
Lehigh University
Lehigh Preserve

Theses and Dissertations

1985

Inference in computer systems which understand
natural language /
Robert J. Harwick
Lehigh University

Follow this and additional works at: https://preserve.lehigh.edu/etd

Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Harwick, Robert J., "Inference in computer systems which understand natural language /" (1985). Theses and Dissertations. 4512.
https://preserve.lehigh.edu/etd/4512

https://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F4512&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F4512&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F4512&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=preserve.lehigh.edu%2Fetd%2F4512&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd/4512?utm_source=preserve.lehigh.edu%2Fetd%2F4512&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

INFERENCE IN COMPUTER SYSTEMS WHICH

UNDERSTAND NATURAL LANGUAGE

by

Robert J. Harwick

A Thesis

Presented to the Graduate Committe~

0£ Lehigh University

in Candidacy for the Degree of

Master of Science

in

Computer Science

Lehigh University

1985

This thesis is accepted and approved in partial

fu1f illment of the requirements for the degree of Master

of Science.

Professor in Charge

D~j, tt1vt--.
Division Head

Departmen~rson ~

ii

Acknowledgement

I wish to thank my advisor, Dr. Gerhard Rayna,

whose introductory course in artificial intelligence

inspired the writing of this paper, and whose criticisms

and suggestions contributed immeasurably to its quality.

iii

Table of Contents

I. Introduction • •••••• i! •••••••••••••••.•••••••.••••• , ••

II. SHRDLU 1. Knowledge Re pre sen ta tion 5 2. Processing 11 3. Discussion .. 13
III. MARGIE l.

2.
3.

Knowledge Re presentation •••
Processing••••......•
Discuss ion

..

.
. ... 16 21 27

IV. SAM
l.
2.
3.

.. Knowledge Representation
Processing ••••••
Discussion •••••••

............... •• 29
30

..35
v. GUS ... 1. Knowledge Re pre sen ta tion

2. Processing ..••••••••••.•..••
37
40

VI .Ms. Malaprop Knowledge Representation 1.
2.
3.

. Processing
Discussion of Frames

VII. PAM
1.

. Knowledge Re pre sen ta tion ••• Processing 2.
3. Discussion •••••••••••••••••••••••••••

VIII.
1.
2.
3.

Commonsense Algorithmic Knowledge
Knowledge Representation
Processing ••••••
Discussion ••••••

IX. BORIS .
1. Knowledge Representation
2. Processing •••••
3. Discussion

iv

.

41
46
49

.....
51
53
56

58
62
65

.....
69
73
74

2

5

15

29

37

41

51

58

67

Abstract

Inference is a major component in the understanding
of hatural language by computer. Whether deductive or
non-deductive, the primary problem of inference is
efficiency. Humans process language very quickly, and
so must an intelligent machine. Procedural

representation of propositional data improves the

efficiency of deductive inference by providing direction
to the theorem-proving process, but sacrifices the
flexibility available in declarative representations.
Much of the inference necessary for language

understanding is not goal-directed in the way that

formal deduction is, instead, predictions are made from
the current input, and future input is examined to see
how it fits the predictions. This provides an even
greater efficiency problem. The prediction process must
be controlled so that only the useful predictions are
made. High-level knowledge structures such as frames
and scripts add direction to the inferencing process,
but again flexibility is sacrificed. Current research
involves integration of high-level structures to provide
control for all aspects of inference while maintaining
an acceptable level of flexibility.

1

I. Introduction

When humans communicate in natur.al languages, much

of the information they exchange is not explicit, but is

inferred by the listener. For example, when we hear,

"John is going to the store.•, some of the things we

infer are:

(1) John is not now at the store.
(2) John wants to buy something.
(3) He is using some mode of transportation.

A computer program which understands natural language

may have to perform any of the above (and more)

inferences in order to demonstrate that it has

understood the sentence. For example, a future sentence

may be "He is taking the bus." In order to know how this

information fits the context, so that it can correctly

answer the question, "How is he getting to the store?",

the computer must infer (3).

Natural language understanding is usually divided

into three areas: syntax (the grammatical relationship

between words), semantics (the explicit meaning of

words, phrases, and sentences), and inference (the

discovery of implied meanings and relationships).

Rieger, however, defines natural language comprehension

as "the art of making explicit the meaning relationship

among thoughts which are presumed to be meaningfully

relatable." Note that this definition emphasizes

2

inference. To justify this emphasis on inference,

consider the problem of pronoun resolution in: "John hit

Bill. He went to the doctor." Syntactic clues for

pronoun resolution are inadequate in this case, in fact,
a purely syntactic rule might be "If a pronoun is the
subject of a sentence, its referent is likely to be the
subject of the previous sentence.", which is not the

case here. Semantics offer no solution, since it is

semantically valid for any human to go to the doctor.

Only by inferring that someone who is hit is likely to

be hurt, and that someone who is hurt is likely to see a
doctor, can an understander correctly recognize "He" as
"Bill".

There are two basic approaches to inference in

computer natural language systems. The formal approach
involves deduction and uses predicate logic, sometimes

represented procedurally, as its primary knowledge

representation. There are many manifestations of the

informal approach, each of which uses some type of

declarative knowledge structure. As may be inferred

from the examples above, natural language inference

requires knowledge of two types: real-world knowledge of
such things as the consequences of actions and the goals
of characters, and contextual knowledge which is

continuously augmented throughout a story or

3

conversation.

The purposes of this paper are: 1) to examine the

nature of the problem of inference in natural language

communication, 2) to discuss some of the knowledge

structures and how they are used for inference in

natural language systems, and 3) to examine how the

process of inferencing may be controlled to make it

practical for computer systems. This will be done

through an examination of the inference component of the

following systems: SHRDLU [Winograd,1971], MARGIE

[Schank and Rieger,1974], SAM [Cullingford,1981], GUS

[Bobrow et. al.,1977], Ms. Malaprop [Charniak, 1978],

PAM [Wilensky,1981], Rieger's commonsense algorithms

[Rieger,1976], and BORIS [Lehnert et. al.,1983].

4

I. SHRDLU

In SHRDLU [Winograd, 1971], the user enters English

commands and questions directed toward a robot whose job

is to interpret the commands and perform them, and to

answer the questions. The robot's domain is a table

with a set of blocks of various colors and shapes: the

commands involve movement of the blocks, and the

questions are about the state of the blocks world. The

system is a natural language system and not a robotics

system. A real robot was never used in the

demonstration of the system: instead, its movements were

simulated on a video display. The main contributions of

the system were its ability understand grammatical

structures of almost unlimited complexity and the

procedural representation of propositional data which

gave its inference process more direction than previous

deductive systems had. We are interested in the latter.

1. Knowledge Representation -- Procedures

In its limited domain (the blocks world), SHRDLU's

inference is deductive (as opposed to predictive non­

deductive inference systems which we shall discuss

later). The principal method of deduction before SHRDLU

was the general deductive approach. In this approach,

propositional information was stored in a LISP

representation of the first order predicate calculus.

5

Processing involved the Robinson resolution algorithm,

which is based on proof by contradiction. First, the

negation of the proposition to be proved is taken.

Known propositions are stored as disjunctions of simple

predicates. At each stage of the proof, the systim

searches the entire data base of known propositions for

one which includes (as part of its disjunction) the

negation of something included in the current

proposition. When one is found, the negation and the

portion of the current proposition cancel, and the

resulting proposition is the new current proposition.

This process is repeated until the cancellation leaves

nothing, which means whatever might have come from

assuming the proposition fals·e has been contradicted by

some known proposition, so the proposition is proved.

There are two advantages of such a general

deductive system. First, if a proposition is provable

from the known propositions, a proof will (eventually)

be found. Second, the proof procedure is uniform and

not dependent upon knowledge of proof techniques in a

specific domain. However, these advantages can also be

regarded as disadvantages in a practical natural

language system. This is because the algorithm has no

direction about how to go about proving the proposition,

so it has to test all known propositions until it finds

6

one which is relevant. In doing inference in natural

language understanding, we do not have the time to go

through such an exhaustive process. The way we

determine the truth of propositions is by having some

heuristic knowledge about how our propositional

knowledge may be used.

This is the idea behind the inferencing scheme used

in SHRDLU. Propositions are stored as procedures in a

language called PLANNER [Hewitt,1969]. Each procedure

may include information on how to go about proving the

proposition, such as which other procedures should be

tried in an at tempt to prove this one, and in what

order. The propositions are written in a form similar

to the predicate calculus, and as much or as little

subject-dependent heuristic information can be added as

the user desires. If he adds none, the system works

with the full flexibility of a general deductive system:

but with more information about how to prove it, ·the

system is more efficient.

The calling of procedures by other procedures is

goal-directed, that is, a general pattern-matcher looks

at the goal (specified as part of the procedure) and

chooses any procedure which satisfies the goal. In this

way, it is not necessary to have all procedures know

about the existence of others. However, it requires a

7

pattern-matching search similar to that of the

resolution algorithm~ If, on the other hand, specific

procedures are recommended as the only ones to try in

order to satisfy the goal of a given procedure, the

exhaustive search is eliminated, but now the procedures

have to know about other procedures. That is, the

system involves a trade-off between efficiency and

additivity.

Some of the features of PLANNER can be seen in the

following example.

(DEFINE THEOREM EVALUATE
(TH CONS E (X Y)

(THGOAL (iTHESIS $?X))
(THOR

(THGOAL (#LONG $?X) (THOSE CONTENTS-CHECK
COUNTPAGES))

(THAND
(THGOAL (#CONTAINS $?X $?Y))
(THGOAL (#ARGUMENT $?Y})
(THGOAL (#PERSUASIVE $?Y)

(THTBF THTRUE))))))

Fi~st, note the punctuation 11 # 11 and "$?". The "# 11

indicates that what follows is a predicate name; the

"?$" indicates a variable. Another punctuation mark":"

is used to indicate an object, the value to which a

variable might be bound.

