far as this goes. This would indicate a
misalignment of about 2.5-5 wm during the masking sequences, something which
clearly did not happen.

This is an example of what the mapping system can accomplish. The data
measurement, reduction, and report generation took six -houfs to complete.. This

involved the measurement of the equivalent of four full wafers of data and the

38

extraction of four separate parameter sets. These parameters point out some of
the processing ideas in these wafers, but since they were not as carefully tracked
as one would like, only a few conclusions regarding processing could be drawn.
The parameters were normally distributed or at least nearly so (a bif. of a
wide skew due to the ”freaks” of the distribution), justifying the use of that
distribution in this analysis. = Another similar distribution, the Pearson IV
distribution (commonly used to model implantation depth) might also be used
for these one-sided variations in extracted parameters. Local irregularities
(lower that normal threshold voltage for example) are most likely caused by
impurities introduced in processing or some local crystal flaw, and can be
ignored. However, regions where several devices show the same tendengies (such

as the substrate doping) can be used to draw conclusions about the underlying

population distributions.

39

Chapter 6

Capacitance-Voltage Measurement System

Development

Another useful, but currently unrelated, automatic measurement system
which exists in Sherman Fairchild Laboratory is a Capacitance-Voltage
measurement system based on an MSI FElectronics Data Station and an HP85
controller. The software currently in use was written at Lehigh to rectify
several deficiencies in the program supplied with the station.

The worst of these deficiencies was a consistent tendency to destroy the
device under test with excessive voltage. The software would set a maximum
voltage and search for the accumulation region. This works fine if there is a
clear-cut accumulation region, but if there is some region where the
accumulation wanders, the program will not find i1t, will increase the voltage,
and search again. This eventually will reach a point where the voltage will
exceed the strength of the device and it will be destroyed.

Other nice features which the new program contains are:

e Default Parameters: The new software contains the most

commonly used measurement parameters for our lab.

e Menu Driven: Even a novice user may be able to use the program

without a manual.

e Asymmetric Sweep: In the old software the voltage sweep needed
to be symmetric about zero. The new program allows arbitrary

sweep size.

40

e Data Management: Results of measurements may be saved and
retrieved for later examination.

Future enhancements should include different gate materials, variable
duration temperature stress (currently it is limited to the cycle time of the
chuck temperature, about 5 minutes), and a pulsed-capacitance measurement
capability to provide such 'f\eatures. as doping profiling.

A complete user’s manual and system guide is included in the appendixes

of this document.

41

Chapter 7

Conclusions and Recommendations

In this paper it has been shown that, for a small laboratory, a flexible
and inexpensive DC parametric analysis system is an indispensable tool. From
this general discussion the merits of the TECAP2 program were discussed, and
the lack of device to device comparison and data reporting were noted.

Program extensions were made to TECAP2 to remedy the deficiencies in
the program with respect to the comparison of devices with respect to location
on a wafer. These extensions were tested, and the results reinforced the need
for such characterizations. Variations were seen in several classical parameters,
and in the channel narrowing effects. The channel narrowing effects as
extracted were also related to other observed effects.

A second program, for in-lab C-V measurement, was also discussed. The
complete operations manual is included in the appendixes to this document.

Recommendations for future development include:

e Three-dimensional plotting of wafer parameter or contour plotting to
even more clearly show the variations across a wafer. This could be
used as a processing monitor, carried along through the process to
control variations.

e A provision for storing and plotting multiple parameters for the same
wafer, easing the extraction burden.

e Acquisition of a full-Kelvin matrix switching system to allow for
more than a four-port measurement. At least 20 ports are needed
for an effective system. This is currently the system’s major
weakness, since the need to reprobe the devices causes destruction of
devices and loss of time.

e Addition of some variety of capacitance meter to the system,
preferably the HP4280, already supported by the software. This
would eliminate the need for approximating: C_ as constant across

42

the wafer.

A thermal chuck for the prober, to allow for bias-temperature stress
measurement and study.

Several different distribution models should be considered in the
statistical reporting. A 10 or 15% trimmed mean should be reported,
thus eliminating some of the misleading distribution data caused by
local variations outside the normal problems.

A low current capability coupled with low noise probes could aid in
the characterization of even smaller geometry devices.

- Some method for adding of user models to the system should be
developed. Some work has been done to this end, but is not complete
enough to present in this work. Any parameters supplied to the user
model could be extracted via the optimization/minimization scheme
already built into TECAP2. The description of the terminal voltages
and currents are all that is necessary. This could be done such that
the equations are entered into a utility program which would
compose the appropriate Pascal code to implement the model.

43

10]

11]

References

Buehler, Martin G., and Loren W. Linholm.

Role of Test Chips in Coordinating Logic and Circuit Design and Layout
Aids for VLSIL

Solid State Technology Sept:68-74, 1981.

Cheyney, Ward and David Kincaid.

Numerical Mathematics and Computing.
Brooks/Cole, Monterey, CA, 1980.

Hewlett-Packard.

Analysis of Semiconductor Capacitance Characteristics Using the 4280A

High Frequency Capacitance Meter.
Application Note 322. Palo Alto, CA, 1983.

Devore, Jay L. |
Probablility and Statistics for Engineering and the Physical Sciences.
Brooks/Cole, Monterey, CA, 1982.

Gordon, Barton J. |
A Microprocessor-Based Semiconductor Measurement System.
Solid State Technology July:43-47, 1978.

Howard, John S. and Jinet Nahourai.

Improvement in LSI Production using an Automated Parametric Test
System.

Solid State Technology July:48-52, 1978.

HPDA.

Hewlett-Packard §145A Semiconductor Parameter Analyzer User’s Manual

Palo Alto, CA, 1982.

Instrument Operations Guide.

Hewlett-Packard Design Aids.
HPSPICE User’s Manual.
Technical Report, Hewlett-Packard Company, 1980.

Hewlett-Packard Design Aids.

SPICE Model Equations.

Technical Report, Hewlett-Packard Company, 1980.
Kaempf, Ulrich .

Automated parametric testers to monitor the integrated circuit process.
Solid State Technol. Sept:81-87, 1981.

Perloff, D. S., C. L. Mallory, F. E. Wahl, and S. W. Mylroie.
Microelectronic Test Chips in Integrated Circuit Manufacturing.
Solid State Technology Sept:75-80, 1981.

44

[12]

13]

[14)

[15]

[16]

17

Streetman, Ben G.
Solid State FElectronic Series: Solid State Electronic Devices.
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1980.

Sze, S. M.
Physics of Semiconductor Devices.

John Wiley and Sons, New York, NY, 1981.

Sze, S.M.
VLSI Technology.
McGraw-Hill, New York, NY, 1983.

Khalily, Ebrahim.
TECAP - An automated characterization system.
Technical Report SEL-79-004, Stanford University, Mar, 1979.

Khalily, E., Paul Decker, Irving Klein, and Darryl Teergarden.
TECAP2-Transistor Electrical Characterization and Analysis Program

Hewlett-Packard Design Aids Division, Palo Alto, CA, 1980.

Fang, Robert C.Y., Robert D. Rung, Kit M. Cham.

An Improved Automatic Test System for VLSI Parametric Testing.
IEEE Trans. Instru. Meas. IM-31(3):198-205, Sept, 1982.

45

Appendix A
Measured Wafer Data

The data contained in this section was measured from devices supplied by
Thomas Krutisck. Evaluation of this data may be found in the main body of
this thesis.

Source: RATARRAY PMOS Transistors, supplied by Thomas Krutsick

46

Table A-1: Wafer B7 Substrate Doping Data and Statistics (NSUB)

Frint Stored Map Data

- . —— GEe e D W Ve SIS G e G W G —

Wafer ID is TJK'S B7
User Name 1s Fhill boldman
Date and Time: 3:53 PM Nov 14,1885

Active Model 1s HPSPICE-MOS
Perameter Mapped 1s NSUB (1/Cm3)

—————— e siadat St Wafer ID 1s TJK'S B7

| X position Y position Value ! User Name is Phill Goldman

--------- ————— e ——————— e ————————————— Date and Time: 4: @ PM Nov 14,1985
(" 0 Not set |
0 1 Not set Parameter Mapped is NSUB (1/Cm3)
1) 2 Not set Statistical Data for Current Map
1) 3 1.23143E+4015 e ——— et mm e ——— -
() 4 Not set
o) 5 - Not set Mean = 4.01861E+Q15
]) Not set Standard Deviation = §.47697E+015
1 1 1.02535E+@15 Value of parameter - 4.Q1861E+@15 +/- 2.39815E+015
1 2 7.3B023E+014
| 3 7.13757E+014 Minimum data value = 2.93809E+014
1 4 6E.85194E+014 at location (4, 4)
1 5 Not set Maximum data value = 4.09179E+016
2 0 Not set at location (7, 2)
2 1 Not set
2 2 6.11242E+014
2 3 6.84010E+014
2 4 7.49834E4014
2 5 9.87993E+014
3 0 Not set
3 1 1.41245E+015
3 2 5.22303E+015
3 3 1.27084E+0@15
3 4 1.67646E+015
3 5 Not set
4 %) 2.16300E+4016
4 1 1.17458E+015
4 2 Not set
4 3 1.53457€+015
4 4 2.93B0SE+014
4 5 Not set
5 1) 8.59892E+015
5 1 2.61200E+015
5 2 1.21715E+4015
5 3 1.72209E+015
5 4 Not set
S 5 Not set
b o Not set
6 1 4.10297E+015
) 2 2.90167E+015
6 3 1.76181E+015
) 4 1.61730E+4015
) 5 Not set
7 ") Not set
7 1 Not set
7 2 4.09179E+016
7 3 1.4B362E+015
7 4 Not set,
7 S Not set

47

1 4

TECRAP Ver 1C. 22

I | Map Data Distribution
2. 490P0PE+00| L — - — —
P
C
J
. 0
_;/f,,
7. PPPORE +00P | — —

NS U

B8 (1 -Cm3 D)

Mean =

<
o
+

LJ
N
Q
Q
AV
o0
QY

4.921861E+815 1-Cm3

St andard Deviation = B.47687E+0AQ15
Bar width = 4.7 100E+Q15 1-Cm3
Wafer ID = TIK’S B?

4.1308RE+316

I-V 2an3rg

(dNSN) uonnquisiq Juidoq srelisqng Lg Idje M

NAFER MAPF — TECAHPR ~ e 1. 22

Date armd T {ime ¢ 3: 56 ~ ™M No v 14, 1885
Wafesr Name : TIK S B

Us e r Name : Prh 111 Go ldmarn

Typpe PMOS

Blanmk is uhmeasuged

\

:

@: >2.9000RBE+014 1-Cm3 -

Egj 1: >4.368100E+015 1-Cm3 ﬁ'
| N : >B.4320BE+815 1-Cm3 g
1 : >1.25903PE+B168 1~-Cm3 5

| >1.68574PBE+016 1-Cm3 .L,

: >2.P0B450E+216 1-Cm3

, >2.47 1BPE+2168 1.-.Cm3
Ezj s >2.8B87870E+216 1.Cm3

: >3.28B580E+016 1-Cm3

0 ©®© N O U0 & W N

>3.6929PE+D16 1-Cm3

NI
N — O

6V

%
ol

NININININPS

(dNSN) dey Suidoq sremsqng rg fojem

Parameter mavpoed is NSUB (1 --Cm3)

Table A-2:

Frint Stored Map Deta

Wafer ID 1s TJK'S B2

User Name 13 Phill Goloman
Date and Time: 3:38 PM Nov 14,1885
fActive Model is HFSFICE-MOS

Farameter Mapped 1s NSUB (1/Cm3)

—— - - -~ —— = S = - G - - - - o ——

! X position Y position Value !
0 0 Not set
") i Not set
1) 2 1.00000E+013
) 3 2.@4370E+015
7} 4 Not set
(] S Not set
1 0 Not set
1] 3.07383E+4015
1 2 Not set
1 3 Not set
1 4 2.14929E+015
1 5 Not set
2 0 5.40163E+015
P 1 1.04587E+014
2 2 2.19926E+4015
2 3 2.734B4E+015
2 4 Not set
2 5 2.96110E+4@15
3 %) 8.58870E+015
3 1 2.794058E+015
3 2 1.99707E+015
3 3 Not set
3 4 Z2.711B8BE+015
3 5 2.12907E+015
4) C.54152E+014
4 1 6.32756E+015
4 2 Not set
4 3 Not set
4 4 Not set
4 5 Not set
= 0 Not ‘set
5 1 1.01063E+4016
5 z 4.40343E4015
5 3 3.46B03E+015
5 4 4.21696E+015
5 5 4,28820E+015
B 0 Not set
b 1 - 1.70512E+4016
S pi Not set
b 3 6.02572E+4015
B 4 3.32647E+016
3 5 Not set
7 o Not set
7 1 Not set
7 2 Not set
7 3 1.00002E+013
7 4 Not set
7 =) Not set

Wafer B2 Substrate Doping Data and Statistics (NSUB)

Wafer 1D is TJK'S B2
User Name 1s Phill boldmen

Date and Time: 3:39 PM Nov 14,1985

Farameter Mapped is NSUB (1/Cm3)
Statistical Data for Current Map

Hean = 5.144B1E+015
Standard Deviation = 5.91603E+015
Value of parameter = §,144B1E+015 +/-
Hinimum data value = 1.00000E+0Q13

at location (O, 2)
HMaximum data value = 3.32647E4016

at location (b, 4)

50

1.985655E+015

8¢

TECAP Ver

1._. SQOB@E""BBI s T TITToTT TSt T L

Count

T T)

0. 0PPYRE+008|L

N
Q
+
W
)
0
Q
Q
103}
0g)

1C .22

""'...‘.“.’""’::.‘.’.."".."f.‘?.:"""" ST T T LT T oI T T T, T T I T - = ""_.'_._:."'.‘__‘
!.

i

|

I

I

'l

)

|

:,g

|

!

