
Lehigh University
Lehigh Preserve

Theses and Dissertations

1985

The design and implementation of a PROLOG
interpreter /
Andrew Davison
Lehigh University

Follow this and additional works at: https://preserve.lehigh.edu/etd

Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Davison, Andrew, "The design and implementation of a PROLOG interpreter /" (1985). Theses and Dissertations. 4505.
https://preserve.lehigh.edu/etd/4505

https://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F4505&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F4505&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F4505&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=preserve.lehigh.edu%2Fetd%2F4505&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd/4505?utm_source=preserve.lehigh.edu%2Fetd%2F4505&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

THE DESIGN ANJ5 IMPLEMENTATION OF

A PROLOG JNTERPRETER.

by

Andrew Davison.

A Thesis

Presented to the Graduate Committee

of Lehigh University

in Candidacy for the Degree of

Master of Science

in the

Department of Computer Science

· and Electrical Engineering

Lehigh University

1985

This thesis is accepted and approved in partial fulfillment of

the requirement for the degree of Master of Science.

?l?~ ~/~~ ate)

·~-

~ ~ 1 / lf\'Uw.c,,_
Head of the\-iivision of

Computer Science

·tw ~-°I~
Chairperson of th~

ii

Abstract.
1 • Introduction.
2. Syntax.
2 .1 Restrictions.
2.2 Discussion of EBNF,

3. Data Structures.
3.1 The datatree.
3.2 The database.

·Table of Contents

3 .3 The variable list.
3 .4 Examples of the main structures.
3 ,5 The printed variable name list.

4. Backtracking.
4 .1 An Example.
4. 2 Location of code.
5. Pattern Matching.
5 .1 The different kinds of q and db nodes.
5 .2 Location of Code.
6. Built in Predicates.

6.1 Call.
6.2 Not & '; '(disjunction).
6 .3 Clause.
6 .4 Consult.
6 .5 Cut (I).
6 .6 Read.
6 .7 Name.
6.8 Functor.
6 ,9 Arg.
6.10 Univ(: ••).
6.11 Is.
6 .12 Strict (==) •

7. Diagnostics.
7 .1 Diagnostics for PROLOG.
7 .2 Interpreter diagnostics.

7 .2 .1 Boolean diagnostics.
7 .2 .2 Dat~!-. .:StrucJure diagnostics.

. - -- _ ... -. . ----·
8. DEC20 dependencies.
8 .1 Timing questions.
8 .2 Input.
9. Comparisons with UNH PROLOG.
9 .1 Timing comparisons.
9 .2 Ease of use.

iii

1
2
4
4
6

12
12
13
13
15
20
·21

21
38
42
48
53
59
61
68
69
70
72
73
73
74
75
75
77
77
78
78
82
82
83

- ···- -..... · .. , - 85 .. -·· --···· · - --

85
85
87
88
89

10. Improvements.

10 .1 Remaining predicates.

10.2 Language Modules,

10 .3 Extra predicates.
10.4 PROLOG defined predicates.

10. 5 Trees and stacks.

11. Conclusions.

References.

I. Using PROLOG.

I.1 Get ting started.
I.2 Common mistakes.

II. Error messages.

II.1 Syntax error messages.

II.2 Built in predicate error messages.

II. 3 Failure messages.

III. Extended BNF,

IV. Built in predicate words and symbols.

IV .1 Predicate words.

IV.2 Predicate symbols.

IV .3 Other symbols.

V. Files.

Vita.

iv

93·
93
93
95
91
99

112
115

117
117
119
122
122
123
126

127
130

131
132
132

133
135

Abstract.

The design and implementation of a PROLOG interpreter, written

in PASCAL, is explained. The main design issues of PROLOG are how to

deal with its pattern matching and backtracking features. Solutions

are given to these problems. In particular, the pattern matching of

this interpreter is more powerful than many other PROLC)G systems.

Algorithms are also included which offer a more flexible way of

implementing PROLOG I s search strategies.

It is hoped that this interpreter will help in the teaching of

PROLOG and also compiler design.

1. Introduction.

The purpose of this report is two fold. Firstly, an explanation
will be given of how the PROLOG interpreter was :implemented. The

program was written solely in PASCAL. It shall be assumed that the

reader is already familiar with PASCAL and also with basic

compiler/ interpreter design. If not then the books by Welsh [1],

Welsh & McKeag [2] and Gries [3] are recommended. Only PASCAL

features which are complicated or dependent on the host machine (in

this case the DEC20) will be described. For more information on the

DEC20 and its PASCAL, the user manuals for these can be
read [4] [5], Similarly only design features unique to the

interpreter will be described. These considerations have dictated

the following chapters which explain how such things as pattern
matching and backtracking of PROLOG are dealt with. It is also

assumed that the reader is familiar with PROLOG, As explained in the

following chapters the version of PROLOO implemented is a large

subset of the one explained in the first 11 chapters of the book by

Clocksin & Mellish [6]. This book will be referred to using the

abbreviation C&M.

The second aim of this report is to explain how to use this
PROLOG interpreter and to explain what the user should expect. If

th~ reader is only interested in this, then chapters 3,4 and 5 can

be ignored. Instead, it is recommended that the reader should first •

2

read C&M and then appendix I and appendix II.

3

2. Syntax.

The syntax of this PROLOO is laid out in extended Backus-Naur

form (EBNF) in the third appendix. In general, the syntax is exactly

that of the PROLOO in C&M. However, there are 4 restrictions.

2.1 Restrictions.

The first is that infix and postfix form is not allowed. This

will only become a nuisance when arithmetic is being carried out.

Thus

X is 10 + Y - Z

must be written as

is(X, +(10, -(Y,Z)))

The second restriction is in the notation for lists. C&M allows

[x,y,z]

and also

.(x, .(y, .(z,[])))

These two thing are equivalent. The 1 ,' is also used as a period to

terminate a clause. So for ease of implementation the 1 • 1 functor is

..... not·--allowed. ··Thus

.(x, .(y,[]))

will give a syntax .error. The only list form allowed is

4

[x,y]

This is perfectly good in nearly all cases. Unfortunately in C&M,

the predicates I functor',

first notation.

converting

These

[x,y]

•arg' and'=•·' ('univ') can use this

3 predicates can manipulate lists by

to • (X 1 • (Y 1 []))

In this interpreter if such a thing is tried then an error will be

output.

Another restriction is the use of built in predicate names as

ordinary names, Lists of these built in predicates are given in the

fourth appendix. For example, asserta(X) is an one argument built in

predicate. When the interpreter accepts the word asserta it will

label it as a predicate operator. In this interpreter if a predicate

name or symbol is going to appear as an ordinary name or symbol, it

is necessary to put it into quotes. Thus

?- asserta(fact(1)).

will call the built in predicate asserta, But

?- 1asserta 1 (12).

will call the ordinary fact, or rule, called asserta. All bu:il t in

predicates, when used, must use their right number of arguments.

Thus

5

'l- asserta(fact (2)). is correct

but 'l- asserta(fact (3), fact (4)) • is wrong.

A small ·restriction is that the grammar rule notation of

chapter 9 of C&M is not implemented. In most PROLOGs, it is a

package built on top of the basic PROLOG, That is what could be done

here, if required.

2.2 Discussion of EBHF.

The notation includes

Thus

means

'X', (X)' {X}' I and/\

1X1 is used to indicate that X
is a terminal symbol.

(. ,) is used to group strings together.

{ • .} is used to mean O or more strings,

means 'or'.

/\ means the empty string.

(fact I question I rule) 1
.'

fact 1 • 1

or question 1
.'

or rule '.'

There are some constraints on the syntax which can not be coded in

EBNF. One of these is the fact that comments can appear almost

6

anywhere. Thus you can have

hello(mary). /I comment I/

or /* comment t/ hello(mary).

or hello /I comment*/ (mary).

Comments are consumed in the lexical scanning done by procedure

'nextsymbol I and never reach the syntax analysis sections. Comments

and spaces are ignored in between words, numbers and symbols but

must not appear in the middle of these things. Thus

hel /*comment*/ lo(mary).

or hel lo(mary).

will give syntax errors. A symbol may consist of more than 1

character. For example, the question operator is made up of 2

characters.

'?-'

The set of predicate symbols is defined in procedure

1initsetofsymbols 1 , The set for predicate words is also defined

there with the 'predica teop' set being the union of these.

The size of identifiers is limited to 9 characters. Thus

artificial (intelligence)

will become

artificia(intellige)

in the database. This will become apparent when such a fact is

7

listed. Strings and words in quotes are also truncated

ap.d
"intelligence"

'intelligencer
--> "intellige"

--> 'intellige'

The length limit can be altered by changing 'alfalength' in the

cOnstant section of the program. Care must also be taken te> change

the · 1 ength of any constant strings.

e.g spaces = '

must be altered to the new alfalength.

Integers are limited to values between O and 'maxint' which is

16383. Changes to 'maxint' must also be done to 'lastdigmax' and

'niax10' all of which are in the constant section.

Looking at the EBNF there is quite a large amount of

repetition. There are rules for

structure
question
fact
rule

and argatructure
argquestion
argfact
argrule

1 arg' is short for argument. The reason for this is that the syntax

for the arguments of clauses is slightly more general than the

syntax for the clauses. An argument may be a variable while a clause

may not be. For instance

h~),Jo (maryJ~.

and ?- hello (mary).

are correct

but

8

X(mary).

and ?- X(mary),

are incorrect.

Arguments , however, can be of this form
e.g

test ((X (mary))).

and ?- test ((?- X(mary))) •

are correct.

Notice that such an argument structure must be in parentheses to

deal with the scope of the symbols. For instance

?- test(?-X,Y).

will cause an error because it is unclear if the Y is the 2nd

argument of test or the 2nd goal in the question

?- X,Y

Simple variables can be written with or without parentheses.

e.g

or

?- test (X).

?- test((X)).

are both correct. Parentheses are not ignored when pattern matching

takes place. So a fact

test ((a))

would cause

?- test (X)

to instantiate X to the value (a). In some PROLOGs, variables are

allowed to be the functors of facts, rules and questions.

9

Unfortunately this means more checking at pattern matching time to
deal with all possible matches. See chapter 5 for a more detailed
discussion of this. In this PROLOO if a question has a variable

.functor then it can be satisfied by being executed in the 'call'
predicate.

Thus
?- X(mary).

can be coded as

?- call(X(mary)).

X must have a value so a question like the one above would still
t'ail, but fail with a semantic error not a syntatical one.

Not included in the EBNF are the symbols which denote end of
session and end of file. The end of session symbol is 1$ 1 • It causes
a jump from I nextsymbol I to the end of the interpreter. The end of
file symbol '"'r must be included at the end of every file, It causes
the input stream to switch back to the terminal keyboard after a
file has finished. This happens in procedure I nextline'.

The procedures in the interpreter to deal with the EBNF are
named using the EBNF names, or minor variations. Thus

line ---> procedure nextline

term---> procedure term

and structure ---> procedure structure

For ease of programming some EBNF constructs have been merged. Thus

10

fact and rule ---> procedure factorrule

argfact and argrule --,-> procedure argfactorrule

11

3. Data Structures.

There are 3 main data structures in the interpreter

the datatree (see the type called 1 dtree 1)

the database ('database')
and the variable list ('varpter').

The ·2 minor structures are

the printed variable name list ('namepter')

and the list of predicates to be looked
at during execution (1spypter 1).

The first 4 will be discussed here, the last in chapter ·7 o.n

diagnostics.

3 .1 The data tree.

This is the structure that contains the parse of the input line

of PROLOG which can be a question, rule or fact. As expected it is a

tree structure. A tree can contain 3 different sorts of data in a

node, It can contain information on variables, constants or

identifiers. Identifiers are the largest class including atoms,

bull t in predicate words (like 1asserta 1 and 'listing') and also

symbols such as '= ', '?-' and '= .. '.

A variable node consists of a variable name and a pointer
-~~.;, - .· ;- -,. ~ ' ..

('varval 1) to the variable list where its value is.

A constant oode contains an integer value.

12

An identifier node consists of its name ('idname'), and the

number of arguments associated with it ('noofargs').

e. g hello (10) has 1 argument

~e ~so
hello(man(X), but(t)) has 2 arguments

The node also has a number (1numofmatch 1) indicating when it was

matched against another tree. This is only used when the node is in

a question tree and the node is matched against a fact or rule tree

in. the database. There is also a boolean called I cutflag' which is

used by the predicate '1 1 (1cut 1). This flag can stop another match

being tried. 1Dbruleused 1 is a pointer to the database fact or rule

tree which this node of the question tree is matched against.

