Lehigh University
Lehigh Preserve

Theses and Dissertations

1985

The design and implementation of a PROLOG

interpreter /

Andrew Davison
Lehigh University

Follow this and additional works at: https://preservelehigh.edu/etd

b Part of the Electrical and Computer Engineering Commons

Recommended Citation

Davison, Andrew, "The design and implementation of a PROLOG interpreter /" (1985). Theses and Dissertations. 45085.
https://preservelehigh.edu/etd /4505

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an

authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

https://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F4505&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F4505&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F4505&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=preserve.lehigh.edu%2Fetd%2F4505&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd/4505?utm_source=preserve.lehigh.edu%2Fetd%2F4505&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

THE DESIGN AND IMPLEMENTATION
A PROLOG INTERPRETER,
by

Andrew Davison.,

A Thesis

Presented to the Graduate Committee

of Lehigh University

in Candidacy for the Degree of
Master of Science
in the
Department of Computer Science
‘and Electrical Engineering
Lehigh University

1985

This thesis is accepted and approvéd in partial fulfillment of

the requirement for the degree of Master of Science.

777544 7 (985

ate)

2onuele O?& ///Jé/ Aer

Professor in C

N esn)], b

Head of the Division of
Computer Science

T 50,

Chairperson of the D&partment

“Pable of Contents

Abstract.
{. Introduction.
2. Syntax.

2.1 Restrictions.

2.2 Discussion of EBNF.

3. Data Structures.

3.1 The datatree.

3.2 The database.

3.3 The variable list.

3.} Examples of the main structures.
3.5 The printed variable name list.

4. Backtracking.

4.1 An Example.
I .2 Location of code.

5. Pattern Matching.

5.1 The different kinds of q and db nodes..
5.2 Location of Code.

6. Built in Predicates.

Call.

Not & '3 1(disjunction).
Clause.
Consult.

cut (1).
Read.

Name.
Functor.

.9 Arg.

6.10 Univ (=..).
6.11 Is.

6-12 Strict (:: .

7. Diagnostics.
7.1 Diagnostics for PROLOG.
7.2 Interpreter diagnostics.
7.2.1 Boolean diagnosties.
7.2.2 Data structure diagqo_:s_tzies.
8. DEC20 dependencies. '
8.1 Timing questions.
8.2 Input.
9. Comparisons with UNH PROLOG.
9.1 Timing comparisons. '
9.2 Ease of use.

L] . - [
boaeom TN o

AT YA OY O
.

iii

e - Tl &
- s R A N

10. Improvements.

10.1 Remaining predicates.

10.2 Language Modules.

10.3 Extra predicates.

10.4 PROLOG defined predicates.
10.5 Trees and stacks.

11. Conclusions.
References.
I. Using PROLOG.

T.1 Getting started.
1.2 Common mistakes.

II. Error messages.

II.1 Syntax error messages.
II.2 Built in predicate error messages.
II.3 Failure messages.

III. Extended BNF.
IV. Built in predicate words and symbols.

IV.1 Predicate words.
IV.2 Predicate symbols.
IV.3 Other symbols.

V. Files.
Vita.

iv

93
93

95
97
99
112
115
117

"7
119

122

122
123
126

127
130

131
132
132

133
135

Abstract.

The design and implementation of a PROLOG interpreter, written
in PASCAL, 1s explained. The main design issues of PROLOG are how to
deal with its pattern matching and backtracking features. Solutions
are given to these problems. In particular, the pattern matching of
this interpreter is more powerful than many other PROLOG systems.
Algorithms are also included which offer a more flexible way of

implementing PROLOG's search strategies.

It is hoped that this interpreter will help in the teaching of

PROLOG and also compiler design.

1. Introduction,

The purpose of this report is two fold. Firstly, an explanation
will be given of how the PROLOG interpreter was implemented. The
program was written solely in PASCAL. It shall be assumed that the
reader is already familiar with PASCAL and also with basic
compiler/interpreter design. If not then the books by Welsh [1],
Welsh & McKeag [2] and Gries [3] are recommended. Only PASCAL
features which are complicated or dependent on the host machine (in
this case the DEC20) will be described. For more information on the
DEC20 and its PASCAL, the user manuals for these can be
read [4] [5]. Similarly only design features unique to the
interpreter will be described. These considerations hayve dictated
the following chapters which explain how such things as pattern
matching and backtracking of PROLOG are dealt with. It is also
assumed that the reader is familiar with PROLOG. As explained in the
following chapters the version of PROLOG implemented is a large
subset of the one explained in the first 11 chapters of the book by
Clocksin & Mellish [6]. This book will be referred to using the

abbreviation C&M,

The second aim of this report is to explain how to use this
PROLOG interpreter and to explain what the user should expect. If

the reader is only interested in this, then chapters 3,4 and 5 can

be ignored. Instead, it is recommended that the reader should fir§t

i

read C&M and then appendix I and appendix II.

2. Syntax.

The syntax of this PROLOG is laid out in extended Backus~Naur
form (EBNF) in the third appendix. In general, the syntax is exactly

that of the PROLOG in C&. However, there are 4 restrictions.

2.1 Restrictions.

The first is that infix and postfix form is not allowed. This
will only become a nuisance when arithmetic is being carried out.
Thus

Xis10+Y¥ - 2
must be written as

is(X, +(10, -(Y,2)))

The second restriction is in the notation for 'lists. C&M allows

[x,y,2]

(%, oy, <(2,0D))

These two thing are equivalent. The 1.1 ig also used as a period to

terminate a clause. So for ease of implementation the '.' functor is

- not—allowed. “Thus

(%, (y,[1))

will give a syntax .error. The only list form allowed is

[x,y]

This is perfectly good in nearly all cases. Unfortunately in C&M,
the predicates 'functor!', 'arg' and '=..!' ('univ') can use this
first notation. These 3 predicates can manipulate lists by
converting
[x,y]
to (x, (y,[1))

In this interpreter if such a thing is tried then an error will be

output.

Another restriction is the use of built in predicate names as
ordinary names, Lists of these built in predicates are given in the
fourth appendix. For example, asserta(X) is an one argument built in
predicate. When the interpreter accepts the word asserta it will
label it as a predicate operator. In this interpreter if a predicate
name or symbol is going to appear as an ordinary name or symbol, it
is necessary to put it into quotes. Thus

?- asserta(fact(1)).

will call the built in predicate asserta. But

?- tasserta'(12).

will call the ordinary fact, or rule, called asserta. All built in

predicates, when used, must use their right number of arguments.

Thus

?- asserta(fact(2)). is correct

put ?- asserta(fact(3),fact(4)). is wrong.

A small restriction is that the grammar rule notation of

chapter 9 of c&M is not implemented. In most PROLOGs, it is a

package built on top of the basic PROLOG. That is what coul'd be done

here, if required.

2.2 Discussion of EBNF.
The notation includes

X, (x), {x1, | and /\

1X' is used to indicate that X
is a terminal symbol.

(..) is used to group strings together.
{..} is used to mean 0 or more strings.
| means 'or'.

/\ means the empty string.

(fact | question | pule) '.!
fact '.!
question '.!'

rule '.!

There are some constraints on the syntax which can not be coded in
EBNF. One of these is the fact that comments can appear almost

6

anywhere. Thus you can have
hello(mary). /% comment ®/
/% comment %/ hello(mary).

hello /¥ comment %/ (mary).

Comments are consumed in the lexical scanning done by procedure
'nextsymbol! and never reach the syntax analysis sections. Comments
and spaces are ignored in between words, numbers and symbols but:
must not appear in the middle of these things. Thus

hel /% comment */ lo(mary).

hel lo(mary).

will give syntax errors. A symbol may consist of more than 1
character, For example, the question operator is made up of 2
characters.

12,1
The set of predicate symbols is- defined din procedure
'initsetofsymbols'. The set for predicate words is also defined

there with the 'predicateop' set being the union of these.

The size of identifiers is limited to 9 characters. Thus
artificial(intelligence)
will become

artificia(intellige)

in the database. This will become apparent when such a fact is

1isted. Strings and words in quotes are also truncated

nintelligence” --> Mintellige"
and tintelligence' --> ‘'intellige'

The length limit can pe altered DY changing 1alfalength' in the
constant section of the program. Care must also be taken to change
the length of any constant strings.

1

e.g spaces = !

must be altered to the new alfalength.

Integers are 1imited to values between 0 and tmaxint' which is
16383. Changes to ‘'maxint' mst also be done to 'lagtdigmax' and

1max10' all of which are in the constant section.

Looking at the EBNF there is quite a large amount of
repetition. There are rules for

structure and argstructure
question argquestion

fact argfact
rule argrule

1arg! is short for argument. The reason for this is that the syntax

for the arguments of clauses is slightly more general than the
syntax for the clauses. An argument may be 2 variable while a clause
may not be. For instance
hello(mary).
and 7~ hello (mary).
are correct

but

X(mary).
and ?~ X(mary).
are incorrect.
Arguments , however, can be of this form
> test ((X (mary))).
and ?- test ((?- X(mary))).

are correct.

Notice that such an argument structure must be in parentheses to
deal with the scope of the symbols. For instance

?- test(?2-X,Y).
will cause an error because it is unclear if the Y is the 2nd
argument of test or the 2nd goal in the question

?7- X,Y
Simple variables can be written with or without parentheses.
e.g ?- test(X).

or ?- test((X)).

are both correct. Parentheses are not ignored when pattern matching
takes place. So a fact

test((a))
would cause

7- test (X)

to instantiate X to the value (a). In some PROLOGs, variables are

allowed to be the functors of facts, rules and questions.

Unfortunately this means more checking at pattern matching time to
deal with all possible matches. See chapter 5 for a more detailed
discussion of this. In this PROLOG if a question has a variable
functor then it can be satisfied by being executed in the 'eall!
predicate,

Thus ‘
?- X(mary),

can be coded as
?- call(X(mary)).
X must have a value so a8 question like the one above would still

fail, but fail with a semantic error not a syntatical one.

Not included in the EBNF are the symbols which denote end of
session and end of file. The end of session symbol is '$1, Tt causes
a jump from "nextsymbol! to the end of the interpreter. The end of
file symbol '~ must be included at the end of every file., It causes
the input stream to switeh back to the terminal keyboard after a

file has finished. This happens in procedure 'nextline!.

The procedures in the interpreter to deal with the EBNF are
hamed using the EBNF names, or minor variations. Thus

line ===) procedure nextline

term ---> procedure term

and structure ---> procedure structure

For ease of programming some EBNF constructs have been merged. Thus

10

fact and rule =---> procedure factorrule

argfact and argrule ---> procedure argfactorrule

3. Data Structures.

There are 3 main data structures in the interpreter
the datatree (see the type called 'dtree')
the database ('database!)

and the variable list ('varpter').
The 2 minor structures are
the printed variable name list ('namepter')
the list of predicates to be looked
at during execution ('spypter!).

The first 4 will be discussed here, the last in phapter T on

diagnostics.

3.1 The datatree.

This is the structure that contains the parse of the input line
of PROLOG which can be a question, rule or fact. As expected it is a
tree structure. A tree can contain 3 different sorts of data in a
node. It can contain information on variables, constants or
identifiers. Identifiers are the largest class including atoms,
built in predicate words (like ‘'asserta' and 'listing') and also

symbols such as '=','?-~'" and '=..!.

A variable node consists of a variable name and a pointer

('vaf%gi') to the variabig list where its vaiﬁé is.

