
Lehigh University
Lehigh Preserve

Theses and Dissertations

1985

Computer assisted relational data base logical
design /
Chien-Chung J. Chuang
Lehigh University

Follow this and additional works at: https://preserve.lehigh.edu/etd

Part of the Industrial Engineering Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Chuang, Chien-Chung J., "Computer assisted relational data base logical design /" (1985). Theses and Dissertations. 4503.
https://preserve.lehigh.edu/etd/4503

https://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F4503&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F4503&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F4503&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=preserve.lehigh.edu%2Fetd%2F4503&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd/4503?utm_source=preserve.lehigh.edu%2Fetd%2F4503&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

COMPUTER ASSISTED RELATIONAL DATA BASE LOGICAL DESIGN

by

Chien-Chung J. Chuang

A Thesis

Presented in Partial Fulfillment

of the Requirements for the Degree

Master of Science

in

Industrial Enqlneering

Lehigh University

1984

ACKNOWLEDGMENTS

My special thanks are due to my adviser, Professor

John c. Wiginton, for his advice and guidance throughout

the evolution of this thesis.

I dedicate this thesis to my parents.

11

CERTIFICATE OF APPROVAL

This thesis is accepted and approved in partial
fulfillment of the requirements for the degree ot Master
of Science in Industrial ~nqineering.

J~/1.,, !
1

lftv
--------------------------Date

--~L.!:i~-­
_ _d.:t7.4;;::::::

Chairman Department of Industrial Engineering

111

ABSTRACT

1.· INTRODUCTION

Table of Contents

1

3

1.1 OVERVIEW 3
1.2 THE MODEL 3
1.3 PREPARATIONS PRIOR TO THE COMPUTER•ASSISTED 4

PROCEDURES

2.- DEFINITION OF TERMS 6

2 .1 RF.CORDS, ENTITY SETS, -AT'l'-R-IBU-'FES-AND-DOMA-I-NS- 6
2 • 2 RELATIONSHIP SETS 7
2.3 KEYS 8

2.3.1 SIMPLE KEY 8
2.3.2 COMPOSITE KEYS 9

2.4 MAPPINGS 9
2.4.1 1:1 MAPPING 9
2.4.2 M:1 MAPPING 9
2.4.3 '-1:M MAPPING 10
2.4.4 FUNCTIONAL DEPENDENCY 10
2.4.5 ELEMENTARY RELATIONS 10

3.: THE METHODOLOGY 12

3.1 STRUCTURED PROCEDURES 13
3.1.1 CONCEPTUAL DESIGN 13
3.1.2 STRUCTURE REFINE~ENT 14
3.1.3 DESIGN RESULT 14

3.2 THE FLOW CHART FOR THE OVF.RALL DESIGN PROCESS 14

4.- THE ALGORI~HM FOR
PROCEDURES'

THE COMPUTER•ASSISTED 19

4.1 TRANSITIVITY REMOVAL 19
4.2 REDUCTION OF THE NUMBER OF ELEMENTARY RELATIONS 23
4.3 SEARCH FOR REDUNDANCY 25
4. 4 t-1APPING BF.TWEEN KEYS 26
4.5 GENERATg RELATIONS FOR TRIVIAL DEPENDENCE 27

s~· CASE STUDY • ·DATA BASE OEStGN IN A BANKING 30
- ENVIRONMENT

5.1 THE ENVIRONMENT 30
5.2 THE DESIGN 35

6. CONCLUSION: 53

iv

REFERENCE

APPENDIX A: THE DOCUMENTATION

APPENDIX B: THE PROGRAM

VITA

V

55

57

60

81

ABSTRACT

This thesis presents a methodology for data base

design in which the design process is organized into a

series of structured and computerized procedures based on

mathematical methods and implemented as an interactive

computer program in NIAL (Nested Interactive

Language).

Array

The structured procedures are summarized below:

1. Conceptual design.

a. Combination of local views.

b. Determination of Elementary Relations.

2. structure refinement.

a. Transitivity removal.

b. Reducing the
Relations.

3. Design results.

number of Elementary

. .

The methodology can provide the following benefits·:

1. Presents information helpful to the designer.

2. Performs a: more thorough and consistent
analysis Of· the des1qn.

3. Improv·es the design quality.

4. Shortens the design cycle.

1

for the purpose of illustrating the benefits of this

methodology, a prototypic~l case study ls included.

2

1.: INTRODUCTION;

1 .1 OVERVIEW

The object of this thesis is to demonstrate the

feasibility of computer assisted, systematic procedures

in the long and tedious processes of logical database

design. The focus is on the relAtional logical structure.

The emphasis is on automatinq as much as possible. The

procedures used can also increase the understanding of

the design concept regardless of whether or not computer

assistance is used.

This thesis presents a deslon methodology consisting

of structured procedures in looical relational database

design. The algorithm for these orocedures ls presented

and implemented in NIAL C Nested Interact! ve Array

Language). The computer•assist~d procedures are applied

to a prototypical case study as an illustration of their

use.

1· • 2 THE MODEL'

The model selected for implementation is the

relational structured data mociel.

The reasons for this are two fold :

databAse model has
charact@r1stics.
the midpoint

1. The relational
and phys ic.:tl
approximately
human/machine

both logical
It is

of the
that data continuum, which means

3

bases designed accordinq to the relational
model need not be transformed into some other
format before implementation.

2. Much more research hrts been done on the
relational model than on any other model.
Recent developments of several general purpose
relation~! DBMSs C nata Rase Management
Systems) have brouqht the relational data
base design into a new era in the field of
data base ~esign.

1.3 PREPARATIONS PRIOR TO THE COMPUTER•ASSISTED

PROCEDURES

Traditionally, data base design has been a two•phase

process : logical· data base design, where the needs of

people are specified • I and physical data base design,

where logical data design is mapped into the constraints

of particular program and hardware products. C See Fiq

1 .1)

---------------Logical Data

Base Design

---->

Figure 1.1

!19--------------Physical Data

Base Design

We may further divide the loqical design phase into two

stages • • system analysis, where nata to be stored are

identified, while data names are consolidated and

where clarified • , and computer•asststed procedures,

4

logical: schema' are developed, and the spec 1 f !cation of

data base records, their constraints and relationships

are specified. C see Fig 1.2)

-----------System

Analysis

------------I Comput~r
•••> I AssistP.d

I Procedures

Figure t.2

--->
---------------Phys teal Data

Base Design

In order to make the greatest use of the

computer-assisted procedures , before getting into these

procedures, the designer should have a clear concept

about the system environment, the constraints and

limitation on the system design, documentation in the

form of DFDs C Data Flow D1aqrams), and a thorough

understanding of the diverse user requirements.

5

2. DEFINITION OF TERMS

Before we can discuss nesign, it is important to

know the terminology used in relational data base design.

2.1 RECORDS, ENTITY SETS, ATTRIBUTES AND DOMAINS

An entity may be" anvthino that has reality and

distinctness of being in fact or in thought. "• It may he

• •

1. A real object, e.g. a classroom.

2. An in11v1dual, e.g. a stunent.

3. An abstract concept, e.q. Lehigh University.

4. An event, e.g. students ta~ing courses.

s. A relationship,
students [121.

e.g. Professor instructs

A collection of occurrences of similar entitles is

an entity set. We maintain a reeord for each entity, and

record sets for similar entities. The records refer to

attributes of entities and contain values for these

attributes, which are called domains~

Mealy [10] and Enqles £41 have pointed out that

there are three realms which we may talk about regarding

information. C See Fig 2.l l

6

Reality -------
Entity
sets :

Student

Information

Attributes:

Student#

Name

Tel I

Data Item

Domains :

123, 234

J • Sm! th,
c. Chuang

123•4567,
234•5678

Figure 2.1 Three Realms [8]

As• can be seen in the above figure, the first realm is

·the real world in which there are entities and in which

the entities have certain prop~rties. The second is the

realm of ideas and information existing 1n the minds of

men and programmers. The third realm is that of data in

which strings of characters or bits are used to encode

items of information.

2.2 RELATIONSHIP SETS

A relationship set is an n•array relation on n

entity sets: these entity sets need not be distinct. It

is a way of representinq a type of relationship between

entities [121. For example:

Suppose we have entity sets Student C Et) and

Professor C E2)

7

E1 :' C 51, S2, S3 J ,

E2 = [Pt, P2 l.

Then) we'll have relattonship set Instruction CR) :

R = [I1, I2 l

in Which,

I1 - [Pt, 51, S2] , -
I2 - [P2, S2, S3 J -

and is interpreted as • •

PROFESSOR#l instructs STUDF.N'T'# 1, STUDF.NT#2.

PROFESS0R#2 instructs S'1'UDF.NT#2, STUDEN't'#3.

2.3 KEYS'

A key is a data item designated to be an entity

identifier [41. It must be associated with the property

uniqueness, so that we can use it to refer to some given

entity unambiguously.

2.3.1 SIMPLE. KEY

A simple Key is a key consisting only one data

element. It is atomic and its values are unique, e.g.

Student#.

8

2.3.2 COMPOSI~E KEYS

Composite keys are keys comoosed of two or more data

elements, all of which are required for unique

identification. e.g. Student#, Course#·-> Grade.

2.4 MAPPINGS

A mapping is a rule of association bet•een two sets

C12J. Three types of mappinqs are discussed below:

2.4.1 1:1 MAPPING

The mapping:

Directed•By: Department<••> Chairman

is! a. 1: 1 mapping since every <iepartment has exactly one

chairman and every chairman ls in charge of one

department only.

2.4.2 M: 1 MAPPING

The mapping:

Advised-By: Student'<<••> Prbfessor

.is· a M: 1 mapping · since a student

pr~fessor only but a professor can

students.

9

is advised by one

advise several

2~4.3 M1M MAPPING:

The mapping :

Taught-By: Student·<<••>> Professor

1s, a M: M mapping since a student can be taught by several

professors and a professor can teach several students.

2.4.4 FUNCTIONAL DEPENDENCY

An attribute B of a relation is functionally

dependent on the attribute A of the relation if at every

instant of time each A-value is associated with no more

than one B•value [121. For P.xample:

STUDENT#<<••> LAST•NAME

is, a FD, because for a given student#, there exists only

one last name for it.

2.4~5 ELEMENTARY RELATIONS

A set of irreducible units which represents the

transformation of the reAl world into a simpler model is

called Elementary Relations CF.~s). Elementary Relations

satisfy the requirement for a single place for a single

fact. They have the advantaqe that future steps in the

design process can be based on a firm theory [121. For

10

example:

The relation

STUDENT#<<••> LAST•NAME, FIRST•N~ME, STATUS,ADDRESS

may be described by the followinq set of ERs:

ER1(STUDENT#, LAST•NAME)
ER2(STUOEijT#, FIRST•NA~E)
ER3(STUDENT#, STATUS)
ER4(STUDEMT#, ADDRESS)

11

3 •: THE' METHODOLOGY.

