Lehigh University
Lehigh Preserve

Theses and Dissertations

1985

Computer assisted relational data base logical
design /

Chien-ChungJ. Chuang
Lehigh University

Follow this and additional works at: https://preservelehigh.edu/etd

b Part of the Industrial Engineering Commons

Recommended Citation

Chuang, Chien-Chung J., "Computer assisted relational data base logical design /" (1985). Theses and Dissertations. 4503.
https://preservelehigh.edu/etd /4503

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an

authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

https://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F4503&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F4503&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F4503&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=preserve.lehigh.edu%2Fetd%2F4503&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd/4503?utm_source=preserve.lehigh.edu%2Fetd%2F4503&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

COMPUTER ASSISTED RELATIONAL DATA BASE LOGICAL DESIGN

by

Chien=Chung J, Chuang

A Thesis
Presented in Partial Fulfillment
of the Reguirements for the Degree
Master of Science
in
Industrial Enaineering
Lehigh University

1984

ACKNOWLEDGMENTS

My special thanks are due to my adviser, Professor

John C. Wiginton, for his advice and guidance throughout

the evolution of this thesis,

I dedicate this thesis to my parents,

CERTIFICATE OF APPROVAL

This thesis 1is accepted and approved 1in partial
fulfillment of the requirements for the degree of Master

of Science in Industrial Fnaineering,

Stopper ¢, Mo

Date

it £ Lo,
i%ééﬁsézzj:/Charqe

Chairman
Department of Industrial Engineering

Table of Contents
ABSTRACT
1., INTRODUCTION

1,1 OVERVIEW

1.2 THE MODEL

1.3 PREPARATIONS PRIOR TO THE COMPUTER=ASSISTED
PROCEDURES

2, DEFINITION OF TERMS

2.1 RECORDS, ENTITY SETS, ATTRIBUTES-AND-DOMAINS- -
2,2 REULATIONSHIP SETS
2,3 KEYS
2,3,1 SIMPLE KEY
2.3.,2 COMPOSITE KEYS
2.4 MAPPINGS
2,4.,1 1:1 MAPPING
2 M:1 MAPPING
3 MM MAPPING
4 FUNCTIONAL DEPENDENCY
5 ELEMENTARY RELATIONS

4,
4,
4,
4,

3, THE METHODOLOGY

3.1 STRUCTURED PROCEDURES
3.1.,1 CONCEPTUAL DESIGN
3.1,2 STRUCTURE REFINEMENT
3,1,3 DESIGN RESULT
3.2 THE FLOW CHART FOR THE OVERALL DESIGN PROCESS

4, THE ALGORITHM FOR THE COMPUTER=ASSISTED
PROCEDURES'

4,1 TRANSITIVITY REMOVAL

4,2 REDUCTION OF THE NUMBER OF ELEMENTARY RELATIONS
4,3 SEARCH FOR REDUNDANCY

4.4 MAPPING BETVWEEN KEYS

4,5 GENERATE RELATIONS FOR TRIVIAL DEPENDENCE

S5« CASE STUDY = DATA' BASE DESIGN IN A BANKING
- ENVIRONMENT

5.1 THE ENVIRONMENT
5.2 THE DESIGN

6. CDNCLUSION

REFERENCE:

APPENDIX At THE. DOCUMENTATION

APPENDIX B: THE' PROGRAM

VITA

ABSTRACT

This thesils presents a methodology for data base

design in which the design process is organized into a
series of structured and computerized procedures based on
mathematical methods and 1implemented as an interactive
computer program in NIAL (Nested Interactive Array
Language),

The structured procedures are summarized below ¢
1. Conceptual design,

a, Combination of local views,

b, Determination of Elementary Relations,
2, Structure refinement,

a, Transitivity removal,
b, Reducing the number of Elementary
Relations,
3. Design results,

The methodology can provide the following benefits ¢

1, Presents information helpful to the designer.

2. Performs a more thorough and consistent
analysis of the design,

3. Improves the design quality.

4, Shortens the design cycle,

For the purpose of illustrating the benefits of this

methodology, a prototyplical case study is included,

1. INTRODUCTION

1.1 OVERVIEW

The objJect of this thesis 1is to demonstrate the
feasibility of computer assisted, systematic procedures
in the 1long and tedious processes of logical database
design, The focus {s on the relational logical structure,
The emphasis is on automatinag as much as possible. The
procedures used can also increase the understanding of
the design concept regardless of whether or not computer
assistance is used,

This thesis presents a desian methodology consisting
of structured procedures 1in loaical relational database
design, The algorithm for these procedures {s presented
and implemented in NIAL (Nested Interactive Array
Language), The computer=assisted procedures are applied
to a prototypical case study as an illustration of their

use,

1.2 THE MODEL

The model selected for implementation is

relational structured data model,

The reasons for this are two fold :

1. The relational database model has both logical
and physical characteristics. It is
approximately the midpoint of the
human/machine continuum, which means that data

3

bases designed according to the relational
model need not be transformed into some other
format before implementation,
Much more research has been done on the
relational model than on any other model,
Recent developments of several general purpose
relational DRMSs (Data Base Management
Systems) have bronaht the relational data
base design Into a new era in the field of
data base design.
1;3 PREPARATIONS PRIDh TO THE COMPUTER=ASSISTED
PROCEDURES
Traditionally, data base design has been a twoe=phase
process ¢ logical data base design, where the needs of
people are specified ; and physical data base design,
where logical data design is mapped into the constraints
of particular program and hardware products., (See Fig

1.1)

| Logical Data | | Physical Data |
' coaw)d ' '
| Base Design | | Base Design |

Figure 1.1

We may further divide the 1logical design phase 1into two
stages : system analysis, where data to be stored are

identified, while data names are consolidated and

clarified ; and computer-assisted procedures, where

loqical' schema are developed, and the specification of

data base records, their constraints and relationships

are specified, (See Flg 1.2)

System		Computer I	Physical Data	
	===>	Assisted	meed>	
Analysis	} Procedures		Base Design	

Figure 1.2

In order to make the greatest use of the
computer-assisted procedures , before getting into these
procedures, the designer should have a clear concept
about the system environment, the constraints and
limitation on the system design, documentation in the
form of DFDs (Data Flow Diagrams), and a thorough

understanding of the diverse user requirements,

2, DEFINITION OF TERMS

Before we can discuss design, it is important to

know the terminologdy used in relational data base desiagn,

2.1 RECORDS, ENTITY SETS, ATTRIBUTES AND DOMAINS
An entity may be " anything that has reality and
distinctness of being in fact or in thought, ". It may be

1. A real object, e.g. a Classroom.

2, An individual, e.qg. & student.,

3. An abstract concept, e.d. Lehigh University,

4, An event, e.Je. students taking courses,

5. A relationship, e.q, Professor instructs
students ([12].

A collection of occurrences of similar entities {s
an entity set, We maintain a record for each entity, and
record sets for similar entities, The records refer to
attributes of entities and contain values for these
attributes, which are called domains.

Mealy (10] and Enqgles {4] have pointed out that
there are three realms which we may talk about regarding

information, (See Fig 2.1)

Reality Information Data Item

Entity Attributes ¢ Domains @
Sets

Student Student # 123, 234

Name J., Smith,
. Chuang

Tel % 123=4567,
234=5678

Figure 2.1 Three Realms [8]

As: can be seen in the above figure, the first realnm is

.the real world in which there are entities and in which

the entities have certain properties, The second is the

realm of ideas and {information existing in the minds of
men and programmers. The third realm is that of data in

which strings of characters or bits are used to encode

items of information,

2,2 RELATIONSHIP SETS

A relationship set 1s an n=array relation onn
entity sets : these entity sets need not be distinct, It
{s a way of representing a type of relationship between
entities [12), For example :

Suppose we have entity sets Student (E1)

Professor (E2)

Ef = [St, S2, 831,

Then, we’ll have relationship set Instruétion (R)

R=1(1It, 121
in which,
I1 { pP1, S1, S2 1,
I2 [P2, S2, §83)
is interpreted as 3
PROFESSOR#1 instructs STUDENT#1, STUDENT#2,

PROFESSOR#2 instructs STUDENT#2, STUDENT#3,

2.3 KEYS

A key is a data Iitem designated to be an entity
{dentifier [4). It must be assoclated with the property
unicqueness, so that we can use {t to refer to some given

entity unambliguouslye.

2.3.1 SIMPLE KEY
A simple key is a Key consisting only one data

element., It is atomic and its values are unique, e.d.

Studenté,

2.3.2 COMPOSITE KEYS
Composite keys are Keys composed of two or more data
elements, all of which are required for unigue

{dentification., e.d. student#, Course# ==> Grade,

2.4 MAPPINGS
A mapping is a rule of association between two

'{12]. Three types of mappings are discussed below &

2.4.1 1:1 MAPPING

The mapping !

Directed=By : Department <==> Chairman

1s: a 1:1 mapping since every department has exactly one
chairman and every chairman is in charge of one-

department onlye.

'2,4,2 M:1 MAPPING

The mapping ¢

Advised=By @ Student: <<==> Professor

{s a M:t mapping since a student is advised by one

professor only but. a professor can advise several

students.

2.4.3 MM MAPPING

The mapping

Taught=3y ¢ Student <<==>> Professor

is' a M:M mapping since a student can be taught by»severai

professors and a professor can teach several students,

2.4.,4 FUNCTIONAL DEPENDENCY
An attribute B of a relation 1s functionally
dependent on the attribute A of the relation if at every

instant of time each A=value is associated with no more

than one Bw=value [12], For example ¢

STUDENT# <<==> LAST=NAME
is a FD, because for a given student#, there exists only

one last name for it.