3 .2 The database.

This is a doubly linked list which contains the fact or rule

trees. Each database node also contains the name of the tree that is

hanging from it. This speeds up the search for a tree. Trees are

put into the database in alphabetical order.

3,3 The variable list.

This is another doubly linked list which contains values for

variables or possibly pointers to other variables. A value may not

only be a number or identifier but can be an entire tree. Infact, a
....

value is stored in a 1dtree 1 that is pointed to by I stval'. The

variable's name is also stored and also a flag ('owncopy') to

13

indicate if 1stval I is pointing to its own value or another

variable I s value. This flag is used at garbage collection time,

'Uninstval' contains an integer. If a variable is ,to be printed that

hasn 1 t a value it will print an unique number instead.

e.g

may produce

?- test(X).

X = _21

This number is what is stored in 1uninstval 1 • Finally there are 2

other integer variables, 'creatnum1 and 1mtnum 1 , 1 Creatnum1 gets a

value when a variable in a tree has a variable location allocated to

it. 'Mtnum1 gets a value when this variable location gets a value or

gets. a pointer to another variable, They are related by the fact

that

creatnum ~ mtnum

and are used for garbage coll"lction. A global variable 1matchnum'

~ves them their integer values. 1 Matchnum 1 increases and decreases

with the size of the current question tree (see chapter 4), When

'matchnum 1 becomes less than or equal to a 'mtnum' in a variable

location then its 1 stval 1 can be deleted, When 'matchnum' becomes

less than 'creatnum' for that location, the location can be deleted

and its space in the variable list freed, The example in chapter 4

will make this cl ear.

14

3.4 Examples of the main structures.

The data structures created after two ruies and 1 question have

been typed will be shown. The question tree and variable list will

be shown just before question satisfaction begins. Assume that

append([],X,X).
append ([A IB], C, [A ID]) :- append(B, C,D).

and
?- append([a],[b,c],Q).

are typed. The first 2 rules are put into the database which will

now have 2 trees hanging from it.

C1ppe.1"1d

I
l-J-)-)

I I I
• .)(><

The words and symbols represent the things stored in the 1dtree'

records. Not all the values in a node are shown. For instance, each

of the 'append' oodes will have 3 as their 1noofarg' values.

15

If 2 rules have the same functor, their order in the database
is the order in which they were typed.

Notice how lists are stored. The empty list [] becomes a '. 1

node. A list in head and tail notation [A IB] becomes

·-13

I
A

The question when typed will produce a question tree •.

~lh, root
?-
I

0.'ffLhJ

I
C.-----J----,.--)
I I I i~i-i-· i-i-r-· ~
Q..~c. de.F

Notice how the list [a, b, c] is stored as

·-·-·-· I I
(.l. b C. ... ~ -_ _ ... _ ~·-··-

The only variable, Q is stored in the variable list.

16

--··"··

Q
00

The notation 00 indicates that the •creatnum' = O and the •mtnum• =

O. Not shown is a pointer from the Q in the question tree to the Q

in the variable list.

In future the 1 qhead', 1 vhead 1 and 1 dbhead 1 will not be

included in a drawing, Where necessary a 1db' or 1q 1 will be

written next to the structure.

e,g

becomes

e.g

becomes ·

sent((?- N2(N1))) :- sent(F).

~Tt-----
C.-) :-

1 I
c.-)
I
?r

I
N2
I
C..-)

I
NI

Sen+
I
(,-)

I
F

?- is(X, ~dd(Y, minus(Z,S))),

17

e,g

becomes

e.g

becomes

?-

I
\~

I
(.-,-)

I I
X ~,~,-)

C 1'111m.1S

I I
1 f-,-)

2 S

ad([a,b,[d,cle] If]),

~d
I
C,-)

I ,-··-·-F
I I I
~ b •-,-e.

I I
d C,

?- ad([[thelY]IZ]).

18

I I I I I
X Y Z S
00 oo oo 00

7-
1

11d
I

IT]
C-)

I
-~ y z

00 00

·-2.
I ·-·-· I I

tha. '/.

There is a certain amount of redundancy in the parse trees but this

means the program code to generate the tree is quite simple.

Procedures which create the database are 'initdb', 1 reinitdb',

'finddbplace', 'insertdb', 'addnode' and 'findfreenode'. Procedures

which create the question tree are 'initquestion•, 'addnode' and

'findfreenode'. The procedures which create the variable list are

'initquestion' and 'findvarplace'. Procedures which delete the

question tree and occasionally the data base trees are 'removetree',

1 deletedb 1 and 'deletequestion'.

Related to the 3 structures of the previous sections are 3

procedures 'ptree', 'pbase' and 1 pvarpter' which will-p~int out the

values of these data structures. They are in the interpreter as

diagnostic procedures and are currently not used. During

19

implementation they were used to see if values were being assigned

correctly. On the DEC20, pasddt [5] can also be used.

3.5 The printed variable name list.

This list is used to store the variables which have had their

values printed at the end of a question. Thus

?- test(X,X,Y).

will print the X and Y values only once. Without the name list the X

value would be printed twice. This structure is used in the group of

procedures just before procedure 1printsuccess I which prints out

values if a question has succeeded.

20

4. Backtracking.

The reader should be familiar with the idea of backtracking in

PROLOG. Section 2 .6 of C&M runs through a small example of this.

The aim of this chapter is to show how backtracking is achieved in

this interpreter. One example will be given, using the notation

introduced in the previous chapter. Then the procedures within the

interpreter which do these things will be named. For the moment only

a brief outline of pattern matching will be given. A more complete

discussion will be appear in chapter 5. In chapter 10, backtracking

and the more general subject of PROLOG I s search strategies are

returned to. Algori thins are presented which build on the ideas of

this chapter and offer more flexible solutions than those given

here.

4 .1 An Example.

The following is typed

append([], X,X).
append([AIB],C,[AID]) :- append(B,C,D).

and
?- append(X,Y,[a,b,c]).

If this goal is resatisfied until it fails,

it will have given 4 answers.

X= []
X= [a]
X= [a,b]
X= [a,b,c]

Y= [a,b,c]
Y= [b, c]
Y= [c]
Y= []

In the interpreter the two rules will be stored as

21

. . . . -! . "l. • • • •

• :. •• ~ '." ' .; ' ' • ', ~ • 'i':. • ...

°'~ vo..nd

I db
C.-1-,-)

I I I
• '}(X'

Ru\Q. I,

and
~ t:'und·o.-- o+ !tie rul~

C\frnJ----------
(.-J- 1-) :

I I I I i-S C i-p o.fren~

A A I
C.-1->-)

I I I
B c. D

The question will be stored as

22

. : . .. ~ ' •. . :. -: .

7~
I . / Fu11c~or of: f-he

IC. ~IAll,hoYl

o.rr:2.VI&\

I
c-,-)-)

I I l Y o-,-,_.

X I b l
Cl

The var list will be

[[]
X y
00 oo

When execution begins the question will try to match against rule 1.

Matching starts from the functor of the rule and the functor of the

question. The global variable 1 matchnum 1 , which has an initial value

of O, is incremented to 1. The variables of the rule are added to
__ ___. ---·- ···----. -· ···--- ... ~ ····--#'•,

the var list. Thus the var list becomes

23

X
00

I II I
y
00

X
II

The 2nd X being from rule 1 and having nothing to do with the 1st X

from the question, Since there will now be some confusion over which

variable is being referred to a variable may be subscripted with its

'creatnum
1

and 1mtnum1 e.g X(OO) and X(11). During pattern matching

in the question

X

Making the var list
' .

y

Making the var list

in the rule

matches I • I

I · I ~ I
>< y X
0/ 00 11

matches X,

24

i-·-·-·
q b C.

Making the var list

X '/
X oo

X

Y)Jarch es

. ;-j-j-'
G b C.

X '/ Jr-. X
01 o, II

X
·---· _......... '. ·-·-..

X
II

X

When X (in the question) matches with the '.' (in the rule), X(OO)

25

gets a copy of the list. When Y matches with X (in the rule), X's

pointer is moved from the X(11) in the var list to the Y in the var

list. When the
·-·-·-·

I
0. I, "

matches with X (in the rule) which is X(11) it is actually matching

with Y. So Y gets a copy of the list. The functor append in the

question now has its I numofmatch' set to 1. Since there is no right

hand branch leaving this functor or leaving the matched rule, the

question is finished. Thus the variables from the question are

printed.

X = X(01) = • = []

y = ·-·-·-· I
= [a·,b,c]

a b C

The question could now be deleted (automatically) and another

question typed in and that satisfied. Instead the user types a ';

<er>' and the question backtracks for another answer. What now

happens is that the question tree is searched from the root until it

gets to a functor node whose 'numofmatch' equals the 1 matchnum 1 • In

this case it is the very first functor node. Its 'numofmatch' is set

to O and 1matchnum 1 is decremented by 1, back to O. The right hand

side of the functor is removed which in this case is empty already.

Then the var list is cleaned up. All var list elements which have a

26

:.. "';. ,, .· ,~ .. ~· --~~·.:-- :

•mtnum• greater than •matchnum• have their values removed. Then

their •mtnum• s are set to the value of their I creatnum1 s. Thus with

•matchnum' equal to O

I · ln-rll I
X 'I >(

01 Cl II

becomes

~ I
X y X
00 00 II

Then those var elements whose 1mtnum 1 s are still greater than

1matchnum• are deleted from the list. Thus with 1matchnum• = 0

I I ~ I
X 'I X
oo 00 II

becomes

rn
X '/
oo oO

27

So the question tree and its var list are back to the state they

were in initially. There is 1 difference. When the first match took

place the functor •append' in the question tree set its pointer,

'dbruleused', to point at the first 'append' rule in the database.

Now when the question is resatisfied another rule is searched for in

the datatbase starting from just after this rule. In other words,

the ·first 'append' rule will not be matched with again. Now the 2nd

'append' rule :l,s matched against. This rule is

qppend-------- clb
! .
c.--1-1-) .• -

' I I I
•-e, (·,-D qf penJ
I ·1

A A c.-J-1-)

.I I I
B (, D

'Ma.tchnum' is incremented back to 1. A, B, C and D are added to the

var list.

28

·-.. '. \·- ,•. . '\"-,.· .. ··

I I II I I I I
)('/ A 8 c.. D
oc 00 /I II II II

This rule is matched against the question tree

So

7-
1

~r piu,d

r
C-J-1-)

I I I
X y ·•-·-·-·

I I
~ b C.

in the question

X matches

The var list becomes

29

9

in the rule

·-B
I
A

lrffl I I I
X y A B C p

00 II II h II
01

The_n

y matches C

So
~/

r!J
X Y,y• D 01

00 . It It It
II

C. c po,ri~ey n,ove.d
1-o 'I

''-·-·-· matches ·-1)

I I I I
0. b C. A

'-~ . -- ··-- " .. --···· --····-- - - ·- , __ ., ... - ,_..,, __ _.,. - .. ,_, ___ . - ~----~~ ·---: ___ .,,._,. ·-· - ····---··"· .. ······

30

- • •-0,0~~ • •' ,,r ~ ' ' o • • • U • '- .. • r

and so

a matches

mat.ches

b C.

Giving

C

C
II

D
II

A

D

Now, because everything ioatched, a copy of the right hand side of the

database rule is added to the right hand side of the question tree,

to give

31

\. .. . " - . . • ';. . ~:of_~,..,.... .. . • . • .- . .. • • , .. : •

.. ;

?-

c.-,-,-) .-
I I I I ~ 2nd A.Incl-a y-

·-·-·-· "'ffend
I
c.-,-,-)
I I I
(, C. D

9

The B, C and D of this copy still point at their values in the var

list. The first functor, 'append', gets a 'numofmatch' = 1 and also

its 'dbrul eused I is set to point to the 2nd 'append I rule and goal

satisfaction continues. 1Matchnum1 is inCI'emented to 2, Now the new

right hand side of the question tree is satisfied. The next functor,

also called 'append', is now matched. It is just starting its

matching so it will start from the beginning af the database and so

match against the first 'append I rule. It will match with

., ·---- ··---·--~· ----~------ -····-·. '..I#

32

db

a.y~inJ
I
C-,-,-)

I I I
X X

The question's 'dbruleused' is set to point at this db rule, Now

G~vin~

B

C

D

C.

matches

matches

matches

X

(.