J

i

it

ol

-

S —Jj

NS U B C1.-Cm3 > ©
o

Mean = 5.14461E+015 1-Cm3 N
Standard Deviation = 6.9160Q3E+215 2
Bar width = 3.39901E+Q15 1| .Cm3 §
Wafer ID = TIK"S R2 "

¢€-V 9andr

(gNSN) uonnquisyq Sutdo(3eiisqng zg J3jem

WAEFER MAP —_ T E-C AP - e 1< . a2

Date ara Time: :3494 PM N o v 14, 1985
WNaFfer Names: TIK" S B2

User Name :@ Pk 111 Goldman

Type PMOS

- ——— b e e —— - - - e w—a e Gevemi e s e e —— e — - - - - — e emis e = sme = camw W= - - — e - »..--.—-———1
-—— - . . @ —— —————— Gt g = ¢ i B sama. o~ - e - —e ——— - - A e e eaw- © e e — ¢ i+ t—t
| e

TTS— Blamk {is unmnmeasured
>389 .90000E+B12 1.Cm3

‘o | 1 : 53.40881E+015 1-Cm3

AN

t >6.80782E+0215 1-.Cm3
: > 1.8208068E+B316 1-Cm3

113

: >1.36P59E+B016 1.-Cm3
.70B@5BE+316 1.Cm3

‘ \
A

B s —— e L G] . —_

p-V 2an3dtyg

v
N

D440E+B316 1.Cm3

OSSR, —f e = ey e i - . l
| : >2.38P30E+016 1 .-Cm3
r

. 72022BE+016 1.-Cm3

v
N

PTTIINY FONDRU SO -j—\

- -
. o

O @ N O U & W RN - 0
\"4

v
W

.61 BE+3316 1./.Cm3

; G Sy , J

—

I o p e e am

L - e - - - e e e e i ema e R

i
)
N
|
(dnSN) depy Surdo(q aq_mqisqris Zd 12Jem

Parameter mapped is NSUB (1. .Cm3)

Table A-3: Wafer B7 Threshold Voltage Data and Statistics (VTO)

Wafer ID 18 TJK'S &7
User Name 1s Phill 6oldman
Date and Time: 3:51 FM Nov 14,1885

Active Model is HFSPICE-MOS
Farameter Mapped 1s UTO (Volt)

| X position Y position Value |

e ——————o- Wafer 1D is TJK'S B7
Not set User Name 1s Fhill Goldman
Not set Date and Time: 3:50 FM. Nov 14,1585
Not set
-1.0261E+000 Pareameter Mapped 1s UTO (Voli)
Not set Statistical Date for Current Map
Not set ------ - ——— - - —
Not set
-1.0087E+000 Mean = -1.1032E+000
-9.6880E-001 Standard Deviation = 2.25404E-001
-9.5631E-001 Value of parameter = -1,1032E+000 +/- 6.37673E-002
-9.4556E-00!
Not set Minimum data value = -2.0417£+000
Not set at location (3, 2)
Not set Maximum data value = -9.35213E-001
~-9.6523E-001 at location (2, 4)
-9.5766E-00!

-9.3213E-00!
-9,5G548E-001
Not set
-1.0076E+0080
-2.0417E+000
-1.004BE+000
-1.0008E+000
Not set
-1.3771E+00¢8
-1.0561E+000
Not set
-1.0130E+000
-1.1782E+009
Not set
-1.2619E+000
-1.1871E+000
-1.1526E+00¢0
-1.0405E+000
Not set
Not set
Not set
-1.1614E+000
~1.1010E+002
-1.0528E+000@
-1,0362E+009
Not set
Not set
Not set
-1.4265E+000
-1.0508E+00¢
Not set
Not set

SNSRI o oo oot eSS OIUVIVUOLDIOURNRNRNRNMRNRIN = - - -0 00000
LHJSDIN-".SUT&UIN"-‘QU‘bU‘JN*-'S’Iﬂ{bu'\.lk'G'U;\&ADIN"—@U”JSUI'N_HG(Hb»blN_'—-’&m.lﬁbll\l'-'—.&-

53

TECRAP Ver 1C.1Q32

Map Data Distribution

1.30000E+001

:g-V 2In3dry

Counst

| 2%

o e e L

0 .0000RE+000

VTO (Voltd

Mean = —1.1832E+0988 Vol+t

Standard Deviation = 2.25484E-001
Bar width = 1.20888E-081 Vol+t
Nafer ID = TJIJK’S B?

(OLA) uonnqusyq a3ei[op Pp[oYsd1Y], LH I3JeM

ay
o
W)
+
In]
=
o
ay
(W\]
l

-3.80080E-BAa1

NARFER MR P — TECAPRP ~ e 1 . 222
Date anmnd Time : 3: 48 PM No v 14, 1985S
WNafer Name: TIK " S B7
Us & r Name : Phrh il Go ldadmanm
Types : PMOS .
/////”—_-\‘\\\\\ | ‘BIank is umnmeasured by
¥ ” 2: >—2.1000E+088 Vo Q.
: _ _ , ;:
| 11 >—1.98000E+2000 Vol g
: >—1.8502E+203 Vol 5
: >=—1.7400E+20308 Vol 5

: >—1.6200E+028 Vol
: >—1.5000E+08@ Vol

.38PE+303 Vol
: >—1.2600E+003Q2 Vol

: >—1.1400E+0083 Vol

¢ ¢ ¢ ¢ & & & & & &

W O N O 0 & W N
v
|

: >—1.0200E+30Q0 Vol

~J| 0| |] /

VAGIG AN

(OLA) deN 98ejjop ploysaiy], Ld I3Je M

Parameter mapopbed is VTO (Volt?

Table A-4: Wafer B2 Threshold Voltage Data and Statistics (VTO)

Print Stored Mep Date

Wafer ID 15 TJK'S BZ
User Name 18 Phill Goldman |
Date and Time: 3:45 PM Nov 14,1965

scizvetﬁod;l 1§dH?SP$$g-M?3 L) “°f¢r,10 18 TJK'S B?
arameter Mapped 18 _ oit User Name is Fhill Goldman

_____________________________ Date and Time: 3:45 PM Nov 14,1985
X Doé}flph Y positxon ~ Velue Farameter Mapped is VT0 (Volt)
Tt ' Statistical Data for Current Map

@ = Not set e ——————
1 Not set N |
Z -1.1087E+000
3 ~-1.8662E+000
4 Not set

5 Not set

0 Not set

1 -1.0759E+000
2 Not set

5 Not set

4 -1.0534E+000
5 Not set

e -1.1439E+000
| -1.0760E+000
2 ~1.0287E+000
3 -1.0475E+000
4 Not set

5 -1.0795E+000
) -1.2087E+000
1 -1.0414E+000
Z -1.0258E+000
3 Not set

4 -1.0665E+000
5 ~-1.0672E+000
e -1.6250E+000
1

2

3

4

5

%)

1

2

3

4

5

o

1

V4

3

4

5

(%

1

2

3

4

5

ﬂeen
Stendard Deviation
Value of parameter

~1.1b676E+000
2.02060E-001
=1.1676E+800 +/

5.71831E-0€0¢

Minimum data value

at location (7, 37
Maximum data value

at location (3, 2)

-1.9327E+000

-1.0258E+000

-1.0831E+000
Not set
Not set
Not set
Not set
Not set
-1.2128E+0080
-1.1063E+000
-1.1036E+000
-1.1132E+000
-1.173BE+000
Not set
-1.2076E+000
Not set
~-1.2451E+000
-1.2993E+000
Not set
Not set
Not set
Not met
-1.8327E+000
Not set
Not set

U NN NNV NG A D DD UL WUONRNRNRR = e sssisrsxsps:‘

96

TECRARAPFRP Ver 1cCc.ae2

| Map Data Distribution
1.30000E+00 1 - . . e

1)-V dIndr g

LS
Coun=t

/

(OLA) uonnquisiq a8ejjop p[oysaIy], zd I2JeMm

0.P00PYE+000 _ 4 1————4/

V' T O (Vo lt D

Mean = —1.1676E+08B88 Vol=t
Standard Deviation = 2.082060E—-008!1
Bar width = 1.00080E-881 Volt
Wafer ID = TIK’"S B2

. 8BRE+880

®
[\
Y]
+
L)
(WY
V)
®
®
o
1

-1

-

1

1885

~ e

-

MFIF

INFARAF EL R

3

TIK S B&
]

ana T ime

14

No v

< 3 ~ ™M
Go ladman

:

Ph i

Namea
Name

WaFfear

Date
s & r

Ty pe 1

Figure A-8:

¥ ¥ P ¥
T 0 0 0 O
c > > > >
C
JA8 OB O
w 8 0 8 0
7 8 0 @ 08
o + + + +
E W W W u
c @ @ 0 B
338 8 8 08

QO 0 08 8
w @ 0 O N

2, 1 — —t
x |
C A A A A
g
M e -~ N m

.CO0PDE+2PB Volt

Wafer B2 Threshold Voltage Map (VTO)

P PP PP
C 0 0 0 O
> > > > >
8 8 8 8 O
6 8 08 8 8
© 8 0 O 8
+ + + + +
W W W WU
0 8 8 0 O
S @ 8 @ 8
B 8 08 0 8
n ¢ m -
T N T
A AN A A A

" N - e e e e e =i uw.r.n R,

. T S v

_ | ,// “ C L ﬂ)H u _ \.\\ _

i ~ “ e -

: S s S B

58

(Vo 1t

VTO

G

-~

1

mavoed

Parameter

\

Table A-5: Wafer B7 Bulk Mobility Data and Statistics (UO)

Print Stored tap Dets

Wafer ID 1s TJK'S B7
User Name 13 Phill 6oldman
Date and Tame: 3:54 PM Nov 14,1965
| Wafer 1D 18 TJK'S B7
Active Model 1s HPSPICE-MOS User Name 1s Fhill Goldman
Parameter Mapped is U0 (Cm2/V.5) Dete and Time: 3:56 FM Nov 14,1985

"""""""""" ""“‘f""""'“"“’f‘*"* Farameter Mapped 1s UD (Cm2/V.5)
» X position Y posatien Value Stetistical Data for Current Map

—..__-_____..-..-.-_—-_____-—_-——-——‘..'—_-______-_—)

Not set Mean

Not set B Standard Devietaion
4.08614E+002 Value of parameter
Not set

Not set Minimum data value
Not set at location (3, 2)
4.21296E+002 Maximum data value
4,54236BE+002 at location (4, @)
4 .39365E+002

4.41613E+4002

Not set

Not set

Not set

4.45406E+002

4.46916E+002

4 .53898E+002

4.32993E+002

Not set

4,35248E+002

1.89080E+002

4 .354531E+002

4 ,39957E+002

Not set

0
1 4.12860E+002
2
3
4
5
o
1
2
3
4
5
0
1
2
3
4
5
)
1
Z
3
4
5
0 G.28021E+00@2
]
l
3
4
5
0
]
P
3
4
5
)
1
2
3
4
5
e
J
2
3
4
5

5.78441E+001
4.12860E+002 +/- 1.53B42E+00)

1.89080E+202

5.28021E+002

4,20328E+002
Not set
4 ,.33929E+002
3.97774E+002
Not set
3.61165E+4202
3.98305E+002
3.98060E+002
4.26154E+002
Not set
Not set
Not set
3.76719E+002
4 .QB579E+00Z
4,18280E+002
4,32403E+002
Not set
Not set
Not set
3.13B5BE+002
4.12494E+002
Not set
Not set

59

TECRP Ver 1C.Q32

N Map Data Distribution
| . 49000E+D01 - ; s . e

:6-V 92aIn3tyg

Caount

09

p.oooopE+poRll |

O (Cme2-V .S

Mean = 4. 12860E+882 Cm2-V.S
Standard Deviation = 5.78441E+80A1
Bar width = 3.500008E+081 Cm2-V.S
Wafer ID = TIK’S B?

(on) wonnquusiq A[IqoN y(ng L9 fJem

N
S
Y
+
W
®
®
o
«
@

S.30008E+322

INRARAF EER MAP — T ECRHFPR ~ e 1 C . =22

Date Aarmda T 1me : 3 S52 =g No v 14, 18985
Wafer Name: TIK"Ss B°?7
Us e r Name : Ph 1 11 Go 1dman

Type: PMOS

Blanmnk {is urmnmeasured

@: >1.8P0000E+PBP2 Cm2-V.S

1: >2.15SO00BE+082 Cm2-V.S

2: >2.5000BE+202 Cm2-V.S —

3: >2.85000E+2082 Cm2-V.S E

4: >3.20000E+082 Cm2-V.S ®

S: >3.S5SSO00E+002 Cm2-V.S ?
_ _ E: >3.900@0E+802 Cm2-V.S =
() () ?: >4.25000E+002 Cm2-V.S N

8B: >4.C0000E+PO2 Cm2-V.S

9: >4.95PPBE+PB2 Cm2-V.S

N YD DN/

(_[j
\L| D)) ~d

VA IS RNIENIRNIRN
NI RN RN

(0n) deN AuiiqoN Hing L4 IoFem

Parameter mavved is UO (CmZ2-V.S)

Table A-6: Wafer B2 Bulk Mobility Data and Statistics (UO)

wafer_ID is TJK'S B2
User Neme is Phill 6oldman Wafer ID is TJK'S B2

. “.7 ;
Date and Taime: 3:21 PM Nov 14,1985 User Name is Phill Goldmen

- me: 3:] Nov 14,1585
Active Model is HPSPICE-MOS Date end Time: 3:31 PR Nov I

Farameter Mapped 1s UD (Cm2/V.S) Farameter Mapped is UD (Cm2/V.S)

Statistical Data for Current Map

- . e G . e T T —— —— — Y — — ——_— - - —— —— - = - = ———— -

N Hean = 2.67207E+002
zgz_::: Standard Geviation - 3.26661E+001
t se - : = 2.67207E+002 +/- . cBE+
> G034 1E+002 Value of parameter 2.67207E+00 / 8.24128E+000
2'71639E+Q02 Minimum data value =] .39569E+002
Not set at location (7, 3)
Not set Maximum data value = 3.00043E+002
Not set at location (2, 1)
2.7411b6E+002
Not set
Not set
2.76B36E+002
Not set
2.61033E+002
3.00048E+002
2.88276E+002
2.76225E+4002
Not set
2.82259E+002
2.57815E+002
2.8B3016E+002
2.8B5366E+002
Not set
2.87149E+002
2.BOB5SBE+002
2.47706E+002
2.87778E+002
Not set
Not set
Not set
Not set
Not set
2.675006E+002
2.83002E+002
2.81524E+002
2.86797E+002
2.75053E+002
Not set
2.22508E+002
Not set
2.40092E+002
2.34404E+002
Not set
Not set
Not set
Not set
1.39569E+002
Not set
Not set

NNNNNANOOOO NN NS EBEBEBEBRPUUUBLWMOGINNNRNNRNS —— - - 000 Qe
m#ur\ih—smu-uruw‘—sm,bums—sxnuu:m»—'s.m»ur\n—-&m»bv,m.—sm»oum-——-s:.m»um»—_s

62

TECRP Ver 1C .32

Map Data Distributio

1.6P00PE4+00) — - -2 = o e - - : . S
e

1 o'a"

