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Abstract

The objective of this study was to find an accurate edge locating method
for .;sampled tomography type images. The test images were comfmter simulated
tomography images of a steel ”I” beam without photon radiation noise, an ”I”
beam with Poisson radiation noise injected, and a steel bar with Poisson photon
‘hoise. These images were processed by edge enhancement operators and
thresholding techniques. The operators that were tried were Roberts, Radial
Difference, Gradient, Maximum Difference, Unsharp Mask, and Chows. The
effect of Median filter preprocessing with these operators were also investigated.

Using the aprior knowledge of object’s approximate dimensions to select

threshold value from image histogram proved to give the best results of tried

techniques.




Chapter 1
History of Tomography and Edge
Detection

The tomography formula was developed by the radioastronomer Ronald
N. Bracewell in 1956 to help identify regions of the Sun which emitted
microwave radiation. His integral formula was not computationally practical
until the advent of the computer. Since then several different algorithms and
data collection sensors have been developed for its solution. The tomography

1 of development. Starting from a slow

scanner has undergone five generations
single source, single detector gauge moving in discrete linear paths to a fast
multiple source and multiple detector gauge rotating in a continuous circular
arc.

In 1968, methods for biomolecular imaging were develop independently
from earlier imaging work, using an electron microscope at various angles. In
1972, EMI LTD introduced an X-ray computer assisted tomography scanner for
medical applications. By 1984, the National Institute of Health was using
tomography to make a three dimensional moving image of the heart’s blood
reservoirs and could detect abnormal heart movement due to areas of inelastic
heart tissue which cannot be diagnosised even with open heart surgery.

Image processing has been evolving steadily throughout the evolution of
the computer. Because of the large amount of data that needs to be process,
the computer is also a necessary tool. In 1971, M. H. Hueckel published one of
the first articles on edge detection.  His detector overlayed seven digital

orthonormal templates on a circular pixel neighborhood to determine edge

presents along with edge type and orientation. It was both time consuming and
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i-na_ccurate, but showed the potential of the field.
Today the two fields of image processing and tomography have been
incorporated and have grow tremendously under the direction of the medical
\ instrumentation industry. Now there exist equipment that can detect the three
dimensional position of a brain tumor and optimally guide a surgical cryogenic
probe to its location minimizing healthy tissue damage. This kind of accuracy
can take an hour of processing time, but with continual hardware development,

parallel array processors for example, and image algorithm research, tomography

for real time industrial process control can be realized.




Chapter 2
Tomography Project Objectives

I had the privilege to work for three months on a tomography
development project at Homer Research Laboratories of Bethlehem Steel
Corporation. The goals set by Bethlehem Steel Corporation for their gauge
were to take a cross-section image of a moving two-hundred foot rolled beam
every two seconds or every thirty feet. The steel bar had to be radiated, and
at the same time, detector counts from the previous radiation had to be read
into the reconstruction algorithm, reconstructed and the resultant image had to
be processed to extract the beams edges and dimensioned to within thirty-two
thousandths of an inch. With this accomplished, a real time feedback loop can

be implemented to adjust the roller spacing for process control and for total line

automation.




Chapter 3
Tomography Gauge Computer Model

3.1 Computer Simulation Model

The Bethlehem Steel Corporation, Homer Research Laboratories’ developed
Fortran computer program was used to simulate a forth generation tomography
gauge and their Fortran tomography reconstruction program to create test
images. Actual gauge images were not used in experiments because gauge had
recgntly been built and all the hardware problems had not yet been resolved.
Also any gauge design parameters that experimenter might want to change
would be much easier and less expensively done in computer model than on
hardware. ‘The simulated gauge was composed of a rotating, ten revolutions per
minute, ring inside another stationary ring. The rotating ring had a thirty-four
inch radius and was holding a thirty REM, radioactive Barium 137 source
pellet, which emitted 660 KeV gamma photons. The strong intensity of the
source was chosen to reduce Poisson noise associated with emission and
detection of photons. The high energy of the source guarantees that no
detector experiences a zero count from the source at any time no matter what
the cross sectional area of the steel object. The forty-two inch radius,
stationary ring held one-hundred and twenty-eight photomultiplier tubes equally
spaced for gamma ray detection. Both the source and the detectors were inset
into their steel rings to columnate the gamma rays to reduce Compton scattered
false counts. But image blurring still occurred due to the three inch diameter,

finite aperture of the columnating holes.

The output of the gauge model was a 512 x 128 two dimensional array.




The second index number was the number of photodetectors in the gauge. The
first index number corresponds to the number of divisions or sampling :interval‘s
into which a one-hundred and twenty degree arc was divided. The arc was
traced out when the source moved diametrically across from a detector. With
an object in the gauge, the object would eclipse the source with respect to a
detector and the object’s shadow or photon count would be sampled and
recorded in discrete arc intervals. The time averaged detector output current
when the source was tracing an interval would be assigned to the source’s
center position in the tracing interval. Linear interpolation was then used in
the reconstruction program to determine shadow values between interval centers.
The average current was calculated by integrating t‘he current verses time plot
using a charging capacitor.

Therefore, there will be five-hundred and twelve shadow function samples
per detector. Using the polar arc intervals centered on the ring’s perimeter to
sample the shadow functions for reach of the one-hundred and twenty-eight
detector positions, causes space-variant blurring in the reconstruction region.
Imagine wheel spokes radiating outward from each of the one-hundred and
twenty-eight equally spaced positions around a ring. The overlapping sp‘okés
would divide the reconstruction region into unequal-area, irregular-shaped,
sampling polygons. Even though there is polar symmetry with respect to the
reconstruction region’s center and resolution Increases as you move toward
center, this necessitates the use of heuristic edge detection experimentation.