This is the procedural representation of the

theorem "A thesis is acceptable if it is either long or

it contains a persuasive argument 11
• The name of the

theorem is EVALUATE. Its variables are X and Y; Xis

8

the theorem to be tested; Y is used to hold something in

the thesis which is tested to see if it a persuasive

argument. THCONSE is the type of theorem -- this is a

consequent theorem since we are trying to establish

whether or not a given thesis is acceptable. There are

two main subgoals. The first is to prove that X is a

thesis: the second is to prove that either X is long or

that X contains a persuasive argument. These are given

as THGOAL. The first goal has the recommendation list

CONTENTS-CHECK and COUNTPAGES, indicated by THUSE. This

means that to establish the goal that the thesis is

long, the procedures CONTENTS-CHECK (which presumably

looks at the Table of Contents) and COUNTPAGES (which

counts the pages) should be used in order. If this

succeeds, it is not necessary to look for a persuasive

argument, so THOR is an OR which does not check the

second statement if the first one is true. If we do

need to check for a persuasive argument, the theorem

says we must first find something that the thesis

contains, if this is found, see if it is an argument,

and if so, try to prove that it is persuasive. Note

that THAND only continues to the next statement if the

previous one was true. The check for persuasiveness

contains the recommendation (THTBF THTRUE). THTBF means

try any theorem whose form satisfies the filter which

9

follows. THTRUE is the only filter used in SHRDLU,

although a PLANNER user may define any filters he

wishes. THTRUE is a predefined filter which any theorem

matches.

We stated the theorem which this procedure

represents in declarative form above. In imperative

form, the procedure may be stated: "In order to

evaluate X for acceptability as a thesis, first show

that Xis a thesis; then show that it is either long or

that it contains a persuasive argument. To see if it is

a thesis, look in the data base of simple assertions.

To see if it is long, first check the table of contents,

and if this fails, count the pages. If the thesis is

not long, check to see if it has a persuasive argument.

To do this, find something it contains, show that it is

an argument, and show that it is persuasive using any

theorem which might apply."

Among PLANNER'S other features are THGO, THAMONG,

THERASE, THASSERT, THANTE, and THFIND. THGO is a GOTO

statement. THAMONG is like LISP MEMQ, succeeding if the

value of the given variable is in the given list.

THERASE removes assertions (which are declaratively

represented simple predicates) from the data base;

THASSERT adds assertions to the data base. THANTE is

for declaring an ANTECEDENT theorem, which is used to

10

indicate that certain assertions should be added when

certain facts are determined. For example, when we find

that X drove a car somewhere, we may wish to assert that

X is human, because this may be useful in proving other

theorems. To do this, we could define an ANTECEDENT

theorem as follows:

(D EFPROP DR! VETHEOREM
(TH ANTE X (DROVE $?X $?Y)

(THASSERT (HUMAN $?X))) THEOREM).

THFIND is used to find objects or assertions satisfying

a given condition. This is useful in the blocks world,

where the system might, for example, wish to find all

the red blocks. It could use the following:

(THFIND ALL $?X (X)
(THGOAL (BLOCK $?X))
(THGOAL (COLOR $?X RED} }) •

2. Processing

SHRDLU, as noted above, receives commands and

questions in English. The syntactic and semantic

portions of the system process the commands or questions

into PLANNER statements. For example, the command "Pick

up the block and put it into the box." could be

expressed in PLANNER as:

(THAND (THGOAL (#PICKUP : BLOCK23}}
(THGOAL (#PUTIN : BLOCK23 : B0X7)))

assuming that semantic analysis has correctly identified

"the block" as :BLOCK23 and "the box" as :BOX7.

11

and :PUTIN are procedures which indicate the steps to be

taken to perform the actions. An example of PLANNER

representation of a question is:

(THGOAL (#ACCEPTABLE :SAM-THESIS)
(THOSE EVALUATE)),

which is the representation of the question "Is Sam's

thesis acceptable?". Since PLANNER is actually as

interpreter of the PLANNER language, processing consists

of evaluating, in the sense of LISP EVAL, such PLANNER

statements.

PLANNER has a more sophisticated backup facility

than LISP, which is very useful in theorem-proving.

PLANNER has the ability to do backup in case of failure,

and t'hat backup always goes to the last place where a

decision of any kind was made. Thus if it is attempting

to find an object in the data base which has two

properties, it would attempt to use the statement

(THAND (X) (THGOAL (PROPERTYl $?X))
(THGOAL (PROPERTY2 $?X))).

Upon finding an object which has property 1, it will

then see if that object has property 2. If not, it will

back up to the first THGOAL and look for another object

which has property 1, rather than returning NIL for the

entire AND and resuming at the next statement the way

LISP does. Similarly, backup is effective in THOR in

the expected way. If the first member of the THOR

12

'. ·: -. ' - ~ •..:. ·,,

succeeds, the second is not tried, but if there is a

failure further along on this path, PLANNER can back up.

to the THOR and try the second.

The system can keep track of events and states in

the changing blocks world through its imperative

representation. Since assertions may be true at one

time and become false later, or vice versa, it is

necessary to be able to remove and add them to the data

base of assertions in order to keep the state of the

blocks world up to date. This is handled very naturally

by the use of ANTECEDENT theorems which may contain the

imperative statements THERASE or THASSERT.

3. Discussion

SHRDLU understood a much larger subset of English

grammar than did previous systems. Complicated

embeddings of relative clauses used to identify a

particular block in the world were correctly understood.

It also represented a significant advance in

inferencing. By representing propositional data in the

form of procedures, the proof process had knowledge of

both the available facts and how to use them for a

proof. This, of course, was much more efficient than

the resolution algorithm, which had to search, with no

heuristic direction, the entire set of available

propositions for one which might be applicable.

13

SHRDLU's advantage was in another sense a

disadvantage if the system was to be extended to a

domain wider than the blocks world. Its procedural

representation for propositional data, in providing

information on how the knowledge could be used, also

limited the use of that knowle~ge to those purposes

embodied in the procedures. In wider domains, the ways

knowledge must be used are not so limited. For example,

human understanders use knowledge not only to verify or

discover facts about the world, but also to predict what

kind of information or events may follow in a story.

The procedural representation, while efficient and

useful for formal deductive inference, was too limited

for the type of inference that must be done in

understanding stories or conversation.

14

III. MARGIE

Most current natural language systems do not rely

on formal deduction as the primary method of inference,

indeed, many systems use no formal deduction at all.

Instead, they use knowledge structures and inferencing

techniques which allow faster, shallower inferences than

deductive systems.

[Schank and Rieger,1974] outline the differences

between the kind of inference used in natural language

understanding and the formal deduction which is more

appropriate for problem-solving systems:

1. Unlike deduction, inference generation is a

reflex response to the input. It is not only done as

needed, but is a constant process of making predictions

and looking for.their fulfillment. This

prediction/fulfillment model is a useful one. When we

read a sentence, by predicting what we might see next,

we can then see how the information in the following

sentences fulfills or contradicts our prediction. In so

doing, we have made explicit the meaning relationship

among the sentences.

2. Inferences are not necessarily logically valid.

When we know that a certain action causes a certain

state, we can infer from the presence of that state that

the action has occurred (and change our mind later if

15

new facts contradict the inference) but we can not
deduce it.

3. As a result, inferences can be made which are
not accurate. An inferencing system must allow for the
possibility of erroneous inferences by providing a means
of handling contradictions to facts it has inferred.

4. Inference, unlike deduction, is not goal­
directed. With deduction, we try to determine if a
given proposition is true; with inference, we are just
looking to see what we can see and use those inferences
as predictions of what may follow, so that the
following information can be understood in terms of how
it fits the prediction.

This is all very different from the deduction in
SHRDLU, where proofs for propositions were sought as
needed through a strictly deductive theorem prover.

5. With inference, we need to know why something is
thought to be true.

1. Knowledge representation -- Conceptual Dependency
MARGIE's knowledge is represented in Conceptual

Dependency. Conceptual Dependency is a structure for
representing the meaning of a sentence which based on
the theory that meaning can be represented in a
language-free form which is indicates the concept
conveyed by the sentence. Unlike the PLANNER

16

representation used in SHRDLU, CD is a strictly
declarative way of representing knowledge.

The basis of CD is its representation of events.
Every event has four slots, which may or may not be
filled at any given time. The slots are: an ACTOR, an
ACT, an OBJECT of the action, and the DIRECTION in which
the action is performed.

These are twelve primitive ACTs:
INGEST -- an animal actor takes something internally
PROPEL a physical force is applied to an object body part moves

an actor takes hold of an object

MOVE -- a
GRASP -­
ATRANS transfer of an abstract relationship such as possession, ownership, or control PTRANS -- a physical change in the location of an object
EXPEL -- expulsion of an object from an animal to the outside world CONC -- an actor thinks about an object MBUILD -- an actor builds new information from old ATTEND -- an animal directs sense organs toward an object

SPEAK -- an animal produces sounds from its mouth MTRANS -- transfer of mental information
Each ACT may have any or all of four cases: OBJECTIVE,
RECIPIENT, DIRECTIVE, and INSTRUMENTAL.

Real world objects are called PPs (picture
producers). In addition to PPs, CD also has concepts
representing times, locations, at tributes of objects
(PAs) and attributes of actions (AAs).

In addition to events, CD may also represent the
following relationships among ACTs, PPs, PAs, AAs,

17

times, and locations: a PP has a PA, a PP is an actor

or an object of an action, two PPs represent recipient

and donor within an action, direction of object within

an action, causality, state change of objects, and

possession of one PP by another PP. Each of these is

represented in a CD network graph by a different symbol

linking the cases involved.

The most important feature of CD is that it is

language-free: "John consumed the cake.", "John ate the

cake.", and "The cake was eaten by John." all have the

same CD representation. If a natural language sentence

is first analyzed into CD (by a semantics-directed

parser), the knowledge structure created can be matched

against permanent or contextual knowledge structures in

memory, also stored in CD, in order to use the knowledge

for inference.

To build a theory of inference, Schank and Rieger

list the types of inferences that an understander must

employ within the framework of the twelve primitive ACTs

of Conceptual Dependency theory. By basing the

inference types on a small set of primitives, they avoid

the problem of needing a different inference type for

each different verb. The inference types are:

1. Linguistic Inference

A word or syntactic construction implies the presence of

18

some unmentioned object. For example, the presence of a

tertain ACT may imply the presence of various

participants in various case roles for the ACT.

