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"ABSTRACT 

It is generally recognized that metal· fails by a process· of ex­

. cessive deforma.tion and fracture. Cracks are initiated and then 
. 

spread slowly prior to final termination. This physical process can 

be conveniently and consistently modeled by application of the strain 

· energy criterion. 

One of the major research topics in fracture mechanics is deter­

mining the crack resistance that varies as a function of crack growth. 

'The high nonlinear variations of the applied load with crack growth 

cannot be r·eadily used in engineering applications because they are 

too sensitive to· changes in loading rate, specimen size and geometry 
. 

and other design variables. Clearly, the objective is to seek a suit-
(, 

able parameter whose variations with crack growth can be predetermined 

so as to provide information for situations othe 

Otherwise, the crack-extension resistance curves 

no useful purpose. 
{/ 

·han those tested. 

little or 

r-- ·-

The strain energy density failure criterion is applied to the 

steady state, thermoelastic problem involving cracks in regions of fi­

nite dimensions. Assumed is that failure can be uniquely associated 

ywith the rate at which energy is dissipated in a unit volume of mate­

rial. This quantity shall be referred to as the strain energy densit.Y · 

function dW/dV, whose critical value (dW/dV)c corresponds to certain · · 

threshold levels of material damage. The amount of energy released 

through a small distance r can be measured by the strain energy den- . 

-1-
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. 
sity factor defined as S = r(dW/dV). Such a relatiori remains valid 
• 

for all materials as Sis not limited to the type of constitutive re­

lations used. 

The present work is concerned with linear thermoelastic stress.and 
~ 

failure analysis of a centrally.cracked panel subject to thermal load-

ing. Two types of boundary conditions are considered. One deals with 

the step rise of surface temperature on crack and the other with tem­

perature rise on the specimen edges while the crack is partially insu­

lated from heat transfer. Crack growth resistance curv~s are obtained 

by plotting Sas a function of half crack length. These curves are 

straight lines satisfying the condition dS/da = canst. The straight 

line relation of S versus a is particularly useful to the designer$ 
~ 

who can extrapolate the data for use in situations other than those 

analyzed. 

-2-

•. ,··~ J 



r 

/ 

CHAPTER 1: INTRODUCTION 
\, 

The main requirement of a well-designed structure is its loading 

carrying capacity ov~r the specified life span. The stress and strain 

induced by different loads will depend. on the geometry and size and 

material properties of the structural member. Geometric discontinu­

ities such as re-entrant corners, notches, cracks and other defects 
I 

can r~sult in local stresses many times higher than those at distances 

further away. Th .se localized stress concentrations can have a sig­

nificant influence on the load bearing capacity of structural compo­

nents. Failure can occur in the form of yielding due to excessive 

shape cnange, fracture due to excessive volume change, or a combina-

tion of the two. 

All material, however, contain inherent mechanical imperfections 
J, ' 

which may spread under appropriate loading conditions. Material be-

havior can change in time because of periodic damage that is cumula­

tive in nature. It is, therefore, essential to develop the means of 

predicting material damage as a function of loading history, component 

size and shape and material type for a given environment. Such an at-
. , . 

tempt is being made currently by researchers in the Insti'tute of Frac-

ture and Solid Mechanics at Lehigh University. 

The basic philosophy of ~ontinuum mechanics_ is that the material· 

properties of a solid can be evaluated experimentally from uniaxial 

tensile or compressive tests. In the case of linear elasticity, this 
' 

procedure is accomplished by introducing .the _.concep of ~uperposition. 

-3-
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This necessitates an additional parameter known as the Poisson's ra-
•' 

tio. Since elasticity does not address material damage, failure cri-
. 

terion must be invoked. The ~train energy density criterion [1-5] is 
'\ 

suited for analyzing subcritical crack growth accompanied by reversi-

ble or irreversible deformation, mainly because it can treat the ini­

tiation, slow growth and termination of the fracture process in a con-
; . 

sistent and unique fashion. No limitations are imposed on non self­

similar crack growth nor on dimensionality of the crack configuration. 

