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ABSTRACT 

Vectot quantization is a vector generalization· of ordinary PCM. and has 

wide applications in speech and image data reduction. Quantizing samples as 

blocks or vectors is inherently better than separate scalar quantization of the 

samples. 

The two most important types of vector quantizer (VQ) are described in 

detail: the full-search vector quantizer (FSVQ) and the tree-searched vector 

·quantizer (TS.:VQ). Both are designed using iterative .alg:Qrithms based on Lloyd's. 

method of desig_ning an optimum. .one~dimens1o·nal q11antizet. These two algorithms 

were implemented fo"r varying block sizes~ codeboo.k ·sizes, and tree orders using 

FORTRAN __ programs. ·:Numerical results for the _·MsE and_ 11 norm distortion 

measures are presented. and discussed. For very large inlages ( relaiive to the size 

of the codebook), theory says that with increasing vector dimensionality., distortion 

performance should improve;. however, for small images s·uch as those used here, 

the effective .bits per pixe·~ decreases (with a c·orre~ponding increase in distortion) 
.. 

with increasing dimen_sion. Higher-order tre~s are found to perform better 

distortion\\1ise than binary trees~ in addition to their ptopert.y of requiring les·s 

m.em·orv and search .time. than binarv trees .. • • 

. ,, 
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ON THE VECTOR QUANTIZATION OF IMAGES 

I. Introduction 

Vector quantization • 1s a vector generalization ·. of sta,nqard pulse code 

modulation (PCM). lil -PCM .. a· sample value. fro·m a continuo:us .one-dimensional 

so1.1tce function is map·p~d onto one of a finite nu·m:b,er :of corresponding discrete 

valu.es. and. a codeword (us_uaHy bin·ary} is associated . with- -the discrete value for 

storage or transmission. .· A set of represen ta.tivt> discrete values which are placed 

uniformly across the range of t:be sou.rce will not g.enerally be the "best possible'" 

set, in the sense that it may not min.imi"ze· sorne ertot measure between the analog 

s~mp]es and the quantized values.. T·herefore~ .it is often desirable to calculate the 

"best;, distribution of output levels in order to create an optimal PCM system for 

some _particu]ar source. Th-is problem -- that of optimal one-dimensional PCM -

was discussed in an oft-cited 1957 paper by Lloyd. (18] He preset,ted two 

algorithms .. Lloyd's methods I and II, which detail how to construct an at least 

locally optimum quantizer given the soutce distributio·n. In 1965, Forgey [6] 

Showed that Lloyd's Method I could be· applied to a trainin,g sequence of dat,a 

tather than a known source· dist-ribution-. 1 

l- . . Gray and Linde. p. 38.l .. 

2 



In 19801! a paper was published by Linde, Buzo, and Gray ( l7) which 

described the extension of Lloyd's Methods I and II to the quantization. of vectors 

( or blocks) of source samples. Theirs was not the first generalization of Lloyd's 

work ( see, for e.xample, ( 19)), but it · relied only on a very general definition of 

.distortion measure.s,. was thorough., :and became .the basis of most subsequent work 

-on vec:tor quantjzation. 

Eatl.y studies of the application of ve(:tQr quantization were done almost 

exclusively on speech data. There are two go·od reasons for this. Firstly, speech 

waveforms can be classified: :into a small n.umber of general types, such as voiced 

and unvoiced spee.ch. T:he statistical properties of speech have been well-studied 

and are relatively simple. Secondly, the production mechanism of speech has also 

been well-studied. Th.is approach has.· .giv.eri rise to the well-developed field of 

linear predictive c_oding (LPC), which en·codes a sh·ort sequence of speech samples 

into an ordered set of ''LPC coefficients.,.. This .. set lends itself 'directly to 

treatment as a vector in a vector qu:antization scheme. 

On the oth{)r hand, there is no class of image which is as w·eII behaved as 

speech~ or which has been so intensively studied. Nor is there any standard way 

of classifying images, or any concept, for images, quite like that of ''intelligibility'' 

for speech. (When we go through the trouble of producing images, we usually 

.require that they be much mo.re :than merely ''recognizable.'') There is no general 

"image production meCh·.~nism'' corresponding to the acoustic tube model for 

speech. Images~ in· shprt, are generally less tra.ctable than speech for the purposf) 

of analytical description. 

However, since they require such large amounts of data, it is very desirable 

to compress them. Also, most of the same techniques that are actually applied to 

.. 
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the vector quantization of speech (as opposed to the mathematical modelling of 

such quantization) can also be applied to images, and images can be neatly and 

naturally divided into frames for analysis· purposes. 

Actually, as will be discussed briefly in Part II, the transform coding method 

of image data compression is a special case of vector quantization. However, even 

the ·optimum transform coding system is a suboptimum vector quantizer. Later 

on .. we shall look brieflv at whv this is so. 
~ ~ 

Studies of the performance of vector' qliantiz.ation on images have remained 

sparse since 1982., w.hen Gersho and .Ramamu-rthi [lOJ were apparently the first to 

produ<:e a-n. ''imple.mentation of ·vector quc1.ntization to. image coding [sic] where 

,· 

each ve.tto.t d·escrib~s .. a spatial block of pix·el inten_sities}'2 .T.heir results were 

-entirely qualitative :and w,ere restricted:: to .the castf of ·partit_ioning an· image into 

sq·u_are· (p x :p·) blocks of pixels. For this thesis. several different versions of vector 

q::uantiz.ation were implemented on· real data using FORTRA~ prog·rams, and the 

detailed behaviot ·of these algorithms- for sev_eral varying param_eters w.as examined. 

. . 

A presentat.ion of the mathematical theory of vector quan_tization and a ·discussion 

of the various algorithms and results follows~ 

II. Theoretical Background 

A. The Context of Vector Quantization 

Quantizing blocks of image data is not a -n~w idea. Transform coding was 

first developed in the l 950~s~ whereby a block t vector) of data is :first transformed 

into· another vector, and the components of the new· vector are quantized 

independently (i.e." usi_ng ~9alii.'f quantizers.). The transformation is usually a 

') 

.. Georsbo :and Ramamurthi. p. 4l8J' 
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ljnear ·operation, such as the Fourier transform.. which pr.oduces a transformed 

vector of the same length as the original. 3 The purpose of the transformation 

step is, generally speaking, to decorrelate the components of the vector. 

lntuitivelv. .. ' 
this means that each component will • contain no redundant 

information, s.o that at each scalar quantization step we are no longer re-
(., 

quantizing some of the same information· in nearby pixels. The optimum 

transform coding scheme~ the Karhunen-Loeve transformation, is well-known [13]. 
) 

This method is only optimum within the defined limitations of transform coding. 

Since transform coding is practical and useful d.esp·ite its restrictions., and • since 

until recently th.e large amounts ·of -memory an~ number-crunching .req:uired for a 

.g~:11:eral vector quantization scheme (:efetred to· in this paper simply as :"~yector 

.qu.aritiza...ti_(ln·'~} :were uni1ffordable. little attention was paid ov~r the years to the 

g.enetal approach. A further disincen_tive to .rese.arch mav· have been the .. .. 

knowledge that s.o simple a techt1ique as: -.DP.CM provides. nea.rly .optimal 

performance for asy.mptotically large rates_-4 

At any rat~, it has long bee.n :k.nown from Sh·annon that ''ev·en for 

·memoryless soutces-~ one can always ·do ·better by qu·antizing ar1 entire vector 

rather than separately handling components.'"5 So, even the most successful 
p -

transfor£ation technique .is doomed to suboj>timality by the scalar quantization o( 

the transformed components. Recently it has become fe_aC5ible, however, to design 

quantizers which take full advantage of the vector nature of block quantization-. 