The methodology presented here is based on the

synthesis approach, that is, we commence with a set of

functional dependencies(FDs) and use them to construct

relations. This thesis selects concepts from James

Martin

[1],

[Bl, M. Vetter & R. N. Madison [121, ands. Atre

and synthesizes them into a systematic and

computerized methodology.

The major concept adopted from both James Martin and

s. ~tre is the combination of diversified user needs

(local views). The computer program simulates this

process by two steps :

1. Initial Data Entry.

2. Reediting.

These two steps are iterative for the purpose of

modifying the original data entry according to different

user views.

The concepts discussed by M. Vetter & R. N. Madison

form the central part of the methodology. These are the

concept of sets and the use of mathematical methods in

database design.

12

,, ' 'I, ,. I '

·],. t · STRUCTURED PROCEDURES

The structured procedures developed are in

three•phase: conceptual design, structure refinement

and design results. The thr~e phases are then further

broken down into five steos, which again each step

consists of several processes, as summarized below:

3.1~1: CONCEPTUAL DESIGN

1. Combination of local views.

a. Data entry for simple key records.

b. Data entry for composite key records.

c. Generation of relation sets.

a. Reediting.

2. Determination of Elementary Relations C ERs)~

a. Removal of the re<iunrtancy.

b. Mapping between Jceys.

c. Generation of relations for ·trivial

dependence.

d. Determination of ERs.

13

3.1.2 STRUCTURE REFINEMENT

1. Transitivity removal.

a. Determination of transitive closure.

b. Selecting the semantically meaningful

ERs.

c. Transitivity removal.

2. Reduction of the number of ERs.

3.1~3 DESIGN RESULT

3 • 2 THE FLOW CHART FOR THE OVERALL DESIGN PROCESS'

As shown in the following pages :

14

i ',' _' I• 'I 1. , ,, ,. t

PROGRAM LOGIC FOR THE ENTIRE OESIGN PROCESS

N

N

--

START

ENTER
LOCAL
VIEWS

REEDITING

SEARCH
FOR
REDUNDru'lC

DELETE
REDu"D,\.,:C

15

.....

A

MAPPING
BETWEEN
KEYS

GENERATE
RELATIONS
FOR TRIVIAL

TRAl,SITIVI
RE~IOVAL

REDUCING
THE NIDIBER
OF ERs

DESIGN
RESL'LT

t6

PROGRAM LOGIC FOR "ENTF.R LOCAL VIEW"

N

START

ENTER
RECORD
NAME

ENTER
ATTRIBUTE

IDENTIFY
KEY
DOHAIN

y

C END

17

)

ENTER
RECORD

NAHE

ENTER THE
NU:-IBER OF
KEY DOMAINS

ENTER
ATTRIBUTES

PROGRAM LOGIC FOR "REEDITING"

START

SELECT THE
RECORD TO
BE ~IODIFIE

SWITCH
KEYS

18

SELECT
THE TYPE
OF RECORD

SELECT
THE TYPE
OF RECORD

INSERT THE
ATTRIBUTE
ENTERED

DELETE TIIE
ATTRIBUTE
ENTERED

MODIFY TIIE
ATTRIBUTE
SELECTED

INSERT THE
NEW RECORD
ENTERED

DELETE THE
RECORD
SELECTED

4·.: THE' ALGORI!!'HM FOR THE COMPUTER•ASSISTED PROCEDURES

4.1 TRANSITIVITY REMOVAL

Consider the two FOs:

f : A ••> B

g : B ••> C.

a third FD• their product, can be derived:

Cg o f) : A ••> C

The products of FDs are transitive dependencies.

Deriving all such FDs from some initial collection

of ERs yields a transitively closed collection of ERs

called a trahs1t1ve closure. It includes both derived

and original 8Rs, some of which are redundant. An ER is

redundant if it can be derive~ from other ERs, and the

purpose here is to eliminate those redundant ERs. We can

automate this procedure by ustnq matrix operations as

described below :

Suppose we have data elemeri~s:

l'\1, 1\1, "IC

And FDs :

~1 --> Aj and Aj ••) Ak

We can derive transitive de?end~nce:

Ai ••> Ak

19

Which represents the composition:

Ai••> Aj ••> Ak

The derived transitive dependence is then recorded in a
Cn x nl "connectivity matrix" M by assigning" 1 "to
Mi,lc.

F'or example:

We have data elements·:

Al, A2, A3, A4

And FDs :

Al••> A3, A3 ••> A4

The connectivity matrix derived will be

Al
A2
A3
A4

Al A2
0 0
0 0
0 0
0 0

A3 A4
1 0
0 0
0 1
0 0

the following FD can be derived:

At ••> A4

which represents the composition :

At••> A3 ••> A4

the new FD ls then recorded ln a new matrix

At
A2
Al
A4

Al A2
0 0
0 0
0 0
0 0

AJ A4
0 1
0 0
0 0
0 0

The logic presented below describes the procedures

20

for deriving the connectivity matrix, determining the

transitive closure [121, And removing transitivity. For

the algorithm of the determination of the composition for

the matrix, the readers are encouraged to read reference

[121.

1. Generate a list of all data elements.

2. Derive a en x n) matrix Cin which n denotes
the number of data el~ments in the list
generated in step 1) representing the
relations among the data elements in the list.

a. If there exists a relation between data
elements then put " 1 " in the
corresponding position of the matrix.

b~ For key attributes : put" 1 " in the
corresponding position of the matrix for
the mapping of the key attribute itself
(i.e. employee# <••> employee#, where
employee# is one of the key attributes).

c. Otherwise, put " O " in the
corresponding position of the matrix.

3. Determine the composition for the matrix. (As
illustrated in the above exampl@).

4. Remove the erroneous eompositions derived by
the situation : Ai••> A1 ••> ~1.

s. Were any new composition derived? If not, go
to step B.

6. Create a new modified matrix that includes the
new composition obtained from step 3.

7. Repeat step 3, 4, s, 6 until
composition can be obtained.

a. Determine the new FOs derived.

21

no new

9. Select, from among the FDs, semantically
meaningful ones.

10. Add the new FDs to the design~

11. End.

For example • •
Suppose we have a connectivity matrix • •

Al A2 A3 A4
Al 0 0 0 0
A2 0 0 0 0
A3 0 0 0 1
A4 1 1 0 0

where At - CHAIRMAN, -
A2 - TOTAL•STUDENT, -
A3 = STUDENTI,
A4 = DEPA.RTMENT#.

Applying step 3 - 7 of the above transitive closure
procedure, we derive a new conneetivlty matrix • •

At A2 A3 A4
At 0 0 0 0
A2 0 0 0 0
A3 1 1 0 1
A4 1 1 0 0

Comparing with the original matrix, the following
new PDs are derived:

STUDENT#<<••> CHAIR~AN
STUDENT#<<••> TOTAL•STUDRNT

Both of the new FDs derived in this example are
semantically meaningless. The n@xt step then is
to eliminate those semantically meaningless FDs
by replacing "1" with "O" in the corresponding
positions in the matrix. The modified matrix
ls shown below:

At A2 A3 A4
Al 0 0 0 0
1\2 0 0 0 0
A3 0 0 0 1
A4 1 1 0 0

22

This connectivity matrix allows us to derive the
following set of ERs :

C STUDENT#, DEPARTMENT#}
(DEPARTMENT#, CHAI~MAN)
C DEPARTMENT#, TOTAL•STUDENT)

The procedure presented above allows us to autornize

the determination of transitive closures. However, some

semantically meaningless FDs mav also be produced by the

procedure. It ls necessary to eheck the semantic meaning

of all the FDs derived, so that there will not be any

redundant FDs in the design.

4.2 REDUCTION OF THE NUMBER OF ELEMENTARY RELATIONS'

In practical cases, th@ designer may have thousands

of ERs to describe the real world portion. Therefore, it

is necessary to reduce the number of Elementary Relations

C ERS).

· The following procedures are used to reduce the

number of ERs as much as possible [121.

1. Select all ERs havinq a non•key attribute
occurring solely in the SP.lected ER.

2. Create subsets of
that all ERs within a
keys.

the F.Rs from step 1 such
subset have identical

3. Each subset obtained in step 2 is replaced and
represented by a sinqle ER form.

23

4. Ehd·.

The following example demonstrates how this

algorithm works :

suppose we have the following set of· ERs to describe
the real world :

ERl(STUDEnT#, LAST•NAMF.)
ER2(STUDENT#, PIRST•NAME)
ER3(STUDENT#, STATUS)
ER4(STUDENT.#, ADDRESS)
ERS(STUDEnT#, DEPARTM~NT#)
ER6(STUDEijT#, PROFESSOR#)
ER7(DEP~RTMENT#, PROFESSOR#)
ERB(OEPART~ENT#, CHAIRMAM)
ER9 C DEPARTMENT#, TOTATi•S'l'TJDENT)

Where STUDENT# AND DEPARTMENT# are key attributes.

Step 1. The ERs having a non•kev attribute occurring
solely in a single ER are:

ERl, ER2, ER3, ER4, F.R8, ER9

Step 2. Obtain a first subset with ERs whose key is
STUDENT#, and a second subset with ERs whose
key is DEPARTMENT#:

STUDENT#<<••> LAST•NAME, FIRST•NAME, STATUS,
ADDRESS

DEPARTMENT#<<••> CHAIRMAN, TOTAL•STUDENT

Step 3. Replace the subsets obtained in step 2 by the
following ERs :

where

~R10(STUDENT#, Xt)
ER11(DEPARTMENT#, X2)

Xl = LAST•NAME, FIRST•NAME, STATUS, ADDRESS
X2 = CHAIRMAN, TOTAL•S'1'TJOENT •

The real world can be defined by fewer ERs:

24

ERS(STUDENT#, DEPARTMENT#)

ER6(STUDENT#, PROFESSOR#)

ER7(DEPARTMENT#, PROPF.SSOR#)

ER10(STUDENT#, Xt)

ER11(DF.PARTMENTt, X2)

4~3 SEARCH FOR REDUNDANCY

Data elements appeartnq as attributes in more than

one record are potentially re~undant attributes. The next

procedure is used to search fer those identical data

elements, display the 11st, and delete the undesired

ones.

1. Repeat, until every attribute in all records

has been checked.

2. Check if there exists any attribute in other

records which is identical to the one beinq

checked.