2.4.,5 ELEMENTARY RELATIONS

A set of irreducible units which represents the
transformation of the real world into a simpler model is
called Elementary Relations (ERs), Elementary Relations
satisfy the requirement for a single place for a single
fact, They have the advantage that future steps in the

design process c¢an be hased on a firm theory (12}, For

10

example ¢

The relation

STUDENT# <<==> LAST=NAME, FIRST=NAME, STATUS,ADDRESS

may be described by the followinag set of ERs @

ER1(STUDENT#, LAST=NAME)
ER2(STUDENT#, FIRST=NAME)
ER3(STUDENT#, STATUS)
ER4(STUDENT#, ADDRESS)

3, THE METHODOLOGY.

The methodology presented here 1Is based on the
synthesis approach, that is, we commence with a set of
functional dependencies(FDs) and use them to construct
relations, This thesis selects concepts from James
Martin [8), M, Vetter & R, N, Madison [12], and S, Atre
{1}, and synthesizes them into a systematic and
computerized methodology.

The major concept adopted from both James Martin and
S, Atre is the combination of diversified user needs
(local views), The computer program simulates this

process by two steps

1. Initial Data Entry.

2. Reediting.

These two steps are iterative for the purbose of

modifying the original data entrv according to different
user views,

The concepts discussed by M, Vetter & R, N, Madison
form the central part of the methodology. These are the
concept of sets and the use of mathematical methods in

database design,

'3,1' STRUCTURED PROCEDURES

The structured procedures developed are in
three=phase : conceptual design, structure refinement
and design results. The three phases are then further
broken down into five steos, which again each step

consists of several processes, Aas summarized below ¢

3,1,1 CONCEPTUAL DESIGN

{, Combination of local vievws,

a, Data entry for simple key records.
b, Data entry for composite key records,
c. Generation of relation sets.

d, Reediting.
2. Determinatlon of Elementary Relations (ERS)i

Removal of the redundancye.
Mapping between Kevs,

Generation of relations for ‘trivial
dependence,

Determination of ERS,

3,1.2 STRUCTURE REFINEMENT

1. Transitivity removal.

a, Determination of transitive closure,

b, Selecting the semantically meaningful
ERs.

c., Transitivity removal,

2. Reductlon of the number of ERS,

3,1,3 DESIGN RESULT

3.2 THE FLOW CHART FOR THE OVERALL DESIGN PROCESS

As shown in the following pages 3

PROGRAM LOGIC FOR THE ENTIRE DESIGN PROCESS

7

v

ENTER
LOCAL
VIEWS

\

REEDITING

<>

Y

SEARCH
FOR
REDUNDANC'

N

DELETE
REDUNDANC

GENERATE
RELATIONS
FOR TRIVIAL
DEPENDENCE.

TRANSITIVITY
REMOVAL

\!

REDUCING
THE NUMBER
OF ERs

l

DESIGN
RESULT

PROGRAM LOGIC FOR "ENTER LOCAL VIEW"

< START ’

4

EE\PL
ORD?

ENTER
ATTRIBUTE

4
IDENTIFY
KEY
DOMAIN

ENTER THE
NUMBER OF
KEY DOMAINS

N

ENTER
ATTRIBUTES

PROGRAM LOGIC FOR “REEDITING"

INSERT

RECORD?

N

SELECT
THE TYPE
OF RECORD

INSERT THE
NEW RECORD
ENTERED

SELECT
THE TYPE
OF RECORD

DELETE THE
RECORD
SELECTED

SELECT THE
RECORD TO
BE MODIFIEI

NSERT

ATTRIBUT.

N

ELETE
ATTRIBUTE?

MODIFY
TTRIBUTE?

INSERT THE
ATTRIBUTE
ENTERED

DELETE THE
ATTRIBUTE
ENTERED

MODIFY THE
ATTRIBUTE
SELECTED

SWITCH
KEYS

DONE?

4, THE ALGORITHM FOR THE COMPUTEReASSISTED PROCEDURES
4,1 TRANSITIVITY REMOVAL

Consider the two FDs ¢
£f 2 A==>B
g s B ==>C

a third FD = their product, can be derived :
(gof£)s A==>C

The products of FDs are transitive dependencies,

Deriving all such FDs from some initial collection
of ERs yields a transitively closed collection of ERs
called a transitive closure, It includes both derived
and original ERs, some of which are redundant, An ER 1is
redundant if 1t can be deriveA from other ERs, and the
purpose here is to eliminate those redundant ERs. We can
automate this procedure by using matrix operations as

described helow 2

Suppose we have data elements ¢
AL, A3, AK

And FDs ¢

A{ ==> A] and AJ ==> Ak

We can derlive transitive dependencé‘:

AL ==> AK

Which represents the composition
AL ==> AjJ ==> Ak

The derived transitive dependence is then recorded in a
(n x n) " connectivity matrix " M by assigning " 1 " to
Mi,k.
For example :
We have data elements ;

Al, A2, A3, A4
And FDs

‘Al ==> A3, A3 ==> A4
The connectivity matrix derived will be

Al A2 A3 A4

1
Al 0 o0
A2 0
A3 0
A4 0

0
0
0

the following FD can be derived
Al ==)> A4
which represents the composition :
Al ==> A3 «=> A4
the new FD is then recorded in a new matrix
A A A3 A4
Al
A2

A3
A4

logic presented below describes the procedures

20

for deriving the connectivity matrix, determining the
transitive closure [12), and removing transitivity. For
the algorithm of the determination of the composition for

the matrix, the readers are encouraged to read reference

(127,

1., Generate a list of all data elements,

2, Derive a (n x n) matrix (in which n denotes
the number of data elements in the 1list
generated {n step 1) representing the
relations among the data elements in the 1list,

a. If there exists a relation between data
elements then put " » in the
corresponding position of the matrix,

For Kkey attributes : put " { " in the
corresponding position of the matrix for
the mapping of the key attribute itself
(i.e. employee# <==> employee#, where
employee# is one of the key attributes),

Otherwise, put " 0 . in the
corresponding position of the matrix.

Determine the composition for the matrix. (As
fllustrated in the above example).

Remove the erroneous compositions derived by
the situation : Afl ==> A «=> Af,

Were any new composition derived ? If not, go
to step 8,

Create a new modified matrix that includes the
new composition obtained from step 3,

Repeat step 3, 4, 5, 6 until no new
composition can be obtained,

Determine the new FDs derived,

21

9, Select, from among the FDs, semantically
meaningful ones,

10, Add the new FDs to the design.
11, End,

For example : L
Suppose we have a connectivity matrix ¢

A A2 A3 A4

Al
A2
A3
A4

Al
A2
A3
A4

CHAIRMAN,
TOTAL=STUDENT,
STUDENTS,
DEPARTMENT#,

Applying step 3 = 7 of the abhove transitive closure
procedure, we derive a new connectivity matrix

A A2 A3 A4
Al
A2
A3
A4

Comparing with the original matrix, the following
new FDs are derlived :

STUDENT# <<==> CHAIRMAN
STUDENT# <<==> TOTAL«STUDENT

Both of the new FDs derived in this exanmple are
semantically meaningless, The next step then is
to eliminate those semantically meaningless FDs
by replacing "i1" with "0" in the corresponding
positions in the matrix, The modified matrix

is shown below :

At

A3
A4

This connectivity matrix allows us to derive the
following set of ERs @

(STUDENT#, DEPARTMENT#)

(DEPARTMENT#, CHAIRMAN)
(DEPARTMENT#, TOTAL=STUDENT)

The procedure presented above allows us to automize
the determination of transitive closures, However, some
semantically meaningless FDs may also be produced by the
procedure, It 1s necessary to check the semantic meaning
of all the FDs derived, so that there will not be any

redundant FDs in the desian,

4,2 REDUCTION OF THE NUMBER OF ELEMENTARY RELATIONS

In practical cases, the designer may have thousands
of ERs to describe the real world portion, Therefore, it
is necessary to reduce the number of Elementary Relations
(ERs).

"The following procedures are used to reduce the
number of ERs as much as possible (121,

1. Select all ERs having a non=key attribute
occurring solely in the selected ER,

2., Create subsets of the FRs from step 1 such
that all ERs within a subset have identical
keys.

3, Each subset obtained in step 2 is replaced and

represented by a single ER form.

