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Abstract 

Inference is a major component in the understanding 
of hatural language by computer. Whether deductive or 
non-deductive, the primary problem of inference is 
efficiency. Humans process language very quickly, and 
so must an intelligent machine. Procedural 

representation of propositional data improves the 

efficiency of deductive inference by providing direction 
to the theorem-proving process, but sacrifices the 
flexibility available in declarative representations. 
Much of the inference necessary for language 

understanding is not goal-directed in the way that 

formal deduction is, instead, predictions are made from 
the current input, and future input is examined to see 
how it fits the predictions. This provides an even 
greater efficiency problem. The prediction process must 
be controlled so that only the useful predictions are 
made. High-level knowledge structures such as frames 
and scripts add direction to the inferencing process, 
but again flexibility is sacrificed. Current research 
involves integration of high-level structures to provide 
control for all aspects of inference while maintaining 
an acceptable level of flexibility. 
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I. Introduction 

When humans communicate in natur.al languages, much 

of the information they exchange is not explicit, but is 

inferred by the listener. For example, when we hear, 

"John is going to the store.•, some of the things we 

infer are: 

( 1) John is not now at the store. 
(2) John wants to buy something. 
( 3) He is using some mode of transportation. 

A computer program which understands natural language 

may have to perform any of the above ( and more) 

inferences in order to demonstrate that it has 

understood the sentence. For example, a future sentence 

may be "He is taking the bus." In order to know how this 

information fits the context, so that it can correctly 

answer the question, "How is he getting to the store?", 

the computer must infer (3). 

Natural language understanding is usually divided 

into three areas: syntax ( the grammatical relationship 

between words), semantics (the explicit meaning of 

words, phrases, and sentences), and inference (the 

discovery of implied meanings and relationships). 

Rieger, however, defines natural language comprehension 

as "the art of making explicit the meaning relationship 

among thoughts which are presumed to be meaningfully 

relatable." Note that this definition emphasizes 
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inference. To justify this emphasis on inference, 

consider the problem of pronoun resolution in: "John hit 

Bill. He went to the doctor." Syntactic clues for 

pronoun resolution are inadequate in this case, in fact, 
a purely syntactic rule might be "If a pronoun is the 
subject of a sentence, its referent is likely to be the 
subject of the previous sentence.", which is not the 

case here. Semantics offer no solution, since it is 

semantically valid for any human to go to the doctor. 

Only by inferring that someone who is hit is likely to 

be hurt, and that someone who is hurt is likely to see a 
doctor, can an understander correctly recognize "He" as 
"Bill". 

There are two basic approaches to inference in 

computer natural language systems. The formal approach 
involves deduction and uses predicate logic, sometimes 

represented procedurally, as its primary knowledge 

representation. There are many manifestations of the 

informal approach, each of which uses some type of 

declarative knowledge structure. As may be inferred 

from the examples above, natural language inference 

requires knowledge of two types: real-world knowledge of 
such things as the consequences of actions and the goals 
of characters, and contextual knowledge which is 

continuously augmented throughout a story or 
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conversation. 

The purposes of this paper are: 1) to examine the 

nature of the problem of inference in natural language 

communication, 2) to discuss some of the knowledge 

structures and how they are used for inference in 

natural language systems, and 3) to examine how the 

process of inferencing may be controlled to make it 

practical for computer systems. This will be done 

through an examination of the inference component of the 

following systems: SHRDLU [Winograd,1971], MARGIE 

[Schank and Rieger,1974], SAM [Cullingford,1981], GUS 

[Bobrow et. al.,1977], Ms. Malaprop [Charniak, 1978], 

PAM [Wilensky,1981], Rieger's commonsense algorithms 

[Rieger,1976], and BORIS [Lehnert et. al.,1983]. 
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I. SHRDLU 

In SHRDLU [Winograd, 1971], the user enters English 

commands and questions directed toward a robot whose job 

is to interpret the commands and perform them, and to 

answer the questions. The robot's domain is a table 

with a set of blocks of various colors and shapes: the 

commands involve movement of the blocks, and the 

questions are about the state of the blocks world. The 

system is a natural language system and not a robotics 

system. A real robot was never used in the 

demonstration of the system: instead, its movements were 

simulated on a video display. The main contributions of 

the system were its ability understand grammatical 

structures of almost unlimited complexity and the 

procedural representation of propositional data which 

gave its inference process more direction than previous 

deductive systems had. We are interested in the latter. 

1. Knowledge Representation -- Procedures 

In its limited domain (the blocks world), SHRDLU's 

inference is deductive (as opposed to predictive non­

deductive inference systems which we shall discuss 

later). The principal method of deduction before SHRDLU 

was the general deductive approach. In this approach, 

propositional information was stored in a LISP 

representation of the first order predicate calculus. 
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Processing involved the Robinson resolution algorithm, 

which is based on proof by contradiction. First, the 

negation of the proposition to be proved is taken. 

Known propositions are stored as disjunctions of simple 

predicates. At each stage of the proof, the systim 

searches the entire data base of known propositions for 

one which includes (as part of its disjunction) the 

negation of something included in the current 

proposition. When one is found, the negation and the 

portion of the current proposition cancel, and the 

resulting proposition is the new current proposition. 

This process is repeated until the cancellation leaves 

nothing, which means whatever might have come from 

assuming the proposition fals·e has been contradicted by 

some known proposition, so the proposition is proved. 

There are two advantages of such a general 

deductive system. First, if a proposition is provable 

from the known propositions, a proof will (eventually) 

be found. Second, the proof procedure is uniform and 

not dependent upon knowledge of proof techniques in a 

specific domain. However, these advantages can also be 

regarded as disadvantages in a practical natural 

language system. This is because the algorithm has no 

direction about how to go about proving the proposition, 

so it has to test all known propositions until it finds 
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one which is relevant. In doing inference in natural 

language understanding, we do not have the time to go 

through such an exhaustive process. The way we 

determine the truth of propositions is by having some 

heuristic knowledge about how our propositional 

knowledge may be used. 

This is the idea behind the inferencing scheme used 

in SHRDLU. Propositions are stored as procedures in a 

language called PLANNER [Hewitt,1969]. Each procedure 

may include information on how to go about proving the 

proposition, such as which other procedures should be 

tried in an at tempt to prove this one, and in what 

order. The propositions are written in a form similar 

to the predicate calculus, and as much or as little 

subject-dependent heuristic information can be added as 

the user desires. If he adds none, the system works 

with the full flexibility of a general deductive system: 

but with more information about how to prove it, ·the 

system is more efficient. 

The calling of procedures by other procedures is 

goal-directed, that is, a general pattern-matcher looks 

at the goal (specified as part of the procedure) and 

chooses any procedure which satisfies the goal. In this 

way, it is not necessary to have all procedures know 

about the existence of others. However, it requires a 
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pattern-matching search similar to that of the 

resolution algorithm~ If, on the other hand, specific 

procedures are recommended as the only ones to try in 

order to satisfy the goal of a given procedure, the 

exhaustive search is eliminated, but now the procedures 

have to know about other procedures. That is, the 

system involves a trade-off between efficiency and 

additivity. 

Some of the features of PLANNER can be seen in the 

following example. 

(DEFINE THEOREM EVALUATE 
( TH CONS E ( X Y ) 

(THGOAL (iTHESIS $?X)) 
(THOR 

(THGOAL (#LONG $?X) (THOSE CONTENTS-CHECK 
COUNTPAGES)) 

(THAND 
(THGOAL (#CONTAINS $?X $?Y)) 
(THGOAL (#ARGUMENT $?Y}) 
(THGOAL (#PERSUASIVE $?Y) 

(THTBF THTRUE)) ) ) ) ) 

Fi~st, note the punctuation 11 # 11 and "$?". The "# 11 

indicates that what follows is a predicate name; the 

"?$" indicates a variable. Another punctuation mark":" 

is used to indicate an object, the value to which a 

variable might be bound. 

This is the procedural representation of the 

theorem "A thesis is acceptable if it is either long or 

it contains a persuasive argument 11
• The name of the 

theorem is EVALUATE. Its variables are X and Y; Xis 
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the theorem to be tested; Y is used to hold something in 

the thesis which is tested to see if it a persuasive 

argument. THCONSE is the type of theorem -- this is a 

consequent theorem since we are trying to establish 

whether or not a given thesis is acceptable. There are 

two main subgoals. The first is to prove that X is a 

thesis: the second is to prove that either X is long or 

that X contains a persuasive argument. These are given 

as THGOAL. The first goal has the recommendation list 

CONTENTS-CHECK and COUNTPAGES, indicated by THUSE. This 

means that to establish the goal that the thesis is 

long, the procedures CONTENTS-CHECK (which presumably 

looks at the Table of Contents) and COUNTPAGES (which 

counts the pages) should be used in order. If this 

succeeds, it is not necessary to look for a persuasive 

argument, so THOR is an OR which does not check the 

second statement if the first one is true. If we do 

need to check for a persuasive argument, the theorem 

says we must first find something that the thesis 

contains, if this is found, see if it is an argument, 

and if so, try to prove that it is persuasive. Note 

that THAND only continues to the next statement if the 

previous one was true. The check for persuasiveness 

contains the recommendation (THTBF THTRUE). THTBF means 

try any theorem whose form satisfies the filter which 
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follows. THTRUE is the only filter used in SHRDLU, 

although a PLANNER user may define any filters he 

wishes. THTRUE is a predefined filter which any theorem 

matches. 

We stated the theorem which this procedure 

represents in declarative form above. In imperative 

form, the procedure may be stated: "In order to 

evaluate X for acceptability as a thesis, first show 

that Xis a thesis; then show that it is either long or 

that it contains a persuasive argument. To see if it is 

a thesis, look in the data base of simple assertions. 

To see if it is long, first check the table of contents, 

and if this fails, count the pages. If the thesis is 

not long, check to see if it has a persuasive argument. 