,,

;-;-·
b (,

D
II

X
22

I , I

X

X

;,< po, nl-ev- vnove.d
f-o 'j

When B matched with 1
, ', B got a copy of the ',' and B, s mtnum is

set to 2, When C matched with X(22), the X pointer was moved to

point at C which meant pointing at Y. When D matched with X(22),

X(22) got a copy of' D1s value, which is

33

b C

But since X(22) is actually Y then Y got the value with its 'mtnum'

being set to 2. Since there is no right hand side of the 1st

'append I rule to copy onto the question tree, the question finishes.

The values of X(01) and Y are now printed,

X=· ·-B

I
= = (a]

A
l\

Y: = [b,c]

The user then types '; <er>' so the question will be resatisfied.

The question tree is searched from the root again until the functor

whose 1numofmatch' equals 1matchnum 1 (which is 2) is reached. The

'numofmatch' is set to O, •matchnum' decremented by 1, the right

hand side removed (if possible) and then the var list is reset.

Giving

34

X 't
01 co

A
II

C

It

C

II

'-1-,
I I
b C.

D
II

Notice how X and D still have their values but Y and B do not. This
was because their 'mtnum's were greater than 'matchnum' (which is
1). The 2nd functor of the question tree can now search for another
rule in the database. While doing so 1matchnum' is incremented to 2.
The 2nd rule will be found and so carry on to get another answer.
Instead let us assume that a 2nd rule is not found. In this case the
'match' flag is set to false. 'Matchnum' is decremented back to 1.

Any new variables and values created before the failure are deleted.
This is because a failure to match may not occur immediately,

'/_

I
°'ffe.hJ
I
C.-1-1-)

I I I
X)(

35

will almost match

°-ff 0,/\d
I
C.-J->-)

I I I
Y t-, •-o

I I
0. b

db

X will get a value and Y will get a space and a value on the var

list before failure occurs. When failure occurs the database is

searched again from the rule that failed to the end of the database

or upto another matching rule.

question tree will be

.... ,.,,. .,..,

?- _ / l1urn0Fn,11+th
I /£ =I

°'?Ye.i,,1

I
C-)-,-)

I I I
X y j_j_,_,

I 0. \, (.
a.yyei-d

/·1
1111~0/:rnal-cJ. c.-,

<=
2 I I

l3 c·

36

If no rule is found then the

C D
01 00 II 11 ri II

At this point the 'match' flag is returned as false. The top level

gets this flag back. What it then does is search the tree from the

root again but looking for the functor whose I numofmatch' equals 1

(the current value of 1matchnum'). It will find the first functor of

the question tree. 1Numofmatch' will be set to O, 1 matchnum 1

decremented to O, the right hand side of the functor deleted, the

var list cleaned up and then the goal will try to be resatisfied. At

this point the question tree and var list will be

?­
t a.rr~J
I
C..-J-i'-)

I I I
X 'j ·-·-·-· I I

0.. ~ C.

DJ
X y
oo 00

Unfortunately, the 'dbruleused' of this functor is already pointing

at the last 'append' rule. The search for a 3rd rule will fail. With

·--··--·····
0-this--f·ailure and- 'match1;mm' equal to O, this question tree can not

be satisfied in any way. Thus the interpreter will return an answer

37

··-·····-..

of I no 1 , delete the question tree and the var .list and prompt for

another line of PROLOG.

4.2 Location of code.

Inside the interpreter the execution of a tree begins with a

call to procedure •answer•. The question tree and var list have

already been built using procedures 'initquestion', 1 findfreenode',

1addnode 1 and 1findvarplace 1 • 'Answer' calls 1dogoal 1 • If 1 dogoal 1

succeeds then the variables are printed out and then the question

may be reanswered in procedure 1reanswer 1 • Otherwise failure is

printed. Procedure •reanswer• is like procedure •answer' but has a

call to •redo goal 1 • Also it loops if another try is required.

1 Dogoal I searchs the tree for the first time. It does this by

calling •satisfy'. •Redogoal 1 does the same thing but because it is

resatisfying and thus searching for a 1 numofmatch 1 that is alre~dy

in a functor node, 1 satisfy' is called with 1nodefound' set to

false. The 1 numofmatch 1 being looked for is equal to 1 matchnum 1 • If

'satisfy' fails, 1matchnum1 will have been decremented and so

1 redo goal' loops and calls I satisfy' again. Only when 'matchnum I is

O does 1redogoal 1 stop looping. At this point failure is final.

So it is clear that backtracking is handled by procedure

'satisfy•. When 1 nodefound' is true 'satisfy' is searching a

question tree for the first time. When 1 nodefound' is false it is

searching for the last match to a functor so the match can be undone

38

and another one attempted.

When 'nodefound' is false, 'satisfy' keeps calling itself to

get down to the desired branch of the tree. When it reaches the

right node, it sets 1 nodefound 1 to true, then does all the cleaning

up of the question tree and var list and then calls itself again.

Now 'satisfy' will execute the 2nd half of its body where pattern

matching takes place. It will either call procedures I ideval' or

'predeval' depending on whether the functor is an user-defined one

or a predicate name.

Other parts of the code of 'satisfy' are to deal with various

.special cases. If the functor is a symbol such as a comma, rul~op,

or questionop it must be ignored. A left parenthesis or nil pointer

stops the search down a tree since a preorder search is being used

and so in the example below the left tree of I append' will be looked

at before 'append' itself. The test for 1(' or nil stops this

search.

e.g

-·, ,·-· ··- ~·of __
- ···--· ·-----~ ----------------.

39

or
7-
1

"rfehJ

I
c.-,-,-)
I I I
•)(X

There is code in 'satisfy·' so that diagnostics predicates can print

out. These code segments are preceded by a test of the flag

'debugon'. There is also a test for the 'cutflag'. It stops pattern

matching occuring.

Procedure 'ideval' finds a rule in the database to match with

the question. It does this by calling 'findclause'. It then calls

procedure I setdbvar' which adds the variables in the database rule

to the var list.

Pattern matching is done through procedure 1ignoreruleop 1 (see

chapter 5). If this is successful and 'match' is true then the right

hand side of the rule is added to the question tree. If 'match' is

false then 1matchnum1 is decremented and the var list is cleaned up.

'Findclause' is called again until success or the database is

exhausted.

Procedure 'predeval' is called when a built in predicate is

40

being executed (see chapter 6) ,

To summerise, backtracking is done by searching the question

tree from its root. When the last matched functor node is found then

the node will try to be matched against a new rule. During the

execution of a question, the question tree will grow and shrink

depending on what rules it matches against and what backtracking

takes place, This searching from the root is necessary to build up a

stack of calls of 'satisfy' so that when a question node matches,

the stack can be popped to get the parent node of the current

question. Consider

1- numoF~qf.h
I -..,

I ~ pap bad~
C.q \- +o h {/.(J2

I ------- /
C..-) --------J nex~ p,m,J-or
I I / /-o be ma~hed

/'19~
nv.moFr,,q~cJ, C-) :-

"'
2 I I

c porrol'

/ l-)
11urnofm~r,1, I

=3 D

l'>,011)<.e.~

I
C-)
I
E

After the 'parrot I subgoal matches, the hardware stack will pop off

three 'satisfy' calls to get back to the ':-' node at which point

'satisfy' will call itself twice to get to the 'monkey' node. In

most PROLOG implementations this pushing and popping of stack

environments is coded explici tely [7],

41

5. Pattern Matching.

The pattern matching developed in this chapter is more powerful

than that found in many PROLOGs. In particular it is possible to

have arguments which have variable functors.

Consider

?- num(X),call((X(2))).

with the clauses

num(val).
val(2).

The argument of 'call' is X(2). X is a variable functor which,

during the execution of the question, is instantiated to the

constant· 1 va1 1 • 'Call', which is a built in predicate, then executes

this goal which in its simple form is

val(2)

A 'yes' answer is returned since 1 val(2) 1 is in the database.

When backtracking and searching occurs, pattern matching begins

by comparing the functors of the question tree and database rules

and then moves on to comparing the arguments of each. Thus, for the

following,

42

7-
1

llfptnJ

I
c.-;-;-}

I I I
•-o •-o ~

I
(). b

G\ ff1U1d
I
c..-.1-1-)

·1 I I
x x

Jb

pattern matching starts by comparing the functor, 1append 1
, of the

question tree with that of the database rule. When these match,

pattern matching is done on the arguments of each. So,

•-• matches

I
0.

,-, matches X

b

Q matches X

Arguments can be considerably more complicated than this. Most of

the complication arises when 2 arguments are matched which are made

up of variables.

An argument may be an identifier, integer, string, a simple

variable or an argument structure. An argument structure must be in

43

parentheses and can be a question, fact or rule which can be made up

of variables.

e.g

or

?- test((?- Q,b(C))).

?-depth((X(S) :-b(c))).

beg((X(s, b, c))) •

An argument may also be a list which is of the form

which is stored as

?-test([X,Y]).

7-
1

+e.,r
I
C.-)

I
r-a-o

I I
X 'I

After functors have matched, both question tree and database tree

must be descended and the nodes of each compared with one another.

When pattern matching gets to a node with a variable then more

complicated things must be done. The variable may be instantiated to

many different things or uninstantiated. This is also true of the

corresponding node in the other tree. Only some of these

combinations are allowed and different allowable combinations cause

different things to be done.

The way these allowable combinations will be discussed is to

44

consider a typical node in the question tree (q) and a typical node

in the database tree (db) and then let these nodes be

variable, identifier or integer, with O, 1 or 2 branches leaving them.

After exhausting all combinations of these possibilities and

specifying the actions taken when they occur , it is then e~sy to

show how code has been written for them. The following notation will

be use'd.

var = variable

uninst = uninstantiated variable

inst =

ident =

int =

When a variable is uninstantiated it

means that it has a variable location

in the var list but no value in it

instantiated variable
When a variable is instantiated it

means that it has a value in its
variable location

identifier

integer

The following pointers will be abbreviated as

qv = q's pointer to its variable location

dbv = db' s pointer to its variable location

qvs = q 1s pointer to its value
where q is a variable

dbvs = db's pointer to its value
where db is a variable

These distinctions are clearer from the diagram

45

(,

l
. Q.)(qr

I
C..-J-1-)

I I I
C a G_ -------

VO.f /1sr

Q
en.

Vana,i,le
IDCCl hc,n

The following procedures will be used

changevars (X, Y)
Move all pointers, X, so they are pointing
to the same place that Y is.

evaluate(X,Y,match)
Carry out pattern matching on the structures
represented by X and Y. Return success
or failure in the boolean called 'match'.

evalleftdb(X,Y,match)
The structure Y is a node with a right child.
e.g

'/~. ,- ...
I ',

46

.: . ~ ~ . . . ~ ',., . . ' ... - ..

'Evalleftdb' carries out pattern matching on
the structures represented by X and by Y
(with its right child ignored).
•Match' returns success or failure.

copy(X, Y, nil)
Copy the structure with Y as its root to
the location pointed at by X. The nil is for
what the copied Y tree should have as
its new parent node - nothing.

copy1 (X, Y, nil)
Copy only the node Y to the location pointed
at by X. Y may have children
e.g

Y---,
I ·1-
C.-·-··
I
I

'

.......

but these are not to be copied over to X.

copyleftdb(X, Y, nil)

fail

Copy only the node Y and its left children
to the location pointed at by X. From the
example above X would get the tree

y
I
C,-·····
r

Return with 'match' set to false.

47

5 .1 The different kinds of q and db nodes.

For a typical q node and a typical db node consider all the
possible structures that they could have hanging from them.

Each q and db structure allowed together will be 1 case. Within
each case, the different allowable types of q and db will produce
subcases.

For each subcase there will be an action carried out which will
affect the var list. These actions will be specified by the
abbreviations given in the last section.

Case A.
Q node and db node with no child branches
i.e

q

A1. Let q,db both = var

Subcase.
q uninst db uninst
q inst db uninst
q uninst db inst
q inst db inst

db

Action.
changevars (dbv ,qv)
dbvs : = qvs
qvs : = dbvs
evaluate(qvs,dbvs,match)

A2. Let q,db be either var or ident or both

Subcase.
q var db var

q ident db var-uninst
-inst

q var-uninst db ident

Action.
--see case A 1--

copy(dbvs, q, nil)
evaluate (q,d bvs,match)

copy(qvs,db, nil)

48

-inst

q ident db ident

evaluate(qvs,db,match)

does q = db ?

