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Abstract 

The objective of this study was to find an accurate edge locating method 

for ~ampled tomography type images. The test images were computer simu:lated 

tomography images of a steel .,, l" beam without photon radiation noise, an "I" 

beam with Poisson radiation noise injected, and a steel bar with Poisson photon 
I 

noise. These images were processed by edge enhancement operators and 

thresholding techniques. The operators that were tried were Roberts, Radial 

Difference, Gradient, Maximum Difference, Unsharp ·Mask, and Chows. The 

effect of Median filter preprocess.ing with· .these operators were also investigated. 

Using the aprior knowledge of object's approximate dimensions to select 

threshold value from image histogram proved to give the best results of tried 

techniques. 
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Chapter 1 
History of Tomography and Edge 

Detection 

The tomography formula was developed by the radioastronomer Ronald 

N. Bracewell in 1956 to ·help identify regions of the Sun which emitted 

microwave radiation. His integral formula was not computationally practical 

until the advent of th~ computer. Since then several different algorithms and 

data collection sensors have been developed for its solution. The tomography 

scanner has undergone five generations1 of development. Starting from a slow 

single source, single .detector gauge moving in discrete linear paths to a fast 

multiple source and multiple detector gauge rotating in a continuous circular 

arc. 

In 1968, methods for biomolecular imaging were develop independently 

from earlier imaging work, using an electron microscop~ at various angles. In 

1972, EMl LTD introduced an X-ray computer assisted tomography scanner for 

medical applications. By 1984, the National Institute of Health was using 

.. 

tomography to make a three dimensional moving image of the heart's blood 

reservoirs and could detect abnormal heart movement du·e to areas of inelastic 

heart tissue which cannot be diagnosised even with open heart surgery. 

Image processing has been evolving steadily throughout the evolution of 

the comput~r. Because of the large amount of data that needs to be process, 

the computer is also a necessary tool. In 1971, M. H. H ueckel published one of 

the first articles on edge detection. His detector overlayed seven digital 

orthonQrmal templates oii a circular pixel ·neighborhood to determine edge 

presents along with· edge type and orientation. It was both time consuming and 



inaccurate, but showed the potential of the field. 

·Today the two fields of image p·.rocessing and· tomography have been 

incorporated and have grow tremendously under the direction of the medical 

instrumentation industry. Now there ex!st equipment that can detect the three 

dimensional position of a brain tumor and optimally guide a surgical cryogenic 

probe to its location minimizing healthy tissue damage. This kind of accuracy 

can take an hour of processing time, but with continual hardware development, 

parallel array ·processors for example, and image algorithm research, tomography 

for real time industrial process control can be realized. 

, 
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Chapter 2 
I 

Tomography Project Objectives 

I had the privilege to work for three months on a tomography 

development project at Homer Research Laboratories of Bethlehem Steel 

Corporation. The goals set by Bethlehem Steel Corporation for their gauge 

were to take a cross-section image of a moving two-hundred foot rolled beam 

every two seconds or every thirty feet. The steel bar had to be radiated, and 

at the same time, detector counts from the previous radiation had to be read 

into the reconstruction algorithm, reconstructed and the resultant image had to 

be processed to extract the beams edges and dimensioned to within thirty-two 

thousandths of an inch. With this accomplished, a real time feedback loop can 

be implemented to adjust the roller spacing for process control and for total line 

automation. 

4 



Chapter 3 

Tomography Gauge Computer Model 

3.1 Computer Simulation Model 

The Bethlehem Steel Corporation, Homer Research Laboratories' developed 

Fortran computer program was used to simulate a forth generation tomography 

gauge and their Fortran tomography reconstruction program to create test 

images. Actual gauge images were not used in experiments because gauge had 

recently been built and all the hardware problems h~d not yet been resolved. 

Also any gauge design parameters that experimenter might want to change 

would be much easier and less expensively done in computer model than on 

hardware. The simulated gauge was composed of a rotating, ten revolutions per 

minute, ring inside another stationary ring. The rotating ring had a thirty-four 

inch radius and wa~ holding a thirty REM, radioactive Barium 137 source 

pellet, which emitted 660 KeV gamma photons. The strong intensity of the 

source was chosen to reduce Poisson noise associated with emission and 

detection of photons. The high energy of the source guarantees that no 

detector experiences a zero count from the source at any time no matter what 

the cross sectional area of the steel object. The forty-two inch radius, 

stationary ring held one-hundred and twenty-eight photomultiplier· tubes equally 

spaced for gamrria ray detection. Both the source and t_he detectors were inset 

into their steel rings to· columnate the gamma rays to reduce- Compton scattered 

false counts. But image blurring still ·occurred due to the three inch diameter, 

finite aperture of the columnating holes. 

The output of the gauge model was a 512 x 128 two dimensional array. 

5 
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The second index number was the number of photodetectors in the gauge. The 

first index number corresponds to the number of divisions or sampling intervals 

into which a one-hundred and twenty degree arc was divided·. The arc was 

.traced out when the source moved diametrically ac:ross from a detector. With 

an object in the gauge, the object would eclipse the source with respect to. a 

detector and the object's shadow or photon count would be sampled and 

recorded in discrete arc intervals. The time averaged detector output current 

when the source was tracing an interval would be assigned to the source's 

center position in the tracing interval. Linear interpolation was then used in 

the reconstruction program to. determine shadow values between interval c~-nters·. 

The average current was calculated by integrating the current verses time plot 

using a charging capacitor. 

Therefore, there will be five-hundred and twelve shadow function samples 

per detector. Using the polar arc intervals centered on the ring's perimeter to 

sample the shadow functions for ~-each of the. one-hundred and twenty-eight 

detector positions, causes· space-variant blurring in the reconstruction region. 

Imagine wheel spokes radiating outward from each of the one-hundred and 

twenty-eight equally spaced positions around a ring. The overlapping spokes 

would divide the reconstruction • region into unequal-area, irregular-shaped, 

sampling polygons. Even though there is polar symmetry with respect to the 

reconstruction region's center and resolution increases as you move toward 

center, this necessitates the use of he.uristic edge detection experimentation. 

Therefore increasing either of the array's indexes would increase the 
• 

resolution of the image. Once these numbers have been set, there is nothing 

that can be do.ne in the reconstruction algorithm t"o increase this upper bound 

6 
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on resolution, only reduce it. 

The gauge computer model ran on an IBM 3081 using .single precision 

variables. The steel gauge outputs its detector current to charging capacitors 

through a ten bit A/D converter a.nd the two dimensional array values are 

as·signed by a Motorola 68000 processor. 

3.2 Noise and Error 

Photon radiation noise was added to the individual photodetector counts in 

each shadow function fan increment as the last step of the ·gauge .model. The 

photon noise w·as modeled as ·Poisson noise which is characteristic of both source 

emission noise and photomultiplier detection noise. The mean and variance of 

the noise was assumed to be the original count and the square root of the 

original count respectively. This makes the noise distribution non-stationary 

with respect to the other detectors and depend·ent·· on image object size. The 

great~r the object size, the less photons will reach the detectors, so the mean 

and variance decrease while the percentage error increases. The net effect of all 

of this is that the noise will appear the greatest in the object's center and 

decreases as you move outward into the background area. And the larger the 

object, the more noise the image will .contain. 

