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·symbol 

F 
F-1 

f(t) 

fT(t) 
f(n) 

fN(n) 
F(w) 

F(k) 

FM(k) 

w 
I\, 

w 

T 

TS' S 
Sa(x) 

List of Notations ---

Description 

Fourier Transform 
Inverse Fourier Transform 
Continuous time signal 
Continuous time, periodic signal with period T 
Sequence (possibly representing samples of a 
continuous time signal) 
Peri'odic sequence with period N 
Spectral Density as a function of w (or ~)· 
Fourier Coefficients 
Fourier Coefficients of a sequence f(n) where the 
coefficients are calculated using the M-th root 
of unity. · 
Frequency variable with units of radians/second 
An angle with units of radians .. Usually related to 
w by ;:; = w S, where Sis the sampling period. 

Total duration of a signal 
Sampling period. 
Sampling function which equals sin(x)/x. 
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ABSTRACT: This paper presents a complete approach to pattern 

recognition problems for discrete, digital, open curves. An assump

tion is made that the patterns are completely characterized by a 

curve connecting two points of the pattern. Algorithms (i.e. for 

curve tracking) are presented that create the curves needed for 

each pattern, and methods for normalizing, reconstructing, averag

ing, and comparing the similarity of any number of patterns are 

dis cussed. 

Special topics are introduced that clarify the relationship 

between the pattern recognition problem and methods of signal 

processing. Basic signal theory, interpolation and decimation, 

parameterization of discrete signals, linear predictive coding, 

and an introduction to Fourier Descriptors are among the topics 

of review. 

Finally, a specific application of these ideas to the recog

nition and distinction of discrete patterns of hydrogen .bubble 

timeli~es is discussed. Actual patterns are tracked, parameterized, 

reconstructed, and compared. The data compression and reduction 

in calculations is shown to be significant in comparison with other 

methods. 
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Introduction: 

This paper discusses a pattern recognition scheme designed for 

the solution of·a specific problem. The methods of analysis, how

ever, are presented in a general context and are applicable to a 

wide range of problems (eg. image, speech, or other signal processing}. 

In this section, we discuss a specific application of our methods 

to the study of timeline patterns. In the following sections, 

we first introduce general signal processing/pattern recognition 

concepts and then discuss our specific application. 

In figure I.l, a digitized image from a fluid dynamics experi

ment [25 J is shown. The image has dimension 211xl65 pixels and 

the intensity of each pixel is quantized to eight bits (256 grey 

levels). To obtain I. l, the unprocessed digitized image (not shown) 

was processed by a number of (linear) convolutional filters and 

a (nonlinear) thresholding operation. The result, similar to 1.1 

but with 256 grey 1 eve 1 s, is a bandpass filtered version of the 

original unprocessed image [see 7,8,9]. Because I.l is a black and 

white version of the filtered image, the resulting quantization is 

1 bit. Note, however, that all the images presented in this paper 

are actually quantized to eight bits and that generally the algor

ithms presented are applicable to the multi-level case. 

Figure I.l shows a typical pattern encountered in the study 

of fluid dynamics. The fl ow di rection is from 1 eft to right, and 

the triangular region is an obstruction in the flow. The flow 
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is seeded with hydrogen bubbles [ref. 25] that form the hydrogen 

bubble timelines. The timelines appear as dark regions in I.1, 

but they are actually regions of high intensity in the original 

images. As the timelines impinge upon the object, they are swept 

around it and form patterns that characterize the flow. It is 

desired to efficiently characterize the flow patterns from an 

analysis of the timelines. 

Because the dimension of the image is 21lxl65, 211xl65x8 

(~278,520) bits are required to completely describe it in the 

fonn shown. To reduce this number, one might emp 1 oy a region 

thinning algorithm to produce an image similar to Fig. 1:2. Here, 

the algorithm reduces the thickness of each timeline to one pixel 

while (generally) maintaining the connectivity of the regions. 

During the reduction, it also chooses the maximum intensity center 

of each timeline. The image can then be totally described by 1 

bit quantization with 211xl65xl (=34,815) bits, which is a reduc

tion by a factor of eight. The resulting image, however, does 

not suggest a convenient way to quantitatively characterize the 

flow. 

If the flow pattern is (almost) completely characterized by 

a few timelines, then the number of bits required to describe the 

flow is drastically reduced, and a method to quantitatively charac

terize the flow is suggested. When two timelines suffice, and if 

each timeline is of (average) length 100 pixels, then we find that 
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approximately 2xl00x0.l (=20) Fourier coefficients need to be 

stored to sufficiently characterize the flow pattern. Of course, 

depending on the specific application, this number will change 

somewhat. Since the Fourier coefficients are complex, and if they 

are stored with eight bits of precision, then the total number of 

bits needed to characterize the flow is 20x2x8 (=320). The reduc

tion is nearly three orders of magnitude from the original image. 

Furthermore, in comparing the spectra of two timelines, one need 

only compare coefficients of the same frequency. We find [sec. 3.2.2] 

that approximately 10% of the Fourier coefficients are needed to 

discern patterns of the same general shape. 

If our assumption is valid that two (a few) timelines suffice 

to describe the flow pattern, what is the motivation for using Fourier 

techniques to compare timelines? This question is ans\'tered by 

consideration of the alternatives, eg. geometric techniques such 

as spline fitting, etc. To accurately describe a curve .by a spline 

fit, a.number of points on its arclength must be supplied for the 

algorithm. The variables are the number of points given to the 

algorithm and the order of the polynomial approximation. From the 

Nyquist criterion (sec. 1,2.1), the number of samples needed is 

a function of the bandwidth of the curve. If we assume that only 

10% of the (unique) Fourier coefficients are required, then the 

number of samples needed to compute them is 20% of the total number 

of samples. Hence, the spline fit will need this many points for 
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the approximation. Furthennore, the polynomial approximation 

should be at least third order (or more), and the number of com

putations necessarily becomes large. Finally, it is necessary to 

normalize the representation of each pattern so that it can be 

compared, averaged, and reconstructed with other patterns. For 

these reasons, Fourier description of patterns is appealing. 

In the next section (section 1), fundamental signal concepts 

needed for the understanding of our pattern recognition scheme are 

reviewed. In section 2, the procedures for obtaining a parameteri

zation of each timeline, i.e. the relative tangent angle function, 

are presented along with the fundamentals of linear prediction 

(sec. 2.3). In section 2.4, a short discussion on the distortion 

of discrete curves is presented. A distortion algorithm is presented 

and is used later in analyzing the usefulness of the similarity meas

ure presented in sec. 3.2.2. 

In Section 3, Fourier Descriptors are introduced, and our 

·implem.entation of them is explained. Sections 3.2.2 and 3.2.3 pre

sent the preliminary results of our method. 
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Section 1 Signal Analysis: Basic Principles 

We begin with a review of some of the basic principles of sig

nal analysis as they pertain to this paper [references 1 through 6]. 

Section 1.1: Transforms of Signals and Sequences 

Let us begin with an aperiodic signal f(t) and assume that is 

nonzero for some duration T and zero elsewhere [Fig. l.la]. By 

using the Inverse Fourier Transform (IFT), we can express this func

tion as an integral of an eternal exponential times the spectral 

density F(w). 
co 

f(t) ~ F-1[F(w)] = 2~ f F(w)ejwtdw (,. i) 

-co 

The spectral density F(w) is given by the Fourier Transfonn (FT) of 

f(t). 
co 

F(w) ~ F[f(t)] = J f(t)e-jwt dt ( 1. 2) 

-co 

When f(t) is a real signal, F(w) will be a complex function with 

even magnitude and odd phase. Furthermore, we may note that the sign 

of the exponent, ±_jwt, in each of these definitions is purely a 

matter of convention (as long as they have opposite values in 1.1 

and 1.2). An example of ~-real signal is plotted in Fig. 1.labc 

along with the magnitude and phase of its spectral density. 

Suppose that we construct a periodic function with period T 

that is simply a repetition of functions f(t), [Fig. 1.2a]. 
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t <t<t +T o- - 0 

m=O, ±_l, ±_2, (1. 3) 

By the Fourier Seri es ( FS) expansion of f T( t), we can express f T( t) 

as an infinite sum of eternal exponentials. 

(1.4) 

Here, w
0 

is the fundamental frequency, and the kth harmonic is some

times written wk=w
0

k. F(k) is the k-th Fourier coefficient and is 

given by 

T 
F(k) = l f f (t)e-jwokt dt 

T T 
( 1. 5) 

0 

The interval of integration can be taken as any interval of length T, 

and for reasons of symmetry, the interval [-T/2, T/2] is a common 

choice. Again, for real signals fT(t), the Fourier coefficients are 

complex, have magnitudes that are even functions of k, and have 

phases that are odd functions of K. This requires F(k)=F*(-k), which 

expresses the k-th coefficient as the complex conjugate of the -(k-th) 

coefficient. The spectrum of fT(t) is a plot of F(k) versus k, or 

equivalently, wk versus w. We must note that the spectrum only 

exists at integer multiples of w=w0 , and it is undefined at other 

values of w, [Fig. l.2bc]. 

We can imagine, now, that we take se~ples of F(t) at fixed 

intervals spaced Ts seconds apart [Fig. 1.,3]. In this paper, we 
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ignore the issues of how the sampling is done [see 6, chap. 2], and 

we procede to analyze t~e resulting discrete time sequence fs(n) 

[Fig. 1.3b], where 

fs(n) ~ f(n\) n=O, ±_l, ±_2 ••• 

By definition, fs(n) will be undefined for noninteger values of n. 

For the purposes of this discussion, we assume that our sampling 

will yield N=T/Ts samples and that our sampler is somehow designed 

so that it is synchronized with the signal such that Tis exactly 

equal to NTs. We say that the sampling frequency is ws=2rr/Ts. 

Furthermore, we drop the subscripts and simply recognize that f(n) 

is a sequence of numbers that are nonzero only for 0..:_n..:_N-1. We can 

then express f(n) as an integral of an eternal exponential times a 

spectral density function F(w). The relation is given by the Inverse 

Fourier Transfonn (IFT) for sequences, 

7f 

f(n) ~ 2~ J F(w)ejwn dw ( 1.6) 

-rr 

Note that the limits of integration are [-rr,rr], but any range of 

length 2rr suffices. The spectral density· is given by the Fourier 

Transfonn [FT] for sequences, 

F(w) = E
00 

F(n)e-jwn ( 1. 7) 
n=-oo 

We can distinguish the spectral density of ·the FT for sequences 

(eqn. 1.7) from that of the FT for signals (eqn. 1.2) by recognizing 

that w is purely an angle (radians), while w is an angular frequency 

(radians/sec). They are related by w=w/Ts where T
5 

is a sampling 
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period (seconds). Also, because only integer values of n are 

al lowed, 

so that 

F(w+21rn) = F(w) 

for all integer n, and F(w) is seen to be periodic with period 21r. 

Hence, in addition to being a complex function with even magnitude 

and odd phase, F(iii) is periodic. Combining these symmetry relations, 

we note that if values of the spectral density are known for 

iiit.[0,1r], then F(iii) is known for all iii. 

Because F(iii) is continuous and periodic, and because f(n) is 

discrete and aperiodic, we should expect that there is a Fourier 

Series relating the two. Examining equations 1.6 and 1.7, we see 

their duality with equations 1.5 and 1.4. 

Before proceeding, a final comment about the FT (eqn. 1.7) is 

in store. Because f(n) is nonzero for only N terms, we may write 

n +N-1 
F ( w) = E O f ( n ) e - j wn 

n=n 
0 

= A EN-1 f• (n)e-jfiin 
n=O 

where A= e-jwno, and f 1 (n) = f(n+n
0
). This is equivalent to a 

shifting of the n axis and the introduction of an appropriate phase 

shift. Usually we will assume n0=0 so that A=l. Figs. l.3b-f show 

examples of a sequence and a spectral _density. 
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Just as the Fourier Transform of aperiodic signals was extended 

into a Fourier Series for periodic signals (eqns. 1.1 ,2 into 1.3,4) 

the Fourier Transform for aperiodic sequences is extended into the 

Discrete Fourier Series for periodic sequences (eqns. 1.6,7,8 into 

1.9,10). First, we construct fN(n) by either sampling the signal 

fT(t) or by repeating the sequence f(n). Choosing the second method 

[Figs. l.4a,b], 

fN{n+mN) = f(n} O<n<N-1 

m=O, :_ l , :_2, 

The Inverse Discrete Fourier Series (IDFS) of the periodic sequence 

fN(n) is then given by 

N-1 
fN(n) ~ E FN(k) ejwokn 

k=O 

( 1. 9a) 

where w
0 

is the fundamenta 1 angular (radian) spacing w
0

=21r/N. The 

exponential is recognized as a po~ier of the N-th root of unity. This 

is commonly written, 

WN ~ ejwo = ej21r/N 

so that eqn. 1. 9a becomes 

The Discrete Fourier Series (DFS) for periodic sequences is 

F (k) = l EN-l f (n)e-jwo kn 
N N n=O N 

1 N- l -kn 
=NE fN(n)WN 

n=O 
-10-
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Analogous to the Fourier Series coefficients of eqn. 1.5, these 

coefficients represent individual frequency components. The spectrum 

·of a periodic sequence fN(n) is a line spectrum defined only at w= 

w
0
k for integer k. In contrast to the coefficients of eqn. 1.5, 

and similar to the spectral densities of eqns. 1.7,8, the coeffi~ 

dents FN(k) are periodic with period N. 

k=O, ±_l, ±_2, 

m=O , ±_ l , ±_2, •. , 

They also reta.in the symmetry relation FN(k) = F~(-k). Hence, the 

symmetry and periodicity relations reveal that, if N is even, then 

knowing (N/2+1) sequential values of FN(k) suffices to evaluate 

FN(k) for all k. If N is odd, then only (N-l/2+l)·sequential coeffi

cients need to be known. Figs. 4c,d shov1 examples of DFS spectral 

coefficients. 

Section 1.2: Spectral Analysis 

In this section, we discuss the Nyquist criterion, interpola

tion, and decimation. We conclude the section with a discussion on 

comparisons and averages of sequences. 

Section 1.2.1 Nyquist Criterion 

Suppose that our original function f(t) is bandlimited so that 

F(w}=O outside the range of ws[-W,W] as shown in Figure 1.5a [unless 
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specified otherwise, the spectra given by F(w) will be illustrated 

by their magnitudes only]. By sampling f(t) at a rate w1, we gen

erate a sequence f1 (n) that has N1 samples. We introduce a new 

notation for the sampling period, which we designate by S. The 

sampling period s1 is given by s1=2TI/w1, and since the signal has 

nonzero duration T, we write T = N1s1. 

If the sampling rate w1 satisfies the Nyquist Criterion, 

(1.11) 

we are assured that the FT of f 1 (n) wi 11 be equal to the spectral 

density F(w) of f(t). This is true only in the range iiis[-TI,TI], and 

the two spectra are alike except for a constant scaling factor. When 

the sampling rate satisfies the Nyquist criterion, .it is possible to 

exactly reconstruct the original continuous time signal f(t) from 

its samples, fi(n). This is shown in Appendix A. 