A3. Let q, db be either var or int
Subcase. Action.

does q = db ? q int db int

q int db var-uninst
-inst

q var-uninst db int
-inst

Case B.

copy(dbvs, q, nil)
evaluate(q,dbvs,match)

copy(qvs,db, nil)
evaluate (qvs, db, match)

One of the two nodes q and db do not have children.
Let q be the one without children.
All subcases given will have a symmetrical subcase where
db is the childless node.
Only 3 structures are allowed with db as the parent node.
i.e

and 1
of

B1. Let q,db both = var.
Subcase.

q uninst db uninst
q uninst db inst
q inst db uninst
q inst db inst

db
I
C.-·-·
I

Action.
copy(qvs,db, nil)
copy(qvs,db,nil)
evaluate (qv s, db, mat ch)
evaluate(qvs,db,match)

49

' I • ..,. ~ • ' • "• 1,"),-i.

B2. Let q,db = var,ident or both
Subcase. Action.

q var db var --see case B1--

q ident db var-uninst fail
-.inst fail

q var-uninst db ident copy(qvs,db, nil)
-inst evaluate(qvs,db,match)

q ident db ident

B3. Let q,db = var,int or both int
All subcases fail.

Case C.
Both q and db have 1 or 2 children.
i.e

~" 7 I .
·1"'. .

fail

1? 1 can be 1 (1 , 1 :- 1 or nothing.'(' must be on the
left, 1 :- 1 on the right.

There are only 5 cases (out of the possible 9) that can
succeed. They are

50

' • • ,. I ' • • • • ~ • ._ "'. • • ' - • • •

C1

and

C4.

q
I

C.

9
1 "- ,_

I

c..

db
I
(.

db
\, ,-

C2
4". .-

C5

Jb
'· .-

9
I'·-' (.,

C3

\. ,-
db
1'
(.

db,
I :-

C.

It is clear that case C4 is the same as case C3 but with q and db

switched. We shall only consider case c3.

Also case C1, C2 and C5 are similar in that for them to be

considered, the children of q and the children of db must be the

same. We shall assume such tests will be done in the code and so

only consider case C1 here.

For the cases C1 and C3 we must now consider the different

types that q and db can be.

Case C1. q
I

C,

db
I

.c

51

C 1 .1 Let q and db = var
Subcase.

q uninst db uninst
q inst db uninst
q uninst db inst
q inst db inst

Action.
changevars(dbv,qv)
dbvs : = qvs
qvs : = dbvs
evaluate (qvs, d bv s, match)

C1 .2 Let q and db = var, ident or both
Subcase. Action.

q var db var --see case C 1 .1--

q ident db var-uninst
-inst

q var-uninst db ident
-inst

q ident db ident

copy1 (dbvs, q, nil)
evaluate (q, dbvs, match)

copy1 (qvs,db, nil)
evaluate(qvs,db,match)

does q = db ?

C1 .3 Let q and db = var, int or both int
All subcases fail.

Case c3.
db,
I ":­
c..

52

c3.1 Let q,db = var
Subcase.

q uninst db uninst
q uninst db inst
q inst
q inst

db uninst
db inst

C3 .2 Let q, db = var, ident
Subcase.

q var db var

q .Var-uninst db ident
-inst

q ident db var
q ident db ident

or

Action.
copyleftdb(qvs,db,nil)
copyleftdb(qvs,db, nil)
evalleftdb(qvs,db,match)
evalleftdb(qvs,d b,match)

both
Action.

--see case C3 .1--

copyleftdb(qvs,db, nil)
evalleftdb(qvs, db, match)

fail
fail

C3 .3 Let q,db = var,int or both int
All subcases fail.

5 .2 Location of Code.

Having concluded an exhaustive analysis, the interpreter co.de

for each case is easily written.

Pattern matching starts from procedure 'ideval 1 when procedure

'ignoreruleop' is called. 1Ignoreruleop 1 removes the right hand side

of the database rule so that pattern matching will not fail when,

for instance

53

1_
I

I
qfptnJ

I
i

C:.-J-)

I I

is matched with

dh "freriJ----1
I '1-'··.
C.-J-)

I I

Procedure I evaluate I separates the cases as have been done here.

Some extra tests are done to deal with symbols which are to be

ignored, such as 1?- 1 , 1 (1 , ') 1 and 1 ,'. The cases become the

following procedures

procedure 1qdbend' =
procedure 1 qend' =
procedure 1beval 1 =

Within procedure 'qdbend'

procedure I qdbintend 1

procedure 1qdbidend 1

procedure 1 qdbvarend'

case A
case B
case C

= case A.3
= case A.2
= case A.1

Procedure I stvcopy' is used to do the job of copy(qvs,db, nil) and

54

also copy(dbvs, q, nil).

In procedure • beval 1 ,

procedure 'bevalsame• = case C1 ,C2 and C5

procedure 1 bevalqruleop 1 = case C3 and C4

Extra code is needed to deal with the periods inside a list •.

e.g cat([x,a]) becomes

CG\t

I
C.-.)

I ,_,_,.

Inside procedure 'bevalsame•,

procedure I qdbvarend 1 - case C l.1

Procedure 1 stvoopyid' does the job of oopy1(qvs,db; nil) and also

co PY 1 (d bv s, q, nil) •

It should be clear by now how the cases relate to the code. To

test for an uninstantiated variable, requires 2 1if1 tests. The

first to check to see if the node is a variable

if q"' .kind = vars then

The second to see if it is uninstantiated

if q"' .varval". atval = nil then

From this, clearly

qv = q". varval

55

qvs = q". varval". stval

etc

The only code which has not been explained is procedure 'chan~vars'

and its functional opposite, procedure 1undochanges'.

'Changevars' moves variable pointers to a new location. Thus if

node X has a variable pointer X''.varval (called 'dbvar' in

'changevars') then it will be moved to point at a new variable

'qvar'. It must do this for all nodes with an X variable pointer.

That is why 'moveallvars' searches the database tree and the

question tree and 'checkvarlist I does the same for the var list.

This is a time consuming operation and is to deal with shared

variables •

e.g
append ([] ,X, X) •

with
?- append(Z,Y,[a,b]).

During execution, Y and X will both. point to the same variable

location which will be empty. Y and X are sharing. When X gets

instantiated to [a, b] so will Y and the question will succeed,

returning

z = []

Y = [a,b]

All Y variable pointers must point to the same location as all the X

variable pointers. If Y is later shared with another variable Q then

56

not only must all the Y pointers be moved to the Q variable location

but so must all the X pointers. The time consuming part of this

operation is finding all the X and Y pointers in the trees and also

in the var list structures. In some PROLOGs, variables like these

are set aside from others which do have values [8], They are then

easier to deal with.

Procedure 'undo changes' sets a node I s variable pointer back to

its own variable in the var list. Some assumptions can be made about

undoing changes. Changes are only undone when a goal is being

resa tisfied, Procedure I deletevarlist' will remove the pointers to

variables created after the present goal, Shared variables which

occur earlier than this goal should be left as they are since they

do not want to be resatisfied, Only variables created during the

match of this goal which are shared need to be looked for.

For example, assume that when matchnum equalled 6 the match

between the question •test(Y, Z, Y) 1 and the rule

•test(X,X,[a,b]):-cat(X)' took place, to give

57

.I

\
+e.sr~

l-i -J-} '""-.,

I I I \
y z y

!
CQ 1-

1
C.-)

I
X

'I X

Thus the Y and X pointers are now aimed at the Z variable. When

backtracking reaches the 'test' node, Y1 s variable pointer must be

set back to point at its own variable.

58

6. Built in Predicates.

A complete list of' the built in predicates in this. interpreter

are given in the fourth appendix.

The interpreter_ ---~Pe for the predicates is called from

procedure 'predeval'. Each procedure that implements a predicate is

named by using the predicate name preceded by a 'x'. Thus 'display'

is implemented in procedure 'xdisplay(q,match) '. The parameter q is

the subtree of the question tree which contains the call to the

predicate. Thus when the procedure 'xclause (q, match)' is called, q

points to

r~sf oF' 1111~sf,c,,\,

J-rt.;_ \
cl,rns <?.

I
C-1-)

I I
b z.
l
C-)

I
y

'Match' is a boolean that returns true or false depending on if the

predicate does its job,

A common notation has also been used for the arguments of a

59

predicate.

The first argument is

X1 = qA,leftA.left

The 2nd argument is

X2 = qA ,left" .rightA ~left

and so on,

In the above example

)(I :: b
I
c..-)

I
V
f

arid
X2 = ·Z

To go from the graphs to pointer values is simple

r down = left pointer

+ across = right pointer

Chapter 6 of C&M gtves a full discussion of what the built in

preQJ.oates are meant to do, Of the ones written al)Out in that

chapter, this interpreter does not have

reconsult

see

seen

op

seeing

tell

60

telling told

1Reconsul t I is not implemented since it was not considered to be

useful. It also did not seem necessary to have the 6 file

predicates. The reason for this is that the input and output of the

interpreter is a lot simpler than the one discussed in chapter 5 of

C&M. The output is only meant to be sent to the screen. Input is

usually from the terminal keyboard. While it is possible to read

files using 'consult', once the end of file symbol is read('"'),

the input file is once again set to the terminal.

The 1op 1 predicate is used to set the precedence, position and

associativity of an operator. Since all the operators are in prefix

form this predicate was not needed.

In the following chapter only the predicates which have

complicated code or differ in their operation from those in C&M will

be described.

6.1 Call.

In most PROLOG interpreters, when the predicate 'call' is used,

it is usually of the form

call(s(T)) or call(X)

where X is a variable instantiated to a question like

p(Y)

61

where the functor 'P' of the question is a constant.

In this interpreter, the argument of I call' can be of a more

general form. So in

call(X)

X is a variable which can be instantiated to a question like

Z(Y)

where the functor 1 Z' of the question is an instantiated variable,

More simply,

call{ (Z(Y)))

can be written. Notice in this case, it is necessary to put

parentheses around Z(Y) because of the syntax rules.

In other interpreters it is possible to simulate this

generality in 'call' by using 'functor' or '=··' (1 univ 1
). In this

interpreter, a user can write

to obtain

val{2).

num(val).

?- num(X), call((X(Y))),

X = val
y = 2

62

• • • ...1•;..z :~· i, . . .

In a more simple interpreter, a user must write

to obtain

val(2).

num(val).

?- num(X), functor(F,X,1), call(F).

X = val
F = val(2)

In both cases, 'call' has executed the goal 'val' to find a value of

2. An alternative approach is to write

to get

?- num(X), : •• (F,[X,Y]), call(F).

X = val
y = 2
F = val(2)

In other words, in this interpreter it is posssi ble to execute a

question which has an uninstantiated variable as its functor. To

deal with this complication, procedure 'xcall 1 calls a procedure

'getcallarg' which makes a simplified copy of the 'call' argument

and puts it into the variable 'newq'. 'Newq' will be the argument

with the functor variable replaced by its value • Thus in the case

of

call((Z(Y)))

where Z is instantiated to 'P' then •newq' will contain

p(Y)

63

'~ ' . . : .. ; ~ ~

The argument is then satisfied as if it were a question using

procedure 'satisfy'. As described earlier 'satisfy' will add

subtrees to the original question tree. Continuing the example, at

the end of 'satisfy' the question tree 1p(Y)' which originally

looked like

may become

f
f
C-)

I
y

C:-)

I
y

I ,- -J-···
I I
X : I .
C-)

I
y

The key feature of this new tree is that the 'P' node now has a

right hand subtree. So in 'xcall I after I sa tisfy' has finished,

64

procedure I savechanges I is called. 'Savechanges I adds this new right
hand subtree to the original 'call' argument. What this subtree is
actually appended to is the functor constant in the I call' argument.
This must first be found because as described above it may be in a
variable. When the functor is found it may already have a right hand
subtree, This is possible if the 'call' argument has been satisfied
before and this time 'xcall' is being executed because the argument
is being resatisfied, If the functor already has a right hand
subtree, it is deleted and the new right hand subtree is appended.

e.g
call(P) is being satisfied

where P is instantiated to Z(X, Y)

and Z is instantiated to s

1Newq' will obtain s(X,Y) in 1getcallarg 1

Since s(X, Y) has .been satisfied before 'newq' will cactually be a
tree like

65

s

I_ ----------
c.-J-)

I I
X y

:---;
I I
r ~
I I
C-) C-)

I I
X y

After 'satisfy' has worked on 'newq I let ~s assume i.t becomes the tree

s ,-------_
c-,-1 :
I I I
~ i d

I
(,-J-)

I I
X y

In I save changes' the constant functor of I P I is obtained. Thus I s 1

is returned. Actually, the tree's' contains

66

. .. ' " ~ -~

s-------- I ,-)

I·
p q

I I
C.-) C.-)

I I
X 'I

which is 's' with its old right hand subtree. This subtree is

deleted, leaving the tree

5

The n.ew right hand subtree is appended giving

s~.
,-

' d
I
C"'-i-)

I I
X y

67

This is now what is stored in rz, when 'savechanges' and then

'xcall' finish.