To do this, find something it contains, show that it is 

an argument, and show that it is persuasive using any 

theorem which might apply." 

Among PLANNER'S other features are THGO, THAMONG, 

THERASE, THASSERT, THANTE, and THFIND. THGO is a GOTO 

statement. THAMONG is like LISP MEMQ, succeeding if the 

value of the given variable is in the given list. 

THERASE removes assertions (which are declaratively 

represented simple predicates) from the data base; 

THASSERT adds assertions to the data base. THANTE is 

for declaring an ANTECEDENT theorem, which is used to 
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indicate that certain assertions should be added when 

certain facts are determined. For example, when we find 

that X drove a car somewhere, we may wish to assert that 

X is human, because this may be useful in proving other 

theorems. To do this, we could define an ANTECEDENT 

theorem as follows: 

( D EFPROP DR! VETHEOREM 
( TH ANTE X ( DROVE $ ?X $ ?Y) 

( THASSERT ( HUMAN $ ?X))) THEOREM). 

THFIND is used to find objects or assertions satisfying 

a given condition. This is useful in the blocks world, 

where the system might, for example, wish to find all 

the red blocks. It could use the following: 

(THFIND ALL $?X (X) 
( THGOAL ( BLOCK $ ?X ) ) 
( THGOAL ( COLOR $ ?X RED} } ) • 

2. Processing 

SHRDLU, as noted above, receives commands and 

questions in English. The syntactic and semantic 

portions of the system process the commands or questions 

into PLANNER statements. For example, the command "Pick 

up the block and put it into the box." could be 

expressed in PLANNER as: 

( THAND ( THGOAL ( #PICKUP : BLOCK23}} 
( THGOAL ( #PUTIN : BLOCK23 : B0X7))) 

assuming that semantic analysis has correctly identified 

"the block" as :BLOCK23 and "the box" as :BOX7. 
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and :PUTIN are procedures which indicate the steps to be 

taken to perform the actions. An example of PLANNER 

representation of a question is: 

(THGOAL (#ACCEPTABLE :SAM-THESIS) 
(THOSE EVALUATE)), 

which is the representation of the question "Is Sam's 

thesis acceptable?". Since PLANNER is actually as 

interpreter of the PLANNER language, processing consists 

of evaluating, in the sense of LISP EVAL, such PLANNER 

statements. 

PLANNER has a more sophisticated backup facility 

than LISP, which is very useful in theorem-proving. 

PLANNER has the ability to do backup in case of failure, 

and t'hat backup always goes to the last place where a 

decision of any kind was made. Thus if it is attempting 

to find an object in the data base which has two 

properties, it would attempt to use the statement 

(THAND (X) (THGOAL (PROPERTYl $?X)) 
(THGOAL (PROPERTY2 $?X))). 

Upon finding an object which has property 1, it will 

then see if that object has property 2. If not, it will 

back up to the first THGOAL and look for another object 

which has property 1, rather than returning NIL for the 

entire AND and resuming at the next statement the way 

LISP does. Similarly, backup is effective in THOR in 

the expected way. If the first member of the THOR 
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succeeds, the second is not tried, but if there is a 

failure further along on this path, PLANNER can back up. 

to the THOR and try the second. 

The system can keep track of events and states in 

the changing blocks world through its imperative 

representation. Since assertions may be true at one 

time and become false later, or vice versa, it is 

necessary to be able to remove and add them to the data 

base of assertions in order to keep the state of the 

blocks world up to date. This is handled very naturally 

by the use of ANTECEDENT theorems which may contain the 

imperative statements THERASE or THASSERT. 

3. Discussion 

SHRDLU understood a much larger subset of English 

grammar than did previous systems. Complicated 

embeddings of relative clauses used to identify a 

particular block in the world were correctly understood. 

It also represented a significant advance in 

inferencing. By representing propositional data in the 

form of procedures, the proof process had knowledge of 

both the available facts and how to use them for a 

proof. This, of course, was much more efficient than 

the resolution algorithm, which had to search, with no 

heuristic direction, the entire set of available 

propositions for one which might be applicable. 
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SHRDLU's advantage was in another sense a 

disadvantage if the system was to be extended to a 

domain wider than the blocks world. Its procedural 

representation for propositional data, in providing 

information on how the knowledge could be used, also 

limited the use of that knowle~ge to those purposes 

embodied in the procedures. In wider domains, the ways 

knowledge must be used are not so limited. For example, 

human understanders use knowledge not only to verify or 

discover facts about the world, but also to predict what 

kind of information or events may follow in a story. 

The procedural representation, while efficient and 

useful for formal deductive inference, was too limited 

for the type of inference that must be done in 

understanding stories or conversation. 
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III. MARGIE 

Most current natural language systems do not rely 

on formal deduction as the primary method of inference, 

indeed, many systems use no formal deduction at all. 

Instead, they use knowledge structures and inferencing 

techniques which allow faster, shallower inferences than 

deductive systems. 

[Schank and Rieger,1974] outline the differences 

between the kind of inference used in natural language 

understanding and the formal deduction which is more 

appropriate for problem-solving systems: 

1. Unlike deduction, inference generation is a 

reflex response to the input. It is not only done as 

needed, but is a constant process of making predictions 

and looking for.their fulfillment. This 

prediction/fulfillment model is a useful one. When we 

read a sentence, by predicting what we might see next, 

we can then see how the information in the following 

sentences fulfills or contradicts our prediction. In so 

doing, we have made explicit the meaning relationship 

among the sentences. 

2. Inferences are not necessarily logically valid. 

When we know that a certain action causes a certain 

state, we can infer from the presence of that state that 

the action has occurred (and change our mind later if 
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new facts contradict the inference) but we can not 
deduce it. 

3. As a result, inferences can be made which are 
not accurate. An inferencing system must allow for the 
possibility of erroneous inferences by providing a means 
of handling contradictions to facts it has inferred. 

4. Inference, unlike deduction, is not goal­
directed. With deduction, we try to determine if a 
given proposition is true; with inference, we are just 
looking to see what we can see and use those inferences 
as predictions of what may follow, so that the 
following information can be understood in terms of how 
it fits the prediction. 

This is all very different from the deduction in 
SHRDLU, where proofs for propositions were sought as 
needed through a strictly deductive theorem prover. 

5. With inference, we need to know why something is 
thought to be true. 

1. Knowledge representation -- Conceptual Dependency 
MARGIE's knowledge is represented in Conceptual 

Dependency. Conceptual Dependency is a structure for 
representing the meaning of a sentence which based on 
the theory that meaning can be represented in a 
language-free form which is indicates the concept 
conveyed by the sentence. Unlike the PLANNER 

16 



representation used in SHRDLU, CD is a strictly 
declarative way of representing knowledge. 

The basis of CD is its representation of events. 
Every event has four slots, which may or may not be 
filled at any given time. The slots are: an ACTOR, an 
ACT, an OBJECT of the action, and the DIRECTION in which 
the action is performed. 

These are twelve primitive ACTs: 
INGEST -- an animal actor takes something internally 
PROPEL a physical force is applied to an object body part moves 

an actor takes hold of an object 

MOVE -- a 
GRASP -­
ATRANS transfer of an abstract relationship such as possession, ownership, or control PTRANS -- a physical change in the location of an object 
EXPEL -- expulsion of an object from an animal to the outside world CONC -- an actor thinks about an object MBUILD -- an actor builds new information from old ATTEND -- an animal directs sense organs toward an object 

SPEAK -- an animal produces sounds from its mouth MTRANS -- transfer of mental information 
Each ACT may have any or all of four cases: OBJECTIVE, 
RECIPIENT, DIRECTIVE, and INSTRUMENTAL. 

Real world objects are called PPs (picture 
producers). In addition to PPs, CD also has concepts 
representing times, locations, at tributes of objects 
(PAs) and attributes of actions ( AAs). 

In addition to events, CD may also represent the 
following relationships among ACTs, PPs, PAs, AAs, 
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times, and locations: a PP has a PA, a PP is an actor 

or an object of an action, two PPs represent recipient 

and donor within an action, direction of object within 

an action, causality, state change of objects, and 

possession of one PP by another PP. Each of these is 

represented in a CD network graph by a different symbol 

linking the cases involved. 

The most important feature of CD is that it is 

language-free: "John consumed the cake.", "John ate the 

cake.", and "The cake was eaten by John." all have the 

same CD representation. If a natural language sentence 

is first analyzed into CD (by a semantics-directed 

parser), the knowledge structure created can be matched 

against permanent or contextual knowledge structures in 

memory, also stored in CD, in order to use the knowledge 

for inference. 

To build a theory of inference, Schank and Rieger 

list the types of inferences that an understander must 

employ within the framework of the twelve primitive ACTs 

of Conceptual Dependency theory. By basing the 

inference types on a small set of primitives, they avoid 

the problem of needing a different inference type for 

each different verb. The inference types are: 

1. Linguistic Inference 

A word or syntactic construction implies the presence of 
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some unmentioned object. For example, the presence of a 

tertain ACT may imply the presence of various 

participants in various case roles for the ACT. 

2. ACT Inference 

An actor and an object may occur with no ACT to connect 

them, but our knowledge indicates that the object has a 

normal function, so we infer that the object was used 

for that function. 

3. TRANS-enable Inference 

A TRANS ACT involving an object and its recipient 

enables another ACT to take place. 

4. Result Inference 

We can infer the usual result of a TRANS ACT~ 

5. Object-affect Inference 

A physical ACT can be inferred to have a certain effect 

on an object. 

6. Belief-pattern Inference 

An ACT together with its inferred results (from 4 .• and 

5.) often fit a belief pattern involving the usual 

reason for the ACT. 