On the other hand, when the sampling frequency is less than 2W, 

so that it does not satisfy the Nyquist criterion, the spectra F(w) 

and F1(w) may be highly dissimilar. Figures l.5a,b,c, show the original 

signal, the spectrum of the ''properly sampled 11 signal (or 11 oversam

pled11), and the spectrum of the 11 improperly sampled 11 signal (or 11 under

sampled11). For the undersampled case, we see that F(w) is periodic 

but that each period does not look like F(w). Instead, the spectrum 

is 11aliased 11
• That is, because w1<2W or equivalently, w1<2WS1, the 

periodic placement of F(w) at multiples of 2TI restuls in overlapping. 
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In the overlapping regions, the spectra add together, and the spec

tral density F(w) is distorted, As shown in appendix A, when aliasing 

is present in the spectrum, we cannot reconstruct the original con

tinuous time signal from it. The reconstructed signal contains errors 

that depend on the amount of aliasing in the spectrum. We can, how

ever, always obtain the exact values of f1(n) from its spectrum. 

This is simply a consequence that the IFT is unique and totally 

i~dependent of the existence of aliasing. 

Suppose that we have a sequence f(n); regardless of where it 

comes from. As in eqn. 1.8, we write the FT as 

N-1 ._ 
F(iii) ·= E f(n)e-Jwn 

n=O 

By letting Z=ejw, we can write this as a Z-transfo1ill, 

"' f(n)Z-n = F(iii) = E 
n=-co 

N-1 
= E f(n) z-n (1.12) 

n=O 

where we assume n
0
=0. Specifically, We see that the FT of an 

aperiodic sequence is exactly its Z-transform evaluated on the unit 

circle. Furthermore, we are free to evaluate F(z) at as many points 

on the unit circle as we like, and this is true regardless of the 

length N of the sequence. If we choose M evenly spaced points on the 

unit circle, then w=(21r/M)k, and Z is the M-th root of unity raised 
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to the K-th power. Denoting Zk by, 

z _ ej(21r/M)k 
k -

~e see that Zk = ZK+M' Hence, there are only M unique values of Zk 

and likewise F(Zk). 

Next, consider the following. Denote the M point Z-transfonn 

of an N point sequence by 
N-1 

FM(Zk) = E f(n)zk-n 
n=O 

M-1 . 21r k 
= E f(n)e-J M n O<k<M-1 . 

n=O 

Wh~n f(n) is a periodic sequence with period M, denote it as fM(n), 

then the fundamental angle 

That is, the M samples of the Z-transform are equal to the coefficients 

of the Discrete Fourier Series, given in eqn. 1.10, but scaled by M. 

Let us now consider the following two cases. 

Case 1. Suppose N<M. We can then define a periodic sequence of 

M points fm(n) by zero extending it, 

f m(n+lM) = f(n) 

= 0 N<n<M-1 

-14-
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From eqn. 1.10, we write 

O<k<m- l 

and hence each Fm(k) wi11 be a DFS coefficient of a sequence that 

1ooks 1ike f(n) zero extended to length M. Figure 1.6 shows an 

example of a zero extended sequence. 

Case 2. Suppose N>M (for convenience we a1so assume that N<2M), 

then, 

N-1 -n 
= E f(n) zk 

n=O 

m-1 -n N-1 -n 
= L f(n)Z + L f(n)Zk 

n=O k n=m 

Because Z~ = 1, we can write this .as 

m-1 -n m N-M-1 -n 
M Fm(Zk) = L f(n)Z + zk L f(n+M)Zk 

n=O k n=O 

N-m-1 -n m-1 -n 
= E [f(n)+f(n+m)]Z + E f(n)Zk (i.14) 

n=O k n=N-m 

If we now define a periodic sequence f m ( n) with period M by, 

f (n) = f(n) + f(n+M) 
m 

= f(n) 

-15-
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then 
1 M-1 -n 

Fm(k) = - z: f (n)Z 
M . n=O m k 

O<k<M-1 

Again, this represents the M DFS coefficients of a periodic sequence 

fm(n), where fm(n) is a wrapped version of the N length sequence 

f(n). Fig. 1.11 shows an example of a wrapped sequence, where the 

above equation for fm(n) is used. 

Finally, we comment that by 11 zero extending
11 

a sequence we can 

calculate M>N DFS coefficients. By 11wrapping 11 a sequence, we shorten 

it to calculate M<N DFS coefficients. Next, we use the duality of 

equations 1.9 and 1.10 to develop more interesting ideas. 

Section 1.2.2 Zero Extending and Interpolation 

Consider a periodic sequence of length N. Then, the DFS coeffi-

cients are 
1 N-1 . - k 

F (k) = -I: f (n)e-Jw1 n 
N N n=O N 

O<k<N-1 

where we use w
1 
=2,r/N. Now consider the case, as in case 1 of the 

previous section, 

O<n<N-1 

N<n<M-1 

Denoting w2=2,r /M, we can write 

-16-



l m-1 ·- k 
Fm ( k ) = - -z: f ( n ) e - J w2 n 

M n=O m 
O<k<m-1 

l N;.. l . k 
= - z: f ( n ) e -J w2 n 

M n=O N 

(l. 16) 

and this is true when, 

For example, when M=2N, every other coefficient in the F m(k) sequence 

equals one of the coefficients in the FN(k) sequence. Figure 1.6 

shows this case. With the constraint that k and fare integers, 

equation 1~16 is true for all ratios of Mand N, M>N. The remaining 

coefficients of Fm(k) lie amidst those that match with FN(k). 

Presently , we assume that M/N is an integer and 1 ater we rel ax 

this constraint. For integer M/N, N coefficients match and M-N do 

not. We now determine that the M-N nonmatching coefficients are 

actually i nterpo 1 at ions between the matching coefficients. 

In Figure 1.7 we examine a portion of the spectra and concentrate 

on the region between FN(.t) and FN(.e-1). In general, the coefficient 

FN(t-1) wi 11 match the coefficient FM(;(.e.-1)) and FN(i) wi 11 match 
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coefficients that are interpolation coefficients. We want to show 

that these interpolation coefficients lie on the same envelope as 

the coefficients that match. 

When;- 1 is an integer, we wish to examine the coefficients 

given by FM(k+B) for B ranging from 1 to ~ - 1, where K =; .e., for 

.e.=O,l, ... ,N-1. We have, 

l M-1 -j 21r [!:! l + B]n 
FM(;R..+B)=-L fM(n)e MN 

M n=O 

N 1 
. 21r B . 2n e 

1 
- -J -· n -J - .... n 

=-L [f (n)e M Je N 
M n=O m 

( 1. 18) 

Denote the tenn in the brackets by f' ( n) , and denote y = 
2
;

8
, w0 =2n /N. 

Then, the above equation is recognized as the .l-th coefficient of an 

N point DFS of the sequence f' ( n). That is, 

M ' N I 

FM(N .e.+B) = M FN (.l wo) 

where 
, l N-1 . . _ 

FN(.l w
0

) = - L f' (n)e-Jwo.ln 
N n=O 

We know that the DFS coefficient above is related to the spectral 

density of the FT by 

FN(.e. w
0

) = ~ F' (w=.l m0 ) 
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Also, applying the frequency shifting property of the FT, 

F'(w) = F(w-y) since f'(n) = f(n)e-jyn. Combining the above relations, 

we have 

Fm(; .e. + B) = k F(w/-y) • 

Since k = ~ .e., this tells us that the K+B-th DFS coefficient lies on 

the same envelope as the DFS coefficients that match with FN(.e.). 

These arguments are equally valid for all ratios of Mand N. 

When M/N is not an integer, however, there will be fewer coefficients 

between Fm(k) and FN(k) that match exactly. For example, if M=llO 

and N=lOO, then only those coefficients where K=ll/10 .e. (integer .e.) 

will match. That is , k=ll matches with £.=10, k=22 matches with .e.=20, 

etc. Now, however, between every two coefficients of F (k) that 
m 

match, there are ten (=N) that do not. So, equati~n 1.17 is still 

used, but B ranges from one to ten, and not all the values of .e. 

will lead to-integer values of K. 

Consider the ramifications of what 1·1e have discovered. By simply 

appending zeroes to our (time) sequence, we have obtained more samples 

of the Z-transform, or equivalently, more DFS coefficients. vlhen M 

is even, these coefficients are unique only in the range [O, M/2+1]. 

In this range, the angle (radians) w ranges from [O,i!]. In terms of 

absolute frequency, w=1r is equivalent to w=TT/S \'/here Sis the sampling 

period. Since the sampling frequency is ws = 2"/S, w=rr corresponds 

to one half the sampling frequency. Hence, interpolating to 

obtain more coefficients in the range w=[O,rr] does not yield any more 
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information about the signal f(t). Instead, it reveals more of 

the detai 1 of the spectrum of f( n). So, we see that if F(w) is an 

aliased version of F(w), this procedure does not help to 11 un-alias 11 

it. This is made obvious by the fact that inverting any version of 

FM(w) will simply produce the original sequence f(n) with M-N zeroes 

appended to it. By adding zeroes I/le have not changed the sampling 

frequency nor its relation to the Nyquist criterion. 

The utility of this procedure, however, is that we can now 

compare the OFT spectra of any two (or more) sequences, even if they 

have different lengths. Furthermore, we can do so on a coefficient 

by coefficient basis. The only assumption is that the sequences were 

obtained at the same sampling rate. We examine the case of differ

ent sampling rates in section 1.2.3. For the pre~ent, however, 

figure 1.8 introduces the notation that we use for interpolation in 

the frequency domain. 

We have already mentioned the duality of the FT (or the FS, 

etc.), but we have not as yet reaped any benefits from it. Now , 

however, we examine the case where we calculate FN(k) from fN(n) and 

then append zeroes in the frequency domain, [Fig. 1.9]. 

Because the spectrum above w=w is redundant, (i.e. loosely speak

ing) we append zeroes from K=(N/2+1) to K=M/2. We then use the 

relations F(k)=F(k)* and F(k+M)=F(k) to construct the rest of the 

spectrum. We denote this zero extended spectrum FM(k), and by per

forming an inverse OFT, we generate a sequence of length M, fM(n). 
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Now, by the duality of the OFT, we see that f M(n) matches with 

fN(.e.) whenever n= ;.e, and the rest of the values of Fm(n) are inter

polations. The case where M=2N is shown in Figure 1.9, but just as 

before (i.e. eqns. 1.16, 17, 18, etc.), M/N is not restricted to 

be an integer. Figure 1.10 shows the notation developed for inter

polation in the (time) sequence domain. 

Let's note the ramifications of this development. Given any 

set of DFS coefficients, we can zero extend the spectrum and obtain 

a sequence of length M, as in Figure 1.9. Furthermore, M can be 

any number greater than N. In effect, by making M large we can emu

late a sequence that has been obtained from a sampler that has a sam

pling frequency as large as we would like. In fact, we can emulate 
. 

a sampling frequency that approaches infinity. Hence, it would 

seem that the barrier of the Nyquist criterion has been broken! 

But obviously, by zero extending our spectrum \lie a re not adding 

any new information to the resulting sequence (or, as the number of 

zeroes approaches infinity, we get a continuous time signal). In 

fact, the only real information we are using comes from the original 

spectrum FN(k). If FN(k) is an aliased version of F(w) (i.e., if 

f N(n) is not a properly sampled version of f(t)), then all versions 

of FM(k) will simply be obtained by separating the aliased portions 

of FN(k) by zeroes, and the aliasing persists. 

Again, we recognize the duality of the situation with our pre

vious case. For interpolation in the frequency domain, we thought of 
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the sampling period remaining constant whereas the total sampling 

time T
0

=NS or T=MS varied. For interpolation in the sequence domain, 

we can think of the total sampling time remaining constant, i.e. 

T=NS, whereas the sampling period S varies. Hence, for the inter

polated sequence T=MS '=NS. 

Section 1.2.3 Wrapping and Decimation 

At the end of section 1.2.1, we introduced a way to evaluate 

the Z-transform of a length N sequence at M points. When N>M, we 

defined a length M sequence by 11wrapping 11 the coefficients FN(k) to 

obtain FM{k) (eqn. 1.15). We use the term wrapping because FM(k) 

is obtained by performing a modulo M operation on FN, 

L F (l) 
(l=k)mod M N 

(1.19) 

That is, the sum is over all values of .e. that equal K modulo M. 

Figure 1.11 shows an example of the wrapping process and the 

resulting sequences obtained by performing the inverse transfor

mations. It is clear from Figures l.lla,b that the spectrum FM(k) 

is an aliased version of FN{k); hence, we may wonder if the sequence 

fM(n) will have elements equal to every other term in FN(n). 
. .. ~~ .. 

We now show that the decimated sequence, obtained by inverting 

the spectrum of eqn. 1.19 (which generalizes eqn. 1.14), will not 

have elements equal to those in the original sequence. Specifically, 
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the sequence in figure l.lld wi11 not be made up of every other 

element in the sequence of figure l.llc. We will find that the 

difference is due to the aliasing caused by the wrapping procedure of 

eqn. 1.19. First, we consider the case of decimation by an integer. 

Then we consider the genera 1 case N/M > 1 . 

Suppose that fN(n) is decimated by a factor of two. Then, 

N=2M, and we would like f m(n) to have the property, 

n=O, 1, ••• ,m-1 

Note that the DFS expansion of fm(n) is 

M-1 kn 
fn(n) = E Fm(k)W 

k=O m 

and the DFS coefficients are given by 

m-1 k 
F (k) = .!. E f (n)W- n 
m m n=O m · m 

k = O , 1 , ••• , m- 1 

From eqn. 1.20, we substitute for fm(n), 

1 m-1 -kn 
Fm(k) = - E fN(2n)Wm 
· m n=O 

and for fN(n) we substitute its DFS 

l m-1 N-1 2 k 

Fm(k) = - E [E FN(p)WNnp]W- n 
m n=O p=O m 

N-1 m-1 
= l E F (p) E W 2Pn W -kn 

M p=O N n=O N m 

But now, since N=2M, w/=wM' and 
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N-1 M-1 ( 

= E FN(p)[l E W p-k)n] k=O,l, ••. ,M-1 

p=O m n=O m 

The term in brackets is ze.ro for all values of k except for k=p, 

when it has value one. Hence, 

k = 0,1, ••• ,M-l (1.21) 

Comparing this equation with eqn. 1.14, we see that the terms that 

represent the aliasing do not appear in the above expression. As a 

result, inverting a wrapped spectrum does not yield a sequence of 

values taken from the N length sequence. To properly decimate, the 

aliased terms must be filtered out before the spectrum is wrapped 

and inverted. To finish the special case for decimation by two, 

simply use the relation N=2M in the above expressions. 

We now examine the case of decimation by any ratio s=N/M> 1. 