Therefore increasing either of the array’s indexes would increase the

¢

resolution of the image. Once these numbers have been set, there is nothing

that can be done in the reconstruction algorithm to increase this upper bound




on resolution, only reduce it.

The gauge computer model ran on an IBM 3081 using single precision
variables. The steel gauge outputs its detector current to charging capacitors
through a ten bit A/D converter and the two dimensional array values are

assigned by a Motorola 68000 processor.

3.2 Noise and Error

Photon radiation noise was added to the individual photodetector counts In
each shadow function fan increment as the last step of the gauge model. The
photon noise was modeled as Poisson noise which is characteristic of both source
emission noise and photomultiplier detection noise. The mean and variance of
the noise was assumed to be the original count and the square root of the
original count respectively. This makes the noise distribution non-stationary
with respect to the other detectors and dependent on image object size. The
greater the object size, vthe less photons will reach the detectors, so the mean
and variance decrease while the percentage error increases. The net effect of all
of this is that the noise will appear the greatest in the object’s center and
decreases as you move outward into the background area. And the larger the
object, the more noise the image will contain.

For original counts less than twenty, the Poisson noise was modeled by a
skewed binomial distribution. The original count was divided by one-hundred,
and an interval between zero and one was divided into one-hundred sections.
One-hundred trials were then run to see if a uniformly distributed random
number generator, using the Power Residue Method, could fall inside the lowest

section. The number of times this happened was the new assigned count. If

the new count was zero, the number of trials and section size was changed by a




factor of ten. This continued until a positive count was acquired.

For counts greater than nineteen, the Poisson distribution was
approximated by the normal gaussian, scaled by the square root of the Ori'gin,al
count and shifted by the original count. The central limit theory was used to
created the normal gaussian by adding the results of twelve trials of the
uniformly distributed random generator between zero and one. If the count was
negative or zero, the process was repeat‘ed giving the method a bias error.

A subtle source of space-variant error inherent in the fourth and fifth
generation gauges are partial volume effect. It is caused by the exponential
equation relating the source intensity to the detector received intensity. The
average received intensity while the source is tracing an interval is assumed to
be the only parameter determining the average absorption density iIn that
interval. Imagine a section of a pie with the source moving along the pie’s
outside arc and the detector located at the pie’s vertex. Put a small object
that can fit inside the pie section near the source. In this position, this object
can only block or absorb. a relatively small number of source photons from the
detector. But as the object is moved closer to the detector, away from the
source, the object can block or absorb more of the photons from the detector.
Until the objects gets close enough to the pie’s vertex and the detector to
potential block, or absorb all the source photons from the detector. Thus even
though the object’s dimensions, or absorption density has not changed, it
appears to the detector that it has because the detector has no way of knowing
that the object was being moved. The other detectors in the gauge can help to

determine if the object was moved, but not very well. Bracewell’s equation

requires an infinite number of detectors around the perimeter of the gauge. The




manageable number of one-hundred and twenty detector is far less than infinite.
Thus this paradox in density and the uncertainty in position causes space-
variant degradation. This degradation will become visible in the image when
the detector values are used in the non-linear exponential radiation transmission
equation which is the first step in the computer reconstruction algorithm and
the error becomes magnified as it gets introduced further along in the algorithm.

Mathematically the problem is that the photon transmission equation is

I= IO * exp(- S ul(an) dl)

where u, is the linear attenuation coefficient. The total number of photons

]
detected as a region is being scanned is represented by the equation

Ligpay, =S Tds =S I, * exp(-S u(x,y) dl) ds
where ds represents the infinitesimal paths the detector and the source move
together in fixed time intervals to scan a region. The average absorption
density 1is

Average Absorption Density = S u(x,y) dids

by moving the ds

This can be derived from the total photon count ITOTAL

integral symbol inside the exponential function and the negative sign. The
average linear attenuation coefficient is derived by dividing the average
absorption density by the region’s area, §J dlds, but all the regions have the
same area, so this reduces the division operation to a s'calin;\, function and 1is
not done to save time. Since there is a 1-to-1 relation.between the linear
attenuation coefficient and the region’s density in my simple single object
images, the image is created by plotting absorption density values.  The
following average absorption density equation models the detector moving In a

parallel and equal distance with the source, but in the fourth generation gauge,

9




the detector is stationary, giving greater weight to a delta area near the
detector than the source. This error source can be remedied by paying closer
.‘ attention to your differentials and transforming them into polar coordinates.
This complicates reconstruction algorithm though and is not done.

Since the source and detector columnating aperture has finite area, the
photon beam does not cut a planar cross-section across the object, but actually
averages a slice of the object. This causes the transverse axial dimension to
contribute to partial volume detector count distortion also?.