7. Instrumental Inference 

~ach ACT has instrumental ACTs associated with it, that 

is, ACTs which are involved in its performance: 
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INGEST PTRANS 
PROPEL MOVE, GRASP, PROPEL 
PTRANS MOVE, PROPEL 
ATRANS PTRANS, MTRANS, MOVE 
CONC -- MTRANS 
MTRANS -- MBUILD, SPEAK, ATTEND, MOVE 
MBUILD -- MTRANS 
EXPEL -- MOVE, PROPEL 
GRASP, SPEAK -- MOVE 
ATTEND -- sometimes MOVE, but usually none 
MOVE -- none 

8. Property Inference 

We can infer certain properties of objects (e.g., their 

existence) from their presence in a sentence and their 

performance of a given ACT. 

9. Sequential Inference 

Sentences in sequence may share a subject or 

proposition. When we read "John wants to join the army" 

and later "John is a pacifist", we may infer that the 

second sentence refutes the first. 

10. Causality Inference 

Sentences in sequence or connected with "and", together 

with our real-world knowledge that the first may 

possibly cause the second, may allow us to conclude 

causality. 

11. Backward Inference 

When an ACT occurs which normally requires a 

prerequisite ACT, we may infer the occurrence of the 

prerequisite ACT. 
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12. Intention Inference 

trom the performance of an ACT by an actor, we may infer 

that the actor intended for the results (from 4. and 5.) 

to occur and is pleased that they have occurred. 

2. Processing 

The inferencing component of MARGIE does all of the 

above kinds of inferences. The MARGIE system consists 

of three processes: conceptual analysis, memory, and 

generation. Inferencing is done in the first two: the 

third is for generating responses. 

Conceptual analysis has two phases. First, a 

Conceptual Dependency graph of the explicit meaning of 

the sentence is produced. Second, the analyzer 

initiates inferencing which extends the graph to include 

implicit information which is not dependent upon the 

context, but only upon the sentence itself. 

The function of memory is to take the conceptual 

analysis and generate probabilistic information about 

how it relates to knowledge previously stored. The 

predictions are of three forms: 1) predictions about 

causes, 2) predictions about results, and 3) predictions 

about future and past actions of characters. 

Predictions are stored as propositions in list 

positional form, with the predicate first, then the case 

slots. Each simple concept has an occurrence set, which 
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is a set of pointers to the propositions which contain 

instances of that concept. Propositions also have 

occurrence sets, so that propositions can be embedded in 

other propositions. Propositions also have the 

following characteristics: 

STRENGTH -- the credibility of the proposition, 

stored as value between 0 and 1. This is the 

probabilistic component of a proposition. 

MODE -- negations have mode = false. 

TRUTH -- current truth value of the proposition. 

REASONS -- other propositions used to infer this 

proposition. This gives the system the ability to 

explain its reasoning. 

OFFSPRING -- other propositions inferred in part 

from this proposition. 

RECENCY -- time of last access of this proposition. 

Memory performs the following inferencing tasks: 

1.) Establish referents of all concepts in the 

Conceptual Dependency graph. 

2.) Serve as a data bank and access mechanism for 

answering questions and processing proof requests. 

3.) Store the analyzed contents of the sentence. 

4.) Perform appropriateness checking on the 

implications of the input. 

5.) Generate inferences. Completatory inferences 

supply a candidate for missing information. Causal 

inferences relate the input to belief patterns in memory 
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in order to explain the reason for the input. Result 

inferences establish possible outcomes of actions given 

in the input. Some of these inferences may be elevated 

to predictions, which are inferences focussed on as 

noteworthy. 

6.) Maintain a record of inferencing and 

prediction, and discuss reasoning. This includes 

modifying STRENGTHS and MODES. 

7.) Answer "wh-" questions about the 

conceptualizations and inferences which it receives from 

the conceptual analyzer. 

For each new concept, memory receives a descriptive 

set, which is the set of propositions about that 

concept. For example, the conceptual analyzer, after 

building the conceptual dependency graph and doing its 

inferencing, sends the following to memory for the 

sentence "John hit Mary.": 

((CAUSE ((PROPEL Cl: {(ISA - #PERSON} (NAME -"JOHN"}} 
C2: {(ISA - #HAND) (PART - Cl}} 
Cl 
C3: {(ISA - #PERSON} (NAME -"MARY")} 

)) 
((PHYSCONT C2 C3)} ) 
(TIME -C4: {ISA - #TIME) (BEFORE - #NOW}}) ) 

The concepts in the graph are John, Mary, John's hand, 

and the time. After memory establishes the referents to 

the concepts, we have: 
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( ( CAUSE ( ( PROPEL #JOHN #C0001 #JOHN #MARY)) 
( (PHYSCONT #C000l #MARY)) 
(TIME - #C0002))) 

where C0001 represents John's hand and C0002 is the time 

of the event. The main proposition of this sentence is 

thus understood as "John propelled something (his hand) 

at Mary causing it to make physical contact with Mary. 11 

Before doing its inferencing, memory generates 

subpropositions, which are units of information conveyed 

directly by the conceptualization produced in conceptual 

analysis after referents are established. 

Subpropositions are of three types: 

1. ) Explicit focussed -- that the main event of the 

sentence occurred. In our example, this is the CAUSE 

proposition above. 

2.) Explicit peripheral -- that other stated events 

in the sentence occurred. In our example, the PROPEL 

and PHYSCONT propositions are peripheral. 

3.) Implicit -- that events not stated, but 

normally true, occurred. 11 A hand was moved." is and 

example of an implicit subproposi tion. 

Inferencing starts by assigning the main 

proposition (CAUSE in our example) a STRENGTH= 1, TRUTH 

= T, MODE= T, REASONS= T (means not inferred, but 

stated), and putting it on the inference list. Then the 

PROPEL and PHYS CONT inferences are given STRENGTH = 1, 
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TRUTH= T, MODE= T, and REASONS= the CAUSE 

proposition, and added to the inference list. Before 

inferring anything from PROPEL and PHYSCONT, memory 

infers more about CAUSE. Thus inferencing is done 

breadth-first. 

Inferred from the CAUSE ••• PROPEL ••• PHYSCONT 

proposition is the possibility of a NEGCHANGE in the 

heal th of the person being hit. This is an example of a 

Result inference. This is done by using a pattern in 

memory which states that such a combination CANCAUSE a 

negative change in health. Another inference is that 

John intended that result, which is an Intention 

inference: 

((MLOC ((CANCAUSE ((NEGCHANGE #MARY #PSTATE)) 

((POSCHANGE #JOHN #JOY}} )) 

C0001)) 

where C0001 is John's long-term memory. 

Memory always infers that actions are volitional Unless 

this is contradicted. The meaning of this pattern is 

that it was in John's long-term memory (MLOC) that 

hitting Mary CANCAUSE her pain and thus him joy. 

From the NEGCHANGE proposition, memory tries to 

determine the cause. In this case, the REASONS for the 

NEGCHANGE give the cause. If the cause was not present, 

memory would make a prediction that information about 

the cause will follow. Another inference from NEGCHANGE 
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involves a belief pattern that someone who has a 

NEGCHANGE will seek a POSCHANGE (remedy). This leads to 

several predictions about what Mary will do next (go to 

a doctor, take medicine, hit John back) • 

From the inference about John's volition, we try to 

infer a cause -- why it caused John joy for Mary to be 

hurt. A belief pattern in memory associates with this 

pattern the belief that such a person must have been 

angry. Thus this is a belief-pattern inference. It is 

further inferred that the cause of anger is something 

that Mary did to John. When no cause for this is found 

in memory, the system generates the response, "What did 

Mary do to John?", thus indicating the depth of its 

understanding. 

Notice that the inferencing need not be 

particularly deep (only three levels from the stated 

fact) in order to understand the sentence, even in terms 

of the goals of the actors. Shallow inference is a 

characteristic of natural language understanding. Time 

constraints prevent such systems from making the deep 

inferences needed in problem-solving systems. One 

expects the computer to take some time to solve a 

problem, but the response to "John hit Mary." is 

expected to be almost instantaneous. 
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3. Discussion 

MARGIE represented a significant improvement over 

previous systems. First, it embodied a theory of non­

deductive inference which more accurately models human 

understanding. Second, it demonstrated the usefulness 

of conceptual dependency as a language-free meaning 

representation language which could be applied to 

inference. Finally, it demonstrated that understanding 

is not so much syntax-based as inference-based. For 

example, syntactically incorrect sentences can be 

understood if the proper inferences are made. Consider 

"John his dog the bone gave.". While this sentence is 

incorrect syntactically, and thus syntax gives no clue 

as to who did the giving, we understand that John gave 

the bone to his dog, because we know that dogs like to 

get bones and people like to give bones to dogs. 

MARGIE's main shortcoming was its uncontrolled 

process of inferencing. Although the implementation of 

the system did place constraints on the depth of 

inferencing, in theory the inferences for each sentence 

could go on and on. When new sentences arrive, they 

cause more inferences, resulting in a combinatorial 

explosion. The problem is that MARGIE employed a very 

primitive theory of context -- the context of a new 

input sentence was the (possibly huge) set of inferences 
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generated by previous sentences. This was a direct 

result of the belief that inferences, unlike deductions, 

are not always goal-directed. MARGIE, however, produced 

inferences as though they were never goal-directed, that 

is, all inferences were made bottom-up from the input. 

The systems which follow represent attempts to add some 

control and direction to the inference process. 
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IV. SAM 

There have been two basic approaches to solving 

MARGIE's problem of uncontrolled inferences, both of 

which involve developing a theory of context among 

sentences which MARGIE did not have. The first approach 

incorporates high-level knowledge structures which 

control the inferencing process by specifying a context 

and providing predictions about how subsequent input 

might fit the context. The second focuses the 

inferencing on plans and goals which can explain the 

relationships between actions described in sentences. 

1. Knowledge Representation -- Scripts 

The first high-level knowledge structures used for 

inference control were scripts [Schank and 

Abelson,1977]. Scripts describe knowledge of everyday 

situations which human understanders often use to 

comprehend stories. This is especially useful in 

situations in which causal relationships between events 

are not stated explicitly because of the speaker's 

assumption that the understander has knowledge of the 

stereotypical relationships in the given situation. 