For original counts less than twenty, the Poisson noise was modeled by a 

skewed binomial distribution. The original count w·as. divided by one-hundred, 

and an interval between zero and one was divided into one-hundred sections. 

One-hundred trials. were then run to see if a uniformly distributed. random .. 

n·umber generator, using lhe Power Residue Method, could fall inside the lowest 

section. The ·number of times this happened was the new assigned count. If 

the new count was zero, the number of trials and section size was changed by a 
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factor of ten. This c9ntinued until & positive count was acquired. 

For counts greater than nineteen, the Poisson distribution was 

approximated by the normal gaussian, scaled by the square root of the original 

count and shifted by the original count. The central limit theory was used to 

created the normal gaussian by adding the results of twelve trials of the 

uniformly distributed random generator between zero and one. If the c.ount was 

, 

negative or zero, the process was repeated giving the method a bias error. 

A subtle source of space~variant error inherent in the fourth and fifth 

generation gauges are partial volume effect. It is caused by the exponential 

equation relating the source intensity to the detector received intensity. The 

average received intensity while the source is tracing an interval is assumed to 

be the only parameter determining the averc;1.ge absorption d·ensity in that 

interval. Imagine a sec.tion of a pie with the source moving along the pie's 

outside arc and the detector located at the pie's vertex. Put a small object 

that can fit insicle the pie section near the source. In this position, this object 

can only block or absorb. a relatively small number of source photons from the 

detector. But as the object is moved closer to the detector, away from the 

source, the object can block or absorb more of t·he photons from the detector. 

Until the objects gets close enough t.o the pie's vertex and the detector to 

potential block, or absorb all the source photons from the detector. Thus even 

though the object's dimensions, or absorption density has not changed, it 

appears to the detector that it has because the detector has no way of knowing 

that the object was being moved. The other detectors in. the gauge can· help to 

d'etermine if the object was moved, but not very well. Bracewell's equation 

requires an infinite number of detectors around. the perimeter of the gauge. The 
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manageable number of one-hundred and twenty detector is far less than infinite. 

Thus this paradox in density and the uncertainty in position causes space

variant degradation. This degradation will become visible in the image when 

the detector values are used in the non-linear exponential radiation transmission 

equation ·which is the first step in the computer reconstruction algorithm and 

the error becomes magnified as it gets introduced further along in the algorithm. 

Mathematically the problem .is that the photon transmission equation is 

I == /0 * exp(- f u1(x,y) dl) 

where u1 is the linear attenuation coefficient. The total n·umber of photons 

detected as a region is being scanned is represented by the equation 

where ds represents the infinitesimal paths the detector and the source move 

together in fixed time intervals to scan a region. The average absorption 

density is 

Average Absorption Density - ff ui(x,y) dlds 

This can be derived from the total photon count /TOTAL by moving the ds 

integral symbol inside the exponential function and the .negative sign. The 

average linear attenuation coefficient is derived by dividing the average 

absorption density by the region's area, .( f dlds, but all the regions have the 

same area, so this re<:luces the division operation to a scaling . function and is 
-~ 

not done · to save time.. Since there is a 1-to-1 relation. between the linear 

attenuation coefficient and the region's ·density in my simple single object 

images, the image is created by plotting absorption .density values. The 

following average absorption density equation models the detector moving in a 

parallel .and equal distance with the source, but in the fourth gener.ation gauge., 

9 



the detector is stationary, giving greater weight to a delta area 
I 

near the 

detector t-han the source. This error source can be remedied by paying closer 

attention to your differentials and transforming them into polar coordinates. 

This complicates reconstruction algorithm though a·nd is not done. 

Since th.e source and detector columnating aperture has finite area, the 

photon beam does not cut a planar cross-section across the object, but actually 

averages a slice of the object. This causes the transverse axial dimension to 

contribute to partial volume detector count. distortion also2• 

There exist a second type of partial volume error which can cause up to a 

forty percent error in linear attenuation coefficient evaluation3• It is a. result of 

oversimplifying an analog function when implemented in the digital domain. 

Two paragraphs ago it was written that the averag.e ·absorption density was 

synthesized in the total detector count, /TOTAL' equation by moving the ds 

integral symbol inside the exponential function. But this is mathematically 

incorrect because the exponential function is not linear. The rate of change of 

the negated exponential function increases as the input goes to zero, giving a 

higher weight to low value inputs than higher valued. This means t.he low 

density areas in a scanned region have a dispropoortionate higher influence on a 

region's average absorption density than high density areas. The motivation for 

again using a fallacy is the resulting straight forward algorithm to calculate .the 

scan region's average absorption d.ensity from the region's detector count and 

the aprior source brightness whose value is alway.s being updated.. U~ing simple 

algebra 

Average Absorption Density == - ln (/TOTAL//0) 

is derived. The error can be· interpret as using the region's arithmetic average 

10 
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density when its weighted average density should be ·used. 

The computer model did not modeled the image blurring caused by the 
c::-

be ams motion through the gauge, nor did it consider the mis-assigned 'detector 

counts· caused by Compton scattering. 

11 



- . . 

,1 

Chapter 4 

Tomography Reconstruction 

4.1 Computer Program Description 

The Homer Laboratories' tomography reconstructio·n compute.r program had 

the ability to input the detector array values generateq by the actual gauge or 

by the gauge computer simulation program. The physical measurement that a 

ph·otomultip1ier tube makes is the number of photons that are transmitted 

through the steel beam along t.he line between t"he photon source and the tube. 

This is described mathematically by the equation 

I == /0 * exp(- u * l) 

where /0 is .the number- of photons emitted by the source in the detector's 

direction alo.ng the line of length, l , where the density per unit length is u 

along .that line. This is actually a line integral equation, written in section 3.2, 

summing the prod~ct of infinitesimal length intervals along the line and the 

interval's density. But since the steel object is assumed to have a uniform 

density of 1.4 and the air surrounding the object is assumed to .have a density 

of zero, the integral reduces to the a-hove form. 

Bracewell 's tomography form-ula4' 5, 6 essentially says that with a multi

infinite n.umber of line density in_tegrals covering the region in all angular 

directions, this is en.ough information to determine the density at any point in 

the region. My use of the term multi-infinite is to describe that an infinite 

number of lines, all parallel to each other, filling a _geometric plane would not 

·be enough to satisfy the formula. All possible parallel line planes are needed 

where the parallel lines • 1n one plane would be infinitesimally rotated with 

12 
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respect to the parallel lines in any other plane, and all the differently 

constructed planes are congruent with the object's cross sectional reconstruction 

plane. To illustrate the point, if you placed a source and a detector 

diametrically across from each other on a ring's perimeter, and the ring was 

rotated one revolution, the line between the source and detector would cut a 

plane containing. enough information for only the point in the ring's center to 

be reconstructed. It is for this reason that the high speed computer had to be 

invented before tomography became popular. 