There exist a second type of partial volume error which can cause up to a
forty percent error in linear attenuation coefficient evaluation. It is a result of
oversimplifying an analog function when implemented in the digital domain.
Two paragraphs ago it was written that the average absorption density was
synthesized in the total detector count, I’-I‘.OTAL’- equation by moving the ds
integral symbol inside the exponential function. But this is mathematically
incorrect because the exponential function is not linear. The rate of change of
the negated exponential function increases as the input goes to zero, giving a
higher weight to low value inputs than higher valued. This means the low
density areas in a scanned region have a disproportionate higher influence on a
region’s average absorption density than high density areas. The motivation for
again using a fallacy is the resulting straight forward algorithm to calculate the
scan region’s average absorption density from the region’s detector count and

the aprior source brightness whose value is always being updated. Using simple

algebra
Average Absorption Density = - In (ITOT AL/ L)

s derived. The error can be interpret as using the region’s arithmetic average

10




density when its weighted average density should be used. '
The computer model did not modeled the image blurring caused by the
beams motion through the gauge, nor did it consider the mis-assigned detector

counts caused by Compton scattering.
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Chapter 4
Tomography Reconstruction

4.1 Computer Program Description

The Homer Laboratories’ tomography reconstruction computer program had
the ability to input the detector array values generated by the actual gauge or
by the gauge computer simulation program. The physical measurement that a
photomultiplier tube makes is the number of photons that are transmitted
through the steel beam along the line between the photon source and the tube.

This is described mathematically by the equation

I =1 *exp(- u™*l
where I is the number of photons emitted by the source in the detector’s
direction along the line of length, [ , where the density per unit length is u
along that line. This is actually a line integral equation, written in section 3.2,
summing the product of infinitesimal length intervals along the line and the
interval’s density. But since the steel object is assumed to have a uniform
density of 1.4 and the air surrounding the object is assumed to have a density
of zero, the integral reduces to the above form.

4, 5, 6 essentlally says that with a multi-

Bracewell’s tomography formula
infinite number of line density integrals covering the region in all angular
directions, this is enough information to determine the density at any point in
the region. My use of the term multi-infinite is to describe that an infinite

number of lines, all parallel to each other, filling a geometric plane would not

be enough to satisfy the formula. All possible parallel line planes are needed

where the parallel lines in one plane would be infinitesimally rotated with




respect to the parallel lines in any other plane, and all the differently
constructed planes are congruent with the object’s cross sectional reconstruction
plane. To illustrate the point, if you placed a source and a detector
diametrically across from each other on a ring’s perimeter, and the ring was
rotated one revolution, the line between the source and detector would cut a
plane containing enough information for only the point in the ring’s center to
be reconstructed. It is for this reason that the high speed computer had to be
invented before tomography became popular.

A fourth generation gauge attempts to get a sampling of these line
integrals by viewing the object from a fixed detector and moving the radiation
source behind the object so the object eclipses the source and the detector’s
photon readings are sampled at predetermined source positions throughout the
eclipse. If the number of detector sample readings are increased, the amount of
image blurring is reduced. The detector readings can be plotted to create a
profile or shadow function that was casted on the detector. This function 1s
high-pass filtered with respect to source-to-detector positioning. This filter 1is
similar to the Laplacian. This de-emphasises the shadow’s center region and
gives negative values to some of the shadow’s edge. This allows the shadow
profiles to be backprojected across the reconstruction region and summed
together, keeping track of detector geometric relationship, to give high net
values to points inside the object’s boundary. The algorithm used by Homer
Laboratories incorporated back-projected, convoluted, Radon filtered shadow
profiles. There is research going on today to mathematically manipulate Radon
filtering equation so the high-pass filtering part of the algorithm can be both

better implemented in the digital domain, and modified to help compensate for

13




the image degradation and artifacts due to the finite number of detector shadow
functions used. Once again the more detectors there are, the less image
blurring occurs, but also another phenomena occurs from not using the infinite
number of detectors called for. The image will have artifact radiating out from
the object’s corners into the background region. This is caused by not having
enough backprojected detector shadows which would contain negative values to
reduce the artifacts height down to the background level in the summation. If
their heights are not kept low enough, then they will greatly complicated the
object edge finding and dimensioning processi;g.

So after each detectors shadow function has been filtered, any image point
in the reconstruction region can be independently evaluated. All that needs to
be found is the vector geometry of the image point with respect to each
detector. The point’s position in the detector’s filtered shadow function 1s
determined and the function’s value at that position 1s weighted by distance
between the image point and the detector. This weighted value is added to the
weighted values from all the other detectors to given a net value which 1is
assigned to that image point.

To reiterate, the maximum special resolution is determine by the n‘urr;ber
of detectors and the number of shadow function samples per detector. If either
number is decreased, then the spacial resolution will decrease and using a finer
image reconstruction pixel grid will not improve 1it. As previously stated,
experimenting with the shadow function filtering operator can change artifact
height, image DC value, ‘and contrast distance between object and background,
but cannot decrease the edge transition region or blur below a minimum. As

an analogy, after a camera’s lens blurs a photo, using finer resolution film
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quality will not restore the image.

4.2 Reconstruction Region

The tomography reconstruction algorithm was modified to create a
cartesian pixel grid in place of Homer Laboratories’ polar pixel grid. The
cartesian grid does not lose resolution as you increase the distance from the

.
grid’s center and interpolating image values between pixels is easier as opposed
to the polar grid.

The reconstruction region was circular with a fifteen inch radius. A
square, two hundred and fifty-seven per side, pixel grid was overlayed over the
reconstruction region. This gave a resolution of 0.1167 inches between pixel
centers. This created sixty-four thousand reconstruction pixels.  The pixels
outside the circular gauge reconstruction region were assigned zero density.
These pixels plus the ones just inside the fifteen inch reconstruction region were
ignored by the edge finding algorithms so the regions border edge would not
interfere with the object’s edge detection.