23

4. End,

The following example demonstrates how this

élgorithm works- $

Suppose we have the following set of ERs to describe
the real world :

ER1(STUDENT#, LAST=NAME)

ER2(STUDENT#, FIRST=NAME)

ER3(STUDENT#, STATUS)

ER4(STUDENT#, ADDRESS)

ER5(STUDENT#, DEPARTMENT#)

ER6(STUDENT#, PROFESSOR#)

ER7(DEPARTMENT#, PROFESSOR#)
ER8(DEPARTMENT#, CHAIRMAWM)

ER9(DEPARTMENT#, TOTAL=STIDENT)

‘where STUDENT# AND DEPARTMENT# are key attributes,

Step 1. The ERs having a non=key attribute occurring
solely in a single ER are :

ER1, ER2, ER3, ER4, ER8, ER9

Obtain a first subset with ERs whose key {s
STUDENT#, and a second subset with ERs whose
key is DEPARTMENT# ¢

STUDENT# <<==> LAST=NAME, FIRST=NAME, STATUS,
ADDRESS
DEPARTMENT# <<==> CHATRMAN, TOTAL=STUDENT

Replace the subsets obtained in step 2 by the
following ERs ¢

ER10(STUDENT#, X1)

ER11(DEPARTMENT#, X2)

X1 LAST=NAME, FIRST=NAME, STATUS, ADDRESS
X2 = CHAIRMAN, TOTAL=STIIDENT,

The real world can be defined by fewer ERs ¢

24

ER5(STUDENT#, DEPARTMENT#)
FR6(STUDENT?, PROFESSOR#)
ER7(DEPARTMENT#, PROFESSORS)
FR10(STUDENT#, X1)

ER11(DEPARTMENT#, X2)

4;3'SBARCH FOR REDUNDANCY
pata elements appearing as attributes in more than
one record are potentially redundant attributes, The next
procedure 1s used to search for those {dentical data
elements, display the 1ist, and delete the undesired
ones.
{, Repeat, until every attribute in all records
has been checked.
2. Check 1if there exists any attribute in other
records which {s identical to the one beind

checked,

3,. If any redundant attribute exists then :

a, Display the redundant attribute.
b, Declde whether it should be deleted,
c, Delete the redundant attributes

according to the {nstructions given by
the designer.

4, End,

pata elements are stored by the computer program in
the form of arrays (which are referred as records in the

alqorithm). The purpose of the above algorithnm is to

25

pick up one data element at a time, search through the
data elements 1n other arrays to check if there is any
fidentical data element to the one being checked, If
jdentical data element exists, the program will display
the potential redundant element for both arrays, and ask
the designer to decide whether the data element should be

in both or only one of the arrays,

4,4 MAPPING BETWEEN KEYS

Having determined the contents gor each record, it

is necessary to generate the relationship among the
records by the mapping of kKeys.
The following procedures will determine the mapping

type existing among the records,

1., Repeat, until done with all records.
2, Pick up the xey attribute for all records.,

3, Determine the mappina type,.

pisplay the possible mappings.

Decide 1if mappina exists, 1€ not, go to
step 4.

gelect the type of mapping. ({.e. M:M,
Mst, 121)

Add the mapping to the design.

The second data element in each array (record) 1s
the key attribute (The first data element is the name of
the record). The computer program picks up the second
element in each array to form a list of Kkey attributes.
1t will then display two kKey attributes each time, ask
the designer to decide whether any mapping exists between
the two key attributes being d4isplayed. If mapping does
exist, a list of possible mapping types 1is displayed for
selection, After the designer has selected the mapping
type, the relation for the mapping will be generated In
form of a new relation set, and stored as a new array 1in

the desiagn.

4;5'GBNERATE?RBLATIONS'FOR TR:VtABEDEPENDENCE‘

The FD of the form

A ==>B
where B is a subset of A 1s called a trivial dependence.
For all entlity sets, it is necessary to check for the
existence of the jependence of this type, so it

won’t remain neglected,

Two occasions foT the occurrence of trivial

dependence are

1, A simple Key attribute 1is a subset of a
certain set of composlite key attributes.

27

2. A set of composite key attributes is a subset
of some other set of composite key attripbutes.

For example ¢
Case 1 ¢

(STUDENT#) is trivially dependent. on
(STUDENT#, COURSE#)

Case 2 ¢

(STUDENT#, COURSE#) 18 trivially dependent on
(STUDENT#, SEMESTER, COURSE#)

The following example shows the importance of the

generation of relations for this kind of dependence 3

suppose we have the follovwing FDs ¢

(SEMESTER, COURSE#) <<==> COURSE=TITLE
(SEMESTER, COURSE#, STUDENT#) <<==> GRADE

The trivial dependence can be derived @

(SEMESTER, COURSE#, STUDENT#) <L==>
(SEMESTER, COURSE#)

1f we fall to generate relation for the above FD, when
we determine the transitive closure, the FD ¢

(SEMESTER, COURSE#, STUDENT#) <L==> COURSE=TITLE

will not be der ived, because {t represents the
composition of

(SEMESTER, COURSE#, STUDENT#) <<L==>
(SEMESTER, COURSE#) <<£==>
COURSE=TITLE

28

The following procedures will generate relations

those trivial dependencies @

1. Repeat, until done with all records,

2. Pick up the key attribute for all the records,

3,.If the key attribute selected is a subset of
any other composite Keys, then generate
relation for the FD,

End,

The computer program picks up all the key attributes
for all the arrays, and checks, one at a time, to see if
the key attribute or the set of composite key attributes
being checked 1is a subset of any other set of composite

key attributes, If trivial dependencies exist, the

relations for the dependencies will be generated in form

of new relation sets, and stored as new arrays in the

design,

5, CASE STUDY = DATA BASE DESIGN IN A BANKING ENVIRONMENT

The case study is adopted from "Structured
Technigues for Design, Performance, and Management® by
S, Atre, A brief description of the environment, the

demonstration of design, and the discussion are included,

5,1 THE ENVIRONMENT
* popular Bank " has a number of branch offices
scattered throughout the city and the suburbs, A customer
may walk 1into any pranch and open an account, The
customer is assigned a customer f{dentification number (
CID number) with the first account at the bank, The
customer may open a number of accounts at the bank, but
his/her CID number 1is not changed., The bank maintains
checking accounts, savina accounts, loan accounts (
customers must return loan with interest), and mortgage
accounts (customers must make reqular payments with
interest).
The descriptions of the reports and transactions are
as follows ¢
{. Branch Manager Report (Exception) = Every
branch has a branch manaqer, At a certain
point in time a branch has only one branch
manager, A Branch Manager Report (Exception)
is printed for the branch manager on a daily
pasis. The report consists of exceptional
transactions onlye.

2. Branch Manager Report (Weekly Exception

30

Summary) = Another type of report is the
Weekly Exception Summary. This report {is not
pased on the individual accounts but is a
summary. The two reports mentioned so far may
be considered as batch revorts,

Branch Loan Status = The branch manager also
receives a Branch Loan Status . This report
helps the branch manager to keep track of the
loans given at the branch, It also serves as a
source of new ideas for making loans at the
branch attractive,

Teller Cash Drawer = The bank employs a number
of tellers who cash checks and make deposits
and withdrawals for the customers. The tellers
are rotated among the branches, but it |{is
assumed that once a teller is sent to a branch
he/she will stay at that branch the whole day.
A cash drawer is recorded every day for every
teller, It keeps track of all the money flow
for that day, for that teller, and at that
branch, Teller Cash Drawer may be considered
as a batch application,

Teller Audit Report = The tellers are audited
periodically, as well as for specific reasons.
Every teller has a uniqgue fdentification
number called a teller number, Based on
experience and on previous audit records, a
teller may withdraw only up to a certain
amount of money for a customer, If the
customer wants to withdraw more money than the
specific teller®s maximum allowable upper
1imit, the teller has to reguest another
teller who can withdraw the amount to do so.
The Teller Audit Rerort, which could be
considered as a batch rerort, is sent to the
central audit location for the bank,

Inquiry Transaction - It may happen that a
customer walks into a branch and wants to
deposit or withdraw a certain amount of money,
Or he/she may want to know the balance of a
specific account, The customer may not be able
to provide the customer fdentification number
(CID) or the account number(s). In such a
situation the teller should be able to provide
the information needed by the customer, This

3

online transaction is only an INQUIRY
transaction ; it does not deposit or withdraw
any money from any of the accounts but only
provides information about the status of the
accounts,

Deposit/Withdrawal Transaction = These are two
types of transactions., Typel is DEPOSIT, and

Type2 is WITHDRAWAL, These ¢two are on=line
transactions,

After studying the environment, the following

assumptions may be made 3

Assumptions about the. environment of " Popular Bank " ¢

. The customer {dentification number (CID
number) is unigue,

Account numbers are allotted bankwide, that
is, the account numbers are unigue, The
account number uniquely identifies the account
type , the branch 1in which the particular
account was opened, and the customer name,
that is, the same account number will not be
given to two or more accounts., The account
number also uniquely identifies the customer,

Teller numbers are unique,

A teller can be assigned to different branches
on different days, but once assigned to a
branch he/she works there the whole day.

The account number, with transaction date and
transaction time, uniquely 1identifies the
transaction.

The action to be taken and the remarks to be
registered for an exception are dependent on
the reason code and on the account number,
that is, on the customer for whom an
exceptional action has to he taken,

32

Branch number, together with reason code, the
date of start of report, and the date of end
of report, uniquely {dentifies the total
number of transactions for the weekly
exception summaryYe

The loan number uniquely jdentifies the
specific loan. The loan number {s different
from the account number. Account and lo0an are
two separate entities.

A customer cCan have many account numbers at
the same pranche.

» Transaction Type " and " Transaction Code "
are synonymousS.

An INQUIRY transaction {s only an information
retrieval transaction,

If the teller worked {in several branches
during tne audit period, A report for each
branch will be printed, For each audit period
for a aiven teller, there is only one reason
code for the audit, Only the count of
transactions and the laraest dollar amount
handled by teller being avdited are taken into
consideration.

The Exceptlion Report and Weekly Exception
symmary are for the branch where the account
is kept. The reason 1s that the branch manager
where the transaction WwWAas made is not too
concerned 1if the account in another branch is
overdrawn oOr 1f savina exceeds A certain
1imit,. The branch manaaer 1s interested,
nowever, 1if these thinas happren to his/her
pank’s accounts, even if the transaction
triggering them takes place elsevhere,

Two types of transactions are recorded. Typel
is the DEPOSIT transaction , and Type2 is the
WITHDRAWAL transaction, An INQUIRY transaction
is not recorded,

At a given point in time a branch has only one
branch manager.