The arguments are nearly the same as for the case of integer S, 

except that it is necessary to interpolate in the frequency domain 

before decimating in the sequence domain. 

Again, we begin with the sequence fN(n) and determine fM(n), 

where 

n=O, 1 , ••• , M- 1 
( 1. 22) 

Now, however, recognize that for noninteger /3 there may be very few 

va 1 ues of an that a re integers, and so eqn. 1 . 22 does not completely 

describe fm(n). In fact, it is apparent that f m(n) wi 11 have to be 

a decimated version of some larger sequence than fN(n). 

-24-



Let us now treat fm(n) and fN(n) as though they are aperiodic . 

. We can express their spectral densities as 

(1.23) 

N-1 ._ 
F N ( w ) = E f ( n ) e -J wn 

n=O N 

Though the sequences are aperiodic, their spectral densities are 

periodic with period w=2~, as always. In terms of absolute frequency, 

however, they have different periods. This is because we are treat

ing fM(n) and fN(n) as if they are samples of the same original signal 

f(t), but obtained at different sampling rates Sm and SN. Hence, 

in terms of absolute frequency', they are periodic with periods ws,(ws= 

sampling frequency) 

respectively. Here, Tis the duration of the original signal f(t). 

This is the same phenomenon described by figure 1.5, with the possible 

exception that the aliasing may not be as pronounced. 

From equations 1.22 and 1.23, suppose we write, 

M-1 ·-
FM(w) = E f (sn)e-Jwn 

n=O N 

At this point, f (sn) might not have an actual value (because sn 
n 
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might not be an integer), but we can still understand the equation 

in a .mathematical sense. Now, substitute for fN the expression in 

brackets below (its FT), 

71" 

FM(w) = t_ [2~ J. FN(a)ejasnda]e -jiiin 

n--oo 
-,r 

Because the expression in these new brackets is the FT of a constant 

sequence (equal to one; the FT is evaluated at a frequency ae-w), it 

is a weighted delta function. 

2ir o(al3-w) = E"'_ ej(ae-w)n 
n--ro 

As a result, the integral over et in the above reduces to·an evaluation 

of the integrand at a=w/$. And so, 

This means that if we are given a sequence of length N, we can find 

M samples of FN(iii) in the range wE[-ir/13, ir/13], and these samples will 

be the spectral coefficients of FM{w0 k) for w0=2ir/M and k=O,., .•. ,M-1. 

The notation we have developed for decimation is shown in 

Figure 1.12.F. The procedure for decimation by any ratio s=N/M>l 

follows, and the dual of this procedure can be used for decimation in 

the frequency domain. 

Given a sequence of length N: 
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1. First zero extend the sequence to the nearest integer multiple 

of M, say yM, such that yM?_No See Fig. 1.12a. 

2. Perform a OFT to find the yM OFS coefficients. 

3. Filter the resulting spectrum at the radian angle of n/y 

(that is, retain only the first M/2+1 coefficients. See 

Fig. l.12 b,c). 

4. Construct the spectrum FM(k). (See Figure 1.12d. Here the 

number of coefficients is reduced from yM to only M. See note· 

below.) 

5. Invert FM(k) to obtain the decimated sequence fM{n). (Fig. 

1.12e). 

Note that if these operations are not implemented in software, 

steps 4 and 5 become: 

4. Invert the filtered spectrum (still of length yM) to obtain a 

sequence of length yM, denote it f' (n)). 

5. Obtain fM(n) from this last sequence by letting fM(n) be 

equal to 

fM(n) = f' (yn) for n=O to M-1. 

Section 1.2.4 Comparisons and Averages 

In this section we examine a number of important concepts needed 

for the application of Fourier Descriptors to our work. We use the 

signal theory developed in the previous sections to develop methods 

for comparing any two curves and for averaging any number of curves · 

together. 
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We begin by considering Fig. 1.13. Here, we have two sequences 

f 1(n) and f 2(n) of lengths N1 and N2• At this point, no assumptions 

are made about how these sequences are obtained, and we have pur

posely drawn them so that they appear to have been sampled with 

different sampling periods, S1 and s2, and to have different absolute 

duration, T1 and r2. However, we assume that all sequences have 

been obtained by sampling at a rate greater than or equal to the 

Nyquist rate. In Figure 1 . 13 we denote W as the bandwidth of a 

sequence in terms of absolute frequency. 

As discussed previously, there are two useful ways to think 

about these sequences. The first is to treat them as having been 

sampled at the same sampling rate, 2ir/S 1=2ir/S2, but that they are 
. 

different in duration, i.e. T2>T1 and hence N2>N1. This interpreta-

tion is useful to us, for example, if we are looking at a photograph 

(or a digitized version of it) and we see a number of patterns. 

We would probably like to distinguish between objects of different 

shape and size. Furthermore, even if two objects, buildings for 

example, are of the same general shape, we would probably like to 

distinguish betweenbuildingsof different sizes. 

The second way to treat the sequences is as if they were 

sampled at different rates, i.e. 2ir/S1 >2ir/S2, and that the ori gi na l 

signals were of the same duration, i.e. T2=r1 and hence N2>N1. This 

interpretation is useful, for example, if we have two photographs 

of the same object, but the second camera was closer to the object 
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than the first. Hence, the same object appears in both photos, but 

in the second it appears larger (and perhaps rotated and translated)~ 

Using the previous ideas as motivation, we now assume that the 

two sequences f 1(n) and f 2(n) describe the same shape. That is, f2(n) 

is in some sense an interpolated version of f 1 (n), but as yet, we 

make no assumptions about their genera ti on. With this in mind, we 

examine the two ways to think about these sequences. 

Case l: T2>T1, N2>N1, S2=s 1 

If we assume that the samples f 1(n) were taken at the Nyquist 

rate, so that 2,r/S1=2w1, then it is clear that w2 must be less than 

w1• This is because the sequences have the same shape but are of 

different lengths. Figures 1.14 a,b show the OFT ~pectra of f1(n) 

and f2(n). 

Now suppose that we want to compare M>N2>N1 of the OFT coeffi

cients of the two spectra on a one for one basis. Clearly, to com

pare coefficients that correspond to the same absolute frequency 

we will have to interpolate in the frequency domain. We do this by 

zero extending each of the sequences to length Mand then performing 

M point DFTs on them. Figures 1.14c and d show the resulting spectra. 

With these spectra, we compare coefficient with coefficient and 

determine the similarity of the t\'10 spectra (and hence sequences). 

For the specific case illustrated in the figures, we conclude that 

the two sequences are not very similar (they have very different 

duration and Nyquist frequency as seen in Figures 14c and d). 
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Perhaps the question might arise about the value of computing 

the OFT spectra to make such a comparison. Though this wi 11 be 

explained more fully in another section [Fourier Descriptors], it 

is worthwhile to mention three important qualities of this method. 

'First, the OFT coefficients are veritably independent of the picture 

orientation, translation, and rotation from where the sequences are 

obtained. Secondly, most of the characteristic shape information of 

a pattern (sequence) is contained in the low frequency coefficients; 

and thirdly the value of M can be chosen so that the OFT is computed 

very efficiently (eg M=2n). In this way, the calculation and com

parison of coefficients i s·likely to be more efficient than many 

complicated geometrical techniques (eg, spline fitting, etc). 

Another important question that arises concerns averaging. 

If we are given a number of sequences and are told to find an average 

sequence, we could simply average al 1 the zero extended sequences 

together and compute an average OFT spectrum. Furthermore, we 

could calculate the average duration of the sequences and only 

retain the appropriate number of elements of the average zero exten

ded sequence. This would yield the average sequence and it would 

be of an average length. We refer to this as a 11 di rect average 11
• 

As a general pattern recognition technique, these results may 

not seem particularly useful. One might doubt the utility of a 

pattern recognition technique that compares a 11 patterns as if they 

were assigned an absolute scale. There are cases where this is 
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exactly what is needed, however, as in the case of range estimation 
problems. Furthermore, because we can choose M at our convenience, 
this method is simple and efficient. 

For the more general case of recognizing patterns of the same 
shape, regardless of absolute size, position, and orientation, we 
turn to case 2. 

Case 2: r@T(T2, N2>N1, S2<S1 
Again, we refer to Figures 1.13 a,b. We assume that the original 

signals from which f1(n) and f2(n) are obtained are actually the 
same signal. But since f 2(n) is obtained by a sampler with sampling 
frequency 21T/S2>21r/S1, f 2(n) is a longer sequence than f1(n). We 
assume that 2rr/S1 is the NYquist Frequency so that .there is no aliasing 
in either of the spectra. Also, we note from Figures 1.15 a,b 
that the two spectra will repeat at different values of absolute fre
quency (i.e. the sampling frequency), but that the spectral coeffi
cients of the two spectra occur at the same abs o 1 ute frequency. The 
coefficients of both spectra are separated by an absolute frequency 

. of w=2rr/T. Furthermore, the coefficients match one for one ( except 
for a scaling constant) in the range we:[-W,W], since the bandwidth of 
each sequence is the same as that of the original signal. If we wish 
to compare M coefficients from each spectrum, M>N2>N1, we simply zero 
extend the DFT coefficients as shown in Fig. 1.15c. In this case, 
the two zero extended spectra are exactly alike (up to a constant) 
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and comparing~+ 1 (or M2l +l for M odd) coefficients between the 

two spectra is enough to dete'rmine their similarity. 

For the specific case of comparing two sequences (and no more), 

we may remark that it is foolish to zero extend the spectra and, 

only then, compare them. We really need compare only the minimum 

of [N1/2+1, N2/2+1] coefficients, where N1 and N2 are assumed even. 

In the general case where we compare many spectra, and where we are 

not sure that the sequences are properly sampled, we zero extend all 

the spectra to a length M, where Mis greater than or equal to the 

largest length of all the sequences, In this way, we compare sequences 

of different lengths and bandwidths and can judge their similiarity. 

Furthermore, we may want to average a number of sequences 

together. In this case, recall that zero extending the spectra is 

equivalent to interpolating in the sequence domain. Hence, if we 

average M coefficients of the zero extended spectra, we can obtain an 

average spectrum of length M. By inverting this spectrum, we obtain 

a sequence that is equivalent to a term by term average of all the 

interpolated sequences. This is equivalent to normalizing the lengths 

of the origin a 1 sequences, and so we term this average as the 11nor

mal ized average". Figure 1.16 shows two original sequences drawn as 

if they are of different duration. Also shown are the averages of 

cases one and two, i.e. direct and norma 1 i zed ave rages. 
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Section 2 Discretized Open Curves and Their Analysis 

In this section we discuss discrete curves and methods by which 

they are described. 

Section 2.1: Introduction 

In the analysis of vortical flows, a number of flow visualization 

techniques are available [ref. 25]. In developing our techniques 

we have assumed that hydrogen bubble illumination is the visualization 

method of predominant interest. With very minor alterations, how

ever, our techniques are directly applicable to other methods as 

we11. For example, the only change necessary to examine flow patterns 

from dye injection techniques is to search for regions of darkness, 

relative to the background, instead of the bright regions character

istic of hydrogen bubbles. 

For pattern recognition problems associated 1·1i th digital images, 

an acquaintance with image processing techniques is essential. Though 

a discussion of them is beyond the scope of this paper, a description 

of basic image processing techniques can be found in references [7,8, 

9,10]. Rosenfeld and Kak [7] was particularly useful. 

As shown in figure 2.1, the unprocessed patterns that we deal 

with are of two general types. The first type is shown connecting 

points a and b with a 1 and b', respectively. Moreover, these 11 time

lines11 are made up of two parts: the regions from a
0

,b
0 

to a1 ,b1 , 

where the x component of fluid velocity varies with y position; and 
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the remaining portions of each timeline lying in the "uniform flow 

field 11
• Here, we note that the uniform flow field may be used as 

a reference in describing the timelines, but the actual 11 interesting 11 

part of the patterns lies in the non-unifonn velocity region. All 

the information about the flow is contained in the curve segments 

(a
0

,a1) and(b
0

,b1). 

The second type of flow pattern is given by the curve segments 

(c
0
,c1), (d

0
,d1), (c

0
', c1

1
) and (d

0
1

, d1
1
). In each case, the 

entire portion of the curve is in the non-uniform region of the flow, 

and the entire curve carries information. For these curves, we 

choose the convention that the start point of each pattern will be 

the endpoint of each segment that is closest to the uniform flow 

region. For the first type of flow, we choose the.lower endpoint as 

the start point. These conventions are necessary if we want to avoid 

the complicated computations that are required in the general case, where 

no conventions are followed. These conventions will not restrict 

the analysis because we are dealing with open curves. In the majority 

of cases where Fourier Descriptors are applied, hov,ever, the curves 

a re closed. For closed curves, conventions of the sort that \·1e use 

might not be possible to construct, and furthermore such conventions 

might not be desirable. As a result, our use of Fourier Descriptors 

is a specialization of a general and powerful technique . 
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Section 2.2 Discrete Representations of Curves 

Consider a binary image that is a discretized version of a pic
ture. The term discrete is used to signify that the discrete image 
is only defined at specific points in the spatial domain. A binary 
image implies that it is two colored (eg black and white); This is 
a special case of a digital image, where the colors (or grey levels) 
are finite in number. Whenever images are processed by computer, 
they are both digital and discrete, and this is the case we consider. 
Furthermore, we will loosely use the term "digital" to mean both 
"discrete and digital 11

• 

Figure 2.2a shows a continuous curve, and 2.2b shows its digital 
version, where the digitization is binary (i.e. one bit digitization). 
If the curve in Fig. 2.2b is traced from point a

0 
to a1, this path 

can be recreated by remembering the direction of each step taken and 
the total number of steps. From any one picture element (pixel), 
we can proceed to one of its eight-neighbors (see [l] first edition 
chapter 9) by moving in one of eight possible directions (Figure 
2.2c). Because our programs are written in FORTRAN where subscripts 
start at l, we choose the numbering scheme as shown. Otherwise it 
is more convenient to number the directions zero through seven. 
Since there are twenty one dark pixels in fig. 2.2b, it will take 
twenty steps to reach a1 from a

0
• By keeping track of the directions, 

we generate the twenty element "chain code" of Fig. 2.2d. In travers
ing this discretized path, we note that it is much more jagged than · 

-35-



might be expected. By using (what we have termed) Freeman 1 s corner 

cutting matrix [11, Table III; 13, Table 1], the excessive jagged

ness can be removed from this path. This is done by examining every 

adjacent pair of chain code elements and replacing them with the 

appropriate directions specified by the matrix. If the matrix ele

ment is zero (blank), we leave the pair of elements unchanged. By 

repeated application of this algorithm, we can remove the jaggedness 

without altering either the start or end positions of the curve. 

Freeman shows how this matrix may also be used to find the length of 

any given chain encoded curve. For Freeman 1 s definition of length, 

a more detailed description of the matrix, and many other properties 

of discretized curves, see references [11, 12, 13]. 

Section 2.3 Curve Tracking and Linear Predictive Coding 

In this subsection, we introduce the specific methods that we. 

have applied to extract curve information from digitized images. 