=

-

®

>

ok

=

Coun =t

~

€9

4o~ LT _*“.‘:'_ St A °L“‘“--*~ palingito b o —‘“—.il

oy | i e, ity . it et S

0.00000E+000 1L L

JO (Cmz2 V.S

Mean = 2.8687207E+082 Cm2-V.S
St andard Deviation = 3.26661E+801
Bar width = 1.80000E+881 Cma2-V.S

Wafer ID = TJIK’S B2

(on) uonnquuisiq AM[IQON HInd Zd 1oFEM

0N
)
Q
+
e
0
Q
o
©
=

3.180008t+002

INAF EER MM/ — TITECC AR e 1 C . a2
Date and T ime: :a60 PM No v 14, 1985
WNafear Names : TIK - S B2
Us e r Name : Phrh i1 Go 1lamanrn
Ty pe : PMOS
r“‘i;ﬂ_:;:r:::i;::;:;;;;:;;___,:::;t:;;;::;;:;:::::.:f*
/I,//T.\i\\\l —]'i Blank is unmeasured |
il lEE% N W Q: >1.3000Q0E+B@02 Cm2-V.S
l |) | \{_ i 1 e >1.éaazas+zza Cm2-V.S E
AU S IN. |l 2: >1.58@eBE+BB2 Cm2-V.S 0
LN =N | T | N\ 3: >1.8B400PE+2B2 Cm2-V.S -
eanw L7 | \ WV a: >2.02000E+@02 Cm2-V.S
|) y _ 4 o >
| | i | | \ S: >2.20000E+802 Cm2-V.S AN
: ' R - 4 |
v i r [—\ \; E: >2.3808BE+@B2 Cm2-V.S v
i' EE%|L;) "l \ 7: >2.5S6P0@0E+002 Cma2-V.S
| = ~ | e >2.74000E+0082 Cm2-V.S >
R S S . - | | A
| i y ' 9: >2.9200QE+3B2 Cm2-V.S Y
2 1O 2
] - | 1
. S S : se)
L — 17| | /o =3
8.)‘E] a $
i | . VA 2
-., S R SUR SUCANN =B
f I L | J/ | =
YRR | I | <
l ¢ 1 L7 ' Z
1 x | | o
* -
o
p

Parameter mapoed is UO (Cm2.-V.S)

Table A-7:

Frint Stored Map Datea

Uafcr-ID is TIJK'S B7 »
User Name 18 Phill Goldman
Date and Time: 4: 4 PM Nov 14,1865
Active Model is HPSPICE-MOS

Farameter Mapped 18 WD (Meter)

Not set
8.274435E-0066
B.26141E-006
Not set
Not set
Not set
8.25268E-006
8.17716E-006
B.2Z2408E-006
8.21B45E-006
Not set
B.28B74E-006
Not set
B8.15325E-006
8.15BBBE-006
8.10701E-006
6.18065E-006
8.33451E-008
B8.18754E-006
8.18B133E-000b
Not set
.23912E-006
.210B8E-0086
.48315E-006
.21161E-006
.21961E-8B0B
.12941E-00b
.21566E-00b
.21059E-006
.48338E-006
.31589E-006
.278B24E-00b
.2T7202E-006
.29372E-006
.45251E-006
Not set
B8.4288B3E-006
Not set
B8.32612E-0068
Not set
Not set
Not set
Not set
8.6682BE-006
8.31791E-006
Not set
Not set

NEUVLUN—~OUNBEULIN—-ONIPULUINCOUNAEULVUN—OUNHEUUNLSNBLOGN—CGUN UGN GU LGN —Q |
O 0 MOoMM®D®MUW®®DO®O DM

NNNNSNAOOIONO AN UITNUTNUN S BE BB BEBLUUULWUULDLVLULNNRNNRNRN S -~ 080 6

Wafer B7 Channel Narrowing Data and Statistics (WD)

Wafer ID is TJK'S B7
User Name 18 Phill Goldman
Date and Time: 4: 7 PH Nov 14,1885
Parameter Mepped is WD (Meter)
Statisticel Date for Current Map

Mean
Stendard Deviation
Value of parameter

8.30565E-906
1.903501E-007
B.30585E-006 +/-

Mirimum dats value

| at location (2, 4)

Maximum data value = 9.12941E-006
at location (4, 3) |

8.10701E-006

65

5.38364E-008

TECAP Ver 1C.B2

Map Data Distribution

2 . 0PPPRE+0A |

-
03
c
~
®
>
y
oy

P
=
C &
)
3 ~1
0 @
0 o
“ 2
5
& 2
w 2
S
=
-
@)
v - . \ g.
P. B000RE+090 S S ~— &
-,
2
.. & ND (Meter) 8 é’
W Mean = B.30585E-006 Meter Y <.
S Standard Deviation = 1.90301E-887 s S
§ Bar width = 2.0000QE-287 Meter §_ =
- Wafer ID = TJIK'S B? K S

WARFER ™MAP — T ECAP ve r 1. 22

Date Aarnad T ime : < 2 S PM™M No v 14, 198
Nafer Name : TIK" S B?

User Name: PKh il Go ladman

Type: PMOS

~Blank {s unmeasured

G: >8.000PCE—0P6 Meter
\\\\ 1: >8.200090E—0PB Meter

s >»8.4000RE—-8B0B6E6 Meter

\

/

A

: >B.60000QE—-—OBE Meter
: >8.B800BCB0E—WQVE Meter

PI-V 21n3drg

>9 . 0BV E—-VBE Meter

>9 . 200BE—-VB6 Meteor

: >8 . 40000 E—-0P06 Meter
H >89 . 600 E—-00868 Meter

w © N 0O U0 b W N -

>89 . B0QOQE—QQVB6E Meter

NN
()

L9

l
il
1 .‘

—Q[0)]
1S L U1

1
1
1
1z

NINEE!

((IM) deyy Suimouren] [puuey) g I9Jep

Parameter mavped is WD (Meter

Appendix B
C-V Station Program Ver 1.2 User’s

Manual

Updated: August 29, 1985

B.1 Introduction To C-V Version 1.2

This manual covers the operation and theory behind the updated C-V
measurement procedure involving the HP85 computer and the MSI Electronics
Programmable C-V meter. The program was written to allow the most
common options used in these measurements to be the default while allowing
menu driven selection of changes in these defaults.

The program provides the following features:

e Default parameters sufficient for many purposes.

e Menu-oriented parameter selection using the function keys.

e Audible feedback when the probe meets the device under test. This
may help avoid damage caused by excessive pressure of probe on the

device surface.

o Voltage limits are strictly set by the user to avoid the ugly problem
of destroying samples with excess voltage.

e Up and Back voltage sweeps are implemented to check direction-
sensitive devices.

e Bias / Temperature Stress is also implemented.

e Voltage range may be asymmetric.

e Data can be saved on tape for later calculation or comparison with
new data. The Data Cartridge need not be left in the drive after

start-up.

Part One of this manual is intended for the casual user who wishes to

68

make a "fast measurement” without learning even the few details this program
involves. Part Two 1s a more detailed and complete documentation of the
procedures involved. Part Three explains the mathematics behind the

calculations. The final section contains a complete program listing.

**%* NOTE: DO NOT CHANGE THE C-V PROGRAM WITHOUT
* BACKING IT UP!!!!! THERE ARE NO OTHER COPIES
OTHER THAN ON THE TAPE *C-V DEVELOPMENT?> #****

Release Information:

Date Number Fix (es)
8408.17 1.0 Initial Code
8411.29 1.1 Fix errors in math, add
print option
8508.29 1.2 BTS Fix, Manual recover
in Cfb

69

B.2 Quickee User’s Guide

This is a quick guide for using the C-V program. For a more detailed
guide, see Part Two of the C-V manual.

The steps for execution are as follows:

Locate the tape labelled ”C-V Development” and place it in the tape slot
of the HP85 and turn on the computer and the MSI Programmable C-V Meter.
Press the RESET button on the Meter.

The computer will then take several minutes to load the necessary routines
to do the measurements. When the system is done it will ask you to press
<K1> to do measurements. You may remove the program cartridge from the
slot now 1if you wish.

Press <K1> to continue the program. Next, select what you wish to do;
in the case of a new sample, press MEASURE.

The default selections will appear in menu form on the screen. If these
are acceptable, press Measure again and the analysis will begin.

Probe the device on the stand and press <K1> when you are satisfied
with the contact. The uncompensated capacitance measurement will be
displayed during the probing time.

When the measurement is finished, press ANALYZE to do the calculations
on the current data. Again, the default parameters are displayed and can be
editted. Press GO to plot and calculate the data, press PRINT to print out

the Voltage/Capacitance data.

70

B.3 Detailed Operation Guide

This, C-V program was written to be as largely self-explanatory as
possible, so this section of the manual will largely be a complete application
example. The steps here are true of most of the measurements.

First, all of the hardware must be turned on and initialized. To do this ,
insert the tape labelled "C-V DEVELOPMENT?” into the tape slot and turn on
the HP85. While the program is loading into memory, turn on the MSI
Electronics C-V Meter, the Temperature Controller, and the small gray vacuum
pump behind the probe box. Be sure the pump is connected to the probe box.
Press RESET on the C-V meter, then press COOL on the temperature
controller. The equipment is now ready for use.

When first powered up the computer screen will show

C-V STATION
MEASUREMENT
Ver 1.2
Revised 08/29/856

Please wait...
Then the screen will blank while the necessary routines are loaded from
tape to the internal program memory. When the loading is complete, the screen

will show

Select Function

<K1> C-V Measurement

At this point the tape is no longer necessary, and it may be removed

from the tape slot, and you may insert your own tape to save the data which

71

you gather. Press <K1> to continue with the measurement. (NOTE: The other
function keys are reserved for future use.)

After pressing <K1> and a few seconds pass, the screen will read

C-V STATION
MEASUREMENT

Select Function with
<kl1> thru <k3>
Exit with <k8>

In this example we will measure a sample one sweep, save the data, then
go on and analyze it. Different measurements will follow the same pattern,
with changes being made at the user menus.

First, press <K1> to go on to the measurement menu, which appears like

this:

CURRENT PARAMTER SETTINGS

Channel Type N-chan (P-Sub)
Sweep Direction + to -
Measurement Type One Sweep
Upper Voltage 10 volts
Lower Voltage -10 volts
Ramp Rate (mV/s) 1000

Probe Type Al

<k1> to <k7> to set,
<k8> to measure.

LOWER-V RAMP RT PROBE C-TYPE
Measure SWEEP M-TYPE UPPER-V

The parameters shown above are the default parameters set by the
program at power-up, and may be sufficient for you to make a measurement.
If you are willing to use them, simply press the Measure function key to make
the test. Here though, we wish to make some changes. First, our device is on

an N-type substrate, which means i1t is a P-channel device. Press <K8> to

72

toggle the change in channel. Next, we wish to sweep from -5 volts to +5
volts. Pressing function keys <K5> and <K4> prompt us for the lower and
upper voltages, which then appear in the menu. After our changes the menu

appears as

CURRENT PARAMTER SETTINGS

Channel Type P-chan (N-Sub)
Sweep Direction + to - |
Measurement Type One Sweep
Upper Voltage 5 volts
Lower Voltage -6 volts

Ramp Rate (mV/s) 1000

Probe Type Al

<k1l> to <k7> to set,
<k8> to measure.

LOWER-V RAMP RT PROBE C-TYPE
Measure SWEEP M-TYPE UPPER-V

Now that we have the menu set for our measurements we press <K1> to
make the test. After pressing the key the computer will ask if you really want
to make this measurement. If "N” the system will return to the top menu in
the C-V system. If ”Y”, the computer will instruct you to probe the device.
Place your sample in the probe box and _p']'ace the probes on the device under
test. When contact is made the computer will BEEP to tell you that you are
in contact. During the probing the system will display the uncompensated
capacitance read from the probes. After you are satisfied with the probe
contact, press <K1> and the measurement will be made.

During the measurement you should not interrupt the computer or bump
the probe box. The measurements are time-sensitive in some cases and the
probes most definitely are motion sensitive. While the measurement. is being
made a rough plot of the incoming data is displayed on the computer screen.

This is a good indication of the quality of the data you have received. If it is

73

not satisfactory, allow the computer to re-measure the sample with the same

" measurement parameters. NOTE: This will destroy the first set of data.

After measurement the data may be saved and/or analyzed. In this
example, we will do both, first save it, then perform the calculations.

From the main menu now we press <K3> for FILER. This routine’s only
purpose is to transfer data between the tape and the program’s internal data

structure. The menu appears as

DATA FILER (ON TAPE)
(All work done w.r.t. data
in memory and on tape)

<1> Load from tape
<2> Save to tape
<3> Tape Catalog
<4> End Filing

LOAD STORE CATALOG END
We press <K2> for the Save operation. We will save the data under the
name EXAMP for now. This will take quite a bit of time if you are used to
the floppy disk systems on other computers, but it’s the best this system has.
We can check to see if the file is saved with <K3>, a tape catalog. Our data
is now saved. Next, we analyze the data. Press <K4> to end the FILER
routine, and press <K2>, for ANALYZE data.

A startup menu for the analysis section will appear on ‘the screen, like this

C-V CALCULATIONS

Device Diameter is 1 mm.
Device Area is .7854 mm"~2
Curve# for calc is 1

Curve## for stress is 2

Type of calculation is One Sweep

TYPE PRINT CURVE# DIAM
GO AREA MENU STRESS#

74

The default parameters shown are for the most commonly measured
structure, the one millimeter dot on the surface in a one sweep calculation.
Since this is exactly what we measured in EXAMP we will not change any
parameters. If you had a different device, you could enter either the new
diameter or the new area and the other parame‘ter ‘would be adjusted
automatically for the calculation. The device type, i.e. N- or P- channel, is
carried along with the measured or stored data and need not be entered. Press
<K6> to print out the data actually measured, or <K1> to plot the data and
analyze it. The order does not matter. Following is the sample output from

our test measurement.

