Lehigh University
Lehigh Preserve

Theses and Dissertations

1985

On the vector quantization of images /

Larry Clifford
Lehigh University

Follow this and additional works at: https://preservelehigh.edu/etd

b Part of the Electrical and Computer Engineering Commons

Recommended Citation

Clifford, Larry, "On the vector quantization of images /" (1985). Theses and Dissertations. 4547.
https://preservelehigh.edu/etd/4547

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an

authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

https://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F4547&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F4547&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F4547&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=preserve.lehigh.edu%2Fetd%2F4547&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd/4547?utm_source=preserve.lehigh.edu%2Fetd%2F4547&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

ON THE VECTOR QUANTIZATION OF IMAGES

Larry Clifford

Presented to the Graduate Committee
of Lehigh University
in Candidacy for the Degree of
Master of Science
in

Electrical Engineering

Lehigh'Universiﬁy ; |

1985

CERTIFICATE OF APPROVAL

| This thesis is accepted and approved in partial fulfillment of
the requirements for the degree of Master of Science.

AL LARS

Professor in Charge

Ve $8 Nioen

Chairman of Departmpnt

Acknowledgment

] would like to thank Prof. B. Fritchman. my advisor. for his advice.

trust. and aid throughout my work on this thesis.

1ii

Table of Contents

Abstract
I. Introduction 2
I1. Theoretical Background 4
A. The Context of Vector Qu'alil}.tiz_ati(-_)n_ | K|
B. Distortion Measures 6
C. Statement of the General Vector Quantizer 8
ITI.Vector Quantization Algorithms 15
A. FSVQ Design | 15
B. Tree-Searched Vector Quantizers 21
C. Uniform Vector Quantizers. 27
IV Results and Discussion 28
A. FSVQ Results 28
B. TSVQ Results | | 34
C. UVQ and Other Results | 35
V. Conclusion 37

I

Table
Table
Table

Table

Table

Table

Table

Table

List of Tables

Mean Distortion per Pixel (FSVQ)

S

Distortion Performance for Varying Block Shapes

Mean Distor®ion per Pixel vs. Codebook Size N
and TSVQ Order B -- k = 2.

Mean Distortion per Pixel vs. Codebook Size N

and TSVQ Order B -- k = 2.

Mean~Distortion_perfPixel vs. Codebook Size N
and TSVQ Order B -- &k = 4.

Mean Distortion per Pixel vs. Codebook Size N
and TSVQ Order B -- &k = 9.

Mean Distortiog per Pixel of FSVQ@'s with
UVQ_Initial Guess.

Performance of'the'ﬁ Norm for Various

Dimensions k and Codebook Sizes N

»

41

- 42

43
43
44
44
456

45

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

LRI R -

10:

List of Figures

A Partition of a Region of R* with Codebook

Scatter Plot of an Actual Image.

Scatter Plot of a Quantized Image.
TSVQ Structire

Compression vs. k for N =]2&
Distortion vs. k for N = 2. 16. 64

Distortion vs. ;l-nc_reas}i'njg Codebook Size for k = 2. 4. 9

Distortion vs. Codebook Size for k = 4

FSVQ Coded Image Scatter Plot

Edge-Block Adaptive FSVQ Coded Image Scatter Plot
Relative Performance of Binarv and Quaternary Trees

l, Norm Performance

vi

12

13
22
30

30
31
32

29

34

36
37

List of Flow Charts

Flow Chart 1 FSVQ Design Algorithm 18
Flow Chart 2 Optimization Algorithm 19
Flow Chart 3 TSVQ Design Algorithm 26

Vil

ABSTRACT

Vector q;u_antfi'zati’ori Is a vector generalization of ordinary PCM. and has
wide applications in speech and image data reduction. Quantizing samples as
blocks or vectors is inherently better than separate scalar quantization of the
samples.

The two most important types of vector quantizer (VQ) are described in
detail: the full-search vector quantizer (FSVQ) ‘and the tree-searched vector
quantizer (TSVQ). Both are designed using iterative algorithms based on Lloyd’s
method of designing an optimum one-dimensional quantizer. These two algorithms
were implemented for varying block sizes. codebook sizes, and tree orders using
FORTRAN programs. Numerical results fbi; the MSE and l1 norm distortion
measures are presented and discussed. For very large images (relative to the size
of the codebook), theory says that with increasing vector dimensionality, distortion
performance should ifm}.‘)rove;‘ however, for small images such as those used here,
the effective bits per pixe! decreases (with a cor_res__pondi’ng increase in distortion)

with increasing dimension. Higher-order trees are found to perform better

distortionwise than binary trees. in addition to their property of requiring less

memory and search time than binary trees.

ON THE VECTOR QUANTIZATION OF IMAGES

I. Introduction

Vector quantization is a vector general{zation . of standard pulse code
modulation (PCM). It PCM, a sample value from a continuous one-dimensional
source function is mapped onto one of a finite number of corresponding discrete
values, and a codeword '(vuSu'a]f]y blnary) is associated with itfl.e discrete value for
storage or transmission. -A set of representative discrete values which are placed
uniformly across the range of the source will not generally be the ‘“best possible”
set, in the sense that it may not minimize some error measure between the analog
samples and the quantized values. Therefore. it is often desirable to calculate the
“best” distribution of outi)u,t levels in order to create an optimal PCM system for
some particular source. This problem -- that of optimal one-dimensional PCM --
was discussed in an oft-cited 1957 paper by Lloyd. [18] He presented two
algorithms, Lloyd’s methods I and II, which detail how to construct an at least
locally optimum quantizer given the source distribution. In 1965, Forgey [6]
showed that Lloyd’s Method I could be applied to a training sequence of data

rather than a known source distribution.!

.l;'Gray and Linde, p. 381.

In 1980, a paper was published by Linde, Buzo, and Gray [17] which
described the extension of Lloyd’s Methods I and Il to the quantizationoi: vectors
(or blqcks) of source samples. Theirs was not the first generalization of Lloyd’s
work (see, for example, [19]), but it relied only on a very general definition of
distortion measures, was thorough, and became the basis of most subsequent work
on vector quantization.

Early studies of the application of vector quantization were done almost
exclusively on speech data. There are two good reasons for this. Firstly, speech
waveforms can be classified into a small number of general types, such as voiced
and unvoiced speech. The statistical properties of speech have been well-studied
and are relatively simple. Secondly, the production mechanism of speech has also
been well-studied. =~ This approach has- given rise to the well-developed field of
linear predictive coding (LPC), which encodes a short sequence of speech samples
i;qt'o an ordered set of “LPC coéfﬁc’ients. » This set ljé-‘nds itself directly to
treatment as a vector in a vector quantization scheme.

On the other hand, there is no class of image which is as W’ell fbehaved as
speech, or which has been so intensively stﬁdied. Nor is there any standard way
of classifying images, or any concept, for images, quite like that of “intelligibility™
for speech. (When we go through the trouble of producing images, we usually
require that they be much more than merely ‘recognizable.””) There is no general
‘“‘mage production mechanism” corresponding to the acoustic tube model for
speech. Images. in short, are geqerally less tractable than speech for the purpose
of analytical description. |

However, since they require such large amounts of data, it is very desirable

to compress them. Also, most of the same techniques that are actually applied to

the vector quantization of speech (as opposed to the mathematical modelling of
such quantization) can also be applied to images, and images can be neatly and
naturally divided into frames for analysis- purposes.

Actually, as will be discussed briefly in Part I, the- transform coding method
of image data compression is a special case of vector quantization. However, even
the optimum transform coding system 1s a suboptimum vector quantizer. Later
on. we shall look briefly at why this 1s so.