The large number of image pixels used could be ci’r.cumvented by using
first a much courser pixel grid, finding the object location with a crude global
thresholding technique, and then calculating as many pixel values, only in the
object’s region, to achieve the desired resolution for accurate dimensioning. This
is all contingent on the direct evaluation of Bracewell’s tomography point
function equation and not using an iterative reconstruction algorithm, allowing
the calculation of points inside the reconstruction region to be independent of
one another. An on-line image processing algorithm could be put in the
program to create an adaptive resolution. This approach would greatly reduce

the reconstruction and the edge finding processing times.
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The pixels values were the direct solution of Bracewell’s tomography

equation calculated on an IBM 3081 mainframe computer using single precision.
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Chapter 5

Reconstructed Images

Three test images were reconstructed for operator evaluation. They are

listed below and can be viewed on pages 65, 91, and 111.

7) "I" beam with no photon Poisson noise
added; flange, web, and thickness
dimensions equal to 4.0, 8.0, and
1.0 inches respectively

17) "I" beam with photon Poisson noise
added; flange, wed, and thickness
dimensions equal to 4.0, 8.0, and
1.0 inches respectively

117) Bar with 3.0 inéh diameter

All the images have high object slope contrast and low peak value
artifacts. Global thresholding the image would have no problem identifying
object. The image of the ”I” beam with no noise added shows an excellent
example of artifacts radiating outward and increasing in high from the object’s
corners seen at the four corners of the beam. The artifacts are very low due to
the number of photodetectors in model. If the number were divided in half, the
artifact height could increase as high as three-fourths the object’s height and of
coarse the object slope would decrease. The beam’s flanges can be seen as right
and left pillars and the web as a panel between the flanges. The ”I” beam
with noise added is almost the same as without noise due to the usage of a
high intensity source, but it has a pillar jutting out of the middle of the web
and is sightly asymmetrical while without noise image 1s completely symmetric
with respect to the X-axis and Y-axis zero lines. The web distortion is in the
object center where Poisson noise will have the greatest effect since the detector
counts are the lowest from this region. The bar image is easily identifiable

with artifacts radiating outward in circular symmetric fashion. Poisson noise
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probably effects this image very little because of its small cross sectional size.

The histograms following each image have the characteristic bimodal
distribution as expected for bilevel type images. The modals’ coefficient value
position are near the bilevel values of actual image, 0.0 and 1.4. The area
under the modals is representative of the unequal object to background area.
The variance of the background modal is three or fourth time greater due to
artifacts increasing in height as they radiate outward from the step density
perturbation source.

The cross sectional views of the density image can be viewed on pages 67
through 69, 93 through 94, and 113. Views 67 and 93 are along the center
axis of the web. Page 68’s view is of the web center transaxial cross section.
Views on page 69 and 94 are along the center axis of the right flange. The
flange top plateau region is bowed in the centered which 1is known as the
"volcano” effect’” and is due to the finite width of the photon beam. View 113
is through the center of the bar. Page 95 a-nd'_ 111 are the Discrefe Fourier
Transforms of the images which is an indication d'c‘)main’s coefficients.

The images hereafter will be refer to as image :, image 1, and 11 as listed

in the first paragraph.
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Chapter 6
Image Processing for Tomography

- 6.1 Edge Detection

Most digital edge operators involve the subtraction of pixel values in a
ngighborhood and assign the summation of all subtractions to the neighborhood
center pixel. It seems that every possible combination of adding and
subtracting pixel values in a two by two and a three by three neighborhood has
been tried. Many edge operator matrixes have been derived by starting with an
analog function that enhances or gives high values to steep slope regions in a
surface.  The function is mimiced by a digital template or matrix impulse
response operator with little mathematical rigor.  This approach introduces
image low-pass spacial filtering due to the distance between image grid samples
and the size of the operator matrix.

To imitate the analog operator, the operator’s impulse function 1s
determined and then sampled to create a convolution matrix. Sometimes a one
dimension function is mimiced and the resulting one dimensional vector is just
repeated in the operator matrix to create a two dimensional square convoluting
matrix. Or a square matrix is created by placing a vector horizontally in a
matrix filled with zero’s and then placing it vertically in another zero matrix.
The two matrixes are then summed to create the operator matrix. A matrix
template may be modified by increasing values of elements that are closer to
the templates center element for two different reasons. The first reason being
to give greater weight to direct, center pixel neighbors under the assumption

that they have greater correlation with the center pixel than do the indirect
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neighbors. And the second reason 1s to mold the operator matrix window
function from a sharp truncated window to one whose truncation is gradual like
the Gaussian, Blackman, Bartlett, etc. windows to reduce Gibb’s ringing
artifacts in the output image. The matrix elements may finally be scaled by a
constant so the output image does not acquire an additional DC offset from the
operator.

Another approach using matrixes is to use orthonormal matrixes whose
element values are similar or match the values found in an ideal image window
containing the feature you are searching for. These templates are also shifted
across the image, but viewed as cross-correlating the template and the image.
To test for each possible feature angular orientation with respect to the grid, a
rotated set of templates have to cross-correlated making this approach
computationally expensive. Each template will have its own output image and
they will have to be combined in some fashion to generate a resultant image.