2. ACT Inference

An actor and an object may occur with no ACT to connect

them, but our knowledge indicates that the object has a

normal function, so we infer that the object was used

for that function.

3. TRANS-enable Inference

A TRANS ACT involving an object and its recipient

enables another ACT to take place.

4. Result Inference

We can infer the usual result of a TRANS ACT~

5. Object-affect Inference

A physical ACT can be inferred to have a certain effect

on an object.

6. Belief-pattern Inference

An ACT together with its inferred results (from 4 .• and

5.) often fit a belief pattern involving the usual

reason for the ACT.

7. Instrumental Inference

~ach ACT has instrumental ACTs associated with it, that

is, ACTs which are involved in its performance:

19

INGEST PTRANS
PROPEL MOVE, GRASP, PROPEL
PTRANS MOVE, PROPEL
ATRANS PTRANS, MTRANS, MOVE
CONC -- MTRANS
MTRANS -- MBUILD, SPEAK, ATTEND, MOVE
MBUILD -- MTRANS
EXPEL -- MOVE, PROPEL
GRASP, SPEAK -- MOVE
ATTEND -- sometimes MOVE, but usually none
MOVE -- none

8. Property Inference

We can infer certain properties of objects (e.g., their

existence) from their presence in a sentence and their

performance of a given ACT.

9. Sequential Inference

Sentences in sequence may share a subject or

proposition. When we read "John wants to join the army"

and later "John is a pacifist", we may infer that the

second sentence refutes the first.

10. Causality Inference

Sentences in sequence or connected with "and", together

with our real-world knowledge that the first may

possibly cause the second, may allow us to conclude

causality.

11. Backward Inference

When an ACT occurs which normally requires a

prerequisite ACT, we may infer the occurrence of the

prerequisite ACT.

20

12. Intention Inference

trom the performance of an ACT by an actor, we may infer

that the actor intended for the results (from 4. and 5.)

to occur and is pleased that they have occurred.

2. Processing

The inferencing component of MARGIE does all of the

above kinds of inferences. The MARGIE system consists

of three processes: conceptual analysis, memory, and

generation. Inferencing is done in the first two: the

third is for generating responses.

Conceptual analysis has two phases. First, a

Conceptual Dependency graph of the explicit meaning of

the sentence is produced. Second, the analyzer

initiates inferencing which extends the graph to include

implicit information which is not dependent upon the

context, but only upon the sentence itself.

The function of memory is to take the conceptual

analysis and generate probabilistic information about

how it relates to knowledge previously stored. The

predictions are of three forms: 1) predictions about

causes, 2) predictions about results, and 3) predictions

about future and past actions of characters.

Predictions are stored as propositions in list

positional form, with the predicate first, then the case

slots. Each simple concept has an occurrence set, which

21

is a set of pointers to the propositions which contain

instances of that concept. Propositions also have

occurrence sets, so that propositions can be embedded in

other propositions. Propositions also have the

following characteristics:

STRENGTH -- the credibility of the proposition,

stored as value between 0 and 1. This is the

probabilistic component of a proposition.

MODE -- negations have mode = false.

TRUTH -- current truth value of the proposition.

REASONS -- other propositions used to infer this

proposition. This gives the system the ability to

explain its reasoning.

OFFSPRING -- other propositions inferred in part

from this proposition.

RECENCY -- time of last access of this proposition.

Memory performs the following inferencing tasks:

1.) Establish referents of all concepts in the

Conceptual Dependency graph.

2.) Serve as a data bank and access mechanism for

answering questions and processing proof requests.

3.) Store the analyzed contents of the sentence.

4.) Perform appropriateness checking on the

implications of the input.

5.) Generate inferences. Completatory inferences

supply a candidate for missing information. Causal

inferences relate the input to belief patterns in memory

22

in order to explain the reason for the input. Result

inferences establish possible outcomes of actions given

in the input. Some of these inferences may be elevated

to predictions, which are inferences focussed on as

noteworthy.

6.) Maintain a record of inferencing and

prediction, and discuss reasoning. This includes

modifying STRENGTHS and MODES.

7.) Answer "wh-" questions about the

conceptualizations and inferences which it receives from

the conceptual analyzer.

For each new concept, memory receives a descriptive

set, which is the set of propositions about that

concept. For example, the conceptual analyzer, after

building the conceptual dependency graph and doing its

inferencing, sends the following to memory for the

sentence "John hit Mary.":

((CAUSE ((PROPEL Cl: {(ISA - #PERSON} (NAME -"JOHN"}}
C2: {(ISA - #HAND) (PART - Cl}}
Cl
C3: {(ISA - #PERSON} (NAME -"MARY")}

))
((PHYSCONT C2 C3)})
(TIME -C4: {ISA - #TIME) (BEFORE - #NOW}}))

The concepts in the graph are John, Mary, John's hand,

and the time. After memory establishes the referents to

the concepts, we have:

23

((CAUSE ((PROPEL #JOHN #C0001 #JOHN #MARY))
((PHYSCONT #C000l #MARY))
(TIME - #C0002)))

where C0001 represents John's hand and C0002 is the time

of the event. The main proposition of this sentence is

thus understood as "John propelled something (his hand)

at Mary causing it to make physical contact with Mary. 11

Before doing its inferencing, memory generates

subpropositions, which are units of information conveyed

directly by the conceptualization produced in conceptual

analysis after referents are established.

Subpropositions are of three types:

1.) Explicit focussed -- that the main event of the

sentence occurred. In our example, this is the CAUSE

proposition above.

2.) Explicit peripheral -- that other stated events

in the sentence occurred. In our example, the PROPEL

and PHYSCONT propositions are peripheral.

3.) Implicit -- that events not stated, but

normally true, occurred. 11 A hand was moved." is and

example of an implicit subproposi tion.

Inferencing starts by assigning the main

proposition (CAUSE in our example) a STRENGTH= 1, TRUTH

= T, MODE= T, REASONS= T (means not inferred, but

stated), and putting it on the inference list. Then the

PROPEL and PHYS CONT inferences are given STRENGTH = 1,

24

TRUTH= T, MODE= T, and REASONS= the CAUSE

proposition, and added to the inference list. Before

inferring anything from PROPEL and PHYSCONT, memory

infers more about CAUSE. Thus inferencing is done

breadth-first.

Inferred from the CAUSE ••• PROPEL ••• PHYSCONT

proposition is the possibility of a NEGCHANGE in the

heal th of the person being hit. This is an example of a

Result inference. This is done by using a pattern in

memory which states that such a combination CANCAUSE a

negative change in health. Another inference is that

John intended that result, which is an Intention

inference:

((MLOC ((CANCAUSE ((NEGCHANGE #MARY #PSTATE))

((POSCHANGE #JOHN #JOY}}))

C0001))

where C0001 is John's long-term memory.

Memory always infers that actions are volitional Unless

this is contradicted. The meaning of this pattern is

that it was in John's long-term memory (MLOC) that

hitting Mary CANCAUSE her pain and thus him joy.

From the NEGCHANGE proposition, memory tries to

determine the cause. In this case, the REASONS for the

NEGCHANGE give the cause. If the cause was not present,

memory would make a prediction that information about

the cause will follow. Another inference from NEGCHANGE

25

involves a belief pattern that someone who has a

NEGCHANGE will seek a POSCHANGE (remedy). This leads to

several predictions about what Mary will do next (go to

a doctor, take medicine, hit John back) •

From the inference about John's volition, we try to

infer a cause -- why it caused John joy for Mary to be

hurt. A belief pattern in memory associates with this

pattern the belief that such a person must have been

angry. Thus this is a belief-pattern inference. It is

further inferred that the cause of anger is something

that Mary did to John. When no cause for this is found

in memory, the system generates the response, "What did

Mary do to John?", thus indicating the depth of its

understanding.

Notice that the inferencing need not be

particularly deep (only three levels from the stated

fact) in order to understand the sentence, even in terms

of the goals of the actors. Shallow inference is a

characteristic of natural language understanding. Time

constraints prevent such systems from making the deep

inferences needed in problem-solving systems. One

expects the computer to take some time to solve a

problem, but the response to "John hit Mary." is

expected to be almost instantaneous.

26

3. Discussion

MARGIE represented a significant improvement over

previous systems. First, it embodied a theory of non­

deductive inference which more accurately models human

understanding. Second, it demonstrated the usefulness

of conceptual dependency as a language-free meaning

representation language which could be applied to

inference. Finally, it demonstrated that understanding

is not so much syntax-based as inference-based. For

example, syntactically incorrect sentences can be

understood if the proper inferences are made. Consider

"John his dog the bone gave.". While this sentence is

incorrect syntactically, and thus syntax gives no clue

as to who did the giving, we understand that John gave

the bone to his dog, because we know that dogs like to

get bones and people like to give bones to dogs.

MARGIE's main shortcoming was its uncontrolled

process of inferencing. Although the implementation of

the system did place constraints on the depth of

inferencing, in theory the inferences for each sentence

could go on and on. When new sentences arrive, they

cause more inferences, resulting in a combinatorial

explosion. The problem is that MARGIE employed a very

primitive theory of context -- the context of a new

input sentence was the (possibly huge) set of inferences

27

generated by previous sentences. This was a direct

result of the belief that inferences, unlike deductions,

are not always goal-directed. MARGIE, however, produced

inferences as though they were never goal-directed, that

is, all inferences were made bottom-up from the input.

The systems which follow represent attempts to add some

control and direction to the inference process.

28

IV. SAM

There have been two basic approaches to solving

MARGIE's problem of uncontrolled inferences, both of

which involve developing a theory of context among

sentences which MARGIE did not have. The first approach

incorporates high-level knowledge structures which

control the inferencing process by specifying a context

and providing predictions about how subsequent input

might fit the context. The second focuses the

inferencing on plans and goals which can explain the

relationships between actions described in sentences.

1. Knowledge Representation -- Scripts

The first high-level knowledge structures used for

inference control were scripts [Schank and

Abelson,1977]. Scripts describe knowledge of everyday

situations which human understanders often use to

comprehend stories. This is especially useful in

situations in which causal relationships between events

are not stated explicitly because of the speaker's

assumption that the understander has knowledge of the

stereotypical relationships in the given situation.