A fourth generation gauge attempts to get a sampling of these line 

integrals by viewing the object from a fixed detector and moving the radiation 

source behind the object so the object eclipses· the ·source and the detector's 

photon readings are sampled at predetermined source positions throughout the 

eclipse. If the number of detector sample readings are increased, the amount of 

image blurring is reduced. The detector readings can be plotted to create a 

profile or shadow function, that was casted on the detector. This function is 

high-pass filtered with respect to source-to-detector positioning. This filter is 

similar to the Laplacian. This de-emp.hasises the shadow's center region and 

gives negative values to some of the shadow's edge. This allows the shadow 

profiles to be backprojected across the reconstruction region and summed 

together, keeping track of detector geometric relationship, to give high net 

values to points inside the object's boundary. The algorithm used by Homer 

Laboratories incorporated back-projected, convoluted, Radon filtered shadow 

profiles. There is research going on today to mathematically manipulate Radon 

filtering equation so the high~pass filtering part of the algorithm can be both 

better implemented in the digital domain, and modified to help compensate fot 

13 



the image degradation and artifacts due to the finite number of detector shadow 

functions used. Once again tpe rnore detectors there are, the less image 

blurring occurs, but also another phenomena occurs from not using the infinite 

number of detectors called for. The image will have artifact radiating out from 

the object's corners into the background region. This is caused by not haying 

enough backprojected detector shadows which would contain negative values to 

reduce the artifacts height down to the background level in the summation. If 

their heights are not kept low enough, then they· will greatly complicated the 

object edge finding and dimensioning processing. 

So after each detectors shadow function has been filtered, any image point 

in the reconstruction region can be independently evaluated. All that needs to 

be found is the vec.tor geometry of the image point with respect to each 

detector. The point's position in the detector's filtered shadow function is 

determined and: the function's value at that position is weighted by distance 

between the image point and the detector. This weighted value is added to the 

weighted vc;t.lues from all the other detectors to given a n.et value which is 

assigned to that image point. 
l· 

To reiterate, the maximum special resolution is determine by the number 

of detectors and the number of shadow function samples per detector. If either 

number is decreased·, then the spacial resolution will decrease and using a finer 

image reconstruction pixel grid will not improve it. As previously stated, 

experimenting with the shadow function filterin·g operator can change artifact 

height, image DC value, 'and contrast distance between object and background, 

but cannot decrease the edge transition region or blur below a minimum. As 

an analogy, after a camera's lens blurs a photo, using finer resolution film 
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quality will not restore the image. 

4.2 Reconstruction Region 

The tomography reconstruction algorithm was modified to create a 

cartesian pixel grid in place of Homer Labotatories' polar pixel grid. The 

cartesian grid does no.t lose resolution as you increase the distance from the 

' 
grid's center and interpolating image values between pixels is easier as opposed 

to the polar grid. 

The reconstruction region was circular with a fifteen inch radius. A 

square, two hundred and fifty-seven per side, pixel grid was overlayed over the 

reconstruction region._ This gave· a resolution of 0.1167 inches between pixel 

centers. This created sixty-four thousand reconstruction pixels. The pixels 

outside the circular gauge reconstruction region were assigned zero density. 

These pixels pl us the ones just inside the fifte~n inch reconstruction region were 

ignored by the edge finding algorithms so the ·regions border edge would not 

int~rfere with the object '5 edge detection. 

The large number of ·image pixels used could be circumvented by using 

fir$t a much courser pixel grid, finding the object location with a crude global 

thresholding technique-, and then calculating as many pixel values, only in the 

object's reg-ion, to achieve the desired resolution for accurate dimensioning. This 

is all contingent on- the direct evaluation of Bracewell's tomography point 

function equation an.d -not using an iterative reconstruction a_lgorithm, allowing 

the calculation of points inside the reconstruction. region .to be independent of 

one another. An on-line image processing algorithm could be pu.t in the 

program to create an adaptive resolution. This approach would greatly reduce 

the reconstruction and the edge finding processing time·s. 

15 



The pixels values were the direct solution of Bracewell's tomography 

equation calculated on an IBM 3081 mainframe computer using single precision. 
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Chapter 5 

Reconstructed Images 

Three test images were reconstructed for operator evaluation. They are 

listed below and can be viewed on ·pages 65, 91, and 111. 

i) "I" beam with no photon Poisson noise 

added; flange, web, and thickness 

dimensions equal to 4.0, 8.0, and 

1.0 inches respectively 

ii) "I" beam with photon Poisson noise 
added; flange, wed, and thickness 

dimensions equal to 4.0, 8.0, and 

1.0 inches respectively 

iii) Bar with 3. 0 inch diameter 

All the images have h·igh object slope contrast and low peak value 

artifacts. Global thresholding the image would have no problem identifying 

object. The image of the "I" beam with no noise added shows an excellent 

example of artifacts radiating outward and increasing in high from the object's 

corners seen at the four corners of the beam. The artifacts are very low due to 

the number of photodetectors in model. If the number were divided in half, the 

artifact height could in.crease as high as three-fourths the object's height and of 

coarse the object slope ·would decrease.. The beam's flanges can be seen as right 

and left pillars and the web as a panel between the flanges. The "I" beam 

with noise added is almost the same as without noise due to the usage of a 

high intensity source, but it has a pillar jutting out of the rniddle of the web 

and is sightly asymmetrical while without noise image is completely sy.mmetric 

with respect to the X-axis and Y-axis zero lines. The web distortion is in the 

object center where Poisson noise will have t-he greatest effect since the detector 

counts are the lowest from this region. The bar image is easily identifiable 

with artifacts radiating outward in circular symmetric fashion. Poisson noise 
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probably effects this image very little because of its small cross sectional size. 

The histograms following each image have the characteristic bimodal 

distribution as expected for bilevel type images. The modals' coefficient value 

position are near the bilevel values of actual image, 0.0 and 1.4. The area 

under the modals is representative of the unequal object to background area. 

The variance of the background ·modal is three or fourth time greater due to 

artifacts increasing in height as they radiate outward from the step density 

perturbation source. 

The cross sectional views of the density image can be viewed on pages 67 

thro,ugh 69, 93 through 94, and 113. Views 67 and 93 are along the center 

axis of the web. Page 68's view is of the web center transaxial cross section. 

Views on page 69 and 94 are along the center axis of the right flange. The 

flange top plateau region is bowed in the centered which is known as the 

"volcano" effect7 and is due to the finite width of the photon beam. View 113 

is through the cen tet of the bar._ Page 95 and 111 are the Discrete Fourier 
\ 

Transforms of the images which is an indication domain's coefficients. 

The images hereafter will be ref er to . as image i, image ii, and iii as listed 

in the first paragraph. 
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Chapter 6 

Image Processing for Tomography 

6.1 Edge Detection 

Most digital edge operators involve the subtraction of pixel values in a 

n~ighborhood and assign the summation of all subtractions to the neig·hborhood 

center pixel. It seems that every possible combination of adding and 

subtracting pixel values in a two by two and a three by three neighborhood has 

been tried. Many edge operator rnatrixes have been derived by starting with an 

analog function that enhances or gives high values to steep slope regions in a 

surface. The function is mimiced by a digital template or matrix impulse 

response operator with Ii ttle mathematical rigor. This approach introduces 

image lo.w-pass spacial filtering due to the distance between image grid sam·pies 

and the size of the. operator matrix. 