75

B.4 Sample Outputs

B.4.1 Plot and Results

O
CAPACITANCE - rF &
. — .
CD
T m
V5] 14
' =
(] -U
= “d -
C NI B == g
- 1 | E;
— ™~ »
g & | :‘K. |
i v
|

e Pt =

EXAMF FOR MANHUAL

Coy»x = 96c.¢ FF

®Nox = 274 H

Hsut = +8_ Z207E+814 cm~-2
Ctbh = ¢€66.44 pF

Vb = -.71 valts

i ¢ = +1 . 374E+811 cm~2
Vth = -1.284 volts

76

B.4.2 Printout of Actual Data

Vol tase CarFacil tance
-4 .8008 9% .88FF
-4 .64606 95.70FF
-4 .4006 95 . 76FrF
-4 . z204a 95 .60prF
-4 . poH 95 .606FF
~-32.80680 95 . 34arF
-2 .604 S5 .6VrFrF
-2.480 94 . 94aprF
-3 .2008 94 SarFrF
-3.080 a4 . 19rPF
-2 .888a 92 . 4Pk
-z .6068 Q2. 3vrF
-2 .40 91 _wvbBFF
-2 .280 g1 . 20prF
-2.880 93 . 80rFrF
-1.8808 S8 .080rF
-1 .6080 106 .40pPF
—-1.400 126 .40a,F
-1 .2680 155 . 36FPF
-1.6080 298 . 7aprF

- . 8080 S531.56fF
- . 6006 69¢ . 3VPF
- . 448 784 . 6OFF
- . 2806 £36.cvpPF
+8 . 86a0 86%.20rFF
+ .24l 89z . 3arF
+.4080 S@s . BUrF
+.5060 91S% 8urpt
+ . 80404 Q27 40,k
+1.960 Q35 . d4aprf
~+1 .2080 939 7vprlk
+1.440 943 . BUrF
+1.6060 94¢& _ 3pefF
+1.8048 Q51 BGbF\\
+2.008 oS53 . ouvprk
+2.2@08 955 . 10pFPF
+2.4006 Q57 .18¢fF
+2.6004 95%: . 5uekF
+2.806n g6@ . 9vrlF
+3.0600 961 .1aprF
+3.20604 961 . 68rF
+3.460 96z .30rPF
+3.6084 963 .26FF
+3.8060 964 .4VPF
+4 . pvib 965 .606pPF
+3 28098 966 .8uprF
+4 .400 967 .10fFF
+4 . .6084 Qg7 .8OrPF
+4 . 880 96&.70rF
+5.9v064a 967 .8oPF

B.5 Equations Used in C-V

The equations on this page were used in the calculation of the sample
parameters in the analyze section of the program. Given are the theoretical
expression and how it appears in the program line. [3]

Coz*-—- mazimum (ozide) capacitance

2840 C(C5,52)

¢ ¢ .d°
, 99 .
on: C j.‘ oy
0z |
26860 x1=507100000+KO*D1%D1/C(CE,52)
4¢f Csmln 2 -t
Nsu’b: |
qc'o‘(si
where
kT Nau_b_ - |
¢ =+—In(——) —=p-type, +=n-type
J g aﬁk .
26880-2760 Uses the Secantrule
(modified Newton-Raphson) to find
the solution. [2]
C Co_z Csfb'
It Coa:"+Cafb ,;
where
\/éA(€ .
. o
Caﬂ—- X
and
V2kTe ¢ .
A T0 s

\/qZAr X
su
Vﬂ) ts found by interpolation.

2800-2820 L8=)
Cg:csfb
C8=C,p

2850-2800 F=Vgp

78

Q, C

oz
Ne=—=0, ~V,|
J q Aq l MS " fb

where
o=-6-¢,

2920 Q1=C(C6,562) /1E12/(A/100) /1.6E-19*ABS(.8-F4-F)

A
Vi=Vpt(2¢,-——)

- 0Z

where

oz

29680-2980 V4=F+ (2*xF4-A/100%Q2/(C(C56,52)*1E-12)

1.2¢-6xC,_x|dV

m- I

25680 12.E-8x%C(C6,52) *ABS (F2-F3) /D1 /D1

79

30
40
1%
6@
7’06
86
9v

160

11/

126
136

140
150
1606
170
186
196

200

210
2206
2349
240
256
260
276
286
296
386
J10
326
336
3486
356

3606
376
386
396
106
4106

4206

4306
449
456
460
479
480
490
586
516
926
o306

B.6

-~ t. data”

Program Listings

REN ii**&%*é‘l‘ﬁﬁﬁiﬁ*ﬁéﬁﬁ*ﬁ

REM *x%x UREMENT PROGRAM

REM XX & ¢
REM XX LEHIGH U. 1984) &
REM xx AT FAIRCHILD LABS XX
REM XX BY XX
REM XX P. GOLDMAN XX

REM XEXXXXXXXIXXIXXIXIXRKXXX
OPTION BRSE 0

DIM B(3,52)>,B2(3,58)

coMm €¢3,52>,V(3.,58)>,50
Ve=-10 & V1=180 @ R=1060 € Co
=0 €@ P9=0 @ D=6 € To=300
D=1 @ Ti=0

Bi1=186

V4$="(none)"”

CLEAR € GCLEAR

DISP * C-V STARATION"
DISP " “;HGLS$ ("MERASURE
MENT ")

DISP @ DISP ® DISP "™ Sel

ect Function with*

DISP * <kl1> thru <k3>"

DISP * Exit vi1th <k8>"

ON KEY# 1., "MERSURE"™ GOTO 326

ON KEY# 6, "ABNALYZE®" GOTO 336

ON KEY# 2 GOTO 339

ON KEY# 3., "FILER" GOTO 3686

ON KEY# 4 GOTO 346

ON KEY# 8. "EXIT" GOTO 346

OFF KEY# S 8 OFF KEYS$ 7

KEY LABEL

GOTO 236

GOTO 890

GOTO 1936

CLERR @ MASS STORAGE IS ":T*"

pDISP # DISP * Program ru

n comrplete.” @ PRUSE

REM XEXXIXITIAXATXIEXEXIIXLIIITITRXXS

REM XX FILER SEGMENT > & 4

REM IXIXXXXIIIZITXIITITIEIXIXXIXX

MASS STORAGE 1S *:T*"

ALPHARA 1 € CLEAR

DISP * *";HGLS$("DATAR FILER
(ON TAPE>*)

DISP * (Rl1]1 work done w.r.

® DISP *“ in memo

ry and on tare)* € DISP

DISP “<1)> Load {from tare”

DISP ®"<2)> Save to tare"

DISP "<(3> Tare Catalos”

DISP "<4> End filins"®

ON KEY$# 1., "L0AD"™ GOTO 576

ON KEY# 2. "STORE" GOTO 698

ON KEY# 3.,"CATALOG" GOTO 796

ON KEY# 4, "END" GOTO 676

ON KEY# 8."" GOTO 470

ON KEY# 6.,"" GOTO 476

OFF KEY# O @ OFF KEY® 7

80

KEY LABEL

GOTO 4706

REM - ——————
CLEAR © DISP HGLS$("Loading D
ata..") @ DIsP

DISP "Khat TRAPE file to load
" @ INPUT F¢

ASSIGN® 1 70 Fs

RERD® 1 ; vVa.,vi

READ% 1 ; Co

RERD®% 1 ; C¢,)

RERD® 1 ; V(,>

ASSIGN# 1 TO x

CLEAR € GOTO 366

REM - ——————— o
MASS STORAGE 1S " .ED" @ GOTO
170

REM ————————— o f

CLEHR)Q DISP HGL$("Savina da
ta.."

DISP @ DISP
e INPUT F%
CREATE F#%$.,510.8

ASSIGHN® 1 TO Fs¢

"Hhat data file"™

PRINT#® 1 ; VvB.,V1
PRINT# 1 ; Co
PRINT# 1 ; CC(,)
PRINT® 1 ; V(D
ASSIGNE 1 TO £
GOTO 3606

CLERR € CAT =:T*»

DISP € DISP "Press <END LINE
> to 90 on"

INPUT As

GOTO 3606

REM - ——————— .
REM IXXXXXTIXTIETXELTILLLTILEYYE
REM Xxx MEASUREMENT SEG XX
EE: FEXXXXXIXZLEEILSIIRRIXX

DIM P$SLC81,D$C181.,T$C271.,CsI4
81

P$="AlumMerc”

D$="+ TO0 —— TO0 + "
T$="0One SweerUpP & BackB - T

_S"
C$="N-chan{(P-Sub)P-chan(N-Su
b)Unknown Trype *

LO$=" u

ALPHAR 1 € CLEAR @ GCLEARR
DISP * ";HGL$("CURRENT PARRME
TER SETTINGS®)

DISP @ GOTO 10646

ALPHA 3.1 @ DISP “®Channel Ty
Pe ";CSLCOXx13+1.,.CBXx13+1
33 € RETURN

ALPHR 4,1 @ DISP “Sweer Dire
ction “;DS$LDBX6+1.,006%x6+61]
€ RETURN

ALPHA 5.1 € DISP "Measuremen
t Trre "TSCT1X9+1.,T1%9+9)
@ RETURN

16060

1810
1026

16360

1646

16506

1660
16786

16806
1656
1166
1116
1126
1136
1140
1156
1160

1178
118606

1196
1208
1210

12286
1236

1248
'1258
1268

1276

e vate™ B

ALPHA 9,1 @ DISP “Probe Trp
e ";PSCLPOX4+1,PBXx4+4
Jd € RETURN

ALPHA 8,1 @ DISP "Ramrp Rate

(mV/s) ";R @ RETURNH
ALPHA 7,1 @ DISP "Lower Vol
tage ";V8;" volts™ € RE
TURN
ALPHAR 6,1 @ DISP "Upprer Vol
tage =;V1i;" volts" €& RE
TURN

GOSUB 978 @ GOSUB 988 @ GO0S
UB 996 & GOSUB 18306 € G0OSUB
19268 @ GOSUB 1616 e GOSUB

1960

ALPHA 11.1 @ DISP " <kl

> to <k?7?> to set," & DISP *
<k8> to measure." @

DISP

REM - ——=-———————————————

ON KEY# 8.*C-TYPE"™ GOSUB 11

80

ON KEY# 2., "SHEEP" GOSUB 118

8 .

ON KEY# 3.,"M-TYPE™ GOSUB 12

00

ON KEY# 4., "UPPER-V" GOSUB 1

216

ON KEY# 5. °"LOWER-V®" GOSUB 1

2306

ON KEY# 6., "RAMP KT" GOSUB 1
270

ON KEY# 7.,"PROBE" GOSUB 129
(]

ON KEY# 1.,"Measure®™ GOTO 13
10

KEY LABEL

GOTO 18706

REM ————————————

Ce=(Co+1> MOD 3 € GDSUB 978
@ RETURN

DB=C(DB+1) MOD 3 e GOSUB 986
€ RETURN

T1=C(T1+41)> MOD 3 @ GOSUB 996
€ RETURN

ALPHA 11,1 e DISP @ DISP @

ALPHA 11,1 € DISP "Hhat urr
er voltage® € INPUT V1

GOSUB 1836 # GOTO 16506
ALPHAR 11,1 € DISP @ DISP e
AlLPHA 11,1 € DISP "Hhat low
er voltage®™ € INPUT V8

GOSUB 10286 & GO0T0o 1850

RETURN

‘ALPHA 8,19 @ DISP LB$ @ INP

UT vee ALPHA 8.1 & GOSUB 10
28 € RETURN

ALPHA 11,1 € DISP € DISP e
ALPHR 11.1 € DISP “"Khat ram
INPUT R

1280
12956

130606
1310
1320
1536

13546
13580

1366
1378
1586
1398
1406
14180
1426
1436
1448
14380
1460
1476
1486
1498
15v8
1516
1526
15386
1540
1558
15686
1578

15886
1596
1606
1610
1628

1630
1646
1556
1666
1670
16886
1696
17686
1716

17206
1736

81

GOSUB 1618 € GOTO 1056

ALPHA 6,1 @ PB=(PB+1) MOD 2
REHGOSUB 1808 @ RETURN

REM %x% MEASURE IT HERE

CLERR

DISP “Press <ENDLINEY> to 9o
" @ DISP "on, anything else
and <ENDLINE> " e DISP "to
abort. ")

INPUT R$P IF A$<>"" THEN 17
o .

5F5P0=8 THEN S8=.8 ELSE $6=
ON T1+1 GOTO 1378,1448, 1550
§Eg %% SINGLE SHEEP %X%x%x
IF C8=D6 THEN L=1 ELSE L=0

N=1

GOSUB 18406

GOTO 1876

REM

REM ur and back

P=06 o

IF C6=D8 THEN L=1 ELSE L=6

N=1 € GOSUB 18486

DO=NOT DB

L=0

N=2 € GOSUB 1848

DB=NOT D@

BEEP

GOTO 18786

REM - ——————— e

.REM bias temrP stress

P=0

CLERR @ DISP
g9i1n curve"
aFICB=DB THEN L=1 ELSE L=06
GOSUB 18486

DISP “"Positive bias stress”
CLEARR € DISP "What stress v
oltage?" @ DISP "(Default i

"Measurine Vir

s %";B1;") " @ INPUT B1

IF B1=6 THEN B1=B8 ELSE B®B=
Bi1

DISP "(Set tempP, pPress <Kli1>
)I

ON KEY# 1 GOTO 1668 e GOTO

1656

OUTPUT 714 ;"BS ";-Bl @ GOS
UB 1738 ! crcle

L=06

N=2 e GOSUB 18489

DISP "Hegative Bias stress"”
N=3 € OUTPUT 714 ;"BS “;-Bl
@ GOSuUB 17386 @ GOSUB 1849
GOTO 18796