Although there are many edge detectors and processing methods? > 8,
when any are used alone, none are consistently satisfactory for precision edge
identification. The detectors performance is both imaging device type and image
scene type dependent. The general technique of edge enhancement followed by
an edge pixel selection criteria is heuristic in nature. Each method must be
"tuned” by trial-and-error procedures with a set of test pictures. Usually, the
resulting performance can only be measured, not predicted. The edge fitting
approach, although mathematically formulated, suffers from many of the same
defects. Additionally, both methods fail to cope effectively with noise. To deal
with theses facts of life, using a number of better edge operators, processed in

parallel, combining their outputs in a weighted sum fashion, then global
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thresholding the resultant image should give excellent results.  The newly
developing fuzzy set theoryg' 10 may replace the weighted sum calculation if
warranted or simply using a logical AND and OR operator equation on the
pixel edge vote from each edge operator may be all that is necessary.

Another approach of using multiple parallel processing 1s to use the same
detector, changing its neighborhood size, multiplying together the pixel values of
each output, and then global thresholding the product image. The larger
neighborhoods will be immune to short edges or artifacts, and high frequency
noise.  The smaller neighborhoods will not degrade the image while it is
processing it, thereby retaining a sharply define edge. The amount of image
low-pass filtering is directly proportional to the number of elements in the
convoluting matrix. And since no filter has a perfect frequency step curve, the
larger neighborhoods will be introducing further edge blurring degradation®.
Only sharp, prominent edges will rank high under both matrix size types
creating an extremely enhanced product value. By choosing a detector
possessing an algorithm whose ou-tput can be piped directly into the next larger
neighborhood convolution calculation, you can forego the more expensive parallel
processing hardware without increasing the processing time by the power of the
number of neigl:borhoods.

6.2 Histogram

Graphing the distribution of pixels that fall into a criteria or measurement
range is used extensively in image processing. The intensity or pixel image
value and some aprior knowledge about the image can be used to find a

threshold value to segment the image into general features does an acceptable

job for most image types.
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Single object images are especially adapted to this type of processing. The
gray level histogram is bimodal and by selecting a threshold value any were
between the modals will give good object proximity.

Using additional processing time, histograms of different image
characteristic such as X and Y coordinates, output of one or more edge
operators, and a statistic measurement can be combined to form a multivariant
histogram®. The resultant multidimensional surface may then have a peak or
valley that can be identified as unique to the object and using the aprior object

area, perimeter, Euclidean distance from ideal image, etc. the surface feature can

be thresholded to accurately identify object location.

6.3 Contrast and Topologic Region Filtering

To fight against artifact and noise pollution in an image, the image pixels
can be filtered, ignored, or flagged from any further processing at either the
edge operator’s input or output images.

Filtering at the image input is essentially data compression and will allow
using a higher resolution pixel grid without adding process time. Several one
dimensional contrast ratio test have been formulated. —The most popular is

Weber’s Fraction!! 17

(11 ) Io)/lo
where I, < L. The number of pixels separating I, and I, can be a function of
imaging device bandwidth or in other words object-background spacial transition
width. This will further discriminate against reconstruction artifacts which
usually have much wider edge transition regions than the object’s edge. Or

image can be divided into regions and one region tested against the other to
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identify potential regions containing an edge. This regiaonal evaluation can be
use by the tomography reconstruction point function algorithm to determine if
region should be further sampled to gain finer resolution. Therefore
reconstruction time would not be wasted on edgeless regions, but still allowing
high resolution to important image regions.

To determine the Weber number threshold value, the image maximum and
minimum can be found by coursely sampling the reconstruction pixel grid, and
then taking a percentage of their difference to subtract from the maximum
value to be used as Il and to add the percentage difference to the minimum

grid value to be used as I If histogram analysis is already being used on the

o
input 1mage, then the upper modal pixel value could be used as I, and the
lower modal pixel value could be used as I, to calculate greater-than threshold
value criteria.

Another pixel input selection criteria, also using the pixel intensity values,
will filter out any pixels whose value does not fall in the valley region in the
image’s bimodal histogram. The boundaries of the selection valley can be
defined by subtracting the upper and lower modal intensity values, and taking a
percentage of the difference to add-to and subtract-from the lower and upper
modals, respectively. This method will not filter out high peak value
reconstruction artifacts; caused by using two small a number of gauge
photodetectors, and whose pixel values will fall into the histogram selection
valley.

After the edge operator is processed there “exist another opportunity to
improve edge enhancement results. The histogram of the output images can be

generated and a global image threshold value can be determined by using aprior
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knowledge of how many edge pixels wouid be in ideal object perimeter.
Cumulatively adding histogram pixels, starting at high end of the graph, and
stopping when a aprior value is reach will give a threshold value. The average
position of all the pixels above the threshold can be found to approximate the
object’s center. Using aprior knowledge of size of object, an outer and
depending on the object’s shape an inter rectangle can be defined, where all
edge pixels outside or inside rectangles, respectively, are flagged as false edges.
It would only require grid row and column addresses to decide if edge pixel
should be flagged. After the end of the flagging procedure, again cumulatively
adding new pixels to replace the flagged ones in histogram to achieve the aprior
edge count and reduce edge fragmenting which plaques simplistic global
thresholding.

This last above object locating and region filtering technique can also be
used on the edge operator’s input image as another technique for data
compression.  Instead of using aprior knowledge of object’s perimeter and
thresholding the edge enhancement histogram, object’s aprior known area is used
to threshold the input image’s intensity histogram. All other procedures remain

the same except there will be no inter-rectangle boundary.