To imitate the analog operator, the operator's impulse function is 

determined and then sampled to create a convolution matrix. Sometimes a one 

dimension function is mirniced and the resulting one dimensional vector is just 

repeated in the operator matrix to create a two dimensional sq~.lare convoluting 

matrix. Or a square matrix is created by placing a vector horizontally in a 

matrix filled with zero's .and then placing it vertically in another zero matrix. 

The two matrixes ate then summed to create the operator matrix. A matrix 

templat.e may be modified by increasing values of elements that are closer .to 

the tern.plates center element for two different reasons. The first reason being 

to give greater weight to direct, center pixel 11eighbors under the assumption 

that they have greater correlation with the center pixel than do the indirect 
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neighbors. And the second reason is to mold the operator matrix window 

function from a sharp truncated window to one whose truncation is gradual like 

the Gaussian, Blackman, Bartlett, etc. windows to reduce Gibb's ringing 

artifacts in the output image. The matrix elements may fin·ally be scaled by a 

constant so the output image does not acquire an additional DC offset from the 

operator. 

Another approach using matrixes is to use orthonormal matrixes whose 

element values are similar or match the values found in an ideal image window 

containing the feature you· are searching for. These templates are also shifted 

across the image, but viewed as cross-correlating the template and the image. 

To test for each possible feature angular orientation with respect to the grid, a 

rotated set of templates have to cross-correlated making this approach 

computationally expensiv·e.. Each template will have its own output image and 

they will have to be combined in so-me fashion to generate a resultant image. 

Although there are many edge detectors and processing methods4' s, 8, 

when any are used alone, none are consistently satisfactory for precision edge 

identification. The detectors performance is both imaging device type and image 

scene type dependent. The general technique of edge e_nhancemeht follow-ed by 

an edge pixel selection criteria is· heuristic in nature. Each method must be 

"tuned" by trial-and-error procedures with a set of test pictures. Usually, the 

resulting performance can only be measured, not predicteq. The edge fitting 

approach, although mathematically formulated, suffers from many of the same 

defects. Additionally, both methods fail to cope effectively with noise. To deal 

with theses facts of life, using a number of better edge operators, processed in 

parallel, combining- their outputs in a weighted sum fashion, then global 
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thresholding the resultant ·image should give excellent results. The newly 

developing fuzzy set theory 91 10 may replace the weighted sum calculation if 

·warranted or simply using a logical AND and OR operator equation on the 

pixel edge vote from each edge operator may be all that is necessary. 

Another approach of using multiple parallel processing is· to use the same 

detector, changing its neighborhood size, multiplying together the pixel values of 

each output, and then global thresholding the product image. The larger 

neighborhoods will be immune to short edges or artifacts, and high frequency 

• noise. The smaller neighborhoods will not degrade the image while it is 

processing it, thereby retaining a sharply define edge. The. amount of image 

low-pass filtering is directly ·proportional to the number of elements in the 

convoluting matrix. And .since no filter has a perfect frequency step curve, the 

larger neighborhoods will be introducing further edge blurring degradation8 • 

Only sharp, prominent edges will rank high under both matrix size types 

creating an extremely enhanced product value. By choosing a detector 

possessing an algorithm whose output can be piped directly into the next larger 

neighborhood convolution calculation, you can forego the more expensive parallel 

processing hardware without increasing the processing time by the power of the 
~ 

number of neigh·borhoods. 

6.2 Histogram 

Graphing the distribution of pixels that fall into a criteria or measurement 

range is used extensively in image processing. The intensity or pixel image 

value and some aprior knowledge about the image can be used to find a 

threshold value to segment the image into general features does an acceptable 

job for most image types. 
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Single object images are especially adapted to this type of processing. The 

gray level histogram is bimodal and by selecting a threshold value any were 

between the modals will give good object proximity. 

Using additional • processing time, histograms of different • image 

characteristic such as X and Y coordinates, output of one or more edge 

operators, and a statistic measurement can be combined to. form a multivariant 

histogram4• The resultant multidimensio·nal s11rface may then have a peak or 

valley that can be identified as .unique to the object and using the aprior object 

area, perimeter, E.uclidean distance from ideal image, etc. the surface feature .can 

be thresholded to accurately identify object location. 

6.3 Contrast and Topologic Region Filtering 

To fight against artifact and noise pollution in an image, the image pixels 

can be filtered, ignored, or ·flagged from any further processing at either the 

edge operator's input or output images. 

Filtering at the image input is essentially data compression and will allow 

using a' higher resolution pix~] grid without adding _process time. Several one 

dimensional contrast ratio test have been formulated. 

Weber's Fraction11 , 12 

The most popular is 

where 10 < 11. The number of pixels separating 10 and 11 can be a fun.ction of 

imaging device bandwidth or in other words object-background· spacial transition 

width. This will further discriminate against reconstruction artifacts which 

usually have much wider edge transition regions than the object's edge. Or 

image can be divided into regions and one region tested against the other to 
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identify potential regions containing an edge. This regional evaluation can be 
I 

use by the tomography reconstruction point function algorithm to determine if 

region should be further sampled to gain finer resolution. Therefore 

reconstruction. time would not be wasted on edgeless regions, but still allowing 

high resolution to important. image regions .. 

To determine the Weber number threshold value, the image maximum and 

minimum can be found by colirsely sampling t-he recons_truction pixel grid, and 

then taking a percentage of their difference to subtract from the maximum 

value to be used as I1 and to add the percentage difference to the minimum 

grid value to be used as 10 • If histogram . analysis is already being used on the 

input image, then the upper modal pix.el value could be used as 11 and the 

lower modal pixel value could be used as 10 to calculate greater-than threshold 

value criteria. 

Another pixel input selection criteria, also using the pixel intensity values, 

will filter out any pixels whose value ·does not fall in the valle.y region in the 

image's bimodal histogram. The ·boundaries of the selection valley can be 

defined by subtracting the upper and lower modal intensity values, and taking a 

percentag_e of the difference to add~to and subtract-from the lower and upper 

modals, respectively. This method will n·ot filter out high peak value 

reconstruction artifacts; caused by using two small a number of gauge 

photodetectors, and whose pixel values will fall into the histogram selection 

valley. 

After the edge operator is processed there ~xist another opportunity to 

improve ed-ge enhancement results. The histogram of the output images can be 

generated and a global image threshold value can be determined by using aprior 
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knowledge of how many edge pixels would be in ideal object perimeter. 

-Cumulatively ·adding histogram pixels, starting at high end of the graph, and 

stopping when a aprior value is rea(:h will give a threshold value. The average 

position of all the pixels above the threshold can be found to approximate the 

object's center. Using· aptior knowledge of size of object, an outer and 

depending on the object's shape an inter rectangle can be defined, where all 

edge pixels outside or inside rectangles, respectively, are flagged as false edges. 

It would only require grid row and column addresses to decide if edge pixel 

should be flagged. After the end of the flagging procedur.e, again cumulatively: 

adding new pixels to repla·ce the flagged ones in histogram to achieve .the aprior 

edge count and reduce edge fragmenting which plaques simplistic global 

thresholding. 