A 1list of all data elements referenced in the

rebort5'1n=alphabetica1 order 1is ¢

ACCT# . Account number
ACCT=TYPE Account type

ACTION=CODE Action to be taken in
exceotions

AMNT Amount involved in
particular
transaction

AMNT=TTL Amount involved in
Weekly Exception
summary report

ADT=RESN Reason code for audit

BALANCE Balance of an account

BRANCH=~NAME Name of branch

BRANCH# Number of branch

CASH=DSPNSD Total cash dispensed
during day

CASH=RCVD Total cash received
during day

CIDd Customer i{dentification
number

COH«EOD Cash on hand at the
end of the day

COH=S0OD Ccash on hand at the
start of the day

CUST=ADDR Customer address

CUST=DOB Customer date of birth

CUST=NAME
DATE

LAGST=AMNT=TYP1

LAGST=AMNT=TYP2

LOAN=ASSGND

LOAN#
LOAN=TYP
MGR=NAME

RESN=CODE

TELLER=NAME
TELLER#

X=NO

Customer name
A business day

Largest amount of
transaction typel

pargest amount of
transaction type?2

Amount of money
assigned as a loan

Loan number
Loan type
Manager name

Reason code for the
exception

Teller name
Teller number

Transaction number

5.2 THE DESIGN

The database design process is an 1terative process.

This software gives the user the capability to enter data
and to control the editing process and logical desian. It
i{s basically a menu=driven process. A hierarchy of menus

is provided, as shown in the following figures 3

1, CONCEPTUAL DESIGN

2. STRUCTURE REFINEMENT

3, DESIGN RESULT

Figure 6.1 Initial menu

1. DATA ENTRY

2, REEDITING

3. SEARCH REDUNDANCY

4, MAPPING BETWEEN KEYS

5, DISPLAY DESIGN DTAGNOSTIC
6, EXIT

Figure 6.,1.1 Menu for Conceptual Design

i, RECORD WITH SIMPLE KEY

2., RECORD WITH COMPNSITE KEYS

Figure 6.1.1a Menu for deciding record type

i, KEY WORD IN LIST
2, RELATIONSHIP SETS
3, ELEMENTARY RELATTIONS

Figure 6.1.1b Menu for display

1. TRANSITIVITY REMOVAL
2, REDUCING THE NO, OF ERs
3, DISPLAY DESIGN DIAGNOSTIC

4, EXIT

Figure 6.,1.2 Menu for Structure Refinement:

The following is the demonstration of the design
process in the " Popular Bank " case study, with
explanations corresponding to the structured procedures
discussed previously.

Step 1.1 Combination of Local Views

The designer enters local view i1 through n in step
1.1, Modifications to lncal views are made in step 1,2
to accommodate the various needs of users,

To enter the local views, the designer first selects
the Conceptual Design function in the menu shown {n £ig
6.1 . The computer will respond with a menu as in fig
6.1.1. The designer then selects the first function to
enter the records vwith simple key domain, Having done
with the data entries, the designer simply types "/" to
exit, After data are entered, the computer will display
each record and ask the desianer to enter the Key domain,

37

Again the computer will display each record with key

domain in the second column of that record (The record

name is in the first column). The process is shown helow

SELKCT THE TYPE OF RECORD
1, RECORD WITH SIMPLE KEY

2. RECORD WITH COMPQSITE KEYS
1
Enter Record 1

pranch
gnter Record 2

teller

ALI, THE RECORDS ENTERED ARE AS FOLLOWS 2

+-.’--—----—+-------+-------+

i 1BRAMNCH | TELLER cUsTOM |
*--Q---------}.o-----+-------+
vor Record : 1
oranch#
pranchname
marname
/
For Record ¢ 2
teller?
tellername
/

ALL THE ATTRIBUTES ENTERED ARE AS FOLLOWS ¢
For Record 2 1

JBRANCH [BRANCH ¢ |BRANCHNAME | MGPNAME |

+-------*.------—-+-----—-----+--------+

tor Record 2 2 \

+.-.----+------—--§---—-------+

ITELLER ITELLER # | TELLERNAME |

ENTER THE KEY FOR EACH RECORD .
For Record : 1

+-------+---------+-----------+--------+
| BRANCH | BRANCH # | RRANCHNANE | MGRNAME |
+--—----+'------'-+-----—-----+--------f
gnter Key Domaln ¢ branch# '

PHE RECURD WITH KEY DOMAIN IN THE SECOND COLUMHN 1S DISPLAYED

!

*---.---+---------+-u----c----+¢-------§

{BRANCH | BRANCH # | BRANCHINAME | MGRIWAME |

+------—*-..o-----+.------o-o-+-n------+

ror Record & 2

+.---.--+---¢-----+-----------+

ITELLER {TELLER # | TELLERNAME |
+-------+---------+-----------+
knter Key Domalin ¢ teller# .
THE RECORD WITH KEY DOMAIN IN THE SECOND COLUMN IS DISPLAYED

--.---—----cn—--*--i--------

| TELLER | TELLER # | TELLERNAHE |

*--.----+----.-.--+---------¢-§

For records with composite Kkevs, the process 1iIs

different in determining

the key domains. The computer will ask the designer

to enter the number of key domains (n), then ask the
designer to enter data with key domains the first n data

entries. As shown below 2

ror Record : 6

First Enter The Number of Keys In This Record: 3
please Fnter The Key Domains In The First 3
Entries Of The Data Inputs

teller#

pranch#

date

coh=eod

coh=sod

/

For Record : o -

-------‘-.-------+--—------+----~+----'—--.-+--------¢-+

jORAWKR JTELLER # IBRANCH # IDATE ICOH =« EOD ICOH = sS0OD |

+-------+.--------+---------Q-----q+--.-------+----------+

Step 1,2 Reediting

This step serves the purpose of making changes to

the data entered previousiv, The following examples
demonstrate the editing capnahilities 1Including three

editing features

1. Inserting a new attribute
2. Modifying an old attribute

3., Switching keys

Select The Number Of The Following Editina
1. Insert Wew Attribute
2. Delete Attribute
3. Modification Nf Attribute Names
4, Switch Key Attribute
1

+-------+--------a--{----------*.

| BRANCH [DBRANCHNAME |3RANCH # |

4--------+--n--------§v¢---¢‘—--

Enter The Name Nf The Attribue To Be Inserted
mgrname

+-------4'»----.---—--+---‘----—+--------+‘

IBRANCH |BRANCHNAME [BRANCH # IMGRNAME |

~ +-------+-----------+---------+--------+v

Modification Completed (For This Recard) ?
- Enter Y / N
n
Select The Humber Of The Following Editing
1. Tnsert Hew Attribute
2, Delete Attribnte
3. Modification af Attribute Names
4, Switch Key Attribute
3
+-------+-----------+---------+--------+
IBRANCH |BRANCHNAYME |RRANCH # |MGRNAME |
+-------+----o------+---------+--------+
Enter The Name 0Of The Attribute To Be Modifieq;
marname
Chanae From (“IGRMAME) To ¢
mgre=name

{BRANCH |BRANCHHNAME IBRANCH # |MGR = NAME H

+-------+-----------+----.--~-+-----------+

Modf{fication Completed ¢ For This Record) ?

Fnter Y / i
n
Select The 'lumber Of The rollowing Editing
1. Insert 'lew Attribute
2. NDelete Attribute
3. Modification Of Attribute Names
4. Switch Key Attribute

|

-‘.---------‘------------}

IBRANCH |BRANCHNAME IBRANCH § [MGR = NAME |

.---------n-u-n---+---------+---------.-+

Enter The New Key Attribute Nime
.branchs

IBRANCH |BRANCH # IBRANCHNAME |MGR = NAME |

+-------+-u--.----*-------n--.v’----------.-+

‘Step 1.3 Search for Redundancy
To remove the potential redundant attributes in a
record, simply select the Search for Redundancy function.

The following demonstrates this function

Attribute BRANCHNAME In Record BRANCH

Is The Same As Record LOAN
+-------+---i-----+----------~+-----------+-+-+-+-+-+-+-+
IRRANCH |BRANCH # IBRANCHNAME IMGR - NAHE N O T T I I I
+---'--"+'--—'----+'----------+-----—-----’4'-+"+'+-+-'+-+—+
+-----+-------+---------+-----------+-+-+-+-+-+-+-+-+-+-+
ILOAN JLOAN # |LOANTYPE IBRANCHNAME 1 | 1 AN T O T O T I
+-----+-------+---------+-----------+-+-+-+-+-+-+-+-+-+-+
~Should This Attribute Be Tn Both Records? Fnter Y /7 N n
Which Record Shall This Attribute Tn : branch
Attribute Deleted In Record LOAN
+—----+-------+---------+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

ILOAN ILOAN # ILOANTYPE | | | ' T I T L AL L A A I
+-----§----—-'+-----—---+-+—+u+-+-+-+-+-+-+-+-§-+-+-+-+-+

Step 1.4 Mapping between Keys

To determine the mapping type between keys, select
the Mapping between Keys function in the menu. An exanple

of this. function is as follows 2

Computer responds

Does Mapping Exist Between Key
ARANCH # And CID 2 (Y/N)

The designer responds

Y

Computer responds

Determine The Mapping Type.(ie, 1,2,3,4)f
1. 1 (€ == >) mapping
2. 1 (<K== >) mapping
2, M (€ ==>>) mapping
4, M (<<=ed>) mapping