Section 2.3.1 Introduction 

For the case of a binary image, as in Figure 2.2b, and 'I/here 

the image is uncluttered (i.e. all curves are non-intersecting or 

non-near intersecting) the tracking of the curves is trivial. By 

tracking, we mean the generation of a chain code that describes the 

progression of a path along a curve pattern on a digitized image. 

For the case of multilevel digital images (i.e. n>l bit digitization,), 
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tracking is no longer trivial, and the complexity grows with n. 

For our case, we have eight bits (256 levels) of intensity informa

tion per pixel. In addition, the images have noise added to them 

from the digitization process, and the original image scene is uneven-ly 

illuminated. In spite of the difficulties, we have developed a simple 

curve tracking algorithm that successfully tracks most curves. In 

some cases, however, even if the curves seem easily intelligible by 

eye, the simple tracking algorithm fails to successfully follow the 

path. Most of these cases are caused by uneven illumination of the 

original scene or near intersecting objects, but whenever the simple 

algorithm fails, we employ a tracking algorithm based on linear pre

dictive coding (LPC). We have combined the two algorithms so that 
. 

when the simple algorithm fails, the LPC algorithm automatically is 

envoked. 

It is interesting to note that even though we refer to the faster 

of the two algorithms as 11simple 11
, the code (FORTRAN) is quite com

plicated. This is probably a consequence of the ad-hoc nature of 

the algorithm, and in fact, the code is a number of times longer 

than the LPC algorithm. Nevertheless, the simple algorithm executes 

more quickly. This is consistent with the notion that short, struc

tured code may be easy to read (and write), but as a result of the 

often complicated operations placed inside nested loops, such algorithms 

may be slow in implementation. 

Since curve tracking in a multilevel, noisy environment presents 

many subtle problems, we present some of the fundamental ideas behind 

our general curve tracking algorithm (i.e. the '1simple 11 one). 
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Section 2.3.2 The General Curve Tracking Algorithm 

Figures 2.3 through 2.7 describe and define the parameters we 

use. The figures offer specific values for some of the parameters 

(e.g. the number of shells used), and the only justification for 

their use is that we have had success with them in our applications. 

In fact, when a curve is successfully tracked, we have observed that 

the path chosen by the algorithm is nearly always the path that we 

would have chosen by a visual examination of the image. Furthermore, 

we can make some general comments about this algorithm's performance. 

1. If the curve has a path that is relatively clear to 
a human observer, the algorithm is nearly always 
successful. 

2. If the curve is relatively clear, except for a few 
small breaks, the algorithm will many times correctly 
negotiate through the breaks and result in a success
ful tracking. 

3. Even when the path is not clear to humans, the algor
ithm will many times be successful. (This is a result 
of the eight bit grey level digitization, and the 
limited range of the video display that we used.) 

4. Whenever the algorithm is not successful, examination 
of the image makes it clear why the algorithm failed. 
We have found that the primary causes of failure are 
uneven illumination, near intersecting curves, and 
faulty digitization. 

5. There are a number of simple ways to improve the 
algorithm's performance. Time limitations have pre
vented their implementation. 

We can ascribe the success of the algorithm to its short

observation, foresightedness and hindsightedness. Most of the curves 

we track have such short term predictability. On the other hand, its 

-38-



shortsightedness does not allow it to overcome some relatively minor 

obstacles. Below, we briefly summarize some of the properties of 

the algorithm. 

We designate the 11pixel of interest" (POI) as the current position 

of the tracking algorithm. In searching for the next pixel in the 

path, the algorithm only searches in a 11wedge 11 of pixels that is 

defined by the 11 direction of arrival" (DOA) at the POI. As shown 

in Figure 2.3a, the DOA is actually a calculated average of the 

previous M values of the DOA. This average, however, is carried out 

in a 11modifi ed modulo 811 sense. This is because FORTRAN does not 

allow zero subscripts, and as a result, we define the possible direc

tions of movement from the POI as in Fig. 2.3b. Furthermore, the 

average must be carried out such that averaging a 11 direction 811 with 

a 11 direction 211 yields a "direction 111
• This technique is not shown. 

The wedge of interest (WO!) depends upon the DOA at the POI. Figures 

2.4a and 2.5a show the two possible geometries of the wedge when 

the DOA. is even or odd, respectively. We have used a wedge that 

defines a region of ninety degrees about the POA. Wedges of other 

shapes are certainly possible, and one may question the asymmetry of 

our choice. For our case, however, angular observation \·1as deemed 

more important than depth. 

Each wedge is divided into three shells. The pixels of each 

shell all have the same eight-neighbor distance from the POI, and 

that distance corresponds to the shell number. Furthermore, the 
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pixels of each shell are numbered in a counterclockwise sense from 

the most clockwise edge of the wedge. If a wedge has a side of 

length N pixelsJ then it contains N2-1 pixels other than the POI. 

Furthermore, it has N-1 shells, and each shell has 2£.+1 pixels, 

where l is the .shell number. We define each shell to have a weight 

Wt(k) = ~f~~ K=l, ••• ,N-1 

where K is the shell number for the weight, and l=N-K is a shell 

number K shells away from the outer edge of the wedge. We choose 

this form of the shell weight because it is inversely related to both 

the distance of the shell and the number of points in the shell. 

Also, the sum of the shell weights is one. Other weighting functions 

could be used as well (if so, we recommend less weight to the low 

order she 11 s). 

In addition to shell weights, we define the direction weight of 

each pixel in a shell. Because the 45 degree marks are given as 

direction weights 1, 2, and 3, the other direction weights are defined 

by thei: percentage angular deviation from the 45 degree marks. These 

are shown in Figures 2.4,5. The direction weight matrix (for a given 

DOA) is shown in Figure 2.6. 

Finally, the maximum intensity direction (MID) is found by the 

weighted average shown in figure 2.7. In each shell j, the pixel. 

with the maximum intensity is found, and these values are stored in 

the array INT(j). Once the MID is calculated, NEWD is calculated. 

NEWD is the direction by which the path leaves the POI, and it 
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is related to the DOA and MID by the simple relation 

NEWD = DOA + MID - 2 

= DOA + DDOA (modified modulo 8) 

Here, DDOA=MID-2 is the deviation of NEWD from the DOA, so that 

the new di re ct ion is equa 1 to the o 1 d direction p 1 us a deviation. 

With the wedge geometries that we've defined, the DDOA takes on 

one of only three possible values, (-1,0,1). 
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Section 2.3.3 Linear Prediction and Curve Tracking 

We have seen that the general curve tracking algorithm is quite 

useful for most cases but that there are times when it fails. The 

failures are attributable to information that is a part of the digi

tized image, but with regard to tracking a specific path, the infor

mation is mi sl eadi ng. We seek to overcome such obs ta cl es by recog

nizing that their informational content is inconsistent with the past 

evolution of the curve. The method of linear prediction is well 

suited for this purpose. 

Linear predictive analysis has become one of the most widely 

used methods in digital speech processing [14, Chap. 8]. It is also 

used in many other fields and has even been applied to image process

ing [15]. Because of its predominance in the coding of speech sig

nals, however, the technique has been given the acronym LPC meaning 

linear predictive coding. 

The advantages of the LPC technique are in its accuracy of 

estimation and its speed of computation. In addition, it is flexi

ble enough to allow various degrees of accuracy at the cost of fur

ther computation (or other tradeoffs). However, techniques exist 

where the cost of greater accuracy is small on the margin, eg. Dur

bin's recursive relations [14]. Furthermore, the system approxima

tion can be guaranteed stable. While there are a number of ways to 

implement the LPC technique, we have chosen the covariance method. 

Our reasons for this are discussed later. 
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LPG methods are especially useful for the analysis of systems 

that can be modelled by an all pole linear system. That is, a 

parameter s(m) is to be approximated by a linear combination of its 

past values. The approximation is given by 

s(m} = r~=l ak s(m-k) (2. 1) 

where the ak are the LPG coefficients. The error signal is given by 

e(m) = s(m) - s(m) 

p 
= s ( m ) - E a k s ( m-k ) 

k=l 

and the 11 predi ction error fi lter 11 is given by 

A(z) = E(z) = 1 - Ep O'.k 2-k 
S[zf k=l 

(2.2) 

(2.3) 

When s(m) is the desired output of the system, for example, when a 

glottal excitation is the input and a segment of speech _is the out

put, then the prediction error filter is an 11 inverse filter" for 

the system [Fig. 2.8]. If the excitation is given by u(m), then 

the transfer function of the system (with unity gain) is given by 

_ S(z) _ l 
H(z) - WzT - ATzT 

(2.4) 

This is an all pole model of the system and is equivalent to a p tap 

filter, as shown in Figure 2.8. In some cases, the transfer func

tion of a system has both poles and zeroes. By allowing p to be 
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made large, however, it can be shown that any system characteristics 

can be well approximated by an all pole model. 

Though there are a number of formulations of the linear predic

tive technique, only the autocorrelation method and the covariance 

method are discussed here. In [14], Rabiner and Schafer mention that 

all other formulations are equivalent to one of these two, or to 

a third method called the lattice method. Because the lattice 

·method yields LPC coefficients that exactly equal those of the auto

correlation method, we will not discuss it. 

The main advantage of the autocorrelation method is that it 

is guaranteed to yield a stable estimate of the system. In addi

tion, this formulation yields a set of equations that have terms 

equal to autocorrelations of the original sequence (at a given shift). 

Because the autocorrelation of a sequence can be Fourier transformed 

to yield the power spectrum, this method is useful for spectral 

estimation (note, however, that spectral estimation can ·also. be 

done b.Y. the covariance method. (ref. 14, p436)) .. Finally, the 

matrix that describes the linear equations that must be solved is 

both Toeplitz and synrnetric. This allows an efficient solution of 

the set of equations, i.e. Durbin's recursion. 

For our purposes, however, the autocorrelation method \'Ii 11 not 

yield satisfactory results. The main disadvantage of this method is 

the necessity to window and smooth the input sequence, eg. by a 

Hamming window. This means that at the beginning of each analysis 
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frame, i.e. the nonzero portion of the windowed sequence, a nonzero 

signal is to be predicted from the previous zero valued portions 

of the signal. This results in large errors at the beginning of 

each analysis frame. Likewise, at the end of each frame, when the 

windowed sequence approaches zero, a near zero valued signal is to 

be predicted by nonzero signal values. Again, large errors result. 

The saving grace for the autocorrelation method is that for large 

window frames, eg. on the order of one hundred samples or more, the 

mean squared error approaches that of the covariance method. These 

results are emphasized by the data of Chandra and Lin [16] and of 

Maragos, Schafer, and Mersereau [15]. Figures 2.9 and 10 show some 

of their results. 

Because our data frames will be on the order of N=30 (or less), 

we have implemer.ted the covariance method. The main disadvantage 

of the covariance method is that it cannot guarantee the stability 

of the system estimation. For large window frames, where the auto

correlation and covariance results converge, this is not a problem. 

For our case of short windows, however, we recognize this as a prob

lem. In practice, we find that instabilities rarely occur at crucial 

points of the tracking procedure. We now present the fundamental 

notions that motivate and describe our covariance method. 

As shown in Figure 2.11, we imagine that a curve is tracked up 

to the point m=O and that the values of s(m) for m>O are to be pre

dicted. As given by equation 2.1, we assume that s(m) is a linear 
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combination of its past values, i.e. m<O. At this point in the 

tracking, we have not yet calculated any predictor coefficients. 

In theory, two things must first be decided: the order p of the 

predictor, and the analysis frame size N. In practice, we also 

decide how many predictions to calculate before re-evaluating the 

predictor coefficients. (We call this number LPUP representing the 

linear prediction update length.) It is clear that as LPUP gets 

large, the accuracy of the predictions decreases. As defined in 

equation 2.2, the error signal is a function of the LPC coefficient 

ex. We now decide to choose the values of ex in such a way as to 

minimize the squared error of the predictions. Since this is done 

for each of the N predictions in the analysis frame, we really wish 

to minimize the mean squared error, which is given by 

t:i--til O p 
E = e 2 ( m ) = N E [ s ( m )- E ex K s ( m- k ) J 2 

m m=-N+l k=l 
(2.5) 

There are p different values of a to choose, so p equations must 

be solved. Each is of the form, 

dEm o l d p 2 
daj = ~=-N+l N daj [s(m)-~=l exk s (m-k)] 

(2.6) 
= 0 for j = 1 ,2, .•. , p 

Defining the term in the brackets as u, then 

dEm=ro _g_u~=O j=l,p 
daj · m=-N+l N daj 
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We can drop the 2/N and proceed to write 

~!mJ. = Lo [s (m)- ~ ak s (m-k) J [-s (m-j)] = 0 
m=-N+l k=l 

j=l ,p 

This irrplies that 

Lo LP ak s(m-k)s(m-j) = Lo 
m=-N+l k=l m=-N+l 

s (m)s (m-j) 

j=l,P (2.7) 

We purposely leave the limits of the first sum in this form to empha

size that we are calculating the LPG coefficients with values of m<O. 

We now define 4>(i ,j) as 

/j, 0 
cj> ( i ,j ) = L s ( m-i ) s ( m-j ) (2.8) 

m=-N+l 

If we interchange the order of summation on the left side of equa

tion 2.7, we recognize that 

p 0 
L ak L 

0 
s(m-k)s (m-j) = E 

k=l m=-N+l 

p 
= L ak cp(k,j) = ¢(0,j) 

k=l 

m=-N+ 1 
s(m)s(m-j) (2.9) 

j=l,p (2.10) 

For any given j, eqn. 2.10 represents the j-th row of the set of 

equations shown below. 

4>(1,1) 4>(1,2) •.• 4>(1,k) ••• cp(l,P)l a 1 
4>(2,1) 4>(2;2) ••• ¢(2;k) ••• ¢(~,P) a~ 

= 

<f,(~.1) <f,(P;2) ... • )k) .... L) J .i 
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In matrix form, this is written 

+ 
++ + 
<Pa.=<P· 

0 
(2.12) 

+ 
We recognize that since <j>(j ,k)=<j>(k,j) then tis a symmetric matrix. 

Also, <j>(o,j)=<j>(j,O). Furthermore, the diagonal elements are related 

by 

<j>(j+l,k+l) = <j>(j,k) + [s(-N-i)s(-N-j)J 

- [ s'.( - i ) s ( - j ) ] 

+ 
and hence 'tis analogous to a covariance matrix. 

(2.13) 

Figure 2.12 presents a schematic layout of our LPC curve track

ing algorithm. As a note, the present version of the algorithm per

forms the same operations in a slightly modified order • . 

Section 2.4 Distortion of Discrete Curves 

Given the chain encoded sequence of a discrete pattern (eg. 

obtained from a tracking algorithm), we discuss some properties and 

methods of their distortion. We also present a distortion algorithm 

that preserves the start and end points of the pattern and uniformly 

distorts the pattern. 