A constant mode contains an integer value.

An identifier node consists of its name ('idname'), and the

number of arguments associated with it ('noofargs’).
e.g hello(10) has 1 argument

bye has 0

hello{ man(X), but(t)) has 2 arguments
The node also has a number {'numofmatch') indicating when it was
matched against another tree. This is only used when the node is in
a question tree and the node is matched against a fact or rule tree
in the database. There is also a boolean called 'cutflag’ which is
used by the predicate '!! (teut'). This flag can stop another match

being tried. 'Dbruleused' is a pointer to the database fact or rule

tree which this node of the question tree is matched against.

3.2 The database.

" This is a doubly linked list which contains the fact or rule
trees. Each database node also contains the name of the tree that is
hanging from it. This speeds up the search for a tree. Trees are

put into the database in alphabetical order.

3.3 The variable list.

This is another doubly linked list which contains values for

variables or possibly pointers to other variables, A value may not

only be a number or identifier but can be an entire tree. Infact, a

value is stored in a 'dtree' that is pointed to by 'stvall. The

variable's name is also stored and also a flag (towncopy') to

indicate if ‘'stval' is pointing to its own value or another

variable's value. This flag is used at garbage collection time.

'Uninstval' contains an integer. If a variable is:’to be printed that

hasn't a value it will print an unique number instead.

e.g

may produce X = _21

This number is what is stored in 'uninstval'. Finally there are 2
other integer variables, toreatnum' and 'mtnum'. !Creatnum’ gets a
value when a variable in a tree has a variable location allocated to
it. 'Mtnum' gets a value when this variable location gets a value or
gets. .a pointer to another variable. They are related by the fact
that
creatnum £ atnum

and are used for garbage collaction. A global variable 'mat chnumn'
gives them their integer values. 'Matchnum' increases and decreases
with the size of the current question tree (see chapter 4). When
'matchnum' becomes less than or equal to a 'mtnum' in a variable
location then its 'stval' can be deleted. When 'matchnum' becomes
less than 'creatnum' for that location, the location can be deleted
and its space in the variable 1ist freed. The example in chapter b

will make this clear.

3.4 Examples of the main structures.

The data structures created after two rules and 1 question have

been typed will be shown. The question tree and variable list will

be shown just before guestion satisfaction begins. Assume that

append([],X,X).
append([A|B],C,[A|D]) :- append(B,C,D).

?- append([a],[b,c],Q).

are typed. The first 2 rules are put into the database which will
now have 2 trees hanging from it.

db head

The words and symbols represent the things stored in the 'dtree!
records, Not all the values in a node are shown. For instance, each

of the 'append' modes will have 3 as their 'noofarg' values.

If 2 rules have the same functor, their order in the database

is the order in which they were typed.

Notice how lists are stored. The empty list [] becomes a 1.t

node. A list in head and tail notation [A|B] becomes

‘—8

The question when typed will produce a question tree..

qhaad

 the reot
7-

Notice how the list [a,b,c] is stored as

The .only variable, Q is st}ored in the variable list.

B

The notation 00 indicates that the 'creatnum' = O and the 'mtnum' =
0. Not shown is a pointer from the Q in the question tree to the Q

in the variable list.

In future the ‘'qhead', 'vhead' and 'dbhead' will not be
included in a drawing. Where necessary a 'db' or 'q' will be

written next to the structure,

e.g .
sent ((?- N2(N1))) := sent(F).

STVI{'\
c—)>

¢
|
2

N2
l

Ni

?- is(X, add(Y, minus(Z,S))).

17

1 R
|
C—Hr—)
-
X add f—)
Cl minus
| |
A
Z S
e.g
ad([a,b,[d,cle] If]).
becomes
od
I
|°_) dd
i
4 b —e—p
|
d ¢
e.g
2= ad([[thelY]!Z]).
becomes

18

7-

l

ad

|

c— : Y Zz
—2Z

..

| |

phe 1

There is a certain amount of redundancy in the parse trees but this

means the program code to generate the tree is quite simple.

Procedures which create the database are tinitdb', 'reinitdb',
'finddbplace', ‘'insertdb’', taddnode' and 'findfreenode'. Procedures
which create the question tree are 1initquestion', 'addnode' and
tfindfreenode'. The procedures which create the variable list are
tinitquestion' and 'findvarplace'. Procedures which delete the
question tree and occasionally the data base trees are 'removetree!,

'deletedb' and 'deletequestion’.

Related to the 3 structures of the previous sections are 3
procédilres 'ptiee’, tpbase! and 'pvarpter' which will.print out the
values of these data structures. They are in the interpreter as

diagnostic procedures and are currently not used. During

19

| g
e 0

implementation they were used to see if values were being assigned

correctly. On the DEC20, pasddt [5] can also be used.

3.5 The printed variable name list.
This list is used to store the variables which have had their
values printed at the end of a question. Thus
?- test(X,X%,Y).
will print the X and Y values only once. Without the name 1ist the .X
value would be printed twice. This structure is used in the group of
procedures just before procedure tprintsuccess' which prints out

values if a question has succeeded.

20

4. Backtracking.

The reader should be familiar with the idea of backtracking in

PROLOG. Section 2.6 of C&M runs through a small example of this.

The aim of this chapter is to show how backtracking is achieved in
this interpreter. One example will be given, using the notation
introduced in the previous chapter. Then the procedures within the
interpreter which do these things will be named. For the moment only
a brief outline of pattern matching will be given. A more complete
discussion will be appear in chapter 5. In chapter 10, backtracking
and the more general subject of PROLOG's search strategies are
returned to. Algorithms are presented which build on the ideas of
this chapter and offer more flexible solutions than those given

here,

4.1 An Example.
The following is typed
append([],X%,X).
append([A|B],C,[A}D]) :~ append(B,C,D).
and
?- append(X,Y,[a,b,c]).
If this goal is resatisfied until it fails,
it will have given } answers.
=[] Y= [a,b,c]
= [a] Y= [b,c]

= [a,b] Y= [e]
[a,b,c] I= [1]

In the interpreter the two rules will be stored as

21

Eunckar ¢F +he rule

v

L/-Pund—or of Hie rule

qp an 4
l \

€y — y— -

L |
—BC e ‘a?Pend

A A

The question will be stored as

7-
Funclor of Hne
l 4 queshon

qulné

The var list will be

When execution begins the question will try to match against rule 1.

Matching starts from the functor of the rule and the functor of the

question. The global variable tmatchnum®, which has an initial value

ed to

the var list. Thus the var list becomes

The 2nd X being from rule 1 and having nothing to do with the 1st X

from the question. Since there will now be some confusion over which

variable is being referred to a variable may be subscripted with its

Yereatnum' and 'mtnum' e.g X(00) and X(11). During pattern matching
in the question in the rule

X matches L

Making the var list

matches

Making the var list

Rt

X powter moved o Y yle

Mmatches

Making the var list

When X (in the question) matches with the '.' (in the rule), X(00)

25

gets a copy of the list. When Y matches with X (in the rule), X's
pointer is moved from the X(11) in the var list to the Y in the var

list. When the

matches with X (in the rule) which is X(11) it is actually matching
with Y. So Y gets a copy of the list. The functor append in the
question now has its 'numofmatch' set to 1. Since there is no right
hand branch leaving this functor or leaving the matched rule, the
question is finished. Thus the variables from the question are
printed.

X(01) = .

[—

’c_.

.

|
b

The question could now be deleted (automatically) and another
question typed in and that satisfied. Instead the user types a '3
<cr>' and the question baektr;cks for another answer. What now
happens is that the question tree is searched from the root until it
gets to a functor node whose 'numofmatch' equals the 'matchnum'. In
this case it is the very first functor node. Its ‘numofmatch' is set

and 'matchnum' is decremented by 1, back to 0. The right hand

of the functor is removed which in this case is empty already.

the var list is cleaned up. All var list elements which have a

26

'mtnum' greater than ‘'matchnum' have their values removed. Then

their 'mtnum's are set to the value of their tereatnum's. Thus with

'matchnum! equal to 0

bé coies

Then those var elements whose 'mtnum's are still greater than

'mat chnum! are deleted from the list. Thus with 'matchnum' = 0

becomes

So the question tree and its var list are back to the state they
were in initially. There is 1 difference. When the first match took
place the functor 'append' in the question tree set its pointer,
'dbruleused', to point at the first 'append' rule in the database.
Now when the question is resatisfied another rule is searched for in
the datatbase starting from just after this rule. In other words,
the first 'append' rule will not be matched with again. Now the 2nd

'append' rule is matched against. This rule is

qp[pend\ db
C—)y—s—) i
| |
I'-—e(. i—' q]oqend
A A C—y—1—)
| |
B ¢ D

sana L v e e rh

'Matchnum' is incremented back to 1. A,B,C and D are added to the

var list.

28

This rule is matched against the question tree

in the question in the rule

X matches , l“‘“B

A

The var 1ist becomes

matches

C an!”ev moved
o Y

matches

matches

mat ches

Now,because everything matched, a copy of the right hand side of the

database rule is added to the right hand side of the question tree,

to give

1-

“ﬂ"e“g)\
C—)—;—> - S
| j/ l_ o [[2»«1 Funcror

X
P
a b € |
C—)-—-)——)
|1

6 ¢ D

qppend

The B,C and D of this copy still point at their values in the var
1ist. The first functor, ‘append’, gets a 'numofmatech! = 1 and also
its 'dbruleused' is set to point to the 2nd 'append! rule and goal

satisfaction continues. 'Matchnum' is incremented to 2. Now the new

right hand side of the question tree is satisfied. The next functor,

also called ‘append’, is now matched. It is just starting its
matching so it will start from the beginning af the database and so

match against the first tappend' rule. It will match with

The _question's 'dbruleused' is. set to point at this db rule. Now
B matches
C matches

D mat ches

X poinker maved

te Y

When B matched with '.', B got a copy of the !'.! and B's mtnum is
set to 2. When C matched with X(22), the X pointer was moved to
point at C which meant pointing at Y., When D matched with X(22),

X(22) got a copy of D's value, which is

33

i
b <

But since X(22) is actually Y then Y got the value with its 'mtoum’
being set to 2. Since there is no right hand side of the 1st
tappend' rule to copy onto the question tree, the question finishes.
The values of X(01) and Y are now printed.

X= -—3B = = [a]

0,

The user then types 1y <er>' so the question will be resatisfied.
The question tree is searched from the root again until the functor
whose tnumofmatch! equals tmatchnum' (which is 2) is reached. The
tnumofmatch! is set to 0, 'matchnum' decremented by 1, the right
hand side removed (if possible) and then the var 1ist is reset.

Giving

Notice how X and D still have their values byt Y and B do not, This
was because theip 'mtnum's were greater than 'matchnum! (which is
1). The 2nd functor of the question tree ¢an now search for another

rule in the database. While doing so 'matchnum! is incremented to 2.

Instead let ys assume that a 2nd ryle is not found. In this case the
'match! flag is set to false. 'Matchnum' i1s decremented back to 1.
Any new variables ang values created before the failure are deleted.

This is because a failure to match may not occur immediately.
1.