This last above object locating and region filtering technique can also be 

used on the edge operat.or's input image as another technique for data 

• compression. Instead of using aprior knowledge of object's perimeter and 

thresholding the edge enhancement histogram, object's aprior known area is used 

to thresh'old the input image's intensity histogram. All other procedutes remain 

the same except there will be no inter-rectangle boundary. 

6.4 Contour Following 

Contour following can be applied at two different steps in edge detection. 

It. can be used after an edge operator, tracing operator's ridge peak contour. 

Or it can be used to search original image and draw edge contour, eliminating 

the need for an edge enhancement operator. There exist many curve tracing 

techniques which many perform viable edge finding. They possession the 

desirable feature of concentrating process time on only edge region and ignoring 
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the rest of the reconstruction • region. This method suffers from many 

indetermine cases causing the algorithm to come to a halt. This can be 

remedied with sophisticated searching techniques which will increase the time 

cost function. 

Four to eight matching template correlation tests or a arctan(Fy/ Fx) 

function of some directional gradient operators are normally used to provide an 

angle, with respect to last contour branch, that the contour should proceed. 

Another contour searching technique is to use an edge operator that performs 

well when used across the entire image, demonstrating that it is robust with 

respect to specific noise and degradations. The operator will then be used only 

on pixels that are candidates to be selected as the next node in the contour 

path, instead of globally processed. 

Another advantage of curve tracing is its ability to take advantage of the 

fact that the tomography reconstruction algorithm is a point function. By first. 

performing very course pixel grid reconstruction, and then global thresholding 

the image. The object can be located among the artifacts by using aprior 
~-

statistic<:1J values, producing a seed pixel. The object edge can be searched for 

with "amoeba-like" pseudo legs to test possible branch paths. The node values 

are image values calculated on-line with the tomogtaphy algorithm. Branch path 

are interpreted as object boundary. The branch length and angle with respect 

to last branch may be adaptive using previous found test node values, branch 

angles, and aprior knowledge of object shape. For instance, branch length 

should be short for tracing o·bject boundary when believed to be approaching 

boundary corner and 'long when tracing boundary representing flat area on 

objett. Testing of nodes three or fourth ahead · with decision criteria can be 
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done· before determine if a node is actually a correct choice of edge path 13, 14• 

Of course the more sophisticated the adaptive and decision criteria are t-he 

slower the curve tracing will ~ccur. Bu:t the more sophistication used, the 

better path-edge accuracy .along with minimal image grid sampling. 

By performing a histogram on image and using only middle valued pixels 

as total set of node candidates, a test band about the object'·s border will be 

the only pixels considered as node candidates. This will afford an extreme 

amount of data compression before the e.dge operater is used. Noise pixels that 

pollute the middle of the histogram will not be operated on because they will 

probably not be within branch decision distance of path head node. You can 

even go as for as doing histogram analysis on local neighborhood·s. of node 

candid.ates for path decision making. 

6.5 Image Restoration 

No images were preprocessed with any restoration techniques before edge 

detector for the following reasons. The driving force behind these techniques is 

to minimize or maximize the Mean Square Error, Schwartz's metric, Cross-
.. 

' 

Correlation, Absolut.e Difference, or some other pixel gray level criteria. Two 

c6ncurrent pixel gray levels are compared from the actual image to some aprior 

ideal image. This would be us.eful to eliminate artifacts but not space-invariant 

blurring given the short preprocessing time interval. In.stead. of gray or 

intensity level examination, some metric incorporating geometric and topological 

properties is what is necessary to- lead to precision object dimensioning. Such 

an approach might be to use an above mentioned intensity metric, but giving 

significantly greater weight to middle valued intensity pixels, which is the super 

set of the image's edge pixels. 
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6.6 Surface Interpolation 

The goal of edge detectors are to locate precisely the actual object's edge, 

in this case, for precision object dimensioning. To do this from a digitized 

• image • requires interpolation of the edge operator output • image. The 

interpolation process will be hampered by missing or false information in the 

form of smeared, fragmented, and offset edges15
• Several surface fitting 

techniques were reYiewed including Scan-Line Coherence, B-spline, Hermite, and 

Bezier in hopes that it would lead to a more precise edge location in the 

detector's output image for a given req>nstruction grid resolutioi:i than - linear 

interpolation affords. In the limited literature5' 16 reviewed, nothing was found 

computationally fast enough worth trying, but this still leaves ell)pirical 

statistical analysis to possibly improve locating object's edge between operator 

identified edge pixels. 
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7 .1 Introduction 

Chapter 7 

Experiments 

Topologically the scene that is being reconstructed and process has three 

parts: exterior, boundary, and interior.. The operators in my experimen_ts 
•· 

identified by individual pixels the boundary or the interior. 

The figure of merit used to quantify operator performance was to take the 

number of operator identified edge pixels given that it was an edge pixel in the 

actual image, and ratio the count to the total number of edge pixels in the 

actual image, Identified/ Actual. This merit measures the ability of the operator 

to identify actual edges correctly and is labeled Identified/ Actual. The other 

figure of merit used was to count the nu.mber of edge pixels in actual image 

given that they were identified by operator, and ratio count to the total 

number of operator identified pixels, Actual/Identified. This merit measures 

false identification or operator sus·ceptibility to noise, artifacts, and imag_e 

degra·dation, and is labeled Actual/Identified. In the above explanation, the 

word edge may be replaced by interior depending on operator type. The above 

two ratios are transformed to percentage and added giving a perfect performance 

of two-hundred percent. 
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7. 2 Median Filtering 

It is no secret that edge detectors produce false edge pixels when 

-confronted with high frequency noise. To reduce this problem the image can be 

pre-processed with a low-pass filter, but this blurs the image further, increasing 

the distance between the real and the reconstructed images. 

Tukey's Median Filter 1971 tech,nique17, 18, 4 was chosen to be tried from 

the multitude of linear and non-linear filters because· of consistent favorable 

reviews it received. Experiments show t·hat taking the median value in a 

neighbothood· and assigning its value to the neighborhood's center pixel blurs the 

objects sharp edges very little, but still does the equivalent noise reduction of 

other operators. 

The effects of median nonlinear filtering on tomography artifacts can be 

·seen o-n pages 72 through 7 4. The window size in.creases from 3 X 3, to 5 X 5, 

to 7 X 7 in each image i). For image i), the effects of 3 X 3, 5 X 5, and 9 

X 9 windows ·are shown on pages 96 through 99, 100 through 103, and 104 

through 105, respectively. A 9· X 9 filtering window is needed before a 

significant artifact reduction is achieved. The 5 X 5 filtered web center profile, 

page 102, compared to the original, page 93, shows no .apparent slop.e ·red.uction 

while reducing noise and artifact height. Reviewing pages 95, 99, 103, and 105· 

shows filter influence on all areas of the frequency domain. 

Instead of using a two dimensional neighborhood template, the filter 

processing time can be significantly decreased by using a one dimensional 

neighborhood and running the filter along each pixel row and then each column. 