The criterion can also account for change in resistance to crack 

growth when yielding of varying degrees occur along the prospective 

crack path. 

Considered in this work is the finite element formulation of 

thermoelastic problems with cracks. The strain energy density cri­

terion is applied to determine_the incremental growth of a single 

crack as the temperature change is increased in steps. The variation 

of the strain energy factor with crack growth is found to follow a 

straight line relationship that can be easily used for assessing 

thickness and/or loading rate effects. Even for linear elastic prob­

lems, where no plasticity prevails, slow crack growth is still af­

fected by the load-time history [6]. 

-4-
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CHAPTER 2: STRAIN ENERGY DENSITY CRITERION . 

2.1 Strain Energy Density Function 

When a solid is loaded, there prevails a nonuniform distribution 

of energy in terms of the space and time variable. In the presence 

of a preexisting crack, the energy per unit volume ahead of the crack 
-can be elevated sufficiently high to initiate crack growth. This is 

illustrated schematically in Figure l. A core region with radius·r0 

is normally defined to 9bserve the scale level at which the analysis 

is being made. Hence, the so-called strain energy function, dW/dV,, 

~earest t~ the ~rack tip is determined outside of this region. 

~ 

In general, the strain energy density functi-on can be computed 

from 

E: •• 
dW lJ 
-dV = f a . . dE. . + F ( 6C, ~ T) 

O lJ 1 J 
( 1 ) 

~with 6T and 6C being changes in temperature and moisture concentra­

tion. The stress and strain components are denoted by crij and sij, 

respectively. With reference to the crack for a fixed distance r in 

Figure 1 or Figure 2, dW/dV will vary as a function-of the polar angle 

e. There prevails a relative maximum (dW/dV)max and a relative mini­

mum {dW/dV}min· The former can be associated with yield initiati~n 

and the latter with fracture initiation [l]. 

I 
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. 2. 2 Hypotheses 

The strain energy density criterion may be stated in terms of 

three fundamental hypotheses and it applies to all structure geome­

tries, loading type and material with or without initial flaw . 

.... 

1. The relative local and global minima of dW/dV or (dW/dV)min 

and maxima of dW/dV, (dW/dV)max' are assumed to Coincide 

with the locations of fracture and yielding, respectively. 

2. Yielding and fracture are assumed to occur when the maximum 
' 

of (dW/dV)max or (dW/dV)min reach their respective critical 

values. 

. 
3. The rate of yielding and fracture are assumed to obey the 

relation 

(~) 
dV C 

- - -- - - - - ---
s. 

- J -- - - --- (~) 
dV c r. 

J 

If the process leads to global instability, then the in­

equalities 

r < r ·< 1 ·2 

--- < s. 
J 

< --- < Sc 

--- < r. < --- < re 
J 

(_2) 

(3) 

will hold. In situations where yielding and fracture come 

-8-
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to arrest, the follow1ng shall apply: 

(4) 

For a linear elastic material, tested to failure under uniaxial load­

ing, (dW/dV)c is simply equal to otd/2E where oyd is the yield strength 

and Ethe Young's modulus. 

· ,, 2. 3 Onset of Global Instability 

/ 

This event can occur catastrophically or less dramatic depending 

on the Jta:te 06 ene~gy released du~in9 the breakage of the last liga­

ment of material. If the release involves predominantly elastic en­

ergy, then the relation (dW/dV)c =Sc/reapplies such that Sc is di­

rectly associated with the more common fracture toughness parameter 

( l +v) ( l -2v) Kf C 
s =-----c 2nE 

(5) 

where vis the Poisson's ratio and Klc the va·aid ASTM toughness pa-. 