The designer responds

3

After the mapping type has been determined, the

relationships wil} be aenerated by creating new
relationship sets for the relationships, and adding them
to the design,

Step 1.5 Display of Design Diagnostic

This function can be used to review the design,
following examples denmonstrate the

Capabilities

KEY WORD IN LIST

£ X X K ¥ K X kK ¥ ¥ XK ¥k ¥ X X KX ¥ KX X X
}

x

= ATTRIBUTE =
*

BRANCH #
RRANCHNAME
MGRNAME
TELLER #

TELLERNAME

CUSTOMERNAME

CUSTOMERDOB

CUST = ADDR
LOAN #

LOANTYPE

LOANASSGND

ACCTTYPE

X BALANCE
X

*
%

£ X X X K ¥ Ft K K X X K X ¥ K XX X X %X ¥

RELATION SETS

SELECT THE FOLLOWING DISPLAY

1, KFY WORD IN LIST
2. RELATIONSHIP SETS
3, ELEMENTARY RELATIONS

y]
BRANCH ¢ BRANCH # ,BRANCHNAME ,MGRMAME)
TELLFR ¢ TELLFR # ,TELLFRNAME) o
CUSTOM ¢ CID ,CUSTOMERNAME ,CUSTOMERDOB ,CUST = ADDR)
LOAN ¢ LOAN # ,LOANTYPE ,LOANASSGYND). SRR :
- ACCOUNT (- ACCT #.,ACCTTYPE ,BALANCE) . = .

1(CID , BRANMCH ¢) ' ’ '
2¢(LOAN 84 , BRANCH #)

3(ACCT ¢ , BRANCH &)
4(LOAN # , CID)
5(ACCT # , CID)
DRAWER (TELLER & ,BRANCH & ,DATE ,COH - EOD ,COH = SOD
TRAMNY ¢ ACCT # ,DATE ,TIME ,AMNT)

Note that the relation sets with numeric number as
their names are those relationships dgenerated by the

computer program during one of the following processes

i. Mapping between kevys,

2. Generating relations for trivial dependence,

)

_ satisfactorily

ELEMENTARY RELATIONS

SELECT THE FOLLOWING DISPLAY
1, KFY WORD IN LIST
2. RELATIONSHIP SETS
3, ELEMENTARY RELATIONS
3
ER1(
. ER2(
. ER3(
. ER4(
. ERS5(
ER6(
ER7(
ERA(
ER9(
ER10(
ER11(
ER12(
FR13(
ER14(
ER1S(
ER16 (
ER17(
FR18(
ER19(
ER20(
ER21 (

)
)

BRANCHNAME
MGRNAME)
TELLERNAME
)
)
)
)

BRANCH #
BRANCH # ,
TELLER & ,
CID , CUSTOMERNAME
CYD , CUSTOMERDOR
CTD , CUST =« ADDR
LOAN # LOANTYPE
LOAN ¢ LOANASSGND
ACCT ¢ , ACCTTYPE
ACCT # , BALANCE)
CID , BRANCH &)
LDAN # BRANCH &)
ACCT # BRANCH ¢)
LOAN # cIb)

ACCT ¢ cIp)

TELLER BRANCH #
TELLER BRANCH #
ACCT # DATE TIME -
TELLER BRANCH #
TELLER BRANCH #
ACCT & DATE TIME

’

14
’

)
)

’

DATE
DATE

, AMNT
DATE
DATE
ACCT

After the above steps are

edited, the designer p

following phase = Structure Refinement,
Step 2.1 Transitivity Removal
demonstration shows

The following

47

)
) .

, COW « EOD
COH = SOD
)

, BRANCH #
, TELLFR ¢
#)

’

)
)

completed and

roceeds to the

the process of

determining the transitive closure; selecting the

semantically meaningfyl FDs, and removing the undesirable

ones

Is The Following Dependency Semantically Meaninafuyl
TELLER # BRANCH ¢ DATE == > BRANCHNAME

n
Is° The Following Dependency Semantically Meaninafuyl
TELLER # BRANCH # DATE == > MGRNAME

n
- Is The Following Dependency Semantically Meaninaful
TELLER # BRANCH & DATE == > TELLFERNAME

n

Is The Following Dependency Semantically Meaninafuyl
ACCT *# DATE TIHME == > BRANCH &

b4

Is The Following Dependency Semantically Meaninaful
ACCT # DATE TIME == > BRANCHNAME

n

Is The Following Dependency Semantically Meaninaful
ACCT ¢ DATE TIMNE == > MGRNAME

n

Is The Following Dependency Semantically Meaningful
ACCT # DATE TIME == > CID

Yy

Is The Following Dependency Semantically Meaninaful
ACCT # DATE TTE == > CUSTOMERNAME

n

Is The Following Dependency Semantically Meaningful
ACCT ¢ DATE TIME == > CUSTOMFRDNR

n

After the above interactive process, the computer program
will modify the connectivity matrix according to the
instructions gilven by the designer, For those

relationships determined to be semantically meaningless

48

by the designer, the computer program will replace the

"1" with "0" 4in the corresponding positions of the

connectivity matrix to indicate that the relationships

have been removed,

Step 2,2 Reducing the Number of ERs

This step is the final step in structure refinement,
A matrix indicating the relationships among data eiements

is displayed :

RRAICH # BRANCH =« ADDR MGR = NAME DRANCH < NAME
BRANCH # 1
BRANCH « ADDR . 0
MGR = NAME : 0
BRANCH = NAME 0

Having done the Conceptual Design and Structure
Refinement, design results can be discussed.

step 3.0 Design Results

The design results for this case study are displayed

below ¢

¢ PBRANCH # , BRANCHNAHE MGRNAME ,)
¢ CID , CUSTOMERNAME ., cUSTOMERDOB , CUST = ADDR
(LOAW # , LOANTYPE LOANASSGND ,)
¢ ACCT # , ACCTTYPE BALANCE
(TELLER # BRANCH # DATE , coH - EOD , COH = sOD
¢ TPELLER- # -, TELLERNAME -3 -=—== = == 77 7 7 e -
cID <<==> BRANCH #
LOAN # <<==> BRANCH #
LOAN # <<==> CID
ACCT # <<==> BRANCH #
ACCT # <<==> CID
TELLER # BRANCH # , <¢==> BRANCH #
TELLER BRANCH # DATE ¢¢==> TELLER #
ACCT # DATE TIME ¢¢==> BRANCH #
ACCT # DATE TIME ¢<==> CID
ACCT # DATE TIME <¢==> ACCT #
(ACCT # DATE TIME AMNT)
DESTIGN COMPLETED

It should be noticed that the data elements
encompassed by parentheses are the relations. The data
elements with " ¢<==> " between thenm represents the
mappings between recordse.

Wwe can easily drav the following logical model by
rearranginy the design results :

50

’

)

'.LF—JJF VR

i (I (I |
{ACCOUNT! ICUSTOMER| |LOAN! | TELLER| [|BRANCHI
| (I P |

i | | |
| TRANSACTION| I DRAWER|
! | ! |

Figure 6.2 The Logical jodel For
Popular Bank Data Base Design

And we have following relations ¢

BRANCH (BRANCH#, BRANCH=NAME, MGR=NAMF))

CUSTNMER (CID, CUST=NAME, CcusT=noB, CUST=ADDR)
LOAN (LOAN#, LOAN=TYPE, LOAN=ASSGND)

ACCOUNT ¢ ACCT#, ACCT=TYPE, BATANCE)

TELLER (TELLER#, TELLER=NAME)

DRAWER (TELULER#, BRANCHSZ, DATE, COH=~EOD, COH=SOD)
TRANSACTION (ACCT#, DATE, TIMF, AMNT)

Comparing with the desian result in reference [1i],
the conceptual model developed by the computer program

has two extra relatlions ¢

1. ACCOUNT ¢<=> BPANCH = This relation 1s
redundant because RRANCH is transitively
dependent on ACCOUNT, It can be derived by the
following two relations :

ACCOUNT <<=> CUSTOMER
CUSTOMER <<==> RBRANCH

However, the relation ACCOUNT <<==> BRANCH {s
semantically meaningful in establishinag
connection between ACCOUNT and BRANCH,
Therefore, ‘the branch where the account {is
kept can be obtained directly from on=line
inquiry, which greatly speeds up inquiry
transaction,

LOAN <<==> BRANCH = The similar situation
applies to this relation, It 1is redundant
because it can be derived from the following
relations ¢

LOAN <<==> CUSTOMER
CUSTOMER <<=> BRANCH

Again, this relation establishes the
connection between LNAN and BRANCH, and speeds
up inguiry transaction,

6. CONCLUSION

Data base design has been described as an intuitive
and artistic process, typically, iterative, During each
iteration, the goal 1s to arproach more closely an

acceptable design. Thus a desiagn will be developed and

reviewed, the defects will be fdentified, and the design

steps will be repeated until no major defects can be
found by elither users and desianers,

The methodology presented in this thesis has shown
that it is feasible to replace the intuitive approach to
data base design with a systematic, computer-assisted
approach, This allows the designer and analyst to
concentrate mare on the semantic problems for which no
mechanized solution will be avallable, Alternative
designs may also be evaluated much more easily, The
computer=assistance also provides useful diagnostic
reports telling the designer about which data items have
been used so far in the desian, and where redundancies
are, The expected benefits are summarized below ¢

1. Presents information(such as design

diagnostic) helpful to the designer which
greatly reduces the tediousness of the desiagn

procedure,

Performs a more thorough and consistent
analysis of data requirements and ifnevitable

design trade=offs,
3, Improves design quality by :
53

a, Removing undesirable FDs,

b. Identifying and removing redundancles,
4, Shortens the design cycle by
a. Reducing the number of design

iterations,

b Reducing the time for each design
iteration,

Documenting the results, so the designer
and the end users can obtain a more
objective basis for dealing with
differing persnectives,

It should be emphasized that, in the field of data

base design, there are principles and tools, but they

must always be used in conjunction with intuition and

guided by experlience,

REFERENCE

1.