Scripts consist of a sequence of causally related

events (and the causal relationships between them) which
describe a well-known situation. Examples of such

situations are going to a restaurant, which consists of

29

the events of finding a table, ordering, ea ting, and
paying: and riding a bus, which consists of the events
of boarding, paying, finding a seat, riding, and getting
off. The characters in a script are said to fill
various stereotyped roles in the script: the objects
used by the characters are called props: and the places
that occur in a script are called settings. Together,
the roles, props, and settings of a script make up the
script's variables.

2. Processing

The system SAM [Cullingford,1981] uses scripts to
understand stories about everyday situations. SAM has
three basic modules. The first is conceptual analysis,
which is the translation of English language input
sentences into Conceptual Dependency representation.
The second resolves references to actors in a sentence
by identifying them with roles in a script to which they
were bound because of previous sentences, or if no role
was previously bound to the actor, to determine into
which role they fit. The third is the script applier,
which locates new input in the data base of scripts,
sets up predictions about what input is likely to
follow, and instantiates the appropriate parts of
scripts. The script applier is therefore the principal
inferencing component of the system.

30

Since the script applier deals with the language­
free CD representation of the input, the events in SAM's scripts are also in CD form. The basic idea behind the script applier is to match the CD patterns found in the input with CD patterns found in the scripts in order to determine which script applies and which event in the

script is being referred to by the input. Once this is done, the variables can be bound according to pattern­
matching criteria involving the known characteristics of the actor, object, or place compared to the expected
characteristics of the role, prop, or setting.

Thus SAM, like MARGIE, uses predictions of what may follow in the story matched against what does follow in order to understand the meaning relationships between
the thoughts. The difference is that SAM's predictions are embodied in the structure of the script, which
contains information about what is how events fit
together. Thus there need not be the kind of shot-in­
the-dark inferences generated by MARGIE in the hope that some may be useful predictions.

The script applier first introduces the most
inclusive script referred to in the story by matching a story event against script headers which are included in scripts to determine what story patterns should cause
their instantiation. Subsequent inputs are recognized

31

as events in the script, again by pattern matching. As

these inputs are recognized, the stript applier makes

predictions about what information is likely to follow.

When an input is not recognized in the script or by a

prediction, the applier assumes that a new script is to

be introduced, and again the most inclusive script is

introduced, starting the cycle all over again. The

instantiation of a new script does not usually mean the

removal of an existing one, since the information in

both may be useful in understanding. This requires that

when a new script is brought in, roles and props must be

matched with those of the old script. Thus related

scripts have interfaces which relate their variables by

function.

As implied above, pattern matching is done in

phases. First, the constant parts of the

conceptualization for the input are matched against the

constant parts of the pattern found in the script.

script patterns may represent events in an already

instantiated script, or if the pattern matching is being

done in order to determine which script is to be

instantiated, the pattern used will be a script header.

This first phase is called the backbone match. The

backbone match has four basic rules: 1) "literal• roles

and fillers specified in the pattern must appear in the

32

input; 2) any extra roles and fillers in the input are

ignored: 3) a dummy which appears more than once in a

pattern must match the same thing from the input

every time it appears: and 4) an empty slot in the input

matches anything, unless the pattern uses the EXPLICIT

tag to demand that a filler be present.

In the second phase, a process called Rolefit

receives from the first phase the candidates for

variable bindings, and checks them for reasonableness.

This is done by including with each variable a set of

conceptual categories into which an object must fall in

order to be bound to that variable. In addition,

another process Rolemerge is used to determine whether

values previously bound to variables may be bound to new

variables. This process uses knowledge attached to the

variables to see, for example, if a given actor may have

two roles in a script, or whether these roles must be

filled by two different actors. In the latter case,

Rolemerge would return a matching failure if an attempt

was made to bind an actor to a role when that actor was

previously bound to an exclusive role.

In order to do prediction, the events of a SAM

script are grouped into episodes. For example, the

episode "finding a seat" on a bus would consist of the

events "see an empty seat", "go to it", and "sit down".

33

The prediction phase clears from active memory those episodes which occurred before the currently-matched event pattern, and brings into active memory those episodes containing event patterns predicted by the present one. This, of course, reduces the combinatorial explosion of inferences which plagued MARGIE.
Another important inferencing task performed by SAM involves implied preconditions for scripts, episodes, and events. Whenever SAM finds that an event has taken place, or a script is to be instantiated, the preconditions for the event or the script are assumed -to be true unless otherwise indicated in memory. For example, upon finding that John went into the library, SAM assumes that the library is open.

The event patterns in SAM scripts are the usual CD events, typically involving a primitive CD ACT with slots for case roles appropriate to the ACT. The script header patterns, which are used for script instantiation are somewhat different. Attached to each script header is a set of predictions about what should happen first in that script. Script header patterns are of four types, each of which is a complete conceptualization, not just a reference to an object. Thus scripts are instantiated by complete events, so that nJohn walked into a restaurant." will cause the RESTAURANT script to
34

be introduced, but "John walked past a restaurant." will

not. Precondition headers involve a weak prediction

that a script should be introduced because one of the

preconditions for the script is mentioned in the story.

For example, "John was hungry." is a PH for the

RESTAURANT script. Instrumental headers commonly occur

when the input refers to two or more scripts, one of

which may be an instrument for the others. For example,

the BUS script is instrumental to many scripts which

require a change of locale. Locale headers cause

scripts to be instantiated when an actor is found to be

present in a given locale. For example, John's presence

in a restaurant represents a strong prediction that

RESTAURANT is to be instantiated. Direct headers have

the strongest predictive value, and are thus the first

patterns to be checked in a context. In a DH, the

script situation (not just the locale) is mentioned

directly in the story.

3. Discussion

SAM successfully understood stories dealing with

stereotyped situations, thus demonstrating the

appropriateness of scripts for this purpose. The script

model proved to be an especially useful one in

understanding newspaper stories, which usually involve

situations in which the information provided fits into

35

well-defined categories. Scripts provided control of
the prediction component necessary to successful non­
deductive inferencing, which led to a reduct ion in the
number of useless inferences when compared to MARGIE' s
bottom-up "shot-in-the-dark" inference generation.

In the next two sections, we will discuss systems
which use frames. Frames are high-level knowledge
structures which afford the same efficiency in inference
control as scripts.

36

V. GUS

Another high-level knowledge structure used for

inference in natural language systems is the frame

[Minsky,1975]. Frames are of many forms, all of which

involve two main ideas. First, a frame represents a

form whose structure is known by its user in terms of

slots to be filled. Second, a frame is instantiated

only when needed, and may be discarded when no longer

relevant.

A system which uses frames to represent knowledge

for inference is GUS [Bobrow et. al.,1977]. Unlike many

of the other systems mentioned in this paper, which read

and understand stories and then answer questions about

them, GUS is a dialog system --it carries on a

conversation with the human user. GUS acts like a

travel agent. It asks questions of the client in order

to schedule an airline flight. If the client needs

flight information in order to make a decision, GUS will

provide that information upon request. Thus although

GUS attempts to maintain control of the dialog, there

are times when the client may take over control.

l. Knowledge representation -- Frames

A frame instance in GUS consists of three parts:

the name of the frame, which is only a mnemonic for

programmers and is not used in processing~ a reference

37

.
~ . • • • • .. • • • -1r,-,1_I.,-

to. a prototype frame: and its slots. Slots have slot­

names, fillers, and possibly attached procedures. An

example prototype frame is the TRIP-SPECIFICATION frame,

which contains slots for all the characteristics of a

trip, such as departure time, arrival time, and flight

number. In addition to the usual values, slot fillers

may be other frames, or, for a prototype frame, a

description constraining the fillers for the slots of

any instance. ISA is used in a frame instance to

specify what prototype it is an instance of.

The procedures attached to the slots are for

finding fillers and other types of reasoning. There are

two types of attached procedures -- servants and demons.

Servants are activated on demand. They are indicated in

the slot by the directive TOFILL followed by a procedure

name. Thus the procedure is being suggested by the

frame as a possible way of filling the slot. Two

standard servants are ASKCLIENT, which causes GUS to ask

the client for information on how to fill the slot, and

CREATEINSTANCE, which indicates that a new instance of a

specified prototype should be created to fill the slot.

Demons are activated automatically. Some slots

have the directive WHENFILLED, followed by a procedure

name. Thus this procedure is run when the slot is

filled. For example, the DATE frame contains a slot for

38

DAYOFWEEK, which has a demon WHENFILLED COMPUTEDATE.

T~is directs GUS, upon receiving the information "next

Tuesday", to compute the month, day, and year from

contextual knowledge (e.g. knowledge of the current

date and day).

GUS uses several permanent knowledge structures. A

stern dictionary contains a list of stems and idioms:

together with morphological rules, it is used to

determine word meanings. A transition network grammar

is used for syntactic analysis. This is unlike MARGIE

and SAM, whose parsing phase is semantics-driven rather

than syntax-driven. A case-frame dictionary relates

to each verb a set of semantic cases. These slots are

filled in during case-frame analysis. Thus frames are

used in semantic analysis as well as in inference.

Information about conversational patterns is stored in

domain-specific frame forms. These relate words and

phrases commonly used in conversation to the domain of

travel. For example, in "I want to go to Florida", the

phrase "want to go" is interpreted as a plan to take a

trip, causing TRIP-SPECIFICATION to be instantiated: the

agent of go is interpreted as the TRAVELLER in the TRIP­

SPECIFICATION: and FLORIDA is the DESTINATION. A dialog

query map, which is a set of templates for questions the

system may ask, is used in generating GUS's questions to

39

the client, and a flight description template, together
with a data base containing the Official Airline Guide,
is used to generate responses to the client's questions.
Finally, of course, frames and attached procedures are
used for the inference component of the system, and to
direct the dialog.

2. Processing

GUS uses frames to direct the dialog by

instantiating a top-level dialog frame. The system then
goes through the slots of this frame in order, trying to
find fillers. When a slot is filled by a new frame

instance, the system immediately tries to fill the slots
of the new instance. Thus slot-filling is ordinarily
done depth-first through the hierarchy of frames. Since
GUS is trying to fill slots, if ASKCLIENT is the servant
for a slot, GUS maintains control of the conversation.
Slots may be filled out of this depth-first sequence if
the client volunteers information, or if attached

procedures are called.