rameter [3] that refers to the sudden release of energy by a ·macro­

crack regardless of whether irreversible deformation has occurred 

prior to fracture or not. It would therefore be less confusina to 
I -

consider Sc or Klc as mate.tua.l behavioJz. parameters rather than mate­

rial constants. 
-9-
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CHAPTER 3: FINITE ELEMENT FORMULATION 

3.1 General Remarks 

When the geometry of the solid under consideration becomes com­

plicated, it is necessary to resort to numerical method. The advent 

of finite element method has enabled· the analysts to resolve many 

problems that are not amendable to closed form solutions. The pro­

cedure invo-lves discretizing a continuum by a fin.ite number of ele­

ments in triangular or quadrilateral shape. Variational principles 

are then applied to minimize certain functions such that the appro­

priate displacement and/or stress field can be obtained. Such a 

discretization process ·invokes certain approximation -on the solution 

.of the differential equations that govern stresses, displacem_ents, . . 

temperature, etc. The selection of grid pattern and size depends 

mostly on experience'and a prior knowledge of the behavior of local 

solution, if possible. A normal procedure for developing the appro­

priate finite element mesh is to check the results with a sample prob­

lem whose solution is already known. This, however, does not guaran­

tee accuracy when the geometry and boundary condition are altered. 

The governing equations can be derived from the principle of Minimum 

Potent·ial Energy while the finite element formulations from the vari­

ational principles [8]. This leads to a system of linear algebraic 

equations of the form: 

,·' 

4) 

m 
l K •• u. = R. 

i=l lJ l J 
(6) 

-10-
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where u
1
. are nodal values of the field variables, K .. are the compo-

1J 
,.. 

nent of the global stiffness matrix, Rj is the global load vector and 

mis the total number of degrees of freedom of the system. 

3.2 Displacement Expression 

In two dimensions, the displacement field at a point (x,y) con­

sists of two component~: 

The interpolation function Ni(s,t) relates the point (s,t) in the 

mapped plane to those in the physical plane {x,y), Figure 3. This 
,( 

(7) 

provides the relations for (x,y} in terms of the nodal points coordi-

nate ( x. ,y. ) 
1 1 

(8) 

It follows from the strain-displacement relations that the strain com­

ponents sx, sy and Yxy can also be discretized as: 

-11-
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3.3 Uncoupled Linear Isotropic Thermal Elasticity [9] 

(9) 

The formulation assumes that the temperature field can be deter­

mined independently o·f the deformations of the body. The material 

behaves elastically at all times and undergoes small deformation. 

The relations between stress and strain are given by 

( 10) 

[ + v l +v ( ) . ] 
0 ij = 2G £ij 1-2v 0 kk8ij - 1-2v a T-To 8ij 

In particular, dW/dV is dependent not only on the state of stress 

and strain but the level of thermal energy. Let the temperature at a 

given point in the solid be T{x,y,z) and T
0 

be a constant reference 

temperature. The expression for dW/dV in linear thermal elasticity is 

.-•· . 

-13-
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' 

where G is the shear modulus, a ~s the coefficient of thermal expan­

sion and crkk is the first stress invariant . 

3.4 Finite Element Analysis 

The analysis consists of the determination of temperature and 

stress distribution. 

3.4.1 Heat Conduction 

The heat conduction portion of the problem is solved by 

using a finite element code written by Robert Bolton [10]. The finite 

element equations are derived from the variational principle. Linear 

shape function are used with triangular element. The steady-state_; 

temperature distribution is then used as the input to a separate 

stress analysis computer program. 