Atre, S., Data Base, Structured Technigques for
Design, Performance, and Management. John
Wiley, 1980,

Codd, E, F., "Extending the Relational Model
to Capture More Meaning.,"” In transaction on
Database Systems, Vol, 4, No, 4, December
1979,

Date, C, Je.y An Introduction to Data Base
Systems, Third Edition, Addisonewesley, 1981,

Engles, R, W,, "A Tutorial on Database
Organization,*” IBM Corp, Technical Report
TR,00,2004, IRM, Poughkeepsie, N,Y.,, 1970,

Hubbard, G, U,, Computer Assisted Data Base
Design, Van Nostrand Reinhold, 1981%,

I8M Corp., Data Base Design Afid (Version 2):
Designer’s Gulide, Publication No.
SH20=1627(1977),

IBM COrP., DRPROTOTYPE/TI Program
Description/Operation Manual, Publication No.
SH20-1953(1978),

Jenkins, M, A,, The O°NIAL Reference Manual,
Queen’s University, Kinston, Canada, 1983,

Martin, James, Computer Data=Base
Organization, Prentice=Hall, 1975,

Mealy, A, H., "Another Look at Data." in Proc,
AFIPS 1967 Fall Joint Computer Conference,
Vol, 31, AFIPS Press, Montvale, N,J., 1968

Schmidt, F, L, & Jenkins M, A, Data Systems
= The NIAL approach, Queen’s University,
Kinston, Canada, 1982,

Tsichritzis, Dionvysios Cey & Lochovsky,
Frederick H, , Data Models, Prentice=Hall
International, 1982,

Ullman, Jeffrey D,, Principles of Database

55

Systems, Computer Science Press, 1980,

14, Vetter, M, & Madison, R, N,, Database Design
Methodology. Prentice=Hall International,
1981,

15. Welderhold, Gio, Database Design, Mcgraw=H{1l1,

1983,

APPENDIX A: THE DOCUMENTATION

The program {s defined 1in the script file named
DB,NDF, the contents of which are 1listed {n the next
section after the brief descriptions of the operations
given below, (NDF {s an acronym and a suffix used in the

host system to mean Nial Definition File,).

1. ENTRY ¢ This operation is used for the
entering of the entity set names in the
initial data entry.

ATTR ¢ This operation is used for the entering
of the attributes in the initial data entry.

KEY ¢ This operation is used to identify the
Key domains for the records entered
previously.

NUM : This operation calculates the number of
all the data elements entered, which includes
the number of records, the number of
attributes, and the number of key domains for
each record,

TABLE : This operation displays the KEY=WORDe
IN=LIST,

DISPL : This operation is used to display the
entity sets and relationship sets for all the
data elements entered,

MODI. : This operation is used to modify the
data elements in a specific record, It
performs the tasks including insert
attributes, delete attributes, modify
attribute names, and switch key domains,

REEDIT : This operation is used to make
changes for all the records entered
previously. It performs the tasks including
inserting new records, deleting old records,
and modifying old records (MODI),

57

SRCH ¢ This operation searches redundant
attributes existing in the records entered
previously,

MAP : This operation determines the mapping
types among key domains,

GEN : This operation generates relations for
trivial dependencies,

REL : This operation is used to generate the
ERs,

ERR. ¢ This operation displays all the ERs,

ALT : This operation generates a l1ist of all
data elements with every data element
appearing only once.

MTRX : This operation is used to derive the
connectivity matrix,

FRAME : This operation generates a frame which
gives the connectivity matrix coordinates of
reference,

COMP H This operation determines the
compositions for the connectivity matrix,

CLOSURE : This operation determines transitive
Closure,

SOL : This operation is used to select, from
among the transitive dependencies derived, the
semantically meaninaful ones,

TRANS : This operation is used to transform
the NIAL expression of Boolean variables (
NIAL use "o" "1" to represent truth and false
) Into common expression of Boolean variable (
i.e, "0" "1") for the manipulation of Boolean
logic,.

REDUCES : This operation is used to reduce ERs
according to the algorithm presented in
section 4,2.

DISPLAY : This operation is used to display
the records entered, their contents and

58

relations., It includes operation TABLE, DISPL,
and ERR,

23, Result : This operation displays the design

results,

For the demonstration of how the program works, refer to

the CASE STUDY,

APPENDIX B: THE PROGRAM

R R AR A A T R AL R L LR L £ 2 1

COMPUTER ASSISTED DATA BASE DESIGN

£ X K X ¥ X K X X K & X K X X % kK %X X

SEPTEMBER 19084

LEHIGH UNIV,

% %
% %
% %
% %
% %
% %
% BY : CHIEN=CHUNG J, CHUANG %
% %
% %
% %
% %
% %
% %

FEEEIEHTEIEILLLELLTHRLLLLLELLLHILULTINLY

writescreen, * Enter Record ° link sketch {;
a = readscreen °°;

b = phrase a;

i{f scan a "= scan d then ¢ := ¢ link b endif ;

60

1 :=1+ 13
endwhile;
for j with count ((tally ¢) minus 1) do
cd := descan scan (J pick ¢)?
e :=cd (0 J) place e;
endfor;
1 ¢= 1 minus 1; .
writescreen ° ALL THE RECORDS ENTERED ARE AS FOLLOWS : °;
writescreen sketch e)

attr is op x(
if m "= 1 then
mc 2= (m minus 1) drop (count ((tally c) minus 1));
¢e= tally c¢;
t= tally ¢; mc := count (m minus 1) endif;
with mc do
14 O:
at pick ¢
1 20 reshape * *;
writescreen, ' For Record ¢ ° link sketch at ;
1€ check = 1 then _
ca := read °First Enter The Number of Keys In This
Record: *;
writescreen. °Please Enter The Key Domains In The First
°® 1ink sketch ca;
writescreen °Entries 0Of The Data Inputs’;
caa := caa link ca; endif;
while scan aa "= scan 4 do
aa ¢= readscreen ' ‘:
bb ¢= phrase aa;y
cc := ¢c¢ link bb;
endwhile;
for 3j with tell ((tally cc) minus 1) do
gg := descan scan (33 pick cc);
ee := gg (0 J3) place ee;
endfor;
ee := solitary ee;
dd := dd link ee;
endfor;
writescreen ° ALL THE ATTRIBUTES ENTERED ARE
AS FOLLOWS ¢ °;

mm = (tally dd4) minus 1;

for att with count mm do

disp := att pick d4d;

writescreen. ° For Record ¢ ° link sketch att;
writescreen sketch disp;

endfor)

key is op x(

Pk 3= ° *;

if check "= 1 then

writescreen ° ENTER THE KEY FOR EACH RECORD , ‘gendif:
if mr ™= 1 then

mer 3= (mr minus 1) drop (count ((tally d4) minus 1));
mr := tally d4qd;

else mr := tally dd; mcr := count (mr minus 1) endif;
for att with mcr do

disp := att pick d4;

writescreen, ° For Record : ’ 1link sketch att;

writescreen sketch disp;
case check from
1 ¢ hhh 2= solitary disp;
dtd := d4dtd 1link hhh end '
else aaa != readscreen ° Enter Key Domain ¢ .°;
temp = (0 1) pick disp;
Kkk 1= 1;
while scan pk “= scan aaa do
pk ¢= (0 kkk) pick disp;
sn ¢= (0 0) pick disp;
Kkk t= Kkk + 1;
endwhile;
pk := phrase pk;
pck := pck link pk;
sn ¢= phrase sn;
sns := sns link sn;
if kkk "= 1 then
disp ¢= pk (0 1) place disp:;
disp := temp (0 (kkk minus 1)) place disp
endif; _
writescreen * THE RECORD WITH KEY DOMAIN IN THE SECOND
COLUMN IS DISPLAYFD *;
writesereen sketch disp;
eee := solitary disp;
ddd := ddd link eee endcase;
endfor; check := 03)

num is op x(
an = (tally d44d4) minus
bn ¢= (tally dtd) minus
070;
'70;
H
with count an 4o
12
tn pick d44;

repeat
XXX ¢= (0 11) plck xx;
1L =11 + 1;
until scan xxx = scan h
endrepeat;
111 = 111 1ink 1i;
endfor;
for rn with count bn do
ss = 1;
PP = rn pick dtd;
repeat
ppp ¢= (0 ss) pick pp;
§s = 8Ss + 1;
until scan ppp = scan h
endrepeat;
§5S = ss85 link ss?

endfor;