6.4 Contour Following

Contour following can be applied at two different steps in edge detection.
It can be used after an edge operator, tracing operator’s ridge peak contour.
Or it can be us;ed to search original image and draw edge contour, eliminating
the need for an edge enhancement operator. There exist many curve tracing
techniques which many perform viable edge finding. = They possession the

desirable feature of concentrating process time on only edge region and ignoring
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the rest of the reconstruction region. This method suffers from many
indetermine cases causing the algorithm to come to a halt.  This can be
remedied with sophisticated searching techniques which will increase the time
cost function.

Four to eight matching template correlation tests or a arctan(F /F,)
function of some directional gradient operators are normally used to provide an
angle, with respect to last contour branch, that the contour should proceed.
Another contour searching technique is to use an edge operator that performs
well when used across the entire image, demonstrating that it is robust with
respect to specific noise and degradations. The operator will then be used only
on pixels that are candidates to be selected as the next node in the contour
path, instead of globally processed.

Another advantage of curve tracing is its ability to take advantage of the
fact that the tomography reconstruction algorithm is a point function. By first
performing very course pixel grid reconstruction, and then global thresholding
the image. The object can be locahted among the artifacts by using aprior
statistical values, producing a seed pixel. The object edge can be searched for
with "amoeba-like” pseudo legs to test possible branch paths. The node values
are image values calculated on-line with the tomography algorithm. Branch path
are interpreted as object boundary. The branch length and angle with respect
to last branch may be adaptive using previous found test node values, branch
angles, and aprior knowledge of object shape. For instance, branch length
should be short for tracing object boundary when believed to be approaching
boundary corner and long when tracing boundary representing flat area on

|

object. Testing of nodes three or fourth ahead with decision criteria can be
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done before determine if a node is actually a correct choice of edge path!® 4,
Of course the more sophisticated the adaptive and decision criteria are the
slower the curve tracing will occur. But the more sophistication used, the
better path-edge accuracy along with minimal image grid sampling.

By performing a histogram on image and using only middle valued pixels
as total set of node candidates, a test band about the object’s border will be
the only pixels considered as node candidates. This will afford an extreme
amount of data compression before the edge operater is used. Noise pixels that
pollute the middle of the histogram will not be operated on because they will
probably not be within branch decision distance of path head node. You can
even go as for as doing histogram analysis on local neighborhoods of node

candidates for path decision making.

6.5 Image Restoration

No images were preprocessed with any restoration techniques before edge
detector for the following reasons. The driving force behind these techniques is
to minimize or maximize the Mean Square Error, Schwartz’s metric, Cross-
dorrelation, Absolute Difference, or some other pixel gray level criteria. Two
concurrent pixel gray levels are compared from the actual image to some aprior
1deal image. This would be useful to eliminate artifacts but not space-invariant
blurring given the short preprocessing time interval. Instead of gray or
intensity level examination, some metric incorporating geometric and topological
properties is what is necessary to lead to precision object dimensioning. Such
an approach might be to use an above mentioned intensity metric, but giving
significantly greater weight to middle valued intensity pixels, which is the super

set of the image’s edge pixels.
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6.6 Surface Interpolation

The goal of edge detectors are to locate precisely the actual object’s edge,
in this case, for precision object dimensioning. To do this from a digitized
image requires interpolation of the edge operator output 1mage. The
interpolation process will be hampered by missing or false information in the
form of smeared, fragmented, and offset edges’l‘r’. Several surface fitting
techniques were reviewed including Scan-Line Coherence, B-spline, Hermite, and
Bezier in hopes that it would lead to a more precise edge location ir_; the
detector’s output image for a given reconstruction grid resolution than- linear
interpolation affords. In the limited literature® 1 reviewed, nothing was found
computationally fast enough worth tryiﬂg, but this still leaves empirical
statistical analysis to possibly improve locating object’s edge between operator

identified edge pixels.
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Chapter 7

Experiments

7.1 Introduction

Topologically the scene that is being reconstructed and process has three
parts:  exterior, boundary, and interior. The operators in my 'expe'rimf:n_ts
identified by individual pixels the boundary or the interior.

The figure of merit used to quantify operator performance was to take the
number of operator identified edge pixels given that it was an edge pixel in the
actual image, and ratio the count to the total number of edge pixels in the
actual image, Identified/Actual. This merit measures the ability of the operator
to identify actual edges correctly and is labeled Identified/Actual. The other
figure of merit used was to count the number of edge pixels in actual image
given that they were identified by operator, and ratio count to the total
number of operator identified pixels, Actual/Identified. This merit measures
false identification or operator susceptibility to noise, artifacts, and image
degradation, and is labeled Actual/ Identified. In the.l above explanation, the
word edge may be replaced by interior depending on operator type. The above
two ratios are transformed to percentage and added giving a perfect performance

of two-hundred percent.
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7.2 Median Filtering

It is no secret that edge detectors produce false edge pixels when
confronted with high frequency noise. To reduce this problem the image can be
pre-processed with a low-pass filter, but this blurs the image further, increasing
the distance between the real and the reconstructed images.

Tukey’s Median Filter 1971 technique!” % % was chosen to be tried from
the multitude of linear and non-linear filters because of consistent favorable
reviews it received. Experiments show that taking the median value 1n a
neighborhood and assigning its value to the neighborhood’s center pixel blurs the
objects sharp edges very little, but still does the equivalent noise reduction of
other operators.