Scripts consist of a sequence of causally related 

events (and the causal relationships between them) which 
describe a well-known situation. Examples of such 

situations are going to a restaurant, which consists of 
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the events of finding a table, ordering, ea ting, and 
paying: and riding a bus, which consists of the events 
of boarding, paying, finding a seat, riding, and getting 
off. The characters in a script are said to fill 
various stereotyped roles in the script: the objects 
used by the characters are called props: and the places 
that occur in a script are called settings. Together, 
the roles, props, and settings of a script make up the 
script's variables. 

2. Processing 

The system SAM [Cullingford,1981] uses scripts to 
understand stories about everyday situations. SAM has 
three basic modules. The first is conceptual analysis, 
which is the translation of English language input 
sentences into Conceptual Dependency representation. 
The second resolves references to actors in a sentence 
by identifying them with roles in a script to which they 
were bound because of previous sentences, or if no role 
was previously bound to the actor, to determine into 
which role they fit. The third is the script applier, 
which locates new input in the data base of scripts, 
sets up predictions about what input is likely to 
follow, and instantiates the appropriate parts of 
scripts. The script applier is therefore the principal 
inferencing component of the system. 
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Since the script applier deals with the language­
free CD representation of the input, the events in SAM's scripts are also in CD form. The basic idea behind the script applier is to match the CD patterns found in the input with CD patterns found in the scripts in order to determine which script applies and which event in the 

script is being referred to by the input. Once this is done, the variables can be bound according to pattern­
matching criteria involving the known characteristics of the actor, object, or place compared to the expected 
characteristics of the role, prop, or setting. 

Thus SAM, like MARGIE, uses predictions of what may follow in the story matched against what does follow in order to understand the meaning relationships between 
the thoughts. The difference is that SAM's predictions are embodied in the structure of the script, which 
contains information about what is how events fit 
together. Thus there need not be the kind of shot-in­
the-dark inferences generated by MARGIE in the hope that some may be useful predictions. 

The script applier first introduces the most 
inclusive script referred to in the story by matching a story event against script headers which are included in scripts to determine what story patterns should cause 
their instantiation. Subsequent inputs are recognized 
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as events in the script, again by pattern matching. As 

these inputs are recognized, the stript applier makes 

predictions about what information is likely to follow. 

When an input is not recognized in the script or by a 

prediction, the applier assumes that a new script is to 

be introduced, and again the most inclusive script is 

introduced, starting the cycle all over again. The 

instantiation of a new script does not usually mean the 

removal of an existing one, since the information in 

both may be useful in understanding. This requires that 

when a new script is brought in, roles and props must be 

matched with those of the old script. Thus related 

scripts have interfaces which relate their variables by 

function. 

As implied above, pattern matching is done in 

phases. First, the constant parts of the 

conceptualization for the input are matched against the 

constant parts of the pattern found in the script. 

script patterns may represent events in an already 

instantiated script, or if the pattern matching is being 

done in order to determine which script is to be 

instantiated, the pattern used will be a script header. 

This first phase is called the backbone match. The 

backbone match has four basic rules: 1) "literal• roles 

and fillers specified in the pattern must appear in the 
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input; 2) any extra roles and fillers in the input are 

ignored: 3) a dummy which appears more than once in a 

pattern must match the same thing from the input 

every time it appears: and 4) an empty slot in the input 

matches anything, unless the pattern uses the EXPLICIT 

tag to demand that a filler be present. 

In the second phase, a process called Rolefit 

receives from the first phase the candidates for 

variable bindings, and checks them for reasonableness. 

This is done by including with each variable a set of 

conceptual categories into which an object must fall in 

order to be bound to that variable. In addition, 

another process Rolemerge is used to determine whether 

values previously bound to variables may be bound to new 

variables. This process uses knowledge attached to the 

variables to see, for example, if a given actor may have 

two roles in a script, or whether these roles must be 

filled by two different actors. In the latter case, 

Rolemerge would return a matching failure if an attempt 

was made to bind an actor to a role when that actor was 

previously bound to an exclusive role. 

In order to do prediction, the events of a SAM 

script are grouped into episodes. For example, the 

episode "finding a seat" on a bus would consist of the 

events "see an empty seat", "go to it", and "sit down". 
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The prediction phase clears from active memory those episodes which occurred before the currently-matched event pattern, and brings into active memory those episodes containing event patterns predicted by the present one. This, of course, reduces the combinatorial explosion of inferences which plagued MARGIE. 
Another important inferencing task performed by SAM involves implied preconditions for scripts, episodes, and events. Whenever SAM finds that an event has taken place, or a script is to be instantiated, the preconditions for the event or the script are assumed -to be true unless otherwise indicated in memory. For example, upon finding that John went into the library, SAM assumes that the library is open. 

The event patterns in SAM scripts are the usual CD events, typically involving a primitive CD ACT with slots for case roles appropriate to the ACT. The script header patterns, which are used for script instantiation are somewhat different. Attached to each script header is a set of predictions about what should happen first in that script. Script header patterns are of four types, each of which is a complete conceptualization, not just a reference to an object. Thus scripts are instantiated by complete events, so that nJohn walked into a restaurant." will cause the RESTAURANT script to 
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be introduced, but "John walked past a restaurant." will 

not. Precondition headers involve a weak prediction 

that a script should be introduced because one of the 

preconditions for the script is mentioned in the story. 

For example, "John was hungry." is a PH for the 

RESTAURANT script. Instrumental headers commonly occur 

when the input refers to two or more scripts, one of 

which may be an instrument for the others. For example, 

the BUS script is instrumental to many scripts which 

require a change of locale. Locale headers cause 

scripts to be instantiated when an actor is found to be 

present in a given locale. For example, John's presence 

in a restaurant represents a strong prediction that 

RESTAURANT is to be instantiated. Direct headers have 

the strongest predictive value, and are thus the first 

patterns to be checked in a context. In a DH, the 

script situation (not just the locale) is mentioned 

directly in the story. 

3. Discussion 

SAM successfully understood stories dealing with 

stereotyped situations, thus demonstrating the 

appropriateness of scripts for this purpose. The script 

model proved to be an especially useful one in 

understanding newspaper stories, which usually involve 

situations in which the information provided fits into 
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well-defined categories. Scripts provided control of 
the prediction component necessary to successful non­
deductive inferencing, which led to a reduct ion in the 
number of useless inferences when compared to MARGIE' s 
bottom-up "shot-in-the-dark" inference generation. 

In the next two sections, we will discuss systems 
which use frames. Frames are high-level knowledge 
structures which afford the same efficiency in inference 
control as scripts. 
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V. GUS 

Another high-level knowledge structure used for 

inference in natural language systems is the frame 

[Minsky,1975]. Frames are of many forms, all of which 

involve two main ideas. First, a frame represents a 

form whose structure is known by its user in terms of 

slots to be filled. Second, a frame is instantiated 

only when needed, and may be discarded when no longer 

relevant. 

A system which uses frames to represent knowledge 

for inference is GUS [Bobrow et. al.,1977]. Unlike many 

of the other systems mentioned in this paper, which read 

and understand stories and then answer questions about 

them, GUS is a dialog system --it carries on a 

conversation with the human user. GUS acts like a 

travel agent. It asks questions of the client in order 

to schedule an airline flight. If the client needs 

flight information in order to make a decision, GUS will 

provide that information upon request. Thus although 

GUS attempts to maintain control of the dialog, there 

are times when the client may take over control. 

l. Knowledge representation -- Frames 

A frame instance in GUS consists of three parts: 

the name of the frame, which is only a mnemonic for 

programmers and is not used in processing~ a reference 
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to. a prototype frame: and its slots. Slots have slot­

names, fillers, and possibly attached procedures. An 

example prototype frame is the TRIP-SPECIFICATION frame, 

which contains slots for all the characteristics of a 

trip, such as departure time, arrival time, and flight 

number. In addition to the usual values, slot fillers 

may be other frames, or, for a prototype frame, a 

description constraining the fillers for the slots of 

any instance. ISA is used in a frame instance to 

specify what prototype it is an instance of. 

The procedures attached to the slots are for 

finding fillers and other types of reasoning. There are 

two types of attached procedures -- servants and demons. 

Servants are activated on demand. They are indicated in 

the slot by the directive TOFILL followed by a procedure 

name. Thus the procedure is being suggested by the 

frame as a possible way of filling the slot. Two 

standard servants are ASKCLIENT, which causes GUS to ask 

the client for information on how to fill the slot, and 

CREATEINSTANCE, which indicates that a new instance of a 

specified prototype should be created to fill the slot. 

Demons are activated automatically. Some slots 

have the directive WHENFILLED, followed by a procedure 

name. Thus this procedure is run when the slot is 

filled. For example, the DATE frame contains a slot for 
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DAYOFWEEK, which has a demon WHENFILLED COMPUTEDATE. 

T~is directs GUS, upon receiving the information "next 

Tuesday", to compute the month, day, and year from 

contextual knowledge (e.g. knowledge of the current 

date and day). 

GUS uses several permanent knowledge structures. A 

stern dictionary contains a list of stems and idioms: 

together with morphological rules, it is used to 

determine word meanings. A transition network grammar 

is used for syntactic analysis. This is unlike MARGIE 

and SAM, whose parsing phase is semantics-driven rather 

than syntax-driven. A case-frame dictionary relates 

to each verb a set of semantic cases. These slots are 

filled in during case-frame analysis. Thus frames are 

used in semantic analysis as well as in inference. 