Studies of the perforr‘nance' of vector quantization on fimages- have remained
sparse since 1982, when Gersho and Ramamurthi ,['10]_ were apparently the first to
produce an ‘“'i,m.p]e-.mént-ation of vector quantization to image coding [’sic] where
each vector describes a spatial block of pixel intensities.”’* Their results were
entirely qualitative and were restricted to the case of partitioning an image into
square (pxp) blocks of ‘pix“_el's.t For thls thesis. several different versions of vector
quantization were implemented on real data using FORTRAN programs, and the
detailed behavior of these algorithms for several varying parameters was examined.
A presentation of the mathematical theory of vector qua-n,tfiza:_t-?iion; and a discussion
of the various algorithms and results follows.

II. Theoretical Background
A. The Context of Vector Quantization

Quantizing blocks of image data is not a new idea. Transform coding was
first developed in the 1950’s, whereby a block (véctor) of data is first transformed
into another vector, and the components of the new vector are quantized

independently (i.e.. using scalar q-uan‘t'izer's__)“-.. The transformation is usually a

o
“Gersho and Ramamurthi. p. 428,

linear operation, such as the Fourier transform. which produces a transformed
vector of the same length as the original.> The purpose of the transformation
step is, generally speaking, to decorrelate the components of the vector.
Intuitively, this means that each component will contain no redundant
information, so that at each scalar quantization step we are no longer re-
quantizing some of the same information in nearby pixels. The optigmum
transform coding scheme. the Karhunen-Loeve transformation, is well-known [13].

D,
This method is only optimum within the defined limitations of transform coding.
Since transform coding is practical and useful despite its restrictions, and since
until recently the large amo'-un_t,s of memory and number-crunching required for a
general vector quantization scheme (seferred to in this paper simply as “‘vector
Qqu,anlt_i'za,_ti_jorl‘""), were unf'a;ffo,r'da-bl’e_.« little 'at.te;lrtion was paid over the years to the
g.ener:a-l_ approach. A further disincentive to research may have been the
knowledge that so simple a technique as DPCM provides nearly optimal
performance for asymptotically large rates.?

At any rate, it has long been known from Shannon that ‘‘even for
memoryless sources, one can always do better by q_u-an’tfiz--in‘g an entire vector
_rat};er than segar..ait,elyv handling _com:ponents;""s' So. even the most successful
transformation technique _.i's_“ doomed to suboptimality by the scalar quantization of
the transformed components. Recently it has beéome feasible, however, to design

quantizers which take full advantage of the vector nature of block quantization.

3Cr’a’y and. Linde, p. 382.

4 Abut. Gray, and Rebolledo, p. 424.

5

Tao, Abut. and Gray, p. 343.

Curiously, transform coding includes an effort to eradicale correlation between
samples, although it is a special case of a technique which is implicitly exploiting
that very correlation in an ““essentially optimum manner.”®

B. Distortion Measures

Any discussion of vector quantization must begin with a definition of a class
of distortion measures, because otherwise there is no quantitative definition of
" what constitutes a “good” or “bad” job of image 'rep.roduct;i'on, or what is mear_i-.f.
by. a “distance’” between two vectors.

Let us assume that we have a vector z=(Zy I}, -+ .+, Ty) in 'tﬁfe
}k.—.d‘.i:men's-ibn'al space Rk;' so that z € Rk If wép r-_e‘prOd‘.U'ce z 'by: some vector
y € R%, then the distortion caused by this substitution 1s m'efasl_ir'e<d by d(z,y)
Such a distortion measure is defined as a tdifference distortion .' measure’’ 1if it
possesses the property that’

dlz.y) = Llz-y),
where
L(z) =0 if z2=0,
and
L(u) < L(z) iff Jull < |=i.

Here, || zi| is any seminorm on R*. A seminorm is defined as a function of z such

that

6Ccrsho‘ and Ramamurthi, p. 428.

'7:Ya-mad*a. Tazaki, and Gray; p. 7-

2. laz|| = |a|-||z|| for a < R

and

3. lz+yll < izl + llyii-
In other words, a seminorm is a positive linear vector function satisfying the
triangle inequality. Commonly, L(z-y) is simply the seminorm itself, and the

seminorm used is the special case of a power of the Holder norm I :

73

k
Liz-y) = lz-yj, =|)_ lz,;-y"
1=1

For example, the ubiquitous squared error measure is the case (| z—yl]z)z.
Weighted squares distortion measures of the form
d(zy) = (z-y) B(z—y)
alrﬁé often discussed,® where B is a kxk positive definite matrix. Because of its
familiarity and mathematical tractibility, authors usually restrict their attention to
the mean squared error (MSE), the case where B (}s just (1/k) times the identity

matrix:

ay. . 1. ' TR
diz,y) = 7c(iz—yl,)" -

No measure is computationally simpler, of course. than the l1 norm, which is
simply |[z-y,. Calculating this measure of distortion .between two vectors
involves: k additions, and one mullt.iﬁplifcatio»h must be performed if one wishes to
take the average distortion over a number of vectors. The supremum or | _ norm,

which simply involves selecting the largest component of (z-y), still requires &

‘8'{.5],, [12], |14}, [19].

-
14

magnitude comparisons per vector “pair. which is certainly no better than the &k
additions of the ! norm. However, | know of no published subjective or objective
tests of the performance of the 11_ norm in a vector quantization scheme, although
in digital signal processing it is sometimes considered advantageous to replace
multiplications by additions.

Not all distortion measures used in vector quantization are difference

9 has the property of being

distortion measures. The Itakura-Saito measure
implicitly minimized by the LPC speech method. and is commonly used in speech
vector quantizing schemes. but is not a difference distortion measure. It 1is
therefore more complicated and awkward to deal with.
C. Statement of the General Vector Quantizer

Assuming that we have chosen a distortion measure (keeping in mind that
there is nothing special -a__b.out the [, mnorm except its obvious geometric
interpretation for k < 3), we are ready to define a vector quantizer.

A quantizer of k-dimensional vectors maps all of the points®in R* onto some
finite subset of the points in Rf. Two things must be specified in order to define
this mapping uniquely: (a) the finite subset of R* onto which everything is
mapped, which we shall denote as Y ={ Ypby - - -) and refer to as the
“codebook.”” and (b) some rule for dividing up R* so as to assign each of its
points to one of the ~cgd"e"book vectors. . This assignment rule is called the
““partition.’1?

If Q(z) describes the action of the quantizer. then the partition may be

9juang, Wong, and Gray.

l'O,This development is based on that of ‘G'ér:sho‘,[S-]..

8

described formally as a division of R* into subsets R,. ... Ry, such that

RluR: ... UK, =R

and |

Furthermore, if Q(z) describes the quantizer function. then
Qlz) = y il z= R
and
R = Q'={ze R:Q(z) = Y.}
These complementary descriptions may seem redundant. but they are not. Our
ability to define the partition in terms of the codebook and vice versa is essential
to our ability to design good codebooks.
A partition of a subset of R*, with its codebook. --i-‘s-' shown in 1. This is an

example of a 5-point, 2-dimensional vector quantizer.

Figuré 1: A Partition of a Region of R? with Codebook
How do we decide on a good partition and codebook? Any choice of
codebook and partition. however idiotic, would meet our requirements so far. We
must deﬁne what it is that we mean by a good quantizer. Aséuming that z 1s a
random vector in R* with either a continuous or discrete distribution, then it

makes sense to define our optimal quantizer as that @(z) such that for all possible

9

quantizers Q*(z),
Eld(z,Q(z))] < Eldz,Q*(z))],

where E denotes expectatioﬁ. “d(z, Q(z))” is simply the distortion resulting from
quantizing z using the optimum quantizer. In other words, the. average
quantization error is what we would like to rr_1inimiz-e.;1<l

There are two complementary requirements which, it can be shown, an
optimal vector quantizer must meet.