3G··. · · d L. · • d·. · .38" ray a·n · . . 1n e1. p. . . -· 

4 . . . . . .· 
Abut. Gr.ay, a.nd. · Reb9Uedo, p. 4.24. 

5 . . 
Tao~ Abut ... and Gray; p. 34.3~ 
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Curiously, transform coding includes ail effort to eradicate correlation between 

samples, although it is a special case of a t.echnique which is implicitly exploiting 

that~ very correlation, in an ''essentially ·optimum manner.·''6 

B. Distortion Meas.ures. 

"' 

Any discussion of vector quantization must begin with a definition of a class 

of distortion· measures, because ot.herwise there is no quantitative definition of 

what constitutes a: ·''good'' or ''bad,''' job of image reproduction, or w·hat is meant. 

bv .. a ~'.di$tance'' ·bet.wee.n two. vectors . 
• 

Let- u.s. assume that we have a v.ector z = (. x0, x1, • ·• • , Z1c::1- ) in the 

. k 'k 
k-d'imension·aJ spac~ R ·~· so that X E R -~ 

n 
If ~e reprodu·~~ x by some vect.or 

···k ... 1/ E Jl, then the distortion caused by this substitution is measured by d( :r:, y), 

Suc:h a distortion· measure is defined as. a ''difference distortion me~µre', if it 

. . ~ 

possesses the property that' 

Vl-here 

d( x~, ti l - Lf X - ir)., 

L(x) · .·· o if x= o·. 

and· 

L( u ) < L ( X l i ff 11 u I l < II X !l . 

Here, II :r: !I is any seminorm on Rk. A seminorm is defined as a function of :r: such 

that 

.. 

6Gersho ~nd Ramarnurthi, .p .. -4'2·8. 

7 ... · . ~ 
· Yarnada. Tazaki~ arid c·-ray ;' p. , . 
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1. Ii z I! ~ o, 

2. II az II = I a I · II z II for a ~. R1
. 

and 

3. 11 z + 11 H :5. II z II + 1111 ii . 

ln other words, a semi norm is a positive linear vector function satisfying the 

triangle inequality. Commonly, L( x - 11) is simply the sem.inorm itself, and the 

seminorm used is the special CfJ.Se of a power of the Holder norm l : 
V 

k 

L ( z - " ) - I: X - " ,:: = ' I X. - y. ·1 
V 

V ~ Iv ~' t I. 

i= l 

F'or ex-ample, the ubiquitous. squ·ared error measure is th.e case (II x-1111 2) 2. 

\\T.eig,htecl squa_res distortion measures of the forrn 

d( x, 11 ) = ( x - 'ti ) T B ( z - ti ) 

are· often discussed,8 where B is a kY, k positive definite matrix. Because of its 

familiarity and mathematical tractibiiity., authors usually restrict their attention to 

the mean squared error (MSE), the Case where B ~s just ( 1 / k) times the ic1entity 
', 

rna'trix: 

1 
d. (. . ·)· . ( ,,. II )2 
· x, 11 . = k ! z - " I; 2 · 

No mea.sure is computation·ally simpJer, of, course"! than the 11 norm., which is 

simply ! z - 11; . Calculating t_his measure of distortion .between two vectors 

involves: k additions., and one multiplication rnust be performed if one wishes to 

Ja~e t-he av·er~ge distortion over a -n.umber of vectors. The supremum or /00 norm, 

which ·simply involves selecting the largest component of ( z - JI), still requires k 

·81.s J, I 12 J, 114 J, ! 19 J. 

' ,. 
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magnitude comparisons per vector ·pair. which is certainly no better than the k 

additions of the l1 norm. However, I know of no published subjective or objective 

tests of the performance of the 11 norm in a vector quantization scheme, although 

in digital signal processing it is sometimes· considered advantageous to replace 

multiplications by additions .. 

Not all .distortion measures u~ed in vector qu_antization are difference 

distortion measures. The. ltakura-Saito measure9 has the property of being 

implicitly minimized by the LPC spe~ch method. and· is commonly used in speech 

v·ec.tor quantizing schemes, but is ·not a difference distortion measure. It is 

therefore more complicated and awkward to deal with. 

C. Statement of the General Vector Quantizer 

Assuming that we have chosen a distortion measure (ke~p.i.ng in mind that 

there 
. 
15 n_othing special ab.ollt th~ l., .-norm .. except its obvious geometric 

interpretation for k < 3 ), we a.re ready to d:.efin_e a vector quantizer. 

A quantizer of k-dimensional vectors maps all of the point~in Rk onto some 

finite subset of the points in Rk. Two thii:igs· ·rrilist be specified in order to. defin.e 

this mapping uniquely:: ·(a) the finite supse·t of Rk onto which: everything is 

mapped, which we sh-all denote as lr == { ·111; ri2_ ... , 111v} and refer to as the 

'·'codebook.,~ and (bJ some rule for dividing Up· Rk so as to assign each of its 

poin_ts·: to -Q_ne of th·e: code.book vectors. . This assignment rule is called the 

'~partition. '' 10 

If Q(z) describes the action of the qua.n.tizer~ then. the partition may be 

9. ' 
Juang, Wong, and Gray. 

10This development is based on that- of Gersho,(8]. 

\ 
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described formall,Y as ~ division of Rk into subsets R1 .••• ~ RN , such that 

Rl u R2 • • • u R/\J. = R1c 

and 

R1 n R~ . . . n R /\J. .. 0 . 

-Furthermore·, if Q( :i) describ.es the quantizer function. then 

Q( ·z l - 1/i iff z.·~ R .. 
I 

and 

R. . .. ·Q· -1 {· .. E Rk . Q( ) ·}· . - . -- ... . z - II· . 
• i 

These complementary descriptions may seem redundant. but they are not. Our 

ability to define the· _partitiqn· in terms of the codebook and vice versa is essentiaJ 

to our ability to de:sign. good codebooks. 
. . ' 

A partition of a subset of R2, _with its codebo.ok. is shown i:ri 1. This is an 

example of a 5-point~ 2-dimensiona] vector ·quantizer. 

Figure 1: A Partition of a Region of R,2. wit"h· Codebook 

Ho\\· do we decide on a good partition an·d codebook? Any ch·oice of 

codebook and partition~ however idiotic~ woµ)g__ IJleet. our requirements so far. \\ .. e 
...... ' 

n1ust define what it is that we mean by a good quantizer. Assuming that z is a 

·random vector in Rk, with either a continuous or discrete distribution., then it 

makes sense to define our optimal quantizer as that Q( z) such that for all possible 

9 
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quantizers Q*( z ), 

E [ d( z, Q( z ) ) ] < E [ d( :r:, Q * ( :r: ) ) ] , 

where E denotes expectation. "d( z, Q( z) ) " is simply the distortion resulting . from 

quantizing • z using the optimum 
. . 

quantizer. In other words, the average 

quantization error is what we would like to minimize. 11 . 

There are two complementary requirements which, it caii be shown, an 

optimal vector quantizer must meet. 