REM ——————————rrr
REM temPerature crcle

\

1748 ALPHA 10.8 @ DISP HGLS$C"STA | | |
TUS*) ! 2130 ON KEY# 4,"STRESS#" GOTO 22
1756 OUTPUT 714 ;*TC" 70
1768 OUTPUT 714 ,sTS™ 2148 ON KEY# 5,“TYPE™ GOTO 2368
1778 ENTER 714 ; RS 2158 ON KEY# 1,"GO0" GOTO 23106
1788 ALPHA 11,8 P DISP As 21686 ON KEY# 3,“MENU* GOTO 179
1798 IF A$<>UPC$(A$> THEN DISP * 2178 ON KEY# 6,"PRINT" GOTO 3856
SET CONTROLLER IN REMOTE® € 2188 KEY LABEL
GOTO 1758 g%gg gg;o 2160
1868 IF A$<>"LOW " THEN 1766 92— 2208 REM ———————eee_______
1818 DISP "Heatine cycle done. ® 22186 ALPHA 10.3 E DISP “New Dewvi
16280 KAIT S8 € RETURN ce diameter”;®@ INPUT D
1830 REM —~———— e 2228 GOTO 1998
1646 REM ¥¥% MEASURE IT Xx¥ . 2238 ﬂgtgg_;giiﬂguglgg E3¥8123f§
1856 IF DB=8 THEN CALL “AcaCV® (2248 ALPHA 18,3 @ DISP *"What neu
Vi,V8.R,N,L,P > ELSE CHLL Curve #43@ INPUT Cb
gg;ﬁgu (VB,.VI,R,N.L.P) & 2258 IF C5>3 OR C5<1 THEN BEEP @
o GOTO 2249
108 RETURN P 5 2268 GOTO 2818
1870 LLEAR 2 DISPep « Do xou v 2278 ALPHA 18,3 @ DISP "What new
ant 1o e 1 5$p§: stress curve #";@ INPUT C6
measurement gp 2288 IF C6>3 OR C6<1 THEN BEEP @
1886 IF ASC1,1J1="Y" THEN GOTO 94 COTO 5276
8 ELSE GOTO 178 2296 GOTO 2018
1690 REM X:3tsitsttrsstsssstsy 2388 T9=(T9+1) MOD 3 @ GOTO 2018
1586 REM %X MATH SECTION, XX 2318 CLEAR @ DISP "Title for Pri
1916 REM X% FINDS PARAMS X% ntouts™;® INPUT Va4s
1920 REM XXt rtttsrsrsirsssssss 2228 REM ——— oo
1538 DIM T6sC27] 2338 P1=(V1-VB)/7 @ P2=C(C5,52)~
13480 T6$="0One SweerUr & BackB - 7
T - S 2348 GCLEAR
1958 KB8=.338 @ Ki=1.836E-12 @ N© 2358 SCALE VB-P1,V1+P1,-P2,1.143
=140800080080 2C(C5,52)
1968 T0=308 23668 FOR I=6 TO 18 @ MOVE V8, IxP
1578 S=(V1i-v8),586 271037 € DRAW V1,I1tP2-10%7
1988 CLERR @ GCLERR € NEXT I
1956 A=Plx(Ds/2>~2 @ C5=1 € C6=2 2378 FOR I=8 TO 18 @ MOVE I¥P1-1
e 7T9=8 B37+V0.,08 € DRAW ItP1-/18%7+V
2068 REM - —-———-——mm 8,C(C5.52) @ NEXT 1
2016 ALPHA 1 @ CLERR € ALPHA 2.2 2388 MOVE VB+P1,C(CS.52) @ LABEL
@ DISP * ";HGL$("C-V C Uas
ALCULATIONS™) 2398 MOVE V8.-P2 @ LABEL " BIAS
2028 DISP - YOLTS*"
2038 ALPHA 4,1 @ DISP "Device Di 2468 MOVE V8-P1-3,8 @ LDIR 98 @
ameter is ";D;“ mm." LABEL "CAPACITANCE - FF" @
2648 IMAGE "Device RArea is “,MDD LDIR ©
-0DDD., ¥ mm~2" 2418 MOVE VB.,-P2-2 @ LABEL VALS$(
2050 RALPHA 5,1 € DISP USING 28486 Vo)
; A 2428 MOVE 8,-P2/2 @ LABEL "@"
20668 ALPHA 6.1 @ DISP "Curve# fo 2430 MOVE V1,-P2/2 @ LABEL VALS(
| r calc i1s ";CS Vi)
2678 ALPHA 7.1 @ DISP "Curve# fo 2448 MOVE VB-P1,C(C5.52) @ LABEL
r stress calc is *;Cé6 VAL$(CCCS,592)>
2988 ALPHAR 8,1 @ DISP "Tyre of C 2458 PENUP
alculation is ";T6$SL1+T79x9, 2466 FOR I=1 TO S8
T9%9+91 © DISP 2478 PLOT VC¢CS5,I),C(C5.,1)
2898 REM — == __ 2480 NEXT 1
21006 ON KEY# 8,"DIAM“" GOTO 2216 2498 PENUP
2118 ON KEY# 2. "ARER"™ GOTO 2236 2508 IF T79=8 THEN 2546
nnziéé_gﬂ_ﬁﬁfi_7{Z§URVEi' GOTO 224 2518 IF T9=1 THEN 2530

82

2520

2540
25560
2560

2570
2586

23590
2600
2610
2620

2630
2648
26958
2668
2678

26886
2698
27e8
2718

2728
2730
2740
27086
. 2760
2778
2786
2798
2808

2818
. 28286

2838
2846
. 2858
2800
2878

2888
2898

. 2908

FOR I=1 TO S0 @ PLOT V(CS3.I
>,CCC6,1> @ NEXT 1 € GOTO 2
540

FOR I=1 TO 56 @ PLOT V(CS5.5
1-1>,CCC6,1> € NEXT I

COPY € REM
ON T9+1 GOTO 2578,2580,26080

DISP "ERROR T9" e BEEP € PA
USE

GOSUB 2650 e GOTO 26180

COSUB 26508 € F3=F € C7=C5 @
C5=C6 @ GOSUB 2656 e CS5=C7
e F2=F

IF T9=1 THEN GOTO 2816 ELSE
RETURN

GOSUB 2588 € PRINT "dV+¢B =
».F2-F3;" wvolts”®
N8=120868808%C(CS., 52> *ABS(F2-
F3>/D1/D1
IMAGE "HNm = *,D.DDDE. "

~2
PRINT USING 2628 ; N8
GOTO 2610

REM
PRINT € PRINT € PRINT V4%

ch

PRINT € PRINT "Cox = %;C(C
5.,52>;" pF*

D1=Ds/25.4 @ A1=(SARC(A/PI)> -2
5.4>~2%P1
X1=50710008883K08xD1xD1/C(CS,
92)

‘PRINT *"Xox = “;INT(X1)>;" A

B=T78%2 .881E27 € C=(C(CS5,51>
% - 9000PB0BBBB1/AX1688)>~2
Ni=1_.E21 @ N2=1_EZ28

‘F1=N1-BXC2LOGC(N1/NB)

F2=N2-BXCXLOG(N2/NB)

IF ABS(F2)<=.80081 THEN 2796
N3=N2-F232(N2-N1)>7(F2-F1)
N1=N2 @ N2=N3

GOTO 27306

REM ! N2 1S HNsub

IMAGE "Nsub = ®",SD.DDDE." c
nr-3"

PRINT USING 2868 ; N2

F4=1 38E-233T76/1 _6E-19%L0G(
N2/N8) € ' F4 IS PHI SUB F
L8=SOR(2%1_.38E-23%xT78%xK1-(1.
6E-19~2%XN2))
C9=SER(2>XR¥K1-/1086/1.8 @ (C8=
CC(CS.,52)3C87(C(CS.,52)>+C
C8=C8%1 _E12

PRINT USING 28768 ; (C8
‘%HHGE “C¢b = ",DDDD.DD." P
FOR I=1 TO 49

IF C<CCS.,1>>C8 AND CCCS.,.1+1)
<{C8 THEN 25286

IF CCC5.1)XC8 ARAND C(CS5.,1+1)
>C8 THEHNH 29520

83

2916

2929
2936
2940
2956

2560
2976

29886
2998
3006
3010

3628
3636

30406
3858
3068

3678
38886
36506
31680
31168
3128
3136
3146
3156
3166
3176
3186
31956
3260

32180
3228

3236

‘ON KEY# 1.,"Go"

NEXT 1 @€ PRINT ®"NO OCCURENC

E OF Cfb IN ARRARY. ." @ DISP
"Press CONT.* @ PRUSE € GO

T0 31186

F=VCCS,I)+(V(CS,I+1)-V(CS., 1
IX(C8-C(CS.,1>>7CCCCS,1+1)>~-

C(CS., 1

PRINT USING 29406 ; F
IMRGE "V¢b = ",SDD.DD. "™
l1ts"™

Q1=C(CS.,52)>71 _ E127C{RA/71688)> 1
.6E-19%XABS(-.6-F4-F)

PRINT USING 2976 ; Qt

IHgGE “"Nf = “,SD._DDDE., " c

mr2"

Q2=1 . 6E-19%XN2%XK1XxX(R/7188)/C(

C5,52% .608866800606001)

IF CB=1 THEN F4=-F4

IF Ce=0 THEN Q@2=-Q2

V4=F+(2%XF4-R/1808%xQ2/(C(CS,5

2)%.800880880886001))

PRINT USING 386386 ; V4

IMRAGE *"Vth = “,SDD.DOD.,*" v

olts®

RETURN

C$="N-chan(P-Sub)P-chan(N-S

ub)dUnknouwun Trre ® € PRINT €
PRINT
IMAGE *~ *,SDD.DDD., " "
.DDDD.DD., "PF™

PRINT "Name:" € PRINT V4s @
PRINT "Channel tryrpe 1s: “;

CSLCOX13+1,COX13+131

PRINT € PRINT * Vol tage

Carpacitance®” € PRINT *

vO

FOR I=1 TO 56 € PRINT USING
3868 ; V(CS.,1),C(CS,I> e N
EXT 1

GOTO 2861606

ALPHA 1 @ CLERR @ DISP HGLS
(*"Manual Recoverr»") ,
DISP "Enter the correct par
ms " ‘
ALPHA 6,1 ® DBISP "Cwmin

= ";C(CS5,51)>;" pPF"

ALPHA 7,1 @ DISP "Cox

= ";C(C5.,.52);" pF"

GOTO 2676

ON KEY# 2.,"Cmin" GOTO0 3226
ON KEY#®# 3,"Cox™ GOTO 3236
ON KEY# 8."Menu™ GOT0 20068
OFF KEY# 4 @ OFF KEY$# S e 0O
FF KEY8 6 @ OFF KEY# 7

KEY LABEL

GOTO 31586

RLPHA 16,3 € DISP “"Khat new
Cain (pF)" € INPUT C(CS5.51

)& GOTO 31186

ALPHA 16.3 € DISP “"What new
Cox <(pF)” @ INPUT C(CS.52)>

€ GOTo 31160

Appendix C -
TECAP2 Prober Control Update Manual -

RK681 - for TECAP 1C.00

A Summary of Support for the RK681A Prober

g To incor‘poraté a new probe station under TECAP2 you, the end user may

- replace the existing module PROBE__DRIVER in LIB4.CODE with your own

version of this module tailored to your specific probe station. One function and

four subroutines from this module are called directly by TECAP2. Any other

routines needed for operation may be included and need not be EXPORTed to
TECAP. The routines needed are:

function P_ STATUS__ CHECK(bit_ number: integer):boolean;
procedure P UPCHUCK;

procedure P DOWNCHUCK;

procedure P ORIG(xvar, yvar: real);

procedure P_ MOVE__ RELATIVE(xvar, yvar: real);

These routines are generally very simple to write, but the interface to
TECAP2 must take into account the fact that the only prober TECAP can
handle is the Rucker and Kolls 1032. If your prober can act like the 1032 in
1ts remote operation mode, then the routines are simple.

This document is a general description of what the prober driver routines
are supposed to do and how the 1032 expects to be handled. Also please note
that the textfile and codefile versions of PROBE DRIVER for the RK681 are
included on this disk as well as a stream file which will link a version of
TECAP containing the new probe driver. This is an adaptation of the
LINK ANY stream file supplied with the standard release. This document is

in file RK681 DOC.TEXT on the same disk, volume label DAT681:

84

C.1 Routines Needed To Add An Unsupported Prober To
TECAP

The routines needed for the operation of a prober are:

FUNCTION P__S,TATUS__CHECK'_(BIT__NUM'BER: INTEGER):BOOLEAN;

This function returns the condition of the prober to TECAP. It is only
called with the argument ’3’. Normally this routine carries out a serial poll of
the prober to determine the status. Bit 3 of the serial response is used to
determine whether the START button on the prober had been pressed. The
program simply waits for the value of the function to become true. If you have
such a button, or have one you wish to use for this function, arrange for this
routine to return the value FALSE until that button is pressed. The routine
need not be a serial poll. If you wish to use the keyboard for input, then
simply make this routine return TRUE always and use the PAUSE function
from T UTIL wherever you need‘. it. This is called in the commands C12,

Cl3, and Cl4
PROCEDURE P_UPCHUCK;

This is a simple command; it instructs the prober to make contact with
the wafer under test. The name UPCHUCK may be a bit confusing at first
until you realize that the 1032 brought the chuck up to the probes, not the
probes down to the chuck. Be careful how you use this one. It 1s also called in

C12, C13, and Cl4.
PROCEDURE P’_DOWNCHUCK;

By the same logic as above, the' DOWNCHUCK routine instructs the
prober to move the wafer away from the probes (or the probes away from the
wafer). This routine is nice to have if your prober 1s not smart enough to

break contact before moving, but is never called explicitly from TECAP.

85

PROCEDURE P _ORIG(XVAR, YVAR: REAL);

This routine does a bit more. It is used to define the home position to
the prober. The values which come in through the arguments are the location
(in microns) from the current location where the home location is to be set.
TECAP really doesn’t use the home reference since all of its moves are relative
to ‘-the_ current probe position instead of a home position, but this routine
provides a good opportunity to make sure the wafer is where it should be.
Control of the prober can be released to the front panel here to allow for
placement and alignment. Depending on how your prober chooses to use the

home location, you may want to set it here.

PROCEDURE P MOVE RELATIVE(XVAR, YVAR: REAL);

Finally, the routine that does the most work. This routine moves the
chuck in the x and y directions relative to the CURRENT PROBE LOCATION
according to the arguments xvar and yvar. The arguments are in microns, so
your procedure must convert them to centimeters, inches, steps, or whatever
your prober needs. Convert them accurately, because any error will add up
because of the relative move,

You will probably want to add a library of routines to format the
commands you need for the system. As far as error handling goes, if you set
the HPIB timeout before each bus use, the TECAP program will trap the bus
errors and print out a message.

On this disk is a version of PROBE DRIVER which will control the RK
681 prober (note its simplicity), and a stream file to install it. This is
compiled under Pascal 2.0 and assumes that the TECAP libraries are on

DATCP: and the finished program goes into TECAP:.

86

C.2 Prober Driver Routines for the RK681 Prober

{**

" MODULE PROBE DRIVER TO ADD SUPPORT FOR " ~
« RUCKER AND KOLLS 680 SERIES PROBER - WRITTEN FOR 681A -
* Phillip M. Goldman, Lehigh University, March 1985 ”

LR R A S S S SRS EEEEEERSERERESEEEERSERESEEEESEERZEZI RS E EE R PR R PR RGPy

The following file is the necessary routines for adding
drivers for the Rucker and Kolls 680 series probers to
TECAP2 Ver 1C.00. This file replaces the module PROBE DRIVER
already supplied as part of LIB4.CODE in the 1C.00 release.
It does not need to become part of the user module, however,
it may be compiled with the user module. This is written and
tested under Pascal 2.0.