Information about conversational patterns is stored in 

domain-specific frame forms. These relate words and 

phrases commonly used in conversation to the domain of 

travel. For example, in "I want to go to Florida", the 

phrase "want to go" is interpreted as a plan to take a 

trip, causing TRIP-SPECIFICATION to be instantiated: the 

agent of go is interpreted as the TRAVELLER in the TRIP­

SPECIFICATION: and FLORIDA is the DESTINATION. A dialog 

query map, which is a set of templates for questions the 

system may ask, is used in generating GUS's questions to 
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the client, and a flight description template, together 
with a data base containing the Official Airline Guide, 
is used to generate responses to the client's questions. 
Finally, of course, frames and attached procedures are 
used for the inference component of the system, and to 
direct the dialog. 

2. Processing 

GUS uses frames to direct the dialog by 

instantiating a top-level dialog frame. The system then 
goes through the slots of this frame in order, trying to 
find fillers. When a slot is filled by a new frame 

instance, the system immediately tries to fill the slots 
of the new instance. Thus slot-filling is ordinarily 
done depth-first through the hierarchy of frames. Since 
GUS is trying to fill slots, if ASKCLIENT is the servant 
for a slot, GUS maintains control of the conversation. 
Slots may be filled out of this depth-first sequence if 
the client volunteers information, or if attached 

procedures are called. 
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VI. ~ Malaprop 

Another system which uses frames is Ms. Malaprop 

[Charniak, 1978]. Ms. Malaprop is a system which reads 

stories about painting ( walls and houses, not pictures) 

and answers questions about them. Real-world knowledge 

in the domain of painting is crucial to understanding. 

The purpose of the system is to demonstrate a knowledge 

representation of events and causes in a specific 

domain, and to use that knowledge in making inferences 

in language understanding. 

1. Knowledge Representation -- Frames 

The goals of the knowledge re presentation are: 

1. ) Modularity -- if a process can occur in several 

domains (e.g. evaporation can occur in painting, but 

also in such domains as boiling and distillation), there 

should be a separate, single frame representation for 

that process rather than incorporating slightly 

different versions of the frame for the process into 

each of the domain frames. 

2.) Separation of worldly knowledge from control 

knowledge systems like PLANNER, which attach control 

knowledge to worldly knowledge, have the problem that 

the worldly knowledge can only be used in the way that 

the control knowledge directs. 

3.) Cleanliness -- frames should be precisely 
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defined with no procedural embedding. 

4.) Adaptability to problem-solving in a 

complex, problem-oriented domain (such as painting), 

language understanding may involve some problem-solving. 

The basic type of knowledge represented in Ms. 

Malaprop is how-to-do-it knowledge. The statements 

express states to be achieved rather than actions to 

perform. 

Objects used in painting are represented as 

variables, which are declared in frame form with value 

restrictions. Absolute restrictions specify conditions 

the values must meet. For example, the instrument used 

in painting must be solid. Normal restrictions specify 

.defaults. For example, the instrument is normally a 

paint brush. 

The process of painting itself is represented as a 

complex event. Complex events are similar to scripts. 

They have three main parts. The first part is the 

variable list, described above. The second part 

specifies the goal of the event and a name given to the 

goal. For example, the goal of painting is called 

PAINTING-GOAL, which is (PAINT coats OBJECT), where 

OBJECT is one of the variables. The third part is the 

event, which specifies the temporal sequence of states 

to be achieved in reaching the goal. The event may 
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contain selection and repetition of states. 

In addition, complex events have two types of 

links. The COMES-FROM link, attached to one of the 

states in the event part, is used to specify statements 

in other structures which indicate how the state may 

come to be achieved. For example, the state called 

PAINTING!, which is {OBJECT is clean) , in the PAINTING 

complex event, has a COMES-FROM link to the goal of the 

complex event WASH. This goal is called WASH-GOAL and 

is ( WASH-OBJECT is clean) , where WASH-OBJECT is a 

variable which can be matched to the variable OBJECT in 

PAINTING. This, of course, limits the additivity of the 

knowledge representation, since in order to add a new 

complex event frame which uses other frame modules to 

achieve its states, one would have to know the names of 

the statements used inside the other frames. 

The LEADS-TO link is used to find a cause-effect 

relationship which can help in inferring the reasons for 

actions. In PAINTING, we have the state PAINTINGS, 

which is {NOT (STICKY-ON SOME-PAINT INSTRUMENT}), which 

indicates the necessity of cleaning the brush after 

painting. This state is linked to a simple event called 

PAINT-DRY via a LEADS-TO link. A simple event expresses 

a single cause-effect relationship of the form (pre­

condition CAUSES condition) as its event part. A pre-
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condition of PAINT-DRY is PAINT-DRY!, which is (STICKY­

ON PAINT OBJECT). A resulting condition is PAINT-DRY4, 

which is (NOT (ABSORBENT OBJECT)). Note that PAINT-DRYl 

matches the negation of PAINTINGS. The LEADS-TO link 

thus allows the system to answer the question, "Why did 

he clean the brush?" with "Because if he didn't, it 

would no longer be absorbent.". 

State frames describe relations between given state 

and other states. For example, the LIQUID-IN state 

frame indicates that if an object is in liquid, then it 

is not in contact with the atmosphere. This helps in 

answering questions about why the painter might leave 

the brush in the paint when he takes a break. 

Another type of frame is the object frame. These 

describe physical objects. The object frame for PAINT­

BRUSH has heading PAINT-BRUSH OBJECT and contains 

variables BRUSH, BRISTLES, and HANDLE. The description 

part of the frame contains conditions on the variables 

which make it a paint brush. Examples are (SOLID 

HANDLE) and (PART-OF HANDLE BRUSH). There is also a 

LEADS-TO link in the PAINT-BRUSH frame to PAINTING­

BRUSH, which is (PAINT-BRUSH INSTRUMENT). This is one 

of the normal restrictions on the INSTRUMENT variable in 

the PAINTING complex event frame, and since it matches 

the heading of the PAINT-BRUSH frame, we infer that an 
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instrument which satisfies these conditions is a normal 

instrument for painting. 

Adjunct frames are used for specific examples of 

complex events. For example, the PAINTING complex event 

contains nothing which would make it specific to brush 

or roller painting. Instead, there are adjunct frames 

for each which fill in the specifics. Thus the ROLLER­

PAINTING adjunct frame has variables INSTRUMENT and 

TRAY. In this case, INSTRUMENT is normally a roller 

(something which satisfies the description in the ROLLER 

object frame). The MASTER for this adjunct frame is the 

PAINTING complex event. The event portion of the 

adjunct frame refers to statements in the master. For 

example, the statement 

(DURING PAINTING3 ROLLER-PAINTING!) 

with 

ROLLER-PAINTING! (FLUID-CONTAINMENT TRAY PAINT) 

indicates that in order to achieve PAINTING3, which is: 

(LOOP 
PAINTING4 (PAINT on INSTRUMENT) 
PAINTINGS (INSTRUMENT in contact with OBJECT) ) , 

if we are roller painting, the tray must contain fluid. 

Also 

PAINTING4 COMES-FROM: (ROLL3 (ROLL INSTRUMENT TRAY)) 

indicates that the way to achieve PAINTING4 (that there 

is some paint on the instrument), if we are roller 

45 



painting, is by rolling the instrument in the tray. 2. Processing 

Internally, a frame is stored as an atom with a property list of properties such as VARS, EVENT. Frame statements are stored as atoms also, with properties such as BODY and COMES-FROM. Frame statements are indexed according to predicates in which they appear, thus affording two-way linking of knowledge structures. As is implied by the word "frame", a complex event frame becomes active when it is mentioned in the story. Since stories are short, frames do not become inactive later, that is, unlike SAM, the system does not forget. Removing useless frames is something that would be necessary if stories were long, or if they changed situations often. The list of active complex event frames is called the context list. 
Likeliness is used when information indicating how a variable might be bound is received. This is done by classifying bindings as GOOD, BAD, SATISFACTORY, or POSSIBLE. A GOOD binding indicates that the variable had been previously bound to the object, or that none of the other three are applicable. A BAD binding is used when the variable had been previously bound to something else, or when none of the normal conditions on the variable are matched by the object. A SATISFACTORY 
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binding is given if there are no normal conditions and 

all of the absolute conditions are satisfied. A 

POSSIBLE binding is used if the only unsatisfied normal 

conditions deal with properties the object should have 

rather than with the type of object it should be. 

Ms. Malaprop does deductive read-time inferences of 

three types. Consistency inferences involve resolving 

contradictions. Whenever a new fact is added to the 

data base, the system checks to see if it is the 

negation of some fact already in the data base. If so, 

the system resolves the inconsistency by deleting either 

the original fact or the negation. If the original fact 

is deleted, the facts inferred from it may be incorrect. 

So Ms. Malaprop adds their negations to the data base in 

order to induce a new round of consistency inferencing. 

This process is repeated until all inconsistencies are 

removed. This is facilitated by the two-way linking of 

inferences -- when a fact is inferred from another, this 

is recorded on both sides. 

Unexpected situation inferences are made when 

something unexpected, according to the active frames, 

takes place. That is, the story gives information which 

does not fit into any slot. Since these are likely to 

lead to important facts, the system attempts to infer 

the consequences. 
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Now we will see an example of the third type of 

inference, a needed-fact inference. In order to prove 

the assertion (PHYS-OB PAINT-BRUSHl), the system looks 

at the state frame for PHYS-OB. This frame contains the 

relation 

(PHYS-OBl (PHYS-OB OB) 
!FF (OR 

PHYS-OB2 (SOLID OB) 
PHYS-OB3 (LIQUID OB) 
PHYS-OB4 (GAS OB)). 

Recall that PHYS-OBl, PHYS-OB2, PHYS-OB3, and PHYS-OB4 

are just names for the statements that follow them. 

Thus this relation states that something is a physical 

object iff it is a solid, liquid, or gas. The state 

frame for PHYS-OB also contains the line IF-NEEDED: 

((INFER-FROM PHYS-OBl)). This directs the system to use 

the rule PHYS-OBI to prove that something is a physical 

object. The system will now use the SOLID state frame 

(then the LIQUID and GAS state frames, if necessary) to 

try to prove (SOLID OB). The SOLID state frame has the 

variable SOL and the line IF-NEEDED: ((ISA-LINK SOL)). 