J0 roperty 1: The members of Y (the codebook) must satisfy 

11 · = E ( z i z E R ,) . 
i ' 

· That is to· say, the codebook vector which corresponds to one of the N partitions 

must be the mean of the -vectors ·"-·hich are in that partition:. If we are dealing 

with ·a finite set of vectors,i this will cortes,pond to the dimension-by-dimension 

sum of all the vectors w·hich are deemed to lie in R, · (however that might be 

decided)": divided by t.heir number. Or" if we are dealing with a continuum of 

randorn vectors, 111 will be the ·"centet'" of some geometric region in Rk. It is riot 

the wav. to worrv 
. ., ' ... about whether R. is 

I 
"really'' a solid in 

k-dimensional space, bounded by ( k-1)-dimensio,nal hyp:erplanes (which ·it is), or a 

finite number of data vectors which have been. groQp'ed together as a set (which it 

also is, on occasion). For the calculation of -distortion bounds.~ the geometrical :i 

llThis :is not always the only way to define optimality. ln 197i·. K~sam [16] showed that for the 

case o( one-dimensional quantization using a difference distortion meas·ure, it was possible to optimize 

bot.h E'.( L( z - Q( z) ) ], as discussed in this paper. an<l a "distance" measure t:. g between F( z ), tbe, 

contiriUou~ distribution of the source function. and Fq( z ), the distribution of the quantizer output: 

+ex, 
~g = J ___ 

00 
g(F(x)-Fq(x)Jdx. These two standards of optimality produce sets of dual eq~&tions, which 

are optimized when g( ·) = L( ·) = the mean absolute error function, or the mean 11 norm. If this result 
., . 

can be extended to arbitrary dimensions, it may be a fruitful topi~ to pursue in connection with vector 

quantization. Such work is beyond the scope of this paper. 

10 
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and probabilistic version of vector quantizer structure is indispensable, but to 

implement an actual quantizer, it is hardly needed at all. This will be obvious as 

we proceed. 

The second: conditi<>.n on the optir.num quantizer is j.ust as intuitively 

satisfying as the first: 

Property. 2 : The vectors ·w.hich comprise R., whether thev be a finite set of 
t • 

data points .or an infinity of points filling a geometric solid, are given by 

{ z E Ri : d( z, 11i ) < d( z~ 111 ) for all i -:f j } . 

In 0th.et word·s. the vectors in Ri are simply those that are closer to the ·iih 

code.book vector than they ate to .an·y ot.het. "'Closeness'' may not ·have .an 

obvious interpretatio.n in this context, depending on the choice ~f distortion 

measure, but .ev·en if the familiar MSE criterion is: used it has nQ eyeryday 

g.eornetric meaning for~ say, k = 16. At any· rate. this ''nearest· neighbor'' 

patt1tion rule makes some sense. The resulting regions .are k·now·n as Dirichlet 

cells, and the partition in Fig. 1 is a Dirichlet partition. 

If we have an optimal qu~ntizer, then each codebook vector will ·be at the 

"'center'~ of its partition and each partitiQn will contain no points which are 

"closer" t.o any other partition's codebook vector than to its o:wn. The actual 

·encoding of an i·m&ge is ~asy; one simply determines w.hich partition an input 

p' 

vector is in (i.e., which codebook vector it is closest to) and stores a number to 

record that fact. In ·this way, ail image :cQ11taining M vectors will be represented 

by M integer numb.ers no larger in rnagnitud·e than N, the number of codebook . 
f-~ 

vectors. However, there is no sure. way of satisfying the nearest-~eighbor rule 

without actually calculating how far (in terms of d( x, 111)) the input vector is from 

all of the codebook vectors. One must fully search the codebook -- hence, the 

11 

i\.· 
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·optimum system is a full-search vector quantizer (FS\rQ). 
. ' 

:\ usefu) tool for rhecking the performance 3f a vector quantizer is the 

scatter plot. This is produced by taking the pixels of an image t\\'o at a time. 

and treating the brightness of each as a coordinate on an x-y graph. If k =-= 2 . 

• 

then the code.book can also be plotteq _i_n this form. For anv k. of course. the 
. ~. 

quantized image can b.e scatter-plotted just _as the original was. 

Fig. 2 is the scatter plot of an :actual digital image containin_g 16.;384 pixels 

with gray scale values ranging up to 256. 

_... __ .. ___________________________ ._._.__ 
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Figure 2: Scatter Plot of an .. i\ctual Image. 

Ftg. 3 is the scatter plot of the quantized \:ersion of tJ1e .same :image. .i\ 2-
?'~!I 
~; 

dimens.i-onal FS\'.Q \vith' 64 codebo()k· vecto-.rs ·( ~ .. =- 2. \ ... ·· · 64) vias used. Since k 

_ _,. 2. Fig. 3 also happens to be -.a plot of the cod·ebook optimized· for the image of 

Fig. 2. It. can be seen· that the quantiz~d. ..image._ as on·e wouJd ex:pect .. cont·ains a. 

12· 



sparser selection of vectors than the original. Ho\\1ever. it would almost certainly 

not be possi b)e to choos~ 64 pixel pairs which would do a bftt.er job of 

approximating the 9riginal_ irnage. .i\lso. the diagonal tendency of the plots will 

be noticed. When two adjacent pixels have the same brightness. their vector 

representation will lie right. on the diagonal: therefore. the farther from the 

diagonal. the more contrast be.t\\ieen adjacent pixels there is -in a ·vector and the 

more "'edgelike~· a featute it represents in the original image. The large variety 

of ···shade~· blocks and th:e poorer scattering of ·'edge·· blocks are just \\rhat We 

would expect from a typical image. 
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Figure 3: Scatter Plot .of a Quantized Image. 

In the next section. the various algorithms th&t .can_ be a·pplied· to ·ihe 

creation of a \lQ (FS or ot.het\\·ise): wiU be ·.discussed. Before leaving th,.e basics. a 

few more matters should be mentioned. 

13 



A monochrome digital image/ typically consists· of an array of integer 

numbers .between O and some power of 2., with the magnitude of each number 

' corresponding to the brightness of an image pixel. The ref ore, a k-dimensional 

vector drawn from such data must reside within a k-dimensional hypercube with 

one of its corners on the origin. This will be a useful basic fact when we wish to 

generate a uniform k-dimensional quantizer._ as will be ·discussed later. 12 

Much labor has been devoted to studying the theoretical bounds on. the 

performance of vect.or quantizers. 13 The fundamental result which makes -vector 

quantization so attractive is. that the SNR of a VQ system a-pproaches the 

""ultimate rate-distortion -limit for .a • given source"14 fo.r long block 

However. block length :need ,not be Jo,ng for good perforrrta.nce,15 and very :long 

length:s are i'tn·practicaJ an·yway because of the computational burden. they impose .. 

The largest dimension· that bas ·been used in ,published work that I know· .of is 
·• 

si~teen ... 16 

Also'! the results of such analysis ha\re· not proven particularly applicable t9. 

real VQ systems except in: ·the case. of some speech work,· where a reasonable 

12It- is not always the ·case·. For instance, .if varying bit allocations are used for the vector 

comp·on.ents in a transform coding scheme_; the ·region of· Rk in which such vectors might be found is not 

only not .cubical but is not even ~011stari.t. lt is hard to see how one would define a "uniform 

quantizer" in such a situation. 

13(2], 1'5), [7l, [23]. 

·l4Gersh<>· and Cuperman, p. 15. 

15 · 
Gray and Linde, p. 381. 