6.2 Not & '; '(disjunction).

Both these predicates have been implemented using PROLOG rather

than PASCAL. When they are called an error is printed telling the

user to consult the file 1pred.in', This file contains their

definitions, which are

and

nott(X) :- call(X), I ,fail.
nott (X).

or (A, B) : - call (A) ,
or(A,B) :- call(B).

Notice that names other than I not' and '; 1 are used since these are

user defined predicates. Other built in predicates could be

implemented this way but their PASCAL versions are as simple. For

example, 'nonvar' is defined in PROLOG as

nonvar(X) :- var(X), I , fail.
nonvar(X).

Its PASCAL version is in procedure 'xnonvar I and is also only 2

lines long.

See chapter 10 for further discussion of PROLOG defined

predicates.

68

6.3 Clause.

A variable functor can be assigned to the first argument of

'clause'. To simplify this argument, the procedure 'simplifyhead' is

called. Thus in

clause ((Z (X)), Y)

where Z is instantiated to 'P'

then X1 = (Z(X))

After a call to 'simplifyhead'

newx1 = p(X)

It should be clear that X1 contains the first argument of 'clause 1

which is the head of the rule (or fact) and X2 will contain its

right hand side or possibly the value 'truer. The restriction is

that X2 will only return the first subgoal of any right hand side.

Thus if there is a rule

t(X) :- b(X), c(X).

then

?- clause(t(X), W).

will give

W = b(X)

69

6 .4 Consult.

The code for this predicate is in procedure 1Xc'Jnsult 1 • In

actuality most of the work is done in 1xsee 1 • This sets the input

file to the filename argument of I consult 1 • A limitation of

1 consult I is that a filename, being an identifier, should only be 9

characters long. Also since DEC20 filenames must have a file ending

with 1 .<something>' then the filename must be in single quotes or

the 1 • 1 will be taken as a period in PROLOG syntax and an error will

occur. Thus the user must type something like

?- consult('pred. in').

There is a way to get around these restrictions. If the user types a

file name unknown to the system, the user will be queried for

another filename. The query comes from the opera ting system and so

the single quotes and 9 character restrictions do not apply. Thus

?- consult(1vbbk.pq 1).

? File not found - vbbk. pq

Try another file spec: very_long_file, in

If the file is found PROLOG is reentered and continues as normal.

All files must have the end of file symbol '" 1 at the end of

them. If this is not found an end of file error will occur and the

interpreter will finish. The 1 "' 1 is used in 'nextline• to reset the

input file.

This 'consult' predicate is more general than the one described

70

in C&M since questions can be included in the files. When these

questions are executed, input for them, from the user, will still be

taken from the keyboard and not be looked for in the file being

consulted. Another useful feature is that when a file is consulted,

it will also be printed on the terminal screen. This means that if

there are any errors in the file, the user will see where they

occur.

The form

?- [file1 , -file2, 'fred.1 1] •

is not allowed, al through excluding the files to be reconsulted of

the form -file, a similar notation can be achieved.

e.g

?- [file1 , 'fred.1 '] •

could be written as

?- consul t_list ([file1 , 'fred.1 ']) •

with the rules

consul t_list ([]).
consul t_list ([X IY]) ':- consul t(X),

consul t_list (Y) •

71

6 .5 Cut (I).

The code for this predicate sets a flag called I cutflag' which

is in each node of the question tree that is of type identifier.

When a cut symbol is found a search back up the question tree is

carried out. The search stops when a questionop is found or the

identifier before a ruleop symbol is found. Thus for a question such

as

' \ .

5€llt"di ,---J J
s~rs here I I

X r d

I '\' I
C:-) Sea re~ C.-)

I
b.i.9inr I her~

X X

A search is started at the cut and stops at 'append'. Starting at

the 'append' node the 1 cutflag's in the identifiers are set to true.

This is done until the cut symbol is reached. The I cutflag I is used

in 'satisfy' to stop a goal being resa tisfied.

72

' .__ • ~ .. ' . . • ~ ~ • - ·-~.. • • • • j •

6 .6 Read.

input stream. A term is a line of PROLOG ending in a full atop. The

Thia predicate, in C&M, reads the next term from the current

•read• in this interpreter reads only the next symbol which may be

to complete the line. Thus for

an identifier, a number or a BYlllbol. A full atop is still required

?- read(duck).

the user types
duck. <er>

PROLOG responds with

yes

6 .7 Name.

predicate converts an atom into a list or a list into an atom. Thus

The code for •name• is long but not particularly complex. The

'listtoatom• should be cal.led. Procedure •atomtoliat • will convert

• xname ' co naiat s of 'if' teats which decide if • atomtoliat • or

some thing like

al:lc to

where 97 is the ascii code for 'a' and so on.

73

Similarly, 'list toa tom I Will convert something like

i_i_i_. to abc

97 qg q'f

6 .8 Functor.

then manipulates the tree using procedure 'build',
1
Build

1
takes a

procedure 'xfunctor
1

first distingUishs between these 2 cases and

'Functor' can be used i.n 2 ways as described in C&M. The

functor (bob, for instance) and an integer representing the arity

(2, for instance) and creates a tree, For 'bob 1 and 2 the tree

bob
I
C-i-)

I I

will be created. 1 1 is the anouymous variable.

74

6 .9 Arg,

The only difference between the interpreter's , arg' and the

'arg' in C&M is that in this interpreter

?- arg(2,f(a),X),

will give

X = a

instead of failing.

If the 1st argument is greater than the arity of the predicate then

the variable gets the last argument of the predicate.

6 .1 O Univ (= ••) •

In C&M, 'univ' can manipulate lists

e.g
?- = .. ([a,b,c,d],L).

·will give

L = [I I
I I a , [b,c,d]]

Tllis form is not allowed in this interpreter since the ~ot ',' is

not allowed as a functor name for lists. 1Xuniv' uses 2 procedures

- 1createlist 1 and 1createstr 1 , 1Createlist 1 converts a structure to

a list.

75

Foo
I
C-'-1-)

I I
ba.c.oma.s I

foo t\ b

0. b

1Createstr' converts a list to a structure.

F'o o

·-·-·-· bec.om<Z-S I
c.-J-) I

.Coo ~ b I I
a b

76

·,---.,.1 ·, • ~ : • , • • • ' ••

6.11 Is.

The 2nd argument of' 'is' must be an operator. Thus

?- is(X,2).

is not allowed. In C&M the 2nd argument must be an arithmetic

expression. Unfortunately, a definition of' this is not given. In

some PROLOGs the above form is allowed. A user could get round the

above restriction by typing

?- is(X,+(0,2)).

In general, assignments of this form seem to go against the spirit

of PROLOG. Assigments, at least s:l.mple ones, should be done by

pattern matching •

. 6.12 Strict (==).

The code for '==' is in procedure 'xstriot'. It uses a flag

1 striotf'lag'. When 'xstrict' is first called, 1 strictflag' is set

to false. 1 Xstriot I then calls 1xeqop 1 which calls 'evaluate'.

Inside 1evaluate 1 , if two different variables are being matched,

eventually 'qdbvarend' will be called and 1strictflag1 will be set

to true. All the procedures will finish and control return to

'xstrict' which will fail.

77

7. Diagnostics.

7 .1 Diagnostics for PROLOG.

The code for these starts towards the end of the interpreter

with procedure 1xtrace 1 and finishes with procedure 1xnospy 1 • These

procedures use 2 global boolean variables - 'debugon' and 'trace'.

1Debugon 1 is true whenever diagnostic output can be generated during

the execution of a question. 1Debugon' will be true if •trace' is on

or/and a spypoint has been set. 1Trace 1 is true only if the

predicate 'trace' has been switched on. The distinction has been

made so that a quick test can be done in •satisfy' to see if

procedure I debug' has to be -called.

To represent the spypoints, a list data structure called

'spypter' is used. The procedures I addtospy' , 'insertspy' ,

'removespy' and 1 ridspy 1 are used to manipulate it. They are called

from the procedures for the spypoint predicates which are

1xdebugging 1 , 'xnodebug 1 , 1xspy1 and 1xnospy 1 • The 1spypter' data

structure is referenced using the variable I spy head'.

Each node of 1spypter1 contains a functor name and a number

representing the arity of the predicate. For instance, the list

might contain 2 nodes with the same functor name but with different

aritys.

e.g
sum(X,Y,Z) --> sum, 3

78

sum(X, Y) --> sum, 2

F.a.ch node is in alphabetical order and if 2 nodes have the saine name
then their order in 'spypter 1 is the order in which they were typed
• If a question of the form

?- spy(sort).

is asked then the spypter node is

sort, 0

Th_e syntax, spy[sort(2),append] is not allowed_. Something like it
could be added using

?- spy_list([sort(2),append]).

with the clauses

spy_list ([]) •
spy_list ([X IY]) :- spy(X),

spy_list(Y).

Similar restrictions apply to 'nospy'. Once again the user could
define

nospy_list ([]) •
nospy_list ([X IY]) :- oospy(X),

nospy_list(Y).

The PASCAL procedures 1xtrace 1 through to 1xnospy 1 only deal

79

with setting up the boolean flags and the 'spypter' data structure.

The structures are used by calls to 'debug' when 'debugon' is true.

'Debug' is called in 'satisfy' from 4 different places when a

question is being treated differently. They are the 4 places that

control can flow through a question as outlined in section 8 ,3 of

C &M, called CALL, EXIT, FA IL and REDO •

Since a question in this interpreter is in the form of a tree

and because of the way that a goal is resatisfied by searching from

the root of the tree down to that goal, REDO is dealt with in a

different way than that given in C&M.

, trace' is on and the question

?- des(X),fail.

For example, in C&M, if

is typed with the following clauses in the database

des(X) :- b(X),c(X).
b(2).
c(2).

Then when the goal I fail I is reached, the following will be printed

CALL fail
FAIL fail

C&M's diagnostics will then print

REDO : des(2)

since 'des' is the last goal in the question that succeeded. Then

REDO : c (2)

80

will be printed since this was the last subgoal in the 'des I goal

that succeeded. Then

FAIL : c(X)

will be printed since this subgoal fails.

In this interp~eter, the difference in REDO can be seen in

terms of the question tree which will be

?---,
I @I

(D Fuil

·r~
C-) ;- -->

I I I
X (3\ (1) c

I I
C-) C-J

I I
X X

The numbers indicate the order of the matches. At this point

CALL fail
FAIL fail

is printed. Now the first part of the question will be resatisf'ied.

This is done by searching for a goal whose 'matchnum' equals 3. When

this is found, the diagnostic is printed

REDO: c(2)

then

81

FAll. c(X)

Thus the difference between C&M I s REDO diagnostic and this

interpreter's REDO diagnostic is that when backtracking takes place

the parent goals reentered (in order to resatisfy their children)

are not printed. In practice, this means that the number of REDOs

printed is less than in C&M. The same number of CALLs, EXITs and

FAll.s are printed and usually the user is only looking f'or these

three and in particular FAll..

7.2 Interpreter diagnostics.

These are diagnostics which help in the debugging of the

interpreter itself. They were used during development and have been

left in so they can be used in future.

7.2.1 Boolean diagnostics.

These are

and

printeval

helpful printing

timer

They are set at the very start of the interpreter. 1 Printeval 1

when set to true will cause •writeln' statements to print things of

the type

Swop q & db for qend

and

82

evaluate

Generally, these statements consist of the name of the procedure
that is currently being executed. 1 Printeval 1 switchs on the
•writeln 1 statements

•Helpfulprinting' is

for

the

the pattern

boolean that

matching procedures.

switchs on •writeln'
statements in all the other large procedures in the interpreter.

1 Timer• is slightly different in that it causes the run time
for the satisfaction of a question to be printed. The timer starts
after the <er> at the end of a question and finishes when an answer
is printed. If a question is resatisfied the timer starts from when
the •; <er>• is typed.

7.2.2 Data structure diagnostics.

These diagnostics are procedures which can be used to print out
values in the data structures of the interpreter. They are called
'pal fa 1 , 1 ptree 1 , 1 phase I and I pvarpter 1 • Calls to these procedures
can be inserted inside new procedures that are being tested.
e.g

ptree(q)

where q is the current node of the question tree. Or

pvarpter{qA.varval)

Care must be taken that invalid pointers are not passed to these

83

procedure. Thus if q is nil then

ptree(q"' .left)

will cause an execution error in PASCAL.

On the DEC20 a similar effect can be achieved by using the

debug system [5] and getting the values of the data structure by

typing a line of the form

e.g

variable =

q =

q"'.varval =

84

. • . --- .. t.____ . () . . • . .