3. If anv redundant attribute exists then:

a. Display the re~undant attribute.

b. Decide whether it should be deleted.

c. Delete the r@dundant attributes
given by

according to the instructions

the designer.

Data elements are stored by the computer program 1n

the form of arrays (which are referred as records in the

algorithm). The purpose of the above algorithm ls to

25

pick up one data element at a time, search through the

data elements in other arrays to check 1£ there is any

identical data element to the one being checked. If

identical data element exists, the program will display

the potential redun1ant element for both arrays, and ask

the designer to decide wh@ther the data element should be

in both or only one of the arrays.

4.4·MAPPING· BETWEEN KEYS

Having determined the contents for each record, 1t

is necessary to generate the relationship among the

records by the mapping of keys.

The following procedures will determine the mapping

type existing among the records.

1. Repeat, until done with all records.

2. Pick up the key attribute for all records~

3. Determine the mappinq type.

a. Display the possible mappings.

b. Decide if mappinq exists. If not, go to

step 4.

c-. Select the type of mapping. Ci.e. M:M,

M:1, 1: 1)

d. Add the mapping to the design.

26

The second data element in each array (record) 1s

the key attribute (The first data element ls the name of

the record). The computer program picks up the second

element in each array to form a 11st of key attributes.

It will then display two kev attributes each time, ask

the designer to decide whether any mapping exists between

the two key attributes being displayed. If mapping does

exist, a 11st of possible mapping types is displayed for

selection. After the deslqner ha! selected the mapping

type, the relation for the mapping will be generated in

form of a new relation set, and stored as a new array in

the design.

4·. S GENERATE' RELATIONS· FOR TRIVIAL; DEPENDENCE

The FD of the form

A••> B

where Bis a subset of A is called a trivial dependence.

For all entity sets, it is necessary to check for the

existence of the dependence of this type, so it

won•t remain neglected.

Two occasions for the occurrence of trivial

dependence are

t. A simple key attribute is a subset of a

certain set of composite key attributes.

27

2. A set of composite key attributes is a subset

of some other set of composite key attributes.

For example:

case 1 :

C STUD~NT#) is trivially dependent on

(STUDENT#, COURSE#)

Case 2 :

(STUDENT#, COURSE#) ls tr!vlallY dependent on

(STUDENT#, SE~ESTER, COURSE#)

The following example shows the importance of the

generation of relations for this kind of dependence:

Suppose we have the following FDs:

(SEMESTER, COURSE#)<<••> COURSE•TITLE

C SEMESTER, COURSE#, STUDENT#)<<••> GRADE

The trivial dependence can be derived:

(SEMESTER, COURSE#, STUDENT#)<<••>

(SEMESTER, COURSE#)

If we fail to generate relation for the above FD, when

we determine the transitive closure, the FD:

(SEMESTER, COURSE#, STUDENT#)<<••> COURSE•TITLE

~111 not be derived, because it represents the

composition of

(SEMESTER, COURSE#, STUDENT#)<<••>

(SEMESTER, COURSE#)<<••>

COURSE•TITLE

28

The following procedures w111 generate relations for

those trivial dependencies :

1. Repeat, until done with all records.

2. Plck up the key attribute for all the records.

3. If the key attribute selected is a subset of
any other composite kevs, then generate
relation for the FD.

4. End.

The computer program picks up all the key attributes

for all the arrays, and checks, one at a time, to see if

the key attribute or the set of composite key attributes

being checked is a subs~t of any other set of composite

key attributes. If trivial ~ependencies exist, the

relations for the dependencies will be generated in form

of new relation sets, and stored as new arrays in the

design.

29

. '

5~: CAS~ STUDY'• DATA BASE DESIGN IN A BANKING ENVIRtiMMENT

The case study is adopted from "Structured

Techniques for Design, Performance, and Management" by

s. Atre. ~ brief description of the environment, the

demonstration of design, and the discussion are included.

5~1 THE ENVIRONMENT

"Popular Bank" has a number of branch offices

scattered throughout the city and the suburbs. A customer

may walk into any branch and open an account. The

customer is assigned a customer identification number C

CID number) with the first account at the bank. The

customer may open a number of accounts at the bank, but

his/her CID number is not changed. The bank maintains

checking accounts, savinq accounts, loan accounts C

customers must return loan with interest), and mortgage

accounts C customers must make regular payments with

interest).

The descriptions of the reports and transactions are

as follows :

1. Branch Manager Report (Exception) • Every

branch has a branch manaqer. At a certain

point ln time a br~nch has only one branch
manager. A Branch Manaqer Report (Exception)
is printed for the branch manager on a daily
basis. The report consists of exceptional

transactions only.

2. Branch Manager Report

30

(Weekly Exception

Summary) • Another tvpe of report
Weekly Exception Summary. This report
based on the lnd1v1dual accounts
summary. The two reports mentioned so
be considered as batch renorts.

is the
is not

but ls a
far may

3. Branch Loan Status - The branch manager also
receives a Branch Loan Status • This report
helps the branch manager to keep track of the
loans given at the hr~nch. It also serves as a
source of new ideas for making loans at the
branch attractive.

4. Teller Cash Drawer - The hank employs a number
of tellers who cash checks and make deposits
and withdrawals for the customers. The tellers
are rotated among the branches, but it ls
assumed that once a teller is sent to a branch
he/she will stay at that branch the whole day.
A cash rtrawer ls recor~ed every day for every
teller. It keeps track of all the money flow
for that day, for thAt teller, and at that
branch. Teller Cash Or~wer may be considered
as a batch application.

s. Teller Audit Report• The tellers are audited
periodically, as well as for specific reasons.
Every teller has a unique identification
number called a tellP.r number. Based on
experience and on previou~ audit records, a
teller may withdraw only up to a certain
amount of money for a customer. If the
customer wants to withdraw more money than the
specific teller's maximum allow~ble upper
limit, the teller has to request another
teller who can withdraw tne amount to do so.
The Teller Audit Report, which could be
consirlered as a batch rePort, is sent to the
central audit location for the bank.

6. Inquiry Transaction• It may happen that a
customer walks into a hranch and wants to
deposit or withdraw a CP.rta1n amount of money.
or he/she may want to know the balance of a
specific account. The customer may not be able
to provide the customP.r 1rlent1f1cation number
(CID) or the account numherCsl. In such a
situation the teller shou11 be able to provide
the information n@e~ed by the customer. This

31

on line transaction ls only an
transaction 7 it does not deposit or
any money from anv of the accounts
provides information about the status
accounts.

INQUIRY
withdraw
but only

of the

7. Deposit/Withdrawal Transaction - These are two
types of transactions. Typet is DEPOSIT, and
Type2 ls WITHDRAWAL. These two are on•line
transactions.

After studying the en~ironment, the following

assumptions may be made:

Assumptions about the environment of "Popular Bank" :

1. The customer identification
number) ls unique.

number (CID

2. Account numbers are allotted bankwide, that
is, the account numbers are unique. The
account number uniquely identifies the account
type , the br~nch in which the particular
account was opened, and the customer name,
that is, the same account number will not be

given to two or more ~ccounts. The account
number also unlquelv identifies the customer.

3. Teller numbers are unique.

4. A teller can be assiqned to different branches
on different days, hut once assigned to a
branch he/she works th@re the whole ~av.

s. The account number, with transaction date and
transaction time, uniquely identifies the
transaction.

6. The action to be taken and the remarks to be
registered for an exception are dependent on
the reason code and on the account number,
that is, on the customer for whom an ~·
exceptional action has to he taken.

32

7 •. Branch number, together with reason code, the

date of start of report, and the date of end

of report, un1quelv identifies the total

number of transa~ttons for the weekly

exception summary.

B. The loan number uniquely identifies the

specific loan. The loan number is different

from the account number. Account and loan are

two separate entities.

9. A customer can have many account numbers at

the same branch.

10. " Transaction Type" and" Transaction Code"

are synonymous.

11. An INQUIRY transaction is only an information

retrieval transaction.

12. If the teller worked tn s~veral branches

during the audit period, a report for each

branch will be printeo. For each au<llt period

for a given teller, there is only one reason

code for the audit. Only the count of

transactions and the larnest ~Ollar amount

handled by teller beinq a,,~1ted are taken into

consideration.

13. The Exception Report ano Weekly Exception

Summary are for the branch where the account

is kept. The reason is that the branch manager

where the transaction was made 1s not too

concerned if the account in another branch ls

over~rawn or if saving exceeds a certain

limit. The branch manaaer is interested,

however, if these thlnqs happen to his/her

bank's accounts, @Ven if the transaction

triggering them takes placP- elsewhere.

14. Two types of transactions are recorded. Type1

is the DEPOSIT transaction , and Type2 is the

WITHDRAWAL transaction. An INQUIRY transaction

is not recorded.

15. At a given point in time a branch has only one

branch manager.

33

A list of· all data elements referenced in the

reports in alphabetical order ts :

ACCT#

ACCT•TYPE

ACTION•CODE

AMNT

AMNT•TTL

ADT•RESN

BALANCE

BRANCH•NAME

BRANCH#

CASH•DSPNSD

CASH•RCVD

CID

COH•EOO

COH•SOD

CUST•ADDR

CUST•DOB

34

Account number

Account type

Action to be taken in
exceptions

Amount involved in
part1.cular
transaction

Amount involved in
weeklY Exception
summary report

Reason co~e for audit

Balance of an account

Name of branch

Number of branch

Total cash dispensed
during day

Total cash received
during day

Customer identification
number

Cash on hand at the
end of the day

cash on hand at the
start of the day

customer address

Customer date of birth

CUST•NAME

DATE

LAGST•AMNT•TYPl

LAGST•AMNT•TYP2

LOAN•ASSGND

LOAN#

LOAN•TYP

MGR•NAME

RESN•CODE

TELLER•fO.ME

TELLER#

X•NO

5.2 THE DESIGN

customer name

A business day

Largest amount of
transaction type!

Largest amount of

transaction type2

Amount of money
assigned as a loan

Loan number

Loan type

Manager name

Reason code for the
exception

Teller name

Teller number

Transaction number

The database design process is an iterative process.