See the file RKBBI;DDC.TEXT on DAT681: for more detail. }

MODULE PROBE DRIVER;

SSEARCH ’DATCP:LIB2’ ,’*INTERFACE.’ ,’*LIBRARY.’S
IMPORT
l1odeclarations,

general 1,
general 2,
hpib;l,'

hpib 2,

dgl 1ib,

tecap data base,
tecap utility;

EXPORT
function p status check(bit number: integer):boolean;
procedure p upchuck;
procedure p downchuck;
procedure p orig(xval, yval: real);
procedure p move relative(xval, yval: real);

{=== S — S — }

IMPLEMENT

{ These first six routines are for the use of this module.
They are never called directly from TECAPZ2 }

procedure p 681 send command(command: string 3);

{ This procedure sends the alphabetic command contained
in ’command’ to the prober at HPIB=7, RK 1032 ADD=7.
string 3 is defined in the TECAP data base as type
string[3] }

begin
set timeout (hpib, 2.5);
listen(hpib, rk 1032 add);

87

talk (hpib, my address(rk_1032 add));
{send the first character}
writechar (hpib, command[1]);
{send the second if non-blank}
if command[2] <> ’ ' then
writechar (hpib, command[2]);
end;

procedure p 681 send number(intnum : integer);
{This sends a number to the prober in HPIB format. }

begin
set timeout (hpib, 2.5);
listen (hpib, rk 1032 =add);
talk (hpib, my address(rk 1032 add));
writeword (hpib, intnum) ; .
end;

procedure p 881 move distance(x, y: integer) ;

{ This routine sends the command to move the chuck to
the points given by x, y with respect to the currently
set home position. The x and y values sent to the prober
are negative to agree with the direction definiticns
of the 881 prober. }

begin
p 681 send command(’M ’);
p_681 send number(-x) ;
p_681 send number(-y);
end;

procedure p 6881 set new home;
{ This routine tells the printer to define the current
location as the home location. All moves made are with

respect to the current home position defined in this way. }
begin

p_681 send command(’SH ’);
end;

procedure p 681 local; |
{ This command enables the front panel controls of the prober
to allow the chuck to be moved }

begin

set timeout (hpib, 2.5);
local (hpib*100+rk 1032 add);
end; B

procedure p 881 remote;
#» { This command re-asserts the computer control of the
prober via the bus }

88

begin
set timeout (hpib, 2.5);
remote (hpib*100+rk 1032 add);
end;

{=========== ROUTINES THAT GO TO THE OUTSIDE WORLD ==

function p status_check(bit_number: integer):boolean;

{ Returns the ’status’ of the prober. For the RK1032 this
is used to find out if the user pressed the START button.
Since the 681 doesn’t have one, waiting for it would be
useless. In the places necessary, a keyboard

PAUSE in included }

begin |
- p_status_check := true;
end;

procedure p_ upchuck;

{ Commands the prober to make contact with the wafer.
In the RK1032 the chuck rises to meet the probes,
but the 6881 probes move to meet the wafer, so the obvious
meanings of UPCHUCK and DOWNCHUCK are reversed. Pay it no

attention. }

begin
p 681 send command(’D ’);
end;

procedure p_downchuck; |
{ Commands the prober to come off of the wafer }

begin
p_681 send command(’U ’);
end; | a
y;
procedure p orig(xval, yval: real);
{ Allows the current position of the wafer to be defined.
This is called in command C12) Define Position. The 1032
would allow TECAP to command it to move to the defined home
position via the xval, yval parameters, but the 681 isn’t that
smart. This allows the current location to be known. Since
TECAP calculates all of the next moves relative to the current
position, only the current position need be set in the prober.}
begin
writeln (output,
)————~— Place the probes on the position just specified. —----’);

writeln (output, | |
’ | Use the prober front psanel controls ’);

p_681 local;

pause;

p_681 set new home;

89

end;

procedure p move relative(xval, yval: real)}

{ This routine moves the probes xval, yval microns from
the current position. The current position is defined
here for surety and the divide by 10’s in the move is
to take care of the different step sizes of the 1032
and 681. All moves are calculated by TECAP with respect
to the current position and the 881 moves with respect
to the home location, home is redefined before the move}

begin

p 681 remote;

p_downchuck;

p 681 set new home;

p 681 move distance(trunc(xval/10), trunc(yval/10));
end;

end {MODULE PROBE DRIVER for RK881 prober}.

C.3 File for Linking Prober to System

s 2k b i ae i e ke ke i dic ok e ke e o ol ok sk dkc e 3k aj ak sk i afc sk s ke dic dc e sk ok ok ke sk dke 3k sk aiake s aje sk e dic s e e aic ake i ok ok ak skl dk e i ke ak e ke

o L 3
« TECAP2 MODULE LINK 1C.00 *
* for RK6881 support *
e *
» Any of the following modules may be deleted in the object code.=x
e ¥
- TECAP_CV : capacitance measurement "
* TECAP 4145 : HP 4145 drivers *
* TECAP MEASURE : measurement module *
* TECAP_CV_MOD : capacitance models (PN-CAP & MOS-CAP) *
- TECAP HPMOS : hpspice mosfet model *
« X TECAP MATRIX : connection matrix *
- PRBDRVO2 : prober interface for 681 *
- TECAP PROBER : prober sequence *
* TECAP HP BJT : hpspice bipolar model *
* TECAP DIODE : hpspice diode model *
- TECAP STMULATE : simulator -
* TECAP OPTIMIZER : optimizer *
« X T USER : user defined commands *
3]
« Each module may be deleted by deleting the ’t’ character *
* on the next line after the module name. Modules with ’X’ are *
« not included yet. *
L a
ahc 3¢ aic djc sic e dic djc e Bl 3 aic akc aic a i dc ajc ajc bie sk ajc aic sk aic b djc M ae aic e pic ajc 2k akc sl aic e dic b e B¢ B B e aic de aie e i dc de e N ae e e i e s sk ajc Mk ok dk a X

frTECAP : TECAP2 .CODE
q

1h97

oTECAP : TECAP2
iDATCP:LIB1

iDATCP:LIB2

90

a
iDATCP : LIB3
nTECAP_CHECK

t

mTECAP_CV

t

mTECAP_ 4145

t
mTECAP_MEASURE
t
mTECAP_SETUP

t
nTECAP_CV_MOD
t
nTECAP HP MOS
t

iDATCP : LIB4
mTECAP MATRIX

iDAT681:PROBE_ 681
mPROBE_DRIVER

t

iDATCP : LIB4
nTECAP PROBER

t

iDATCP:T USER
mUSER_MODULE

iDATCP :MATIN
nTECAP HP BJT

t

mTECAP DIODE

t

nTECAP SIMULATE
t

nTECAP OPTIMIZER
t
mTECAP;CONTRDL
t

mnTECAP

t

kg

91

Appendix D
User Module Code

This appendix contains the complete listings for the user module extension

to TECAP which allow the mapping of wafer parameters (all of the commands

in the A menu of TECAP2).

SLINES 6558
SREF 458

{PRINT DATE : 8511.12}
{wwnnnrnnnmnnknknnswknkk TECAP 2 USER’S MODULE sk sk sk sk sk sk 3 o ok ok ok sk sk ok ok 3¢ ¢ o ok

This module contains the user code to automate the full
wafer surface gathering of data, plotting the distribution of
that data, and saving and retrieving it. It was written as part
of the Master’s Thesis of Phillip Mark Goldman,; MS EE Jan ’886,
Lehigh University.

Each procedure is commented rather thoroughly and should be
self-documenting. More background on the justification and
results obatined by this routine may be found in the mein body
of the Thesis document. The models (3, 14, and 15) at the end
have not been modified by the author in any way. |

The author would like to thank Mr. Ebrahim Khalily and =all
those at Hewlett-Packard who made this work possible through
donations of software, equipment, expertise, patience, and
understanding.

-Phillip M. Goldman

****************#**}

module wuser module;

{ **x%%x Thesis Mod. Version 1C.02 Date: 11-12-85 *#*xxx }
{ **xx*xx User Mod. Version: 1C.O1 Date: 4-10-84 **xxxx }
{ **xxxx IMR Version: 1C.00 Date: 3-07-84 =xxxxx }
{ s IMR Version: 1B.0OO Date: 7-28-83 wxxxxxx }
{ }

«xxx*xx Prototype Version: 1A.00 Date: B-03-83 #wkuxkx
8search ’DATCP:LIB2’,°’DATCP:LIB3’, ’+«INTERFACE.’$

import

{ Loads some of the more useful libraries provided with TECAP }

tecap data base
tecap utility
tecap plot
tecap 41456
tecap 4141
tecap cv

tecap measure

W W W Y w

92

export

{ Tell the world what

const

map X size
map y size

type

map ptr

map data

procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure

procedure model three(var p

menu_array

user init(var m

a0;
al;
al;
a3;
ad;
ab;
ab;
a7 ;
al8;
ag;
al0;
all;
all;
al3;
ald;

30;

30;

.data

.setflg

record

data:array [O..map x size, O..map y size] of

setflg:array [O..map x size,0..map y size]

end;

var
var
var
var
var
var
var
var

tecap ch
hpib 2
iodeclar

dgl 1lib

eck

ations

[

)

is in this program segment }

array [0..14] of string[20];

points to datea for map in the heap - dynamic }
“map data;
data structure for the map itself:

contains the numbers

whether the data is valid

real;

of boo

vpin
ipin
qgpin
gmat
xmat
nod

lim

corner,

o0 [1] [) () [) [) (2] [

infoflag,initflag,dflag,acflag,

93

lean;

: menu_array) ;

par_type;
array8;
array8;
array8;
array88;
array88;
arraynn;
integer8;
termal :

real;

areaflag : boolean);

(X4

procedure model fourteen (var p : par_type;
var vpin : array8;
var ipin : array8;
var gpin : array8;
var gmat : array88;
var xmat : array88;
var nod : arraynn;
var lim : integerS8;
var corner,termal : real;
infoflag,initflag,dflag,
acflag,areaflag : boolean);
procedure model fifteen (var p : par type;
var vpin : array8;
var ipin : arrayS8;
var gpin : array8;)
var gmat : array88; |
var xmat : array88;
var nod : arraynn;
var lim : integerS8;
var corner,termal : real;
infoflag,initflag,dflag,
acflag,areaflag : boolean);
implement
const
ver = '1C.02°;
var

boltz, charge, ctok, epsO, epssil, epsox, pi, ref temp,
nom_ temp, ref vt, ref eg, ref ni: real;
{ has space been set aside? }
map allocated: boolean;
{ points to data (if any) in memory }
map array: map ptr;
{ how big is the map? }
map x_actual, map y actual: integer;
{ what are we mapping? }
map par num: integer;

function intnum(i: integer): string 80;

{ -—————————————————————————_ ————— e o i i e e e o e e
Generates the string representation of an integer
number. There is no decimal point, and the string
is of arbitrary length.

___________________ ; _____,____._____.____.____.___._____._._______._}

var
ix: integer;
s: string 80;
begin

A

strwrite(s, 1, ix, i);

94

intnum := strltrim(s);
end (* intnum =) ;

function realnum(r: real; n, m: integer): string 80;

Makes a string representation of a real number,

formatted like the FORTRAN Fn.m style. If a number
cannot fit in that format, the default Pascal
style is used.

__ }
var
ix: integer;
s: string 80;
begin
if (abs(r) < ten to(n - m)) and (abs(r) > - ten_to(n
then o
strwrite(s, 1, ix, r: n: m)
else
strwrite(s, 1, ix, r);
realnum := strltrim(s);

end (* realnum =*);

function map | mean(datarray: map data, nx, ny: integer): real;

Calculate the mean of data in the map. Thls procedure
jgnores the extra zeroes stored in data locations not
yet explicitly set by the user.

)
var
ix, iy, count: integer;
sum: real;
begin
sum := O;
count := O;
for ix := O to nx do
for iy := O to ny do
if datarray. setflg[ix, 1iy]
then {the data has been set}
begin
sum := sum + datarray. data[ix, iy];
count := count + 1;
end (* then =*);
map mean := sum / count;

end (* function map mean *) ;

function map standard_deviation(datarray: map_data; nx, ny:
integer): real;

- m))

Calculates the standard deviation of the data in the map,
also ignoring the unused data in the array.

var
ix, iy, count: integer;
s squared, x squared, sum x: real;

begin
x_squared := O;
sum x := O; |
count := O;
for ix := O to nx do
for iy := O to ny do
if daterray. setflg[ix, iy] then
begin {the data has been set here}
count := count + 1;
x_squared := x_squared + sqgr (datarray.
| deta[ix, iy]);
sum x := sum Xx+datarray.data[ix,iy];
end (* then x);
if count > 1
then
s _squared := (count*x squared-sqr(sum_ x))
/count/ (count-1) |

else
s _squared := 0.0;
map standard deviation := sqrt(s_squared);
end (* function map standard deviation x);

function round down(x: real): resal;

{ _________ e e —— e e e e o e — e — e — e e e — —— — ——— —— —

Rounds down the data; see full definition below.

Returns the number x rounded upward to two significant
digits.

var
mant, expn, sign: real;

begin
if x < O then
round up := - round down(-x)
else |
if x >0
then { then the number isn’t zero }
begin
expn := trunc(loglO(x));
mant := x / ten to(expn - 1);
mant := trunc(mant + 1) / 10.0;

96

round up := mant * ten to(expn)
end (* then *)
else
round up := 0.0;
end (* round up x*);

{--------—————c——————————————_—_——— e e
Returns the number x rounded downward to two significant
digits.

__ }
var

mant, expn, sign: real;
begin _
if x < O then
round _down := - round up(-x)
else
if x > O
then { then the number isn’t zero }
begin
.~ expn := trunc(loglO(x)) ;
mant := x / ten to(expn - 1);
mant := trunc(mant) / 10.0;
round down := mant * ten to(expn)
end (* then x*)
else
round down := 0.0;
end (* round down x*);

procedure compose name (inname: string 80; var final_name:
string 80);

{ e e e ——————————————
Assembles the filename for getting the map data file, using
the defaults in the TECAP data base if needed.