16 · 
Gersho and Ramamurthi. 
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statistical model .of the source is available. 17 As o·ne paper puts it, 

sin.cc theory can characterize only optimal performance values ... the 

best available means of find~ng the performance limits of a class of codes 

of. nonasympt.otic rate (bits/pixel] and b)oc.k length remains the actual 

design and test, of good codes incorporating optimization techniques .... -18·. 

Because of the difficulty of caltulating useful performance predictions for a 

general image VQ, this paper confines itself to analyzing the· actual behavior of 

several such algorithms. 

III. Vector Quantization Algorith1ns 

~A... FSVQ Design 
,, 

As mentioned above·, our ability to -define the codebook in- terms ·of the 

_partition 1, an.d vice v~r.s~~ is the ·key to designing :optimum or jear-opti1t1um 

quantizers. 

An algo.rithm _pu·blished by- Lin_,de. Buzo ... and Gray in l:98.0~ often referred to 

as the L·BG algorith.m'! exploits: th·e corr1plement_ar)~ nature of co·de.bo.oks- and 

partitions to itera ti\·elv 
. ., .a.p:proach ·the. optimum codebo·ok s.tartin_g from a 

''reasonable guess ~1
• '· 

Th-ere are at least three· distinct· wayB to make ·9- '',reasonable guess~' anq 

improve upon it; the ·splitting m·ethod (used .by the LBG algorithm ·an·d most. of 

'its descend:ants), (he product code method., an.q. the uni.fo·rm q_nantiz~r initial guess. 

All of the algorithms. outlin.ed here are fo:r use on a source with an unknown 

distribution .. , :namely·, a training sequence. of real d.ata. 

The iterative split.tin·g rt1eth,od is· a.s follow$ (see F_lo\v Chart 1}: 

17· Abut. G_rey, and Rebolledo. 

18 Jbid. 
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(1) Initialization.. Set NN = 1. This is the number of vectors in the 

current codebook. (The algorithm goes through a number of intermediate 

codebooks before finishing.) To begin., we must also specify N, the desired size of 

the final codebook, and <. the convergence decision threshold. The meaning of < 

will be explained at stage (2). Let l'n be the codebook during the current 

iteration~ it contains NN vectors. To finish initialization. we set the single vector 

which Y1 contains equal to the centroid of the entire training sequence S: 

Yi= 111 - . L x. /('i of veotora in S) 
% ES 

(2) Splitting. Given the NN codebook vectors of Yk from Step 1, ''s·plit'' 

each one into B nearby vectors by adding B arbitcrary., small vectors 6
1
~ j ·== 1, 2; 

. ~· . , B·. Set total stage distortion D 1 == ex>. ·set NN -== .2 x NN. 

{3) Optimization. Optimiiation :is an iterative procedure for a fi.xed: 

codebook size. It must be comp·leted ~atisfactorily before returning to step (2}. 

(a) Part,itioning. Find the best partition for the current codebook of size 

NN. This is :done by evaluating d( x, 11·) for all t· .F S, and partitioning 
, .1 

each. x to that 1/i for which the distorJi~n ls minimum. In other words, 

find out which codebook vector each training sequence· vector is closest to. 

(b) Distortion. Calculate the average distortion of' the quantizer using 

the partition from part ( a) by adding up ·all of the minimum d( x, Iii) and 

dividing by th·e number of vectors in the training sequence. This is., of 

course, exactly the average distortion that we . would have between the 

training sequence and a version of it quantized using the current codebook, 

since the procedure for ''partitioning"' is the same as that for "encoding.,, 

16 
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Set D = th~ averag distortion. 

(c) Test fo[_--C~nvergence. This is where ( tomes in. , is some number 

smaller than 1; it should be _quite· small. It is called the "convergence 

decision threshold"' because if 

.(ID 1 -DlJ./D <. l . . -,. 

then we assume that only neglig_ible improve:ments will be realized by 

further iterations~ and we end the optimization loop by jumping. (If NN = 

N, t.he size c•f t-he fin~l codebook" then we jump to ( 4), End. If NN < N, 

we jump back to· (2}.) Since D1 was set to oo before beginning 

optimizati6-n~ the test for convergence is sure to fai] the .first time through. 

If t·he test. is not satisfied·, then we proceed~ Set D1 = D .. 

(d) Find codebook-... As promised much earlier. the dual definitions of the 

1/i and the R1 are the essence of optimization. Having determined in (c) 

that the imp.rovements being_ gained by iteration have not bottomed out 

yet, we now find a codebook to satisfy the partition that has been .inherited 

from Step (b ). This is a·one· .by replacin_g every vector in l,,.n (the current 
<J 

codebook) by the centroid of the .correspQnqin_g partition. This will be 

significantly different from th-e codeboo·k already in: place if the optimization 

stage has not yet iterated a ·sufficient number of t.irnes. Unconditionally, go 

to (a). 

( 4) End. Reached Qnly from (2b ) .. The code.book has been split a sufficient 

_number of times., and the final codebook containing N vectors has been found 

fr.om an initial guess based on a codebook containing N /B ·vectors, which was- the 

product of the last Splitting operation. Stop. 

Note that, unless we 
I 
wish to perform the splitting operation differently 

17 
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Flow Chart 1 

FSVQ DESIGN ALGORITHM 

• Arbitrary dimension 
• V vectors in training sequence 
• N is desired codebook size 

Find the centroid of the image: 

l' 

11 =) z 
1 ~ 1 

i= l 

Split the centroid . 
. 

y. . = y = 6,. , 1 = 1, 2, . . . , B. 
1- / 

NN - B - number of vectors 
in current codebook. 

Optimize a codebook for 
N - NN, beginning with the 

results of.the splitting step . 
(See Optimization Algorithm) 

Split the result. 
NN =B·,, (previous NN) 

NN = n ? 

YES 
I , 

END 
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YES 

. .:., 

Flow Chart 2 
. 

OPTIMIZATION ALGORITHM 

• E = decision threshcld 
• Fixed codebook size NN 
• V image vectors 

START 

Initialize 
average distortion: 

D' - o 

Find partition for the given codebook 
by determining the codebook vector for 

which d(~~) is minimized 

for each x, and tagging each image 
vector accordingly. 

Calculate average distortion which 
this quantizer produces: 

I - i· - . 
D == - '\"" I d( X. • Q ( X. ) ) 

V -i= 1 i 

Test for adequate convergence: 
(D - D ' ) /D · ( ? 

NO 

D' = D 

Caculate optimum codebook for 
the given p~rtition by letting 

1/· - cent ( R. ) , i - 1, 2, . . . , N 
z z 

END 
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somewhere along the line, the final codebook size N will be a power of B. If B = 

2, then the tags identifying the N codebook vectors will completely use up all the 

binary words of length log2(N). Therefore" if the quantized image' is being stored 

or transmitted in the form of codebook tags without any added redundancy, 

binary ~plittin·g (or splitting by s.~me power of 2) ·will lead directly to a codebook 

of t'he most efficient size. 

Of course, now that we have a quantizer, we can. use it· on. any input that 

we please. The resul~s are only guaranteed to b¢ optirn.um or loc·ally optimum if 

the training sequence was ·i.ong· ~nough to accurateiy represent the statistics of a 

class of inputs,· and all ·futute :i11:puts .. are also members of that class. Linde, Buzo 

and Gray distinguis:h between the case where "' only th.e ;trctin.in.g sequence is to be 

classified'. :and t.hat: where we wish to pro.duc'e a go9d q·uan:tizer for· use on data 

. 
. .• .. 

outside t.he traini~.g.: sequence w·h.ith has .the same statistical pro.petties as that 

within. i9 How~ver, this distinction ·has no bearing at all on the algorit·hrn. .itself 

.an:d: it ·sh·all :be disregarded until th,e discussion of results. 