This directs the system to use the ISA link for the 

variable SOL, which is bound to OB, which is bound to 

PAINT-BRUSHl. Since PAINT-BRUSHl ISA PAINT-BRUSH and 

the PAINT-BRUSH object frame describes a paint brush as 

a solid, the assertion is proven. ISA is used here not 

as a predicate, but as a pointer to the most restricted 
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object type of the given object, so in the case of 

PAINT-BRUSHl, the ISA pointer stores PAINT-BRUSH. 

3. Discussion of Frames 

Frames make "explicit the meaning relationship 

among thoughts" by identifying thought as fillers of 

slots in frames which were instantiated by other 

thoughts. Charniak lists three reasons why frames are 

popular knowledge structures for inference in natural 

language understanding: 

1. Frames are a natural way to partition knowledge. 

By only bringing in the relevant frames, the 

combinatorial explosion of inferences is eliminated. 

2. Frames provide for the broad, shallow 

inferencing useful in understanding language. To 

understand language, we often need a broad knowledge of 

the aspects of a situation, but we seldom have to do the 

very deep sort of reasoning necessary in problem­

solving. For example, in understanding a story about a 

restaurant, we need to know about ordering from a menu, 

paying, tipping, seating, and a variety of other 

aspects, but we seldom have to make a deep inference 

about the motives of a waiter in wanting a tip (he needs 

a new car, or wants to take a vacation). Frames , 

ordinarily contain the former knowledge, but not the 

latter. 
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3. The representation is more natural than in 

deductive methods such as predicate calculus. For 

example, it is much easier to express type constraints 

on variables. 

Frames and scripts are based on the frame 

comprehension hypothesis: that a major part of 

understanding is the matching of incoming information 

against framed knowledge of what normally occurs. The 

problem with frames is that they are inadequate for 

understanding tasks in which the understander does not 

know what normally occurs, that is, when he is asked to 

understand a situation about which he knows nothing, and 

cannot therefore make reliable predictions. 
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VII. PAM 

PAM [Wilensky,1981] is was written to correct the 

inadequacy of the frame hypothesis for understanding 

situations about which the reader has no prior 

stereotypical knowledge. Human understanders realize 

that an event in a story is part of a plan that an actor 

is carrying out in order to meet a goal, even if they 

have never had such a goal or used such a plan. In 

addition to the plan/goal theor1 in [Schank and Abelson, 

1977], PAM is able to deal with plan/goal situations 

involving the following: 

1.) Goal subsumption -- A recurring goal may lead 

an actor to plan for all occurrences at the same time. 

2.) Goal conflict -- A character may have several 

goals which are in conflict with one another. 

3.) Goal competition -- Several characters may have 

goals which are in conflict with one another. 

4.) Goal concord -- Characters may have goals which 

coincide. 

1. Knowledge Representation -- Goal/plan rules 

PAM's knowledge base consists of knowledge about 

planning. PAM does not do planning, but it needs this 

knowledge to generate explanations of actions which 

appear to be goal-based. The planning knowledge is 

encoded in rules, which are stored as LISP atoms with 

51 



properties including conditions, actions, and 

suggestions. 

Conditions are predicates in CD form. These 

predicates indicate the conditions which must be found 

in the story in order for the rule to be applied. For 

example, the condition for HUNGER-RULE is that the CD 

representation of an event in the story matches the CD 

representation for "Xis hungry.", where Xis some actor 

in the story. 

Actions of a rule are used to indicate what should 

be done when the rule is applied. The actions for 

HUNGER-RULE direct the system to add a goal, a source of 

the goal, and a plan for attaining the goal to the 

knowledge. The goal role is filled with the "Satisfy­

hunger" goal for some planner. The source of the goal 

is the theme of having the hunger drive, and the plan 

role is left empty until input indicating how the actor 

intends to achieve the goal is found. 

Gaps in rule structures are filled by appealing to 

.the suggestions for the rule. Suggestions indicate the 

target gap to be filled, the place to look to fill it, 

and a possible rule to apply. Thus HUNGER-RULE contains 

a suggestion whose target is the plan role. This 

suggestion directs the system to focus on INPUT (the 

story, or information inferred from the story) to see 
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what the plan for satisfying hunger might be. The rule 

to apply to fill the gap is called a request. The 

request rule for this suggestion in HUNGER-RULE is 

SUITABLE-PLAN-RULE. The condition of SUITABLE-PLAN-RULE 

is SUITABLE-PLAN-PREDICATE, which examines a list of 

plan rules associated with a goal. Among the plan rules 

associated with the goal of hunger satisfaction is a 

rule called DO-RESTAURANT-PLAN-RULE. Thus if it is 

learned that an actor who is known to have a goal of 

satisfying hunger subsequently enters a restaurant, the 

system is able to identify this as part of a plan to 

attain a goal, and has thus explained the connection 

between the sentences. 

2. Processing 

PAM's inferencing component combines top-down 

predictive ability with bottom-up inferencing. The 

latter is necessary because PAM does not rely on the 

availability of a frame or script, since it a~tempts to 

understand new situations. We may note here that 

MARGIE's inferencing was primarily bottom-up, in that 

inferences were generated from the input to form a 

context. On the other hand, frame and script systems 

have inferencing which is primarily top-down, in that 

once a script or frame is chosen, predictions are made 

from that knowledge structure to form a context, and the 
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input is then matched against the predictions. PAM does 

inferencing in both directions. 

PAM processes an input according to the following 

algorithm. First, the predictive component determines 

if there is a prediction which is confirmed by the 

input. If there is, the prediction explains the input. 

If not, the bottom-up component takes over. This 

component attempts to draw inferences from the input, 

which are then checked against the predictions. When an 

inference is found that matches a prediction, the input 

and inferences made in explaining it are added to the 

story representation by a third component called the 

incorporation component. 

The interaction of these components, and how they 

use the knowledge structures described above can be seen 

by examining how PAM processes the story "John was 

hungry. He ate at a restaurant." When the inferencer 

receives the Conceptual Dependency representation of the 

first sentence, there are not yet any predictions which 

explain the input, so the predictive component turns 

over control to the bottom-up component. The CD form of 

the sentence matches the condition for HUNGER-RULE, i.e. 

that someone is hungry. The HUNGER-RULE action 

structure is then built in memory, with the roles 

PLANNER and PLAN left as gaps. The focus of the 
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suggestion for filling the PLANNER gap is the ACTOR of 
the CD form of the sentence. The request is FOCUS-REQ, 
which moves the focus into the target if the focus is 
not empty. The focus is already filled with JOHN, and 
so this gap is filled immediately. 

The bottom-up component then passes the structure 
back to the predictive component. Finding fulfillment 
of a prediction is implemented as determining if there 
is a request focussed on the input structure whose condition is met by the structure. There are some very 

general predictions in PAM before a story even starts so 
that the processing of the first sentence may terminate 
(inferencing terminates when a prediction has been confirmed). One such prediction is a request whose condition looks for a structure in the input that has a 

theme in it. The structure for HUNGER-RULE satisfies 
this condition, so this prediction is fulfilled, and the 
incorporation component attaches this structure to the 
story representation. 

The second sentence does not immediately fulfill the prediction of the first, i.e. that a plan for satisfy-hunger will be found, since the second sentence 
merely states an action. The bottom-up component finds 
a rule called DO-RESTAURANT-PLAN-RULE whose condition, 
that a person enters a restaurant script, is met by the 
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input. This rule has an action which creates a 

structure for a plan, DO-RESTAURANT-PLAN, rather than 

for a goal as the first sentence does. The gaps of this 

plan are the PLANNER, which is filled in by using the 

request FOCUS-REQ with the focus being the CUSTOMER of 

the RESTAURANT script as it appears in the input CD; the 

RESTAURANT, which is filled similarly, and the ACTIONS, 

which is used to specify the actual events and is thus 

filled with the entire CD input action. Now the 

predictive component finds that the request for the PLAN 

in HUNGER-RULE is focussed on input, where the structure 

for the restaurant plan is located. Furthermore, the 

request, SUITABLE-PLAN-RULE, has its condition met by 

this plan, since it is .one of the plans for satisfying 

hunger. Thus the incorporation component can attach the 

restaurant plan to the PLAN gap of the HUNGER-RULE, 

which means that the system has recognized the second 

sentence as a plan for attaining the goal of satisfying 

the condition stated in the first. 

3. Discussion 

PAM was able to understand a variety of goal-based 

stories, even when the situation was one for which it 

had no framed knowledge. This was due to its knowledge 

of plans and goals embodied in its rules, which can be 

applied in the absence of stereotypical situations. 
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The problem with PAM was that its bottom-up 

inferencing, while restricted to inferences involving 

plans and goals, still led to a problem of uncontrolled, 

irrelevant inferences. The theory behind PAM was that 

the plans and goals of all actors should be constantly 

monitored. [Schank,1979] gives an example of a sentence 

in which PAM would, with a full body of planning 

knowledge, generate irrelevant inferences which a human 

understander would probably not bother to think about: 

"A small twin-engine airplane carrying federal marshals 

and a convicted murderer who was being transported to 

Leavenworth crashed during an emergency landing at 

O'Hare Airport yesterday." PAM would generate 

goal/plan inferences about the marshals, the murderer, 

the pilot, and maybe even the implicitly mentioned air 

controllers. The goal of the marshals is to transport 

the convict to prison, which a subsumption of the higher 

level goal of keeping a job, which they do to get money, 

~nd so on. These inferences are not really necessary to 

the understanding of the sentence, but are generated in 

an attempt to keep track of all goals and plans. 
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VIII. Commonsense Algorithmic Knowledge 
Like Ms. Malaprop, a system by [Rieger,1976] uses 

knowledge structures and processes which are adaptable 
to both problem-solving and language comprehension. 
Since our topic is not problem-solving, we will discuss 
only the knowledge structures and how they are used in 
language comprehension. 