40

VI. ~ Malaprop

Another system which uses frames is Ms. Malaprop

[Charniak, 1978]. Ms. Malaprop is a system which reads

stories about painting (walls and houses, not pictures)

and answers questions about them. Real-world knowledge

in the domain of painting is crucial to understanding.

The purpose of the system is to demonstrate a knowledge

representation of events and causes in a specific

domain, and to use that knowledge in making inferences

in language understanding.

1. Knowledge Representation -- Frames

The goals of the knowledge re presentation are:

1.) Modularity -- if a process can occur in several

domains (e.g. evaporation can occur in painting, but

also in such domains as boiling and distillation), there

should be a separate, single frame representation for

that process rather than incorporating slightly

different versions of the frame for the process into

each of the domain frames.

2.) Separation of worldly knowledge from control

knowledge systems like PLANNER, which attach control

knowledge to worldly knowledge, have the problem that

the worldly knowledge can only be used in the way that

the control knowledge directs.

3.) Cleanliness -- frames should be precisely

41

defined with no procedural embedding.

4.) Adaptability to problem-solving in a

complex, problem-oriented domain (such as painting),

language understanding may involve some problem-solving.

The basic type of knowledge represented in Ms.

Malaprop is how-to-do-it knowledge. The statements

express states to be achieved rather than actions to

perform.

Objects used in painting are represented as

variables, which are declared in frame form with value

restrictions. Absolute restrictions specify conditions

the values must meet. For example, the instrument used

in painting must be solid. Normal restrictions specify

.defaults. For example, the instrument is normally a

paint brush.

The process of painting itself is represented as a

complex event. Complex events are similar to scripts.

They have three main parts. The first part is the

variable list, described above. The second part

specifies the goal of the event and a name given to the

goal. For example, the goal of painting is called

PAINTING-GOAL, which is (PAINT coats OBJECT), where

OBJECT is one of the variables. The third part is the

event, which specifies the temporal sequence of states

to be achieved in reaching the goal. The event may

42

contain selection and repetition of states.

In addition, complex events have two types of

links. The COMES-FROM link, attached to one of the

states in the event part, is used to specify statements

in other structures which indicate how the state may

come to be achieved. For example, the state called

PAINTING!, which is {OBJECT is clean) , in the PAINTING

complex event, has a COMES-FROM link to the goal of the

complex event WASH. This goal is called WASH-GOAL and

is (WASH-OBJECT is clean) , where WASH-OBJECT is a

variable which can be matched to the variable OBJECT in

PAINTING. This, of course, limits the additivity of the

knowledge representation, since in order to add a new

complex event frame which uses other frame modules to

achieve its states, one would have to know the names of

the statements used inside the other frames.

The LEADS-TO link is used to find a cause-effect

relationship which can help in inferring the reasons for

actions. In PAINTING, we have the state PAINTINGS,

which is {NOT (STICKY-ON SOME-PAINT INSTRUMENT}), which

indicates the necessity of cleaning the brush after

painting. This state is linked to a simple event called

PAINT-DRY via a LEADS-TO link. A simple event expresses

a single cause-effect relationship of the form (pre­

condition CAUSES condition) as its event part. A pre-

43

condition of PAINT-DRY is PAINT-DRY!, which is (STICKY­

ON PAINT OBJECT). A resulting condition is PAINT-DRY4,

which is (NOT (ABSORBENT OBJECT)). Note that PAINT-DRYl

matches the negation of PAINTINGS. The LEADS-TO link

thus allows the system to answer the question, "Why did

he clean the brush?" with "Because if he didn't, it

would no longer be absorbent.".

State frames describe relations between given state

and other states. For example, the LIQUID-IN state

frame indicates that if an object is in liquid, then it

is not in contact with the atmosphere. This helps in

answering questions about why the painter might leave

the brush in the paint when he takes a break.

Another type of frame is the object frame. These

describe physical objects. The object frame for PAINT­

BRUSH has heading PAINT-BRUSH OBJECT and contains

variables BRUSH, BRISTLES, and HANDLE. The description

part of the frame contains conditions on the variables

which make it a paint brush. Examples are (SOLID

HANDLE) and (PART-OF HANDLE BRUSH). There is also a

LEADS-TO link in the PAINT-BRUSH frame to PAINTING­

BRUSH, which is (PAINT-BRUSH INSTRUMENT). This is one

of the normal restrictions on the INSTRUMENT variable in

the PAINTING complex event frame, and since it matches

the heading of the PAINT-BRUSH frame, we infer that an

44

instrument which satisfies these conditions is a normal

instrument for painting.

Adjunct frames are used for specific examples of

complex events. For example, the PAINTING complex event

contains nothing which would make it specific to brush

or roller painting. Instead, there are adjunct frames

for each which fill in the specifics. Thus the ROLLER­

PAINTING adjunct frame has variables INSTRUMENT and

TRAY. In this case, INSTRUMENT is normally a roller

(something which satisfies the description in the ROLLER

object frame). The MASTER for this adjunct frame is the

PAINTING complex event. The event portion of the

adjunct frame refers to statements in the master. For

example, the statement

(DURING PAINTING3 ROLLER-PAINTING!)

with

ROLLER-PAINTING! (FLUID-CONTAINMENT TRAY PAINT)

indicates that in order to achieve PAINTING3, which is:

(LOOP
PAINTING4 (PAINT on INSTRUMENT)
PAINTINGS (INSTRUMENT in contact with OBJECT)) ,

if we are roller painting, the tray must contain fluid.

Also

PAINTING4 COMES-FROM: (ROLL3 (ROLL INSTRUMENT TRAY))

indicates that the way to achieve PAINTING4 (that there

is some paint on the instrument), if we are roller

45

painting, is by rolling the instrument in the tray. 2. Processing

Internally, a frame is stored as an atom with a property list of properties such as VARS, EVENT. Frame statements are stored as atoms also, with properties such as BODY and COMES-FROM. Frame statements are indexed according to predicates in which they appear, thus affording two-way linking of knowledge structures. As is implied by the word "frame", a complex event frame becomes active when it is mentioned in the story. Since stories are short, frames do not become inactive later, that is, unlike SAM, the system does not forget. Removing useless frames is something that would be necessary if stories were long, or if they changed situations often. The list of active complex event frames is called the context list.
Likeliness is used when information indicating how a variable might be bound is received. This is done by classifying bindings as GOOD, BAD, SATISFACTORY, or POSSIBLE. A GOOD binding indicates that the variable had been previously bound to the object, or that none of the other three are applicable. A BAD binding is used when the variable had been previously bound to something else, or when none of the normal conditions on the variable are matched by the object. A SATISFACTORY

46

binding is given if there are no normal conditions and

all of the absolute conditions are satisfied. A

POSSIBLE binding is used if the only unsatisfied normal

conditions deal with properties the object should have

rather than with the type of object it should be.

Ms. Malaprop does deductive read-time inferences of

three types. Consistency inferences involve resolving

contradictions. Whenever a new fact is added to the

data base, the system checks to see if it is the

negation of some fact already in the data base. If so,

the system resolves the inconsistency by deleting either

the original fact or the negation. If the original fact

is deleted, the facts inferred from it may be incorrect.

So Ms. Malaprop adds their negations to the data base in

order to induce a new round of consistency inferencing.

This process is repeated until all inconsistencies are

removed. This is facilitated by the two-way linking of

inferences -- when a fact is inferred from another, this

is recorded on both sides.

Unexpected situation inferences are made when

something unexpected, according to the active frames,

takes place. That is, the story gives information which

does not fit into any slot. Since these are likely to

lead to important facts, the system attempts to infer

the consequences.

47

Now we will see an example of the third type of

inference, a needed-fact inference. In order to prove

the assertion (PHYS-OB PAINT-BRUSHl), the system looks

at the state frame for PHYS-OB. This frame contains the

relation

(PHYS-OBl (PHYS-OB OB)
!FF (OR

PHYS-OB2 (SOLID OB)
PHYS-OB3 (LIQUID OB)
PHYS-OB4 (GAS OB)).

Recall that PHYS-OBl, PHYS-OB2, PHYS-OB3, and PHYS-OB4

are just names for the statements that follow them.

Thus this relation states that something is a physical

object iff it is a solid, liquid, or gas. The state

frame for PHYS-OB also contains the line IF-NEEDED:

((INFER-FROM PHYS-OBl)). This directs the system to use

the rule PHYS-OBI to prove that something is a physical

object. The system will now use the SOLID state frame

(then the LIQUID and GAS state frames, if necessary) to

try to prove (SOLID OB). The SOLID state frame has the

variable SOL and the line IF-NEEDED: ((ISA-LINK SOL)).

This directs the system to use the ISA link for the

variable SOL, which is bound to OB, which is bound to

PAINT-BRUSHl. Since PAINT-BRUSHl ISA PAINT-BRUSH and

the PAINT-BRUSH object frame describes a paint brush as

a solid, the assertion is proven. ISA is used here not

as a predicate, but as a pointer to the most restricted

48

object type of the given object, so in the case of

PAINT-BRUSHl, the ISA pointer stores PAINT-BRUSH.

3. Discussion of Frames

Frames make "explicit the meaning relationship

among thoughts" by identifying thought as fillers of

slots in frames which were instantiated by other

thoughts. Charniak lists three reasons why frames are

popular knowledge structures for inference in natural

language understanding:

1. Frames are a natural way to partition knowledge.

By only bringing in the relevant frames, the

combinatorial explosion of inferences is eliminated.

2. Frames provide for the broad, shallow

inferencing useful in understanding language. To

understand language, we often need a broad knowledge of

the aspects of a situation, but we seldom have to do the

very deep sort of reasoning necessary in problem­

solving. For example, in understanding a story about a

restaurant, we need to know about ordering from a menu,

paying, tipping, seating, and a variety of other

aspects, but we seldom have to make a deep inference

about the motives of a waiter in wanting a tip (he needs

a new car, or wants to take a vacation). Frames ,

ordinarily contain the former knowledge, but not the

latter.