Throughout the LBG algorithm ·as described above·, all vectors dealt with 

·were of the same dimension, k. An alternative method of growing codebooks 

.exists, although it is rarely mentioned. 20 

called, is briefly outlined· belovi. 

' 

The ''.pt.oduct code" method, as it is 

( 1) Initialization. Begin with t-wo ·v~ctors of dimension 1 as an initial guess. 

Set NN == I and d - l. ~, cf' .is the- dimension of the stage in progress. 

(2) Optimization. Use. the same Qp.~iro.ization routine as in the splitting 

19· 
· (17], p.89.· 

20The description of this method b~· Juang and Wong [13) is t~~ only one that I know of. 
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method to find an optimum codebook of size NN and dimension d. If d = k, the 

desired final dimensionality, stop. 

(3) Forming a product code. Form the initial guess of the next pass 

through (2) by appending a new dimension to the optimum cQdebook of dimension 

d and forming all permutations of the original codewords and two fixed possible 

va,lues for the new dimension. (These values. or "'multiplication factors,'' play the 

same role as the 6's of the splitting method.) Go to (2). 

Juang and Wong report that the p;rQdu·ct code method does not- provide 

startlingly different results from t:he split.ting method, and- certainly not su_perior 

results. In one case tqey found_ that the product cod·e method .cpn::verged to a 

.. 

truly distinct quantizer·- apart from that found by the splitting method, which 

pto~es that the restriction "locally-" optimum is not just a mathematical fiction. 

The product code method was not implemented. for this project. 

B. Tree-Searched Vect(!r Quantizers 

Tl1e LBG algorithm, though wo~dy, is simple in concept and realization-, 

considering the task it has to perfor,in> lt produces a codebook that.,, ha$ n,o 

particular structure and is appropriate for use in an FSVQ. However, it is 

computationally very burdensome. N vector distortio·n computations are required 

to quantize a single -input vector, since all of the N codebook vectors must be 

searched. There is an alternative method. the tree-searched vector quantizer 

(TSVQ), which is not: .only far easier to searc.h through but is quicker to design. 

There is~ n·atµraJly, a price to pay; a TSVQ will generally be suboptimal in 

comparison to an FS\tQ, and it requires up to twice as much rilemory. Ho'\\ ever, 

the computational savings are so great as to make it well worthwhile to look at 

TS\lQ's. 

21 
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Figure 4: TS_v·Q 'S:tructµre 

i.\_ typical tree is dra\\~n in Fig. 4. ~.\ TS\lQ is designed .and searched fro·m 

left tq right; --. at e~c.-h level. a nev.· (and larger) set of v·ect:ors (corresponding to 

the nodes in Fig.· 4) m_t1st be corn:puted an-d retained permanently. The. fact. th.at 

the \\·hole: tree must 'be stored is- the source of the ex:tra merno_ry requirement. for 

TS.vQ··s. 

The. nodes- at rhe Lth level~ .on the far right ·of Fig. 4. are .the o-11tput 

vectors of the quantizer. Most of the -other nodes serv:e to facilitate the .search 

·procedure~ which- is as• fallows: 

( l} ·]gnore the single no.de at the base .of t'he tree .. This is o·nlv needed ... 

. . 

during the -d~sign stage. ·an.cl need. not b.e stored .. 

(2) Treat. th.e 2 children of _the- base node ·as an FSVQ with N = 2, a_nd 

quantize the input vector accord.ingl~ -- that is. find which of the two is closet to 

fh:e input. 

(3) Repeat -step ( 2) for the thildre·n of the: n.ode· w-hich, \\:as c·hosen as the 

''o·utput~" -of the fi-rst-level ·quan.tizer, a.·nd then· for t"he ch.ild"ren of .that node. and 
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so on until the output. level of the tree is reached. 

As can be readily seen, a binary TSVQ requires at most 2x L vector distance 
rl 

computations, in contrast to the FSVQ. Furthermore, there is no reason why we 

should restrict ourselves to binary trees,. i.e.~ those with 2 children per node. If a 

tree has B children per node then thf> quantizer will have BL output levels and 

·require Bx L distance computations for the quantization of a single input. 

The creation of the tree is a more elaborate process than its searching. l 

_present the algorithm 'below in a. form similar to that used by Gray and Linde. 21 

As the encoding procedure works its wav 
'"' 

through the tree., 'it must have 

some way of keeping track of where it is. This is done by assigning an integer 

label b . . to every node veCtor in the tree, and retaining these integers in the form 
I 

of a "path map" { b1, . . . ., . bm} to record which. -nod~s t_he quantizer has passed 

through up till the mtb level. "m" will equal L, the number .of levels, w:h~n the 

search procedure- is contplete. Gray and Lin·de point out. that since the bi must 

all ·be distinct, eac·h can: be uniquely represented by ~ binary .numb-er .Bi , and the 

bl.nary channel vector poiQtin·g to the desired outp.ut ·vector at. the Lth level may 

be: simply Et 1 Bi . Th·e assig-nme_nt of b/s· to the tree· n·od¢s can be made 

independently of the actual content_s of :the: n.9des, which is determined as follows: 

( 1) Initialization. As d·urin:g tht -d~~ign of the FSVQ., find the centroid of 
. " 

the training sequence. Place this at the base·· node of the tree. After this step is 

over, it need not be retained. 

(2) Level I. There will be B1 nodes on the lth level, begin-ning with 1 node 

.on .the 0th level. Repeat th.e nex.t stage B1 times, independently for each node on 

21 [12] 
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thf) lth levp). 

page. 

(a)" .1'lode i o/ level. I. .i\ certain subset .of the training sequence wilJ be 

partitioned to this node. If it. is the., root node. then all of the training 

vectors \\1 il) be partitionPd t.d it. S.plit the- node vector i:nto B nearb\' 
• 

vectors. Just as. was done during t ht ... t~-S~Q sp:litti.n:g step. Then .. optimize 

a B-vector F$\'Q utilizing dnly -those rra_1n1ng vectors vihich are partitioned 

to this partirulat nod£\~. \\~hen the optimization is :fi.nished._ set the B 

Children of this node equal to· the optimized B-\·ector FS \!Q cod.ebook~ To 

each- of t.he child.Ten. son1e of the t-raining vectors will be partitioned.

Retain this ·"information for :use when the -time- come~ to form th.e· children 

of t.h es e nod es.~ 

{b) If i -~ ~+.l .. go lo. (3J. 0.th.erwise. in<:rement z'.··and gc> ·paGk to (aJ. 

(3) If l == L. go to ( 4). Other\\1.i:Se. increment / and go back to '(2). 

(4) End. All th.e nodes on all the levels h-av~ been dealt \\,.-ith~ 

A flo,v chart. for· the TS\,Q design- algorithm is :included on th:e follo\\·i~g 

SomP comments a.re. in order. One can decompose the idea of a quantizer 

.into an encod.ing_ step and a decoding step: encod_in_g means deciding w.hich of the 

codebook vectors- an in.put vect-cYr should be mapped -t:o. and -d.ecoding consists: of 

forrnin:g an image using this information: and the codeb.ook. In .a storage :or 

·transnlissio.n .s~·stetr1. -this separa.tioh :of ft.rnctions w.ould be ·quite real. The decoder 

for ·a TS\"Q is th.e same as that for an. FS\,"Q·: one need· only store the X 
.. 