This software qives the user th~ capability to enter data

and to control the editing process and logical design. It

is basically a menu•driven process. A hierarchy of menus

is provided, as shown in the following figures:

35

1. CONCEPTUAL DESIGN

2. STRUCTURE REFINEMENT

3. DESIGN RESULT

Figure 6.1 Initial menu

1. DAT1' ENTRY

2. REEDITING

3. SEARCH REDUNDANCY

4. MAPPING BETWEEN KEYS

s. DISPLAY DESIGN DIAGNOSTIC

6. EXIT

Figure 6.1.1 Menu for Conceptual Design

1. RECORD WITH SIMPLE KEY

2. RECORD WITH COMPOSITE KEYS

Figure 6.1.ia Menu for deciding record type

1. KEY WORD IN LIST

2. RELATIONSHIP SETS

3. ELEMENTARY RELATlONS

Figure 6.1.tb Menu for display

36

1. TRANSITIVITY REMOVAL

2. REDUCING THE NO. OF ERs

3. DISPLAY DESIGN DIAGNOSTIC

4. EXIT

Figure 6.1.2 Menu for Structure Refinement·

The following is the

process in the " Popular

explanations corresponding

discussed previously.

demonstration of the design

Bank " case study, ~1th

to the structured procedures

Step 1.1 Combination of Local· vlews

The designer enters local view 1 through n in step

1.1. Modifications to local views are made in step 1.2

to accommodate the various needs of users.

To enter the local vtews, the designer first selects

the Conceptual Design function In the menu shown in fig

6.1 • The computer will respond with a menu as in fig

6.1.1. The designer then selects the first function to

enter the records with simple key domain. Having done

with the data entries, the desiqner simply types "/" to

exit. After data are entered, the computer will display

each record and ask the des1qner to enter the key domain.

37

Again the computer will display each record with key

domain in the second column of that record C The record

name is in the first column). The process ls shown below

• •

S~L~CT THE TYPE OF RECORD
1 • ,u:cmw WITH 5IMPTJ8 KF.Y

2 • Rl!~COPD WITH CD~P05IT£ KEYS

t
Enter Record 1

br ancri
t:nter Pecord 2

teller

~LL TH~ RECORDS ENTERED ARE AS FOLLOWS :

+-+-------+-------+-------+ I l~H~MrH ITELL~R !CUSTOM I

+-+-------+-------+-------+ !:',or ~ecord : 1
ori:1nch#
r,ranchname
mr.trname
I
For ~ecord: 2
teller#
r.e11ername
I

38

ALL THE ATTRIBUTES ENTERED ~RE AS FOLLOWS:

fi'or Record : 1

+-------+---------+··---------•--------·1
IHRANCH !BRANCH# IBRANCHNAM€ IHGPNAME I

+-------+---------+-----------+--------+!
ror Record: 2

I

+-------+---------+-----------+
I Tf.LLJ.:R I TE[JLER fl I 'T'ELLERtJJ\M~ 1,

+-------+---------+--------·--+'

t!:N1'fH TH£ KEY FOH EACH RECORD •

l''or Hecord : 1

+-------+---------+-----------+--------+
I BRANCH I BRANCH ,; I RRANCHNAME I MGJHJAME I

+-------+--------~+-----------+--------+
gnter Key Dom~in : branch#

1'HP. H~CCJRD \.HTII KEY DOMAUJ JrJ THE SECOND COLUMN IS DISP.LAYED

+-------+---------+-----------+-~------+
IBR~NCH IBRA~CH # IRRAnCANAM~ l~GRNAME I

+-------+---------+-----------+--------+
ft' or He c or 1 : 7.

+-------+-------~-+-----------+
+-------+-------~-+------~----+

~nter Key Domain : teller#

THfi: ~ECORD 1.HT4 Y.EY D0~1Airl IN THE SECOND COLtJMij IS DISPLAYED

+-------+-·-------+--~--------!
I ·n:tJL~~~ I l'EIJLER # 'TEI,LER'.Hi.m; I

+-------+---------+·-·--------

J9

For records with composite keys, the process Is

different in determining

the ~ey domains. The computer will ask the designer

to enter the numher of kev domains C n), then ask the

designer to enter data wit~ key nomains the first n data

entries. As shown below:

ror Record: 6
First Enter The Number of Keys In This Record: 3
Please ~nter The Key Domains In The First 3
gntries Of The Data Inputs
teller•
br3nch#
date
coh•eod
COh•SOrl

I

I
I

+-------+---------+---------+-----+----------+----------+
For Record: 6

IURAW~R ITELLER # IBRANCH # IDATE ICOH • FOO ICOH • SOD I

+-------+·--------+---------+-----+----------+----------+

40

Step 1.2 Reediting

This step serves the purpose of making changes to

the data entere~ previouslv. The follo~inq examples

demonstrate the editing cap~billties 1nclud1nq thre~

editiJ1g features :

1. Inserting a new attribute

2. Modifying an old attribute

3. Switching keys

SPlPct The Number Of The Following Editino
t. Insert New Attribute
2. Delete Attribute
3. Modlfic~tion nt Attribute Names
4. Switch Key ~ttribute

IBRANCH IORANCHNA~E l3RA~CH ~ I

+-------+-----------+---------
+~------+-----------+---------~
Enter The Name Of The Attribue To Be Ins~rt~~ \

mqrname
+-------+--•••••••••+•••••••••+--------+ I
I A RANCH I BRANCHNAME I BP.Ar·JCJI # I 1-1GRNAME I I

i

-+-------+-----------+---------+--------+,

4t

Modtf1eat1on Completed C For This Record l ?
F.nter Y / N
n
Select The number Of The Following Edittnq

t. Tnsert New Attribute
2. Delete Attribute
3. Modification Of Attribute ~arues
4. Switch Key Attribute

3

+-------+-----------+---------+--------+ f BRANCH f BRAlJCHtJA '•IF: I '1R.i\:~ca # I '·1GRNAME I

+-------+-----------+---------+--·-----+ tnter The Name Of The Attrlhute To Be Mo~ll!Pd1
mqrname

Ch~n~P From (~GRMA~~) To:
mqr•n.:tme

+-------+-----------+---------+-----------~
+-------+-----------+---------+-----------+ "1t')ri1 ff.cation Complete,1 (F'or l'his R€'corri) ?
F.:nter Y / 1-J

n
Se 1 ect The :fuinbe r Of 'l'he roll o,.,ing Ed! t lnq

1. lnsert ·1e111 1\ t tribute
~. n~1ete ~ttribut~

4

J. ~od1f1c3t1on nf Attribute names
4. s~1tch Key Attribute

+-------+-----------+---------+-----------+ Enter The ~ew Key Attribut~ H~me
_brAnch#

+-------+---------+-----------+-----------+ I BRA NCH I flRANCff # I BRAilCHTJMtF. I :'fGR • 1'-IA~t~ I

+-------+---------+-----------+-----------+

42

I

Step 1.3 search for Redundancy·

To remove the potential redundant attributes in a

record, simply select the Search for Redundancy function.

The following demonstrates this function:

Attribute BRANCH~AME In Record BRANCH
Is The Same As Record LOAN

+-------+---------+-----------+-----------+-+-+-+-+-+-+-IBR~NCH IBRANCH # IBRANCHMAME !MGR• NAM~ I I I I I I I I

+------~+---------+-----------+-----------+-+-+-+-+-+-+­
+-----+-------+---------+-----------+-+-+-+-+-+-+•+•+-+-+
ILOAN ILOAN # ILOfd-JTYPF. 1BRANCi-H-JA'·1E I I I I 1. I I I I I I

+-----+-------+---------+-----------+-+-+-+-+•+-+-+-+-+-. Shoulrl This Attribute Be ln Roth Records? ~nter Y / N n
Which Record Shall This Attribute Tn: br3nch

Attrlhute Deleted In Record LOAN

ILOAN ILOAN # ILOAMTYPE I I I I I I I I I I I I I I I I I
+-----+-------+---------+-+-+-+-+-+-+-+-+-+-+~+-+-+-+-+-

Step 1.4 Mapping between Keys

To oetermine the mappinq type between keys, select

the Mapping between Keys funetlon in the menu. An exanple

of thl~ function is ~s follows :

Computer responds

ooes M~pp!ng Exist Between Key I
RR,NCH ff And CID ? (Y/N)

The designer responds

43

y

Computer responds

Determine The Mapping Type.Cle. 1. 1 • 1 C < -- >) mapping •
2. M • 1 (<<-- >) mapping •
J. t • M (< -->>) mapping .
4. M : M (<<·->>) mapping

The designer responds

3

1,2,3,4)

After the mapping type has been determined, the relationships ~111 be generated by creating new relationship sets for the relattonships, ano adding them to the design.

Step 1.s Display of Design Diagnostic
This function can be used to review the design. The following examples

capabilities:

de1nons t rate

44

the three display

KEY WORO IN LIST

* • • * * * * * * * * * * * * * * * * * * *
• * • • KEY • • ATTRIBUTE •

*
• - = = - - = - - - - - - - - - - - - * - - - - - - - - - - - - - - -
*

*
• BRANCH #

*
• f\RAf~CHNAME

*
* MGRNAME

*
• TELU~R #

* • TELLE:RtJAME
*·

~ CID
*

• CUSTOMF,RNAME I *
• CUSTOMEROOB

*
• CUST • ADDR

*
* JJOAN #

*
• LOANTYPF.

*
* LOANASSGND

* • ACCT#
*

• 74CCTTYPE

* • BALAfJCF.
*

* *
• *

45

RELATION SETS

SELECT THE PDLLOWING DISPLAY
t. KF.Y WORD Hl LIST
2. RELATIONSHIP SETS
3. ELEMENTARY RELATIONS

2
BRANCH (BRJ1.NCH # , BRANCHt-JA~tE , MGRNAME)
Tf.i.:LLF:R (TELLF:R # , TELLF.RNA'-1E)
CUSTOM C CIO ,CUSTOMERN~ME: ,CUSTOMERDOB ,CUS'l' •. ADDR)
LOAN (LDI\N # , l,O A.NTYl'~ , LO~~ASSG~O) .. 'I • .

· ACCOIJr-IT (· ACCT #. ,ACCTTYPE ,BI\LANCE .). I .• ~ :

1 C CID , BRANCH # ·)
2 C t,Ol\N # , BRANCH #)
3{ ACCT ~ , BR~NCH #)
4(T.iO.A.N # , CIO)
5 C ACCT # , CID)
DRAW~R (TELLER# ,BRANCH# ,DATE ,COH • EOD ,COH • SOD
TRANY. (ACCT # , DATE , TIME , AMNT)

~ote that the relation sets with numeric number as

their names are those relationships generated by the

computer program during one of the followinq processes:

1. Mapping between keys.

2. Generating relations for trivial dependence.

46

)

ELEMENTARY RELATIONS

SELECT THE FOLLOWING DISPLAY
t. KF.Y WORD IN LIST
2. RELATIONSHIP SETS
3. ELF.MF.NT~RY RELATIONS

3
ERt(BRANCH# , BRANCHNAME)
ER~(BRA~CH # , MGRNAME)
ER3(TELLER# , TELLERNAME)
€R4(CID, CUSTOMERNAME)
ER5(cro , CUSTOMERDOB)
ER6(CTD, cus~ • ADDR)
ER7(LO~N #, LOANTYPE)
ERA(LOA~#, LOANASSGND)
ER9(ACCT#, ACCTTYPE)
~RtOC ~CCT # , B~LANCE)
ER 11 (C I D , BR A fl' C J.t #)
ER12(LOAN# , BRANCH#)
~Rt3(ACCT~ , BRANCH#)
~R14(r,n/.\~1 # , CID)
ERIS(ACCT# , CID)
F:R 16 (1'F:t,LER # BRANCH #
~R 1 7 ('T'ELLER # SRANCH #
F.R18(ACCT # DATF. TIMS·
ER t q (TF:LLER # BRANCH #
ER20(TELLER# BRANCH#
F.:R21 C ACCT # DATE TIME

After the above steos

DATE , COH. ~on
DATE , CrJJ.J • snn

, .lHtNT)
DATE , AP1\.NCH !f
DATE , TF.LLF.R #

, 1'\CCT # 1

are completed

)'
)

) l
) .

anrl

satisfactorily edited, the ~esigner proc~eds to the

following phase - structure Refinement.