)

table 1is op x(
Writescreen "% X X %X X X X X %X % X ¥ ¥ %X X ¥ X X k¥ x x°;

writescreen * x°;

writescreen °¥ ’:
writescreen ° X’
writescreen ¥ = ATTRIBUTE = *:
writescreen °* X
writescreen °% *s
writescreen ° ' = . ' x*;
writescreen °’x ’:
Wwritescreen °* X°;
for tn with count an do
XX 3= tn pick ddd; A
for tnn with count ((tn pick 1ii) minus 2) do
Xxx 3= (0 tnn) pick xx;
if tnn =1 then
writescreen, °’%* * link sketch xxx;
writescreen’ X
else ,
writescreen, ’% * 1ink sketch
XXX ¢
writescreen’ X’
endi€;
endfor;
endfor;
for rn with count bn do
PP ¢= rn pick dtd;
rr ¢=rn pick caa;

for rnn with count((rn pick sss) minus 2) do
ppp ¢= (0 rnn) pick pp}
{f rnn <= rr then
writescreen, ‘¥ * 1i{nk sketch ppPp?
writescreen’
else
writescreen., ‘¥
sketch ppp?
writescreen °
endlif;
endfor;
endfor;
writescreen ‘¥
writescreen

x°:

sritescreen °¥ * ¥ ¥ ¥ ¥ £ K ¥ X £ ¥ " EEEEREEEIELD

displ is op x(
141 := 1ii minus 17
for gy #ith count an do
ggy := ‘C °3
xg = gy pick ddd;
mm := gy pick 1ii;
for xy with tell mm do
gg = (0 xy) pick xg; o
{f xy = 0 then x3y = 99 s qg ¢= * * endif;
ggy $= ggy link 99;
if (xy ~= (mm minus 1)) and (xy “= 0) then
ggy $= 99y link °,°’ endif?
endfor;
writescreen, sketch Xxgy 1ink sketch ggy link *)’
endfor;
{11 := 111 + 13
sss := sss minus 1}
for w with count bn do
ggy = ‘C 3}
wy := w pick atd;
nn ¢= w pick sss;
ny := w pick caaj
for ww with tell nn do
kk = (0 ww) pick Wy; _ .
{f ww = 0 then Xgy 2= kk ¢ kk = ° ° endif;
ggy = g9y l1ink kkj
{f (ww ~= (nn minus 1)) and (ww = 0) then
ggy $= 99y 1ink *,’ endif;
endfor; .
writescreen, sketch Xgy 1ink sketch ggy link ')
endfor;
sss := SsSs + 17)

modi 1s op x(
writescreen °’Select The Type Of Record Set’;
writescreen °1, Record With Simple Key’;
writescreen ‘2, Record With Compound Keys’:
a :=read * 3
If a=1 then
repeat
Yy := 03 . .
writescreen ’ Enter The Record To Be Modified’;
rr := readscreen ° ‘¢
repeat
Yy $= vy + 1;
uu = yy pick ddd;
ppp ¢= (0 0) pick uu;
until (scan ppp = scan rr) or (yy = an) endrepeat;
writescreen sketch uu;
repeat
writescreen ° Select The Number Of The
Following Editing’;
writescreen ° i, Insert Mew Attribute
writescreen ° 2. Delete Attribute
writescreen ° 3, Modification 0Of Attribute Names
writescreen * 4, Switch Key Attribute
ed := read * °*;
case ed from
1 : writescreen sketch uu? |
writescreen °Enter The Name Of The Attribue To
Be Inserted’;
ins readscreen ° °;
ins descan scan ins;
£f y pick 111i;
£f£ f minus 1;
uu ns (0 £f) place uu;
4 4 :
113 1i1 end
writescreen sketch uu;
writescreen ‘Enter The Name 0Of The Attribute
To Re Deleted’;
de adscreen ° *;

. - 9. &
ap we e “e

f£ + 1;

gq = (0 ££f) pick uu;
until scan de = scan aq endrepeat;
repeat

f£f £f£f + 1

ins (0 £££f) pick uu;

uyu := ins (0 ££f) oblace uu;

££ = f£f + 1}

65

until scan ins = scan °’ ’ endrepeat;

gf = yy pick 11%;

gf := gf minus 1;

{11 := gf yy place 11i1i;

uu ¢= ° * (0 fff) place uu end

writescreen sketch uu?

writescreen ‘Enter The Name Of The Attribute
To Be Modified’;

mo adscreen ’ *:

£ff + 1;
(0 ££) pick uu;
until scan mo = scan qar endrepeat;
mo := descan scan mo;}
writescreen, °‘Chanae From (° link sketch mo
1ink °) To:’;
po $= readscreen ° °*;
po ¢= descan scan po?
uy := po (0 ££f) place yu end
writescreen sketch uug; .
writescreen’Enter The New Key Attribute Name’;
mo := readscreen °‘° °’;
ff 2= 0;
repeat
ff = f£f + 1;
qr := (0 £f£) pick uu;
until scan mo = scan qr endrepeat;
temp = (0 1) pick uu;
ua = temp (0 ££f) place uu;
uu = gqr (0 1) place uu;
for af with count ((tally pck) minus 1) do
ab := af pick pck?
{f scan ab = scan temp then
qr ¢= phrase qr;
pck := ar af nlace pckjendif;
endfor end _
else writescreen’No Such Modification Capability?
Try Again!’
endcase;
ddd := uu yy place d4d4dd;
writescreen sketch uuyp
writescreen ’‘Modification Completed
(For This Record) ?°;
writescreen ‘Enter Y /7 N *;
ch 3= readscreen °
until scan ch = scan ‘y’ endrepeat}
num 0;
displ 07

writescreen °Modification Completed
(For Record Set)?’:
chh $= readscreen * *;
until scan chh = scan ‘y’ endrepeat :
Else repeat
Yy = 03 _ ‘
writescreen ’ Enter The Record To be Modified’;
rr i= readscreen ° ’;
repeat
YY = vy + 7
uu = vy pick dta;
ppp ¢= (0 0) pick uu;
until (scan ppp = scan rr) or (vy = bn) endrepeat;
writescreen sketch uu;
repeat
writescreen ° Select The Number 0f The Following
Editing’;
writescreen * 1. Insert New Attribute °:
writescreen ° 2, Delete Attribute *y
writescreen * 3. Modification Of Attribute Names’;:
ed 1= read * *;
case ed from
1 ¢ writescreen sketch uu; ,
writescreen ‘Enter The Name 0Of The Attribute
To Be Inserted’;
readscreen ° ‘;
= descan scan ins;
(vyy pick sss) minus 1;
uu ins (0 £f) place uvu:
£ff £t + 2;
sss = ff yy place sss end
writescreen sketch uu;
writescreen °Enter The Name Of The Attribute
To Be Deleted’;

adscreen ‘s

ins
ins
£f

= ff + 1;
aqq = (0 £f) pick uu;
until scan de = scan qq endrepeat;
repeat
ff£f
ins

£f£ + 1;

(0 £££) pick uup

uu ins (0 ££f) place nu;

ff £t + 13

until scan ins = scan ' ° endrepeat:
gf 2= (yy plck sss) minus 1;

$Ss = gf vy place sss;

au ¢= * * (0 fff) place uu end

67

3t writescreen sketch uu; .
writescreen ‘’Snter The Name 0Of The Attribute
To Be Modified’;
eadscreen * ‘*:
’

r
0

££ + 1;
(0 ££) pick uu:
until scan mo = scan qr endrepeat;
mo ¢= descan scan mo:
writescreen, ‘Change From (* 1link sketch mo
link *) To :°;
Po := readscreen ° °:
po := descan scan po:
uu = po (0 £f£f) place uu end .
else writescreen ‘No Such Modification Capability?
Try Again!‘’;
endcase;
dtd = uu yy place dtad:
writescreen sketch uu;
writescreen °Modification Completed
(For This Record)?’:
¢ch := readscreen * *;
until scan ch = scan ‘y’ endrepeat:
num 0;
displ 0;
writescreen °‘Modification Completed
(For Record Set)?’;
¢chh := readscreen * °;
until scan chh = scan ‘y’ endrepeat;
endif;
)

reedit is op x¢(

chhh = * *;

repeat

displ 0;

writescreen’Select The Number Of The Following Editing’;
writescreen * 1. Insert New Record Set *:
writescreen * 2, Delete lindesired Record °:
writescreen’ 3. Modifications Of Record sets Entered’;
edd := read * °*;

case edd from

1

¢ writescreen’Select The Type Of The New Record Set, ’;
writescreen °1, Record Set With Simple Key.’:
writescreen °2, Record Set With Compound Keys,’;
a ¢t=read * °;
1£ a = 2 then check := 1; endif;
i= entry e;

68

attr 0;
key 0 end
2 : displ 0;
writescreen ‘Enter The Name Of The Record
To Re Deleted’;
a = readscreen ‘' ’;
ss := ((tally d4dd) minus 1)
for x with count ss do
t= x pick dda;
ba ¢= (0 0) pick b;
i1f scan ba = scan a then
pk ¢= (0 1) plck b;
1f x < ss then
Yy 2= x + 13
YY = X3
repeat
bc = y pick ddd;
ddd $= bc yv place ddd;
Yy =Y + 13
Yy = yy + 13
until y >= (ss + 1) endrepeat;
endif;ddd := front ddd;
Z := pk find pck;
1£f z "= ((tally pck) minus 1) then