Recall that a chain code element (i.e. a number from one to 

eight) represents the incremental direction of traversal from 'the 

pixel of interest (POI) to the next pixel in the pattern. From 

Fig. 2.2c, the relations of Fig. 2.13 are derived, and four pairs 

of pixel opposites exist. Clearly, if any one element is added to 
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the chain code, the chain code is lengthened and the endpoint (or 

start-point) of the resulting pattern is altered. For the endpoint 

to be brought back to its original position, a number of chain code 

elements must be added to the sequence with the constraint that the 

total t:i.X and the total t:i.Y of all the inserted elements is zero. The 

smallest number of pixels that can be added to a sequence without 

altering either the start or end points is two: a chain code ele

ment and its opposite. 

Distortions can be made in any one of the four principal direc

tions defined by the four pairs of opposites. That is, directions 

1 and 5 define an axis through the POI at an angle of zero radians. 

Therefore, inserting an equal number of l's and 5's into the chain 

code will not alter the endpoints of the pattern ar,dwill distort 

it in angular direction zero. Likewise, distortions ca~ be made in 

angular directions rr/4, rr/2, and 3rr/4 radians. Figure 2.14 shows a 

chain code, and its pattern, and a distortion of this chain code in 

direction rr/4, and its pattern. By randomly inserting the 11 di stor

tion elements" into the sequence, ho1t1ever, two undesirable results 

appear. First, the distorted pattern loses its qualitative similarity 

with the original, and second, protruding branches in the pattern 

may appear. These branches correspond to a retracing of the path 

that occurs when two opposite elements are sequentially placed in 

the chain code. Both of these results are due to the randomness of 

the insertions. 
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Hence, we condition the placement of distortion elements into 

the chain code by using {what we have termed as) the tetrahedron 

test. This test conditi ans the movement from the POI such that it 

differs in angular direction from the direction of arrival (DOA) 

by either -n/4, 0, or 1r/4 radians. This condition is consistent 

with the restrictions used in the general curve tracking algorithm 

(sec 2.3.2). Figures 2.15 a and b illustrate these ideas. 

By distorting in this way, the components of the pattern are 

exaggerated or stretched in the direction of distortion. The evolu

tion of the pattern in other di rec.ti ans, however, is unaltered. 

Because we will examine the spatial frequency characteristics of 

these distorted patterns (sec. 3.2), because the distortion only 

alters certain spatial frequencies, and because there is no justifi

cation for direction selective distortion, we have developed a dis

tortion algorithm that is biased in direction only as much as the 

undistorted pattern is biased in direction. We discuss the algorithm 

belOVJ. 

Previously, we showed that a distortion in any one angular direc

tion can be accomplished by inserting a pair (or many pairs) of 

elements into the chain code. This distortion might be termed 

11 1inear11 or 11 directional 11
• If distortions are performed simultaneously 

in each of the four directions, then there is no di recti ona 1 i ty. 

Furthermore, because a minimum of four pairs (or eight elements) must 

be inserted into the sequence, and because these elements can be 
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arrang~d to approximate a circle (actually an octagon), the 

distortion might be termed "circular" or 11 omni-directional 11
• 

Obviously, the amount of distortion is dictated by the number of 

circles that are inserted. Figure 2.16a illustrates this. 

Suppose that when inserting elements into a chain code it is 

agreed that no two distortion elements of the same value will be 

placed sequentially and that all insertions follow the tetrahedron 

rule. Then there is a maximum number of circular insertions that 

can be made, and furthermore, this number is the minimum of the 

number of insertions allowed for any single element. 

For any single element, we use the tetrahedron rule to calculate 

the maximum number of possible insertions (MP!) without allowing 

for repetitions of elements. Then we find the minimum of the MPI 

(MINMPI), which is the maximum number of possible circu·lar inser

tions. To distort the pattern, a number less than MINMPI is chosen 

as the number of desired insertions (NUMDES). Clearly, these inser

tions can be made in a very large number of different ways, but for 

uniform distortion of the pattern, the insertions should be spaced 

throughout the length of the pattern as evenly as possible. 

Because some patterns may yield a MINMPI equal to zero, there 

is an apparent problem. In this case, however, the original pattern 

is biased against certain directions, and so omitting distortions 

in these directions is not undesirable. In fact, using the minimum 

nonzero MPI allows the distortion to be as directional as the 
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ori gi na 1 pattern. This seems to be des i rab 1 e in genera 1. Be 1 ow, 

the algorithm is presented in more detail. 

The Circular Distortion Algorithm 

Given a chain code sequence: 

1) Calculate the number of occurrences (NOC) of each element, i.e. 

NOC(j), j=l,8 

2) Find the maximum possible insertions (MPI) per element by use 

of the tetrahedron rule, i.e. 

MPI(l) = NOC(8) + NOC(l) + NOC(2) 
MPI(2) = NOC(l) + NOC(2) + NOC(3) 

. 
MPI (7) 
MPI (8) 

. 
= NOC(6) + NOC(7) + 
= NOC(7) + NOC(8) + 

. 
NOC(8) 
NOC(l) 

3) Find the minimum of the nonzero MPI. Denote this as MINMPI. 

This is also the maximum number of insertions without repetition. 

3A) If some MPI are zero, then: for every element number j where 

MPI(j)=O, exclude j from the inse_rtions, and also exclude its 

opposite element, i.e. j+4 (modified mod 8). 

4) Denote by NUMDES (~INMPI) the number of insertions desired. 

5) For each of the distortion directions, calculate the fraction of 

the possible insertions that are desired. Denote these by 

FRACT(j), j=l ,8 where 

FRACT(j) = NUMDES/MPI (j) 

and where MPI (j) 'f 0. 
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6) For every element in the chain code sequence, perform the 

following: 
a) Set the current element of the distorted sequence equal to 

the ori gi na 1 element. 

b) Use the tetrahedron test to decide which elements could 
possibly be inserted after this element. [exclude direc
tions from 3A]. Increment a counter for each of these 
elements that keeps track of how many times it appears as 
a possible insertion element. 

c) Compare FRACT(j) with the counter (for element j) and 
decide if an insertion is made. 

d) Insert the proper elements into the distorted sequence. 

Figure 2.16b shows distortion patterns made by this algorithm. 

Note that some improvements can still be made, most notably, in 

step 6b the order of the elements tested and inserted should be made 

random. This would diminish the occurrance of the semicircular 

patterns evidenced for large NUMDES. As an example of other types 

of distortion, Figure 2.17 shows a directional distortion where the 

distortion is not uniformly spread throughout the length of the pat

tern, but the start and end points are preserved. Figure 2.18 shows 

a distortion where the distortion is unifonnlY spread throughout the 

pattern length, but the start and step points are not preserved. 
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Section 3 Fourier Descriptors 

Section 3. 1: Introduction 

In the last section, we described how to obtain chain code 

descriptions for the curve patterns (timelines of a flow) from curve· 

tracking techniques. We now employ the chaincodes to quantitatively 

describe each curve. 

From the chaincode of a curve, we readily obtain the tangent 

angle of the tracked curve for each incremental step of the track .. 

Because the chaincode describes the movement from pixel to pixel in 

one of only eight angular directions (recall figure 2.2c), the tan

gent angle of the curve at that step is one of only eight values, 

Figure 3.1 shows the relation between chaincode elements and the 

tangent angle of the curve, as we have chosen it. As shown, all 

the chaincode elements are associated with angles in [0,2n] plus 

the anbiguity of 21rm radians, where mis any integer. 

Clearly, what is meaningful is not the absolute tangent angle 

of the curve, but instead, the change in the tangent angle from 

the ori gi na 1 direction of the curve, Indeed, it can be argued that 

even this function retains too much information and that the only 

significant information is where the tangent angle changes from 

step to step. Figure 3.2 shows the relationships between the three 

measures of the tangent angle as a function of length along the curve. 

When dealing with discretized curves, the continuous absolute 

tangent angle function e(t) is discretized into the sequence a(n). 
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Additionally, one compares different sequences by comparing their 

OFT spectra, and hence one can comp a re different curves of an 

image. Furthermore, since <j>(n) = e(n) - e(O), it is clear that the 

OFT coefficients of <J>(n) are exactly the same as those of e(n), 

except for the zero-th coefficient. (The zero-th coefficient con-

tains the average value of the sequence.) Hence, when comparing 

OFT coefficients, using <j>(n) in place of e{n) is perfectly acceptable. 

In contrast, the OFT coefficients of ip(n) are very dissimilar. 

from those of e(n). Consider the following equations. 

ip(n) = <j>(n) - <J>(n-1) 

= e(n) - e(O) - e(n-1) + e(O) 

= e ( n) - e ( n-1 ) 

'!'(z) = e(z)[l-z-1] 

'l'(w) = e(w)[l-e-jwJ 

= e(w)[2ej (w/2+1r/ 2)Jsin(w/2) 

l'l'(w)I = 2je(w)lsin(w/2) 

{.3 .1) 

( 3. 2) 

(Note that sin(w/2) is always positive for win [0,2n].) From eqn. 

3.2 we see the problem of using the function iJ,(n) instead of e(n) 

or <j>(n); i.e. the OFT coefficients '¥(iii) are distorted versions of 

e(w). For iii near zero, the '!'(w) are always near zero. For w near 

1r, the 'l'(w) are amplified versions (by a factor of 2) of e(w). Later, 

we will see that the basic shape of a curve depends only on its 

low frequency coefficients, and hence, when comparing the '!'(w) of 
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two similar looking curves, one may wrongly conclude that they are 

dissimilar. That is, by using the '¥(w), low frequency similarity 

is obscured by high frequency dissimilarity. We conclude that, 

though ip(n) may be useful in other situations, it is not a useful 

function in determining basic shape similarity. 

In our discussion so far, we have intimated that by performing 

a DFT on the tangent angle function, any two curves may be compared. 

Cosgriff [17] was the first to suggest this method, and many others 

have since pursued it. However, most of the work done in this area 

has been for the case of plane closed curves. In general, however, 

the OFT coefficients by themselves are not good measures of the 

similarity of two curves. This is because they contain information 

about size, orientation, and phase of the curves. 

Granlund [18] was one of the first to define measures of simi

larity that are based on the Fourier coefficients, but his measures 

have the ability to recognize similar shapes at arbitrary translations, 

rotations, and dilations. Wallaceand.Mitchell [19] show the need to 

obtai.n properly normalized Fourier descriptors, and they develop the 

use of a 1 i brary from which to match and identify shapes. In a more 

modern and more theoretical analysis of Fourier Descriptors, 

Crimmons [22] shows that measures using OFT magnitudes alone are 

not sufficient to uniquely describe closed curves. We also site a 

number of other references [20,21,23,24], and we remark that a useful 

list of references is supplied in [21,23]. In a manner similar to 

[18] and [20], yet with a number of differences, we describe our 

methods. -56-



Section 3.2 Fourier Descriptors and the Comparison of Plane 
Open Curves 

Below we briefly discuss the mathematical relations between the 

OFT coefficients of a tracked curve and the actual curve. Then, we 

discuss our similarity measure. 

Section 3.2.1 Theoretical Development 

Suppose that a continuous relative tangent angle function <1> 0(t) 

is passed through a sample and hold device. We then obtain the 

continuous function <j>(t) and the sequence <j>(n), as shown in figure 

3.3. Now, note that <J>(t) is an approximation of <I> (t), and the 0 

accuracy of the approximation depends upon the sampling rate ws = 

2~/S and the bandwidth W of the signal <J> (t), where Sis the period, 
0 

Treating <1>(t) as a continuous aperiodic function of t, its Fourier 

transform is written 
L 

~(w) = J <j>(i) e-jwtdi 

0 

N-1 
= L 

n=O 

(n+ 1 )S 
<j>(nS) J e-jwtdt 

nS 

(3. 3) 

Note that <j>(nS) comes out of the integral because it is constant ·over 

the limits of integration; also, <J>(n) can be substituted for <1>(t) 

(at values t=ns) to obtain, 
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cp( w) 
N-1 ( ) = E <j>(n) . .:;l [e-jw S n+l -e-jwSn] 

n=O Jw 

N-1 . S jwS jwS jwS 
- -. E cji(n)e-Jw n.e- -2- [e_2_ - e- TJ 

Jw n=O 

jwS N-1 . 
= £ e- - 2- sin(wS/2) E cji(n)e-JwSn (3.4) 

w n=O 

It is important to note that cp(w) is an aperiodic spectral density, 

and it is an approximation to the actual spectral density <I>0(w) of 

the o ri gi na 1 curve <!> 0 ( t). 

By taking samples of this spectral density (eqn. 3.4) at 

va 1 ues wS=wk =21r k/ N , we can write eqn. 3. 4 as , 

. iiik - J 
2 

iii M-1 - j w n 
cp(w ) = 25 e Sin(f) E cji(n)e k 

k Wk n=O 

wk 
2 -j 7 Ulk 

= ....!. e Sa(-2 )[OFT of cji( n); w=w ] 
ws k 

(3.5) 

Here, we use the definition of the absolute sampling frequency 

ws=21r/S, the sampling function Sa(x) = sin(x)/x, and a scaled ver-

sion of the OFT (eqn. 1.10). 

The interpretation of this result is very important. Note 

that cp(w), the approximation of cp
0
(w), can be generated through use 

of the OFT coefficients of the sequence <j>(n). Hence, if cji(n) is 

of length N (even), then the first (N/2+1) OFT coefficients uniquely 

specify the spectral density of the saJllpled function <j>(t). As a 
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result, <!i
0

(w) can only be estimated up to the absolute frequency 

w=n/S, i.e. half the sampling frequency. Figure 3.4 shows how 

<!i{w) is related to i(wk) and the OFT of ~(n). 

In defining a measure of similarity between two curves, it is 

important to note that the spectra <!i{wk) gives less weight to the 

coefficients as wk grows than does the OFT of ~(n). For two steplike 

functions (as ~(i) is steplike) then, the high frequency components 

contribute less to their similarity than do the high frequency com

ponents of their samples (e.g. ~(n)). This is a result of the sam

pling function in eqn. 3.5. These results also re-enforce the 

intuitive noti ans that high frequency components are more important 

in the reconstruction of sequences (impulse-like) than they ar€ in 

the reconstruction of {smooth) continuous time or space bandlimited 

functions. 

With the above results, we now discuss what Bennett and MacDonald 

[21] have reported. They measured the correlation between the OFT 

coefficients (used in the approximation of <!i(wk) in 3.5) and the 

original coefficients used in their test sequences. They found that 

the correlation for the coefficients for w>n/2 was essentially ran

dom and of low magnitude. Their conclusion is that there is little 

or no dependence between the high frequency components of their con

trol data and the empirical data. From figure 3,4, we would expect 

that there be correlation for iii greater than n/2 and even up ton. 

This is because, at w=n/2, the sampling function Sa(w/2) still 
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equals 0.900, and even at w=rr the sampling function equals 0.657. 