3.4.2 Stress Distribution 

Stress aDalysis is performed using a two dimensional and 

axisymmetric program (APES) [11] developed by Naval Ship Research and 

Development Center jointly with Lehigh University. It employs the 

twelve-node isoparametric elements with consideration given to solu­

tion accuracy in terms of the relative sizes of the element. This re-

-14-
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• 

sults in a cubic variation of the displacement field. Curvilinear 

elements in the physical· plane are transfo·rmed to cube_.~ in the mapped 

plane by application of the shape functions. A total of twelve nodes 

on each element are used in the isoparametric sense. Integration is 

carried out by using the Gauss-Legendre quadrature technique in the 

mapped plane. The three or four point approximation is available in 

the APES program. A frontal solution technique is chosen for solving 

the system of linear algebraic equations. Accuracy of the local solu­

tion is achieved by placing four side nodes at 1/9 and 4/9 distance 

from the corner node at the crack tip. The 1/r singularity of the 

strain energy density function is thus preserved at these boundaries. 

Although the numerical values of dW/dV at the nodes may vary depend­

ing on the interpolation scheme, this uncertainty is overcome by in­

terpreting the values of dW/dV at the quadrature points of each ele­

ment in the form of contour plots . 

• 
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CHAPTER 4: TEMPERATURE FIELD AND CRACK GROWTH 

In order to establish the crack-resistance curve under thermal­

loading, sudden temperature change is imposed while the stress state 

is assumed to be quasi-static in nature. Six temperature increments 

are taken with an initial reference temperature T0 for two different 

kinds of boundary conditions. 

4.1 Material Properties 

The material selected for the cracked specimen is a typical en­

gineering steel alloy with the following properties: 

v = 0.33 

E = 206.84 x 103 MPa [30 x 103 ksi] 

cryd = 5.1711 x 102 MPa [7.5 x 104 psi] 

a= 6 X 10-S m/m/°C 

Klc = 82.416 MPa·m [75 x 103 psi/in] 

Sc= 3.275 x 103 N/m [18.7 lbf/in] 
cr2 

(dW) = yd= 646.406 KPa [93.75 psi] 
a\/ c 2E 

( 12) 

Thermal loading is applied incrementally as the crack grows in ac­

cordance with equation (2). The yield strength cryd should, in gen­

eral, be adjusted for different thermal state. In the present work, 

-16-
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the variations of the temperature range is not large enough to warrant 
~ . 

such a change. Hence, the same (dW/dV)c value will be used to deter-

mine the failure of elements ahead of the crack. 

·4.2 Geometric Configuration and Boundary Conditions 

A centrally cracked panel under the condition of plane strain is 

considered. Because of symmetry, only one quarter of the problem 

needs to be analyzed. Refer to Figure 4 for the dimensions of the pan­

el with a central crack of length 5.08 cm. The finite element grid 

patterns used in heat conduction and stress analysis are shown in Fig­

ures 5 and 6, respectively. 

Two types of boundary conditions will be treated. The first as­

sumes that the crack surface temperature is raised from T0 to T1 while 

the panel outer edges are kept at uniform temperature. This condition 
• 

can be specified as 

T(x,y) = T0 - T0 = 0 for y = +25.40 cm 

if= 0 for x = +12.70 cm (13) 

1 
I 

T(x,y) = T1 - T
0 

for y = +O, -a<x<a 

.t . 

The second boundary value problem is concerned with a partially 

insulated ~~ack that grows incrementally while the temperature at the 

crack edge is raised in steps of ~T, i.e., 

-17-
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T{x,y) = r1 - T
0 

for y = ±25.40 cm 

· ~ = O for x = +12.70 cm · (14) 

aT - o 5 (TI) f o ay - . ay 
O 

or y = + -a<x<a 

In equation (14), (aT/ay) 0 denotes the undisturbed temperature gradi­

ent or q/K, i.e., the normalized heat transfer. This is equivalent to 

specifying 50% of heat loss in a partially insulated crack surface. 

Here, q is the heat flux and is assumed to correspond to the case of 

50% heat loss with K being the heat conductivity. 

4.3 Temperature Rise on Crack Surface 

Using the grid pattern in Figure 5, ·the temperature distribution 

in a cracked panel is first determined according to the boundary con­

dition in equation (13). The temperature on the crack is increased in 

steps starting from an initial crack of length 2a = 5.08 cm or 

a= 2.54 cm. A total of six steps are taken as indicated in Table 1. 