[
append

4

will almost match

O\‘WQAL\
| db
Com—)—>y—) _
L

|

6o b

X will get a value and Y will get a space and a value on the var
1ist before failure occurs. When failure occurs the database is
searched again from the rule that failed to the end of the database
or upto another matching rule. If no rule is found then the

question tree will be

7-' numoFmatch L l

| = c D
@ qYP(mc\ 1 1]

|

C—)—>r—)

I ,

X Y | | =

| |
a b ¢

QWQN{
/ .

humoFmatch ¢
=2 . I

wiuth makhnum = |

A A mebeie - e g

36

At this point the 'match' flag is returned as false. The top level
gets this flag back. What it then does is search the tree from the
root again but looking for the functor whose 'numofmatch' equals 1
(the current value of tmatchnum'). It will find the first functor of
the question tree. 'Numofmatch! will be set to 0, 'matchnum'
decremented to 0, the right hand side of the functor deleted, the
var list cleaned up and then the goal will try to be resatisfied. At

this point the question tree and var list will be

?-
|
afgerd
X Y
l 00 00
C——)——)
I
X 7 LRt P Py)

b1

6 b ¢ , /

wuh mafchnum = 0

Unfortunately, the rdbruleused! of this functor is already pointing
at the last 'append' rule. The search for a 3rd rule will fail. With
.- e thts ~Pailure and- 'matchnum’ equal to 0, this question tree can not

be satisfied in any way. Thus the interpreter will return an answer

e

37

of 'no', delete the question tree and the var 1ist and prompt for

another line of PROLOG.

4.2 Location of code.

Inside the interpreter the execution of a tree begins with a
call to procedure ‘answer'. The question tree and var list have
already been built using procedures tinitquestion', 'findfreenode’,
taddnode' and 'findvarplace'. ‘'Answer!' calls 'dogoal'. If 'dogoal!
succeeds then the variables are printed out and then the question
may be reanswered in procedure 'reanswer', Otherwise failure is
printed. Procedure 'reanswer' is like procedure ‘answer' but has a
call to 'redogoal'. Also it loops if another try is required.
'Dogoal! searchs the tree for the first time. It does this by
calling 'satisfy'. 'Redogoal' does the same thing but because it is

resatisfying and thus searching for a tnumofmatch' that is already

in a functor node, 'satisfy' is called with tnodefound! set to

false. The 'numofmatch! being looked for is equal to 'matchnum'. If
tsatisfy! fails, 'matchnum' will bhave been decremented and so
'redogoal’ loops and calls 'satisfy' again. Only when 'matchnum' is

0 does 'redogoal' stop looping. At this point failure is final.

So it is clear that backtracking is handled by procedure
'satisfy'. When ‘'nodefound' 1is true ‘t'satisfy' is searching a
question tree for the first time. When 'nodefound' is false it is

searching for the last match to a functor so the match can be undone

38

- G

and another one attempted.

When 'nodefound' is false, 1satisfy' keeps calling itself to
get down to the desired branch of the tree. When it reaches the
right node, it sets 'nodefound' to true, then does all the cleaning

up of the question tree and var list and then calls itself again.

Now t'satisfy' will execute the 2nd half of its body where pattern

matching takes place. Tt will either call procedures tideval'! or
tpredeval! depending on whether the functor is an user-defined one

or a predicate name.

Other parts of the code of 'satisfy!' are to deal with various
special cases. If the functor is a symbol such as a comma, ruleop,
or questionop it must be ignored. A left parenthesis or pil pointer
stops the search down a tree since a preorder search is being used
and so in the example below the left tree of tappend' will be looked
at before ‘'append' itself. The test for 1(' or nil stops this

search.

e.g

There is code in 'satisfy' so that diagnostics predicates can print
out. These code segments are preceded by a test of the flag
'debugon'. There is also a test for the 'cutflag'. It stops pattern

matching occuring.

Procedure 'ideval' finds a rule in the database to match with

the question. It does this by calling 'findclause!'. It then calls

procedure 'setdbvar' which adds the variables in the database rule

to the var list.

Pattern matching is done through procedure 'ignoreruleop' (see
chapter 5). If this is successful and 'match' is true then the right
hand side of the rule is added to the question tree. If 'match'! is
false then 'matchnum' is decremented and the var list is cleaned up.
'Findclause' is called again until success or the database is

exhausted.

Procedure 'predeval' is called when a built in predicate is

ho -

being executed (see chapter 6).

To summerise, backtracking is done by searching the question
tree from its root. When the last matched functor node is found then
the node will try to be matched against a new rule. During the
execution of a question, the question tree will grow and shrink

depending on what rules it matches against and what backtracking

takes place. This searching from the root is necessary to build up a

stack of calls of 'satisfy' so that when a question node matches,

the stack can be popped to get the parent node of the current

question. Consider
7. humoFmatch

' =]
I L./ pup bacle

cat 4o heye

I

c—) hext Funclor

:)
bo b whed
é | k(/// ¢

monkeY
I

numeFmatch (3 : €
=2 l

E
nume frmatch
=3
After the 'parrot' subgoal matches, the hardware stack will pop off
three 'satisfy' calls to get back to the ':-' node at which point
vsatisfy' will call itself twice to get to the 'monkey' node. In
most PROLOG implementations this pushing and popping of stack
environments is coded explicitely [T7].

1y

5. Pattern Matching.

The pattern matching developed in this chapter is more powerful

than that found in many PROLOGs. In particular it is possible to

have arguments whieh have variable functors.
Consider

- num(X),call((X(2))).
with the clauses

num{val).
val(2).

The argument of 'ecall' is X(2). X is a variable functor which,
during the execution of the question, is dinstantiated to the
donstant- 'val'. 'Call', which is a built in predicate, then executes
this goal which in its simple form is

val(2)

A 'yes' answer 1s returned since 'val(2)!' is in the database.

When backtracking and searching oceurs, pattern mateching begins
by comparing the functors of the question tree and database rules

and then moves on to comparing the arguments of each. Thus, for the

following,

pattern matching starts by comparing the functor, 'append', of the
question tree with that of the database rule., When these match,
pattern matching is done on the arguments of each. So,

) mat ches ..

o

mat ches

Arguments can be considerably more complicated than this. Most of

the complication arises when 2 arguments are matched which are made

up of variables.

An argument may be an identifier, integer, string, a simple

variable or an argument structure. An argument structure nust be in

43

parentheses and can be a question, fact or rule which can be made
of variables.
e.g 2- test((2- Q,b(C))).

9- depth((X(8) :-b(e))).

or beg((x(svbfe))).

An argument may also be a list which is of the form

?-test ([X,Y]).

which is stored as
1-
l
test
|

=)

I

||
X Y

After functors have matched, both question tree and database tree
must be descended and the nodes of each compared with one another.
When pattern matching gets to a node with a variable then more
complicated things must be done. The variable may be instantiated to
many different things or uninstantiated. This is also true of the
corresponding node in the other tree. Only some of these
combinations are allowed and different allowable combinations cause

different things to be done.

The way these allowable combinations will be discussed is to

4y

consider a typical node in the question tree (q) and a typical node
in the database tree (db) and then let these nodes be
variable,identifier or integer, with 0,1 or 2 branches leaving them.

After exhausting‘ all combinations of these possibilities and

specifying the actions taken when they occur , it is then easy to

show how code has been written for them. The following notation will

be used.
variable
uninstantiated variable
When a variable is uninstantiated it
means that it has a variable location
in the var list but no value in it
instantiated variable
When a variable is instantiated it
means that it has a value in its
variable location

ident identifier

int integer

The following pointers will be abbreviated as
qv = q's pointer to its variable location
db's pointer to its variable location

= q's pointer to its value
where q is a variable

= db's pointer to its value
where db is a variable

These distinctions are clearer from the diagram

" var sk

02

Variable
locet Fiem

The following procedures will be used

changevars(X,Y)
Move all pointers, X, so they are pointing
to the same place that Y is.

evaluate (X, Y,match)
Carry out pattern matching on the structures
represented by X and Y. Return success
or failure in the boolean called 'match'.

evalleftdb(X,Y,match)
The structure Y is a node with a right child.

e.g

'Evalleftdb' carries out pattern matching on
the structures represented by X and by Y
(with its right child ignored).

'Match' returns success or failure.

copy(X,Y,nil)
Copy the structure with Y as its root to
the location pointed at by X. The nil is for
what the copied Y tree should have as
its new parent node - nothing.

copy1(X, Y,nil)
Copy only the node Y to the location pointed
at by X. Y may have children

e.g

but these are not to be copied over to X.

copyleftdb(X,Y,nil)
Copy only the node Y and its left children
to the location pointed at by X. From the
example above X would get the tree

Y
I

!

fail
Return with 'match' set to false.

5.1 The different kinds of q and db nodes,
For a typical q node and a typical db node consider all the

possible structures that they could have hanging from them.

Fach q and db structure allowed together will be 1 case, Within
each case, the different allowable types of qQ and db will produce

subcases,

For each subcase there will be an action carried out which will
affect the var list, These actions will be specified by the
abbreviations given in the last section.

Case A.
Q node and db node with no child branches

i.e
q db

A1. Let q,db both = var

Subecase. Action.
g uninst db uninst changevars (dbv,qv)
q inst db uninst dbvs := qvs
q uninst db inst qvs :=z dbvs
q inst db inst evaluate(qvs,dbvs, match)

A2, Let q,db be either var or ident or both

Subcase. Action.

q var db var ~-see case Al--

q ident db var-uninst copy(dbvs,q,nil)
-inst evaluate(q,dbvs,match)

q var-uninst db ident copy(qvs,db, nil)

48

evaluate(qvs,db, match)

db ident does q = db ?

A3. Let q,db be either var or int
Subcase. Action,
q int db int does q = db ?

q int db var-uninst copy(dbvs,q, nil)
-inst evaluate(q,dbvs, match)

q var-uninst db int copy(qvs,db, nil)
~-inst evaluate(qvs,db, match)

Case B.

One of the two nodes q and db do not have children.
Let g be the one without children.
All subcases given will have a symmetrical subease where
db is the childless node.
Only 3 structures are allowed with db as the parent node,
i.e

dL\‘

| T~

N
.

Bt. Let q,db both = var,
Subcase. Action.
q uninst db uninst copy(qvs,db, nil)
q uninst db inst copy(qvs,db, nil)
q inst db uninst evaluate(qvs,db,match)
g inst db inst evaluate(qvs, db,match)

Let q,db = var,ident or both
Subcase. Action.
] var db var -=See case Ble~

ide nt db var-uninst fail
=-inst fail

var-uninst db ident copy(qvs,db,nil)
-inst evaluate(qvs,db,match)

ident db ident fail

Let q,db = var,int or both int
A1l subcases fail.

Case C.
Both q and db have 1 or 2 children.

i.e

121 can be '(', ':-' or nothing. '(' must be on the
left, ?':-! on the right.

There are only 5 cases (out of the possible 9) that can
succeed. They are

C1 . c2 Cc3
? gl - C‘_ | -
c <
and
o db s 1 N
9 \, | -
‘\ \;, l Vv c

It is clear that case C4 is the same as case €3 but with q and db

switched. We shall only consider case C3.

Also case C1, C2 and C5 are similar in that for thém to be
considered, the children of q and the children of db must be the

same. We shall assume such tests will be done in the code and so
only consider case C1 here.
For the cases C1 and C3 we must now consider the different

types that q and db can be.