8. DEC20 dependencies.

The PASCAL used in this interpreter is the standard type. No

DEC20 extensions have been used such as 'others' or 'loop', This

rule has been broken for two cases. The 1 timer 1 diagnostic and also

for input of data.

8.1 Timing questions.

The run time of questions is calculated using the DEC20 built

in variable, 'runtime'. This variable is used in 4 places - in

procedures 1printsuccess', 1printfailure 1 , 1reanswer 1 and 1answer 1 •

8.2 Input.

Three input files are used in the interpreter at different

times - 1inp 1 , 1tty 1 and 'input'.

iinp' is defined in 'initlisting' to be an interactive file.

The file 'inp' is read using procedure I readone 1 • Such a file type

was created so that characters could be read from the DEC20 keyboard

without having to wait for a carriage return to release the input

buffer. 1Readone 1 is used by the input predicate procedures 1xget0 ',

'xget' and 'xskip'. It is also used in 1setdiagnostics 1 •

'Tty' is the standard input file from the keyboard. It is used

in procedure 'readx'. The first character is read from 1 tty 1 in

'initlisting'. 'Readx' is also used in 'nextterminalch' and also

85

function 'try again, •

1
Input

I
is the variable that is assigned the names of the files

that are being consulted. It is used in 1nextfilech'. 'Input' gets a

file name in 'xsee 1
• It is reset at the end of 1nextline 1 when the

end of file is read.

By having 2 different next character procedures, one for the

keyboard and one for files, it is possible to have questions inside

consulted files. When a question reqUires the user to type

something, input will be taken f'rom the keyboard and the question

will be able to continue.

86

9. Comparisons with UNH PROLOO.

For convenience, in this chapter, this author's PROLOG

interpreter will be called Lehigh PROLOG.

UNH PROLOG is a PROLOG interpreter originally from the

University of New Hampshire. It is written in C to run on UNIX. The

version that was used by the author is located in the CAE lab in the

Civil Engineering department in Fritz lab at Lehigh University. This

version had been modified at Syracuse to run on the Data General

WI/ 10000 under AOS/VS. Unfortunately, the modifications had not been

totally successful and some advanced features do not work or do not

work completely. For example, the ability to include C modules with

the PROLOG code does not work.

The syntax used is like that used in the Edinburgh DEC 10 PROLOG

and thus is very similar to the syntax in C&M and so to that of

Lehigh PROLOG. Unlike the Edinburgh PROLOG it does not compile any

of its code, It also does not do any garbage collection unlike

Lehigh PROLOG, This did not cause any problems in the tests that

were carried out.

87

9.1 Timing comparisons.

In timing comparisons with Lehigh PROLOG it was found that

small and medium size programs ran at about the same rate. On large

programs, the differences in speeds became increasingly noticable.

Both interpreters slowed down but Lehigh PROLOG was almost 15 times

slower. Two of the large size programs used were an elisa program

(to be found in 'elis.in 1) and an ATN program ('atn.in').

If these test files are looked at, it can be seen that I atn. in.1

and 1elis.in1 are not all that long. The reason why they are large

programs is that when they execute they both create very large

question trees. Time is then spent backtracking along and searching

these trees. 1Atn. in' is also large in that it passes sizeable

amounts of data about in its variables. This shows a few general

rules to be kept in. mind when writing a program for Lehigh PROLOG.

1. Try to keep questions short

e.g write

iristead of

?- recognise(S).

?- parse(T).

?- recognise(S),parse(T).

2. If data has to be passed between questions, save the data in

the data base using I asserta I and 'assertz' , instead of passing it

88

through arguments.

3. Where possible try to restrict recursion. Each recursive

call of a procedure adds a new subtree to the question tree.

4, Try to instantiate variables as soon as possible, Dont use a

lot of uninstantiated variables that are sharing with each other.

These rules will keep the question tree and var list size down

and so speed up execution.

9 .2 Ease of use.

The UNH PROLOG starts very simply, The user must type

x prolog

The interpreter then starts with the prompt

?-

It expects the user to type a question and so prompts with a

question symbol. In order to type in facts or rules, the user must

first type

?- [user], <er>

to get the prompt

This is slightly inconvenient.

89

If the user wants to consult a file, he can use the list form.

?- [1atn.in1], <er>

The system also allows file names with out the ' , 1 notation which is

useful, In that case no quotes are needed.

e,g
?- [vix]. <er>

When a file is consulted, it is not listed on the screen while being

read in. This means if an error occurs, a message appears out of

nowhere. Also a file may not contain questions, unlike Lehigh

PROLOG. This will cause difficulties if a user has a lot of files.

Each time he consults one he must type in the questions to use them.

He must also remember what form a question· takes. By being able to

have questions in the files where the clauses are defined, the user

is spared a lot of typing and having to remember what questions to

add, It is also a good aid to documentation.

It is possible to leave UNH PROLOG and edit a file and then

return and reconsult it, Unfortunately, sometimes the system will

not allow this and give an out of space error. Also if the user

leaves PROLOG completely then edits a file and returns, the number

of keystrokes are not that much greater.

UNH PROLOG does not allow variable functors. Thus a user can

90

not write

call ((X (Y)))

See chapter 6, section 1 for more details on the extensions to

'call' in Lehigh PROLOG.

UNH PROLOG allows prefix, infix and postfix notations but is

limited in that if a predicate is defined as infix or postfix then

it can not be written in its default prefix form. Thus

2 < 5 • is correct

but

<(2,5), gives an error.

There also seems to be some restrictions on using reserved

words and symbols as ordinary words and symbols. For instance

';'(2,3).

is allowed but not

':- '(2,3).

UNH PROLOG allows real and negative numbers. It also has a lot

of extra predicates such as

sin(X), tan(X), etc

One of the most useful is

statistics

91

which gives, amongst other things, the amount of CPU time used by a

question.

One inconvenience, which isn't the fault of the UNH PROLOG

system, is that the high speed printer connected to the MV/ 10000 can

not print all the PROLOG character set.

Overall, UNH PROLOG is a very interesting system al through some

things on it could be improved.

92

• • •' I I - .._ • • a - ~ •:

10. Improvements.

Since research is still continuing into the syntax and

semantics of PROLOG as well as the implementation of it, this

chapter has the potential to be infinitely long. Instead, discussion

will be limited to some of the ideas being considered at present. An

excellent overview of these can be found in [9].

10.1 Remaining predicates.

Firstly, the predicates 1op 1 , 'reconsult, 'seeing', 'see',

'seen', 1 tell 1 , 'telling' and 'told' could be implemented. In

practise this user has only found 'op' to be needed in some cases,

where code has been written using a lot of arithmetic predicates.

is(X, +(5, *(Y,2)))

is a lot less convenient to write than

X is 5 + Y I 2

10 .2 Language Modules.

Having, just recently, had access to two commercial PROLOG

systems this user has seen some of the other versions of PROLOG

available. The two versions seen were

VMS PROLOG-1

and

ONH PROLOG

Both of these are descendents of the Edinburgh DEC10 PROLOG and vary

93

• . . • : r • . •. . ,' . ,: .

only in minor ways from the PROLOG described in C&M. Most of the

variations are additions to the built in predicates available, Both

versions also offer the incorporation of modules of code from other

programming languages into PROLOG. VMS PROLOG-1 allows the addition

of assembly language and FORTRAN subroutines. Unfortunately, there

are restrictions on the types and number of parameters that can be

passed. UNH PROLOG which is an interpreter written in C, allows the

addition of C modules. There are obviously problems with this since

it did not work on the Data General MV/10000 that this PROLOG was

on.

The incorporation of other language modules does not seem to

follow the spirit of PROLOG which is based on 1st order predicate

logic. If the other modules were in the form of abstract data

structures and operations, this would make the interface between

PROLOG and the other language much more independent of the types of

logic and control that the other language uses. Work has been done

on implementing abstract data structures in PROLOG [10] so that

different abstract objects, written in PROLOG, can communicate with

each other by message passing alone, This type of system offers

increased modularity and extensibility for PROLOG as well as the

possibility of parallel processing. From that stage it is simple to

incorporate other objects written in different languages. Such

languages have been developed, such as SMALLTALK [11].

94

. - ' . - ::. - . . ~ .
• • ~ ,I ~· .. ' •

10,3 Extra predicates.

Some of the built in predicates iri the other PROLOGs are worth

implementing in this interpreter. The debugging features used in UNH

PROLOG are enhanced to include 'creep', 1 leap 1 , 'skip', 'break',

'abort I and 1hal t' of section 8 ,4 of C&M. Also included is

1 ancestors (L) 1 which pl aces the ancestor goals of the current clause

into the list L.

Two other interesting predicates implement the idea of sets in

PROLOG. These are

setof(X, P,S)

and

bagof(X,P,B)

1 Setof' places all the instances of X, such that P is provable, into

s.

e.g
?- setof(X, X likes Y, S).

might produce

Y = beer
Y = cider

S = [dick,harry,tom]
S = [bill,jan,tom]

The set S must be rx>n-empty and will be ordered.

The predicate I bagof I does much the same thing but the list

produced will not be ordered and may contain duplicates.

95

Both PROLOGs examined contain a lot more arithmetic predicates.

Connected with this is the fact that both PROLOGs allow real numbers

of the form

real : : = integer 'E' exponent I
integer ' • ' integer I

exponent

integer ' • ' integer I E' exponent

. ·­. ·- integer I
1+ 1 integer
'-' integer

Negative numbers are also allowed.

Some of the extra predicates are

abs (X) exp (X) log(X)

log10(X) floor (X) ceil (X)

rand sin(X) cos (X)

tan(X) asin(X) acos(X)

atan(X)

Bit operations can also be done

X » y shift X right Y places

X « y shift X left Y places

X /\ y bitwise conjunction

X \I y bitwise disjunction

These additions to the interpreter would not involve a great deal of

work. The syntax analyser would have to be altered to accept real

96

and negative numbers. The code for the predicates would be similar

to that in 1 calcarith1 • The fact that most of these operations are

defined in PASCAL simplifies their PROLOO implementation a great

deal.

Another useful feature of the UNH PROLOO, if it worked, is the

automatic creation of a prolog.log file during the use of the

interpreter. The log file contains a copy of everything that has

happened during the current job. This feature can be mimicked on

this interpreter by using the DEC20 'photo' command just before

typing

ex prolog. pas

10 .4 PROLOG defined predicates.

Some PROLOG interpreters have been written in PROLOO. Even at

the simpliest level many built in predicates can be defined in terms

of other predicates. Some of these definitions are given in C&M.

For instance, the following predicates can be defined by other

predicates

Predicate

Listing

Call

Consul t,reconsul t

written using

Clause

Consult

Basic file predicates

97

.. ; · .. :... . ' ..;. . . . ' ··., ,

2 out of In terms of.' the 3rd
functor., arg, = .•

Skip ·aet

Get GetO

Tab, nl Put

Nonvar Var

Atomic Atom,integer

Repeat Standard logic

I• I not Call
' '

1\: I I: I

1\:: I I:: I

,., '+'
'I'' mod ,_,' '+'
'=<' I: I

'
I (I

'>' not, I(I

'>=' '>'' I: I

In this interpreter it was decided only to def.'ine •not' and

in terms of other predicates. They are

and

nott(X) :- call(X), I , fail.
nott (X).

or(X,Y) :- call(X).
or(X,Y) :- call(Y).

98

I• I

'

10 .5 Trees and stacks.

Most of the interpreters or compilers for PROLOO use a stack to

store goals [7]. This makes backtracking very quick and easy since

the current goal is unstacked leaving the previous goal ready to be

resa ti sfied.

The trouble with a stack implementation is that it limits the

types of search and backtracking strategies that can be tested. For

instance, it is very inconvenient to unstack a goal that is not on

the top of the stack.

A tree representation for a question means that many different

types of control strategies can be tried. There is also a vast

amount of literature on efficient tree search algorithms and

representations for trees [12].

Up until now the PROLOG questions have been represented using

the notation below

?- t(X, Y).

becomes

99

?--
1

-r
l
C,-l-)

l I
X y

When a goal has been satisfied, by matching

t(S,T) :- b(S) ,d(T),

for instance, the new subgoals have been appended to the tree

7_ .
I

i--------
G-i-)

I I
)< y

·,'..,-·-J

I I
d b

I I
C:-) C.-)

I I
5 .,.

't' can be thought of as being the main goal, with ' b' and I d' being

its subgoals. Thus the question tree becomes

100

7- //..oo/-

1

j--

/ \
0 d

The arguments of the goals can be ignored in this representation.