Property 1: The members of Y (the codebook) m_us'.t,__ .éat'iéfy

y = E(ziz ¢ R).

- That is to say, the codebook vector which corresponds to one of the N partitions
must be the r—‘ne_a-n, of the vectors which are in that partition. .I'f we are dealing
~with a finite set of vectors. this will correspond to the dimension-by-dimension
sum of all the vectors which are deemed to lie in R’.' (howéver that might be
decided), divided by their n_umb;r. Or. if we are dealing with a continuum of
random vectors, y, will be the “center’’ of some geometric region In R*. 1t is not
necessary, by the way, to worry about whether R’ is “really” a solid in
k-dimensional space, bounded by (k-I)-dirﬁensi-o,nal hyperplanes (which it is), or a
finite number of data vectors which have been _g,rbu,.p‘edﬁ together as a set (which it

also is, on occasion). For the calculation of distortion bounds. the geometrical

11T his is not always the only way to define optimality. In 1977, Kasam [16] showed that for the
case of one-dimensional quantization using a difference distortion measure, it was possible to optimize
both E[L(z- Q(z))], as discussed in this paper. and a "distance” measure Ag between F{z), the.

continuous distribution of the source function, and Fé(z), the distribution of the quantizer output:

+ oo
Ag = f—oo g[F‘(z)—Fq(z)]dz. These two standards of optimality produce sets of dual equations, which
are optimized when ¢{-) = L(:) = the mean absolute error function, or the mean [, norm. If this result

can be extended to arbitrary dimensions, it may be a fruitful topic to pursue in connection with vector
quantization. Such work is beyond the scope of this paper.

10

and probabilistic versi(;n of vector quantizer structure is indispensable, but to
implement an actual quantizer, it is hardly needed at all. This will be obvious as
we proceed.

The second condition on the optimum quantizer is just as intuitively
sat,.isfy.’in{’_g; as- the first:

Property 2 : The vectors which comprise R, whether they be a finite set of
data points or an infinity of points filling a geometric solid, are given by

{z € R.: d(z,y;) < d(z, yJ.) for all 7 # 7}.

In other words. the vectors in R'. are simply those that are closer .‘to the 1th
.codg.book vector than they are to any other. ‘“Closeness” may not have an
obvious interpretation in this context, depending on the choice of distortion
measure, but even if the familiar MSE criterion is used 1t has no everyday
geometric meaning for, say, k= 16. At any rate. this “nearest neighbor”
partition rule makes some sense. The resulting regions are known aé Dirichlet
cells, and the partition in Fig. 1 is a Dirichlet partition.

If we have an optimal quantizer, then each codebook vector will be at the
‘““center’’ of its pa"rti.ttion and each partition will contain no points which are
“closer” to any 'o;th’e;r | partition’s codebook vector than to its own. The actual
encoding of an image is easy; one simply determines which partition an input
vector is in (i.e., which cod’ebodk vector it is closest to) and stores a number to
record that fact. In this way, an image containing M vectors will be represented
by M integer numbers no larger in magnitude than N, the number of codebook
vectors. However, there is no sure way of satisfyﬁlg the nearest-neighbor rule
without actually calculating how far (in terms of d(zy,)) the input vector is from

all of the codebook vectors. One must fully search the codebook -- hence, the

11

optimum system is a full-search vector quantizer (FSVQ).

A useful tool for checking the performance of a vector quantizer is the
scatter plot. This is produced by taking the pixels of an image two at a time.
and treating the brightness of each as a coordinate on an z-y graph. If &= 2.
then the codebook can also be plotted in this form. .Fo_r anv k. of course. the
quantized image can be scatter-plotted just as the original was.

Fig. 2 is the scatter plot of an actual digital image ccﬂmtaining. 16.384 pixels
with gray scale values ranging up to 256.

| X ¥ ¥x¥ |
| ¥ XXk% XXXXXXXEERX|
| 3 X XX XRRERYX|
| X% ¥ XXXXXNEXXEREXE |
| * FXXXEXRXFXRER& |
| ¥ X X% XRXFAFFEERRXEX
| X X ARERARFERREXXK

| x kXXX $XXFXXEEEF X XX¥

| XRKXXKXEFFXEKXKF ¥¥ X

| kX XX¥KEXFEXXE¥ ¥XX X

| XXFEXXXEXRXEXFEX ¥ ¥
|

|

l

|

|

|

l

|

l

|

266

XX FEEEXBEEXEKX *

Scale Value

I

|

!

|

|

|
23222222 T S TS S | |
EXXXEXAXRKERXKXK i
l

|

l

|

I

|

|

Gray

¥ *¥¥XXx¥¥

g S p—— Y Ll e

O 256
Gray Scale Value

Figure 2: Scatter Plot of an Actual Image.

Fig. 3 is the scatter plot of the quantized version of the same image. A 2-
- | | ;

dimensional FSVQ with 64 codebouk vectors (k = 2. N = 64) was used. Since k

= 2. Fig. 3 also happens to be a plot of the codebook optimized for the image of

Y

Fig. 2. It can be seen that the quantized .image. as one would expect, contains a

sparser selecIion of vectors than the original. However. it would almost certainly
not be possible to choose 64 pixel pairs which would do a better job of
approximating the original image. Also. the diagonal tendency of the plots will
be noticed. When two adjacent pixels have the same brightness. their vector
representation will lie right on the diagonal: therefore. the farther from the
diagonal. the more contrast between adjacent pixels there is in a vector and the
more ‘‘edgelike’” a feature it represents in the original image. The large variety
of “shade’ blocks and the poorer scattering of ‘‘edge” blocks are just what we

would expect from a typical image.

e e 2 e £ S e i S
° | I
I % £ |

I * ¥ |
I * I
I X X I
I X (

o | x S I

2 | X ¥ I

3 | ¥ KXX%K I

o | x XXX * |

P | X kKX |

9 | X XXXXkX¥ X ¥ |

.. | kXXX |

g | XEk% X X X |

& | X |

I '
I |
| |
| I
| I
T PR

O 266
Gray Scale Value

Figure 3: . Scatter Plot of a Quantized Image.
In the next section. the various algorithms that can be applied to the
creation of a VQ (FS or otherwise) will be discussed. Before leaving the basics, a

few more matters should be mentioned.

13

A monochrome digital image, typically consists of an array of integer

numbers between 0 and some power of 2, with the magnitude of each number

L}

corresponding to the brightness. of an image pixel. Therefore, a k-dimensional
vector drawn from such data must reside within a k-dimensional hypercube with

one of its corners on the origin. This will be a useful basic fact when we wish to

generate a uniform k-dimensional quantizer. as will be discussed later.!?

Much labor has been devoted to studyving the theoretical bounds on the
performance of vector quantizers.> The fundamental result which makes vector

quantization so attractive is. that the SNR of a VQ system approaches the

‘“ultimate rate-distortion limit for a given source”' for long block length.

15 and very long

However. block length need not be long for good performance,
lengths are impractical anyway because of the computational burden they impose.
The largest dimension that has been used in published work that I know of is

sixteen.1®

v s

Also, the results of such analysis have not proven particularly applicable to

real VQ systems except in the case of some speech work, where a reasonable

l‘“I_t- is not always the case. For instance, if varying bit allocations are used for the vector

components in a transform coding schemé; the region of -R,k in which such vectors might be found is not
only not cubical but is not even constant. It is hard to see how one would define a “uniform
quantizer” in such a situation.