Case C1. q db

51

C1.1 Let @ and db = var
Subcase.
q uninst db uninst
q inst db uninst
q uninst db inst
q inst db inst

Action.
changevars(dbv,qv)
dbvs := qvs
qvs := dbvs
evaluate(qvs,dbvs,match)

C1.2 Let q and db = var,ident or both

Subcase.
q var db var

q ident db var-uninst
-inst

q var-uninst db ident
-inst

q ident db ident

Action.
--see case Cl.1=-

copyi(dbvs,q,nil)
evaluate(q,dbvs,match)

copyt(qvs,db,nil)
evaluate(qvs,db, match)

does q = db ?

C1.3 Let q and db = var,int or both int
All subcases fail,

C3.1 Let q,db = var
Subcase. Action.
q uninst db uninst copyleftdb(qvs,db,nil)
q uninst db inst copyleftdb(qvs,db,nil)
q inst db uninst evalleftdb(qvs,db, match)
q inst db inst evalleftdb(qvs,db,match)

c3.2 Let q,db = var,ident or both
Subcase. Action.
q var db var -=-3ee case C3.1==

q var-uninst db ident copyleftdb(qvs,db, nil)
~inst evalleftdb{qvs,db,match)

q ident db var fail
q ident db ident fail

C3.3 Let q,db = var,int or both int
All subcases fail.

5.2 Location of Code.
Having concluded an exhaustive analysis, the interpreter code

for each case is easily written.

Pattern matching starts from procedure 'ideval' when procedure

tignoreruleop! is called. 'Ignoreruleop' removes the right hand side
of the database rule so that pattern matching will not fail when,

for instance

is matched with

qYFenol \“- g

\-
| .

]
| 1
'
L}

C—y—)
|

Procedure 'evaluate' separates the cases as have been done here.
Some extra tests are done to deal with symbols which are to be
ignored, such as '?-', t(', ')' and ','. The cases become the
following procedures
procedure 'gdbend’

procedure 'qend’'
procedure ‘'beval'

Within procedure 'qdbend'’

case A.3
case A.2
case A.1

procedure 'qdbintend'’
procedure 'qdbidend'’
procedure 'gdbvarend'

Procedure 'stveopy' is used to do the job of copy(qu,db,nil) and

54

also copy(dbvs,q,nil).

In procedure theval?,

case C1,C2 and C5

procedure theval same’
case C3 and C4

procedure ! bevalqruleop’

Extra code is needed to deal with the periods inside a list..

e.g cat([x,al) be comes

cat

|
c—)
|
||
X &

Inside procedure tbeval same',

procedure 'qdbvarend' = case C1.1

Procedure 'stvcopyid' does the job of eopy‘l‘(qve‘,dbv,_nil) and also

copy1(dbvs,q,nil) .

It should be clear by now how the cases relate to the code. To
test for an uninstantiated variable, requires 2 1ift tests. The
first to check to see if the node is a variable

if q".kind = vars then
The second to see if it is uninstantiated
if q".varval®.stval = nil then
From this,clearly

qv = q".varval

55

qvs = q° .vapval”.stval
ete

The only code which has not been explained is procedure tchangevars'

and its functional opposite, procedure ryndo changes'.

1Changevars' moves variable pointers to a new location. Thus if
inode X has a variable pointer X*.varval (called tqpvart in
'changevars') then it will pe moved to point at a new variable
tqvar'. It must do this for all podes with an X variable pointer.
That is why tmoveallvars' searches the database tree and the

question tree and 1 checkvarlist' does the same for the var list.

This is & time consuming operation and is to deal with shared

variables

e.g
append([],X,X) .

7= appen_d(Z,Y,[a,b]) .

During execution, Y and X will poth. point to the same variable
location which will pe empty. Y and X are sharing. When X gets

jnstantiated to [a,b] soO will Y and the question will succeed,

returning

™~
n

(1

[a,b] -

<
1"

A1l X 'v_ariable pointers must point to the same location as all the X

yariable pointers. If Y is later shared with another variable Q then

56

not only must all the Y pointers be moved to the Q variable location
but so must all the X pointers. The time consuming part of this
operation is finding all the X and Y pointers in the trees and also

in the var list structures. In some PROLOGs, variables like these

are set aside from others which do have values [8]. They are then

easier to deal with.

Procedure ‘undochanges' sets a node's variable pointer back to
its own variable in the var 1ist. Some assumptions can be made about
undoing changes. Changes are only undone when a goal is being
resatisfied. Procedure tdeletevarlist! will remove the pointers to
variables created after the present goal. Shared variables which
occur earlier than this goal should be left as they are since they
do not want to be resatisfied. Only variables created during the

match of this goal which are shared need to be looked for.

For example, assume that when matchnum equalled 6 the match
between the question ttest (Y, 2Z,Y)! and the rule

'te‘st(x;x,[a,b]):-cat(X)' took place, to give

ters are now aimed at th

Thus the Y and X poin
packtracking reaches the ttest! node, Y's variable pointer mus

gset back to point at its own variable.

58

e 7 variable. When

t be

6. Built in predicates.

A complete 1ist of the tuilt in predicates in this. interpreter

are given in the fourth appendix.

The interpreber. __code for the predicates is called froft
procedure 'predeval' . Each procedure that implements a predicat_e is
named DY using the predicate name preceded by @ 1xt, Thus rgisplay’
is implemented in procedure 'xdisplay(q,match)'. Tpe parameter a is
the subtree of the question tree which contains the call Lo the

predicate.Thus when the procedure 'xclause(q,mateh)' is called, 4

yost oF 1ueshm:‘\
tre s

clows @
\
c—1—
| !
v £
\
c—>
\
Y

Match' is a poolean that returns true or false depending on if the

predicate does its jobe

A common notation has also been used for the arguments of &

59

[To—

predicate.
The first argument is
11 = q~.left”.1eft
‘The 2nd argument 18
x2 = q~.left™. right”.left
and so on. |

Tn the above example

M

K1

n
3]

and X2
To go from the graphs to pointer yalues is simple
¥ down = left pointer

-3~ across right poi nter

Chapter. 6 of C&HM gives 2 full discussion of what the puilt in
pr'edieates are meant to do. Of the ones written about in that

chapter, this interpreter does not have

. reconsult op
- see seeing

seen tell

60

telling told

tReconsult' 18 not implemented since it was not considered to be

useful . It also aid not seem necessary to have the 6 file
predicates. The reason for this is that the jnput and output of the
interpreter jg a lob simpler than the one discussed in chapter 5 of
caM. The output is only meant to be sent to the screen. Input is
usually from the terminal keyboard. While it is possible to read
files using tconsult!', once the end of file symbol i8 pead (*°'),

the input file is once again set to the terminal.

The ‘'op’ predicate is used to set the precedence, position and
associativity of an operator. Since all the operators are in prefix

form this predicate was not needed.

In the following chapter only the predicates which have

complicated code or differ in their operation from those in C&1 will

be de seribed.

6.1 Call.

In most PROLOG jnterpreters, when the predicate teallt is used,

it is usually of the form

0all(s(T)) or call(X)

where X is & yvariable instantiated to a question 1ike
p(¥)

61

where the functor 1p! of the question is a oons'_cant.

In this interpreter, the argument of 'callt' can pe of a more

general form. SO in

call(X)

X is a variable which can be instantiated {0 a question 1ike

2(Y)

where the functor vz of the question is an instantiated yariable.

More simply,

call((z(1)))

can be written. Notice in this caseé, it 1is necessary to pub

parentheses around Z(Y) pecause of the syntax rules.

In other interpreters it is possible to simulate this
generality in 'call’ py using tfunctor' OF t=,.! (‘univ'). In this
interpreter, a user can write

yal(2).
pun(val).

9- num(X), call((xX(Y))).

to obtain

4
nu
n

62

Ay, . . g . 7 . o . L

In a more simple interpreter, a user must write
val(2).
num(val).
?- num(X), functor(F,X,1), call(F).
to obtain

val
val(2)

24

In both cases, 'call' has executed the goal 'val' to find a value of

2. An alternative approach is to write

?2- num(X), =..(F,[X,Y]), call(F).
to get

val
2
val(2)

g pd
nanon

In other words, in this interpreter it is posssible to execute a
question which has an uninstantiated variable as its functor. To
deal with this complication, procedure 'xcall' calls a procedure
tgetcallarg' which makes a simplified copy of the 'call' argument
and puts it into the variable ‘'newq'. ‘'Newq' will be the argument
with the functor variable replaced by its value . Thus in the case
of

call((Z(Y)))

where Z is instantiated to 'p' then 'newg' will contain

p(Y)

63

The argument is then satisfied as if it were a question using
procedure 'satisfy'. As described earlier 'satisfy' will add
subtrees to the original question tree. Continuing the example, at
the end of 'satisfy' the question tree 'p(Y)' which originally

looked like

may ‘become

The key feature of this new tree is that the 'p' node now has a

right hand subtree. So in 'xecall' after tsatisfy! has finished,

64

procedure 'savechanges' is called. 'Savechanges' adds this new right
hand subtree to the original 'call' argument. What thig Subtree is
actually appended to is the functor constant in the 'eall! argument.
This must first be found because as described above it may be in a
variable, When the functor is found it may already have a right hand
subtree. This is possible if the 'call' argument has been satisfied
before and this time 'xcall! is being executed because the argument
is being resatisfied. If the functor already has a right hand
subtree, it is deleted and the new right hand subtree is appended.

e.g
call(P) is being satisfied

where P is instantiated to Z(X,Y)
and Z is instantiated to s

'Newq' will obtain s(X,Y) in 'get callarg!

Since s(X,Y) has been satisfied before 'newq' will actually be a

tree like

After ‘satisfy' has worked on 'newq' let us assume it becomes.the tree

S
l
C—i1—)

|1

X Y

T -

)

—J
|
Y

In 'savechanges' the constant functor of 1Pt is obtained. Thus 's!'

is returned. Actually, the tree 's' contains

which is' 's' with its old right hand subtree. This subtree is

deleted, leaving the tree

The new right hand subtree is appended giving

~_

This is now what is stored in 'Z' when 'savechanges' and then

'xcall' finish,

6.2 Not & ';'(disjunction).

Both these predicates have been implemented using PROLOG rather
than PASCAL. When they are called an error is printed telling the
user to consult the file 'pred.in'. This file contains their
definitions, which are

nott (X) :- call(X), ! ,fail.
nott (X).
and
or(A,B) :- call(h).
or(A,B) := call(B).
Notice that names other than 'not' and '; ' are used since these are
user defined predicates. Other built in predicates could be
implemented this way but their PASCAL versions are as simple. For
example, 'nonvar'! is defined in PROLOG as
nonvar(X) :- var(X), ! ,fail.
nonvar(X).
Its PASCAL version is in procedure 'xnonvar'! and is also only 2

lines long.

See chapter 10 for further discussion of PROLOG defined

predicates.

68

6.3 Clause,

A variable functor can be assigned to the first argunent of
'eclause!, To simplify this argument, the procedure 'simplifyhead' is
called. Thus in

clause((z(X)), Y)
where Z is instantiated to 'p!
then X1 = (Z(X))

After a call to 'simplifyhead!

newx1 = p(X)

It should be clear that X1 contains the first argument of 'clause!
which is the head of the rule (or fact) and X2 will contain its
right hand side op possibly the value 'true'. The restriction is
that X2 will only return the first subgoal of any right hand side.
Thus if there is a rule

t(X) := b(X), o(X).

?- clause(t(X), W).