A question such as

?- append (X, Y, [a, b]) ,member (X, [c]).

would be come

?~ ~oor

I\

During the satisfaction of a question, the tree would grow and

shrink and may look like

101

The numbering of the goals is not relevant.

Any particular goal G may be in 1 of 3 states - 'fr.esh',

•matched' or 'failed'.

A 1fresh I goal is one that has not yet been matched with any

clauses in the database.

A •matched' goal is one that has been matched with a database

clause.

A 'failed I goal is a goal that has failed to match against any

database clauses.

102

Given below is pseudo-code for searching a tree and also for

backtracking along a tree,

procedure search(var finished : boolean);
begin

finished := false;
repeat

PICK a I fresh I goal from the tree (a leaf node)
policy : depth-first;
if found one then

FIND a clause that matches the goal;
if successful then

make it a I matched I goal;
add subgoals to the tree below the current
goal - all 'fresh';

else
mark goal as I failed';

end
end

until all goals are I matched I or
got a 'failed' goal;

if all goals are I matched' then
print success;
if question is not to be resatisfied then

finished:= true;
end

end
end; (• search •)

procedure backtrack(var finished
begin

finished : = false;
repeat

boolean);

PICK a I failed I goal from the tree (a leafnode)
policy : the latest;
if found one then

if' parent has all I failed' children then
delete children;
let parent be next 'matched' goal;

103

else
PICK closest 'matched' goal to chosen
'failed' goal
policy : the 'matched' goal that is the

'failed' goal I s sibling or a
sibling's descendent;

end
else

PICK a 'matched I goal
policy : the latest;

end;
if found one then

FIND a clause that may match the goal;
if successful then

make the goal ' fresh 1 ;

any goals that are 'failed' are set to 'fresh';
else

mark goal as 'failed 1 ;

end
end

until empty tree or
no 'failed' goals;

if empty tree then
print failure;
finished:= true;

end
end; (* backtrack *)

Both these pieces of code would be used in a procedure called

'answer' which would try to find an answer for the current question

tree.

104

• . · , , . • • " ' · . . . P~·r , . . r • • • • ~ • • : • •

Thus a question

procedure answer;
begin

repeat
search(finished);
if not finished then

backtrack(finished);
until finished;

end; (* answer *)

?- t (B) , s (D).

would become

1-Roo~

I \
+- s

where 1 ?-Root 1 is assumed to start as being a 'matched' goal in the

algorithms.

An empty tree is just

?-Root

The goals 1 t 1 and 's' are initially 'fresh'.

There are 2 key procedures (functions) used in 'search' and

'backtrack'. They are 'find' and 'pick'.

105

. ' ·. - 1: . l:,-- ' • • ., .• •

1Find 1 choses a clause to match the current goal. In an actual

interpreter different policies can be tested inside this function.

'Find' represents the 1st type of nondeterminism discussed by

Kowal ski [13] •

e.g

for a question

?- append(X,Y,[a,b]).

and 2 clauses

1. append([],X,X).

2. append([AIB],C,[AID]) :- apperid(B,C,D).

'find' would decide whether to use clause 1 or 2 to match the

question.

'Pick' is the function that decides which goal to use next.

Once again, 'pick' can be implemented in many different ways to test

different policies. It represents the 2nd sort of nondeterminism

mentioned in Kowalski [13],

e.g

for a question

?- append(X, Y, [a, b]) ,member(X, [a]).

'pick' would decide whether to satisfy (or resatisfy)

append(X,Y,[a,b])

or
member(X, [a])

106

One assumpion of 'pick' is that it limits its chose to those goals

that are leaf nodes. This means that only goals with no children (no

subgoals) are picked out. Some of the possible policies for 'pick'

have been included in the algorithms. The most complicated policy is

in 'backtrack' for choosing a 'matched' goal that is closest to the

current 'failed' goal. Graphically, this may be seen as

G1 , G4 and G5 are all I matched I goals. Thus when backtracking takes

place this policy will decide between G1, G4 and G5 f'or the next

goal to be resa tisfied.

By varying the policies for 'pick' and 'find', all types of

searching and backtracking stratergies can be investigated. Thus a

possible improvement for the interpreter is to replace the current

procedures which handle searching and backtracking with procedures

for the algorithms given here. The procedures which would be

107

replaced in the current interpreter would be 'answer' , 'reanswer
1

,

1 dogoal', 1redogoal 1 and 'satisfy'. Then the interpreter will

become quite an useful tool for testing different strategies like

those outlined by Pereira [14]. This is only possible because of the

tree structures that are used to represent questions and clauses.

Also implicit in this new notation is the fact that the actual

structure of a goal does not need to be stored in the question tree.

e.g

with clauses

1. append([],X,X).

2. append([A IB],C,[A ID]) :- append(B,C,D).

and a question

?- append(X,Y,[a]).

the final question tree may become

c-)-J-)

I I I
X y ,-,

I

.-
I

a.ninJ

I
G--1-,->

I I
e, C 0

108

which be comes

The arguments and rule operator can all be ignored. During execution

what happened was that the original question tree matched with the

2nd clause. The right hand side of the 2nd clause was added to the

question tree. Then this right hand side was matched with the 1st

clause. This gave the answer

X = [a]
y = []

All this can be represented by pointers, like so

?-Roo \-

1
qpp(!/11J

I
afyUid

Each goal would use one pointer to access its matched clause in the

database and use it as a 'skeleton' on which to hang its variables

(stored on the other pointer). There is now the possibility that

different parts of a question tree may have pointers to the same

clause. This does not matter since the clauses are only being used

as templates for the variables which are stored in a separate place.

109

In the current interpreter, pointers are already used to access

a goal I s variables. Only slight modifications would be needed to

access these variables from a goal head instead of the variable

nodes. Similarly, a pointer is already used to point at the clause

that a goal uses. The pointer is stored in I dbruleused 1 • At the

moment, it is only used to indicate which clause is matching with a

goal.

This idea is already used in most PROLOO interpreters and is

called structure sharing [15].

One of the limitations of the algorithms given earlier is that

only one goal will be considered at a time. For certain problems,

parallel processing of goals would greatly speed up the solution. In

that case, problems with dependencies between data would arise. The

problem of deadlock would have to be considered. There may be two

goals each waiting for each other to finish before they could

continue. Some of these problems have been overcome in

IC-prolog [16] which allows a certain amount of parallelism. The

rule

sameleaves(X, Y) :- profile_of(W,X),
profile_of(W, Y).

can be speeded up by rewriting it as

sameleaves(X, Y) :- profile_of(W,X)//
profile_of(W, Y).

110

This causes the two profile_of subgoals to be evaluated in parallel.

Notice how both subgoals use the value for W. Thus the two subgoals

although running independently are constrained by a common variable

W which either might change. It is possible to restrict the parallel

evaluation so that only 1 subgoal is allowed to give a value to the

shared variable W. This is done by annotating one of the occurences

of W with a 1 "'

e.g
sameleaves(X, Y) :- profile_of(W,X)//

profile_of(W", Y).

The 1 "' 1 expresses the control condition that W must be _unbounded on

entry to the procedure. Now only this subgoal consumes values. A

similar effect can be achieved by annotating the W in the first

subgoal with •?'.

e.g
sameleaves(X, Y) :- profile_of(W?,X)//

profile_of(W, Y).

The 1'? 1 annotation means that the W must be bound to a non-variable

apon entry to the procedure.

These control annotations are doing explicitly what could be

written into a procedure for 'pick'.

Also included in IC-prolog is stream IO. All these new

constructs can be used to illustrate many different control

alternatives and can even be used to model data-flow languages [17].

111

.. • ~ ~l~l'"~~ •• • • • • ••

11 • Conclusions.

One of the main strengths of this interpreter is also one of

its weaknesses - it is written in PASCAL. PASCAL is a powerful

language which meant that this interpreter was written using

relatively little. code and yet still retained a fair amount of

clarity. Also since PASCAL was used, the interpreter can be modified

with ease. Unfortunately, because PASCAL is so high-level the actual

running time of PROLOG programs on the interpreter is quite slow.

Even so for small to medium size programs the speed is fairly

acceptable and compares favourable with UNH PROLOG.

Since this interpreter offers more powerful pattern matching

than most other PROLOGs, programs can be written which are much

conciser than those written in many other PROLOGs.

If some of the modifications discussed in chapter 10 are

implemented then the interpreter will become an useful research

tool. In particular the algorithms for searching and backtracking

would enhance the interpreter a great deal.

Since the interpreter was written in standard PASCAL, it should

be very simple to move it to another machine - it is almost 100%

machine independent.

The greatest use of the interpreter will be as a teaching tool.

112

Combined with C&M it can be used to teach PROLOG. Also because of

the use of standard recursive descent design and a LL(1) grammar,

the interpr.eter can be used to teach compiler design.

It should be clear, from using this interpreter to write some

PROLOG, just how powerful the language is. There are many things

that can be improved in PROLOG -some of which were described in the

previous chapter. Nevertheless, since PROLOG is grounded so firmly

in logic, it seems clear that it is the direction in which

programming languages should go [18].

PROLOG offers top down inference which unites problem solving

and computer programming. By also offering non-determinism,

parallelism and pattern matching it provides all the tools needed

for applications in artificial intelligence [19].

By being a language which specifies a problem by what is to be

done rather than how a thing is to be done, computer programs become

a lot simplier to read. More over, since a program is rather like a

specification of what it is supposed to achieve, it should be

relatively easy, just by looking at it (or, perhaps by some

automatic means) to check that it really does do what is

required [20].

PROLOG shows that programming in logic is a practical

113

possibility and is as quick and convenient as more conventional

languages such as FORTRAN, PASCAL or even LISP [8].

114

• ~._ -• ~- • • • ' , ..,1•.i o<, ,

References.

1. Welsh, J, & Elder, J., Introduction to Pascal, Prentice Hall,
London, 1979.

2. Welsh, J, & McKeag, M. , Structured System Programming,
Prentice Hall, London, 1980.

3. Gries, D., Compiler Construction for Ditltal Computers, John
WHey & Sons, New York, New York, 1 971.

4. LUCC, DEC System-~ User'.§. guide, LUCC, Lehigh University,
1979.

5. LUCC, Pascal-20 Introductory User'.§ ~' LUCC, Lehigh
University, 1983,

6. Clocksin, W.F, & Mellish, c.s., Programming in Prolog,
Springer-Verlag, Berlin, 1981,

7. Bruynooghe, M., ""The memory management of PROLOG
implementations, 1 ' From : ,K.1, Clark (Ed.), Logic Programming,
Vol. 16, 1982, pp. 83-98.

8, Warren, D.H.D, Pereira, L.M, & Pereira, F., ""PROLOG - the
language and its implementation compared with LISP, 11 JI'..QQ •

..SJm..Q. on AI and Programming Languages, SIGPLAN notices, Vol.
12, no.8, 1977, pp. 109-115,

9. Clark, K.L, & Tarnlund, S.A., Logic Programming, Academic
Press, London, 1982a.

10, Kahn, K.M., "Intermission-Actors in PROLOG, 11 ~ : .K • .l!.
Clark (Ed.), Logic Programming, Vol. 16, 1982, pp. 213-228.

11, The Xerox Learning Research Group, "The &nalltalk-80
System," Byte, Vol. 6, no.8, 1981, pp. 36-48.

12, Tarjan, R.E., Data Structures and Network Algorithms, SIAM,
Philadelphia, 1983.

13, Kowalski, R., 1Q.g;j,_Q. for problem solving, Elsevier North
Holland, New York, New York, 1979.

14. Pereira, L.M, & Porto, A., "'Selective Backtracking,'' From :
_K • .l!. Clark (Ed.), ~ Programming, Vol. 16, 1982, PP•

107-114.

115

""; • I • ' o .. , •, • I • '·l • ~- p ~ • ' 1, <, > • • • • • \, ',J • -, • • •

15. Mellish, c.s., "An alternative to structure sharing in the
implementation of a PROLOG interpreter, 1 ' ,Erom : .K.1. ~
{g_g_.), 1Q&Q Programming, Vol. 16, 1982, pp, 99-106.

16. Clark, K.L, McCabe, F.G, & Gregory, S,, "IC-PROLOG language
features,

11
From : .K.1. Clark (Ed.), 12.&i:..Q. Programming, Vol.

16, 1982, pp. 253-266.

17, Ackerman, W.B., "Data flow languages," Computer, Vol. 15,
no.2, 1982, pp. 15-25.