,reproduction vectors and .th~ir identify:ing tags {(he :binarv· :cihanneJ vectors)_,_ and l . "' . . 

create a ne,v image based o·n this ·code,book and a string of tags. It is enc.oding 
() 

t_h:at ma-k~s tree- -and .fu.Jl-searthed qtiantiz·ation different. 
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l = L + 1 k - k + 1 

Flow Chart 3 

TSVQ DESIGN ALGORIT-HM 

• V image vectors 
• N codebook vectors desired at 

highest level of tree 
• L levels 
• B children per node 

START 

Find centroid of image 
just as for FSVQ: 

X 
rent 

Split x t into B nearby ct:n, 
vectors by forming 

x t - (!., i - 1, 2, ... , B. 
rprz l 

Optimize a codebook containing 
B vectors with the same algo
rithm as used £or the FSVQ. 

Initialize level number: 
I - I 

Initialize node number 
for each level: 

k - 1 

Call the optimization routine 
for the B children of the kth 

node on the Ith level. 

NO 
.... :---...... k - I 

B' ? 

YES 
Split the B children, as 

was done·with X nt· ce 

.._ ______________ .,. / - L ? 
. 

NO _ ..... ··_YES 
END 
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The amount of vector storage needed for a TS\,'Q of order B with L levels 

can be easilv calculated as . 

L 

l\·n.L ~ L 81 -
,=.) 

BL- 1 - B 

H- I 

This can be close to 2j.' B. but not greater. so using a TS·\7Q can at most double 

.the memory needed during the en(:oding stage of the qua.ntizer. 

In pract.ice. there is :no need to go t h,rougb an elaborate procedu,re of 

.accumulating .a ··pat.h map··· and translatin.g it into the add.ress of the ap·propriate 

output \'ector. Tre.es can be nurnberPd in a. fashion M-'hich makes the addressing 

of nod,es throughout the search an.d ·d.esign p.roce.dures simple an.d automatic.:!~ lf 
' ! 

·one numbers the nodes of the tree ·on·e level at a ti:rne .. starting \\·ith O for the 

base node (see Fig. 4}. .every nod·e will haYe a distinct number n and the 

ad.dresses <:>f its ·B· children (.for a Bth order tree) will be given ·~Y 

Tl.. B ....... i:. : . . . .. . B 
·z --- l. 2. . • .: -.. · 

f qr ~ computer impJementation of a Tsv·Q, this makes for very con.venient 

tra veiling thro,ugh a single stack containing· all of the nodes of the· tree 
. 
in an 

orderlv· arran.gern~n.t~ as is also indicated in. Fig. 4. 

T·his method dispen.ses with the: need fo.r ke.epin_g .track. of some kind of path 

map, ~ven if not .all the .nod~s on all the levels are of the same. or.der. ln that 

caseQ one would merely ·need to ·n·umber the ,,,hole tree accotding to the o.rder of 

the highest-order node~ and tise u:p soml' of the_ numbers on non-existent ch.ildren 

for -the lo\\·~r.;.order .. nodes. For th.i's paper. a progta_·m was· written \\1hic-h· co.qld 

() !')' 

..... I chanc·ed upon this techn.ique for the binary .case. and ani inde.bted to Mr~ .Peter ·Floriarfi fQr 

pointing out the· .general case. 
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design TSVQ's for any fixed B and any number of levels, but no provision was 

made for varying numbers of children per node. 

C. Uniform Vector Ql11.1ntizers. 

The most obvious possible arrangement of ou:tput vectors for any· kind of VQ 

is the uniform quantizer; that is, an arrang·ement of codebook vectors in Rk which 

causes an equal vo)ume of space to be assigned to each when Ric is partitioned 

according t_Q the nearest-neighbor ru)e. This is not always as simple as it sounds. 

There is nt> fixed way of sca.ttering an arbitrary number of points tl1rough Rk so 

.as to assign equal ·volume to each -- and of course, we would like to avoid 

·1te.rative methods of qoing so, since the other .two ·ways of designing an optimum 

quarttiz"er are iterative anyway~ and an it_erative, method of generating a uniform 

.qu-antizer would not necessatily :hav,e any· particular advantage. Since· the region 

of the "image space~, we are- dealing w.it-h in ·the .case of digital .gray scale images 

is ·a simple hypercube (i.e .. , a region where the value of any coordinate can v.ary 

between two .fixed values" whic.h are t·he s&me for all coordinates), it is rather 

easy to prod·uce certain n.umbers of uniformly· distributed o·utput vectors -- namely., 

ai:iyth·ing of the size 2k·n. A k-dimensional hypercube has 2k "'corners"', and since 

th~ space around each corner can be considered as another .. smaller h.y·percube, this 

division of Rk is easy to generate. For k == 2 and n == 1. for instance, the 22·1 

''o·utput vectors"' of the uniform quantizer, where either coordinate of the region 

to be quantized can range between O and R, are given by 

111 -- (R/4, 3R/4) --
1/2 - (R/4, R/4) -
1/3 - (3R/4, R/4) -
1/4 - {3R/4, 3R/4) -

A uniform quantizer initial guess enables one to design an FSVQ (or the 

children of one node at a time durin·g the design of a TSVQ) without going 
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through an elaborate process of codebook-growing. However., there are practical 

difficulties with this method which shall be discussed in the next section, in 

addition to the difficulty of generating a truly uniform quantizer for an arbitrary 

codebook size. 

IV. Results and Discussion 

A. FSVQ Results 

Image data was available in the form of two 32x512 blocks of pixels whose 

gray scale v_a]ues were integers ranging up to 256. Because of run time 

limitations. data was collected thoroughly for the performance of the FSVQ and 

TSVQ only on one of th.ese blocks. Quantization was performed on the other 

block fot ,selected. :dimensions. and codebook sizes to ·yerify that the results were 

similar. 

For this relatively small set of training .d'ata. the algorithms described in 

Section III are not so much d·esignjng a quantiz.~r fQr a. cJa~s of inp.uts as they are 

" .. grouping a lon_g s.equen.ce. ·of vectors in a lo\\' distottion manner. ''23 The 

outstanding result .of this fact is ·that the average distortion per pixel resulting 

from ·q.uantization jn~.reases with increasing dimension for constant codebook size, 

contrary t:o what is usually said about vector quantization. The reason for this is 

as follows: 

The original image is represented by ·8 bits/ pixe) (bpp). Therefore, if there 

are P pixels in· th.e image. 8·P bits are needed for its complete representation. In 

a vector qQantization scheme, log2N bits are needed for each of the codebook 

labels or channel vectors. Furthermore. if the dimension used is k, tlien there are 

23· ·.. · 
Linde, ·B-...zo,., and Gray. 
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' 
·P / k such binary numbers needed to represent the image, give~\the, codebook. The 

\ 

codebook itself requires 8·N-k bits, since it is an N x k array of pixels with the 

same gray-scale value range as the original image. Therefore, the compression 

factor of the quantizer, or ratio of fhe ~its needed for the quantized image to the 

bits ·needed for the original,. i~. :given by: 

S·P 
C ( k. N ' :P' ) -· . ' 

8· N ·k+ f P /k)·(.log" N) 
"' 

For P >> N·k • . this will approximately equal .8.·k/log2N·., which ls the standard t'hat 

is. al\\'ays used· by authors when the amount ·of available data is great eno.ugh., 

F"ig. ·5 shows the com.pressioQ factor for bo:th cases. It 'is reasonable to exp~ct 

. 
that the distortion performance of the quantiz·er should follow the bpp of the 

quantized representation., arid this is true for relatively smal] dimen~ions. Fig. 6 

shows the performance of three ·different~sized quantizers '(N· == :2, 16., and 64) for 

increasing dimension. 