W = b(X)

6.4 Consult.

The code for this predicate is in proeeduré 'xconsult!. In
actuality most of the work is done in 'xsee!., This sets the input
file to the filename argument of teonsult'. A limitation of
tconsult' is that a filename, being an identifier, should only be 9
characters long. Also since DEC20 filenames must have a file ending
with '.<something>' then the filename must be in single quotes or

the '.' will be taken as a period in PROLOG syntax and an error will

occur. Thus the user must type something like

?- consult('pred.in').

There is a way to get around these restrictions. If the user types a
file name unknown to the system, the user will. be queried for
another filename. The query comes from the operating system and so
the single quotes and 9 character restrictions do not apply. Thus

?- consult('vbbk.pq').

? File not found - vbbk.pq
Try another file spec: very_long file.in

If the file is found PROLOG is reentered and continues as normal.
A1l files must have the end of file symbol '"' at the end of

them. If this is not found an end of file error will occur and the

interpreter will finish. The '"' is used in tnextline! to reset the

input file.

This 'consult' predicate is more general than the one described

70

in C8M since questions can be ijneluded in the files. When these
questions are executed, input for them, from the user, will still be
taken from the keyboard and not be looked for in the file being
consulted. Another useful feature is that when a file is consulted,
it will also be printed on the terminal screen. This means that if

there are any errors in the file, the user will see where they

ogceur.

The form

?- [filel, =file2, tfred.1' 1.

is not allowed, al through excluding the files to be reconsulted of

the form -file, 'a similar notation can be achieved.

€.g
?- [rilet, ‘'fred.1' 1.
could be written as
9- consult_list([filel, tfred.1' 1).
with the rules
consult_list([1).

consult_list ([X1¥1) - consult(X),
consult list(Y).

6.5 Cut (1).

The code for this predicate sets a flag called 'cutflag' which
is in each node of the question tree that is of type identifier.
When a cut symbol is found a search back up the question tree is
carried out. The search stops when a questiomop is found or the
identifier before a ruleop symbol is found. Thus for a Question such

as

search)
s5ho 1 here [
p d
| o
C—) Search C~)
beg ng l
l here
X X

A search is started at the cut and stops at ‘'append!. Starting at
the 'append' node the 'eutflag's in the identifiers are set to true.
This is done until the cut symbol is reached. The 'cutflag' is used

in 'satisfy' to stop a goal being resatisfied.

72

6.6 Read,

This predicate,
input stream,

'read!

to complete the line, Thus fop

2= read(duck),

the ugep types duck, <ep>

PROLOG responds with

yes

6.7 Name,

tests which decige ir
should pe called,
Something 1ike

tatomtol ist' op

Procedure 'atomtoligt!

'listtoatom'

Will convert

S,

L

where g7 is the asecii code fop tat

and so on,

Similar'ly,, 'listtoatom®

will convert something 1ike

S m—

L7

q7 4% 99

6.8 Functor,
'Functor! can be used in 2 ways as described i
procedure 'xfunctop!

then mapni pulates the

tree using Procedure 'build:’,

functor (bob, for instance) anq an inte

ger representing the arity
for instance) and creates g tree, For 'bob! and 2 the tree

will be created. '_' ig the anonymous variable,

¢ - S . S o - A

6.9 Arg.
The only difference between the interpreter's ‘'arg' and the
targ' in C&1 is that in this interpreter
- arg(2,f(a),X).
will give
X=za

instead of failing.

If the 1st argument is greater than the arity of the predicate then

the variable gets the last argument of the predicate.

6-10 Univ (=oo) .

In C&M, ‘univ' can manipulate lists

e.g
2- =..([a,D, e,d],L).

‘'will give

L=["'." &, [b,c,d] 1

This form 1is not allowed in this interpreter since the dot '.' 1is
not allowed as a functor name for lists. 'Xuniv' uses 2 procedures
- tereatelist' and tareatestr'. 1createlist' converts a structure to

a list.

75

Foo
|

)y becomes ,
foo 4 b

a b

'Createstr! converts a list to a structure.

Foo
e becomeS]
[]] —, >
foo & b l |
a b

76

6.11 Is.

The 2nd argument of ‘'is' must be an operator. ‘Thus

?" iS(X,Z) .

is not allowed. In C&M the 2nd argument must be an apithmetic
expression. Unfortunately, a definition of this is not given. In
some PROLOGs the above form is allowed. A user ‘could get round the
above restriction by typing

?- is(X,+(0,2)).

In general, assignments of this form seem to g0 against the spirit

of PROLOG. Assigments, at least simple oOnes, should be done by

p'attern matching.

6.12 Strict (==).

The code for 1==' is in procedure 1xstrict'. It uses & flag
tatrictflag’'. When 'xstrict' is first called, 1strictflag' 1is set
to false. 1¥strict' then calls 'xeqop' which calls tevaluate'.
Inside ‘'evaluate’, if two different variables are peing matched,
eventually tqdbvarend' will be called ranc‘l tgtrictflag’ will be set

to true. All the procedures will finish and control return to

1xstrict! which will fail.

7. Diagnostics.

7.1 Diagnostics for PROLOG.

The code for these starts towards the end of the interpreter
with procedure 1xtrace' and finishes with procedure 1xnospy'. These
procedures use 2 global boolean variables - 1debugon' and ttrace'.
1Debugon' is true whenever diagnostic output can be generated during
the execution of a question. 1Debugon’ will be true if 'trace' is on
or/and & spypoint has been set. tTpace' is true only if the
predicate typace' has been switched on. The distinction has been
made 8O that a quick test can be done in 1gatisfy' to see if

procedure 1debug' has to be called.

70 represent the spypoints, & 1ist data structure called
1spypter’ is used. The procedures taddtospy', tingertspy',
1pemovespy' and 1pidspy'! are used to manipulate it., They are called
from the procedures for the spypoint predicates which are

1xdebugging', txnodebug', 1xspy' and tynospy'. The 1gpypter’ data

structure is referenced using the variable 1gpyhead'.

Each node of 1gpypter’ contains a functor nameé and a number
representing tpe arity of the predicate. For instance, the list
might contain 2 nodes with the same functor name but with different
aritys.

e.g
sum(X, Y, 7) - sum, 3

78

sum(X,Y) -=> sum, 2

Each node is in alphabetical order and if 2 modes have the same name

then their order in 'spypter! is the order in which they were typed
. If a question of the form

?- spy(sort).

is asked then the spypter node is

sort, 0

The syntax, spy[sort(2),append] is mot allowed, Something like it

could be added using

2= spy_list ([sort(2),append]).
with the clauses

spy_list([]).
Spy_Llist([X{Y]) :~ spy(X),

spy_list(Y).

Similar restrictions apply to 'nospy'. Once again the user could

define

nospy_list([]).
nospy list([X{Y]) :~ nospy(X),
nospy_list(Y).

The PASCAL procedures 'xtrace! through to 'xnospy! only deal

79

with setting up the boolean flags and the 'spypter' data structure.
The structures are used by calls to 'debug' when 'debugon' is true.
'Debug! is called in 'satisfy' from 4 different places when a
question is being treated differently. They are the 4 places that
control ocan flow through a question as outlined in section 8.3 of

C&M, called CALL, EXIT, FAIL and REDO.

Since a question in this interpreter is in the form of a tree
and because of the way that a goal is resatisfied by searching from
the root of the tree down to that goal, REDO is dealt with in a
different way than that given in C&i. For example, in C&, if

ttrace! is on and the question

?- des(X),fail.

is typed with the following clauses in the database
des(X) :~- b(X),c(X).
b(2).
e(2).
Then when the goal 'fail' is reached, the following will be printed
CALL : fail
FAIL : fail
C&M's diagnostics will then print

REDO : des(2)

since 'des! is the last goal in the question that succeeded. Then

REDO : c(2)

will be printed since this was the last subgoal in the 1des! goal

that succeeded. Then

FAIL : c(X)
wﬂl be printed since this subgoal fails.

In this interpreter, the difference in REDO can be seen in

terms of the question tree which will be

[A—

@l ®Fu|l\
aes
N
c—) =

\ _
@l@

X

I
c—) —)
|

X

The numbers indicate the order of the matches. At this point

CALL : fail
FALL : fail

the first part of the question will be resatisfied.

is printed. Now
This is done by searching for a goal whose 'mat chnum' equals 3. When

this is found, the diagnostic is printed

REDO : c(2)

FAIL : c(X)

Thus the difference between C&'s REDO diagnostic and this
interpreter's REDO diagnostic is that when backtracking takes place
the parent goals reentered (in order to resatisfy their children)
are not printed. In practice, this means that the number of REDOs
printed is less than in C&1. The same number of CALLs, EXITs and
FAILs are printed and usually the user is only looking for these

three and in particular FAIL.

7.2 Interpreter diagnostics.

These are diagnostics which help in the debugging of the

i_ntrerpr'eter' itself. They were used during development and have been

left in so they can be used in future.

7.2.1 Boolean diagnostics.

These are
printeval
helpfulprinting

timer

They are set at the very start of the interpreter. 'Printeval’
when set to true will cause 'writeln' statements to print things of

the type

Swop q & db for gend

evaluate

Generally, these statements consist of the mname of the procedure
that is currently being executed. 'Printeval' switchs on the
'writeln' statements for the pattern matching procedures.
'-Helpfulprinting' is the boolean that switchs on f'writeln!

statements in all the othep large procedures in the interpreter.

'Timer' is slightly different in that it causes the run time

for the satisfaction of a question to be printed. The timer starts
after the <or> at the end of a question and finishes when an answer
is printed. If a question is resatisfied the timer starts from when

the '; <erd>! is typed.

7.2.2 Data structure diagnostics,

These diagnostics are procedures which can be used to print out
values in the data structures of the interpreter. They are called
'palfa?', 'ptree', 'pbase' and 'pvarpter'. Calls to these procedures

can be inserted inside new procedures that are being tested,

e.g -
ptree(q)

where q is the current node of the question tree. Or

‘pvarpter(q”.varval)

Care must be taken that invalid pointers are not passed to these

83

procedure. Thus if q is nil then

ptree(q”.left)

will cause an execution error in PASCAL.

On the DEC20 a similar effect can be achieved by using the

debug system [5] and getting the values of the data structure by

typing a line of the form

variable =

8. DEC20 dependencies.

The PASCAL used in this interpreter is the standard type. No
DEC20 extensions have been used such as 'others' or 'loop'. This
rule has been broken for two cases. The 'timer! diagnostic and also

for input of data.

8.1 Timing questions.
The run time of questions is calculated using the DEC20 built
in variable, 'runtime'. This variable is used in 4 places - in

procedures 'printsuccess’', 'printfailure!, 'reanswer' and 'answer'.

8.2 Input,
Three input files are used in the interpreter at different

times - 'inp', 'tty! and 'input'.

'Inp' is defined in 'initlisting' to be an interactive file.
The file 'inp' is read using procedure 'readone'. Such a file type
was created so that characters could be read from the DEC20 keyboard
without having to wait for a carriage return to release the input
buffer. 'Readone!' is used by the input predicate procedures ‘'xget0?,

'xget' and 'xskip'. It is also used in 'setdiagnostics'.

'Tty' is the standard input file from the keyboard. It is used
in procedure 'readx'. The first character is read from t'tty' in

'initlisting'. 'Readx' is also used in 'nextterminalch' and also

85

Ve . - . e ot . . il

funetion ! tryagain'.