18. Cohen, P.R, & Feigenbaum, E.A., The Handbook of AI, Vol .3.,
William Kaufmann, Los Altos, California, 1982.

19, Clark, K.L, & McCabe, F.G., Micro-PROLOG Programming .in
Logic, Prentice Hall, Englewood Cliffs, N,J, 1981.

20. Manna, Z., Lectures .Q1l the logic of Computer Programming,
SIAM, Philadelphia, 1980.

116

I. Using PROLOG.

I .1 Get ting started.

A description of how to use the interpreter will be based on

the assumption that the user is running it on the DEC20.

The user must first have a copy of the interpreter. At present

(May 1985) it is called prolog. pas. A copy can be obtained from

Professor s. Gulden
Department of Computer Science
and Electrical Engineering
Lehigh University

Also required is a PASCAL compiler/interpreter for PROLOG to run on.

If all these requirements are met then the user can start

PROLOG by typing

ex prolog, pas

Alternatively, the user can run the prolog.exe file in this author's

directory by typing

<davison>prolog

No matter which method is used once one of these commands has been

typed the system will load and link the program and then print

output :

The user should type <er>. The program will then begin

LEHIGH-PROLOG 1985

117

. . ' : . . '"

Printeval ? n
Helpfulprinting ? N
Timer? Y

Three questions will be asked, The user should reply by typing a

single letter answer for each one which should be Y(y) or N(n), No

<er> is needed after the letter, The prompt will then appear

The user can then consult a file

I ?- consult('file1 ,in'), <er>

or type a clause

I datum(2). <er>

or ?- hello. <er>

When a question has been satisfied the interpreter will wait for the

user to decide what to do.

e,g
?- beef_stew(X), <er>

X = 2

i
cursor

The user can type <er> to finish the question, or 1 ; <er>' to

resa tisfy the question.

When built in predicates such as get(X) are being used which

require input, the prompt will not appear, and the cursor will

118

remain at the left hand side of the screen waiting for input.

e.g
I ?- get(X). <er>

i
cursor

After typing input for these kinds of predicates, no <er> is needed.

or

To leave PROLOG, the user can type

I $ <er>

I <ctrl>c

PROLOG files must finish with an end of file symbol "'. if they

do not then the interpreter will give an error and stop execution.

File names are also limited to 9 characters and must be in quotes.

See chapter 6 for the section on I consult' for more details.

I.2 Common mistakes.

1. Always finish a PROLOG clause with a period I I . . .If none is

supplied the interpreter will consider the next line to be a

continuation of the previous one. Such an error explains why no

response occurs when the user types

?- consult(1dumbo.in') <er>

119

The interpreter is still waiting for a ' '

2. Missing quotes can cause large segments of code to be

ignored. Thus

?- consult('mickey. in). <er>

?- consult (oops). <er>

will cause nothing to happen. All the input, from the first quote,

will be consumed as the name of the file in the first I consult 1 • By

the third line the interpreter is still waiting for the closing

quote to the file name.

e.g

3. Misspelt names can cause strange failures of questions.

bingbong(1).

bingbong(2) •

ringading(X) :- binbong(X).

?- ringading(Q).

no

The rule for 1ringading 1 misspells 'bingbong 1 as 1binbong'. Since

there are no 'binbong 1 facts, the 1ringading 1 question fails.

4. Reserved words and symbols can cause errors if they are used

as ordinary words and symbols. To get round this, the words or

120

symbols must be put in single quotes

e.g
I is(2,4).

will cause an error since IS is a built in predicate. Instead write

I 1is 1 (2,4).

121

II. Error messages.

There are 3 types of error message that can. be issueq from the

interpreter

syntax error messages

bull t in pre di ca te

error messages

and failure messages

II.1 Syntax error messages.

The syntax error messages are in the form of numbers with an

arrow that appears under the part of a fact, rule or question that

is syntatically wrong.

e.g
I num 23).

Clause ignored

"'75

or
l ?- num 23).

Question ignored

"75

The meaning of the syntax error numbers follow

Number Meaning

"f Integer is too large

2 Only part of 1:,, I typed

3 Only part of 1\: I typed

122

4

5

Only part of '?-' typed

Only part of ':-' typed

10 Expected an identifier e. g hello

11 Expected a variable e.g X1

Expected an integer

String e.g n n
Questionop '?-'

Ruleop 1 :- '

Leftparent 1 (1

Right parent

Comma I f ,

f) I

Left bracket ' ['

End-of-file symbol 1"1

Right pracke t '] '

Headop 'I'

Period '. 1

e.g 17 12

13

14

15

16

17

18

19

20

21

22

23

75 Current symbol in wrong place

II.2 Built in predicate error messages.

The 2nd type of error message is the built in predicate error

message. These messages are in the form of sentences preceded by the

word 1 Error 1 •

Given below is l:,I. list of sentences printed and the procedures

123

from where they originate. It is obvious from the message or

messages printed which predicate has failed. The sentences are in

alphabetical order.

Sentence

'; 1 predicate not built in,
CON SULT FRED. IN

1st CLAUSE argument must be
a predicate

1st NAME argument illegal

2nd argument of IS must be
an operator

2nd argument of NAME must
be a list

2nd NAME argument illegal

2nd NAME argument must be
a list

Arguments must be integers

Argument must be numerical
in TAB

Argument of PUT must be
numerical

Arithmetic arguments must
be integers

Assert fails

Atom not allowed as argument
of GET

A tom not allowed as argument
of GETO

Atom not allowed as argument
of SKIP

124

From procedure

xdisjunc

xclause

xname

xis

xname

xname

xname

xnonarith

xtab

xput

getvalue

xassert

xget

xgeto

xskip

• ~·, • ' • • • • \ ~ • l- :

CALL :fails

CON SULT fails

Input must be alphanumeric
in READ

List must be numeric in NAME

List not allowed

List not allowed as 1st
argument of '= •• I

List not allowed as 1st
argument of FUNCTOR

List not allowed as 1st
argument of NAME

List not allowed as 1st
NAME argument

LISTING fails

NAME argument illegal

NOSPY argument must be a
predicate

NOSPY predicate argument
must be numeric

NOT predicate not built in,
CON SULT FRED. IN

Number not allowed

Over:flow in "+"
Over:flow in "*"
Predicate not allowed in
CONSULT

Predicate not allowed in NAME

125

xcall

xsee

xread

listtoatom

copiedid

xuniv

xfunctor

xname

xname

xlisting

xname

xnospy

xnospy

xnot

copiedid

calcarith

oalcarith

xsee

atomtolist

. --... ~--..,.._....,-~-- - ~

~~,..,...·-----· P--~ 0 • -""' 4 C,0 " -- -~ -· •

Relational arguments must
be integers

RETRACT fails

SPY argument must be a
predicate

SPY predicate argument must
be numeric

Underflow in "-"

Uninstantiated list in NAME

Uninstantiated var

II.3 Failure messages.

xcompare

xretraot

xspy

xspy

calcarith

listtoatom

copiedid

There are only 2 messages of this type. They are

IIIILINE INCOMPLETEIH
printed in procedure •nextterminalch'

and

IIIIFJLE INCOMPLETEIH
printed in procedure·•nextfilech'

They both cause the interpreter to cease execution.

126

III. Extended BNF.

See chapter 2 for a discussion of some of these definitions

line : := (fact I question I rule) '. •

term : : = constant I variable I structure
list I string I predicate I
'(' argpa.ttern ')'

structure ::= atom 1 (1 term { ',' term} ')'
atom

T
not a p_atom

question : := 1?-' (structure I predicate)
{ ',' (structure I predicate) }

fact : : = structure

rule : := structure ':-' (structure I predicate)
{ ',' (structure I predicate) }

comment ::= '/*' { all_char} '*/'

argpattern : := argfact I argquestion I argrule

argstructure
: := (atom I varident) 1(' term { ',' term } •) • I

(atom I varident)

l
including p_atoms

a.rgquestion : : = 1?-' argstructure { ',' argstructure }

argfact .. -.. - argstructure

127

argrw.e .. - argstructure ':-' argstructure .. - { ' ' argstruoture
'

constant . ·- atom I integer .. -

variable ··- (' .. - I upper_case_char) { char }

list .. -.. -

string

' ['
I [I

··­,,-

term { ' ' ' term }
(("' term)I/\) ']'

'] '

'"' { all_char } rn'

predicate : := p_atom 1 (' term { ', 1 term } ') 1 I

p_atom

atom

p_atom

.. -··-

.. -.. -

lower_case_ char { char } I
I I I { all_char } I I I

built in predicate words & symbols.

see 4 th appendix

integer : : = digit { digit }

char ··­,,- upper _oase_char

lower_oase_char

digit I
t I

upper_case_char ::= 1A1 I 1B1 I I ,z,

iower_case_char : := 1a 1 I 'b' I I 'z'

digit .. -··- '0 ' I '1 ' I I '9'

128

}

I

.. ,,._.:;"' \, . ' ' . .

all_char : : = DEC20 character set

129

. . - . . . J't .

IV. Built in predicate words and symbols.

All the words and symbols used, here are reserved. If a user

wishes to use the word asserta, for instance, as a name for an

ordinary fact, he must write

•asserta 1(12).

and not

asserta(12).

which will give a syntax error.

Similarly, a user can write

1\: I (jim) •

but not

\=(Jim).

When a predicate word or symbol is used, it must have the right

number of arguments or an error will be output.

e.g
?- asserta(fact(2)). is correct

but

?- asserta(fact(1), fact(2)). is wrong.

So for each word and symbol listed, its number of arguments (arity)

will also be given.

130

IV.1 Predicate words.

·Predicate A:ri ty Predicate Arity

arg 3 asserta 1

assertz 1 atom 1

atomic 1 call 1

clause 2 consult 1

debugging 0 display 1

fail 0 functor 3

get 1 getO 1

integer 1 is 2

listing 1 mod 2

name 2 nl 0

node bug 0 nonvar 1

nospy 1 not 1

notrace 0 put 1

read 1 repeat 0

retract 1 Elkip 1

spy 1 tab 1·

trace 0 true 0

var 1 write 1

131

IV .2 Predicate symbols.

Symbol Arity Symbol Arity Symbol Arity

=< 2 -- 2 -.. 2

= 2 >= 2 > 2

\---- 2 \: 2 I 2

< 2 + 2 2

• 2 0 2

IV. 3 Other symbols.

If' other symbols are to be used as atoms then it is still

necessary to put them into quotes. This is purely to make the syntax

of this PROLOG simple. Thus

% (1).

will give a syntax error but

'%'(1).

is correct.

' can not be used as an atom.

132

V. Files.

What will be given here is a quick summary of the files in this

author's directory at the current time (May 1985). If a user wishes

access to any of these he should get in touch with

Professors.Gulden
Department of Computer Science
and Electrical Engineering
Lehigh University

All files with the '.in' postfix are PROLOG files.

File

arit.in

ass.in

atn.in

call.in

chart.in

clas.in

clau.in

comp.in

cut.in

diag.in

elis.in

eq.in

exap.in

Purpose

Tests of arithmetic predicates

Tests of asserta, assertz

An ATN program

Te st s of call

An active chart parser

Tests of var, nonvar, atom,
integer, atomic

Tests of clause, listing, retract

Tests of <, >, >=, =<

Te st s of I C cut)

Tests of predicate diagnostics

An elisa program

Tests of =, \=, ==, \==

Tests of pattern matching and
backtracking without built in
predicates

133

fini.in

rune.in

more.in

name.in

nott.in

or.in

par.in

pred.in

prolog.pas
.qas
.rel
,exe

read.iii

rapt.in

rev.in

. rewr.in

talk.in

A finite state automata parser

Tests of functor, arg, = •• (univ)

More tests of PROLOG but using
bull t in predicates

Te st s of name

Tests of user defined •not•

Tests of user defined •or•

A program that executes sentences
input in list form

The file for user defined PROLOG

predicates

The PROLOG interpreter

A program that reads in sentences

Tests of repeat

A program to create and reverse lists

Tests of getO, get, skip, put, nl,
display, write

A program to read in sentences and
execute them

134

Vita.

My name is Andrew Davison. I was born in Macclesfield, England

on July 23rd 1962. My parents are Stanley and Mary Davison.

As an undergraduate, I attended the University of Manchester

Institute of Science and Technology (UMIST). I was there from

October 1980 until June 1983 and I obtained a 1st class B. Sc Honours

degree in Computation.

I have been at Lehigh University since September 1983 and will

complete my M.S in Computer Science in June 1985.

135

	Lehigh University
	Lehigh Preserve
	1985

	The design and implementation of a PROLOG interpreter /
	Andrew Davison
	Recommended Citation

	tmp.1551116526.pdf.aHclu