Median filtering loses very little effectiveness under this technique and its 

performance even improves by not rounding object corners as· much17• 
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7.3 Edge Operators 
I II 

7.3.1 Gradient Vector 

This edge operator has two convolution vectors to model the gradient in 

the. X and then the Y direction. 

1) 1 -1 2) 1 

-i 

It will not low-pass filter or blur the image as muc.h as larger size operators 

and can be programmed for fast row and column scan • processing. The 

Euclidean and the absolute metrics were used to ·combine the two vector 

outputs in image i). The Euclidean was used only on the other tw·o images. 

Page 75 is the output image of the operator on image i showing it 

sensitivity to background artifacts. Page 77 shows its ~elatively high peak for 

the web cross-section profile close to the W eb-'s slope. Page 78 shows pixels 

that were identified as an edge after thresholding the edge histogram. Only the 

artifacts extending from the flanges are falsely identified. These could easily be 

identified by an object's topological metric and removed. 

7 .3.2 Radial Difference 

1) 0 -1 

0 1 

0 0 

0 

0 

0 

2) o· o 

-1 1 

0 .Q 

0 

0 

0 

3) 0 0 0 

0 1 -1 

0 0 0 

4) 0 0 

0 1 

0 -1 

0 

0 

0 

The absolute values of the four resultants are added to give the operator 

output. The operator is effectively the pixel's graqient operator with its direct 

neighbors and the Euclidean metric is replace wi~ the faster absolute value 

calculation. The number of pixels between the gradient elements can be 
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empirically increased for best results. 

Graphs on page 83 and 84 and experimental results, section 7.6, show that 

this operator is sensitive to tomography artifacts and noise and performs poorly. 

Perhaps using a higher adjusted threshold value would improve results. Page 

82 shows good web edge height in thresholded web center profile. 

7.3.3 Roberts 

1) 1 0 2) 0 -1 

0 -1 1 0 

This operator's output is the sum of the absolute values of the two 

co·nvoluting matrixes. It is basically the gradient vector run diagonally across 

the pixel grid. Since its operating pixels are farther apart, its low-pass cut-off 

frequency will be ~- factor of 1.4 lower than the gradient vector operator. 

This operator is sensitive to artifacts from both flange and web sections of 

the "I" beam as seen on page 88. This operator might also perform better 

using a high-er threshold value as can be seen on page 87 which has excellent 

web edge peaks. 

7 .3.4 Prewitts 

1) 1 0 

1 

1 

0 

:0 

-1 

-1 

-1 

2) -1 

0 

1 

-1 

.Q 

1 

-1 

0 

1 

This operator has two convolution matrixes. One to detect the X 

c·omponent of the edge and the other for the Y component. They are the result 

of stretching t.he Gradient Vector operator and then repeating the vector to fill 

out a 3 X 3 matrix. Its overall performance was fifty percentage points better 
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than the one dimensional vector model. It identify more actual edge points. 

Its larger window is better adapted to the image's edge slope value. 

This operator's performance was averaged. A follow up experiment would 

be to replace the direct neighbors with the value of two. This gives greater 

weight to image points closest to the assignment pixel. This is known as the 

Sobel operator and has good reviews 15, 19• 

7 .3.5 Multi-sized Laplacian 

The Laplacian edge operator was not tried because of several bad reviews 

20, 21 , 22 it received. The algorithrn which surps the one dimensional Laplacian 

of different size windows which are on one side of the evaluation pixel and 

subtracts the net of the sum of different sized Laplacians on the other side of 

the evaluation pixel8 was tried. For the "I" beam image without noise, the 

figure of m.erits were both less than five percent. Good results were expe.cted 

from this type of technique. Either the interpretation or the author's 

pu_blication of the formula were faulty, so it was not used on any other images. 

7.4 Interior Operators 

7.4.1 Min-Max Product 

This operator takes the 
. .. 

IDinJmum and • maximum values in a 2 X 2 

window and assigns their product to the output pixel. 

By experiment it was found that this algorithm _performs well for steel 

tomography • images. The algorithm acts similar to a quantization level 

transformation function. Operator images are graphed on pages 106 through 

109 and the coefficient values have been translate.cl by -0.4 . Referring to the 

center web profiles, page 67 and 108 of image i)-, this method almost eliminates 
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background area artifacts and not only preserves, but increases slope value by 

• • 1ncreas1ng contrast. 

The operator is essential the quadratic operator and its second derivative 

about X equal to one is the· desirable characteristic. First it enhances the 

plateau regions by increasing the plateau height in a non-linear manner. And 

bilevel images are enhanced without noticin.g t·he non-linear distortion. Second, 

the actual image background coefficient is zero and the troublesome artifacts are 

mostly in the region. added to the zero mean value. All artifact values of less 

than one· will be reduced in value by their own. value. Thus the smaller the 

pixel level, the more it will be reduced to zero which is where the majority of 

pixels fall. Artifacts will very rarely exceed the value of one or more than a 

third of the object high. Third, the artifacts or noise with negative· coefficients 

values will be compressed the same to the zero axis and reflected about the 

zero axis corraling them with the positive pixels further reducing high frequency 

background area noise and artifact deviations} Fourth, the object transition 

region exceeds one and t.he value of ol)e will map into itself, so the object's 

widt~· will be confined and preserved. Fifth, the original image above one will 

be non-linearly stressed and much easier for other operators to process. And· 

sixth·, the background-object transition is usually gradually ch·anging with the 

second derivative going from zero, to positive, to zero, to negative, to positive, 

to zero again. The quadratic operator has a linearly changing first derivative 

a_nd nearly matches the image edge slope to keep output image transition 

interval from broading inspite of the plateau contrast increase. Coefficient 

values on the slope less than one, or in the positive second derivative range will 

be increasingly forced to zero as its input image approaches zero and coefficient 
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values greater than one-half will have the delta interval increasingly amplified. 

A major drawback to this operator for tomography is the linear increasing 

slope above one or in th.e object plateau. Pixel noise error will be more than 

doubled which can be seen on pages 67 and 108. The crevasse between the 

flange and web triples and as stated in section 3.2, the objects interior is where 

Poisson noise will have the greatest percentage error. Instead of using the two 

extreme values in the o·perator window, the two other values could be used 

taking advantage of Median type filtering to reduce this problem. 

After using the quadratic operator · the image is ready for either global 

thresholding or edge detector processin.g. It may be advantageous to always 

translate and scale image so it falls into the desired region for processing with 

this quadratic type operator. 

7.4.2 Maximum Difference Operator 

This operator was tried on image i), but ·results were poor, 70% total, so 

it was not tried on any other test images because results would only· get worse 

in the presence of noise. The minimum pixel value in a 2 X 2 window is 

subtracted from the maximum value in the same window6• This is a busyness 

type operator23 that is normally used in image segmentation to find a boundary 

line between textured regions. 
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7 .4.3 Chow and Kaneko 

This method 24, 4 models the image intensity, in this case attenuation 

coefficient , histogram as two overlapping gau.ssian curves. A histogram 

segmentation threshold is chosen which minimizes the probability error of pixel 

object-background assignment. The thres·hold selection equation is 

For the two gaussian means, the bimodal peak values were ·used. Usually the 

minimum mean ., squared error evaluation between. the modals and possible 

gaussian curves are used to determine the variance parameters. It was assumed 

that the variances for· both modals were equal and the parameter was estimated 

from the histogram. This was a gross simplification since the histogram for all 

the images, o.n pages 66, 92, and 112, had the lower modal twice the width as 

the upper· modal. The variance was calculated using the actual variance of the 

curve to the left of the lower peak value, using .the lowe.r peak value as the 

mean, and the curve to the right of the upper modal peak, using the upper 

peak as the mean. This allowed both modals t.o influence the variance value. 