Step 2.1 Transitivity Removal·

The following demonstration shows the process of

47

determining the transitive closure, selecting the
semantically meaningful Fos, and removing the undesirable
ones:

Is The Following Dependency semantically Meaninoful? CY/ N) TELLER# BR~~CH # DATE -- > BR~NrH~A~E n
rs·The Pollow!ng Dependency Semant1callY Meaninqful? CY/ N) TELLER# BR~NCH # DATE -- > MGRNA~E n

.~ Is The Following Dependency Semantically M~~ninqful? CY/ N) T~LLER # BRANCH# DATE •• > TELLRRNAME n
ts The Following Dependency Semantically Me~ninoful? (Y / N) ACCT# DATE TIME ••>BRANCH#

V rs The Following Dependency SemanticallY Meantnaful? CY/ N) ACCT # DATE TP~E •• > BRI\NCHNAME n
Is The Following Dependency Semantically ~eaninaful? CY/ N) ~CCT # DATE TIME •• > MGRNAME n
rs The
A.CCT #

y
Is The
ACCT#

Following Dependency Sem~nticallY ~~~ninqful? CY/ N) D~TE TIME -- > c1n
Following Dependency Semantically Me~ninaful? CY/~) DATE TIME •• > CUSTOMERNA~E n

Is The Following Dependency SemanticallY ~eaninqful? (Y / N) ACCT# D~TE TIME •• > CUSTOMERDnB n

After the above interactive process, the computer program
will modify the connectivity matrix accordinq to the
instructions given bY the designer. For those
relationships ~etermined to be semantically meaningless

48

by the designer, the computer program will replace the
"1" ~1th "O" in the corresponding positions of the
connectivity matrix to indicate that the relationships
have been removed.

Step, 2~2 Reducing the Number of ERs
This step ls the final step in structure refinement.

A matrix indicating the relationships among data elements
is displayed:

BRAI\IC~' #
AR~ncH - b.DDR
f.H~R • 1\1 AMF.
BRA.NCH• M~HE

l:IR~:JCH # BR!\l'JCH • I\DDR ~.tt;R •
O 1
0 0
0 0
0 0

49

NA~IE

1
0
0
()

BRANCH• NAME
1
0
0
0

Having done the Conceptual Design and Structure

Refinement, rtesign results can be discussed.

step 3.0 Design Results

The design results for this case study are displayed

below :

C
(
(
(

BRANCH # , BRANCH~AME , MGRNliME ,)

CID , CUSTOMERNAME , CUSTOMEROOB , CUST • ADDR

LOAN ~ , LOA~TYPE , LvANASSGMO , }

, l

ACCT # , ACCTTYPE , BALANCE ,)

{ TELLER# BRANCH# D~TE , COH • EOD

(- --TE'bbER- # - ,·TELI:r8RNAME· - 3 ---- - · · -· - - ·- - -

CIO <<••>BRANCH#

LOAN# <<••>BRANCH#

LOA~# <<••> CID
ACCT# <<••>BRANCH#

ACCT# <<••> CID
T~LLER # BRANCH#
TELLER# BRANCH#
ACCT# DATE TIME

~CCT # DATE TIME

ACCT# DATE 1IME

C ACCT fJ DATE: TIME

DESIGN COMPLETED

DATE
DATE

<<••> BRA.NCH #

<<••> TELLF.R #

BRJ\NCH # <<-->
<<--> CID
<<••>ACCT#

,AMNT)

It should be noticed that the data

, COH • SOD

elements

encompassed by parentheses ~r~ the relations. The data

elements with " <<••) " them represents the

mappings between records.

We can easily draw the following logical model by

rearrangin,.J the ciestgn resnl ts :

50

,)

j ___ L .1J.1. _jj_ ------ ___ dl
I I I I I I I I I I

IACCOUHTI I CUSTOMER I ILOAN, I TF:LT,ER I IBRANCHI

I I I

I I
I TRANSACTION I
I I

I I ' I

I I
IORAWF.~I
t I ------

I I

Figure 6.2 The Loqlcal ~odel For
Popular Bank Data Base Design

~nd we have following relations:

I --

BRANCH (BR,~CH#, BRANCH•NAME, MGR•NAME)

CUSTOMER (CID, CUST•NA.ME, CUST•OOB, CUST•ADDR)

LOAN (LOAN#, LDA~•TY~E, LO~Q•ASSGND)

J'\CCOUNT (J\CCT#, ACCT•TYPE, ~AT,ANCE)

TELLER (TELLER#, TELLER-~AME)
DRAWER (TELLER#, BRANCHI, O~T~, COH•EOD, COH•SOD)

TRANSACTION C ACCT#, DATE, TIMF:, AMNT)

Comparing with the nesiqn result in reference [11,

the conceptual model developed by· the computer program

has two extra relations :

1. ACCOUHT
redundant
dependent
following

<<•> BRANCH •
because ~P. ANCH

on ~CCOUN~. It can
two relations:

This relation is
is transitively
be derived by the

ACCOlTNT <<•) CUSTOl·1F.R
CUSTOMF.R <<•-> RRANCH

51

However, the relation ACCOUNT<<--> RRANCH is
semantically meaningful in establlshinq
connection between ACCOUNT and BRAMCff.
The ref ore, ·the branch wheire the account ls
kept can be obtained directly from on•line
inquiry, which grP.atly speeds up inquiry
transaction.

2. LOAN <<••>
applies to
because 1 t
relations :

BRANCH • The similar situation
this relation. It is redundant
can be derived from the following

LOAN<<••> CUSTOMER
CUSTOMER<<•> BRANCH

Again, this relation establishes the
connection between LOAN and BR~NCH, and speeds
up inquiry transaction.

52

6'.: CONCLUSION'

Data base design has heen described as an intuitive

and artistic process, typically, iterative. During each

iteration, the goal is to approach more closely an

acceptable design. Thus a des!qn will be developed and

reviewed, the defects will be identified, and the design

steps will be repeated until no major defects can be

found by either users and aes1qners.

The methodology presented in this thesis has shown

that it is feasible to replace the intuitive approach to

data base design with a svstematlc, computer-assisted

approach. This allows the designer and analyst to

concentrate more on the semantic problems for which no

mechanized solution will be available. Alternative

designs may also be evaluated much more easily. The

computer-assistance also provines useful diagnostic

reports telling the designer about which data items have

been used so f~r in the desiqn, and where redundancies

are. The expected benefits are summarized below :

1 •. Presents informationCsuch as
diagnostic) helpful to the designer
greatly reduces the tediousness of the
procedure.

design
Which

design

2. Performs a more thorouqh and consistent
analysis df data requirements and inevitable
design trade-offs.

3. Improves design quality by:

53

a. Removing undesirable FDs~

b. Identifying anrl removing redundancies.

4. Shortens the design eycle by :

a. Reducing the number
iterations.

b. Reducing the time for
iteration.

of design

each design

c. Documenting the results, so the designer
and the end users can obtain a more
objective basis for dealing with
differing persoectives.

It should be emphasized that, in the field of data

base design, there are principles and tools, but they

must always be used in conjunction with intuition and

guided by experience.

54

REFERENCE.

1. Atre, s., Data Base, Structured Techniques for
Design, Performance, ~nd Management. John
Wiley, 1980.

2. Codd, E. r., "Extending the
to Capture More Meaning."
Database Systems, Vol. 4,
1979.

Relational Model
In transaction on
No. 4, December

3. Date, c. J., An Introduction to Data Base
Systems, Third Edition. And!son•wesley, 1981.

4. Engles, R. w., "A Tutor !al on Database
Organization." IBM Corp. Technical Report
TR.00.2004, IAM, Poughkeepsie, N.Y., 1970.

s. Hubbard, G. n., Computer Assisted Data Base
Design. Van Nostrand Reinhold, 1981.

6. IBM Corp., Data Base Design ~id (Version 2):
Designer•s Guide, Publication No.
SH20•1627(1977).

7. IRM Corp., ORPROTOTYPE/II Program
Description/Operation Manual, Publication No.
SH20•1953(197B).

8. Jenkins, M.A., The Q'NIAL Reference Manual.
Queen's University, Kinston, Canada, 1983.

9. Martin, James, Computer Data•Base
Organization. Prentice•Hall, 1975.

10. Mealy, A.H., "Another Look at Data." in Proc.
AFIPS 1967 Fall Joint Computer Conference,
Vol. 31, APIPS Press, ~ontvale, ~.J., 1968

11. Schmidt, F. L. & Jenkins
- The NIAL approach.
Kinston, Canada, 1982.

M.A. Data Systems
Queen•s University,

12. Tsichritzis, Oionysios c.,
FredericK H. , Data Models.

& Lochovsky,
Prentice-Hall

International, 1982.

13. Ullman, Jeffrey D., Prineiples of Database

55

Systems. Computer Science Press, 1980.

14. Vetter, M. &
Metho~ology.
1981.

Madison, R. N., Database Design
Prentice-Hall International,

15. Weiderhold, G!o, Database nesign, Mcgraw-Hill,
1983.

56

APPENDIX A: THE DOCUMENTATION

The program is defined in the script file named

DB.NDF, the contents of whieh are listed in the next

section after the brief descriptions of the operations

given below. C NDF is an acronym and a suffix used in the

host system to mean Nial Definition File.).

1. ENTRY : This operation is used for the
entering of the @nt!tv set names in the
initial data entry.

2. ATTR: This operation ts used for the entering
of the attributes in the initial data entry.

3. KEY: This operation is used to identify the
key domains for the records entered
previously.

4. NUM: This operation ealculates the number of
all the data elements entered, which includes
the number of records, the number of
attributes, and the number of key domains for
each record.