13,

(2], 15}, [7], [23}.

“Gersho and Cuperman, p. 15.
15 .

Gray and Linde, p. 381.

16Gersho and Ramamurthi.

14

statistical model of the source is available.”” As one pdpcr 'put;s it,

since theory can characterize only optimal performance values ... the
best available means of finding the performance limits of a class of codes

of. nonasymptotic rate [bits/pixel] and block length remains the actual
design and test of good codes incorporating optimization techniques...'®

Because of the difficulty of calculating useful perfoi‘mance predictior‘xs. for a
general image VQ, this paper confines itsell to q'rjajlyz’i_n,g: the actual beila.vior of
several such algorithms.

ITI. Vector Quantization Algorithms

| '\ FSVQ Design ’

As mentioned -a,bo;'ze.-, our ability to define the .code'b,odlzi in terms of the
pa-x":_t_i'tijo.n;,, and vice versa, is the key to designing optimum or &ear-opti’mum
quantizers. -

An algorithm published by L'i':,rj'_l_:de., Buzo, and Gray in 1980, often referred to
as the LBG algorithm, exploits the complementary nature of codebooks and
partitions to iteratively ._a;ppro-achr the optimum codebook starting from a
“reasonable guess®.

There are at least three distinct ways to make a ‘‘reasonable guess” and
improve upon it; the splitting method (used by the LBG algorithm and most of
its descendants), the product code method, and the uniform quantizer initial guess.
All of the algorithms outlined here are for use on a source with an unknown
distribution, namely; "-a training sequence of real data.

The iterative splitting method is as follows (see Flow Chart 1):

17 Abut. Grey, and Rebolledo.

18 ppig.

(1) Initialization.. Set NN = 1. This is the number of vectors in the
current codebook. (The algorithm goes through a number of intermediate
codebooks.before finishing.) To begin, we must also specify N, the desired size of
the final codebook, and ¢. the convergence decision threshold. The meaning of ¢
will be explained at stage (2). Let Y be the codebook during the current
iteration: it contains NN vectors. To finish initialization. we set the single vector
which Y, contains equal to the centroid of the entire training sequence S:

Y=y = : d =z /(# of vectors in 8)
ZTec S

(2) Splitting. Given the NN codebook vectors of Y, from Step 1, “split”
each one into B nearby vectors | by adding B arbitrary, small vectors 4.] = ~14_,- 2,
. . ., B. Set total stage distortion D. = oc. Set NN = 2xNN.

(3) Optimization. Optimization is an iterative procedure for a fixed
codebook size. It must be completed satisfactorily before returning to step (2).

(a) Partitioning. Find the best partition for the current codebook of size

NN. This is done by evaluating d(zy;) for all z ¢ S, and partitioning

each z to that y, for which the distortion is minimum. In other words,

find out which codebook vector each training sequence vector is closest to.
(b) Distorti’on. Calculate the average distortion of the quantizer using
the partition from part (a) by adding up all of the minimum d(zy,) and
dividing by the number of vectors in the training sequence. This 1s, of
course, exactly the average distortion that we would have between the

training sequence and a version of it quantized using the current codebook,

since the procedure for ‘partitioning™ is the same as that for ‘“‘encoding.”

16

Set D = the averag/ distortion.

(c) Test fo[,,cbnvergence. This is where ¢ comes in. ¢ is some number
smaller than 1; it should be quite small. It is called the ‘““convergence
decision threshold” because if

(ID,-D!)/D < «
then we assume that only negligible improvements will be realized by
further iterations, and we end the optimization loop by jumping. (If NN =
N, the size of the final codebook, then we jump to (4), End. If NN < N,
we jump back to (2)) Since D, was set to oo before beginning
optimizaticn, the test for convergence is sure to fail the first time through.

If the test is not satisfied, then we proceed. Set D, =D.

(d) Find codebook. As promised much earlier. the dual definitions of the
y. and the Rl are the essence of bpt-imiza_tio-ni.. Having determined in (c)
that the improvements being gained by iteration have not bottomed out
yet, we now find a codebook to satisfy the partition that has been inherited
from Step (b). This is done by re'pl.aciing every vector in Y (the current
codebook) by the centroid of the corresponding partition. This will be
significantly different from the codebook already in place if the optimization
stage has _ndt yet iterated a sufficient number of times. Unconditionally, go
to (a).

(4) End. Reached only from (2b). . The codebook has been split a sufﬁlcient
number of times, and the final codebook containing N vectors has been found
from an initial guéss based on a codebook containing N/B vectors, which was the
product of the last Splitling operation. Stop. '

Note that, unless we \wish to perform the splitting operation differently

17

Flow Chart 1
FSvQ DESIGN ALGORITHM

e Arbitrary dimension
e V vectors in training sequence
e N is desired codebook size

r— - |

Find the centroid of the image:

v
y] - Z Iz

1= 1

Split the centroid.
: 2.

y = 6., 1 =1,

B = number of vectors
in current codebook.

Optimize a codebook for
N = NN, beginning with the
results of the splitting step.
(See Optimization Algorithm)

B

e

Split the result.
NN =B~ (previous NN)

NO

1R

Flow Chart 2
OPTIMIZATION ALGORITHM

¢ € = decision threshcld
e Fixed codebook size NN
e V image vectors

[START?i]

Initialize
average distortion:
D’ =0

[

Find partition for the given codebook
by determining the codebook vector for

which d(z.y) is minimized —

for each z, and tagging each image
L vector accordingly. B

[-

Calculate average distortion which
/ | this quantizer produces:

I 1

| D=%S;$a0mn |

Test for adequaﬁe convergence:
(D - D’)/D © €7 ’

NO

D2 =D |

'r, —— ﬁ

Caculate optimum codebook for
the given partition by letting —
l Y, = cent(.Ri), i=1,2, ..., N .j

o

L I]

19

G

somewhere along the line, the final codebook size N will be a power of B. If B =
2. then the tags identifying the N codebook vectors will completely use up all the

binary words of length log,(N). Therefore. if the quantized image is being stored

or transmitted in the form of codebook tags without any added redundancy,

binary splitting (or splitting by some power of 2) will lead directly to a codebook
of the most efficient size.

Of course, now that we have a quantizer, we can use it on any input that
we please. The results are only gﬁaranteed to be optimum or locally optimum if

the training sequence was long enough to accurately represent the statistics of a

class of inputs, and all future inputs are also members of that class. Linde, Buzo

and Gray distinguish between the case where “ohly the training sequence is to be
classified”” and that where we wish to produce a good quantizer for use on data
outside the training sequence which has the same statistical properties as that

within.I® However, this distinction has no bearing at all on the algorithm itself

and it shall be disregarded until the discussion of results.

Throughout the LBG algorithm -as described above, all vectors dealt with
were of the same dimension, k. An alternative method of growing codebooks
exists, although it is rarely mentioned.?® The ‘“product code” method, as it is |
called. is briefly outlined below.

(1) Initialization. Begin with two vectors of dimension 1 as an initial guess.
Set NN =1land d = 1. “d’ 1s the dimension of the stage in progress.

(2) Optimization. Use the same optimization routine as in the splitting

19 [1 7], p.89.

2Ofl,‘h‘e..,d,t";s”cr‘iption of this method by Juang and Wong [13] is the only one that I know of.

20

method to find an optimum codebook of size NN and dimension d. If d = &, the
desired ﬁﬂal dimensionality, stop.