The aprior probability of packground or object was assign: us~ng area ratio of 

actual object to reconstruction region. 

The calculated threshold value fell between the aprior area count and the 

valley minimum in each test image giving good merit values. 
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7 .4.4 Histogram Segmentation 

This method simply plots the imctge absorption coefficient histogram and 

segments the histogram in two using some segmenting criteria. The upper 

histogram contains the object pixels and thresholding image with segmenting 

value will identify image object pixels in the bilevel image. 

The histogram was quantized into three hundred and ten levels, ranging 

from -1.0 to +2.09. The number of quantization levels were chosen because o.f -
the simplicity of the algorithm needed to determine which level an arbitrary 

pixel value should be entered. 

Several histogram plots have been made; see pages 66, 92, and 112, 

showing the expected bimodal shape of a bilevel, single object image. The 

image's background pixels are cumulated .around the pixel absorption value of 

0.0 and the object pixels are gathered around the absorption value of 1.3 and 

1.4 . The background modal dwarfs the object modal due to the ratio of t-he 

object area to total pixel reconstruction grid area. Others have tried to take 

the F'ou-rier Transform of the curve to exact edge information, but were not 

able to obtain worthwhile results. 

The aprior calculation of the number of pixels that would fall inside the 

object boundary for a perfectly rolled object was used. Starting with the high 

valued pixel end of the histogram, cumulatively pixel counts were added toward 

the low end until the ideal cou.nt was reached. 

Th.e histogram's bimodal peaks, minimum valley, and aprior ideal pixel 

count have all been used for global thresholding. Also tried was the unweighted 

average of these. The histogram is continuously sprinkled with high frequency 

local peaks and valleys. Arithmetic averaging was used on the curve to create 
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an identifiable unique • • between the histograms two modals. The m1n1mum 

window sizes of five and twenty-three elements were used for the "]" beam and 

bar histograms, respectively. The aprior area and peak values were again 

derived after filtering. The following values were then calculated ·by combining 

t.he area and valley minimum values, the two modal peak values, and the area, 

valley minimum, and the two modal peak values. Th.e large filter window 

needed for the bar image caused erroneous results. Graphs on page 70 and 71 

shows the results of quantizing the beam image into pixels 1) less than lower 

modal peak, 2) between lower modal peak and aprior area count threshold, 3) 

between aprior area count threshold and upper modal peak, and 4) greater than 

upper modal peak. Page 7l shows the quantized plateaus through the. web 

center. The third highest plateau represents the web width and is accurate. 

The two modal peak threshold values hav.e equal total merit values for all 

the images. Therefore, there exists a maximum figure of merit threshold value 

between these points. It is still open for investigation to find a formula to 

locate this point. 

7.5 Median Filter Presmoothing 
. I 

A 5 X 5 widowed Median Filter was used to reduce the image • noise. 

Pages 100 through 103 can be compared with pages 91 through 95 to qualify 

the amount of filtering on the "I" beam. Then the Gr.adient Vector, Radial 

Difference, Roberts, Prewitts, Multi-size Laplacian_, Min-Max Product, and 

Chows operators were used on the test images to see if their performance would 

improve. Neither of the noise injected image's had significantly improved .figure 

of merit values. 
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7 .6 Experimental Results 

The following three tables list the experimental results of the three test 

images. The two figure of merits described in section 7 .1 are given. for each 

operator along with the merit's quotient repre·sented as a percentage. The two 

percentages are summed in the total column, and a perfect score is two hundred 

percent. The fourth table summarizes the results from the noise injected test 

images of the second and third tables. The tw.o perc~nt totals are added to 

give the quantitative values and a perfect score of four hundred. These values 

are divide into three equal size categories of poor, average, and -good to give a 

relative qualitative value. Also this table list the IBM 3081 virtual and real 

processor times in seconds it seconds it took to run the operators on the 

cylinder image. This indicates comparative operator processing speed, but with 

special hardware ·and algorithm recoding, times can be greatly improved. 
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Table 7-1: Image i) "I" Beam without Poisson noise 

IDENTIFIED/ ACTUAL ACTUAL/IDENTIFIED 

OPERATOR I/A % A/I % TOTAL % 
------------·------------------·------------------
--------------------------·- . --·-------------- . - ·-

Edge Identifiers 
Gradient Vector 
Euclidean Dist 175/520 
Absolute Value 163/520 
Radial Diff 256/520 
Roberts 176/520 
Prewitts 
Euclidean Dist 288 / 520 
Absolute Value 310/520 
Multi-Laplacian 24/520 
5x5 Median Filter 
2X2 Gradient 183/520 
Radial Diff 302/520 
Roberts 183/520 
Prewitts 304/520 
Multi-Laplacian 36/520 

Interior Identifiers 
Min-Max Product 280/1115 
Maximum Diff 380/1115 
Chows 965/1115 
Histogram Threshold 
Object Area 993/1115 
Lower Peak 192/1115 
Upper Peak 192/1115 
Average Filter 5 
Object Area 989/1115 
Lower Peak 244/1115 
Upper Peak 244/1115 
Valley Min 731/1115 
Area-Valley 847 /1115 
Lower-Upper 961/1115 
Area-Low-Up-Min 871/1115 
Median Filter 
3X3 1006/1115 
5X5 1013/1115 
7X7 1009/1115 
5X5 Median Filter 
Min-Max Product 202/1115 
Chows 991/1115 

34· 
31 

49 
33 

55 
60 
5 

35 
58 
35 
59 
7 

25 
34 
87 

89 
17 
17 

89 
22 
22 

66 
76 

86 
78 

90 
91 
91 

18 
89 

175/265 
163/268 

256/556 
176/264 

288/518 
310/528 
24/524 

183/263 
302/514 
183/262 
304/526 
36/527 

280/280 
380/1071 
965/981 

993/1029 
192/192 
192/192 

989/1025 
244/244 
244/244 

731/731 
849/851 
961/977 
871/880 

1006/1035 
1013/1037 
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202/202 
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39 

66 
61 

46 
67 

56 
59 
5 

70 
59 
70 
58 
7 

100 
36 
98 

97 
100 
100 

97 
100 
100 

100 
100 

98 
99 

97 
98 
96 

100 
99 

100 
92 

95 
100 

111 
119 
10 

105 
117 
105 
117 
14 

25 
70 

185 

186 
117 
117 

186 
122 
122 

166 
176 

184 
177 

187 
189 
187 

118 
188 



Table 7-2: Image ii} "I" Beam with Poisson noise 

IDENTIFIED/ ACTUAL ACTUAL/IDENTIFIED 
OPERATOR I/A % A/I % TOTAL % 
------------------------------------------ .-- . -·. ------------------------·--------------------- . --