This indicates that there must be other factors that are heavy 

determinants of.the correlation of twq sampled curves. Specifically, 

these factors must have large components for values of w greater 

than rr/2. The most obvious cause of this phenomenon is the direction 

quantization to eight levels (3 bits). A second cause is the track

ing algorithm. 
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Section 3.2.2: Fourier Coefficients and Reconstruction 

Figure 3.5a shows a relative tangent angle function quantized 

to multiples of TI/4. The sequences shown in 3.5b,c represent 

the phase and magnitude of the OFT coefficients, and 3.5d shows 

the actual curve tracked from a digitized picture. This is the 

same curve as the original from Fig, 2.16b. Figures 3.6 and 3.7 

show three of the distorted curves from Fig. 2. 16b along with their 

magnitude and phase coefficients. Figure 3.8 shows two extremely 

dissimilar curves and their OFT magnitude and phase coefficients. 

It is desirable to understand the significance of the Fourier 

coefficients to the shape of the curves. Figure 3.9 shows the 

origina.l curve and its relative tangent angle function. Adjacent 

to these are the corresponding functions obtained from an IDFT of 

a truncated version of the original OFT spectrum. Here, the recon

struction of the curve was accomplished by retaining 2% of the 

lowest order unique OFT coefficients. For Fig. 3.9, there are 

75 unique original coefficients, and the reconstruction only used 

one of these •. Clearly, neither the curve nor the tangent angle 

function resembles the originals very closely, and yet, the amount 

of similarity present is quite surprising. Figure 3. 10 shows the 

reconstruction using 3.5%. (equal to two) of the original coefficients. 

Figure 3.11 shows the reconstruction using 5% (equals three) of 

the coefficients, and 3.12 shows it using 10% (equals seven). 

Figures 3. 13 through 3.18 show reconstructions using 20%, 40%, 60%, 
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80%, 90% and 100% of the lowest order coefficients. These figures dramatically indicate that if the patterns of interest are similar to those in the figures, then their general shapes are determined predominantly by their low order OFT coefficients. This conclusion, however, depends entirely upon the shapes of the patterns of interest. It is entirely possible that i_n experiments with completely 
different patterns of interest, a much larger percentage of coefficients is needed to sufficiently describe the patterns. For most digital images, however, the patterns of interest are likely to 

be made up of a large number of pixels, and in such cases it is 
likely that a small percentage of DFT coefficients carry the pre
dominant amount of shape infonTiation. 

It is important to note that this result is generally independent of what Bennet and MacDonald have reported (as discussed in sec. 3.2.1). Their results indicate that even when the original 
patterns have significant high spatial frequency components, there 
is ver,Y low correlation between these and the high order OFT coefficients of the tracked curves. 

In the next section, the OFT coefficients are normalized 
to facilitate the comparison of various spectra. It is important to note, however, that for the proper reconstruction of the tan-. 
gent angle sequence, and hence the chain code, the original OFT 
coefficients must be used. If a normalized version is used in the reconstruction, the tangent angle "envelope" will be the same, but 
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there will be an improper scaling of the sequence values. This 

results in an improper chain code representation of the curve and 

the inability to recreate the actual pattern. These arguments are 

equally applicable to the case of a 11 normalized 11 average, and 

care must be taken to reconstruct a tangent angle function that 

leads to a meaningful chain code. 

Section 3.2.3 Similarity Measures 

In this section, we present a simple measure from which to 

quantitatively compare the similarity of any two patterns. First, 

however, the OFT coefficients must be norma 1 i zed so that two pat

terns with the same spectral envelopes, but with different scalings 

of the envelopes (i.e., the signals have different energy: Re 

Parseval's Thm.), can be recognized as exactly similar. 

In addition, it is necessary to discuss the significance of 

the zero-th coefficient. The zero-th coefficient of the OFT 

(eqn. 1.10} represents the average value of the relative tangent 

angle function. For the case of closed curves [20], generally there 

is no convention that uniquely defines the start and end points 

of the closed curve. That is, any point on the curve can be 

chosen as the start point. In this case, the average value of the 

relative tangent angle is meaningless; it varies depending on the 

start point. Hence, for closed curves, the zero-th OFT coefficient 

is not used in the similarity measure. 
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In the case of open curves, conventions for chaos i ng the 

start and end points of the curve are possible (sec. 2. 1). Addi

tionally, the relative tangent angle is independent of the starting 

direction, and the zero-th DFT coefficient represents the average 

deviation of the tangent angle function from its starting value. 

This is a useful quantity in detennining the similarity of two 

curves, and so the zero-th coefficient is included in the similarity 

measure of open curves. It is important to note, however, that 

the OFT coefficients should be calculated as in eqn. 1. 10, that 

is, the factor of 1/N should be included in the calculation. Many 

library OFT subroutines (eg. IMSL) do not include this factor, 

and care should be taken to note this. In this case, the zero-th 

coefficient contains information about the absolute size of the 

pattern, and it should not be used in the similarity measure. 

For the similarity measure, only the magnitude of the OFT 

coefficients need to be normalized. The phases are unaltered. 

For the normalization, the largest magnitude coefficient of each 

spectrum is assigned to the same value (eg. 1000), and the remain

ing coefficients are scaled appropriately. As noted earlier 

(sec. 3.2.2), the scale factor for each spectrum should be recorded 

to facilitate the averaging and/or reconstruction of the patterns. 

For two properly chosen and normalized sets of coefficients, 

X(k) and Y(k) the similarity of the magnitude coefficients can be 

determined by 
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{3.6) 

where X(j} and Y(j) denote the magnitude of the j-th coefficient 

from each spectrum; N is the number of coefficients that are com

pared (eg. see sec. 1.2.4). Note that eqn. 3.6 really describes 

the similarity in tenns of auto- and cross-correlations of X and Y. 

The numerator is the cross-correlation with zero shift, commonly 

written as Rxy(O). The denominator is the square root of the pro

duct of the individual auto-correlations Rx(O) and Ry(O). For the 

similarity of the phase coefficients, the same expression is used 

except X(j) and Y (j) denote the phase (radians) of the jth coeffi

cient. We distinguish the similarity of the magnitude coefficients 

from that of the phase coefficients by using the notation SM(N) and 

S<I>(N), respectively. 

From the well known Schwartz inequality, it is clear that the 

similarity measures will have absolute value less than one, Sm will 

always be greater than or equal to zero, but Sc!> may be either posi

tive or negative. This is because the phase of the coefficients 

has been defined on [-1r,1r]. By converting all the phases to values 

in [O, 21r], S<I> will also be positive or zero. We now define the 

overall similarity of curves X and Y by 
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( 3. 7) 

where N coefficients are used in the calculation. 

Figure 3.19 presents a table of values for the similarity c:if 

the curves in Figure 2.16b. The similarity measures are for the 

distorted curves in comparison with the original curve. 

A number of comments should be made about the similarity 

measure and the distortion patterns. The table of values in Fig. 

3.19 and the qualitative similarity of the curves in Fig. 2.16b 

indicate that the low order coefficients are quite adequate for 

determining the general similarity of two patterns. For similar 

curves, however, it is also clear that more coefficients need to 

be included in the calculation if a finer measure of similarity is 

required. 

From the results, it is also possible to remark on the dis-

tortion algorithm (sec. 2.4) used to create the curves of Fig. 

2.16b. From Fig. 2.16b, the distortion algorithm apparently pre

serves the qualitative nature of the original pattern. The table 

of Figure 3.19 shows a similar result; the distortion algorithm 

preserves the frequency content of the original pattern, even 

when the distorted pattern is 50% larger (NUMDES=l2) than the 

ori gi na 1. 

Perhaps, for the purposes of this presentation, the distortion 

algorithm is too 11 good 11 • It seems desirable to distort a pattern 

to the point where the similarity is appreciably diminished. One 
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way to accomplish this would be to appreciably distort the original 

OFT coefficients and then reconstruct the distorted patterns. 

This is the logical alternative (or dual) of distorting in the 

spatial domain and then calculating the OFT coefficients. 

The final thing to note about the values in Fig. 3.19 is the 

trend of the S~(N) for a given N. For small N, the trend coincides 

with the intuitive notion that more distortion leads to less simi

larity. As N grows, however, this trend is not followed. In fact, 

when N reaches its maximum value (as defined in sec. 1.2.4), the 

\ values for highly distorted curves are sometimes greater than 

those of the less distorted curves, This result, however, is con

sistent with the conclusion that, even for similar patterns, the 

high order coefficients are not well correlated. 

In addition, because the phase coefficients for high fre

quencies may have values equal to (or even larger than) the low 

frequency coefficients, the resulting S~(N) will fluctuate in 

value for increasing N. This is not true for the magnitude coeffi

cients, however,:where the high order coefficients have small magni

tude in comparison with the low order coefficients. An interesting 

study could be made by comparing similarity values for (highly) 

similar curves, but where SM and\ are calculated from coefficients 

selected from various ranges of the spectra. 
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Conclusion 

In this paper, we have dealt with a pattern recognition problem. 
We first developed an efficient way of characterizing a discre-
tized pattern through curve tracking and the relative tangent angle 
function. We then applied our knowledge of signal and spectral 
analysis to obtain the Fourier description of patterns (open curves). 
Finally, we have described a method for calculating the similarity 
of the original patterns. 
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Fig. I.1 Digitized imag~ of a fluid flow pattern (Hydrogen Bubble Visualization). 

--- - .. -------·· ··- -- ··-----··· ------------------------------- -------- --- --------------------------



-·--·----------·-------------------------··----·---------------

Fig. I.2 The image of Fig. I.1 processed by a region thinning algorithm. 
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f(f) Fig. 1.1 

fo+T 
->f 

a) A real, continuous time, aperiodic signal. 

IF(w)I 

b) Magnitude of the spectral density of f(t). 

c) · Phase of the spectra 1 density. 

A cp(w) 
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~(t) 
Fig. 1.2 

t-T 
0 

t+T 
0 

f 

a) A real, continuous time periodic signal. 

r IF(w) I 

.. ~---· - ... w 
WO 

b} Magnitude of the fourier series coefficients. 

c) Phase of the coefficients. 

t¢(w) 

r1~.--L_..,_t: __ - .. u.) 

-72-



f(t) 

------F----.L---:-,._ ____ ::> f 
to fa+ T 

A real, continuous time, aperiodic signal. 

f ( f) ----·-[ fr-· ~J ---· f( nl;) 

T; = Samp 1 i ng Period 

Ws= Sampling Frequency (radians/sec.) 

= 27V7; 

N = Number of Samples in Duration T 

=T/7; 

Fig. 1.3a) The original sign'al, and the sampler. 
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fs (f) Fig. 1.3 
(continued) 

1 
----~._._...__._1 '-L-oL....r."--s ~tr------·-t 

fo 
0 

b} The sampled function. 

' f(n) 

c) The sequence of samples. 

d) A shifted sequence of samples. 

r r'(n) 

f . 
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, I F(w)I Fig. 1.3 
(continued) 

\ ~ --~----____,...._ ________ __. _____ ~---w 
-31T -1T 1f 3Tr 

e) Magnitude of the spectral density of the FT, and 

f) its phase. 

cp( w) 
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·· f(n) 
N=/0 

a) An aperiodic (discrete time) sequence of length N=lO. 

b) A periodic sequence with period N=lO. 

-10 
0 

1 r JI l If// l r 1 I [ •n 
lo 

Fig. 1.4 
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IJ;;(wok) I = l((k)I 

f • t N=/0 
'' I 

, 
I . • I 

I : f 
: 111 I I W0 =2n/N I i 

' ] i l lll 
I I i I I l I I I I C\J 

-elf -7T 0 'IT 21T 
.... w 

-10 -5 0 5 /0 .-.k 

c) Magnitude of the coefficients, 

d) and their phase. 