(3) Forming a product code. Form the initial guess of the next pass
through (2) by appending a new dimension to the optimum codebook of dimension
d and forming all permutations of the original codewords and two fixed possible
values for the new dimension. (These values. or ‘“‘multiplication factors,” play'the
same role as the &’s of the splitting method.) Go to (2).

Juang and Wong report that the product code method does not provide
startlingly different results from the splitting method, and certainly not superior
results. In one case they found that the product code method .converged to a
truly distinct quantizer, apart from that found by the splitting method, which
proves that the restriction “locally” optimum is not just 'a mathematical fiction.
The product code method was not imp‘leme‘_nﬁtedi for this -prdject.

B. Tree-Searched Vector Quantizers

The LBG algorithm, though wordy, is simple in concept and realization,
considering the task it has to perform. It produces a codebook that‘,h‘a}s no
particular structure and is appropriate for use in an FSVQ. However, it is
computationally very burdensome. N vector distortion computations are required
to quantize a single input vector, since all of the N codebook vectors must be
searched. There is an alternative method. the tree-searched vector quantizer
(TSVQ), which is not only far easier to search through but is quicker to design.
There is, naturally, a price to pay; a TSVQ will generally be suboptimal in
comparison to an FSVQ, and it requires up to twice.as much ?hemory. However,

the computational savings are so great as to make it well worthwhile to look at

TSVQ’s.

21

Figure 4: TS\Q ‘Structure

A typical tree is drawn in Fig. 4. A THVQ 1s designed and searched from
left to right -- at each -lievel. a new (and ']”a-rge‘r'-); set of -vfe‘c_tﬁo”rs»_,_-. (_c;o'r.r.es;p(),nding_ 1o
the nodes in Fig. 4) must be computed and retained permanently. The fact that
the whole tree must be stored is the source of the extra memory requirement for
TSVQ's.

The nodes at the Lth level, on the far right of Fig. 4. are the output
vectors of the quantizer. Most of the other nodes serve to facilitate the search
procedure. which is as follows:

(1) Ignore the single node at the base of the tree. This is only needed
during the fd'_'esi_gn. st,'agé_; and need not be stored.

(2) Treat the 2 children of the base node as an FSVQ with N = 2, and
quantize the input vector accordingly -- that is. find which of the two is closer to
the input.

(3) Repeat step (2) %_f.Or the children of the node which was chosen as the

“output™ of the first-level quantizer, and then for the children of that node. and

22

so on until the output level of the tree is reached.

As can be readily seen, a binary TSVQ requires at most 2xL vector distance
computations, in contrast to the FSVQ. Furthermore, there is no reason why we
should restrict ourselves to binary trees, i.e., those with 2 children per node. If a
tree has B children per node then the quantizer will have Bl output levels and
require BxL distance computations for the quantization of a single input.

The creation of the tree is a more elaborate process than its searching. 1
present the algorithm below in a form similar to that used by Gray and Linde.?!

As the encoding procedure works its way through the tree, it must have
some way of keeping track of where it is. This is done by assigning an integer
label b‘ to every node vector in the tree, and retaining these integers in the form
of a “path map” {b, ..., .bm} to record which nodes the quantizer has passed
through up till the mth level. “m’ will equal L, the number of levels, when the
search procedure is complete. Gray and Linde point out that since the bi must
all be distinct, each can be uniquely represented by a binary number B, , and the
binary channel vector pointing to the desired output vector at the Lth level may
be. simply ZIL:I B. . The assignment of bt’s to the tree nodes can be made
independently of the actual contents of the nodes, which is determined as follows:

(1) Initialization. As d'uri'nfg_'_;t.h_.e design of the FSVQ, find the centroid of
the training sequence. Place this at the base node of the tree. After this step is
over, it need not be retained.

(2) Level I. There will be B! nodes on the lth level, beginning wit‘h 1 node

on the Oth level. Repeat the next stage B! times, independently for each node on

2g)

93

the lth level.

(a) Node i of level 1. A certain subset of the training sequence will be
partitioned to this node. If it is the root node. then all of the training
vectors will be partitioned to it. Split the node vector into B nearby
vectors. just as was done during the FQ\GQ splitting step. Then. optimize
a B-vector FSVQ utilizing onlv those training vectors which are partitioned
to this particular node. ~ When the optimization is finished. set the B
children of this node eqﬁal to the optimized B-vector FSVQ codebook. To
each of the children. some of the training vectors will be partitioned.
Retain this information for use when the time comes to form the children
of these nodes.

(b) i = Bﬁ+.l . g0 to (3) Otherwise. increment 7°and go back to (a)
(3) If 1 = L. go to (4). Otherwise. i'n'c;'e,m.en.t | and go back to (2).

(4) End. All the nodes on all the levels have been dealt with.

A flow chart for the TSVQ design algorithm is included on the 'fo'l'l'-owfing"
page.

Some comments are in order. One can decompose the idea of a quantizer
into an encoding step and a decoding step: encoding means deciding which of the
codebook vectors an input vector should be mapped to. and decoding consists. of
forming an image using this information. and the codebook. In a storage or
transmission system. this separation of functions would be quite real. The decoder
for a TS'VQ is the same as that for am FSV Q: one need '-‘O_Di]"_.V store the N
reproduction vectors and their identifving tags (the 5bi'7ir1f&ry' channel vectors), and
create a new image based on this codebook and a string of tags. It is 'e'n:c.odz’_ng

that makes tree- and full-searched quantization different.

24

Flow Chart 3
TSVQ DESIGN ALGORITHM

e V image vectors

¢ N codebook vectors desired at
highest level of tree

e L levels

e B children per node

[Stanr

- Find centroid of image
just as for FSVQ:

cent

Split Z,.., into B nearby
vectors by forming
| .., ~ éi’ i=1,2,..., B.]
B Optimize a codebook containing

B vectors with the same ulgo-

rithm as used for the FSV

Initialize level number:
[= 1

—
Initialize node number
r — for each level:
——— k=1 J
— L————"-w

Call the optimization routine
for the B children of the kth
node on the [th level.]

Split the B children, as
was done with Z

NO | i YES

25

Ve

The amount of vector storage needed for a TSVQ of order B with L levels

can be easily calculated as

| L pt-1.p
YBL T LY T g

1=

This can be close to 2»B. but not greater. so using a TSVQ can at most double
the memory needed during the encoding stage of the quantizer.

In practice. there is no need to go through an elaborate procedure of
accumulating a ‘‘path map” and translating it into the address of the appropriate
output vector., Trees can be numbered in a fashion which makes the addressing
of nodes throughout the search and .design procedures éim-p_;l'e and automatic.-* _;If
one numbers the nodes of the tree one level at a time. starting with O for the
base node (see Fig. 4). every node will have a distnct number n and the
addresses of its B children (for a Bth order tree) will be given by

n-B -1, {=12B.
For a computer implementation of a TSVQ, ‘this makes for very convenient
travelling through a single stack containing all of the nodes of the tree in an
orderly arrangement, as is also indicated in Fi g. 4.

This method dispenses with the need for keeping track of some kind of path
map, even if not all the nodes on all the levels are of the same order. In that
case. 'on;' would .m.ere:l_y need to number the whole tree according to .tﬂhe‘. order of
the -h’i-)g_’.h.es-n-or_der node. and use up some of the numbers on non-existent children

for the lower-order. nodes. For this paper. a program was written which could

“*] chanced upon this technique for the binary .case. and am indebted to Mr. Peter Floriani for

pointing out the general case.