1. Knowledge Representation -- Commonsense Algorithms 
The basis of the knowledge structure is commonsense 

algorithmic knowledge, which represents dynamic 
knowledge relating to actions, states, causality, and 
enablement. The events are classified as actions, 
states, statechanges, tendencies, and wants. An action 
is simply something an actor can do, such as grasp or 
strike. A state is an actorless world condition, such 
as (LOCATION JOHN HOME(JOHN)) which indicates that John 
is at his home. An example of a statechange is then 
(LOCATION JOHN HOME(JOHN) OFFICE(JOHN)) which indicates 
that John's location changes from his home to his 
office. A tendency is an actorless action which occurs 
whenever enabling conditions are satisfied, such as 
gravity. A want is a state or statechange which an 
actor desires. 

The commonsense algorithms also contain links 
between the events. Each of the links has restrictions 
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on the type of events it may connect. The links may 

represent causality, enablement, concurrency, iteration, 

gating, or intent. 

Causality links connect actions or tendencies to 

states or statechanges. A causality link may be one­

shot or continuous, indicating whether the action or 

tendency needs to be applied continuously in order to 

produce the state or statechange. Causality links of 

either type may also be gated, that is, there may be a 

set of states associated with the link which represent 

conditions which must be satisfied in order for the 

state or statechange to occur. By-product links may 

also be one-shot or continuous and gated or not gated. 

They are used to represerit states or statechanges which 

do not occur directly as a result of an action, but 

occur nonetheless. Thus the direct statechange a person 

experiences when reading is an increase in knowledge or 

pleasure, the by-product statechange may be tired eyes. 

State-coupling links express equivalence of states 

or statechanges with unspecified causality. These may 

also be gated. For example, in the presence of the 

states (ATTACHED w Z) and (MOVEABLE Z), the statechange 

(LOCATION w X Y) will be equivalent to the statechange 

(LOCATION z RS), where Rand S depend upon X and z. 
This allows the representation of the fact that when 
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John moves his arm, he also moves his hand. 

Threshold links express good continuation of a 

statechange to some desired level. Thus in the presence 

of the gating condition (FACING X Z), the action (WALK 

X) produces a statechange (LOCATION X LOC(X) Z). This 

is linked by a threshold link to the state (LOCATION X 

Z), showing that the continuation of the statechange 

will eventually produce the resulting state. 

Enablement links represent connection between 

actions or entire algorithms which may be viewed as 

primitive for some purpose, and states which are 

preconditions for those actions or algorithms. 

For language comprehension (as well as for problern­

solving), commonsense algorithms are organized in 

networks called causal selection networks. The 

representation is explicit rather than embedded in 

procedures so that causality and enablement can proceed 

in both directions. Each network represents one state 

or statechange concept. Each node of the network, 

organized as a tree, is a test for checking real-world 

knowledge or contextual knowledge in order to decide how 

to proceed. 

At the leaves of the tree are commonsense algorithm 

patterns for achieving the state or statechange which 

the network represents. These algorithms are called 
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approaches, and are of three types: abstract 
algorithms, mech~nism descriptions, and sequential 
abstract algorithms. 

Abstract algorithms are themselves divided into 
forms. The first is a causality link connecting an 
action to a statechange. The second consists of a 
tendency, with enablement links from states, connected 
by a causality link to a state or statechange. The last 
form of abstract algorithm is a state-coupling link. 

·The state or statechange at the bottom of each 
represents the goal state for the network. 

Mechanism descriptions represent internal cause­
effect relationships between events in a mechanism. A 
sequential abstract algorithm is a linear list of 
abstract algorithms stored when a plan is found which 
solves a problem, and recalled when the problem arises 
again. 

The gate conditions of the approaches may have 
recommendations, which are pointers to other abstract 
algorithms which contain those states or statechanges. 
The first time an algorithm is reached, a gating 
condition has no recommendations, so the network which 
has it as a goal must be traversed. Once this process 
has found the abstract algorithm for the gating 
condition, the two are linked, so that if the gating 
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condition is encountered again, the abstract algorithm 

producing it tan be found without traversing the ~etwork 
again. 

Networks or portions of networks can be bypassed in 
another way. Once a test is performed in one network, 

its result can be stored, allowing the test to be 

bypassed if it occurs again with no relevant 

statechanges between occurrences. This is done by 

adding a path from the test which precedes the given 

test to the test which is performed afterward whenever 
that result occurs. Since tests are shared among 

networks, this is done in every network in which that 

test occurs. The system then seeks the transitive 

closure of all these links, allowing it possibly to skip 

~ntire networks. 

2. Processing 

Causal selection networks are used for language 

understanding according to the prediction/fulfillment 
model of comprehension. The model can be made explicit 
as follows: given a context C(Tl), elucidate the 

relationship between it and the next thought T2. Call 

this the interpretation of T2 in this context, and 

denote it I(T2,C(Tl)). Tl is used to generate 

expectations (predictions) of actions and see how the 

subsequent thought T2 fits in. One way to do this is to 
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start with goals, which are expressed as wants of states 

or statechanges. Predicting the goals then amounts to 

identifying the tops of the causal selection networks as 

representing likely goals. The approaches at the bottom 

of the networks, together with their subgoals and 

recommended actions, then represent the realm of 

predicted actions. 

In order to do this, the idea of a causal selection 

network is adapted by defining two new types of 

networks: inducement networks and prediction networks. 

Inducement networks are used to discover what states 

some action or state might induce in a potential actor. 

These are similar to causal selection networks, except 

that at the leaves there is a set of internal states 

which might be induced. Thus each network represents 

and inducing action or state; traversing the network 

amounts to discovering what it might induce. As each 

thought enters, the appropriate network is traversed for 

each potential actor. The states that are discovered 

represent the input to the prediction networks. 

Prediction networks are used to discover the goals 

some internal state might cause an actor to have. At 

the leaves is the set of possible goals. Thus each 

prediction network represents a certain state in an 

actor; traversing the network amounts to discovering the 
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predicted goals of the actor. These goals are then 
input into causal selection networks, which discover 
actions from knowledge of goals. 

To bypass prediction networks and causal selection 
networks, inducement networks may contain 
recommendations of actions. This has the advantage of 
using not only the internal state of an actor for 
prediction (which is all that a prediction network has 
available), but also the action or state (available to 
an inducement network) which induced the internal state. . . 

Clearly, an actor's response to an internal state might 
well depend on what caused that state. To produce 
higher order inferences, the predicted goal states may 
be fed back into inducement networks to see what states 
they might cause. 

Having finished the prediction phase, which depends 
only upon the context, the system will then see how the 
input thought fulfills the predictions. Each input 
thought is matched with an abstract algorithm which may 
occur at the bottom of a causal selection network. The 
system then searches up the causal selection network 
hoping to find a goal in the prediction set. If one is 
found, I(T2,C(Tl)) has been determined. 

This upward traversal is done as follows. At each 
node, pose the test. If the test would have directed 
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the system to the node it came from below, keep going. 

If this does not happen several times in a path, try 

another path. When the top of a network is reached, if 

the goal represented by the network is in the prediction 

set, the system has understood how the new thought fits 

into the context. If not, the goal is considered a 

higher-level goal. The system looks for occurrences of 

it in abstract algorithms at the leaves of other 

networks, and then traverses up these, looking for 

something in the prediction set. 

This process stops when the number of networks 

traversed reaches a cutoff value. Anything beyond this 

level would be both a remote interpretation and 

expensive. If there is more than one interpretation, 

choose the one with the fewest networks traversed. In 

case of a tie, choose the one which fared better on the 

tests at each node. 

Bypassing tests may occur in two ways. First, 

recommendations are preferred over networks in climbing 

up. Second, bypasses may be implanted by climbing down 

again along the interpretation path. 

3. Discussion 

Abstract algorithms and causal selection networks 

are an efficient way of organizing knowledge for 

problem-solving and language comprehension. In language 
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comprehension, they are especially useful for stories 
involving goals and plans, in that the input is used to 
infer a state in an actor, which is in turn used to 
predict a goal the actor might have, which is then used 
to predict his actions by identifying them as part of a 
plan to achieve the predicted goal. 

As in PAM and MARGIE, much of the inferencing 
consists of bot tom-up prediction-making. While this 
gives the system the ability to work in situations in 
which it has no stereotypical knowledge, it also 
produces the problem of uncontrolled inferencing. The 
network system artificially controls the inferencing for 
efficiency purposes by restricting the number of 
networks traversed, just as MARGIE has artificial 
controls on the depth of its inferencing. The problem 
is that although there is probably a ~egative 
correlation between depth and relevance, that 
correlation is not necessarily -1, that is, there may 
be relevant inferences which can be obtained only by 
deeper inferencing than can many irrelevant ones. Thus 
in order to guarantee that all relevant inferences are 
generated for prediction, the depth may have to be set 
in such a way as to also generate the irrelevant ones. 
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IX. BORIS 

A system that uses a variety of knowledge structures 

for inference is BORIS. The story below, which BORIS 

understands in depth, is included as a source of 

examples for the following discussion of the system's 

knowledge structures and processes. 

Richard had not heard from his college 
roommate Paul for years. Richard had borrowed 
money from Paul which was never paid back. 
But now he had no idea to find his old friend. 
When a letter arrived from San Francisco, 
Richard was anxious to find out how Paul was. 

Unfortunately, the news was not good. 
Paul's wife Sarah wanted a divorce. She also 
wanted the car, the house, the children, and 
alimony. Paul wanted the divorce, but he did 
not want to see Sarah walk off with everything 
he had. His salary from the state school 
system was very small. Not knowing who to 
turn to, he ~as hoping for a favor from the 
only lawyer he knew. Paul gave his home phone 
number in case Richard could help. 