Figure 7 displays the constant temperature profiles in one-quarter of 

the panel when the crack has grown to a length of 2a = 7.748 cm. The 

gradual diffusion of temperature intensity with distance from the 

crack is noticeable. Note that the crack no longer has any influe~ce 

on the temperature when ~T ~ 27°C, Figure 7. 

Plotted in Figures 8 to 13 inclusive are the strain energy den­

sity function versus ra~ial distance ahead of the crack. Correspond-­
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Table 1 - Crack growth data for temperature specified 
on crack surface. 

Crack Growth 
Step Number 

l 

2 

3 

4 

5 

6 

• 

' 

Temperature 
Increment 

(T-T )(°C) · 
0 

28.54 

38.56 

48.54 

58.54 

68.54 

78.54 

-22-

Half Crack 
Length 

(cm) 
a {in) 

2.588 
1. 019 

2.692 
, . 060 

2.832 
1. 115 

3.067 
1. 207 

3.414 
1. 344 

3.874 
1.525 

S.E.D. 
~-' 

Factor 
S 103 (N/m) 

(1 bf/in) 

0.312 
1.7813 

0.673 
3.8438 

0.903 
5 .1563 

. 1. 520 
8.6813 

2.240 
12.7875 

2.970 
16.9690 

'I 
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Figure 7 - Constant· temperature contours for crack with surface 
temperature rise - crack growth step no. 6. 
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ing to the six growth steps in Table 1. All results. are ~culated by 

taking a core region of r
0 

= 0.056 cm. In general, all the curves 

rise very high near the crack tip and their magnitude always quickly 

with the distance r. Each segm~nt of growth r1, r2, etc., is deter­

mined from the intersection of the curve with the critical value of 

(dW/dV)c = 646.41 KPa as given in equation (13). The areas s1, s2, 

etc., increased in accordance with the inequalities of equation (3). 

This indicates that the crack growth process is unstable. Table l 

gives the successive values of crack growth and the correspondin~ 

strain energy density factor. At the sixth step, S = 2.970 x 103 N/m 

which is nearly equal to Sc= 3.275 x 103 N/m at which point the crack 

propagates rapidly. 

4.4 Partially Insulated Crack 

The temperature on the panel edges at y = +25.40 cm are initial­

ly kept at ambient temperature T
0

• It is then increased in steps of 

~T as shown in Table 2 with a total of six steps. Illustrated in Fig­

ure 14 is the constant temperature contour~ corresponding to the 

fourth step of crack growth. Again, the influence of the crack dis­

appears as distances sufficiently far away. 

Figures 15 to 20 display the plots of the strain energy density 

function variations with the distance ahead of the crack. The sharp 

drop in dW/dV is again exhibited and the results depend on the degree 

of crack surface insulation. The areas s1,s2, ... ,s6 again are found 
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Table 2 - Crack growth data for a partially insulated crack. 

Crack Growth 
Step Number 

l 

2 

3 

4 

5 

6 

Temperature 
Gradient 

( a T / a y) ( ° C /cm) 
0 

7.88 

10.24 

12.60 

14.96 

16.54 

18.90 

-31-

Half Crack 
Length 
a (cm) 

(in) 

2.586 
l. 018 

2.672 
l. 052 

2.819 
l . 110 

3.012 
1. 186 

3.297 
1.298 

3.724 
l. 466 

S.E.D. 
Factor 

S 103 (N/m) 
( l bf/in) 

0.296 
1.69 

0.559 
3 .19 

0.953 
5.44 

l. 259 
7 .13 

l. 83·9 
10.50 

2.758 
15.75 
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Figure 14 - Contours of constant temperature for a partially 
insulated ·crack after four steps of growth. 
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by establishing the rectangles such that their tops coincide with 

(dW/dV)c = 646.'41 KPa. The crack growth is also unstable as 

r1 ~ r2 < --- < r6• This is tabulated Jn Table 2. The crack leads 
j 

to stabilize as the insulation on the crack surface is increased. 