49

3. The representation is more natural than in

deductive methods such as predicate calculus. For

example, it is much easier to express type constraints

on variables.

Frames and scripts are based on the frame

comprehension hypothesis: that a major part of

understanding is the matching of incoming information

against framed knowledge of what normally occurs. The

problem with frames is that they are inadequate for

understanding tasks in which the understander does not

know what normally occurs, that is, when he is asked to

understand a situation about which he knows nothing, and

cannot therefore make reliable predictions.

·s0

VII. PAM

PAM [Wilensky,1981] is was written to correct the

inadequacy of the frame hypothesis for understanding

situations about which the reader has no prior

stereotypical knowledge. Human understanders realize

that an event in a story is part of a plan that an actor

is carrying out in order to meet a goal, even if they

have never had such a goal or used such a plan. In

addition to the plan/goal theor1 in [Schank and Abelson,

1977], PAM is able to deal with plan/goal situations

involving the following:

1.) Goal subsumption -- A recurring goal may lead

an actor to plan for all occurrences at the same time.

2.) Goal conflict -- A character may have several

goals which are in conflict with one another.

3.) Goal competition -- Several characters may have

goals which are in conflict with one another.

4.) Goal concord -- Characters may have goals which

coincide.

1. Knowledge Representation -- Goal/plan rules

PAM's knowledge base consists of knowledge about

planning. PAM does not do planning, but it needs this

knowledge to generate explanations of actions which

appear to be goal-based. The planning knowledge is

encoded in rules, which are stored as LISP atoms with

51

properties including conditions, actions, and

suggestions.

Conditions are predicates in CD form. These

predicates indicate the conditions which must be found

in the story in order for the rule to be applied. For

example, the condition for HUNGER-RULE is that the CD

representation of an event in the story matches the CD

representation for "Xis hungry.", where Xis some actor

in the story.

Actions of a rule are used to indicate what should

be done when the rule is applied. The actions for

HUNGER-RULE direct the system to add a goal, a source of

the goal, and a plan for attaining the goal to the

knowledge. The goal role is filled with the "Satisfy­

hunger" goal for some planner. The source of the goal

is the theme of having the hunger drive, and the plan

role is left empty until input indicating how the actor

intends to achieve the goal is found.

Gaps in rule structures are filled by appealing to

.the suggestions for the rule. Suggestions indicate the

target gap to be filled, the place to look to fill it,

and a possible rule to apply. Thus HUNGER-RULE contains

a suggestion whose target is the plan role. This

suggestion directs the system to focus on INPUT (the

story, or information inferred from the story) to see

52

what the plan for satisfying hunger might be. The rule

to apply to fill the gap is called a request. The

request rule for this suggestion in HUNGER-RULE is

SUITABLE-PLAN-RULE. The condition of SUITABLE-PLAN-RULE

is SUITABLE-PLAN-PREDICATE, which examines a list of

plan rules associated with a goal. Among the plan rules

associated with the goal of hunger satisfaction is a

rule called DO-RESTAURANT-PLAN-RULE. Thus if it is

learned that an actor who is known to have a goal of

satisfying hunger subsequently enters a restaurant, the

system is able to identify this as part of a plan to

attain a goal, and has thus explained the connection

between the sentences.

2. Processing

PAM's inferencing component combines top-down

predictive ability with bottom-up inferencing. The

latter is necessary because PAM does not rely on the

availability of a frame or script, since it a~tempts to

understand new situations. We may note here that

MARGIE's inferencing was primarily bottom-up, in that

inferences were generated from the input to form a

context. On the other hand, frame and script systems

have inferencing which is primarily top-down, in that

once a script or frame is chosen, predictions are made

from that knowledge structure to form a context, and the

53

input is then matched against the predictions. PAM does

inferencing in both directions.

PAM processes an input according to the following

algorithm. First, the predictive component determines

if there is a prediction which is confirmed by the

input. If there is, the prediction explains the input.

If not, the bottom-up component takes over. This

component attempts to draw inferences from the input,

which are then checked against the predictions. When an

inference is found that matches a prediction, the input

and inferences made in explaining it are added to the

story representation by a third component called the

incorporation component.

The interaction of these components, and how they

use the knowledge structures described above can be seen

by examining how PAM processes the story "John was

hungry. He ate at a restaurant." When the inferencer

receives the Conceptual Dependency representation of the

first sentence, there are not yet any predictions which

explain the input, so the predictive component turns

over control to the bottom-up component. The CD form of

the sentence matches the condition for HUNGER-RULE, i.e.

that someone is hungry. The HUNGER-RULE action

structure is then built in memory, with the roles

PLANNER and PLAN left as gaps. The focus of the

54

• l • • > • • • • ~ - • • • • • • ...

suggestion for filling the PLANNER gap is the ACTOR of
the CD form of the sentence. The request is FOCUS-REQ,
which moves the focus into the target if the focus is
not empty. The focus is already filled with JOHN, and
so this gap is filled immediately.

The bottom-up component then passes the structure
back to the predictive component. Finding fulfillment
of a prediction is implemented as determining if there
is a request focussed on the input structure whose condition is met by the structure. There are some very

general predictions in PAM before a story even starts so
that the processing of the first sentence may terminate
(inferencing terminates when a prediction has been confirmed). One such prediction is a request whose condition looks for a structure in the input that has a

theme in it. The structure for HUNGER-RULE satisfies
this condition, so this prediction is fulfilled, and the
incorporation component attaches this structure to the
story representation.

The second sentence does not immediately fulfill the prediction of the first, i.e. that a plan for satisfy-hunger will be found, since the second sentence
merely states an action. The bottom-up component finds
a rule called DO-RESTAURANT-PLAN-RULE whose condition,
that a person enters a restaurant script, is met by the

55

input. This rule has an action which creates a

structure for a plan, DO-RESTAURANT-PLAN, rather than

for a goal as the first sentence does. The gaps of this

plan are the PLANNER, which is filled in by using the

request FOCUS-REQ with the focus being the CUSTOMER of

the RESTAURANT script as it appears in the input CD; the

RESTAURANT, which is filled similarly, and the ACTIONS,

which is used to specify the actual events and is thus

filled with the entire CD input action. Now the

predictive component finds that the request for the PLAN

in HUNGER-RULE is focussed on input, where the structure

for the restaurant plan is located. Furthermore, the

request, SUITABLE-PLAN-RULE, has its condition met by

this plan, since it is .one of the plans for satisfying

hunger. Thus the incorporation component can attach the

restaurant plan to the PLAN gap of the HUNGER-RULE,

which means that the system has recognized the second

sentence as a plan for attaining the goal of satisfying

the condition stated in the first.

3. Discussion

PAM was able to understand a variety of goal-based

stories, even when the situation was one for which it

had no framed knowledge. This was due to its knowledge

of plans and goals embodied in its rules, which can be

applied in the absence of stereotypical situations.

56

The problem with PAM was that its bottom-up

inferencing, while restricted to inferences involving

plans and goals, still led to a problem of uncontrolled,

irrelevant inferences. The theory behind PAM was that

the plans and goals of all actors should be constantly

monitored. [Schank,1979] gives an example of a sentence

in which PAM would, with a full body of planning

knowledge, generate irrelevant inferences which a human

understander would probably not bother to think about:

"A small twin-engine airplane carrying federal marshals

and a convicted murderer who was being transported to

Leavenworth crashed during an emergency landing at

O'Hare Airport yesterday." PAM would generate

goal/plan inferences about the marshals, the murderer,

the pilot, and maybe even the implicitly mentioned air

controllers. The goal of the marshals is to transport

the convict to prison, which a subsumption of the higher

level goal of keeping a job, which they do to get money,

~nd so on. These inferences are not really necessary to

the understanding of the sentence, but are generated in

an attempt to keep track of all goals and plans.

57

VIII. Commonsense Algorithmic Knowledge
Like Ms. Malaprop, a system by [Rieger,1976] uses

knowledge structures and processes which are adaptable
to both problem-solving and language comprehension.
Since our topic is not problem-solving, we will discuss
only the knowledge structures and how they are used in
language comprehension.

1. Knowledge Representation -- Commonsense Algorithms
The basis of the knowledge structure is commonsense

algorithmic knowledge, which represents dynamic
knowledge relating to actions, states, causality, and
enablement. The events are classified as actions,
states, statechanges, tendencies, and wants. An action
is simply something an actor can do, such as grasp or
strike. A state is an actorless world condition, such
as (LOCATION JOHN HOME(JOHN)) which indicates that John
is at his home. An example of a statechange is then
(LOCATION JOHN HOME(JOHN) OFFICE(JOHN)) which indicates
that John's location changes from his home to his
office. A tendency is an actorless action which occurs
whenever enabling conditions are satisfied, such as
gravity. A want is a state or statechange which an
actor desires.

The commonsense algorithms also contain links
between the events. Each of the links has restrictions

58

on the type of events it may connect. The links may

represent causality, enablement, concurrency, iteration,

gating, or intent.

Causality links connect actions or tendencies to

states or statechanges. A causality link may be one­

shot or continuous, indicating whether the action or

tendency needs to be applied continuously in order to

produce the state or statechange. Causality links of

either type may also be gated, that is, there may be a

set of states associated with the link which represent

conditions which must be satisfied in order for the

state or statechange to occur. By-product links may

also be one-shot or continuous and gated or not gated.

They are used to represerit states or statechanges which

do not occur directly as a result of an action, but

occur nonetheless. Thus the direct statechange a person

experiences when reading is an increase in knowledge or

pleasure, the by-product statechange may be tired eyes.

State-coupling links express equivalence of states

or statechanges with unspecified causality. These may

also be gated. For example, in the presence of the

states (ATTACHED w Z) and (MOVEABLE Z), the statechange

(LOCATION w X Y) will be equivalent to the statechange

(LOCATION z RS), where Rand S depend upon X and z.
This allows the representation of the fact that when

59

John moves his arm, he also moves his hand.