26

\\\\\\

design TSVQ’s for any fixed B and any number of levels, but no provision was
made for varying numbers of children per nod“e.
C. Uniform Vector Quantizers.

The most obvious possible arrangement of output vectors for any kind of VQ
is the uniform quantizer; that is, an arrangement of codebook vectors in R* which
causes an equal volume of space to be assigned to each when R* is partitioned
according to the nearest-neighbor rule. This is not always as simple as it sounds.

There is no fixed way of scattering an arbitrary number of points through R* so

as to assign equal volume to each -- and of course, we would like to avoid

iterative methods of doing so, since the other two ways of designing an optimum

quantizer are iterative anyway, and an iterative method of generating a uniform

quantizer would not necessarily have any particular advantage. Since the region

of the “image space” we are dealing with in the case of digital gray scale images

is a simple hypercube (i.e., a region where the value of any coordinate can vary

between two fixed values, which are the same for all coordinates), it is rather

easy to produce certain numbers of uniformly distributed output vectors -- namely,

149

anything of the size 2¥". A k-dimensional hypercube has 2% “corners”, and since

the space around each corner can be considered as another. smaller hypercube, this
division of R¥ is easy to generate. For k = 2 and n = 1. for instance, the 2°!

“output vectors” of the uniform quantizer, where either coordinate of the region

to be quantized can range between 0 and R, are given by

y, = (R/4, 3R/4)
y, = (R/4, R/4)

Yz = (3R/4, R/4)
Yy = (3R/4, 3R/4)

A uniform quantizer initial guess enables one to design an FSVQ (or the

children of one node at a time during the design of a TSVQ) without going

27

through an elaborate process of codebook-growing. However, there are practical
difficulties with this method which shall be discussed in the next section, in
addition to the difficulty of generating a truly uniform quantizer for an arbitrary

codebook size.
IV. Results and Discussion

A. FSVQ Results

Image data was available in the form of two 32x512 blocks of pixels whose
gray scale values were integers ranging up to 256. Because of run time
limitations, data was collected thoroughly for the performance of the FSVQ and
TSVQ only on one of these blocks. Quantization was performed on the other
block for selected dimensions and codebook sizes to verify that the results were
similar.

For this relatively small set of training data. the algorithms described in
Se:tion 'HI-I,I. are not so much designing a quantizer for a class of inputs as they are
“grouping a long sequence of vectors in a low distortion manner.”’?®> The
_o;ut-stand‘ivng; result of this fact is that the average distortion per pixel resulting
from ‘quantization increases w-ith increasing dimension for constant codebook size,
contrary to what is usually said about vector quantization. The reason for this is
as follows:

The original image is represented by 8 bits/pixel (bpp). Therefore, if there
are P pixels in the image. 8-P bits are ‘needed for its complete representation. ‘ln
a vector quantization scheme, logzN bits are needed for each of the codebook

labels or channel vectors. Furthermore. if the dimension used is k, then there are

23Linde, Buzo, and Gray.

28

P/k such binary numbers needed to represent the image, giv;é;l\t,he\ codebook. The
. \ .
codebook itself requires 8-N-k bits, since it 1is an'ka array of pixels with the
same gray-scale value range as t;hef original image. Therefore, the compression
factor of the quantizer, or ratio of the bits needed for the quantized image to the

bits needed for the original, is given by:

8-P
8-N-k+(P/k)(log,N)

c(k N, P)=

For P > N-k. this will approximately equal .8.-lc/"lo_g2N'., which 1s the si:an,dard: that
is always used by authors when the amount of available data is great enough.
Fig. 5 shows the compression factor for both cases. It is reasonable to expect
that the distortion performance of the quantizér should follow the bpp of the
quantized representation, and this is true for relatively small dimensions. Fig. 6
shows the performance of three different-sized quantizers (N = 2, 16, and 64) for
increasing dimension.

It can be seen that c(k. N, P) is a decreasing function of N and therefore
one would expect the distortion to also decrease with N. This is in fact true. as
can be seen from Fig. 7. However, c(k, N, P) is not a monotonic function of k
for ':small k it increases. and for large k it decreases, with a maximum at

i/
P-log,N /2

k =
8- N

From the above, one would expect the distortion to start decreasing with
increasing k at some point for any given N. Several trials showed that this is not
true. Probably the cause is that there are only so many distinct vectors in any

image. As the number of codebook vectors becomes a reasonable fraction of the

29

o
-~ o
‘ o
N A
’ A=compression for large
image size A
S O=compression for small A
Y image size -
N A
e = '
s n
a A) Q) O O O
. O
a. A O
5 O
O
J S v
<
~ a
@\
[T T l
-500 10..000

Dimension &

Figure 5: Compression vs. k for N o= 128

41 .000%10!

— o | (D o @
0 o o O O
o ©
a
2 + : N = 2
& A : N= 16
8 — 0 : N= 84
@
o
a
o
= A A
| o A
O A
N - A a A L
0 A A + + + + ”
{14+t -
3 : ———e - | —

16.000

Dimension &

Figure 6: Distortion vs. k for N = 2. 16. 64

number of image vectors. there will be a codebook vector to represent almost
30 |

6.000
>

+

> ©
I I o
@.h_'l\J

g
>+
+

ln of MSE Distortion

1.200
€

. 200 | 12.800X10°
Codebook Size N
Figure 7: Distortion vs. Increasing Codebook Size for k = 2. 4. 9
everv distinct image vector. with the result that N will effectively not increase
bevond a certain point regardless z(;f what we do. This effect might be called
“partition emptying.” because when a partition becomes empty during the LBG
algorithm -- which occurs when there are no more distinct vectors to assign to it
- its centroid is 0 and it no longer significantly participates in the process.
Several tests showed that for N on the order of 256 or 512. all codebooks had
such empty partitions in percentages which increased steadily for increasing k.

Despite the above considerations. it was true even for the limited image sizes

L

which were available for -Eesting_ that for fixed bpp (as measured by the large P
standard), distortion performance generally improved for increasing N and k. This
was as expected. Fig. 8 shows the improvement for the case of 1 bpp (a
compression. factor of 8). . J

Another consideration in VQ implementation is the block shape. Any

integer factorization of k ‘corresponds to a different block shape. Usually. square

31

' blocks are chosen. limiting the choice of dimensions to k's which are perfect
squares. In Table 2. FSVQ performance for varying blockshape an& dimension is
tabulated. and 'in Fig. & the performance for k¥ = 4 and the 3 different poséible
block shapes 1s __g‘-ra.p-héz'._ As can be séen. for this image the square block
performance is almost always intermediate between that of the horizontal linear
and vertical linear blocks. Presumably this is cauised by the characteristics of the
individual image. In general. it is difficult to say that any shape 1s better than
any other. A linear block will take advantage of correlation between samples that
are v.fa;'rthiejfr apart. but will be treating the image as if it were only a 1I-

dimensional signal. thereby losing some advantage.

6.000

+ = horizontal block of 4
- = square block of 4
A = vertical block of 4

B3+
P D
(=)

.
=

BG +

ln of MSE Distortion

Q
o
N —
.200 12.800X10"

Codebook Size N

Figure 8: Distortion vs. Codebook Size for k& = 4
There are numerous ‘‘tricks™ that can be played with the FSVQ. One of
them -- the distinction between -edge and s‘ha-dé blocks -- corresponds to the

distinction between voiced and unvoiced speech. although it is not so useful. An

32

FSVQ which gives minimum distortion may yet generate unpleasant ‘‘stepping’
effects when quantizing diagonal lines. One possible way to attack this problem is

to give more attention to edge blocks due to their perceptual significance than

they would otherwise receive. This is done by designing a separate codebook for
the edge blocks of an image. designing another for the shade blocks, and then
combining them. This was done with results that are shown in Figs. 9 and 10.