The effects of median nonlinear filtering on tomography artifacts can be
seen on pages 72 through 74. The window size increases from 3 X 3, to 5 X 5,
to 7 X 7 in each image ). For image i), the effects of 3 X 3, 5 X 5, and 9
X 9 windows are shown on pages 96 through 99, 100 through 103, and 104
through 105, respectively. A 9 X 9 filtering window 1s needed before a
significant artifact reduction is achieved. The 5 X 5 filtered web center profile,
page 102, compared to the original, page 93, shows no apparent slope reduction
while reducing noise and artifact height. Reviewing pages 95, 99, 103, and 105
shows filter influence on all areas of the frequency domain.

Instead of using a two dimensional neighborhood template, the flter
processing time can be significantly decreased by using a one dimensional
neighborhood and running the filter along each pixel row and then each column.
Median filtering loses very little effectiveness under this technique and its

performance even improves by not rounding object corners as much!’.
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7.3 Edge Operators

7.3.1 Gradient Vector
This edge operator has two convolution vectors to model the gradient in

the X and then the Y direction.
1) 1 -1 2) 1

-1

It will not low-pass filter or blur the image as much as larger size operators
and can be programmed for fast row and column scan processing. The
Euclidean and the absolute metrics were used to combine the two vector
outputs in image t). The Euclidean was used only on the other two images.

Page 75 is the output image of the operator on image ¢ showing it

sensitivity to background artifacts. Page 77 shows its relatively high peak for

the web cross-section profile close to the Web’s slope. Page 78 shows pixels
that were identified as an edge after thresholding the edge histogram. Only the
artifacts extending from the flanges are falsely identified. These could easily be

identified by an object’s topological metric and removed.

7.3.2 Radial Difference

1) O -1 O 2) O O O 3) O O o 4) O o 0O

The absolute values of the four resultants are added to give the operator
output. The operator is effectively the pixel’s gradient operator with its direct
neighbors and the Euclidean metric is replace wiéﬂy the faster absolute value

calculation. = The number of pixels between the gradient elements can be
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empirically increased for best results.

Graphs on page 83 and 84 and experimental results, section 7.6, show that
this operator is sensitive to tomography artifacts and noise and performs poorly.
Perhaps using a higher adjusted threshold value would improve results. Page

82 shows good web edge height in thresholded web center profile.

7.3.3 Roberts

1) 1 o 2) 0 -1

This operator’s output is the sum of the absolute values of the two
convoluting matrixes. It is basically the gradient vector run diagonally across
the pixel grid. Since its operating pixels are farther apart, its low-pass cut-off
frequency will be a factor of 1.4 lower thaﬁ the gradient vector operator.

This operator is sensitive to artifacts from both flange and web sections of
the ”I” beam as seen on page 88. This operator might also perform better
using a higher threshold value as can be seen on page 87 which has excellent

web edge peaks.

7.3.4 Prewitts

1) 1 o -1 2) -1 -1 -1
1 (0] -1 0O O (0)
1 0 -1 1 1 1
This operator has two convolution matrixes. One to detect the X

component of the edge and the other for the Y component. They are the result
of stretching the Gradient Vector operator and then repeating the vector to fill

out & 3 X 3 matrix. Its overall performance was fifty percentage points better
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than the one dimensional vector model. It identify more actual edge points.
Its larger window is better adapted to the image’s edge slope value.

This operator’s performance was averaged. A follow up experiment would
be to replace the direct neighbors with the value of two. This gives greater
weight to image points closest to the assignment pixel. This is known as the

Sobel operator and has good reviews!% 19,

7.8.5 Multi-sized Laplacian

The Laplacian edge operator was not tried because of several bad reviews
20, 21, 22 it received. The algorithm which sums the one dimensional Laplacian
of different size windows which are on one side of the evaluation pixel and
subtracts the net of the sum of different sized Laplacians on the other side of
the evaluation pixel® was tried. For the ”I” beam image without noise, the
figure of merits were both less than five percent. Good results were expected

from this type of technique. Either the interpretation or the author’s

publication of the formula were faulty, so it was not used on any other images.
7.4 Interior Operators

7.4.1 Min-Max Product

This operator takes the minimum and maximum values in a 2 X 2
window and assigns their product to the output pixel.

By experiment it was found that this algorithm performs well for steel
tomography images. The algorithm acts similar to a quantization level
transformation function. Operator images are graphed on pages 106 through
109 and the coefficient values have been translated by -0.4 . Referring to the

center web profiles, page 67 and 108 of image 1), this method almost eliminates
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background area artifacts and not only preserves, but increases slope value by
increasing contrast.

The operator is essential the quadratic operator and its second derivative
about X equal to one is the desirable characteristic.  First it enhances the
plateau regions by increasing the plateau height in a non-linear manner. And
bilevel images are enhanced without noticing the non-linear distortion. Second,
the actual image background coefficient is zero and the troublesome artifacts are
mostly in the region added to the zero mean value. All artifact values of less
than one will be reduced in value by their own value. Thus the smaller the
pixel level, the more it will be reduced to zero which is where the majority of
pixels fall. Artifacts will very rarely exceed the value of one or more than a
third of the object high. Third, the artifacts or noise with negative coefficients
values will be compressed the same to the zero axis and reflected about the
zero axis corraling them with the positive pixels further reducing high frequency
background area noise and artifact deviations. Fourth, the object transition
region exceeds one and the value of one will map into itself, so the object’s
width will be confined and preserved. Fifth, the original image above one will
be non-linearly stressed and much easier for other operators to process. And
sixth, the background-object transition is usually gradually changing with the
second derivative going from zero, to positive, to zero, to negative, to positive,
to zero again. The quadratic operator has a linearly changing first derivative
and nearly matches the image edge slope to keep output image transition
interval from broading inspite of the plateau contrast increase. Coefficient
values on the slope less than one, or in the positive second derivative range will

be increasingly forced to zero as its input image approaches zero and coefficient
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values greater than one-half will have the delta interval increasingly amplified.