¢/w:k) = ~(k) 

~~~-~~~--~-.~k 

Fig. 1.4 (continued) Discrete-time Fourier Series coefficients. 
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t \F(e,0)1 
I 
I 

(\.) 

w=cJ/fs 
Ws=2rr/{ 

T=!\i 7; 

___ ---1.--~o---~-- ----------w 
- f' yl 

I 
I 
I i 

\ t\F(w)\ 
i I; l 
\ 
I I --

.----l--~.:.-' '1-l--! ~\ ~,~le!_ 
-3 7T -K: 

0 l·rr J rr 

3 

\ i 
I 

r,- , , iJ 

I 

~ 

11 

Fig. 1.5 a) Spectral density of a bandlimited, continuous time, 
aperiodic signal. 

b) Spectral density for case of 6versampling, and 
c) undersampling. -78-
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+ f (t) T=2I 0 

0 

a) Original signal: 

b) sampled at rate 2'1'(/S for time T=T0 • 

i f.(n) N= 7;/5 
I 

~t 
T 

____._._~~~--'-L-· 1-1-1-..l_J__.L..L.I ........_.__._-J...J....l....J....Jj~W ~n 
0 N-1 

c) and sampled at same rate for time T=2T~. where Sis the sampling 
rate. 

t ~ (n) 

Fig. 1.6 
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1;;-(w)/ 
1' 
t 

I 
I 
. (\J 

_ __.____. _________ ..__...._......,..__.__.__.__,__...__1__..w 

0 ~w'. 7f 
0 

d) DFS coefficients for sequence from b, and 

e) DFS coefficients for sequence from c. Bold coefficients in e 

exactly match the frequencies of coefficients in A:, 

/ ~(w) / 
. Wo=2Tr/M 

:== 1T/N 

Fig. 1.6 (continued) 
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l~C)I 

/-2 /-I l /+I [+2 

' M \~( )\ M=3N 

I 

I 

- k~G k-3 k k+3 k+0 

Fig. 1"7 Part of the OFS spectra of a) FN (2) and b) FM(k), 
·both for the special case of M=3N. 
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Interploation in the Frequency Domain 

M>N 
---------------- fr1 ( n) 

fN (n) --·-----~------- FN (w) 

fl'\ (n) -- ___ J; _______ _. FM (w) 

Zero extend fN(n) 
by appendfog M-N 
zeros to it. 

N point OFT. 

M point OFT. 

FM(~) is the interpolated version of FN (w). 

{

Appending zeroes in} 
the ~equence (time) ------. 
domain {

Interpola~ing in the} 
frequency domain 

Fig. 1.8 
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N 
N= Co 

0 5 
k 

4' . 

I · 1 I 
' 

\ 1 l 1 i { i --

a) Part of the original DFS spectrum. 

tl~(k)l M=/2 
I 

I 1 

. 

'. \ 
0 3 II 

b) Zero.extended spectrum. Note that the spectra are the 
same for coefficients (-J,J), where for N even, J=N/2. 
For N odd, J=(N-1)/2. 

Fig. 1.9 
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c) Part of the original DFS spectrum. 

d) Interpolated sequence.from the IFT of the spectra of b). 

·--... n 

Fig. 1. 9 (continued) 
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Interpolation in the (time) Sequence Domain 

Fr-1 (~) fVl>N 
~ (w) Append zeroes to 

-------------• 
F~ (Gj). 

ti'-" ·I 

FN (tJ) 4N 
f N (n) N point IDFT 

------ ----------

r;--" -, 
Fl'\ (w) 4m. f"" ( n) M point IDFT 

Here, fM(n) is the interpolated version of fN(n). 

!Zero extend in the) frequency domain ------------

Fig. L 10 
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IF:(w)I 

' ~ i 

i ~w tvl= 
I • 

' 
I • 

-
-41f -37f -21T -'Tf 0 7f 2rr J'Tf 4 n 

Fig. 1.11 a) Original DFS coefficients for N=8. 
b) Coefficients of the 11 wrapped 11 spectrum, where 

M=(l/2)N=4. Note that wrapping may lead to an 

aliased spectrum. 
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, ~(n) 
I 

r r 
o I 3 5 7 

l ... 
_....._ _ __,___ -- -·----n 

0 I 2 3 

Fig. 1.11 (continued) 

c) Original sequence. 
d) Sequence from wrapped spectrum. Note that in general 

this sequence may not look similar to the original. 
Because the high frequencies may have been obscured, 
it will tend to be smoother than the original. 
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,M)N 
~(n) .. ~~(n) 

0 

a) Zero extending a sequence to length M. 

N = 18 
M= 12 
fJ =3/2 
r =2 

~~l]~·w 
?y''Y 1T 21f 

b) OFT spectrum, and 

c) an ideally low pass filtered spectrum. 

(\J 

--ll....1-.1.....I-L.Ji.4-4· ...... , --· -4-1 ~, ,i-.._ .. , ...... -· -· ,~, ........... -· ·-,----... (;J 

7T/y 2rr 
Fig. 1.12 
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l (w)I I~ 

I 

1 ~ 

C"\J 
w 

7f 21f 37f 41f 
d) Wrapping of the spectrum in (c) yields this spectrum and 
e) this sequence. This sequence is a decimated version of (a)'. 

Every other element of (e) equals every third element of (a). 

-"---'~__.__,__...._.__,....--.--,--1__._ _________ n 

Fig. 1.12 (continued) 
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1.12 f) 

M>N 
. ~= N/M 

Decimation in the Time Domain 

If~ is an integer, then 7/=~ 
If~ is not an integer, then o = the next integer larger 

than f; 

fN (n) 
'tri> N 

~~n) Zero extend the 
----------·----· sequence 

~l'\(n) 
°.;' '1~( k) ------- !_M ---• OFT of zero extended 

sequence ~/~point) 

~,,\( k) 
0M>M FM (k) Filter and wrap 

---------------- the resultant 

o-"-1 
spectrum 

Fill (k) 
:_;i 

ffl\(n) IDFT to obtain the 
----------------- decimated sequence 

Fig. 1.12 (continued) 
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t(n) 

11 

((n) 

T, = Duration 

S, 
N 

= Sampling 
Period 

= #of samples 
W, = Bandwidth 

T;, = Duration 

S _ Sampling 
1 - Period 

N:..= #of samples 
r f 1 ~ = Bandwidth 

-l,-.-J._L----"---'--1.-__.__.lll-1,-
1
.-,ill ____ n 

J ! N,.- / 
Fig. 1.13 Two sequences (a) and (b). The relation T=NS holds in general where Tis the duration of the original signal. Wis its bandwidth. 
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Cose I: 
T;) T, 

I\J'J.)N, 
S:J.=S, 
~ (Wi 

IF.(w)/ ; IF.(w)I 

I ~(w)J ) I f(W)/ 

Fig. 1.14 a) and b) Spectra of the two sequences of fig. 1.13 
for case 1. .61,.J is the spacing between 
coefficients. 

-92-



I fi(&J) I 

l~(~)I 

Fig. 1.14 (contin.ued) 

l"\.J ·----•w 

c) and d) Spectra of the zero extended sequences. Each 
spectrum contains M coefficients .where the 
spacing is the same for both spectra. 
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Case 2: ?;.=T. 
Na) N, 
s: (S: 
~=w. 

/Yr= 14 

~~~1·1~ /TfTT1 
0 

1LMWJJJ ___________ w 
Wi 21f/s, 

0 7T 27T 

Fig. 1.15 Case 2 a)Spectrum of the first sequence 
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,~, 

0 

0 7f 

1 IFt(w)I = lli(~)I 

21r/s9. 

21f 

Na=-17 

M=24-

(\J _.w 

(\J 

-L....L.,.JL-L-L-i-~ ........ -4-+-_._..........,__,__,c...,,....,_,__"-f-____ _. 6J 
21f 

Fig. 1.15 (continued) b)Spectrum of the second sequence. 
c)Spectra of (a) and (b) zero 

extended. In this case they are 
equa 1 . 
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7 

5 

3 

I 

' f, (n) 
N, =8 

-t-------....___,.._.L.-.."""'""'--~----------n 
-I 7 

s ~(n) 
N~= G 

3 

I 
-t__,... __ __,,. _ _.._ _____ ,-L-________ n 

-/ 5 

-3 

Fig. 1.16 Sequences of 1 engths 8 and 6. The sequences are: 
a) 1,4,l,1,-2,1,4,7 and 
b) 4,0,-4,0,0,4. 
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,(n)= ~2(f.(n)+{(n)) 

I 
_,___......___-4-_-1--_-1----,----1---......__ _ _.__ ____ n 

-I 

5 

3 

I 

~(n) M=24 

-1-................... _._,,......,....,,.....,_,_,....,_,_.._.....L-.J-l'--'--'"-...J-.~---- ---· n 
23 

-I 

Fig. 1.16 (continued) 

c) Case 1 average, ie "Direct Average," N=7. 

d) Case 2 average, ie "Normalized Average", where M=7. 

Note that the averages are quite disimilar. 
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a 
Fig. 2.1 

<] 

c, 

C 0 

Flow patterns. The triangular object is an obstruction 
in the flow (not necessarily stationary).· As the water 
(fluid) is swept around the object, the hydrogen bubble 
timelines create different patterns. The direction of 
the flow is from left to right. 
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a) 

o) 

I I I I 
I 

3 3 I I 3 
2 3 5 ·3 3 
.3 3 I I I 
I 8 7 6 

Fig. 2.2 a)Curve in continuous spatial domain 
b)Original discretized version 
c) Poss i b 1 e movements from any one pi xe 1 , i e the pi xe 1 

(or point) cf interest, POI 
d)l9 element chain code describing 20 element pattern 
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I 

2 

3 

4 

5 

6 

7 

B 

~) Freeman's Corner Cutting Matrix F)3223 
3333 
.3 2 I I I · 2 i 3 1 4 5,6 

i 2 j 3' 
I 

j7 

I 1-3,3! 3 I 
2 

I 

I 14 15 I 
I 

I 

3 3,31 I I 5,5 

314! I 
7 ! 5 155 i ! , I I I 

15 l GI 
I 

8 I I 

''" i ' I I 7 f ?Ji 
I 

The processed pattern. 
I I I I 

I 00 

7 8 

8 

I / t, I 

j / 
I 

sl 
! 

GI 7 
I 

j?,7 

i 
I 
! 

I 8 7 G 

Shortened 
Chain Code 
(16 elements)· 

Note that the start and end points 
~re unaltered. · 

Fig. 2.2 (continued). -99-



Direction of Arrival (DOA) at the Point of Interest (POI) 
is given by the average of the last M DOA's. That is, by 
summing from j=l to M, 

DOA(k) = 1/M ! DOA(k-j) modified modulo 8 

The modified modulo 8 value of a number N is calculated as 
N (mmod 8) = N (modulo 8) if this is not zero. 

= 8 if the above is zero. 

Fig. 2.3a Modified Modulo Eight 

Fig. 2.3b See Fig. 2.2c. 
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3 

Shell #3 
- . 
Shell #2 

• 

Shell #1 ---

D3 

D2 

Dl 

Fig. 2.4 

2 

I 

. I 
I 

-101-

a) Wedge of interest where 
the direction of arrival 
(DOA) at the point of 
interest (POI) is even. 
Here, DOA=2 and the number 
of shells N=3 . 

b) Direction Weights for 
Shell #1: 

Dl=l.00 
D2=2.00 
D3=3.00 

; 

c) Direction Weights for 
Shell #2: 

Dl=l. 00 
D2=1. 59 
D3=2.00 
D4=2.41 
D5=3. 00_ 



Shell #3 

D7 D4 

D3 

D2 

Fig. 2.4 (continued) 

Shell 

Shell 

DOA 

Fig. 2.5 

.3 

I . 
I 
l ·- ~1- ~~~ 
! 

i 
i .. ~ . 
! 
! 

"' I '·· I • "'i "' ' I 
-102-

d) Direction Weights for 
Shell 3: 

Dl=l. 00 
D2=1. 41 
D3=1.75 
D4=2.00 
D5=2.25 
D6=2.59 
D7=3.00 

a) Wedge of interest for 
odd DOA. Here, DOA=! 
and number of shells is 
N=3. 

. ----cl • . .~r , . ·. 



Shell #1 --- 03 

01 

Shell #2 05 ---

04 

03 
DOA 

02 

01 

Shell #3 ---

DOA 

Fig. 2.5 (continued) 

06 
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b) Direction Weights for 
Shell 1: 

c) 

Dl=LOO 
02=2.00 
03=3.00 

Direction Weights for 
Shell 2: 

Dl=l.00 
02=1.41 
03=2.00 
04=2.59 
05=3.00 

d) Direction Weights for 
Shell 3: 

01=1. 00 
02=1. 25 
03=1. 59 
04=2.00 
05=2.41 
06=2.75 
07=3.00 



a) Shell Weights: Wt(i), where i=shell #'s 1 through N. 

eg. Wt(l)=7 /15 
Wt(2)=5/15 
Wt(3)=3/15 

b) Direction Weights Matrix: Parameters of DW(i,j,k) 

ie. i=l if DOA is odd 
i=2 if DOA is even 

j=Shell Number (1 through N) 

k=Point in Shell (eg. 1 through 7) 

c) Direction Weight matrix when DOA is odd, ie. i=l in DW(l,j,k) 

k = 1 2 3 4 5 6 7 
j= 1 1.00 2.00 3.00 -

2 1.00 1.41 2.00 2.59 3.00 -

3 1.00 1.25 1.59 2.00 2.41 2.75 3.00. 
d) Direction Weight matrix when DOA is even, ie. i=2 in DW(2,j,k) 

k= 1 2 3 4 5 6 7 
j=l 1.00 2.00 3.00 -

2 1.00 1.59 2.00 2.41 3.00 -

3 1.00 1.41 1.75 2.00 2.25 2.59 3.00 

Fig. 2.6 
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Maxk (j) = Point# (k) of the maximum intensity pixel in shell 

number j, where j=l to 3. Maxk will range 1 through 7. 

Int (j) = Intensity of the pixel at point Maxk(j) in shell j, 

ie. the maximum intensity of all pixels in shell j. 

Wt (j) = Shell weight of the j-th shell (as in fig. 2.6a). 

OW {i,j,maxk(j)) = Direction weight of the maximum intensity pixel 

in shell j, given that the DOA is odd or even 

(i=l or 2) and that the point is in position 
Maxk(j). 

The Maximum Intensity Direction (MID) is 
ized weighted average, given as below: 

·defined as a normal-

MID= Nearest Integer of 

= Nearest Integer of 

Sum of [Direction], [Intensityl[ Shell l 
Weights Values J~eight~ 

Sum of Intensity Shell 
Values Weights 

N 
L OW ( i , j , Max k ( j ) ) *Wt ( j ) *Int ( j ) ... , 
'[ Wt(j )*Int(j) 

H 

Deviation from DOA (DDOA) and the New Direction (NEWb) of departure 

from the.POI are given by: 

DDOA = MID - 2 

NEWD = DOA + MID - 2 

= DOA + DDOA 

Fig. 2. 7 Maximum Intensity Direction (and its parameters) and the· 

New Direction of departure. 
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I ,_. 
0 
O"I 
I 

u(m)·~---i·I_ ~H_rz_J___.t----~s(m) 

"' .---s(m) = s(m) + u (m) 

u(m)~--.1..-----i Z-/ t--1 ....--• -, : z t----,.--
-/ z .... z'-----. 

,-..3 

s(m) 

+. + + ---~----1..:. ______ _J 

Fig; 2.8 a) Transfer function between source and output. 
b) All pole model: a p tap filter. 



MICROOEX CORRECTION GUIOE lM-9\ 

CORRECTION r} 1'·~'7· 

The preceding document has been re· 
photographed to assure legibility and 
its image appears immediately here· 

atter. 
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0 
O'I 
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N 
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I 

I u(m) -~ .. -1 I -, -J -/ 
I zl -1 z z -.. ....... z 

. 
r-,3 

\a/ \Cj1 s(m) a ... 
-

+. + + 

Fig; 2.8 a) Transfer function between source and output. 
b) All pole model: a p tap filter. 
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MARAGOS et aL: TWO-DIMENSIONAL LINEAR PREDICTION 

(a) 

II ~= 
--= 

C>""s 

,,. 
=-- §,,.. ~ 

'.'" ,,.. 
~ 

~ 
-

(b) 

Fig. 3. Perspective plots of the magnitude of the 2-D Fourier trans· 

form (a) of the original image, and (b) of the prediction error signal 

(P =·S, /If= 32) (the prediction error is magnified three times relative 

to the original image). 

~ 
ANALYSIS ON INTENSITY IMAGE 

i 
PRED. ORDER = 3 

e~ .... . 
>-

. . . 
. . . . .. . . . . .. . . .. .. .. .. .. .. . . . .. 

' . . 
~ 
0 

:al:! 
a.. .... 

~q 
.... ·,· .. - . · ..... 

H 

;i 
a? 
g El 
~-... 
I 

• COVARIANCE 

C, 

0 10 20 30 40 SO 

- M - ( rRAME SIZE = M X M ) 

Fig. 4. ·variation of prediction error versus frame size for intensity 

images (P = 3). 

Fig. 2.9 Prediction error results, and comparison of auto

correlation and covariance errors (after Maragos 

et al, ref. 15). -107-



ANALYSIS ON INTENSITY IMAGE ~----------------, FRAME SIZE = 32 x 32 

t---=====----...:._--~ 
AUTOCORRELATION . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
t---~==--------!.---_j 

COVARIANCE ..... "': ............... , ......... . 

0 ._ ___________ I-_____ __. 

,z 4 6 a 
- a - C PREDICTION MASK SIZE= a X a) 

Fig. S. Variation of prediction error versus size of prediction mask for 
· · intensity images (M = 32). · 

' . 