Fig. 9 shows an image quantized with a k = 2. N = 64 codebook.

5 L |

T I

| * * u

J ¥ X ¥

| * x X |

{ ¥ x X % |

v] ¥ XX |

a0 EXXE X g

O * |

0 | X X ¥XX¥x%xX%X X |

o | XKk ¥ |

£ (. 3 'S B |

o | KX XX 4 i

o | X% X |

° * [
| i

i |

| l

| I

| | |

O | e e ————————————————— - |

25686

o

Gray Scale Value

Figure 9: FSVQ Coded Image Scatter Plot
Fig. 10 shows the same image quantized with a cddebook of the same size, but
with half of the codebook specialized to each class of :i'_mag_e vector. Plainly, there
Ei_';S-' a better representation of edge blocks. (An adj‘a,ce_m-pii(el difference decision' |
level of 20% of the brightness range was used for this example.) ‘Without

actually displaying these images. it is not possible to say for sure that this

33

L
| ¥ X X |
\ x % X £ |
I ¥ ¥ l
l * l
| S T | ¥ |

gl) ¥ X ¥|
~ l x ¥ X % X ¥ |
I * £ X x |
v | XX KX |
E | T2 x x|
o | X% x ¥ % X |
~ I X¥x - ;
T X X ¥ X X % |
Z x |
l l

l |

l |

l l

/ - i
° |

Gray Scele Value

Figure 10: Edge-Block Adaptive FSVQ Coded Image Scatter Plot

process has realized any qualitative image improvement.

. B. TSVQ Results
It should first be pointed out that TSVQ's only make sense when data

outside the training sequence is to be quantized. The purpose of the tree

structure is to speed the quantization of vectors. something which has already in
effect been done for the training sequence during the calculation of the tree.
Binarv trees are the most widely used type. However. if the desired output
codebook size N happens to be a power of 4. quaternary (fourth order) trees are
supérior in every way. The quaternary tree always requires less memory than the

binary tree, because the memory requirements for identical N are given by
-3

34

N =92l +1_ g rylg_1.

2,2L
N, =(4F*1-1)/8=(4ba-1)3

and (4“4-1)/3 < gl2-1 forall L > o

— where the quaternary tree has L levels. By virtue of having half as many
levels. the quaternary tree will also be twice as fast to search. Furthermore. a
wide variety of tests (Tables 3 - 6) showed that for the available image data, the
quaternary TSVQ usually performed better than the binary. (Presumably this 1s
because the quaternary is less constrained by the tree structure, having more
choices of route at every node.) In fact, for small N it sometimes actually
pe‘rformé_’d better than an FSVQ. Fig. 11 graphs the relative performance of the
FSVQ and quaternary TSVQ for ¥k = 4 and N equal to powers of 4. 'This 1s
further proof of the local optimality of the codebooks found using any of these
techniques. ~ However, over a wide variety of images the FSVQ would almost
certainly be found to perform better Hfor all N.

The TSVQ’s suffer from the same decay in performance with increasing k for
” llmlted image size as the FSVQ’s. Although a TSVQ stores much more
info'r-mat'io_r;, up to half of it is only used only to speed the search process and
does not increase the actual bpp of the quantized representation.

The problem of “partition emptying” applies to TSVQ’s with a vengeance.

“ —m
An empty node at the mth level will result In Z,-l;l (B L""“H—l)/,(B-1)

empty nodes further down thel tree (including BY“™ zero output vectors) unless
steps are taken to assign a vector to it according to some rule.
C. UVQ and Other Results

A uniform quantizer was implemented for several codebook sizes and

dimensions. The performance was very poor, as can be seen from Table 7. The

35

o
&)
O —
T b
8 0 : B=2
o AN B = 4
¥ &)
M
0
o - &
o
a
R &)
. /
B o
o
(o N
—~ .
|] 1]
. 000 ' 25.c00X10°

Codebook Size N

Figure 11: Relative Performance of Binary and Quaternary Trees

reason for this is probablv that many of the initial guess points were scattered
through regions which contained no image vectors: so. during the first part of the
optimization routine. no image vectors were partitioned to them, and during the
second part the. codebook vectors corresponding to them were set to.zero. Some
kind of reassignment procedure is clearly called for. but adding such elaborations
destrovs the simplicity which is the whole attraction of the UVQ initial guess.

Some results were obtained for the [norm distortion measure in an FSVQ
(Table 8). In general. its behavior was similar to that of the MSE measure.
although for small N increasing k seems to have very little effect on the distortion
performance. In Fig. 12 the performance for k = 2 s plotted. It is impossible
to say how subjectively acceptable .t.he results of using the l, norm are- without .

displaying the resulting images.

36

6.000

—H. »
f
9 +
: +
§ - + +
a +
@ +
n
= N
Sy
o3
o QN I
— .
T T T I
. 000 | 27 .000X10°

Codebodk Size N

Figure 12: [Norm Performance

V. Conclusion

Vector quantization is an extremely versatile technique. Many choices have
to be made during its implementation which méy affect performance. only a few
of which have been discussed here. In the case of TSVQ's. it seems that higher-
order trees perform better distortionwise in addition to using less memory and
requiring less search time. Applving vector quantization to individual images as a
data reduction technique introduces a tradeoff between dimensionality and bpp
which is not wusuallv considered in discussions of vector quantization. Some
method of image display to provide qualitative results would be necessary to a

more thorough evaluation of the performance of vector quantization on images.

37

MWlhgtr Wihidme

‘l

'

. RSy

12

16

3456.

364.

372.

366

379.
3886.
386;
304.
400.

402.

37

24

59

.90

90

93

17

&7

90

02

Tables -

TABLE 1

Mean Distortion Per Pixel (FSVQ)

330.62

108.5656

362.39

139.10

179 .60

181.01

374.49

202.6856

381.12

376 .03

44 .98

87 .54

106.41

97 .92

127 .22

138.76

148 .27

169.30

168.97

196.456

16

36.50
52.47
04.26
58 .80
86 .78
89 .74
107 .09
121.18
128.81

135.28

39

32

16.79
23 .09
42 .91
40.74
64;05
61.73

59 .42

71.02

76.58

103.43

84

13
24 .
2b.
32.
32.
.39.

49 .

61

64.

.70

.76

91

87

12

69

88

16

.39

87

128

14.87

15.99

21.98

20.82

25 .88

28.71

33.91

266

16

TABLE 2

Distortion Performance for Varying Block Shapes
(m is block height, n is block width)

372.569
362.32
387 .86
379 .90
375.156
400.34
386.17
392.856
410.39
3894.57
3968 .88
3965.93
402 .02

460 .06

362.39

347 .b4

361.33

179.60

v)

357 .30

376.43

374.49

369.561

377 .69

202.65

180.11

242 .96

376 .03

380.66

106.41

87 .24

143.91

127 .22

113.96

182.31

148 .27

129.286

197 .89

169.30

139.20

191.36

196.456

166.61

16

94 .26

62.81

97 .23

88.78

6856 .28

114.7

107.0

84.156

133.6

121.1

91.0b6

133.1

136.2

85 .32

40

32

42.91
33.26
82.562
64.06
43 .63
75.80
69.42
51.29
IOQ.B
71.02
58.61
94.23
103.4

67 .71

64

24 .91

19.47

36.568

32.11

28.31

60.30

39 .88

36.10

680.30

' 49.18

37.12

53.26

84.87

44 .14

128

14 .87
12.03
22.79
21.98
18.33
30.10
25.88
21.88
35.05
28.71
21.70

32.560

266

6.74

12.563

TABLE 3

Mean Distortion Per Pixel vs. Codebook
(Size N and TSVQ Order B - k = 2.)