Threshold links express good continuation of a

statechange to some desired level. Thus in the presence

of the gating condition (FACING X Z), the action (WALK

X) produces a statechange (LOCATION X LOC(X) Z). This

is linked by a threshold link to the state (LOCATION X

Z), showing that the continuation of the statechange

will eventually produce the resulting state.

Enablement links represent connection between

actions or entire algorithms which may be viewed as

primitive for some purpose, and states which are

preconditions for those actions or algorithms.

For language comprehension (as well as for problern­

solving), commonsense algorithms are organized in

networks called causal selection networks. The

representation is explicit rather than embedded in

procedures so that causality and enablement can proceed

in both directions. Each network represents one state

or statechange concept. Each node of the network,

organized as a tree, is a test for checking real-world

knowledge or contextual knowledge in order to decide how

to proceed.

At the leaves of the tree are commonsense algorithm

patterns for achieving the state or statechange which

the network represents. These algorithms are called

60

approaches, and are of three types: abstract
algorithms, mech~nism descriptions, and sequential
abstract algorithms.

Abstract algorithms are themselves divided into
forms. The first is a causality link connecting an
action to a statechange. The second consists of a
tendency, with enablement links from states, connected
by a causality link to a state or statechange. The last
form of abstract algorithm is a state-coupling link.

·The state or statechange at the bottom of each
represents the goal state for the network.

Mechanism descriptions represent internal cause­
effect relationships between events in a mechanism. A
sequential abstract algorithm is a linear list of
abstract algorithms stored when a plan is found which
solves a problem, and recalled when the problem arises
again.

The gate conditions of the approaches may have
recommendations, which are pointers to other abstract
algorithms which contain those states or statechanges.
The first time an algorithm is reached, a gating
condition has no recommendations, so the network which
has it as a goal must be traversed. Once this process
has found the abstract algorithm for the gating
condition, the two are linked, so that if the gating

61

condition is encountered again, the abstract algorithm

producing it tan be found without traversing the ~etwork
again.

Networks or portions of networks can be bypassed in
another way. Once a test is performed in one network,

its result can be stored, allowing the test to be

bypassed if it occurs again with no relevant

statechanges between occurrences. This is done by

adding a path from the test which precedes the given

test to the test which is performed afterward whenever
that result occurs. Since tests are shared among

networks, this is done in every network in which that

test occurs. The system then seeks the transitive

closure of all these links, allowing it possibly to skip

~ntire networks.

2. Processing

Causal selection networks are used for language

understanding according to the prediction/fulfillment
model of comprehension. The model can be made explicit
as follows: given a context C(Tl), elucidate the

relationship between it and the next thought T2. Call

this the interpretation of T2 in this context, and

denote it I(T2,C(Tl)). Tl is used to generate

expectations (predictions) of actions and see how the

subsequent thought T2 fits in. One way to do this is to

62

start with goals, which are expressed as wants of states

or statechanges. Predicting the goals then amounts to

identifying the tops of the causal selection networks as

representing likely goals. The approaches at the bottom

of the networks, together with their subgoals and

recommended actions, then represent the realm of

predicted actions.

In order to do this, the idea of a causal selection

network is adapted by defining two new types of

networks: inducement networks and prediction networks.

Inducement networks are used to discover what states

some action or state might induce in a potential actor.

These are similar to causal selection networks, except

that at the leaves there is a set of internal states

which might be induced. Thus each network represents

and inducing action or state; traversing the network

amounts to discovering what it might induce. As each

thought enters, the appropriate network is traversed for

each potential actor. The states that are discovered

represent the input to the prediction networks.

Prediction networks are used to discover the goals

some internal state might cause an actor to have. At

the leaves is the set of possible goals. Thus each

prediction network represents a certain state in an

actor; traversing the network amounts to discovering the

63

predicted goals of the actor. These goals are then
input into causal selection networks, which discover
actions from knowledge of goals.

To bypass prediction networks and causal selection
networks, inducement networks may contain
recommendations of actions. This has the advantage of
using not only the internal state of an actor for
prediction (which is all that a prediction network has
available), but also the action or state (available to
an inducement network) which induced the internal state. . .

Clearly, an actor's response to an internal state might
well depend on what caused that state. To produce
higher order inferences, the predicted goal states may
be fed back into inducement networks to see what states
they might cause.

Having finished the prediction phase, which depends
only upon the context, the system will then see how the
input thought fulfills the predictions. Each input
thought is matched with an abstract algorithm which may
occur at the bottom of a causal selection network. The
system then searches up the causal selection network
hoping to find a goal in the prediction set. If one is
found, I(T2,C(Tl)) has been determined.

This upward traversal is done as follows. At each
node, pose the test. If the test would have directed

64

the system to the node it came from below, keep going.

If this does not happen several times in a path, try

another path. When the top of a network is reached, if

the goal represented by the network is in the prediction

set, the system has understood how the new thought fits

into the context. If not, the goal is considered a

higher-level goal. The system looks for occurrences of

it in abstract algorithms at the leaves of other

networks, and then traverses up these, looking for

something in the prediction set.

This process stops when the number of networks

traversed reaches a cutoff value. Anything beyond this

level would be both a remote interpretation and

expensive. If there is more than one interpretation,

choose the one with the fewest networks traversed. In

case of a tie, choose the one which fared better on the

tests at each node.

Bypassing tests may occur in two ways. First,

recommendations are preferred over networks in climbing

up. Second, bypasses may be implanted by climbing down

again along the interpretation path.

3. Discussion

Abstract algorithms and causal selection networks

are an efficient way of organizing knowledge for

problem-solving and language comprehension. In language

65

comprehension, they are especially useful for stories
involving goals and plans, in that the input is used to
infer a state in an actor, which is in turn used to
predict a goal the actor might have, which is then used
to predict his actions by identifying them as part of a
plan to achieve the predicted goal.

As in PAM and MARGIE, much of the inferencing
consists of bot tom-up prediction-making. While this
gives the system the ability to work in situations in
which it has no stereotypical knowledge, it also
produces the problem of uncontrolled inferencing. The
network system artificially controls the inferencing for
efficiency purposes by restricting the number of
networks traversed, just as MARGIE has artificial
controls on the depth of its inferencing. The problem
is that although there is probably a ~egative
correlation between depth and relevance, that
correlation is not necessarily -1, that is, there may
be relevant inferences which can be obtained only by
deeper inferencing than can many irrelevant ones. Thus
in order to guarantee that all relevant inferences are
generated for prediction, the depth may have to be set
in such a way as to also generate the irrelevant ones.

66

IX. BORIS

A system that uses a variety of knowledge structures

for inference is BORIS. The story below, which BORIS

understands in depth, is included as a source of

examples for the following discussion of the system's

knowledge structures and processes.

Richard had not heard from his college
roommate Paul for years. Richard had borrowed
money from Paul which was never paid back.
But now he had no idea to find his old friend.
When a letter arrived from San Francisco,
Richard was anxious to find out how Paul was.

Unfortunately, the news was not good.
Paul's wife Sarah wanted a divorce. She also
wanted the car, the house, the children, and
alimony. Paul wanted the divorce, but he did
not want to see Sarah walk off with everything
he had. His salary from the state school
system was very small. Not knowing who to
turn to, he ~as hoping for a favor from the
only lawyer he knew. Paul gave his home phone
number in case Richard could help.

Richard eagerly picked up the phone and
dialed. After a brief conversation, Paul
agreed to have lunch with him the next day.
He sounded extremely relieved and grateful.

The next day, as Richard was driving to
the restaurant, he barely avoided hitting an
old man on the street. He felt extremely
upset by the incident, and had three drinks at
the restaurant. When Paul arrived, Richard
was fairly drunk. After the food came, Richard
spilled a cup of coffee on Paul. Paul seemed
very annoyed by this, so Richard offered to
drive him home for a change of clothes.

When Paul walked into the bedroom and
found Sarah with another man, he nearly had a
heart attack. Then he realized what a blessing
it was. With Richard there as a witness,
Sarah's divorce case was shot. Richard
congratulated Paul and suggested that they
celebrate at dinner. Paul was eager to comply.

67

. -, ' "'-"" -

In order to understand this story in depth, BORIS

deals with the following problems, which are not dealt

with as effectively.in the other systems reported in

this paper:

1. Inferences must often be made from the absence

of a fact or event. For example, from "John walked into

the room and Mary was not there.", the system should

infer that John wanted to see Mary, not just that Mary

is somewhere other than in the room.

2. Inference of motives of characters may need to

use knowledge of the relationships between characters.

Thus Richard's motive for helping Paul is understood by

BORIS to be the desire to return Paul's favor of lending

him money.

3. Knowledge of human situations is needed for in­

depth inference. Examples of such situations in the

story are divorce, borrowing and repayment, writing and

receiving letters.

4. Figures of speech need to be understood. When

we read that Paul did not want to "see" his wife "walk

off" with everything he had, we understand that "see"

and "walk off" are not to be taken literally.

5. Pronoun reference often requires knowledge and

inference in addition to syntactic and semantic rules

for resolution.

68

1. Knowledge representation --~ ~ ~

The main permanent knowledge structure which the

parsing module examines is the dictionary. Each lexical

item in the dictionary has associated knowledge

structures and demons. Demons represent procedural

knowledge: their purpose is to search and construct

episodic memory. Demons may spawn other demons. Demons

may be used to fill slots in knowledge structures, to

determine character's plans and goals, to deal with

settings, to deal with events, or to handle prediction

fulfillment or violation.

BORIS also uses a variety of knowledge structures

which we have already seen, such as scripts, settings,

and events, and two we have not seen, which are known as

Memory Organization Packets (MOPs) and Thematic Affect

Units (TAUs). The knowledge structures are associated

with lexical items in the dictionary for instantiation,

and are integrated by a set of links, as discussed

below.

A MOP is a configuration of Conceptual Dependency

graphs formed into a discrete knowledge structure by a

standard set of links. MOPs differ from scripts in that

they focus on goals and intentions. For example, the

MOP for borrowing and lending involves two objects, the

BORROWER and the LENDER. The concepts in the MOP are:

69

WANT-OBJECT (BORROWER)
ASK-FOR-OBJECT (BORROWER to LENDER) CONVINCED-TO-LEND (LENDER)
GIVE-OBJECT (LENDER to BORROWER) WANT-TO-RETURN (BORROWER)
WANT-RETURNED (LENDER)
GIVE-OBJECT-BACK (BORROWER to LENDER).