This will be discussed in connection with the crack growth resistance 

curves. 
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CHAPTER 5: .CRACK GROWTH RESISTANCE CURVES 

One of the salient features of the strain energy density cri­

terion is that it linearizes the crack growth data. That is, all re­

sults in the strain energy factor versus crack growth plots are 

straight lines. 

Figure 21 gives the results for the strain energy density factor 

as a function of crack growth. Indeed, a straight line prevails. 

The advantage of establishing the dS/da =canst.relationship is that 

results to other boundary condition can also be obtained. For in­

stance, the curve in Figure 21 for the case of increasing crack sur­

face temperature may be regarded as that of a crack with no insula-

tion or with perfect heat conductio~. In other words, the tempera­

ture increments tT applied on the panel edges in Table 2 which yield 

those values shown in Table lat the prospective crack sites at each 

increment of growth. The identical results exhibited in Figure 21 or 

Table l could have been obtained by specifying the third condition in 

equation {14) as aT/ay = (aT/ay)
0 

on the crack. This is equivalent to 

the case that all the heat from the surrounding is conducted across 

the crack surface. 

The slope of the dS/da curve in Figure 22 is seen to increase 

when the crack surface resists heat transfer by fifty percent. Fur­

ther increase in crack surface insulation will rotate the dS/da 

= canst. line even more in the counterclockwise direction. In the 
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limit, a vertical S versus a line could result. This represents the 

case of a fully insulated crack with aT/ay = O along the entire x­

axis. Obviously, no crack growth can occur as the local temperature 

and stress field would be undisturbed. 
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CHAPTER 6: CONCLUSIONS AND RECOMMENDATION FOR FUTURE RESEARCH 

The problem of heat transfer across a crack treated in this dis­

sertation can be used to model the situation of gas leakage through 

the cracked wall of a pressure vessel or pipeline. Whether the crack 

could become unstable or not can be determined from a knowledge Jf the 

R-curve that can be made available analytically and verified experi­

mentally in the laboratory. Such information is valuable for estab­

lishing design rules and the prevention_ of catastrophic failure, a 

situation that should be avoided in service. 
j 

Charts such as those in Figure 23 and Figure 24 can also be es­

tablished as useful information for establishing inspection proce­

dures. They can quickly provide ~ata in the extent of change by crack 

growth for a given temperature change with different degree of insula­

tion. The ease with which data can be us~d in design is attributed to 

the strain energy density failure criterion. Other criteria such as 

maximum stress, crack opening displacement, path-independent inte­

gral, etc., cannot, in general, yield the straight line property for 

the R-curves. 

The present method of solution applies equally well to crack 
' growth accompanied by yieJding or permanent deformation. This in-

vqlves time-dependent energy diss_ipation and strain rate effects of 

material response. In particular, crack growth characteristics become 

highly sensitive to load-time history. The influence of temperature 
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changes will interact with material response which, in turn, alters 

the thermal stress distribution and hence' the end results. These ef­

fects cannot be adequately described by the conventional theory of 

plasticity that contains too many simplifying assumptions, one of 

which is the neglect of the dilatational contribution in the van Mises 

yield condition. This influence is dominant in the region close to 

the crack tip and cannot be neglected. Otherwise, large errors can 

result. One of the most prominent theories that is being developed 

at the Institute of Fracture and Solid Mechanics at Lehigh University 

involves the exchange of surface and volume energy. Stress and fail­

ure analysis can be performed simultaneously such that the load time 

history effects- can be realistically accounted for·providing an unique 

relation between uniaxial and multiaxial stress states. The applica­

tion of this theory to problems involving thermal fluctuations will 

be left for future investigation. 
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