'Input' is the variable that is assigned the names of the files
that are being consulted. It is used in 'nextfilech!, 'Input' gets a
file name in 'xsee!, It is reset at the end of 'nextline' when the

end of file is read,

By having 2 different next character procedures, one for the
keyboard and one for files, it is possible to have questions inside
consulted files. When a question requires the user to type
something, input will be taken from the keyboard and the question

will be able to continue.

86

9. Comparisons with UNH PROLOG.

For convenience, in this chapter, this author's PROLOG

interpreter will be called Lehigh PROLOG.

UNH PROLOG is a PROLOG interpreter originally from the
University of New Hampshire, It is written in C to run on UNIX. The
version that was used by the author is located in the CAE lab in the
Civil Engineering department in Fritz lab at Lehigh University. This
version had been modified at Syracuse to run on the Data General
MV/ 10000 under AO0S/VS. Unfortunately, the modifications had not been
totally successful and some advanced features do not work or do not

work completely. For example, the ability to include C modules with

the PROLOG code does not work.

The syntax used is like that used in the Edinburgh DEC10 PROLOG
and thus is very similar to the syntax in C&1 and so to that of
Lehigh PROLOG., Unlike the Edinburgh PROLOG it does not compile any
of its code. It also does not do any garbage collection unlike
Lehigh PROLOG. This did not cause any problems in the tests that

were carried out.

9.1 Timing comparisons.

In timing comparisons with Lehigh PROLOG it was found that
small and medium size programs ran at about the same rate. On large
programs, the differences in speeds became increasingly noticable.
Both interpreters slowed down but Lehigh PROLOG was almost 15 times
slower. Two of the large size programs used were an elisa program

(to be found in 'elis.in') and an ATN program ('atn.in').

If these test files are looked at, it can be seen that 'atn.in'
and 'elis.in' are not all that long. The reason why they are large
programs is that when they execute they both create very large
question trees. Time is then spent backtracking along and searching
these trees. 'Atn.in' is also large in that it passes sizeable
amounts of data about in its variables. This shows a few general

rules to be kept in mind when writing a program for Lehigh PROLOG.

1. Try to keep questions short

e.g write
?7- recognise(S).

?- parse(T).
instead of

?- recognise(S),parse(T).

2, If data has to be passed between questions, save the data in

the database using 'asserta' and 'assertz', instead of passing it

88

through arguments.

3. Where possible try to restriet recursion. Each recursive

call of a procedure adds a new subtree to the question tree.

4, Try to instantiate variables as soon as possible. Dont use a

lot of uninstantiated variables that are sharing with each other.

These rules will keep the question tree and var list size down

and so speed up execution.

9.2 Ease of use,
The UNH PROLOG starts very simply. The user must type

X prolog

The interpreter then starts with the prompt

D=

It expects the user to type a question and so prompts with a
question symbol. In order to type in facts or rules, the user must
first type
?= [user]. <er>
to get the prompt
|

This is slightly inconvenient.

‘If the user wants to consult a file, he can use the list. form.

2- ['atn.in']. <er>

The system also allows file names with out the '.' notation which is

useful. In that case no quotes are needed.

e.g
%= [vix]. <cr>

When a file is consulted, it is not listed on the screen while being
read in. This means if an error occurs, a message appears out of
nowhere. Also a file may not contain questions, unlike Lehigh
PROLOG. This will cause difficulties if a user has a lot of files.
Each time he consults one he must type in the questions to use them.
He must also remember what form a question takes, By being able to
have questions in the files where the clauses are defined, the user
is spared a lot of typing and having to remember what questions to

add. It is also a good aid to documentation.

It is possible to leave UNH PROLOG and edit a file and then
return and reconsult it. Unfortunately, sometimes the system will
not allow this and give an out of space error. AMlso if the user
jeaves PROLOG completely then edits a file and returns, the number

of keystrokes are not that much greater.

UNH PROLOG‘ does not allow variable functors. Thus a user can

90

not write

call((X(Y)))

See chapter 6, section 1 for more details on the extensions to

1call? in Lehigh PROLOG.

UNH PROLOG allows prefix, infix and postfix notations but is
1imited in that if a predicate is defined as infix or postfix then
it can not be written in its default prefix form. Thus

2<56. is correct

<(2,5). gives an error.

Thére also seems to be ‘some restrictions on using reserved
words and symbols as ordinary words and symbols. For instance
5 1(2,3).
is allowed but not

1:=1(2,3).

UNH PROLOG allows real and negative numbers. It also has a lot
of extra predicates such as

sin(X), tan(X), etc

One of the most useful is

statistics

which gives, amongst other things, the amount of CPU time used by a

question.

One inconvenience, which isn't the fault of the UNH PROLOG

system, is that the high speed printer connected to the MV/10000 can

not print all the PROLOG character set.

Overall, UNH PROLOG is a very interesting system althrough some

things on it could be improved.

10. Improvements,

Since research 1is still continuing into the syntax and
semantics of PROLOG as well as the implementation of it, this
chapter has the potential to be infinitely long. Instead, discussion
will be limited to some of the ideas being considered at present. An

excellent overview of these can be found in [9].

10.1 Remaining predicates.

Firstly, the predicates ‘'op', ‘'reconsult, 'seeing', 'see',
'seen', ‘'tell', 'telling' and 'told' could be implemented. In
practise this user has only found 'op' to be needed in some cases,
where code has been written using a lot of aritlmetic predicates.

is(X, +(5, ¥(¥,2)))
is a lot less convenient to write than

Xis 5 + ¥ # 2

10.2 Language Modules.

Having, Jjust recently, had access to two commercial PROLOG
systems this user has seen some of the other versions of PROLOG

available. The two versions seen were

VMS PROLOG-1

UNH PROLOG

Both of these are descendents of the Edinburgh DEC10 PROLOG and vary

93

only in minor ways from the PROLOG described in c&M., Most of the
variations are additions to the built in predicates available. Both
versions also offer the incorporation of modules of code from other
programming languages into PROLOG. VMS PROLOG-1 allows the addition
of assembly language and FORTRAN subroutines. Unfortunately, there
are restrictions on the types and number of parameters that can be
passed. UNH PROLOG which is an interpreter written in C, allows the
addition of C modules. There are obviously problems with this since
it did not work on the Data General MV/10000 that this PROLOG was

on.

The incorporation of other language modules does not seem to
follow the spirit of PROLOG which is based on 1st order predicate
logic. If the other modules were in the form of abstract data
structures and operations, this would make the interface between
PROLOG and the other language much more independent of the types of
logic and control that the other language uses. Work has been done
on implementing abstract data structures in PROLOG [10] so that
different abstract objects, written in PROLOG, can communicate with
each other by message passing alone. This type of system offers
increased modularity and extensibility for PROLOG as well as the
possibility of parallel processing. From that stage it is simple to
incorporate other objects written in different languages. Such

languages have been developed, such as SMALLTALK [11].

94

10.3 Extra predicates.

Some of the built in predicates in the other PROLOGs are worth

implementing in this interpreter. The debugging features used in UNH

PROLOG are enhanced to include tereep!, 'leap!, 'skip', tbreak!,
1abort! and 'halt! of section 8.4 of Cé&M. Mso included is

tancestors(L)' which places the ancestor goals of the current clause

into the list L.

Two other interesting predicates implement the idea of sets in

PROLOG. These are

setof(X,P,S)

pagof (X, P,B)

1Setof' places all the instances of X, such that P is provable, into
S.

e.g
?- setof(X, X likes Y, S).

might produce

Y = beer S = [dick,harry,tom]
Y = cider S = [bill,jan,tom]

The set S must be non-empty and will be ordered.

The predicate ‘'bagof'! does much the same thing but the list

produced will not be ordered and may contain duplicates.

Both PROLOGs examined contain a lot more arithmetic predicates.
Connected with this is the fact that both PROLOGs allow real numbers
of the form

real ::= integer 'E' exponent |

integer '.! integer |
integer '.' integer 'E' exponent

exponent ::= integer |
'+1 integer |
'-! integer

Negative numbers are also allowed.

Some of the extra predicates are
abs (X) exp (X) log(X)
log10(X) floor(X) ceil(X)
rand sin(X) cos(X)
tan(X) asin(X) acos(X)

atan(X)

Bit operations can also be done
X >> Y shift X right Y places
X << Y shift X left Y places
X /\Y Dbitwise conjunction

X\/ Y Dbitwise disjunction

These additions to the interpreter would not involve a great deal of

work, The syntax analyser would have to be altered to accept real

96

and negative numbers. The code for the predicates would be similar
to that in tcalcarith'. The fact that most of these operations are
defined in PASCAL simplifies their PROLOG implementation a great

deal.

Another useful feature of the UNH PROLOG, if it worked, is the

automatic ocreation of a prolog.log file during the use of the
interpreter. The log file contains a nlopy of everything that has
happened during the current job. This feature can be mimicked on
this interpreter by using the DEC20 'photo! command just before
typing

ex prolog.pas

10.4 PROLOG defined predicates.

Some PROLOG interpreters have been written in PROLOG. Even at
the simpliest level many built in predicates can be defined in terms
of other predicates. Some of these definitions are given in C&M;
For instance, the following predicates can be defined by other

predicates

Predicate written using

Listing Clause

Call Consult

Consult,reconsult Basic file predicates

?_ out of In terms of the 3rd
functor,arg,=..

Skip ‘Get

Get Get0

Tab, nl Put

Nonvar Var
Atomic Atom,integer
Repeat Standard logic

ts1, not Call

?

In this interpreter it was decided only to define 'not' and ';'
in terms of other predicates. They are

nott(X) :- call(X), I , fail,
nott (X).

or(X,Y) := call(X).
or(X,Y) :- call(Y).

10.5 Trees and stacks.

Most of the interpreters or compilers for PROLOG use a stack to
store goals [T]. This makes backtracking very quick and easy since
the current goal is unstacked leaving the previous goal ready to be

resatisfied.

The trouble with 2 stack implementation is that it limits the
types of search and packtracking strategies that can be tested. For
instance, it is very inconvenient to unstack a goal that is not on

the top of the stack.

A tree representation for a question means that many different
types of control strategies can be tried. There is also a vast
amount of literature on efficient tree search algorithms and

representations for trees [12].

Up until now the PROLOG questions have been represented using

the notation below
?"' t(x,Y)-

becones

RCTIR
Al

x 7

When a goal has been satisfied, by matching

£(S,T) :- b(S) ,d(T),

for instance, the new subgoals have been appended to the tree

2.
l

bt

\

(—r1—) - —_—

| |
X Y

1! can be thought of as being the main goal, with tht and 'd' being

its subgoals. Thus the question tree becomes

|

r
/\
d

b

The arguments of the goals can be ignored in this representation.

A question such as

= append(X,Y,[a,b]),member(x,[c]).

would become

7-Root

/ N\

qpf»%ol member

During the satisfaction of a question, the tree would grow and

shrink and may look like

T poo¥

AN

G

G!
AN iR
Gz @ © Gl G7\8 &9

I VAN

&io e e @3 @

The numbering of the goals is not relevant.

Any particular goal G may be in 1 of 3 states = 1fresh!,

tmatched' or tfailed'.

A t'fresh' goal is one that has not yet been matched with any

clauses in the database.

A 'matched' goal is one that has been matched with a database

cl ause.

A 'failed' goal is a goal that has failed to match against any

database clauses.