2 4 8 16 32 84 128 2568
3468.7 87.89 45.33 290.48 20.75 10.37 b5.41 2.97
4

3 1 ®) 27 81 243

237.2 49.38 28.684 10.92 4.12
4 18 84 256
214.8 38.73 15.08 3.92

TABLE 4
Mean Distortion Per Pixel vs. Codebook
(Size N and TSVQ Order B -- k = 3.)

2 4 8 18 32 84 128 256
356.4 113.3 68.94 b54.87 42.39 27.14 17.056 8.35
3 27 81 243

218.9 73.22 18.29 6.71

4 16 84 2586

109.5 54.99 17.95 7.29

I3 25 125

95.34 40.78 11.95

8 36 216

101.2 28.97 8.80

41

q

TABLE 5
Mean Distortion Per Pixel vs. Codebook
(Size N and TSVQ Order B -- k = 4.)

42

2 4 8 16 32 84 128 2686
376.8 171.6 123.8 73.80 53.49 34.74 23.47 13.85
3 9 27 81 243
361 .8 ©8.24 b54.42 29.93 13.50
4 16 84 266
b 26 1256
142.86 b51.88 21.88
8 36 218
124.7 48.59 15.70
TABLE 6
Mean Distortion Per Pixel Vs. Codebook
(Size N and TSVQ Order B -- k = 9.)
2 4 8 16 32 64 128 258
3g7.8 208.8 169.4 129.0 91.81 89.51 39.95 25.18
3 9 27 81 243
204.5 160.3 105.7 52.99 23.68
4 16 84 256
286.2 112.9 &7.91 23.58
5 25 125
283.68 ©2.08 38.57
6 36 216
2686.686 79.22 31f94

TABLE 7

Mean Distortion Per Pixel of FSVQ’s
With UVQ Initial Guess

N: 84 128 258
k:
2 78.13
3 70.31 v
4 87 .89
e 40.83
7 64.84
8 73.44
TABLE 8

Performance of the l1 Norm For Various
Dimensions k£ and Codebook Sizes N

(Average Distortion Per Pixel)

N: 2 4 8 18 32 84 128 258
k: -
2 14.62 14.46 4.47 4.02 2.43 1.81 1.28 .90
4 14.80 14.30 6.11 5.3 3.82 2.88 2.33 1.89
9 14.81 8.59 6.84 &.82 b5.06 3.84 3.15
16 14.94 14.24 B8.12 6.85 5.768 4.87

43

Vita

Larry Clifford was born in East Orange, NJ on May 3, 1962 to Eugene and
Lillian Clifford and lives in Blairstown, NJ. He received a BSEE from the
Rutgers College of Engineering in 1984 with Highest Honors and attended

graduate school at Lehigh University in 1984 and 1985 to obtain an MSEE.

44

1]

N

- References

Abut, H., et. al. p
Vector Quantization of Speech and Speech-Like Waveforms.

IEEE Trans. on ASSP ASSP-30, June, 1982.

Bucklew, J.
Upper Bounds to the Asymptotic Performance of Block Quantizers.

IEEE Transactions on Information Theory 1T-27, Sep., 1981.

Buzo, A., Gray, A., Gray, R.. and Markel, J.
Speech Coding Based Upon Vector Quantization.
IEEE Transactions on Acoustics, Speech, and Signal Processing ASSP-28,

Oct., 1980.

Buzo de la Pena, Luis.
Optimal Vector Quantization for Linear Predicted Coded Speech.

PhD thesis, Stanford University, Aug.. 1978.
PhD thesis for Dept.of Electrical Engineering.

D. Chen.

On Two or More Dimensional Optimum Quantizers,

Proc. 1977 IEEE International Conf. on Acoustics, Speech and Signal
Processing :640 - 643, 1977.

Forgey, E.

Cluster Analysis of Multivariate Data: Efficiency vs. Interpretability of
Classification (Abstract).

Biometrics 21:768, 1965.

Gersho, A.
Asymptotically Optimal Block Quantization.
IEEE Trans. on Information Theory IT-25, July, 1979.

Gersho, A.
On the Structure of Vector Quantizers.
IEEE Trans. on Information Theory 1T-28, March, 1982.

Gersho, A., and Cuperman, V.
Vector Quantization: A Pattern-Matching Technique for Speech Coding.

IEEE Commaunications Magazine , Dec., 1983.

Gershe. A. and Ramamurthi, B.

Image Coding Using Vector Quantization.

Proc. of the IEEL International Conf. on Acoustics, Speech, and Signal
Processing , May, 1982.

Gray, R., and Abut. H.

- Full Search and Tree Searched Vector Quantization of Speech Waveforms.

Proc. of the IEEE International Conf. on Acoustics, Speech, and Signal
Processing , May, 1982. | |

45

12]

13

15

16

120

21

22

Gray. R.. and Linde, Y.

Vector Quantizers and Predictive Quantizers for Gauss-Markcv Sources.
IEEE Trans. on Communications COM-30, Feb., 1982.

Habibi, A., and Wintz, P.

Image Coding by Linear Transformation and Block Quantization.

IEEE Trans. on Communication Technology COM-19, Feb., 1971.

The term “Block Quantization” refers specifically to transform coding 1n

this context.

L2

Juang, B.
Multiple Stage Vector Quantization for Speech Codmg
Proc. of the IEEE International Conf. on Acoustics, Speech, and Signal

Processing , May, 1982.

Juang, B.
Distortion Performance of Vector Quantization for LPC Voice Coding.

IEEE Trans. on ASSP ASSP-30, April, 1982.

Kasam.

The Mean-Absolute-Error Criterion for Quantization.

Proc. 1977 IEEE International Conf. on Acoustics, Speech, and Signal
Processing :632 - 635, 1977.

Linde, L., Buzo, A.. and Gray, R.
An Algorithm For Vector Quantizer Design.
IEEE Trans. on Communications COM-28. Jan.. 1980.

Lloyd, S. P.
Least Squares Quantization in PCM’s.
Bell Telephone Laboratories Paper, Murray Hill, NJ . 1957

Menez, J., et. al.
Optlmum Quantlzer Algorithm for Real-Time Block Quantlzmg
Proc. International Conf. on Acoustics, Speech, and Signal Processing :980 -

984, 1979.

Rebolledo, G. ~
A Multirate Voice Digitizer Based Upon Vector Quantization.
IEEE Trans. on Communications COM-30, April, 1982.

Tao, B., et. al.
Hardware Realization of Waveform Vector Quantizers.
IEEE Journal on Selected Areas in Communications SAC-2, March, 1984.

Wong, D., and Juang, B. H.
Voice Coding at 800 BPS and Lower Data Rates with LPC Vector

Quantization.
Proc. of IEEE International Conference on Acoustzcs Speech, and Signal

Processzng May, 1982.

46

23] Yamada, Y., Tazaki, S., and Gray, R.
Asymptotic Performance of Block Quantizers with Difference Distortion

Measures.
IEEE Trans. on Information Theory IT-26, Jan., 1980.

24, Yamaguchi, H. |
Efficient Coding of Colored Pictures in R. G, B Components.
IEEE Trans. on Commaunications COM-32. Nov.. 1984.

	Lehigh University
	Lehigh Preserve
	1985

	On the vector quantization of images /
	Larry Clifford
	Recommended Citation

	tmp.1551116526.pdf.R2czB