5. TABLE: This operation displays the KEY•WORD•
IN•LIST.

6. DISPL : This operation is used to display the
entity sets and relationship sets for all the
data elements entered.

7. MODI, : This operation is used to modify the
data elements in a sp~cif!c record. It
performs the tasks including insert
attributes, delete attributes, modify
attribute names, and switch key domains.

a. REEDIT • This operation is used to make •
changes for all thP. records entered
previously. It performs the tasks including
inserting new records, dPlettng old records,
and modifying old rP.cords (MODI).

57

9. SRCH : This operation searches r@dundant
attributes existing in the records entered
previously.

10. MAP : This operation determines the mapping
types among key dom~tns.

11. GEN: This operation qenerates relations for
trivial dependencies.

12. REL
ERs.

• • This operation ts used to generate the

13. ERR: This operation displays all the ERs.

14. ALT: This operation qenerates a list of all
data elements with every data element
appearing only once.

15. MTRX: This operation is used to derive the
connectivity matrix.

16. FRAME: This operation generates a frame which
gives the connectivity matrix coordinates of
reference.

17. COMP : This operation determines the
compositions for the connectivity matrix.

18. CLOSURE: This operation determines transitive
closure.

19. SOL : This operation is used to select, from
among the transitive dependencies derived, the
semantically meaninqful ones.

20. TRANS: This operation is used to transform
the NIAL expression of Boolean variables C
NIAL use "o" "l" to represent truth an~ false
) into common expression of Boolean variable C
i.e. "O" "1" > for the manipulation of Boolean
logic.

21. REDUCES: This operation ts used to reduce ERs
according to the alqorithm presented in
section 4.2.

22. DISPLAY: This operation ls used to display
the records entered, their contents and

58

relations. It includes operation TABLE, DISPL•
and ERR.

23. Result·
results.

• • This operation displays the design

For the demonstration of how the program works, refer to

the CASE STUDY•

59

APPEND Ix· BI THE PROGRAM

%%%%%%%%%%%%%%%%%%%1%\%1%%%%%%%%%1%%%%%%%%
% %
% %
% COMPUTER ASSISTED DATA BASE DESIGN %
% %
% * * * * * * * * * * * * * * * * * * * %
% %
% BY: CHIEN•CHUNG J. CHUANG %
% %
% SEPTEMBER 1984 %
% %
% LEHIGH UNIV• %

' %
%%

m := 1;

mr· := 11

1 := 1;

check : = o;

,. . - - ,
dd : = • • ;

ddd

dtd

. - . '. .- ,

: = • ';

entry is op eC
a : = • •;
d := • /';
e : = 1 20 reshape ' •;
while scan a·= scan d do
writescreen. 'Enter Record• link sketch i;
a : = readscreen • ';
b : = phrase a;

if scan a·= scan d then c :=clink b endif ;

60

1 := 1 + 1;
endwhile;
for j with count ((tally c) minus 1) do
cd := descan scan Cj pick c):

e := cd co j) place e;
endfor;
i : = 1 minus 1;
writescreen 'ALL THE RECORDS ENTERED ARE AS FOLLOWS: ';
writescreen sketch e)

attr is op xC
if m ·= t then
me := Cm minus 1) drop (count ((tally c) minus 1));
m := tally c;
else m := tally c; me:= count Cm minus 1) endlf:
for at with me do
aa := ' ';
cc := at pick: c;
ee := t 20 reshape ' ';
writescreen. 'For Record: ' link sketch at:
if check= 1 then
ca:= read 'First Enter The Number of Keys In This

Record: ';
writescreen. 'Please Enter The Key Domains In The First

'link sketch ca;
wrltescreen 'Entries Of The Data Inputs';
caa := caa link ca; endlf:

while scan aa ·= scan d do
aa := readscreen' ':
bb := phrase aa;
cc:= cc link bb;

endwhlle;
for jj ~1th tell CCtallY cc) minus 1) do

gg := descan scan (jj pick cc);
ee := gg co jj) place ee;

endfor;
ee := solitary ee;
dd := dd link ee;

endfor;
wrltescreen 'ALL THE ATTRIBUTES ENTERED ARE

AS FOLLOWS: ';

mm := (tally dd) minus 1;
for att with count mm do
dlsp := att pick ddJ
writescreen. 'For Record: 'link sketch attJ
writescreen sketch disp;
endfor)

61

key is op xc
pie : = • , ;

if check·= l then
writescreen, ENTER THE KEY FOR EACH RECORD. •;endif;
if mr -= 1 then
mer:= Cmr minus 1) drop (count CCtallY dd) minus 1));
mr := tally dd;
else mr := tally dd; mer := count (mr minus 1) endif;
for att with mer do
disp := att pick rtd;
wr 1 tescreen. ' For Record : • 1 inlc sketch at t;

wr!tescreen sketch disp;
case check: from
1 : hhh := solitary d!sp;

dtd := dtd link hhh end
else aa~ := readscreen • Enter Key Domain
temp:= CO 1) pick disp;
Icicle : = 1;
while scnn Pk-= scan aaa do
pie:= CO kick) pick dlsp;
sn := COO) pick d!sp;
kkk : = kkle + 1 ;

endwhile;
Pk:= phrase pk;
pck := pck link pk;
sn := Phrase sn;
sns := sns link sn;
if kkk ·= l then
d!sp := pk co 1) place d!sp;
dlsp := temp CO Ckkk minus 1)) Place d1sp
end!f;

• • • . ,

wr 1 tescreen • THE RECORD WITH KEY DO.MA IN IN THE SECOND
COLUMij IS DISPLAYED';

writescreen sketch disp;
eee := solitary d!sp;
ddd := ddd link eee endcase;
endfor1 check:= O;)

num is op x C
an ·-.- (tally ddd) minus 1:
bn ·-.- (tally dtd) minus 1;
sss ·-.- •1•;
111 ·-.- , 7,;
h ·- • , . .- ,
tor tn with count an do

11 ·- 1; .-
xx ·- tn pick ddd; ·-

62

repeat
XXX := (0 11) Pick xx;
11 := 11 + 1;
until scan xxx = scan h
endrepe~t;

111 := 111 link 11:
en<ifor;
for rn wt th count bn do

ss := 1;
pp := rn pick dtd;
repeat
PPP := CO ss) pick pp;
ss : = ss + 1;
until scan PPP= scan h
endrepeat;

sss := sss link ss;

endfor;

)

table ls op xc
wrltescreen •* wr 1 tescreen •
writescreen "*
wr!tescreen •
wr1tescreen "*
wri tescreen •
wr1 tescreen • *
wrl tescreen •
wr1tescreen ••
wr 1 tescreen •

•KEY• • ATTRIBUTE •

= = = = = = =- = = = = =: = = = = = =

for tn with count an do
xx : = tn plclc ddd;
for tnn with count (Ctn pfek 111) minus 2) do
xxx : = co tnn) pick xx;

'link sketch xxx:

•·:
*•;

• • ,
* ": , . ,
•·:
". ,

*";
•• ,

••;

* •• ,

if tnn = 1 then
wr 1 tescreen. '*
wr 1 tescreen •
else
writescreen. '* ' link sketch

wr 1 tescreen"
endi f;

endfor;
endfor;

xxx;

for rn wt th count bn do
pp : = rn pick dtd:
rr : = rn pick caa;

63

*". ,

for rnn with count(Crn Pick sss) minus 2) do

PPP:= co rnn) pick pp:

1£ rnn <= rr then
writescreen. '* 'link sketch ppp;

writescreen•
else
wr 1 tescreen. '* ' 11.nk

wr!tescreen'
endif;

endfor;
endfor;

sketch ppp;

*,. ,

*,. ,

wr!tescreen '* ';
writescreen'

*';

wr1tescreen '* * * * * * * * * * *· * * * * * * * * * *')

d1spl ls op xc
111 := 111 minus 1;
for gy ~1th count an do

ggy : = , (, ;
xg := gy pick ddd;
mm:= gy pick 111;
for xy with tell mm do

gg := CO xy) pick xg;
if xy = o then xgy := gq; qq := '.• end!£;

ggy := ggy link ggJ
if Cxy -= (mm minus 1)) and (xy ·=: 0) then

ggy := ggy link',' endlf:

endfor;
wrltescreen. s~etch xgy link sketch ggy link')';

endfor;
111 := 111 + 1;
sss := sss minus 1;
for w with count bn do

ggy : = , C , ;

wy := w pick dtdJ
nn := w pick sss;
ny := w pick caa;
for ww with tell nn do

kk := CO ww) pick wy;
if ww = o then xgy := kk; kk := ' 'endif;

ggy := ggy link kk;
1£ (ww ·= Cnn minus 1)) and Cww ·= O) then

ggy := qgy link',' endif;

endfor;
writescreen. sketch xgy link sketch ggy link')';

endfor;
sss := sss + 1;)

64

modi is op x(
writescreen •select The Type Of Record Set•:

writescreP.n '1. Record With Simple Key';
writescreen '2. Record With r.ompound kP.ys';
a : = read • ';
If a = l then
repeat

yy := O; - -
wrltescreen • Enter The Record To Be Modified~;
rr := readscreen • ':
repeat

YY := 'IY + 1 J
uu := yy pick ddd;
PPP:= CO 0) pick uu:

until (scan PPP= scan rr) or (yy =
writescreen sketch uu:

an) endrepeatJ

repeat
writescreen ' Select The ~umber Of The

Pollowing E~iting';
wr 1 tescreen '
wr 1 tescreen '
wr 1 tescreen •
wr 1 tescreen •

1. Insert New Attribute
2. Delete Attribute
3. Modiflc~tton Of Attribute
4. Switch Key Attribute

ed : = read ' • J
case ed from
1: writescreen sketch uu:

Names

•• ·' • • ·' , .
- ,
• • ,

writescreen 'Enter The name Of The Attribue To
Be Inserted';

ins := readscreen ' •:
ins := descan scan 1nsJ
ff := yy pick 111:
ff := ff minus t:
uu := ins CO ff) place uu:
ff := ff + 2 ;
111 := ff yy place 111 end

2: writescreen sketch uu;
writescreen 'Enter The Name Of The Attribute

To Be Oeleted';
de := readscreen' •;
ff := o;
repeat

ff := ff + 1:
gg := CO ff) pick uu;

until scan de= scan qq endrepeatJ
repeat

fff := ff + 1:
ins:= co £ff) pick uuJ
uu := ins co ff) olace uuJ
ff := ff + 11

65

until scan ins= scan ' 'endrepeat,
gf := yy pick 111:
gf := gf minus t;
111 := qf yy place 111;
uu :=' • co fff) Place uu end

3: writescreen sketch uu:
writescreen 'Enter The Name Of The Attribute

To Be Mo<i1£1ed'J
mo:= readscreen' ':
ff := O;
repeat

ff := ff + 1;
gr := co ff) pick uu;

until scan mo= scan qr endrepeat;
mo:= descan scan mo;
writescreP.n. 'Chanqe From C • link sketch mo

link ') To:•;
po : = readscreen • •:
po:= descan scan po;
uu := po CO ff) place uu end

4: writescreen sketch uu;
writescreen'Enter The New Key Attribute Name•,
mo:= readscreen • ':
ff := o;
repeat
ff := ff + 1,
qr := co ff) pick uu:
until scan mo= scan qr endrepeat;
temp:= CO 1) Dick uu:

uu := temp co ff) place uu;
uu := qr co 1) place uu;
for a£ with count ((tally pck) minus 1) do
ab:= af pick pck;
if scan ab= scan temp then
qr := phrase qr;
pck := qr af Place pck;endif;

endfor end
else writescreen"No such Modification Capability?