Given below is pseudo-code for searching a tree and also for

backtracking along a tree.

procedure search(var finished : boolean);
begin
finished := false;
repeat
PICK a 'fresh' goal from the tree (a leafnode)
poliey : depth~first;
if found one then
FIND a clause that matches the goal;
if successful then
make it a 'matched' goal;
add subgoals to the tree below the current
goal - all 'fresh!';
€lse
mark goal as 'failed';
end
end
until all goals are 'matched' or
got a 'failed' goal;
if all goals are 'matched' then
print success;
if question is not to be resatisfied then
finished := true;
end
end
end; (*® search ¥)

procedure backtrack(var finished : boolean);
begin
finished := false;
repeat
PICK a 'failed' goal from the tree (a leafnode)
policy : the latest;
if found one then
if parent has all 'failed’ children then
delete children;
let parent be next 'matched! goal;

103

else
PICK closest 'matched' goal to chosen
'failed' goal
policy : the "matched' goal that is the
tfailed' goal's sibling or a
sibling's descendent;
end
else
PICK a 'matched! goal
policy : the latest;
end;
if found one then
FIND a clause that may match the goal;
if successful then
make the goal !'fresh';
any goals that are 'failed! are set to 'fresh';
else
mark goal as '"failed';
end
end
until empty tree or
no 'failed' goals;
if empty tree then
print failure;
finished := true;
end
end; (* backtrack *#)

Both these pieces of code would be used in a procedure called

tanswer' which would try to find an answer for the current guestion

tree.

procedure answer;
begin
repeat
search(finished);
if not finished then
backtrack(finished);
until finished;
end; (¥* answer #)

Thus a question
?- t(B),s(D).

would become
?*Rool'

/)

where '?-Root' is assumed to start as being a 'matched! goal in the

algorithms,

An empty tree is just

?-Root

The goals 't' and 's' are initially 'fresh!.

There are 2 key procedures (functions) used in 'search!' and

'backtrack'. They are 'fing! and ‘pick!,

105

'Find' choses a clause to match the current goal. In an actual
interpreter different policies can be tested inside this function.
'Find' represents the 1st type of nondeterminism discussed by
Kowalski [13].
€e.g

for a question
?- append(X,Y,[a,b]).
and 2 clauses
1. append([],X,X).

2. append([A|B],C,[A|D]) :- append(B,C,D).

1£ind' would decide whether to use clause 1 or 2 to match the

queéestion.

'Pick! is the function that decides which goal to use next.
Once again, 'pick' can be implemented in many different ways to test
different policies. It represents the 2nd sort of nondeterminism
mentioned in Kowalski [13].

e.g

for a question

?- append(X,Y¥,[a,b]) ,member(X,[al).

'pick' would decide whether to satisfy (or resatisfy)

append(X,¥,[a,b])

member(X,[a])

One assumpion of 'pick' is that it limits its chose to those goals
that are leaf nodes. This means that only goals with no children (no
subgoals) are picked out. Some of the possible policies for 'pick!
have been included in the algorithms. The most complicated policy is
in 'backtrack!' for choosing a 'matched! goal that is closest to the

current 'failed' goal. Graphically, this may be seen as

o
G
&3
&2 \curmn%
/\ Fc\lledgoq,
Gy G5

Gl

G1, G4 and G5 are all 'matched'’ goals. Thus when backtracking takes
place this poliecy will decide between G1, GY and G5 for the next

goal to be resatisfied.

By varying the policies for 'pick' and 'find', all types of
searching and backtracking stratergies can be investigated. Thus a
possible improvement for the interpreter is to replace the current
procedures which handle searching and backtracking with procedures

for the algorithms given here. The procedures which would be

107

replaced in the current interpreter would be 'answer', 'reanswer',
tdogoal', 'redogoal' and 'satisfy'. Then the interpreter will
become quite an useful tool for testing different strategies like
those outlined by Pereira [14]. This is only possible because of the

tree structures that are used to represent questions and clauses.

Also implicit in this new notation is the fact that the actual

structure of a goal does not need to be stored in the question tree.

e.g
with clauses
1. append([]1,X%,X).
2. append([AlB],C,[AlD]) :- append(B,C,D).
and a question
- append(X,¥,[al).

the final question tree may be come

|

qprand
|

Gy —>
)l

p ¢ D

which becomes

7-Roo’
|

append
|

append

The arguments and rule operator can all be i'gnor*ed. During execution
what happéned was that the original question tree matched with the
ond clause. The right hand side of the 2nd clause was added to the
question tree. Then this right hand side was matched with the 1st
clause. This gave the answer

X = [a]

=11

All this can be represented by ‘pointers, like so

?-Roo\'
l varmbles
'q?y%al ‘—4 Cause 2
l Veriah o
appead __4 Clause |

Each goal would use one pointer to access its matched clause in the
database and use it as a 'skeleton' on which to hang its variables
(stored on the other pointer). There is now the possibility that
different parts of a question tree may have pointers to the same
clause. This does not matter since the clauses are only being used

as templates for the variables which are stored in a separate place.

109

In the current interpreter, pointers are already used to access
a goal's variables. Only slight modifications would be needed to
access these variables from a goal head instead of the variable
nodes, Similarly, a pointer is already used to point at the clause
that a goal uses. The pointer is stored in 'dbruleused'. At the
moment, it is only used to indicate which clause is matching with a

goal.

This idea is already used in most PROLOG interpreters and is

called structure sharing [15].

One of the limitations of the algorithms given earlier is that
only one goal will be considered at a time, For certain problenms,
parallel processing of goals would greatly speed up the solution. In

that case, problems with dependencies between data would arise. The

problem of deadlock would have to be considered. There may be two

goals each waiting for each other to finish before they could
continue. Some of these problems have been overcome in
IC-prolog [16] which allows a certain amount of parallelism. The
rule

sameleaves(X,Y) :- profile of (W,X),
profile_of(W,Y).

can be speeded up by rewriting it as

sameleaves(X,Y) :- profile of(W,X)//
profile_of(W,Y).

This causes the two profile of subgoals to be evaluated in parallel.
Notice how both subgoals use the value for W. Thus the two subgoals
although running independently are constrained by a common variable
W which either might change. It is possible to restrict the parallel
evaluation so that only 1 subgoal is allowed to give a value to the
shared variable W. This is done by annotating one of the occurences
of W with a '"',

e.g
sameleaves(X,Y) :- profile_of (W,X)//
profile of(W",Y).

The '~' expresses the control condition that W must be unbounded on

entry to the procedure. Now only this subgoal consumes values. A

similar effect can be achieved Dby annotating the W in the first
subgoal with '?'.

€.g
sameleaves(X,Y) :- profile of (W?,X)//

profile_of(W,Y).

The '?' annotation means that the W must be bound to a non-variable

apon entry to the procedure.

These control annotations are doing explicitly what could be

written into a procedure for tpick'.,

Al so included in IC-prolog is stream IO0. All these new
constructs can be used to illustrate many different control

alternatives and can even be used to model data-flow languages [171.

111

11. Conclusions.

One of the main strengths of this interpreter is also one of
its weaknesses - it is written in PASCAL. PASCAL is a powerful

language which meant that this interpreter was written using

relatively little code and yet still retained a fair amount of

clarity. Also since PASCAL was used, the interpreter can be modified
with ease. Unfortunately, because PASCAL is so high-level the actual
running time of PROLOG programs on the interpreter is quite slow.
Even so for small to medium size programs the speed is fairly

acceptable and compares favourable with UNH PROLOG.

Since this interpreter offers more powerful pattern matching
than most other PROLOGs, programs can be written which are much

conciser than those written in many other PROLOGs.

If some of the modifications discussed in chapter 10 are
implemented then the interpreter will become an useful research
tool. In particular the algorithms for searching and backtracking

would enhance the interpreter a great deal.

Since the interpreter was written in standard PASCAL, it should
be very simple to move it to another machine - it is almost 100%

machine independent.

The greatest use of the interpreter will be as a teaching tool.

112

Combined with C& it can be used to teach PROLOG. Also because of
the use of standard recursive descent design and a LL(1) grammar,

the interpreter can be used to teach compiler design.

It should be clear, from using this interpreter to write some
PROLOG, just how powerful the language is. There are many things
that can be improved in PROLOG -some of which were ‘described in the

previous chapter. Nevertheless, since PROLOG is grounded so firmly

in logle, it seems clear that it is the direction in which

programming languages should go [18].

PROLOG offers top down inference which unites problem solving
and computer programming. By also offering non-determinism,
parallelism and pattern matching it provides all the tools needed

for applications in artificial intelligence [19].

By being a language which specifies a problem by what is to be
done rather than how a thing is to be done, computer programs become
a lot simplier to read. More over, since a program is rather like a

specification of what it is supposed to achieve, it should be
relatively easy, Jjust by looking at it (or, perhaps by some

automatic means) to check that it really does do what 1is

required [20].

PROLOG shows that programming in logic is a practical

113

k and convenient as more conventional

possibility and is as quic
FORTRAN, PASCAL or even LISP [8].

languages such as

References,

1.

Welsh, J, & Elder, J., Introduction to Pasecal, Prentice Hall,
London, 1979.

Welsh, J, & McKeag, M., Structured System ZPro ing,
Prentice Hall, London, 1980.

Gries, D., Compiler Construction for Digital Computers, John
Wiley & Sons, New York, New York, 1971.

LUCC, DEC System-20 User's guide, LUCC, Lehigh University,
1979.

LUCC, Pascal-20 Introductory User's ide, LUCC, Lehigh
University, 1983.

Clocksin, W.F, & Mellish, C.S., Programming in Prolog,
Springer-Verlag, Berlin, 1981.

Bruynooghe, M., **The memory management of PROLOG
implementations,'!' From : K.L. Clark (Ed.), Logic Programming,
VOl. 16, 1982’ ppo 83-98.

Warren, D.H.D, Pereira, L.M, & Pereira, F., ‘“PROLOG - the
language and its implementation compared with LISP,'' Proc.
Symp. on AI and Programming Languages, SIGPLAN notices, Vol.
12, no.8, 1977, pp. 109-115,

Clark, K.L, & Tarnlund, S.A., Logic Programming, Academic
Press, London, 1982a.

Kahn, K.M,, “‘Intermission-Actors in PROLOG,'' From : K.L.
Clark (Ed.), Logic Programming, Vol. 16, 1982, pp. 213-228.

The Xerox Learning Research Group, ‘‘The Smalltalk-80
System,'' Byte, Vol. 6, no.8, 1981, pp. 36-48.

Tarjan, R.E., Data Structures and Network Algorithms, SIAM,
Philadelphia, 1983.

Kowalski, R., Logic for problem solving, Elsevier North
Holland, New York, New York, 1979.

Pereira, L.M, & Porto, A., ‘‘Selective Backtracking,'' From :

K.L. Clark (Ed.), Logic Programming, Vol. 16, 1982, pp.
107-114.

Mellish, C.8., ““An alternmative to Structure sharing in the
implementation of a PROLOG interpreter,!' From : K.L. Clark

(Ed.), Logic Programming, Vol. 16, 1982, pp. 99-106.

Clark, K.L, McCabe, F.G, & Gregory, 8., “‘IC-PROLOG language
features,'' From : K.L. Clark (Ed.), Logic Programmi y Vol,
16, 1982, pp. 253-266.

Ackerman, W.B., “‘Data flow languages,'' Computepr, Vol. 15,
n0.2, 1982’ ppo 15-250

Cohen, P.R, & Feigenbaum, E.A., The Handbook of AI, Vol 3,
William Kaufmann, Los Altos, California, 1982,

Clark, K.L, & MecCabe, F.G., Micro-PROLOG : Programming in
Logic, Prentice Hall, Englewood Cliffs, N.J, 1981.