It can be seen that c(k .. ·N, P) is a decreasing function of N and therefore 

one would expect the dist.ortion to also decrease with N. · This is in fact true. as 

can be seen from Fig. 7. However, c{ k, N, P) is not a monoto.nic function= of le-.. 

for srnall k it increases. and for large k it decreases, with. a rnaximum at 

l/2, 
P ·log~ N .. 

k= 

From the abov-e, one would expect the distortion to start decreasing with 

increasing k at some point for any given N. Several trials showed that this is not 

true. Probably the cause is that there are only so many distinct vectors in any 

image. As the number of codebook vectors 
1

becomes a reasonable fraction of the 

•' 
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number of image vectors. there \\'ill be a codebook vector to reptesenl alrrfost 
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·every distinct imag.e vector. w"ith the result that \ will effecti·v-ely nor increase 

beyond. a -certc1in point- regardless of ·v.·hat \\·e ·do. This effect mi __ ght be called 

"··p·artition emptying~·., becq,use when a J:1artition b.e.comes em:pty during. the L-BG 

algprlthm ·-- ·whic·h o"ccu.rs ~·hen. there art> no more distinct vectors to assign to it 

.its ce:ntrold is O and it no lo_f1:·ger significantly participates i.n the process~ 
:· . 

Several ·t"ests sh.owed that for ~ on the order of ·25fi: or .512. all codebooks h.ad 

suc'h empty :partitions i.n perce·ntages ,,·hich in.creased ~teadily for increasing .k. 

Despite the above con·sideration.s. it was true e·ven· for- the- linJited image sizes 
} 

\\·hi.ch \\'ere av·ailable for testing that for fix.ed b·pp (as measured by the large P 

standard)., distorti.on· performance geiletally i_mproved for increasing -~ and k. This: 

v..,· as as -ex.pected .. Fig. 8 shows the :improterpent -for the case of 1 bpp {a 

compression factor of 8) . 

.. .\nother consideration in VQ implementation }s t_he .block sha.p.e. Anv .. 

integer factorization of -k :corresponds to a diff ererit block $hape. Usually'! square 
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' _bloCks arr chosen. lirr1iting tl,le choice of dimensions to k~s which arr perfect 

squares. In Table 2. FS\i~Q performance for varying block'· shape and dimension is 

tabulated. and · in Fig. 8 the performarlcP for k =--.: 4 and the 3 different possible 

block -shapes j:s graphe.d. .. .\s can bP seen. for this· image the square block 

:pe:rforrnance i:s ahr,ost a)\\·ays intermediate bet\veen that of the horizontal linear 

:and vertical linear .blocks. Presumably this is (a11sed by (he characteristics of the 

individ.uaJ image. ln general. it i·s. difficult to say that any shape is better than 

anv other. -~.\ linear block ,vill take &dvantage of correlation between samples that 

are .farther apart. :but will be treating the in.tijg~ as if it 

dimensional signal. thereby losin,g sorr1e ad·vantag-£\ 

were o·nlv ·a 1--.... 
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Distortion -vs. Codebook Size for k = 4 

There are numerous ··tricks.·· that can :be played \\·ith the FS\.Q. One of . 

th.e.-rn -- the distinction bet w-eerr edge· and .shade .blocks -- corresponds to the 

distinction between voiced a·nd unvoiced speech. althoug.h it is not so -u.seful. An 
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FS\'Q ,~hich gi\'es minimurr1 distortion rr1ay yet generate unpleasant "I.stepping .. 

effects \\1hen quantizing diagonal _lines. One possible way to attack this problem is 

to give more attention to edge blocks due to their perceptual significance than_ 

they would other'"·ise receive. This is don(' by designing a separate codebook for 

the edge blocks of an irr1age. a·esignin:g· another fQr the shade blocks., and then 

combining them. This \\·as d:_o,ne· \\·ith results that are shown in Figs. 9 and 10. 

F.ig. 9 shows an image quantized with a k = 2. \ = 64 codebook. 
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Fig_~ JO sho\vs the same image quantized with a cod.ebook of the same size, but 

\\'ith half ·of the codebook ·s-p·ec-ialized .to each class, of image vector. Plainly., there 

:is .. a better representation of edge blocks. ( ;.\n adjac·ent-pixel difference decision · 
~ ' .. 

level of 20~~ of the· bri.ghtn·ess range was used for thi~ example.) 

actually displaying these images. it is not pos·sible to sci.y for sure that ·this 
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process has realized any qualitative image improvement. 

B. TSVQ Result~ 

It should first be pointed out that TS\·Q~s only make sense when data 

outside the tra1n1ng sequence is to be quantized. The purpose of · the tree 

structure is to speed the quantization of vectors .. something v.:hich has already in 

effect been done for the training sequence during the calculation of the tree. 

Binary trees are the most v;idely used type. Hov.'ever .. if the desired output 

codebook size N happens to be a po\ver of 4 .. quaternary (fourth order) trees are 

superior in every ,vay. The quaternary tree al,\·ays requires less memory than· the 

binary tree._ , because the memory requirerr1ents for identical l\ are given by 
. -0 

<r{/ 
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N - 22 L + 1 - 1 _, 4 L 2 - 1 
2, 2 L - . - • , 

N 4, L = ( 4 L + 1 - l ) /3 = ( 4 L ·4 - 1) /3, 

and ( 4 L ·4 - 1 ) / S < 4 L · 2 - 1 for al I L > 0. 

~ where, the quaternary tree has L levels. By virtue of having half as many 

levels.. the quater11ary tree will also be twice as fasr to search. Furthermore.. a 

wide variety of tests (Tables 3 - 6) showed that for the available image data, the 

quaternary TSVQ usually performed better than the binary. (Presumably this is 

because the quaternary is less constrained by the tree structure, having more 

choices of route at every node.) 

performed better t.ha·n an FSVQ. 

In fact.. for small N it sometimes actua]l v 
.. . . . 

. . . 

Fig. 11 graphs the relative performance of the 

FSVQ and qu·aternary TSVQ for k - 4 and N equal to powers of 4. This is 

.furth·er proof of the local optimality of the codebooks fotind using any of these 

techniques. · ff:owever, ov:er a. wide variety of images. t_he FSVQ would almost 

cert.ainly be found to perform. better- for all N. 

The TSVQ's suffer: from the· same decay in performance with increasing_ k for 

· limited image size as the FSV·Q's. Although a TSVQ stores much more 

inf ormatio.n, up to .half pf it is only used only to &peed the search process and 

does not increase the actual bpp' of tbe q.uantized representation. 

The problem of ''partition emptying'' applies to TSVQ's with a vengeance. 

4lf 

An empty node at the mth leve] .will result in I:,iL ;m ( B L -m+l - I)/( B - I) 

empty nodes further down the tree (including BL-m zero output vectors) unless 

steps are taken to assign a vector to it according to. some rule. 
•. 