Edge Identifiers 
Gradient Vector 161 /520 31 
Radial Diff 279/520 54 
Roberts 169/520 33 
Prewitts 303/520 58 
Multi-Laplacian 14/520 3 
U nsharp Mask 

. 3X3 3/520 1 
7X7 34/520 7 
9X9 41/520 8 
5X5 Median Filter 
Gradient Vector 354/520 68 
Radial Diff 321/520 62 
Roberts 176/520 34 
Prewitts 310/520 60 
Multi-Laplacian 30/520 6 

Interior Identifiers 
Min-Max Product 322/1115 29 
Chows 983/1115 88 
Histogram Threshold 
Object Area 983/1115 88 
Lower Peak 228/1115 20 
Upper Peak 228/1115 20 
Average Filter 5 
Object Area 995/1115 89 
Lower Peak 272/1115 24 
Upper Peak 272/1115 24 
Valley-Min 733/1115 66 
Area-Valley 881/1115 79 
Lower-Upper 983 / 1115 88 
Area-Low-Up-Min 944/1115 85 
Median Filter 
3X3 1005/1115 90 
5X5 1015 /1115 91 
7X7 1002/1115 90 
5X5 Median Filter 
Min-Max Product 200/1115 18 
Chows 1011/1115 91 

161/260 
279/532 
169/260 · 
303/518 
14/526 

3/593 
34/518 
41/521 

354/1245 
321/524 
176/262 
310/532 
30/566 

322/322 
983/1005 

983/1005 
228/228 
228/228 

995/1033 
272/272 
272/272 

733/733 
881/885 
983/1003 
944/957 

1005/1029 
1015/1039 
1002/1029 

200/200 
1011/1033 

40 

62 
52 
65 
59 
3 

1 
7 
8 

28 
61 
67 
58 
5 

100 
98 

98 
100 
100 

96 
100 
100 

100 
100 

98 
99 

98 
98 
97 

100 
98 

93 
106 

98 
117 

6 

2 
14 
16 

96 
123 
101 
118 
11 

129 
186 

186 
120 
120 

185 
124 
124 

166 
179 
186 
184 

188 
189 
187 

118 
189 



Table 7-3: Image iii) Bar with Poisson noise 

IDENTIFIED/ ACTUAL ACTUAL/IDENTIFIED 
OPERATOR I/A % A/I % TOTAL % 

Edge Identifiers 
Gradient Vector 78/148 53 78/82 95 148 
Radial Diff 148/148 100 148/165 90 190 
Roberts 78/148 53 78/88 89 142 
Prewitts 148/148 100 148/164 90 190 
Unsharp Mask 
3X3 20/148 14 20/248 8 22 
7X7 20/148 14 20/140 14 28 
5X5 Median Filtered 
Gradient Vector 75/148 51 75/81 93 144 
Radial Diff 148/148 100 148/172 86 186 
Roberts 78/148 53 78/88 89 142 
Prewitts 148/148 100 148/172 86 186 

Interior Identifiers 
Min-Max Product 268 / 517 52 268/268 100 152 
Chows 509/517 99 509/509 100 199 
Histogram Threshold 
Object Area 517/517 100 517/527 98 198 
Lower Peak 292/517 56 292/292 100 156 
Upper Peak 292/517 56 292/292 100 156 
Average Filter 23 
Object Area 517/517 100 517/517 100 200 
Lower Peak 0/517 0 0/0 0 0 
Upper Peak 0/517 0 0/0 0 0 
Valley-Min 509/517 99 509/509 100 199 
Area-Valley 517/517 100 517/517 100 200 
Lower-Upper 505/517 98 505/505 100 198 
Area-Low-Up-Min 509/517 99 509/509 100 199 
Median Filter 
3X3 517/517 100 517/525 99 199 
5X5 517/517 100 517/533 97 197 
7X7 517/517 100 517/553 94 194 
5X5 Median Filter 
Min-Max Product 256/517 50 256/256 100 150 
Chows 505/517 98 505/505 100. 198 
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Table 7-4: Summary 

OPERATOR QUANTITATIVE QUALITATIVE VIRTUAL/REAL 
---------------------------------------------------------------------------------------·---------

Edge Identifiers 
Gradient Vector 241 Poor 11.11i12.7 
Radial Diff 296 Average 11.02 11.75 
Roberts 240 Poor 10.94/11.67 
Prewitts 307 Average l 1.39/12.12 
U nsharp Mask 
3X3 24 Poor 
7X7 42 
5X5 Median Filtered 

Poor 10 .8 5 / 11. 90 

Gradient Vector 240 Poor 
Radial Diff 309 Average 
Roberts 243 Poor 
Prewitts 304 Average 

Interior Identifiers 
Min-Max Product 281 Average 11.02/11.74 
Chows 385 Good 6.28/ 7.03 
Histogram Threshold 
Object Area 384 Good .. 
Lower Peak 276 Average 
Upper Peak 276 
Average Filter 

Average 8.29/ 8.06 

Object Area 385 Good 7.77/ 7.53 
Lower Peak 124 Poor 9.21/ 9.00 
Upper Peak 124 Poor 7.76/ 7.53 
Valley-Min 365 Average 7.77 / 7.54 
Area-Valley 379 Good 7.77/ 7.53 
Lower-Upper 384 Good 7.78/ 7.54 
Area-Low-Up-Min 383 Good 7.77/ 7.54 
Median Filter 
3X3 387 Best 12. 2 3 / 12. 60 
5X5 386 Good 28.21 /28.99 
7X7 381 Good 69.28/70.18 
5X5 Median Filter 
Min-Max Product 268 Poor 
Chows 387 Best 
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Chapter 8 

Conclusions 

The qualitative summary table listing clearly shows that the interior 

identifiers exceeded the edge 'identifiers. The median filter preprocessed Chow 

and aprior area thresholding methods gave the highest figur~ of merit value. It 

is interesting t_o note that the Chow an_d aprior area threshold method 

performed to within a couple of merit points on all the test images. Of the 

tried edge identifyin·g operators, the three-by~three neighborhood gradient 

operator performed the best. It performed fifty percentage points better than 

the two-by-two neighborhood gradient. The filtering provided by the median 

filter overall had no effect on the images. Noise reduction inherent in the 

smaller size cylinder image improved edge and interior merit figures by fifty and 

twenty points, respectively. If some object aprior knowledge is available and 

there • 
IS little DC noise, histogram global thresholding throughout edge 

enhancement process is all that is need.ed for single obje~t tomography images. 

There exist no edge enhancement technique that_ can be successfully applied 

to any given quality image generating device along with any object image. And 

even more certain, there is no single ed.ge identifying operator which is 

universal. You can be assured that only the best resultant images become 

published. Acceptable results can be achieved for a spe·cific imaging device type 

when mapped to a narrowly defined set of image objects. To do this requires 

integrating numerous information sources involving multiple process.ing steps or 

operators. 

This paper has only discussed a fraction of the proposed object finding 

techniques. Experiments using other techniques should be tried and compared 
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with these results. The better methods should. then be further developed and 

fine tuned for tomography applictions. 
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