Manna, Z., Lectures on the Jlogic of Computer Programmipng,
SIAM, Philadelphia, 1980.

I. Using PROLOG.

I.1 Getting started.
A description of how to use the interpreter will be based on

the assumption that the user is running it on the DEC20.

The user must first have a copy of the interpreter. At present
(May 1985) it is called prolog.pas. A copy can be obtained from
Professor S.Gulden
Department of Computer Science

and Electrical Engineering
Lehigh University

Also required is a PASCAL compiler/interpreter for PROLOG to run on.

If all these requirements are met then the user can start
PROLOG by typing

ex prolog.pas

Alternatively, the user can run the prolog.exe file in this author's
directory by typing

<davison>prolog

No matter which method is used once one of these commands has been

typed the system will load and link the program and then print

output :

The user should type <ecr)>. The program will then begin
LEHIGH-PROLOG 1985

Printeval 2 n

Helpfulprinting ? N

Timer ? Y
Three questions will be asked. The user should reply by typing a
single letter answer for each one which should be ¥(y) or N(n). No

{er> is needed after the letter. The prompt will then appear

The user can then consult a file

] 2~ consult('filel.in'). <er>

or. type a clause
| datum(2). <er>

| 2= hello. <er>

When a question has been satisfied the interpreter will wait for the
user to decide what to do.

e.g
| ?- beef_stew(X). <cr>

X=2

1

The user can type <er> to finish the question, or '; <er>' to

resatisfy the question.

When built in predicates such as get(X) are being used which

require input, the prompt will not appear, and the cursor will

118

remain at the left hand side of the screen waiting for input.

€. g
| 2= get(X). <er>

7

cursor

After typing input for these kinds of predicates, no <crd> is needed.

‘To leave PROLOG, the user can type

| $§ <ar>

| <etrlde

PROLOG files must finish with an end of file symbol “. if they

do not then the interpreter will give an error and stop execution.
File names are also limited to 9 characters and must be in quotes.

See chapter 6 for the section on 'consult! for more details.

I.2 Common mistakes.

1. Always finish a PROLOG clause with a period '.!', .If none is
supplied the interpreter will consider the next line to be a
continuation of the previous one. Such an error explains why no
response occurs when the user types

| ?- consult('dumbo.in') <er)

The interpreter is still waiting for a '.'.

2. Missing quotes can cause large segments of code to

ignored. Thus
| - consult('mickey.in). <cr>

| 2- consult(oops). <cr>

will cause nothing to happen. All the input, from the first quote,
will be consumed as the name of the file in the first t'consult'. By
the third line the interpreter is still waiting for the closing

quote to the file name.

3. Misspelt names can cause strange failures of questions.

bingbong(1).

bingbong(2) .

ringading(X) :- binbong(X).
?- ringading(Q).

no

The rule for 'ringading' misspells 'bingbong' as ibinbong'. Since

there are no 'binbong' facts, the 'ringading' question fails.

4. Reserved words and symbols can cause errors if they are used

as ordinary words and symbols. To get round this, the words or

symbols must be put in single quotes

e.g
| is(2,4).

will cause an error since IS isa built in predicate. Instead write

| rist(2,4).

II. Error messages.

There are 3 types of error message.that can be issued from the
interpreter
syntax error messages

puilt in predicate
error messages

and failure messages

II.1 Syntax error messages.
The syntax error messages are in the form of nunbers with an
arrow that appears under the part of a fact, rule or question that

is syntatically wrong.

e.g
| num 23).
Clause ignored
*75
or
| ?- num 23).

‘Question ignored

75

The meaning of the syntax error numbers follow

Number Meaning
1 Integer is too large
2 Only part of '=,.' typed
3 Only part of '\=' typed

122

y Only part of '?-!' typed

5 Only part of ':~' typed

10 Expected an identifier e.g hello
11 Expected a variable e.g X1
12 Expected an integer e.g 17
13 String e.g "...0"

14 Questionop '2-!

15 Ruleop Vi=t

16 Leftparent r(e

17 Rightparent LR

18 Comma !',!

19 Leftbracket '[*?

20 End~of-file symbol '"?

21 Rightbracket ']

22 Headop '|!

23 Period '.!

75 Current symbol in wrong place

II.2 Built in predicate error messages.
The 2nd type of error message is the built in predicate error
message. These messages are in the form of sentences preceded by the

word 'Error!.

Given below is a list of sentences printéd and the procedures

123

from where they originate. It is obvious from the message or
messages printed which predicate has failed. The sentences are in
alphabetical order.

Sentence From procedure

'; 1 predicate not built in, 'xdisjunc
CONSULT PRED.IN

1st CLAUSE argument must be xclause
a predicate

1st NAME argument illegal

2nd argument of IS must be
an operator

2nd argument of NAME must
be a list

2nd NAME argument illegal Xname

2nd NAME argument must be Xname
a list

Arguments must be integers xnonarith

Argument must be numerical xtab
in TAB

Argument of PUT must be xput
numerical

Arithmetic arguments must getvalue
be integers

Assert fails xassert

N

Atom not allowed as argument : xget
of GET

Atom not allowed as argument xget0
of GETO

Atom not allowed as argument xskip
of SKIP

CALL fails
CONSULT fails

Input must be alphanumeric
in READ

List must be numeric in NAME
List not allowed

List not allowed as 1st
argument of '=..'

List not allowed as 1st
argument of FUNCTOR

List not allowed as 1st
argument of NAME

List not allowed as 1st
NAME argument

LISTING fails
NAME argument illegal

NOSPY argument must be a
predicate

NOSPY predicate argument
must be numeric

NOT predicate not built in,
CON SULT PRED.IN

Number not allowed
Overflow in "+"
Overflow in "#n

Predicate not allowed in
CON SULT

Predicate not allowed in NAME

125

xcall
xsee

xread

listtoatom
copledid

xuniv
xfunctor

Xxname

xlisting
xname

XDos py
XNnospy
xnot

copiedid
calecarith
calecarith

xsee

atomtolist

Relational arguments must xcompare
be integers

RETRACT fails xretract

SPY argument must be a Xspy
predicate

SPY predicate argument must Xspy
be numeriec

Underflow in %0 calecarith
Uninstantiated list in NAME listtoatom

Uninstantiated var copiedid

II.3 Failure messages.

There are only 2 messages of this type. They are

#RR8, TNE INCOMPLETE ##¥#
printed in procedure 'nextterminalch'

and
#44#PTE INCOMPLETE #%#
printed in procedure 'nextfilech!

They both cause the interpreter to cease execution.

III. Extended BNF.
See chapter 2 for a discussion of some of these definitions
(fact | question | rule) '.!

constant | variable | structure |
list | string | predicate |
(' argpattern ')!

structure ::= atom '(' term { ',' term } ")* |
atom

not a p_atom

question ::= '9?=!' (structure | predicate)
{ ',* (structure | predicate) }

fact ::= structure

rule ::= structure ':=' (structure | predicate)
{ ', (structure | predicate) }

comment ::= '/%' { all_char } '%/!

argpattern ::= argfact | argquestion | argrule

argstructure ,
::= (atom | varident) '(' term { ',' term } *)' |
(atom | varident)

including p_atoms

argquestion ::= '?~' argstructure { ',! argstructure }

argfact ::= argstructure

' argstructure

= argstructure ':-
{ v,' argstructure }

argrule
atom | integer

constant

variable ::= (' | upper_case_char) { char }

1,t term } (C']" term)|/\) '1' |

1ist ::= '[! term {
l[l I]l

mt { all char }

p atom '(' term { v, term })y |

p_atom

lower_case_ char { char } |
vir { all_char } '

puilt in predicate words & symbols

p_atom ¢
see 4th appendix

integer ::= digit { daigit }

char ::= upper_case_char]
lower_case_char]

digit |

1"
7 D : LI Y | 2

1at | 'b! | | 12!

digit

all_char ::= DEC20 character set

129

IV. Built in predicate words and symbols.

All the words and symbols used here are reserved. If a user

wishes to use the word asserta, for instance, as a name for an
ordinary fact, he must write
'asserta'(12).
and not

asserta(12).

which will give a syntax error.

Similarly, a user can write
N\='(jim).
but not
\=(jim).

When a predicate word or symbol is used, it must have the right

number of arguments or an error will be output,

e.g
?- asserta(fact(2)). is correct

but

?- asserta(fact(1), fact(2)). is wrong.

So for each word and symbol listed, its number of arguments (arity)

will also be given,

Predicate
arg
assertz
atomic
clause
debugging
fail

get
integer
listing
name
nodebug
nospy
notrace
read
retract
spYy
trace

yar

IV.1 Predicate words.

Arity
3
1

Predicate
asserta
atom
call
consult
display
functor
get0

is

Arity

1
1

IV.2 Predicate symbols.
Symbol Arity Symbol Arity Symbol Arity
=< 2 == 2 Ze. 2

2 2 > 2

Iv.3 Other symbols.

If other symbols are to be used as atoms then it is still

necessary to put them into quotes. This is purely to make the syntax

of this PROLOG simple. Thus

%(1).

will give a syntax error but
(1),

is correct.

' can not be used as an atom.

V. Files.

What will be given here is a quick summary of the files in this
author's directory at the current time (May 1985). If a user wishes
access to any of these he should get in touch with

Professor S,Gulden

Department of Computer Science

and Electrical Engineering

Lehigh University
All files with the '.in' postfix are PROLOG files.
File Purpose |
arit.in Tests of arithmetic predicates
ass.in Tests of asserta, assertz
atn.in An ATN program
call.in Tests of call

chart.in An active chart parser

clas.in Tests of var, nonvar, atom,
integer, atomic

clau.in Tests of clause, listing, retract

comp.in Tests of ¢, >, >=, =<

cut.in Tests of ! (cut)

diag.in Tests of predicate diagnostics
elis.in An elisa program

eq.in Tests of =, \=, ==, \==
exap.in Tests of pattern matching and

backtracking without built in
predicates

B S LSS O S

o e P i mr S o et

fini.in A finite state automata parser

fune.in Tests of functor, arg, =.. (univ)

more, in More tests of PROLOG but using
built in predicates

name.in Tests of name
nott.in Tests of user defined 'not'!
or.in Tests of user defined 'or'

par.in A program that executes sentences
input in list form

pred.in The file for user defined PROLOG
predicates :

prolog.pas
.qas The PROLOG interpreter
.rel
.exe

read.in A program that reads in sentences
rept.in Tests of repeat
rev.in A program to create and reverse lists

-rewr.in Tests of get0, get, skip, put, nl,
display, write

talk.in A program to read in sentences and
execute them

Vita.
My name is Andrew Davison, I was born in Macclesfield, England

on July 23rd 1962. My parents are Stanley and Mary Davison.

As an undergraduate, I attended the University of Manchester

Institute of Science and Technology (UMIST). I was there from

October 1980 until June 1983 and I obtained a 1st class B.Sc Honours

degree in Computation.

I have been at Lehigh University since September 1983 and will

complete my M.S in Computer Science in June 1985.

	Lehigh University
	Lehigh Preserve
	1985

	The design and implementation of a PROLOG interpreter /
	Andrew Davison
	Recommended Citation

	tmp.1551116526.pdf.aHclu