Try Aq~in!"
endcase,

ddd := uu yy place ddd;
writescreen sketch uu:
writescreen "Modification Completed

(For This Record)?';
writescreen "Enter Y / N ';
ch:= readscreen' ':

until scan ch= scan •y• endrepeatJ
num o;
displ o,

66

writescreen ·Modification Completed
(For Record set)?';

chh := readscreen ' •;
until scan chh = scan 'Y' endrepeat;

Else repeat
yy := 0;
writescreen 'Enter The Record To be Modified';
rr := readscreen • ';
repeat

yy : = yy + 1;
uu := yy pick dtd;
PPP:= co O) pick uu;

until (scan PPP= scan rr) or (yy = bn) endrepeat; wr1tescreen sketch uu;
repeat

wr1tescreen • Select The Numher Of The Following
£di ting•;

1. Insert New Attribute •• ·'
wr!tescreen •
wr!tescreen •
writescreen •

2. Delete Attribute ';.
3. Modification Of Attribute Names·;;·

ed : = read ' ';
case ed from
1 : writescreen sketch uu:

wr!tescreen ·Enter The Name Of The Attribute
To Be Inserted';

ins : = readscreen ' ':
ins := descan scan Ins;
ff := (yy pick sss) minus t;
uu := ins co ff) place uu;
ff := ff + 2;
sss := ff yy place sss end

2: writescreen sketch uu;
writescreen ·Enter The Name Of The Attribute

To Be Oeleterl';
de : = readscreen ' ':
ff := O;
repeat
ff := ff + 1;
qq := co ff) pick uu;

until scan de= scan qq endrepeat;
repeat
ff£ :=ff+ t;
ins := CO fff) pick uu:
uu := ins CO ff) place uu;
ff :=ff+ 1;

until scan ins= scan•' endrepeat:
gf := (yy pick sssl minus t;
sss := gt yy place sss:
uu :=' • co fff) plaeP. uu end

67

3: writescreen sketch uu;
writescreen 'Enter The Name O.f The Attribute

To Be Modlf.f.ed';
mo:= readscreen • •;
ff := o;
repeat
ff := ff + 1;
qr := co ff) pick uu:

until scan mo= scan qr endrepeat:
mo:= descan scan mo:
writescreen. 'Chanqe From C • link sketch mo

link •) To : •;
po:= readscreen • •;
po:= descan scan po;
uu := po CO ff) place uu end

else wr!tescreen 'No such Modlfication Capability?
Try Aq,::t1n ! •:

endcase;
dtd := uu yy place dtd;
writescreen sketch uu;
wr!tescr.een 'Modification Completed

(For This Record)?•;
ch:= readscreen • •;
until scan ch= scan •y• endrepeat; num O;
a!spl o;
writescreen 'Modification Completed

(For Record Set)?';
chh := readscreen • •;
until scan chh = scan •y• endrepeat;
endif;
)

reedit is op xc
Chhh :: • ';
repeat
displ o;
writescreen'Select The Number Of The Following wr!tescreen • 1. Insert New Record Set writescreen • 2. Delete Undesired Record writescreen• 3. Modifications Of Record sets edd := read ' •;
case edd from

Edi ting•;
' . ,
'. ,

Entered';

1 : writescreen'Select The
writescreen '1. Record
writescreen '2. Record
a := read • •;

Type Of The New Record Set. ';
Set With Simple Key.';
Set With Compound Keys.';

if a= 2 then check := l; endif;
e ·­·- entry e;

68

attr o;
lcey o end

2: displ o;
writescreen •Enter The Name Of The Record

To Ae Deleted•;
a:= readscreen' •;
ss := ((tally ddd) minus t):

for x with count ss do
b :: X pick dctd;
ba := co O) pick b;
if scan ba = scan a then
pk:= CO 1) p1ek b;

if x < ss then
Y :: X + 1;
YY := x;
repeat
be := y pick ddd:
ddd := be yv plaee ddd;
y := y + 1;
yy := yy + t:
until y >= Css + 1) endrepeat:

endif;ddd := front ddd;
z := Pk find pck;
if z ·= CCtallV pck) minus 1) then
zz := Z + 1;
zzz := z;
repeat

bg := zz pick pck:
pck := bg zzz place pck;
zz := zz + 1;
zzz := zzz + t;

until zzz >= (tally pck) endrepeat;
endif; pck := front pck;

endif;
endfor;

ss := ((tally dtd) minus fl:
for x with count ss do

b :: X pick dtd;
ba := co O) pick b;
if scan ba = scan a then
z := x;
if x < ss then
Y :: X + 1;
YY := x;
repeat
be:= y pick dtd;
dtd := be yy place dtd;
y := y + 1;
yy := yy + 1;

69

until y >= (ss + t) endrepeat;
endif;dtd := front dtd;
if z ·= ((tally caa) minus 1) then
zz := z + 1;
zzz := z;
repeat

bg := zz pick caa;
caa := bg zzz place caa;
zz := zz + 1;
zzz := zzz + 1;

until zz >= (tally caa) endrepeat;
endif;caa := front caa;

endif;
endfor end

3 : modi O end
else writescreen•No Such Editinq Capability? Try Again t•
endcase;
num o;
Table o;
displ o;
writescreen • Editing Completed? Enter Y / N ';
chhh := readscreen • •;
until scan chhh = scan •y• endrepeat;
writescreen 'Display Of Ed1t1nq Result: ';
num o;
table o;
d!spl O)

srch is op xc
flag : = t;
111 := 111 minus 2;
ss := count ((tally ddd) minus 1);
for sr with ss do

che := sr pick ddd;
raa := co O) pick che;
nc := sr pick 111;
for z with count nc do

el := CO z) pick che;
for srr with Csr drop ss) do

mat := srr pick ddd;
ral :=COO) pick mat;
nm:= srr pick 111;
for zz with count nm do

ell:= CO zz) pick mat;
1£ scan el= scan ell then
writescreen' •;
writescreen • •;
writescreen • •;
writescreen • •;

70

writescreen' •;
writescreen. 'Attrihute' link sketch el link'

In Recor~· link sketch raa;
writescreen. 'Is The SAme As Record'

link SkPtch ral:
writescreen sketch che:
writescreen sketch mat:
ad:= readscreen 'Should This Attribute Be In

80th Records? CY/N)';
if scan ad= scan 'n' then
ra := readscreen • Which Record Shall This

Attribute Be In: •:
ra := Phrase ra:
if scan ra = scan raa then rae := ral;

uu := mat; yy := srr; gf := nm; ff:= zz1
else uu := che; yy := sr: gf := nc;ff :=z;

rae := raa; endtf:
repeat

fff := ff + t;
ins := co fff) pick uu;
uu := ins co ff) place uu;
ff := ff + 1,

until scan ins= scan • • endrepeat;
gf := gf minus 1;
111 := gf yy place 111;
u,1 :='•CO fff) place uu;
ddd := uu yy place dddJ

writescreen. 'Attribute Deleted In Record'
link sketch rae;

wrltescreen sketch uu:
endif;
flag := O;

endif:
endfor;

endfor;
endfor;

endfor;
if flag= o then flg := o: end1f:
111 := 111 + 2;
displ O)

map is op xC
e := 1;
for af with count ((tally pck) minus 1) do

k := a£ pick pck1
ox:= af fold rest pek;
for bf with count ((tally ox) minus 1) do

j := bf pick ox;
writescreen •ooes Mapping Exist Between Key•;

71

writescreen. sketch k link' And ' link sketch j
link '? (YIN)';

cf:= readscreen' ';
if scan cf= scan 'y' then
writescreen 'Determine The Mapping Type.

(i.e. 1,2,3,4)';
writescreen '1. 1 : 1 C <••>)mapping';
writescreen '2. M: t C <<··>)mapping';
writescreen '3. 1 : M (<••>>)mapping';
writescreen '4. M: MC<<••>>) mapping';
df := read ' ';
case df from
1 : vv := (solitary e) link (solitary k) link

(solitary j) link (solitary• ');
ddd := ddd link solitary Ct 4 reshape vv);
e := e + 1;
vv := (solitary e) link (solitary j) link

(solitary k) link (solitary•');
ddd := dd1 link solitary Ct 4 reshape vv);
e := e + 1 end

2: vv := (solitary e) link (solitary k) link
(solitary j) link (solitary• ');

ddd := ddd link solitarv (1 4 reshape vv);
e := e + 1 end

3: vv := (solitary e) link (solitary j) link
(solitary k) link (solitary' ');

ddd := ddd link solitary Ct 4 reshape vv);
e := e + 1 end

4: vv· := (solitary e) link (solitary k) link
(solitary j) link (solitary k) link
(solitary ' ');

dtd := cttd link solitary (1 5 reshape vv);
caa := caa link 2;
e : =- e + 1;
vv := (solitary e) link (solitary k) link

(solitary j) link (solitary j) link
(solitary ' ')~

dtd := dt~ link solitar~ Ct 5 reshape vv);
caa := caa link 2;
e := e +tend

else writescreen 'Error?' endcase,
endif;
endfor;

endfor,
num OJ)

gen 1s op xc
lag:= 1,
kck : = ' ';