Fig. 2~9_(c~ntinu~d) (After Maragos et. al. (ref. 15)) 

1.0 

0.8 

.. 
>. 
a: 
0 0.6 a: a: 
w 
0 
w 
N 
::; 0.4 <I 
::; 
a: 
o. z 

0.2 

0 
0 

I 
I 
I 
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\ 
I 
I 
I 
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PITCH ASYNCHRONOUS ANALYSIS 

Synlhetic Vowel -heed 
P,tch Period -83 Samples 
Somphng Frequency -10 kHz 
N,120 
l!.-Autocorrelot,on Method 
o -Covariance Method 

- -o-- -o---a..: 
' ' 'c, .. , 

4 6 8 

ORDER OF LINEAR PREDICTOR, p 

10 12 

Fig, 8.11 Variation or prediction error with predictor order, /1. ror voiced 
sec1ion or a syn1he1ic vowel-pi1ch asynchronous analysis. (Arter Chan-

dra and Lin ( 151.) 

Fig. 2.10 
Comparison of autocorrelation and covariance error 
for asynchronous prediction of speech (from ref. 14, 
but after Chandra and Lin (ref. 16)). 
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a: 
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0 25 

020 

0.15 

0.10 

0.05 

I r--..,._..,. 
• I ... -o. ... -o.a 

I: 

Synlhel,c Vowel-h~d 
Pilch Period -83 Samples 
Sampling Frequency-IC kHz 
Prediction Order-p•l2 
Cl - Autocorrelol1on Mel hod 
o -Covariance Method 

PITCH V 
SYNCHRONOUS-/ - PITCH ASYNCHRONOUS 

,, 
60 90 120 150 180 210 

FRAME SIZE,N (SAMPLES) 

240 

Fig. 8.12 Variation of-prediction error with section length, N, for a 
voiced section of synthetic speech. (Arter Chandra and Lin (15].) 

PITCH SYNCHRONOUS ANALYSIS 0.1 ;-· ______________ :...:..----~ 

0.08 

~ 
I 
I 

0.06 I 
I 

Real Speech 

I Pilch Period -68 Samples 
I Somphng Frequency-IQ kHz 
I N•60 
I ll-Aulocorrelat,an Method 

0.04 
I i,_ __ o -Covariance Method · 

..,..._ --<\ 
\ 
I 

\ 

\ 
I 

:>.02 I 

\,._ --- - -0,...---o---~---o- __ 

00 2 4 6 8 10 12 

OROER OF LINEAR PREDICTOR, p 

Fig. 8.13 Variation or prediction error with predic1or order. ,,. for a 
voiced section or a na1ural vowel-pitch synchronous analysis. (After 

Chandrn and Lin [151.l 

Fig. 2.10 (continued) 
(From ref. 14, but after Chandra and Lin 
(ref. 16)) 

-109-



Fig. 2.11 

a) A partially tracked curve, and 
b) a partially completed sequence 

(that might represent the tangent 
angle of a curve as a function 
of its arc length. How should 
its continuation be predicted?) 

r l -,, 

-llO-

.__ _________ .,. 

:;,?;)?'? . . . . . 
0 I 2 3 4 



Input Parameters 

P =#of taps for predictor 
N = Window length (for averaging the past values of the path) 
LPUP = Update length, ie the number of values predicted with each 

set of prediction coefficients. 
CERR = Cumulative error threshold. 
SQERR = Cumulative square error threshold. 

Variables 
CLIMER= Value of the cumulative ~rror for the current predictions 
CSQER = Value of the cumulative square error for the current 

predictions 
OLDP = "Old Path," ie, chain code values of the unsuccessfully 

tracked path. This is a one dimensional firray. 
NEWP = "New Path, 11 ie, this is a buffer that holds the chain 

code values of the predicted path. Only upon successful 
completion of the path are these saved. 

ICNT = Counter that marks the number of points from OLDP that 
are used in NEWP. This also marks the beginning of the 
current prediction window, ie, the last P + N values of 
OLDP are used to.predict.LPUP values for NEWP. 

Fig. 2.12 The Linear Predictive Tracking Algorithm 
a) The input parameters and the variables. 
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START 

Use General Curve Track 
ing Algorithm. Save 
the entire path in 
11 0LDP 11

• 

NO 

Set ICNT = P + N 
(first prediction 
window) 

YES 

Fi.g. 2.12 The LPC algorithm part b. 
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Fig. 2.12 The LPG algorithm part c. 

Set new window 
position: 
iCNT=ICNT + LPUP 

NO 

YES 

G 

Set the first ICNT points of NEWP 

equal to those of OLDP. 

Use the last P+N values of NEWP t 

predict the LPUP values of the 

path (the prediction window). 

Also, set the POI to the first 

point in the window. 

For the POI, Calculate the new 

values of CUMER and CSQER. 

NO 
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Append the LPUP predictions to 
the ICNT values of NEWP (also 
check for end path flag in this 
window). 

Continue tracking from the end of 
the window by using the General 
Curve Tracking Algorithm, 

NO 

Move along the old path and try 
again. Set ICNT=ICNT + LPUP 

Fig. 2.12. The LPC algorithm part d. 
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Input new values for a more care
ful search of the original path. 
That is, choose: 
P 1 arger 
N 1 arger 
LPUP smaller 
CERR smaller 
SQERR samller 

Set I CNT = P + N 

Fig. 2.12 The LPC algorithm part e. 
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I 

Fig. 2.13 Chain code elements and their opposites. 

c.c = chain code element 

c.c Lx LY c.c Lx LY 
1 1 0 5 -1 0 

2 1 1 6 -1 -1 

3 0 1 7 0 -1 

4 -1 1 8 1 -1 

-116-



a) The original chain code (i), and the chain code (ii) with 
elements added randomly for distortion in direction 1r/4. 
Elements with underlines are the insertions. 

i) 4,4,5,4,3,3,4,5,5,6,7,6,7,8,1,8,8,l,l,8 
ii) 4 ,4, 5 ,~,4, 3 ,£, 3 ,§.,4, 5, 5 ,£, 6, 7, 6, 7 ,£, 8, 1,§.,8 ,8 ,£, 1, 1,§.,8 

b} The corresponding patterns. 

Fig. 2.14 Chain code and random distortion in direction 1f/4. 
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NEWD 

~POI 

DOA= NEWD-1 NEWD NEWD+l 

Fig. 2.15a) The Tetrahedron Test. 

Fig. 2.15b) Distortion of chain code from Fig. 2.14a using 
the tetrahedron test to qualify the insertions. 
Underlined elements are the insertions. 

4, 4, 5 ,§_,4 ,3 .~. 3 .~.4, 5 ,§_, 5 ,§_, 6 ,§_, 7, 6, 7 ,8, l ,E_,8 ,8, l ,£, 1,8 

Fig. 2.15c) The corresponding pattern with distorrion· in 
direction 'Tf/4. 
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iii . 

Starting Point 

Chai.n Codes --i. 1,2,3,4,5,6,7,8 
ii. l,l,2,2,3,3,4,4,5,5,6,6,7,7,8,8 
iii.l,l,l,2,2,2,3,3,3,4,4,4,5,5,5,6,6,6,7,7,7,8,8,8 

Fig. 2.16a) Principle of circular distortion (omnidirectional). 
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Fig. 2.16b) Circular or omnidirectional distortion. The original curve appears 

in the center. 
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Fig. 2.17 Linear or directional distortion. The original curve appears 

at the bottom. 
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Fig. 2.18 Another type of distortion. The original curve appears 

at the left. 



Chain Code Absolute Tangent 

Element Angle (radians) 

I 0 

2 7r/4 
J4 .. 1f/2 
4 31f/4 

5 1r 

6 .. .. 51f/4 

7 3'lf/2 

8 77r/4 

Fig. 3.1 Tangent angle relations and chain code elements. 

'·-G(o\ /=o 

¢-( l)= e(l)-e(o) 

ij;(/)~112-

Fig. 3.2a e(/}absolute tangent angle,¢(/)=relative tangent angle, 

and ; l1(il=change in tangent angle. 
lf/ii/ -122-



e(o)=~ , n=o 

¢(n)=e(n)-9(o) 
y;(n) =¢(n)-¢(n-o 

nE[O,N-1] 

Fig. 3. 2b Tangent angle quantization. 6('?J=absol ute tangent angle, 
cp{n)=relative tangent angle, 
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a) Continuous space tangent angle function. 

b) Sample and hold device. 

~(l) ¢(n) Hr· ii- 1-eJW 1----cl:(/). 
S -IL-_1w_i;-_J_w_., 

1
-

I cp(l) 

~ 
I - I 

NS 

c) Output of sample and hold device is a continuous space 
tangent angle step function. 

d) Samples of (a) taken from (b) . 

. cp(n) 

1-L--1-.L..~-'-J1_J~.-rr.--·-1-1-J.l__.[--+-~n 
N-1 

Fig. 3.3 -124-



l~(&J)I 

a) OFT and DFS spectra of cp(n) 
b) Sampling function as in eqn. 3.5. 

-27T 

c) Spectral approximation of <J\(W) 

!CF(·)I 

("\J 

w 
-21T -1T 0 7T ZIT 

rr/s 2Trls 
-•W 

-211/s -'7Ys C 

Fig. 3.4 -125-



,--- ------------------------·-------------------·-·-.. -----------

1 Fig. 3.5 A tracked curve a) its relative tangent angle function, 128 values 
b) Fourier coefficients (phase), 75 values. 
c) Fourier coefficients (magnitude), 75 values. 
d) the tracked curve, 129 points. 

-·----~------~------------------~-------------·--
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Fig. 3.6 Original curve and distorion (as in sec. 2. The ratio of 
insertions/possible insertions is 6/13, ie. NUMDES/MINMPI. 

------·----------------------------------
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Fig. 3.7 Two further distortions, NUMDES/MINMPI = 9/13 and 12/13. 
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Fig. 3.8 Two dis milar curves and their spectra. 
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Fig. 3.9 Reconstruction with 2% of coefficients. That is, 1 out of 75, ratio=l/75. 
·-----·---------------··-----·--··-·---·--·------------------·-·------·---·-·-·-·-·-· .. ·-·--------------------------
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Fig. 3.10 Reconstruction with 3.5%, ratio=2/75. 
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Fig. 3.11 Reconstruction with 5%, ratio=3/75. 
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Fig. 3.12 Reconstruction with 10%, ratio=?/75. 
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Fig. 3.13 Reconstruction with 20%, ratio=l5/75. 
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Fig. 3.14 Reconstruction with 40%, ratio=30/75. 



I 
1--' 
w 
en 
I 

I 
l 

.. ~ .. -- ~---··--·--~·· ···-··-- - .... ·- ···-~ ------... ·---------~---------·· .. ---·-·--------------------

Fig. 3.15 Reconstruction with 60%, ratio=45/75. 
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Fig. 3.16 Reconstruction with 80%, ratio=60/75. 
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Fig. 3.17 Reconstruction with 90%, ratio=67/75. 



I ...... 
w 
ID 
I 

I L-----·--·-··----·--------------------------------··-··-------------------

Fig. 3.18 Reconstruction with 100%, ratio=75/75. 



Recon. NUMDES SM s<1> S=SM x S<I> 
Ratio MINMPI .9 . 9 
10/75 2 993 989 .9982 

4 985 960 . 9945 
6 980 888 . 9868 
8 961 889 . 9850 

10 950 931 .9263 
12 929 929 . 9859 

25/75 2 947 660 . 9609 
4 925 ·190 .9121 
6 918 060 .8986 
8 912 580 . 9496 

10 913 .8850 .8773 
12 871 .8840 .8726 

40/75 2 913 .7961 . 7543 
4 896 .8129 .8036 
6 899 .7940 .7860 
8 900 .8710 .8623 

10 893 .7820 . 7736 
12 836 . 7660 .7534 

55/75 2 874 . 5450 . 5381 
4 860 .6730 .6635 
6 867 .6170 . 6088 
8 850 .5720 . 5634 

10 833 . 5730 .5634 
12 806 .5390 .5285 

75/75 2 830 .4200 .4129 

4 793 ·. 5630 .5513 
6 812 .4730 .4641 

8 799 .3620 .3547 

10 761 .4590 .4480 
12 743 .3740 .3643 

Fig. 3.19 Similarity measures for various distortion levels 
(ie, NUMDES/MINMPI) and various reconstruction ratios. 
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Appendix A: Interpolation Formula for Reconstruction of Signals 

Here, we discuss the Nyquist criterion and the conditions under 

which a continuous time signal may be exactly reconstructed from its 

samples. 
Consider the Fourier transform of a bandlimited signal f(t), 

where the bandlimi t is w=W, 
co 

f ( t) = 2~ f F ( w) ej wt dw 

By making a simple change of variable, i.e. w = wS and dw=dw/S, 

eqn. A.l can be written as, 
ws 

f(t) = 
2
!
5 
f F(w/S)ejwt/s dw 

-WS 

(A. l) 

(A.2) 

Recalling that W=21T/SN, where SN is the Nyquist sampling rate, then 

WS=21TS/SN. Denoting 2S/SN by a, we rrave 
1TCL 

f(t) = ~1~ f F(w/S)ejwt/s dw 
21rS 

-1Ta 

(A. 3) 

Equation A.3 is simply a mathematically manipulated version of 

eqn. A.l,and it is still an integral of an aperiodic spectral 

density times an eternal exponential; that is, it is still a Fourier 

transform. 
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s·uppose, now, thatf(t) is sampled with period S to generate 

a· sequence g(n) given by 

(A~4) 
g(n) = f(nS) = f(t)\ 

t=nS 

for integer n, Then, the discrete-time FT is given by, 

G(w) = E
00 

g(n)e-jwn 
(A.5) 

n=-oo 

We recall that the spectral density of eqn. A.5, G(w), can be 

compared with the spectral density of eqn. A.l, F(w), by using the 

relation w=w/S. Hence, we define a function h(t) by an equation 

similar to eqn. A.3. 
TTO. 

h(t) ~ _L J G(w)ejwt/s dw 
2irS 

(A.6) 

-,ra. 

Using equation A.5, interchanging the order of integration and summa

tion, and then using eqn. A.4, we revirite eqn. A.6 as, 

,ra 

• 1 /2,aSN 
0

::. g ( n l l ej;;;( t/s-n) dW 

-TTa 

_ 1 ,t f(nS)[(_L)(. 1 )(ejira(t/s-n)e-j,ra.(t/s-n))] 
- SN n=-"' 2ira. J{t/s-n) 

Finally, we recognize that this can be written as, 
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h(t) = iN Eri=-oo f(nS)[Sa(na(t/s-n))J 
(A. 7) 

This is a complicated expression, but we recognize it as the 

well known sampling theorem interpolation formula [l ,2,3,6], where 

the Nyquist criterion is satisfied when a~l. More precisely, it is 

also a convolution of the samples of f(t) and a sampling function, 

and hence the convolution in __ the time domain corresponds to a multi

plication in the frequency domain. In fact, since the FT of a 

sampling function in the time domain is a gate function in the fre

quency domain, eqn. A.7 is equivalent to a low pass filtering opera

tion on the spectrum of g(n)=f(nS). It is straightforward to .show 

that 
- l G(w) - S 

00 

E 
n=-oo 

where w
0

=2n/S, so that when the Nyquist criterion is satisfied, 

G(w) is the same as the original spectrum, and eqn. A. 7 'will yield 

h(t)=f(t) for all values of time. 
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