C. UVQ and Other Results 

A uniform quantizer was implemented for sever':1,1 codebook sizes and 

dimensions. The performance was very poor, as can be seen from Table 7. The · 
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reason for this ,s probably that many of the initial guess points were scattered 

through regions which contained no image vectors: so .. during the first part of the 

optimization routine.. no image vectors \\'·ere partitioned to them~ and during the 

second part the codebook vectors corresponding to them were set to. zero. Some 

kind of reassignment proced.ure is clearly called for. but adding such elaborations 

destroys the simplicity which is the 1w· hole at traction of the l1 \i Q initial guess. 

Some results were obtained for the /1 norn1 distort.ion measure in a~ FSVQ . 

(Table 8). In general. its behavior \\:as similar to that. of the ~1SE measure .. 

although for sn1all N increasing k seems to have very little effect on the distortion 

performance. In Fig. 12 the perforn1ancc for k == 2 is plotted. It is impossible 

to say ho\\'. subjectively acceptable the results of using the /1 
norm are- without. · 

displaying the resulting images. 
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\·ector quantization is an extremely versatile technique. ~1anv choices have 

t.o bP made during its implementation which may affect performance~ only a fe\\· 

of \vhicb have been discussed here. ln the case of TS\;Q·s. it seems that higher-

order trees perform better distortionwise in addition to using less memory and 

requiring less search time. _.\pplying vector quantization to individual images as a 

data reduction technique introduces a tradeoff between dimensionality and bpp 

which is not usually considered in discussions of vector quantization. Some 

method of image display to provide qualitative .. results would be n ecf:ssarv to a .. 

more thorough evaluation of the performance of vector quantization on images. 
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k: 

2 

4 

6' 

6 

7 

8 

g 

12 

16 

N: 2 

346.37 

364.24 

372.6Q 

366.QO 

379.90 

386.Q3 

386.17 . 

400.90 

402.02 

Tables · 

TABLE 1 
Mean Distortion Per Pixel (FSVQ) 

4 

330.62 

108.66 

362.3Q 

13Q.10 

17Q.60 

181.01 

374.4Q 

202.66 

381.12 

376.03 

8 

44.Q8 

67.64 

106.41 

Q7.Q2 

127.22 

138.76 

148.27 

16Q.30 

168.Q7 

1ge.46 

16 

36.6Q 

62.47 

Q4.26 

68.80 

86.78 

32 

16.7g 

2a.og 

42.gl 

40.74 

64.06 

89.74 61.73 

107.0Q 69.42 

121.18 71.02 

128.81 76.68 

64 

7.70 

13.76 

24.91 

26.67 

32.12 

32.69 

3Q.88 

49.16 

61.39 

136.28 103.43 64.67 

. .r 

39 

128 

3.88 

8.31 

14.87 

15.gg 

21.Q8 

20.82 

26.88 

28.71 

33.Ql 

t, 

256 

1.90 

4.69 

9.02 

7.87 

12.6 
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1 
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2 

1 

8 

3 

1 

9 

2 

4 

1 

3 

6 

1 

4 

8 

1 

3 

9 

1 

4 4 

1 16 

2 

TABLE 2 
Distortion Performance for ·varying Block Shapes 

( m is block height, n is block width) 

4 8 16 32 84 128 266 

372.69 362.3Q 106.41 94.26 42.91 24.91 14.87 9.02 

362.32 347.64 87.24 62.81 33.26 19.47 12.03 6.74 

387.86 361.33 143.91 97.23 62.62 36.68 22.79 12.63 

379.90 179.60 127.22 86.78 64.06 32.11 21.98 

376.16 367.~0 113.96 66.28 43.63 28.31 18.33 

400.34 376.43 182.31 114.7 76.60 60.30 30.10 

386.17 374.49 148.27 107.0 69.42 39.88 26.88 

392.66 369.61 129.26 84.16 61.29 36.10 21.88 

410.39 377.69 197.89 133.6 100.6 .60.30 36.06 

394.67 202.66 169.30 121.1 71.02 49.16 28.71 

396.88 180.11 139.20 91.06 68.61 37.12 21.70 

396.93 242.96 191.36 133.1 94.23 63.26 32.60 

402.02 376.03 196.46 136.2 103.4 64.67 

460.06 380.66 166.61 96.32 67.-71 44.14 

, . . ' 
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B: 2 

N: 2 

\ 

TABLE 3 
Mean Distortion Per Pixel vs. Codebook 

(Size N and TSVQ Order B -- k = 2.) 

4 8 16 32 64 128 

346.7 87.89 46.33 29.46 20.76. 10.37 6.41 
:/ 

3 g 27 81 243 

3 237.2 4Q.38 26.64 10.92 4.12 

4 16 64 266 

4 214.6 38.73 16.08 3.92 

TABLE 4 
Mean Distortion Per Pixel vs. Codebook 

(Size N and T_SVQ Order B -- le == 3.) 

N: 2 4 8 16 32 64 128 

B: 2 366.4 113.3 68.94 64.87 42.39 27.14 17.06 

3 27 81 243 

3 218.9 73.22 16.29 6.71 

4 16 64 266 

4 \09.6 64.99 17.Q6 7.29 

6 26 126 

6 96.34 40.76 11.96 

6 36 216 

6 101.2 28.97 8.80 

41 

266 

2.Q7 

266 

8.36 
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·B·· .. 

N·: ·• 2 

·2: 376.8 

3 

TABLE 5 
Mean Distortion Per Pixel vs. Codebook 

(Size N and TSVQ Order B -- k == 4.) 

4 8 16 32 64 128 

171.6 i23.8 73.SQ 63.49 34.74 23.47 

g 27 81 243 

a: '_36.1 • s gs . 24 64. 42 29. 93 13. 60. 

4· 16 64 266 

4 -242:-.]~ ·es •. 01 .3·1 -.79 12 • 1 8 

. • 

"' . .. .. .. . .. 

0 26 
.. ':126-

5,· 142 • 6 61 .:$6 ~l .-88. · ... 

6 36 

:,~. 124.7 48.59 1~.70 

N:: 2 

TABLE 6 
Mean Distortion Per Pixel Vs. Codebook 

(Size N and TSVQ Order B -- le == 9.) 

4 8 16 32 64 128 

266 

13.86 

266 

B:- ,2 397.8 208.6 16Q.4 129.0 91.81 69.61 39.96 26.18 

3 9 27 81 243 

·8 294.6 160.3 106.7 62.99 23.66 

4 16 64 266 

4,_ 286.2 11·2.9 67.91 23.66 

6: 26 

283.6 92.08 

6 36 

8: 266.6 79.22 

126 

38 .&.7 

216 

3.1. 94 
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k: 

2 

4 

g 

16 

'I. 

TABLE 7 

Mean Distortlon Per Pixel of FSVQ's 
With UVQ Initial Guess 

N: 64 128 266 

k: 

2 

3 

4 

6 

7 

8 

70.31 

40.63 

64.84 

TABLE 8 

78 .13 

87.8Q 

73.44 

Performance of the 11 Norm For Various 
Dimensions k and Codebook Sizes N 

(Average Distortion Per Pixel) 

N: 2 4 8 16 32 64 128 

14.82 14.46 4.47 

14.80 14.30 6.11 

14.81 8.6Q 6.84 

14.94 14.24 8.12 

4.02 

6.63 

6.82 

6.85 

43 

2.43 

3.82 

6.05 

6.76 

1.81 

2.Q8 

3.84 

4.67 

.) 

1.26 

2.33 

3.16 

266 

.90 

1.8Q 
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