72

nsn : = • •;
Cl<:lc : : • •;
for rn with count bn do

pp : = rn pick citd;
rr : = rn pick caa;
ns := phrase cco O) pick pp):
nsn := nsn link ns;

for rnn with count rr do
ck := co rnn) pick pp;
ck:= phrase ck;
ckk := ckk link ck;

endfor;
ck:k : = solitary Crest ckk):
if (O pick ckk) notin kck then
kck := leek link clck;end1f;

endfor;
for zk with count ((tally pck) minus 1) do

abc := zlc pick pck;
for kz with count CCtallY kck) minus 1) do

bed:= Jez pick kck;
xk := tally bed;
if abc in bed then
vv := bed link (solitary ahc) link (solitary • ');
xn := xk + 3;
for 11 with count e do
jj := (1 xn) reshape ((solitary 11) link vv);
if jj in dtd then laq := o;endif;

endfor;
if lag -= o then
vv := (solitary e) link vv:
dtd := dtd link sollt~rv Ct xn reshape vvl;
caa := caa link xk;
e := e + t;
enciifl
endif;

endfor;
endfor;
num o;
)

rel is op xc
ml : = • ';
ger : = • ';
lm : = ' ';
mlm := • ';
gr : = • ';
jjj := 111 minus 2;
for co w1 th count an do

ca := co pick jjj;

73,

cm:= co pick ddd;
pk:= CO 1) pick cm;
pl<: := phrase pk;
ge := solitary Cpk link pk);

ger := ger link ge;
for it With (1 drop (count

atr := (0 it) pick cm:
atr := phrase atr;
re := pk link atr;
re := solitary re1
ml := ml link re;

endfor;
endfor;
bbb := sss minus 2;
for oc with count bn do

ac := oc pick bbb;
me:= oc pick dtd;
am:= oc pick caa;

for ti with count am do

ca)) do

-atr := CO ti) pick me:
atr := (phrase atrl link
gr := gr link atr;

(phrase•

endfor;
gr:= solitary Crest gr);
ke := gr link gr;
ke := solitary ke;
mlm := mlm link ke;

for tii with count ac do
if t11 > am then
atr := co tii) pick me;
atr := phrase atr;
kr := solitary Cgr link atr);
lm := lm link kr;
endif;

endfor;
endfor;
)

err is op ml lmC
nml := CtallY ml) minus t;
for i with count nml do

er := 1 pick: ml·;
for j with o 1 do

dp := o pick er;
dq := t pick er;

endfor;

·>:

writescreen. ·ER· link sketch 1 link •c • link
sketch dp link•,• link sketch
dq link•)•;

74

endfor;
lmn := (tally lm) minus t;
for j with count lmn do

re:= j pick lm;
for 11 with o 1 do

pd:= o pick re;
dq := 1 pick re;

endfor;
1 := 1 + 1;
writescreen. ·ER· link sketch !_link •c • link

sketch pd link •, , link sketch
dq link•)•;

endfor;
)

alt is op xC
gee : = • •;
for x with count an do

gl :: X pick ddd;
gc := x pick jjj;
for xx with count gc do

glc := co xx) pick gl;
glc := phrase glc;
gee := gee link glc;

endfor;
endfor;
tor y with count ((tally Im) minus 1) do

lg := y p!cl< lm;
for yy with o 1 do

cg := yy pick lg;
if yy = o then cg:= solltarv cg; endif;
gee := gee link cg;

endfor1
endfor;
mlist := rest gee;
nmi := tally mlist;
j j • - • • • ·- , for j with tell nm1 do

x := j pick mlist;
if x notin jj then

if tally x > 1 then x := solitary x ; :endif;
jj := 11 link: x;

endif;
endfor;
mlist := rest jjJ)

mtrx is op xc
am:= tally mlist;
mx := am am reshape o;

75

for xa with tell am do

gx := xa ptck mlist;
if tally qx > 1 then qx := solitary qx; endif;

for xb with tell am do

px := xb pick mlist;

if tally px > 1 then px := solitary px; endif;

gp := (qx link px);
if (gp in ml) or (gp in ger) or (qp in lm)

or C qp in mlm) then

mx := 1 (xa xb) place mx; endif;

enofor;
endfor; >

frame is op m mlist(
mix flip C" hitch Mlist hitch flip (Mlist

hitch rows M)) >

comp is op mm(

WW:=Crows MM) eachleft eachrlqht and (cols MM);

XM:=shape MM Reshape Cor. flip link WW);

C:=MM or XM;
)

closure is op m(
Md : = ~1 match 1 ;

I:= shape M reshape. o link. first shape M reshape lJ

c: = Md and I;
repeat

mm := c;
comp mm;
C:=C and I;

until c = mm endrepeat;
tc:=1 Cl findall. Md or MM) placeall (shape M reshape O):

frame tc Mllst;
)

sol ls op xc
mt := tc > mx;
dex := 1 findall mt;

for xa with tell am do

xg := xa pie!< mlist;

for xb with tell am do

xp := xb pick ml1st;
if Cxa xb) index then

writescreen 'Is The Following Dependency

Semantically Meaningful?CY/N)':

writescreen. sketch xq link •••>•link sketch xp:

ap := readscreen • •:

76

if scan ap = scan 'n' then
tc := o cxa xb) place tc:
endif;
endif;

endfor;
endfor;
)

trans is op mm(
1 Cl f1ndall mm) Placeall (shape m~ reshape 0)
)

reduces ls op tcC
mo:= tc match t; ·
r := trans Ctc > trans (shape tc reshape or cols mo))J
r := trans Cr >=. shape tc reshape sum rows tc>:
r := r•transCtranspose. shape tc reshape sum cols r> l)J
)

displays is op x C
Uh :: O;
num o;
writescreen 'SELECT THE FOLLOWING DISPLAY';
writescreen '1. KEY WORD IN LIST';
writescreen '';
writescreen '2. RELATIONSHIP SETS';
writescreen '';
writescreen '3. ELEMENTARY RELATIONS';
ba : = read ' 'J
case ba from
1 : table O end
2 : displ o end
3 : gen o; rel o; err ml lm; uh := 1 end
else writescreen'ERROR? TRY AGAIN!' endcase J
)

search is op x C
repeat
flg := 1;
srch o;
until flg ·= o endrepeat:
)

result is op x C
ec : = o;
ds· := t findall r;
for id with tell C (tally ds) minus· 1) · do

xx := ld pick ds;
xo := o pick xx;

77

xt := 1 pick xx;
Cd :: id + t;
yy := cd pick as;
yo:= o picJc yy;
Y1 :: 1 piC'Jc yy;
if ec = o then
mk := xO pick mlist;

1£ tally mk > 1 then
g := mk find kck;
rec:= g pick nsn:
else g := mk find pck;
rec:= g pick sns:endlf:

endif:
if xo = yo then
ec := t;
if t~lly rec= l then
rec:= rec link 'C ' link cxo pick mlist) link

•,• link (x1 pick mllst) link•,• link
Cy1 pick mlist) link',':

else rec:= rec link Cy1 Pick mlist) link',';
end1£:
else rec:= Crest rec) link' >•;
writescreen sketch rec;
ec := o:
endif;
endfor;
writescreen. sketch rec link ')':
mi := trans Ctc > r>:
for kc with tell (tally mlist) do
mi := o (kc kc) Place ml:

endfor:
sd := 1 findall mi;
for di with tell (tally sd) do
xx := di pick sd;
xt := o pick xx;
x2 := 1 pick xx;
gt := xl pick mlist;
g2 := x2 pick mlist;
if g2 notin pck then
writescreen. 'C 'link sketch g1 link',' link

sketch g2 link ')':
else
writescreen. sketch g1 link' <<••> '.link sketch g2;

endif;
endfor;
)

design ls op xc
repeat

78

writescreen. SELECT THE FUNCTION IN THE
FOLLOWING MENU•;

wr 1 tescreen • •;
wr 1 tescreen • ';
wr 1 tescreen ' ';
writescreen' 1. CONCEPTUAL DESIGN·;

wr1tescreen' ';
writescreen ' ';
writescreen '2. STRUCTURE REFINMENT';

wr 1 tescreen ' ';
writescreen' ';
writescreen • 3. DESIGN RESULT';

a : = read • ';
case a from
1 : repeat

writescreen 'SELECT THE FUNCTION FROM
THE FOLI,OWING MENU•;

wr1tescreen , , . ,
writescreen • , . ,
writescreen ,

1. DATA F.NTRY';

wr1tescreen , , . ,
writescreen , ,., REEDITING';

~ .
wr1tescreen • , . ,
wr1tescreen ,,

3. SEARCH REDUNDANCY•;

wr1tescreen ,,

writescreen ,

wr1tescreen ,

writescreen ,

writescreen '
wrltescreen ,

b : = read ' ';
ease b from

, . ,
4. MAPPING BETWEEN KEYS';
, . ,
s. DISPLAY OF.SIGN DIAGNOSTtc•;
, . ,
6. EXIT•;

1 : wr1tescreen'SELECT THE TYPE OF RECORD';

writescreen't. RECORO WITH SIMPLE KEY';

writescreen' ':
wr1tescreen'2. RECORD WITH COMPOSITE KEYS·;

bb := read ' ';
if bh = 2 then check:= t else check:= O; endif;

e := entry e;
attr o;
k:ey O;
num o
end

2: reedit o end
3: num O; search o end
4: map o end
5: displays o end
6: cj := 1 end
else writescreen 'ERROR? TRY AGAIN!' endcase;

79

until cj = 1 endrepeat:
if uh·= 1 then qen o: endif
end

2: repeat
writescreen ·sELECT FROM THE

FOLLOWING MENU•:
writescreen • •;
wr 1 tescreen· • •;
writescreen • 1. TRANSITIVITY REMOVAL·:
wr 1 tescreen " •;
writescreen • 2. REOUCING TH~ NO OF ERs·:
writescreen • ";
writescreen "3. DISPLAY STRUCTURE DIAGNOSTIC";
wr!tescreen" ";
wr!tescreen • 4. EXIT";
v : = read • •;
case v from
t : alt O; mtrx o; closure mx; sol O end
2: reduces tc; framer ml1st end
3: displays o end
4 : gj := 1 end
else wrltescreen"ERROR? TRY AGAIN!" endcase:
until gj = 1 endrepeat end

3 : result o;
writescreen "DESIGN COMPLETED";
jc := 1 end

else writescreen "ERROR? TRY AGAIN!' endcase;
until jc = 1 endrepeat;
)

80

VIT~

The author was born to Capt. Kai•Ming Chong and his

wife Ya•Min Chung in Taipei, Taiwan, the Republic of

China, on December 27, 1959. He completed his

undergraduate study in Tungha1 University, Taichung,

Taiwan, and received a Bachelor of Science degree in

Industrial Engineering in JunP 1qe1. Upon graduation, he

was called to military service for two years. After that,

he came to the United States for his graduate studies.

81

	Lehigh University
	Lehigh Preserve
	1985

	Computer assisted relational data base logical design /
	Chien-Chung J. Chuang
	Recommended Citation

	tmp.1551116526.pdf._1_Uq