The concepts are connected by links representing
intention (WANT-OBJECT and ASK-FOR-OBJECT), motivation
(GIVE-OBJECT and WANT-RETURNED), or achievement (WANT­
OBJECT and GIVE-OBJECT or WANT-RETURNED and GIVE-OBJECT­
BACK).

MOPs may be linked to other MOPs by MOP links.
Examples of MOP links involving the borrowing and
lending MOP would be links to FAVOR and BUSINESS­
CONTRACT. The links indicate under what conditions the
MOP linked to should be instantiated. In this example,
FAVOR is instantiated if the BORROWER and LENDER are
friends, otherwise, BUSINESS-CONTRACT is used. The MOP
links are necessarily uni-directional --the BORROWING
and LENDING MOP is brought in when borrowing or lending
is mentioned in the story, and since it is usually
important to know the reason for the transaction, FAVOR
may be brought in. However, when the story mentions a
favor one character does for another, it is not
necessary to bring in BORROWING and LENDING and all the
other MOPs which may be interpreted as possibly
involving favors. Indeed, in the story, Richard's

70

motivation for doing something for Paul is best

interpreted in terms of FAVOR rather than BORROWING and

LENDING. Even if the money had been paid back, in which

case all of the motives and intentions represented in

the BORROWING and LENDING MOP would have been achieved,

Richard may still have considered the loan a favor. The

FAVOR MOP would indicate that the normal desire to

return a favor had not yet been satisfied, thus

explaining Richard's motivation for doing something for

Paul.

The modularity of MOPs is also important. It would

have been erroneous to represent the idea of favor

directly in BORROWING and LENDING, because a loan could

be a business contract having nothing to do with favors.

Thus the idea of favor is brought in only if it is

determined that the loan was probably done as a favor.

Thus modularity helps prevent erroneous conclusions.

Modularity also improves efficiency. For example, the

DIVORCE MOP does not contain information about the legal

aspects of divorce, instead, it has a MOP link to LEGAL­

DISPUTE. Furthermore, LEGAL-DISPUTE will not al ways be

instantiated in the presence of DIVORCE. Additional

information about the divorce, such as the presence of a

lawyer, or an indication of a conflict in the goals of

the husband and wife, is needed for LEGAL-DISPUTE to be

71

used with DIVORCE.

When MOPs are linked, BORIS stores a specification
of which component of one knowledge structure is
equivalent to a component in another structure. For
example, the LAWYER MOP contains a PETITION component,
indicating that the lawyer petitions on someone's
behalf. In our story, since Richard's agreement to
petition on Paul's behalf is an attempt to return Paul's
favor, this PETITION component is linked to the DO­
RETURN-FAVOR component of the FAVOR MOP.

This again improves modularity. The PROF-SERVICE
MOP, for example does not need to include information
about legal representation or psychiatric analysis:
instead, the LAWYER or PSYCHIATRIST MOP is linked to the
PROF-SERVICE MOP with the corresponding components
specified. This also allows several perspectives: for
example, the system can view Richard's representation of
Paul as a professional service and as a returned favor.

TAUs are used to represent knowledge that deviates
from a normal goal/plan model. TAUs have the following
features:

1. They are thematic -- they capture knowledge
which people often represent in adages.

2. They are affective -- they can represent such
emotions as anxiety, upset, and shock.

72

3. They can explain variations from goal/plan
situations: for example, they can explain surprising events that may cause a plan to go wrong.

4. They are sensitive to points-of-view of
different characters in a thematic situation.

An example of a TAU used in the story about divorce is DIRE-STRAITS, which contains knowledge about how people react in a crisis.
BORIS's episodic memory is therefore a collection of instantiations of high-level knowledge structures and the links between them.

BORIS uses a single parsing module for reading the text and building episodic memory. Episodic memory contains the knowledge structures built up from the input so far. Therefore this module may also search previously-produced episodic memory to aid in the parsing task. This same module is used in guestion­answering. Thus episodic memory units are created as well as searched while parsing questions.
2. Processing

As is the case with Conceptual-Dependency-based systems, parsing in BORIS is semantics-directed rather than syntax-directed. Syntactic information about each word is stored in the lexicon, along with conceptual structures and demons, and is consulted only when needed
73

for understanding.

Episodic memory is searched during parsing to help

to solve the following problems:

1. Inferring roles -- BORIS can infer that in the

sentence "The money was never paid back.", it means that

it was not paid back by Richard to Paul. This inference

is possible because of the recent instantiation of the

BORROW MOP with Richard as borrower and Paul as lender.

2. Pronoun resolution -- BORIS can infer that "He"

in "He sounded extremely relieved and grateful." means

Paul, because of the instantiation of the DIRE-STRAITS

TAU.

3. Disambiguation of words -- BORIS can infer that

"hitting a man on the street" means hitting with his car

rather than getting into fight, since ACCIDENT is

available in episodic memory.

3. Discussion

As in PAM, knowledge may be applied bottom-up or

top-down. One type of bottom-up application is the

episodic memory creation from the input which is

described above. Bottom-up application is also used in

goal/plan processing, in which rules are used for

monitoring goal conflicts, competition, and achievement.

The conditions for these rules are events and situations

(or non-events and non-situations), and the actions

74

involve filling slots in goal-oriented MOPs. A third

type of bottom-up processing involves scenario-mapping.

BORIS follows characters as they proceed from one

location to another in a story. This is done because an

actor's location may explain his action, or if his

action is unusual in that location, this may explain

another actor's surprise.

Top-down knowledge application consists of

fulfilling predictions by filling slots in high-level

knowledge structures. Note the difference between BORIS

and PAM in goal/plan processing. PAM creates goal/plan

structures bottom-up from the input (by attaching plan

rules to the PLAN component of goal rules), which, as

[Schank,1979] points out, forces PAM to generate

irrelevant inferences about the goals and plans of

actors in the story, even if there is little chance that

those inferences are needed. BORIS has pre-existing

high-level plan/goal knowledge structures (MOPs) with

rules that are used to fill their slots. With high­

level structures, BORIS controls goal/plan inferences by

increasing the role of the predictive top-down

component, allowing a corresponding decrease in the

less controlled bottom-up inferencing. This eliminates

many of the useless inferences generated by PAM, without

sacrificing the ability to understand goals and plans.

75

Bibliography

Bobrow, D.G., Kaplan, R.M., Kay, M., Norman, D.A.,
Thompson H., and Winograd, T. (1977). "GUS, a Frame­
Driven Dialog System" Artificial Intelligence, Vol. 8,
pp.155-174.

Charniak, E. (1978). "On the Use of Framed Knowledge in
Language Comprehension" Artificial Intelligence, Vol.
11, pp. 225-265.

Charniak, E. (1981). "A Common Representation for
Problem-Solving and Language Comprehension Information"
Artificial Intelligence, Vol. 16, pp. 225-256.

Cullingford, R. (1981). "SAM". In R.C. Schank and C.K.

Riesbeck (Ed.), Inside Computer Understanding: Five
Programs Plus Miniatures. Hillsdale, New Jersey:
Lawrence Erli:,aum Associates.

Hewitt, c. (1969). "PLANNER: A Language for Proving
Theorems in Robots" Proceedings of the In tern a tional
Joint Conference on Artificial Intelligence, pp. 295-
301.

Lehnert, w., Dyer, M.G., Johnson, P.N., Yang, c.J., and
Harley S. (1983). "BORIS --An Experiment in In-Depth
Understanding of Narratives" Artificial Intelligence,
Vol. 20 (1983), pp. 15-62.

Minsky, M. (1975). "A Framework for Representing
Knowledge". In P.H. Winston (Ed.), The Psychology of
Computer Vision. New York: McGraw-Hill.

Rieger, C. (1976). "On Organization of Knowledge for
Problem Solving and Language Comprehension" Artificial
Intelligence, Vol. 7, pp. 89-128.

Schank, R. c. (1979). "Interestingness: Contrplling
Inferences" Artificial Intelligence, Vol. 12, pp. 273-
298.

Schank, R.C., and Abelson, R. P. (1977). Scripts, Plans,
Goals, and Understanding. Hillsdale, New Jersey:
Lawrence Erlbaum Associates.

Schank, R.C., and Rieger, C.J. (1974). "Inference and
the Computer Understanding of Natural Language"
Artificial Intelligence, Vol. 5, pp. 373-412.

76

Wilensky, R. (1981). "PAM". In R.C. Schank and C.K.
Riesbeck (Ed.), Inside Computer Understanding: Five
Programs Plus Miniatures. Hillsdale, New Jersey:
Lawrence Erlbaum Associates.

Winograd, '!. { 1971) "Procedures as a Representation for
Data in a Computer Program for Understanding Natural
Language". Ph. D. Dissertation. Cambridge,
Massachusetts: Massachusetts Institute of Technology
Project MAC.

77

Vita

Robert J. Harwick, borti August 26, 1953 in Emmaus,

Pennsylvania, graduated from Emmaus High School in 1971.

After graduating summa cum laude from Ursinus College as

valedictorian with a Bachelor of Science in mathematics

in 1975, he entered graduate school at Lehigh

University. Despite a (thankfully brief) interruption

in his studies, during which he taught mathematics at

the secondary level, he received a Master of Science

degree in mathematics in 1978.

This was followed by a one-year appointment as a

mathematics instructor at Lafayette College, after which

he returned to Lehigh to study computer science. While

workin9 as a systems programmer for Rapidata, Inc. in

1981, he was offered a teaching position at Allentown

College of St. Francis De Sales, which allowed him to

continue his studies of computer science at Lehigh,

while teaching mathematics and computer science.

Mr. Harwick married Wendy Richards of Bethelehem,

Pennsylvania in August, 1982. Their daughter Rebecca

was born in November, 1983. Together, they are members

of Holy Cross Evangelical Lutheran Church in Bethlehem.

78

	Lehigh University
	Lehigh Preserve
	1985

	Inference in computer systems which understand natural language /
	Robert J. Harwick
	Recommended Citation

	tmp.1551116526.pdf.elcJp