Richard eagerly picked up the phone and 
dialed. After a brief conversation, Paul 
agreed to have lunch with him the next day. 
He sounded extremely relieved and grateful. 

The next day, as Richard was driving to 
the restaurant, he barely avoided hitting an 
old man on the street. He felt extremely 
upset by the incident, and had three drinks at 
the restaurant. When Paul arrived, Richard 
was fairly drunk. After the food came, Richard 
spilled a cup of coffee on Paul. Paul seemed 
very annoyed by this, so Richard offered to 
drive him home for a change of clothes. 

When Paul walked into the bedroom and 
found Sarah with another man, he nearly had a 
heart attack. Then he realized what a blessing 
it was. With Richard there as a witness, 
Sarah's divorce case was shot. Richard 
congratulated Paul and suggested that they 
celebrate at dinner. Paul was eager to comply. 
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In order to understand this story in depth, BORIS 

deals with the following problems, which are not dealt 

with as effectively.in the other systems reported in 

this paper: 

1. Inferences must often be made from the absence 

of a fact or event. For example, from "John walked into 

the room and Mary was not there.", the system should 

infer that John wanted to see Mary, not just that Mary 

is somewhere other than in the room. 

2. Inference of motives of characters may need to 

use knowledge of the relationships between characters. 

Thus Richard's motive for helping Paul is understood by 

BORIS to be the desire to return Paul's favor of lending 

him money. 

3. Knowledge of human situations is needed for in­

depth inference. Examples of such situations in the 

story are divorce, borrowing and repayment, writing and 

receiving letters. 

4. Figures of speech need to be understood. When 

we read that Paul did not want to "see" his wife "walk 

off" with everything he had, we understand that "see" 

and "walk off" are not to be taken literally. 

5. Pronoun reference often requires knowledge and 

inference in addition to syntactic and semantic rules 

for resolution. 
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1. Knowledge representation --~ ~ ~ 

The main permanent knowledge structure which the 

parsing module examines is the dictionary. Each lexical 

item in the dictionary has associated knowledge 

structures and demons. Demons represent procedural 

knowledge: their purpose is to search and construct 

episodic memory. Demons may spawn other demons. Demons 

may be used to fill slots in knowledge structures, to 

determine character's plans and goals, to deal with 

settings, to deal with events, or to handle prediction 

fulfillment or violation. 

BORIS also uses a variety of knowledge structures 

which we have already seen, such as scripts, settings, 

and events, and two we have not seen, which are known as 

Memory Organization Packets (MOPs) and Thematic Affect 

Units (TAUs). The knowledge structures are associated 

with lexical items in the dictionary for instantiation, 

and are integrated by a set of links, as discussed 

below. 

A MOP is a configuration of Conceptual Dependency 

graphs formed into a discrete knowledge structure by a 

standard set of links. MOPs differ from scripts in that 

they focus on goals and intentions. For example, the 

MOP for borrowing and lending involves two objects, the 

BORROWER and the LENDER. The concepts in the MOP are: 
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WANT-OBJECT (BORROWER) 
ASK-FOR-OBJECT (BORROWER to LENDER) CONVINCED-TO-LEND (LENDER) 
GIVE-OBJECT (LENDER to BORROWER) WANT-TO-RETURN (BORROWER) 
WANT-RETURNED (LENDER) 
GIVE-OBJECT-BACK (BORROWER to LENDER). 

The concepts are connected by links representing 
intention (WANT-OBJECT and ASK-FOR-OBJECT), motivation 
(GIVE-OBJECT and WANT-RETURNED), or achievement (WANT­
OBJECT and GIVE-OBJECT or WANT-RETURNED and GIVE-OBJECT­
BACK). 

MOPs may be linked to other MOPs by MOP links. 
Examples of MOP links involving the borrowing and 
lending MOP would be links to FAVOR and BUSINESS­
CONTRACT. The links indicate under what conditions the 
MOP linked to should be instantiated. In this example, 
FAVOR is instantiated if the BORROWER and LENDER are 
friends, otherwise, BUSINESS-CONTRACT is used. The MOP 
links are necessarily uni-directional --the BORROWING 
and LENDING MOP is brought in when borrowing or lending 
is mentioned in the story, and since it is usually 
important to know the reason for the transaction, FAVOR 
may be brought in. However, when the story mentions a 
favor one character does for another, it is not 
necessary to bring in BORROWING and LENDING and all the 
other MOPs which may be interpreted as possibly 
involving favors. Indeed, in the story, Richard's 
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motivation for doing something for Paul is best 

interpreted in terms of FAVOR rather than BORROWING and 

LENDING. Even if the money had been paid back, in which 

case all of the motives and intentions represented in 

the BORROWING and LENDING MOP would have been achieved, 

Richard may still have considered the loan a favor. The 

FAVOR MOP would indicate that the normal desire to 

return a favor had not yet been satisfied, thus 

explaining Richard's motivation for doing something for 

Paul. 

The modularity of MOPs is also important. It would 

have been erroneous to represent the idea of favor 

directly in BORROWING and LENDING, because a loan could 

be a business contract having nothing to do with favors. 

Thus the idea of favor is brought in only if it is 

determined that the loan was probably done as a favor. 

Thus modularity helps prevent erroneous conclusions. 

Modularity also improves efficiency. For example, the 

DIVORCE MOP does not contain information about the legal 

aspects of divorce, instead, it has a MOP link to LEGAL­

DISPUTE. Furthermore, LEGAL-DISPUTE will not al ways be 

instantiated in the presence of DIVORCE. Additional 

information about the divorce, such as the presence of a 

lawyer, or an indication of a conflict in the goals of 

the husband and wife, is needed for LEGAL-DISPUTE to be 
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used with DIVORCE. 

When MOPs are linked, BORIS stores a specification 
of which component of one knowledge structure is 
equivalent to a component in another structure. For 
example, the LAWYER MOP contains a PETITION component, 
indicating that the lawyer petitions on someone's 
behalf. In our story, since Richard's agreement to 
petition on Paul's behalf is an attempt to return Paul's 
favor, this PETITION component is linked to the DO­
RETURN-FAVOR component of the FAVOR MOP. 

This again improves modularity. The PROF-SERVICE 
MOP, for example does not need to include information 
about legal representation or psychiatric analysis: 
instead, the LAWYER or PSYCHIATRIST MOP is linked to the 
PROF-SERVICE MOP with the corresponding components 
specified. This also allows several perspectives: for 
example, the system can view Richard's representation of 
Paul as a professional service and as a returned favor. 

TAUs are used to represent knowledge that deviates 
from a normal goal/plan model. TAUs have the following 
features: 

1. They are thematic -- they capture knowledge 
which people often represent in adages. 

2. They are affective -- they can represent such 
emotions as anxiety, upset, and shock. 
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3. They can explain variations from goal/plan 
situations: for example, they can explain surprising events that may cause a plan to go wrong. 

4. They are sensitive to points-of-view of 
different characters in a thematic situation. 

An example of a TAU used in the story about divorce is DIRE-STRAITS, which contains knowledge about how people react in a crisis. 
BORIS's episodic memory is therefore a collection of instantiations of high-level knowledge structures and the links between them. 

BORIS uses a single parsing module for reading the text and building episodic memory. Episodic memory contains the knowledge structures built up from the input so far. Therefore this module may also search previously-produced episodic memory to aid in the parsing task. This same module is used in guestion­answering. Thus episodic memory units are created as well as searched while parsing questions. 
2. Processing 

As is the case with Conceptual-Dependency-based systems, parsing in BORIS is semantics-directed rather than syntax-directed. Syntactic information about each word is stored in the lexicon, along with conceptual structures and demons, and is consulted only when needed 
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for understanding. 

Episodic memory is searched during parsing to help 

to solve the following problems: 

1. Inferring roles -- BORIS can infer that in the 

sentence "The money was never paid back.", it means that 

it was not paid back by Richard to Paul. This inference 

is possible because of the recent instantiation of the 

BORROW MOP with Richard as borrower and Paul as lender. 

2. Pronoun resolution -- BORIS can infer that "He" 

in "He sounded extremely relieved and grateful." means 

Paul, because of the instantiation of the DIRE-STRAITS 

TAU. 

3. Disambiguation of words -- BORIS can infer that 

"hitting a man on the street" means hitting with his car 

rather than getting into fight, since ACCIDENT is 

available in episodic memory. 

3. Discussion 

As in PAM, knowledge may be applied bottom-up or 

top-down. One type of bottom-up application is the 

episodic memory creation from the input which is 

described above. Bottom-up application is also used in 

goal/plan processing, in which rules are used for 

monitoring goal conflicts, competition, and achievement. 

The conditions for these rules are events and situations 

(or non-events and non-situations), and the actions 
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involve filling slots in goal-oriented MOPs. A third 

type of bottom-up processing involves scenario-mapping. 

BORIS follows characters as they proceed from one 

location to another in a story. This is done because an 

actor's location may explain his action, or if his 

action is unusual in that location, this may explain 

another actor's surprise. 

Top-down knowledge application consists of 

fulfilling predictions by filling slots in high-level 

knowledge structures. Note the difference between BORIS 

and PAM in goal/plan processing. PAM creates goal/plan 

structures bottom-up from the input (by attaching plan 

rules to the PLAN component of goal rules), which, as 

[Schank,1979] points out, forces PAM to generate 

irrelevant inferences about the goals and plans of 

actors in the story, even if there is little chance that 

those inferences are needed. BORIS has pre-existing 

high-level plan/goal knowledge structures (MOPs) with 

rules that are used to fill their slots. With high­

level structures, BORIS controls goal/plan inferences by 

increasing the role of the predictive top-down 

component, allowing a corresponding decrease in the 

less controlled bottom-up inferencing. This eliminates 

many of the useless inferences generated by PAM, without 

sacrificing the ability to understand goals and plans. 
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