A major drawback to this operator for tomography is the linear increasing
slope above one or in the object plateau. Pixel noise error will be more than
doubled which can be seen on pages 67 and 108. The crevasse between the
flange and web triples and as stated, in section 3.2, the objects interior is where
Poisson noise will have the greatest percentage error. Instead of using the two
extreme values in the operator window, the two other values could be used
taking advantage of Median type filtering to reduce this problem.

After using the quadratic operator the image is ready for either global
thresholding or edge detector processing. It may be advantageous to always
translate and scale image so it falls into the desired region for processing with

this quadratic type operator.

7.4.2 Maximum Difference Operator

This operator was tried on image i), but results were poor, 70% total, so
it was not tried on any other test images because results would only get worse
in the presence of noise. The minimum pixel value in a 2 X 2 window 1is
subtracted from the maximum value in the same window®. This is a busyness
type operator’’ that is normally used in image segmentation to find a boundary

line between textured regions.

i
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7.4.83 Chow and Kaneko

This method?* ¢ models the image intensity, in this case attenuation
coefficient , histogram as two overlapping gaussian curves. A 'Ih'istogram
segmentation threshold is chosen which minimizes the probability error of pixel
object-background assignment. The threshold selection equation is

Threshold = ,(uB—i-uO)/Z + STDZ/(u‘B - u‘o)*ln(PO/PB)
For the two gaussian means, the bimodal peak values were used. Usually the
minimum mean _squared error evaluation between the modals and possible
gaussian curves are used to determine the variance parameters. It was assumed
that the variances for both modals were equal and the parameter was estimated
from the histogram. This was a gross simplification since the histogram for all
the images, on pages 66, 92, and 112, had the lower modal twice the width as
the upper modal. The variance was calculated using the actual v,ariaﬁCe of the
curve to the left of the lower peak value, using the lower peak value as the
mean, and the curve to the right of the upper modal peak, using the upper
peak as the mean. This allowed both modals to influence the variance value.
The aprior probability of background or object was assign using area ratio of
actual object to reconstruction region.

The calculated threshold value fell between the aprior area hc_ount and the

valley minimum in each test image giving good merit values.

35




7.4.4 Histogram Segmentation

This method simply plots the image absorption coefficient histogram and
segments the histogram in two ﬁsing some segmenting_ criteria.  The upper
histogram contains the object pixels and thresholding image with segfnenting
value will identify image object pixels in the bilevel image.

The histogram was quantized into three hundred and ten levels, ranging
from -1.0 to +2.09. The number of quantization levels were chosen because of
the simplicity of the algorithm needed to determine which level an arbitrary
pixel value should be entered.

Several histogram plots have been made; see pages 66, 92, and 112,
showing the expected bimodal shape of a bilevel, single object image. The
image’s background pixels are cumulated around the pixel absorption value of
0.0 and the object pixels are gathered around the absorption value of 1.3 and
1.4 . The background modal dwarfs the object modal due to the ratio of the
object area to total pixel reconstruction grid area. Others have tried to take
the Fourier Transform of the curve to exact edge information, but were not
able to obtain worthwhile results.

The aprior calculation of the number of pixels that would fall inside the
object boundary for a perfectly rolled object was used. Starting with the high
valued pixel end of the histogram, cumulatively pixel counts were added toward
the low end until the ideal count was reached.

The histogram’s bimodal peaks, minimum valley, and aprior ideal pixel
count have all been used for global thresholding. Also tried was the unweighted
average of these. The histogram is continuously sprinkled with high frequency

local peaks and valleys. Arithmetic averaging was used on the curve to create
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an - identifiable unique minimum between the histograms two modals.  The
window sizes of five and twenty-three elements were used for the ”I” beam and
bar histograms, respectively. = The aprior area and peak values were again
derived after filtering. The following values were then calculated by combining
the area and valley minimum values, the two modal peak values, and the area,
valley minimum, and the two modal peak values. The large filter window
needed for the bar image caused erroneous results. Graphs on page 70 and 71
shows the results of quantizing the beam image into pixels 1) less than lower
modal peak, 2) between lower modal peak and aprior area count threshold, 3)
between aprior area count threshold and upper modal peak, and 4) greater than
upper modal peak. Page 71 shows the quantized plateaus through the web
center. The third highest plateau represents the web width and is accurate.
The two modal peak threshold values have equal total merit values for all
the images. Therefore, there exists a maximum figure of merit threshold value

between these points. It is still open for investigation to find a formula to

locate this point.

7.5 Median Filter Presmoothing

A 5 X 5 widowed Median Filter was used to reduce the image noise.
Pages 100 through 103 can be compared with pages 91 through 95 to qualify
the amount of filtering on the ”I” beam. Then the Gradient Vector, Radial
Difference, Roberts, Prewitts, Multi-size Laplacian, Min-Max Product, and
Chows operators were used on the test images to see if their performance would

improve. Neither of the noise injected image’s had significantly improved figure

of merit values.
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