________ » ._»_____._______________._._,..____,_____»___.____._____.____.__..____.__.__.__._}
begin
finael name := ’’;
if strpos(’:’, inname) = O

then <{volume not specified, use the default}
final name := folume_prefix;
strappend(final name, inname) ;
if strpos(’.’, inname) = O
then {extension not specified, add the TECAP standard}
strappend (final name, ’.M’);
end (* compose name *) ;

procedure store map datsa;

97

Stores the data in the map in a character format with all
of the necessary information. Called from procedure A7,
! "Store/Fetch map"

var -
datafile: text; {file for data}
fname: string 80; {file name}

ix, 1y: integer;

strbool: array [false .. true] of string 8;

begin
{these allow printing the literals for booleans}
strbool [true] := ’TRUE’;
strbool [false] := ’'FALSE’;
show title(’Storing Disk Data...’);

{ Get file name from user and open it up }
ask (’Enter file name data storage’, ’’, data file name,
data file name); | -
compose name (data file name, fname);
rewrite (datafile, fname);

{ Write the file header - will identify map files }
write(datafile, *MEASURED file , TECAP2 : ’, ver. b);
writeln(datafile, ’* {MAP DATA FILE - ’, dev. comment, ’}’);

writeln(datafile, user.name) ;

{ Device type }
writeln(datafile, ord(dev. typ));

{ Various pieces of information }
writeln(datafile, dev. name);
writeln(datafile, dev. wafer);
writeln(datafile, dev. comment);

writeln(datafile, dev. 1, °’ ’ dev. w);
writeln(datafile, dev. as, ° >, dev. ad, ’, dev
ps, '’ ’, dev. pd);

writeln(datafile, 0.0, 0.0);

{ Mapped model and parameter - the text is for the reader }

writeln(datafile, activemodel, ’, model name [
activemodel]) ;
writeln(datefile, map par num, °’ ’, active par. name|

map par_ num]) ;

{ Map sige as set }

writeln(datafile, map x actual, °’ ’

, map y actual);

{ Write the data out with flags }
for ix := O to map x_actual do
for iy := O to map y actual do
writeln(datafile, map array”. data[ix, iy], ’ °’,
strbool [map array”. setflg[ix, iy]]);

{ Finish up, all nice and neat }
writeln(datafile, ’End of file’);

98

close(datafile, 'SAVE’);
end (* store map data =);

procedure fetch map data;

Loads the data from a (supposedly) map data f11e into the
internal database for extension or analysis. Also called
from procedure A7 ”Store/Fetch map"

var
datafile: text;
fname: string 80;
ix, 1y: integer;
buffer: string[256];

begin
show title(’Retrieving Disk Data...’);
{ Get the file name from user and open the file }
ask (’Enter file name containing map data’, ’’,

data file name, data file name);
compose name (data file name, fname);
reset (datafile, fname);

{ Check to see if the header is there, identifying it
as a real map data file }
readln(datafile, buffer);
if not ((str(buffer, 1, 8) = ’MEASURED’) and (str(buffer,
33, 3) = ’MAP’))
then {oops, not map data }

begin
error(’ Not a map data file ’);
pause;
end (* then =)
else

{ OK, we’ll take it }
begin

{ Read and store the device parameters }
readln(datafile,user.name);
readln(datafile, {dev.typ} ix);

case 1ix of

1: dev.typ := nmos;
2: dev.typ := pmos;
3: dev.typ := npn;
4: dev.typ := pnp;
b: dev.typ := njfet;
6: dev.typ := pjfet;
7: dev.typ := diode;
8: dev.typ := tube;
9: dev.typ := misx;

end (* case x);
readln(datafile, dev. name);
readln(datafile, dev. wafer);
readln(datafile, dev. comment);

99

readln(datafile, dev. 1, dev. w);

readln(datafile, dev. as, dev. ad, dev. ps, dev.
pd) ;

readln(datafile);

readln(datafile, activemodel);

readln(datafile, map par num);

readln(datafile, map_x_aCtual,;map_y_gctual);

{ Read all of the numbers into the correct locations,
taking care which are really set and which are not }
for ix := O to map x actual do
for iy := O to map y actual do
begin
readln(datafile, map array”. data[ix,
iy], buffer);

buffer := strltrim(buffer);
) { is the data previously set? }
map array . setflg[ix, iy] := (buffer
= ’TRUE’);

end (* for =x);

{ Check to see we got the whole file }
readln(datafile, buffer);
if buffer <> ’End of file’ then
begin ‘
error(’ No end of file marker found..’);
pause;
end (* then =x);
end (> else =*);
end (* fetch map data x);

procedure user_init(var m: menu array);

A ——— S
Supplied by HP, it loads the menus for the command page.

)
begin

m[O] := ’A) Store map data ’; ‘
m[1l] := ’Al) Select map param’; \
m[2] := ’A2) Initialize map ’;

m[3] := ’A3) Print map data ’;

m{4] := ’A4) Print stat data ’;

m[b] := ’Ab) Statistics plot ’;

m[6] := AB8) Wafer Surf. Plot’;

m[(7] := 'A7) Save/Fetch Map ’;

m[8] := ’A8) Release Prober ’;

m[(9] := ’

m[10] := ’A10) Set supply vals’;

m[1l1l] := 'All1l) Time delay (s) ’;

m[12] := 3

m[13] := >3

m[14] := ' ’;

map allocated := false;
map par num := 1;
end (* user_init =*);

100

procedure a0;

{----——————— Store map date ———————
Takes the data from the table in the active model and put 1t
into the map data base, while also setting the flag so we use
it later on.

1Y
begin
if not map allocated
then {no data base to load}
begin
error(’ Map data space not allocated ’);
pause;
end (* then =)
else
begin
{Confirm the location and value of the da+a}
write(’Position ’, probe x - origin x: O, ’, ?’,
probe_ y - origin y: O, ’ = ?);
writeln(’ >, strng(active par. value|
map par num]), ’ ’, active par. unit[
map par num]) ;
writeln(’ ’);
{Set the data and flags now}
map array . setflg[probe x, probe y] := true;
map_array“. data[probe x, probe y] := active par.
value [map par num] ;
wait (2000) ;
end (* else =);
end (* a0 x*);

procedure al;

{---——————- ————————— Select map parameter—-—-—-—-——————— —_——————— -
Pick which of the multitude of parameters in the current
model you want to map out. Only one to a customer (so far)

e e o e o o 2o e o e -__..._'_.._..-__._..--__._._}

var
ip, endnum: integer;
5: string 80;
begin
page;
show title(’Select Map Parameter);
with active par do
begin
{Make sure the parameter exists in the model}
if map par num > number then
map par num := 1;
{Show what you’ve got so far} |
- writeln(output, ’ Current model is ’, title);
write (output, ’ Parameter selected is now ’, name
[map par num]);
writeln(output, ’ (’, unit[map par num], ’)’);

writeln(output, ’ Possible parameters are:’);

101

s e e AT Rl

gl 2L K TR

{ make three columns of parameters, which read
up and down}

ip := 1;
if number > 10
then

endnum := 10
else

endnum := number;
repeat

write (output, ip: 3, ’ ’, name[ip], ’ ’: 20 -
strlen(name[ip]));

if ip + 10 <= number <then

write (output, ip + 10: 3, ’* ’, name[ip +
10], ’ ’: 20 - strlen(name[ip + 10]));
if ip + 20 <= number then
write (output, ip + 20: 3, ’ ', name[ip +
20]);
ip := 1ip + 1;

writeln (output) ;
until ip > endnum;

{ Ask for the new parameter, using the old one as
the default value }
writeln (output) ;
8 := ’1..’ 4+ intnum(number);
repeat
askinteger (
’Enter the number of the mapping parameter’
y S, mMap par num, map par_ num) ;
until (map par num <= number) and (map par num>O) ;
end (* with =*);
end (* al =);

procedure a2;
{ Initielize Map Data }
{-.- _____________________ e e e e e o — o e e e — ——— —— —
Thas routine-alloCates the array for the map data. It uses
the default size of the arrays established above for
this work.

var
answer: string 80;
ix, Jy: integer;

begin

page;

show title(’Initializing Map Data’);

if map allocated

then {somebody’s already sleeping in the database}

begin
warn(’This operation may destroy existing data’);
write (output, ’ ’);
ask (0K to destroy map data’, ’Y or N’, ’N’,
answer) ;

if answer = 'Y’ then {go ahead and destroy}

102

map allocated := false;
end (* then x); |

if not map allocated
then {we need the space set aside}

begin
if map array = nil then
new (map array) ;
writeln(#10,’---- Data space allocated ----’,#10);
map allocated := true;
map x_actual := numb hor chip;
map y actual := numb vert chip;
{zero the array} | o
for ix := O to map x size do (2%
for jJy := O to map y size do 0
begin
map array . setflg[ix, jy] := false;
map array . data[ix, jy] := 0.0;
end (* for =*); | |
pause;
end (* then =*);
end (> a2 =) ;

procedure a3;

{-------————— Print map data---—-—--—---o
Prints out the data in the map, noting the current model,
parameterm=, and whether each data point it valid by
location.

B}
var

s: string 80;

ix, Jy: integer;

next: integer;

begin

page;

show title(’Print Map Data’);

alpha only;

if map mllocated

then

begin
{use the standard TECAP routines}
print start;
print(’ ’);
print (’Print Stored Map Data’),
print(’——--—-——m =~)5
print(’ ’);
{Show the active model and parameter}

8 := ’Active Model is ’;
strappend(s, active par. title);
print(s) ;
s := 'Parameter Mapped is ’;
strappend(s, active par. name [map par num]) ;
strappend(s, ’ (’);

strappend(s, active_par. unit[map_par_num]);
strappend(s, ’)’);
print(s) ;

103

print (
Y x)-.;
print (
| X position Y position Value |’);
print(
' ");
{ Now print all the data }
for ix := O to map x actual do
for jy := O to map y actual do
begin |
8 = 7
strwrite(s, 1, next, ix - origin x: 8);
strwrite(s, next, next, ° ’:_Ql;_
strwrite(s, next, next, jy - ofigiq_y
8);
strwrite(s, next, next, ' ’: 9);
if map array”. setflg[ix, jy]
2 then {data was set up}
strappend (s, strng(map array”.
datalix, jy]))
else
strappend (s, ’Not set’);
print (s) ;

end (* for x);

print end;

end (* then x*)

else

begin
error (’No available map data’);
pause;

end (* else x);

end (* a3 *);

procedure a4;

{--------————-—-----Print stat data-—————————— ———— -
Print the mean, standard deviation, minimum, and maximum of
the data, as well as the expected value adjusted for sample
size.

var
ix, iy, next, min x, min y, max X, max y: integer;
min, max: real;
8: string 80;

begin
show title(’Finding Statistical Data’);
“if map allocated
then
begin

print start;
8 := 'Parameter Mapped is ’;
strappend(s, active_par. name[map_ par_ num]);

104

strappend(s, ’ (');

strappend(s, active par. unit [map par num]) ;
strappend(s, ’)’);

print (s) ;

print (’Statistical Data for Current Map’);
print(’-—---—-———)
print (’ ’);

8 := ’ Mean = 7,
strappend (s, strng (map_mean(map array”,
map_x_actual, map y actual)));

print (s) ; |

s := ’ Standard Deviation = 7,

strappend(s, strng(map standard deviation(
map array”, map x_actual, map y actual)));

print (s) ;

8 := '’ Value of parameter = 7

strappend (s, strng(map_mean(map_array“,
map x actual, map;y;actual)));

strappend(s, ' +/- ’);

strappend(s, strng(l1.96 * map standard deviation(
map array , map_x_gctual, map y actual) /
sqrt ((1 + map_x_actual) * (1 + map y actual))
))s

print (s) ;

print (* ’);

{Find the min and max, by location}
min := 1.0e+300;

max := - min;
min x := 1;
min y := 1;
max x := 1;
for ix := O to map x actual do
for 1y := 0O to map y actual do
begin
if map array”. setflg[ix, iy]
then
begin
if map array”.data[ix,iy]>max
then |

begin
. max := map_ array’ .
data[ix, iy];
max x := ix;
max_y := 1iy;
end (* then x*); |
if map array”.data[ix,iy]<min
then g
begin
min := map array .
data[ix, iy];
min x := ix;
min y := iy;
end (= then =);

105

end (* then =*);
end (= for =);

8 := ’ Minimum data value = 7

strappend (s, strng(min)) ;

print (s) ;

8 := ' at location ’;

strappend (s, '(’);

strwrite(s, strlen(s) + 1, next, min x - origin x
0); |

strwrite(s, next, next, ’, ’);

strwrite(s, next, next, min y - origin_y: 0);

strappend(s, ’)?’);

print (s) ;

s := ’ Maximum data value = 73

strappend (s, strng(max)) ;

print (s) ;

5 := at location ’;

strappend(s, ’(’);

strwrite(s, strlen(s) + 1, next, max x - origin x
O) ;

strwrite(s, next, next, ’, ’);

strwrite(s, next, next, max y - origin y: O);

strappend (s, ’)?’); |

print(s) ;

print(’ ’);
print end;

end (> then x)

else

begin
error(’ No Available Map Data to analyze ’);
pause;

end (= else *);

end (* a4 *);

procedure ab;

{-- - Statistical plot-—--——m e
Graph a histogram plot of the data distribution in the map,
along with a superimposed curve for a normal distribution.

const
nblocks = 10;

var
min x, max_x, max_height, block_step: real;
height data: array [0O.. nblocks] of integer;
mean, st _dev: real;
count, g, ix, 1y: integer;
x, norm: data array;
left, right, top, bottom: real;
deltax, deltay: real;
begin

show_title(’Plotting Data Dlstrlbutlon);
if not map allocated

106

then {No data to plot}

begin
error(’ No Available Map Data to Analyze ’);
pause; | |
end (* then =)
else |
begin
{ Get mean and standard deviation }
mean := map_ mean(map_array”, map x_actual,
map y actual);
st _dev := map standard deviation(map array”,
- map_x_actual, map y actual); |
-
{ Set the bar heights to zero to staf% }
for ix := O to nblocks do
height data[ix] := O;

{ Find the minimum and maximum data (for autoscale)}

min x := 1.0e+300;
max x := - min_Xx;
for ix := O to map x actual do
for iy := O to map y actual do .
if map array”. setflg[ix, iy] d?
then
begin
if map array”. data[ix, iy] >
max. X
then
max_x := map_array . data[ix,
| iy]s;
if map array”. data[ix, iy] <
min x
. —
then
min x := map array”. data[ix,
iy];
end (> then x);
min x := round;down(min_x);
max x := round up(max x) ;

{ If deta is identical (errant) prevent a (-6) error }

if max x = min x
' then
block step := 1e-30
else |
block_step = (max_x - min_x) / (nblocks);

{Now find the vertical heights of the bars }
max height := O;
for ix := O to map x actual do
for iy := O to map y actual do
if map array”. setflg[ix, iy]
then
begin
g := trunc((map array”. data[ix,
iy] - min_x) / block step);
height data[g] := height data[g]
+ 1;

107

if height data[g] > trunc(
max_ height)
then
max height := height data[g];
end (* then =);
max_ height := max_height + 1;

{ do the actual plotting now }

{set up the display surface}
graph init(plot_output);

left := min x - 0.15 * (max_x - min_x);
right := 0.06 * (max_x — min_Xx) + max_Xx;
top := max height * 1.15;

bottom := - 0.35 * (max_height) ;

set window(left, right, bottom, top);

{Set a frame width} |
deltax := 0.006 = (right - left);
deltay := 0.0056 * (top - bottom);

{Draw the frame}
move (min x, 0.0);
line(max _x, 0.0);
line (max_x, max_ height);
line(min x, max height);
line(min x, 0.0);
move (min x - deltax, 0.0 - deltay);
line(max x + deltax, 0.0 - deltay);
line(max x + deltax, max_height + deltay);
line(min x - deltax, max_height + deltay);
line(min x - deltax, 0.0 - deltay);

{label the vertical axis}
move (left, 0.0);
set char size(0.01 * (right - left), 0.025 = (top
- bottom));
gtext (strng (0.0));
move (left, max height);
gtext (strng (max height)) ;

{ graph label }

move (min x + 0.30 = (max_x - min_x), bottom +
O0.14 * (top - bottom));

set char size(0.03 * (right - left), 0.04 = (top
- bottom)) ;

gtext (active par. name[map par num]);

gtext(’ (7);

gtext (active par. unit[map_ par_num]) ;

gtext(’)’); |

{ Label some important numbers}
set char size(0.0156 * (right - left), 0.022 x (
top - bottom));
move (min x + 0.30 * (max_x - min x), bottom +
0.08 » (top - bottom));
gtext (’Mean = ' + strng(mean) +
unit [map par num]);

 ’ + active_ par.

108

set char size(0.0156 * (right - left), 0.022 = (
top - bottom));

move (min_x + 0.30 » (max _x - min x), bottom +
0.06 * (top - bottom));
gtext (’Standard Deviation = ’ + strng(st _dev));

set char size(0.0156 * (right - left), 0.022 = (
top - bottom));

move (min_x + 0.30 * (max x - min_x), bottom +
0.02 =« (top - bottom));
gtext (’Bar width = ’ + strng(block step) + * > +

active_par. unit[map par num]);

{ Title Bar }

set char size(0.025 * (right - left), 0.04 = (top
- bottom));

move (min x + 0.30 * (max x - min x), 1.025 =
max_ height) ; |

gtext (’Map Data_Distribution’);

set char size(0.02 = (right - left), 0.023 * (top
- bottom));

move (left, 1.1 » max height);

gtext (’TECAP Ver ’ + ver);

{Label the horizontal axis scale and vertical title}
set text rot (0.0, 1.0); |
move (left + 0.06 = (right - left), 0.30 =
max_ height) ;

set char size(0.030 x (right - left), 0.04 = (top
- bottom)) ;

gtext (’Count’) ;

move (min x, bottom);

set char size(0.01 * (right - left), 0.023 = (top
- bottom));

gtext (strng(min_ x)) ;

move (max_x, bottom);

gtext (strng(max x)) ;

{Draw all of the blocks on the chart NOW}
for ix := O to nblocks - 1 do
begin
move(min_x + (1x) = block_step, 0.0);
line(min_x + (ix) = block step,
height data[ix]);
line(min x + (ix + 1) = block step,
height data[ix]);
line(min x + (ix + 1) =* block step, 0.0);
end (* for =);
move (min_x, 0.0); { to pick up the pen }

{draw the normal curve now}

count := O;
for ix := O to map x_actual do
for iy := O to map y actual do

if map array”.setflg[ix,iy] then
count := count + 1;
for ix := 1 to 100 do
begin
x[ix] := min x + (max_x - min_x) * (ix -

109

1) / 99;
norm[ix] := (count * block step) / (
sqrt (2.0 = 3.14159) * st dev) * exp(-
sqr (x[ix] - mean) / 2.0 / sqr(st_dev)
»)5

end (* for x);

move (x[1], norm{1l]);
for ix := 2 to 100 do
line(x[ix], norm[ix]);
greph term;
end (* else x);
end (* ab =) ;

procedure a8;

Plot the physical distribution of the paramters as =
‘Schmoo plot. (Contour plotting was not effective; the
data varied too quickly for a meaningful picture to

form.)
__ }
const
ndivs = 10; {number of "families" of values}
var

left, right, bottom, top: real;

date: string 80;

mapchar: string B80;

min data, max data, step data: real;

g: integer; |

ix, 1y: integer;

shiftx, shifty: real;

width, height: real;

thpi, loc, xradius, yradius, step: real;

center: record |
x, y: real;

end;
begin |
{characters (in order) for the plotting}
mapchar := '0123456789X’;
date := form date;

show_title(’?iot Wafer Map’);
if not map allocated

then
begin
error (’ No map data to plot ?’);
pause ;
end (= then =)
else
begin

{Find the extent of the data, for scaling}
min data := 1.0e+300;
max data := - min_data;

110

for ix := O to map x actual do
for iy := O to map y actual do
if map array”. setflg[ix, iy] :
then |
begin
min_data := min(min_data,
map array”. data[ix, iy]);
max_data := max(max data,
| map array . data[ix, iy]);
end (* then =x);
min_data := round_down(min_ data);
max data := round up(max data);

{ If data is too close together, prevent a /O error}
if abs(max data - min data) < 1le-20
then |
step data
else
step data := (max_data - min data) / ndivs;

le-30

{ Set ‘up the plotting surface parameters }
width := 2.0 * (map x actual + 1);
height := 1.5 * (map_ y actual + 1);

left := - 0.04 * width;

right := ((map_x_actual + 1)) + 0.50 * width;
shiftx := 0.01 *= width;

top := (map_y actual + 1) + 0.18887 * height;
bottom := - 0.1667 * height;

shifty := 0.01 * height;

graph_init(plot_output); |
set window(left, right, bottom, top);

{ Plot the frame for the map }

move (- 3*shiftx, - 3*shifty);

line((map x actual + 1) + 3xshiftx, - 3xshifty);

line((map x actual + 1) + 3xshiftx, (map_y actual +
1) + 3*shifty); |

line(-3* shiftx, (map y actual + 1) + 3xshifty);

line(-3* shiftx, - 3*shifty);

move (- 2 = shiftx, - 2 * shifty);

line((map x actual + 1) + 2 * shiftx, - 2 =
shifty);

line((map x actual + 1) + 2 =* shiftx, (
map y actual + 1) + 2 = shifty);

line(- 2 * shiftx, (map y actual + 1) + 2 =
shifty) ;

line(- 2 » shiftx, - 2 = shifty);

{ Label the map }
set char size(0.030 * width, 0.025 * height);
move (left, top - 0.023 * height);
gtext (’WAFER MAP - TECAP ver ' + ver);

set char size(0.026 * width, 0.0356 * height);

111

move (left, bottom + 0.001 * height);

gtext (’Parameter mapped is ' + active_par._name[
map par_num]) ;

gtext(’ (’ + active par. unit[map par num] + 'Y

set char size(0.02 * width, 0.02 * height);
move (left, top - 0.080 * height);
gtext (’Date and Time: ’ + date);

move (left, top - 0.08 * height);
gtext (’Wafer Name: ’ + dev. name);
move (left, top - 0.10 * height);
gtext (’User Name: ’ + user. name) ;
move (left, top - 0.12 * height);
gtext (’Type: Y
case dev. typ of
nmos :
gtext (’NMOS’) ;
pmos :
gtext (’PM0OS?) ;
npn:
gtext (’NPN’) ;
pnp:
gtext (’PNP’);
njfet:
gtext (’NJFET’) ;
pjfet:
gtext (’PJFET’) ;
diode:
gtext (’DIODE’) ;
tube:
gtext (’TUBE’) ;
misx:
gtext (’MISX’);

end (* case x);

{Show the scale chart}
move ((map x_actual + 1) + 0.056 * width, (
map y actual + 1));
set char size(0.015 * width, 0.020 * height);
gtext (’Blank is unmeasured’);
for ix := O to ndive-1 do
begin
move ((map x actual + 1) + 0.06 = width, (
mep y actual + 1) - 0.0356 = (1 + ix)
*» height) ;
gtext (str (mapchar, ix + 1, 1) + i >');
gtext (strng(min data + ix = step data) +
y ’);
gtext (active par. unit[map par_ num]);
end (* for =);

{draw the wafer}

xradius := 0.5 * (map x actual + 1) + 1.5 * shiftx;
yradius := 0.5 * (map_y actual + 1) + 1.5 = shifty;
center. x := 0.5 *= (map x_actual + 1);
center. y := 0.5 = (map y actual + 1);
step := 0.387 / 4 {radians}; |

112

thpi := 1.6 = 3.141569286;
move (center. x + xradius * cos(thpi + step * 4),
center. y + yradius * sin(thpi + step * 4));
loc := thpi + step * 4;
repeat
line(center. x + xradius = cos(loc), center. y
+ yradius * sin(loc));
loc := loc + step;
until sin(loc) < sin(thpi - step * 4);
line(center. x + xradius * cos(thpi + step = 4),
center. y + yradius * sin(thpi + step * 4));

{Draw grid outlining chip if requested}
if grid flag
then
begin
set line style(1l);
for ix 1 to map x actual do
begin
move (ix, O);
line(ix, (map y actual + 1));
end (= for =);
for iy := 1 to map y actual do
begin
move (O, 1iy);
line((map x_actual + 1), iy);
end (* for =*);
set line style(l);
end (* then x);

{NOW we can plot the map}
set char size (0.4 = width / map x actual, 0.6 =
helght / map y actual);

for ix := O to map x actual do
for iy := O to map y actual do
if map array”. setflg[ix, iy]
then
begin
g := trunc((map_array’. data[ix,

iy] - min_data) / step data);
move(ix + 0.1 * width /
map x_actual, iy + 0.156 =
height / map y actual);
gtext (str(mapchar, g + 1, 1));
end (* then x*);
graph term;
end (* else *);
end (* aB x*); |

procedure a7;

Controlling routine for loading and storing the map data
Calls two routines at the top of the file to handle the
details; this makes sure data goes where it should.

113

var |
do b, ans: string_ 80;

begin
show title(’Disk Data Manager’) ;
repeat
ask (’Fetch data from or store data to disk’, ’'F or S’ -
, 'S’, do_b);
until (do_ b = 'F’) or (do_b = ’f’) or (do b = ’S’) or (
do b = ’'s’); |

if (do b = ’s’) or (do_b = ’S?’)
then {We want to store data}
if not map allocated
then
begin
error(’ No map data to store ’);
pause ;
end (* then =*)
else
stOre;map_data
else | |
begin
if map allocated
then {some data is in the way.}

begin %
warn (b
 This will overwrite some existing data ’);

ask (0K to destroy map data’, ’Y or N’,
"N’, ans) ;
if (ans = 'Y’) or (ans = ’y’) then
fetch_map_data;
end (* then =)
else
begin
a2l;
fetch map data;
end (* else =x);
end (* else =*);
end (* a7 =);

procedure a8;

{ ———————————— C——— o o — o — s . —— " — e o — ——— . — —_— o — . ——— —
Release the prober to front panel control, for loading
wafers, etc.

begin

local (hpib*100+rk_1032_add) ; \N‘k
end (« a8 *); |

procedure 89; begin end (* a9 *);

procedure alO;

114

{--——————— - Set Supply Values—----- -

~ Will allow the user to set any supply in the 41456 to a value
desired; useful for long-term voltage applications when used
with the time delay routine All.

var
what': string 80;
which unit: unit_type;
value, compl: real;
mode: string 80;
src_mode: source_type;

begin
page;
show title(’Setting Supplies’);

{Find out what the user wants, and wait till it’s correct}

repeat

ask (’Set which unit?’, ’SMU1,2,3, or 4; VS1 or 2’, *°
, what) ;

which unit := gnd;

if (what = ’SMU1’) or (what = ’smul’) then

_ which unit := smul;

if (what = ’SMU2’) or (what = ’smu2’) then
which unit := smu2;

if (what = 'SMU3’) or (what = ’smu3’) then
which unit := smu3;

if (what = ’SMU4’) or (what

’smu4’) then

which unit := smu4;

if (what = 'VS1’) or (what = ’vsl’) then
which unit := vsl;

if (what = ’VS2’) or (what = ’vs2’) then
which unit := vse2;

until which unit <> gnd;

How big a valuer
{H big lue? |
askreal (’What bias level?’, ’volts or amps’, 0.0, value);

{Just for the SMU’s}

if (which unit = smul) or (which_unit = smu2) or (
which unit = smu3) or (which_unit = smu4)
then
begin
askreal (’Enter channel compliance’, ’amps’, le-3,
compl) ;

ask (’Enter source mode’, 'V or I’, ’V’, mode) ;
if ((mode = ’'V?) or (mode = ’'v’))
then
src_mode := v
else
src_mode
end (* then *);

1;

{Do the change NOW}
set bies(which unit, value, compl, src_mode);
end (* al0 *); |

115

procedure all;

¥ G e e S
Arbitrary time delay. Value coming in is in seconds and
may have 1 millisecond resolution. The screen is kept
busy, so one may know the system is working at waiting.

var
s: string 80;
x: integer;
z: real;

begin
{Wait for a valid number}
repeat |
ask (
'Enter time delay in seconds (engineering units valid)’
. '0..100000 (100k)’, ’0.0’, s);

z := number(s) =* 1000;
x := trunc(z);

until (x >= O0) and (x <= maxint);

write(’... Waiting ’, s, ’ seconds ’);

{ Print a dot every two seconds, just to let the
world know we’re still alive}
while x > 2000 do
begin
wait (2000) ;
x := x - 2000;
write (output, ’.?%);
sound busy;
end (* while =*);
wailt (x) ;
end (* all *);

procedure al2; begin end (* al2 =);
procedure al3; begin end (* al3 =);
procedure al4; begin end (* al4 x*);

{ The model programs are not listed here because they were

not a part of the thesis work. For a complete listing see
the file "T USER.TEXT" on the "TCPUS" disk supplied with
the system update instructions. }

$LIST OFF$
. SLIST ONS

end {user module code for thesis}.

116

Vita

Phillip Mark Goldman was born October 25, 1962 in Meadowbrook,
Pennsylvania to Robert and Barbara Goldman. He attended a National Science
Foundation Summer Science Student Program at Mankato State University in
the summer of 1979. He attended Lehigh University from August 1980 until
January 1986, during which time he earned a Bachelor of Science in Computer
Engineering (June 1984) and a Master of Science in Electrical Engineering
(January 1986). During the summer of 1983 he was awarded a Sherman
Fairchild Summer Fellowship. He has been elected to Tau Beta Pi, Eta Kappa

Nu, and maintains membership in LE.E.E.

117 (

	Lehigh University
	Lehigh Preserve
	1985

	An automatic data acquisition system for microelectronic test structure evaluation /
	Phillip Mark Goldman
	Recommended Citation

	tmp.1551116526.pdf.kF2Pl