2Z = Z + 1

2722 = 7}
repeat
bg ¢:= zz pick pck:
Pck := bg zzz place pck?
Z2Z = ZZ + 1
ZZZ 8= 727 + 1
until zzz >= (tally pck) endrepeat;
endif; pck = front pck;
endif;
endfor;
ss = ((tally dtd) minus 1):
for x with count ss do
b 3= X pick A4Atd;
ba := (0 0) pick b;
i1f scan ba = scan a then
Z = X3
i1f x < ss then
Yy =X + 1;
Yy = X3
repeat
be = y pick d4dta;
dtd = bec yy place 4td;
Yy =y + 1;
Yy = yy + 1;

until y >= (ss + 1) endrepeat;
endif;dtd := front d4dtd;
i£f z "= ((tally caa) minus 1) then
zZz =z + 1;
222 = 23
repeat
bg := 2z pick caa:
caa := bg zzz place caa;
27 = 2Z + 1;
2272 $= z2Z + 1;
until zz >= (tally caa) endrepeat;
endif;caa := front caa;
endif;
endfor end
3 ¢ modi 0 end)
else writescreen’No Such Editing Capability? Try Again !’
endcase;)
num 0;
Table 0;
displ 0;
writescreen ’ Editing Completed ? Enter Y / N *;
chhh $= readscreen °* *;
until scan chhh = scan ‘y’ endrepeat;
writescreen °‘Display Of Editing Result : *:
num 0;
table 0;
displ 0)

srch is op x(
flag := 1;
111 := 111 minus 2;
ss (= count ((tally ddd) minus 1);
for sr with ss do
che (= sr pick ddq;
raa := (0 0) pick che;
nc := sr pick 1ii;
for z with count nc do
el := (0 z) pick che;
for srr with (sr drop ss) do
mat $= srr pick ddd:;
ral := (0 0) pick mat:;
nm ¢= srr pick {i1;
for zz with count nm do
ell := (0 zz) pick mat;
if scan el = scan ell then
writescreen * *s
writescreen °
writescreen ’
writescreen °

writescreen ’ ‘s ‘
writescreen, °Attribute * link sketch el link !
In Record’ link sketch raa;
writescreen, ° Is The Same As Record ’
1ink sketch ral;
writescreen sketch che?
writescreen sketch mat;
ad := readscreen ‘Should This Attribute Be In
Roth Records? (Y/N)*;
{1f scan ad = scan ‘n’ then
ra := readscreen ° Which Record Shall This
Attribute Re In: *;
ra := phrase ra;
if scan ra = scan raa then rae := ral;
gy := mat; yy := srr; gf := nm; ff
else uu := che; vy := sr; gf (= nc;ff
rae := raa; endif:
repeat
1344
ins (0 £££) pick uu;
uu ins (0 f££f) place uu;
b 4 4 £€ + 13
until scan ins = scan ° ‘ endrepeat;
gf := gf minus 1?
{11 := gf vy place 111i;
gn ¢= °* * (0 ££€) place uu;
ddd ¢= uu yy place ddd;
writescreen, °‘Attribute Deleted In Record .
l1ink sketch rae;
writescreen sketch uu;
endif;
flag := 0;
endif;
endfor;
endfor;
endfor;
endfor; ,
i{f flag = 0 then flg := 0; -endif;
114 = 11% + 2; '
displ 0)

map is op x(
e := 1,
for af with count ((tally pck) minus 1) do
k := af pick pck;
ox := af fold rest pck;
for bf with count ((tally ox) minus 1) do
j := bf pick ox;
writescreen °Does Mapping Exist Between Key?’:-

71

writescreen, sketch k link * And ° link sketch j
link °? (Y/N)°*;
cf := readscreen * °;
if scan cf = scan °‘y’ then
writescreen ‘Determine The Mapping Type,
(ioe' 1'2'3'4)';
writescreen ‘i, 1 1 (€ == >) mapping’;
writescreen ‘2., M 1 (<<== >) mapping’;
writescreen °3, 1 M (€ ==>>) mapping’:
writescreen ‘4, M M (<<==>>) mapping’:
af := read ‘° °;
case df from
1 ¢ vv = (solitary e) link (solitary k) 1link
(solitary J) link (solitary ’ °):
= ddd 1link solitary (1 4 reshape vv);
= e + 1;
v = (solitary e) link (solitary 3J) 1link
(solitary k) 1link (solitary ° *):
ddd 1ink solitary (1 4 reshape vv);
+ 1 end
(solitary e) link (solitary k) link
(solitary 3J) link (solitary °* *):
ddd := ddd link solitary (1 4 reshape vv);
e 2= e + 1 end
vy = (solitary e) link (solitary j) link
(solitary k) link (solitary ’ *);
dd := ddd link solitary (i1 4 reshape vv);
t= e + 1 end
v ¢= (solitary e) link (solitary k) link
(solitary J) link (solitary k) link
(solitary °* *):
dtd := A4td link solitarv (1 5 reshape vv);
caa := caa link 2;
e 1= e + 13
vy = (solitary e) 1link (solitary k) link
(solitary Jj) link (solitary 3j) 1link
(solitary ° *):
dtd := dtd link solitarv (1 S5 reshape vv);
caa := caa link 2;
t= e + 1 end
else writescreen °Error ?’ endcase;
endif;
endfor;
endfor;
num 0;)

ddd @
e 3
v

a
e
v

lag
kck

gen is op x(

1;
¢

;

nsn
ck

pp
rr
ns
ns

ck
if
| o
endf
for
ab
fo

en
endf
num
)

rel
ml

g
30

g]
-

mlm
gr
333
for
ca

e @
s= ¢ Y

14
for rn with count bn do

¢= rn pick 4t4d;
¢= rn pick caa;
¢= phrase ((0 0) pick pp)?
n :=nsn link ns;
for rnn with count rr do
ck := (0 rnn) pick pp?
ck := phrase ck;
ckk := ¢ckKK link ck;
endfor;
k ¢= solitary (rest ckk);
(0 pick ckk) notin kck then
k := kck 1ink ckkrendif;
or;
zk with count ((tally pck) minus 1) do
c := zk pick pck;
r kz with count ((tally kck) minus 1) do
bcd := kz pick keck»
xk = tally bcd;
1f abc in bcd then
vv =2 bcd 1link (solitary abe) link (solitary ° °);
Xn := XKk + 3;
for 11 with count e do
33 ¢= (1 xn) reshape ((solitary 1i1) link vv);
if j3 in dtd then laq := 0:endif;
endfor;
1f lag "= 0 then
vv = (solitary e) link vvy
dtd := dtd link solitary (1 xn reshape vv);
caa = caa link xk;
e :=e + 17
endif;
endif;
qafor;
or;
0z

is op x(
H

4 0
’

.
’

[
’
’
[

- [4 l'

t= 1ii minus 2;

co with count an do
e= co pick 33i3;

co pick d4dd;
(0 1) plck cm;
pk phrase pk;
ge solitary (pk link pk)?
ger := ger link ge;
for it with (1 drop (count ca)) do
atr ¢= (0 {t) pick cm?
atr := phrase atr;
re pk link atr;
re solitary re;
ml ml link re;
endfo
endfor;
pbb := sss minus 27
for oc with count bn
ac oc pick bbb}
mec oc pick dtd;
am oc plick caa;
ti with count am do
e= (0 ti) pick mC?)
¢= (phrase atr) link (phrase * *);
gr ¢= gr link atr;
endfor;
gr := solitary (rest grd:
ke := qr link ar;
ke := sollitary ke;
mlm ¢= mlm link ke;
for tii with count ac do
if tii > am then
atr := (0 tii) pick mc?
atr := phrase atr;
kr := solitary (gr 1link atr);:
im 2= 1lm link kr;
endif;
endfor;
endfor;
)

cn
pk

= U untn

4 o8 ee oo

err is op ml lm(
nml ¢= (tally ml) minus 1?
for 1 with count nml do
er := 1 pick ml3}
for §J with 0 1 do
dp := 0 pick er;
dq := 1 pick er;
endfor;
writescreen., °ER’ link sketch 1 link °(* 1link
sketch dp link °,° link sketch
dg 1ink *)°?

74

endfor;
Imn ¢= (tally 1m) minus
for jJ with count 1mn do
re := j pick im;
for {1 with 0 { do
pd := 0 pick re;
dg := 1 pick re;
endfor;
1 :=1+1; _
writescreen, ‘ER’ link sketch { link °(* 1link
sketch pd 1link *, ’ 1link sketch
dq 1link *)’
endfor;
)

alt is op x¢(
gce = *
for x with count an do
gl $= x pick ddd;
gc = x pick Jii;
for xx with count gc do
glc := (0 xx) pick gl;
glc := phrase glc;
gecc = gce link gle;
endfor;
endfor:
for y with count ((tally 1m) minus 1) do
lg ¢= y pick 1m;
for yy with 0 1 do
€g = vy pick 1g; , .
if yy = 0 then cg := solitary cg ; endif;
gecec := gee link cg;
endfor;
endfor;
mlist := rest gccy
nmi := tally mlist;
33 = * *;
for § with tell nmi do
X ¢= J pick mlist;
i1f x notin jj then _ .
if tally x > 1 then x := solitary x ; .endif;
33 := 31 1ink x;
endif;
endfor;
mlist ¢= rest jj;)

mtrx i{s op x¢(
am 3= tally mlist;
mXx ¢= am am reshape 0;

for xa with tell am do
gx = Xa pick mlist; , ,
{f£ tally ax > 1 then ax 2= solitary axj; endif;
for xb with tell am do
px = Xb pick mlist;
{f tally px > { then pPX 2= solitary pX; endif;
gp = (gx 1ink pXx)?}
i€ (gp in ml) or (gp in ger) or (qp in 1m)
or (gp in mlm) then
mx ¢= 1 (xa xb) place mX; endif;
endfor;
endfor;)

frame is op m mlist(,
mix €lip (" hitch Mlist nitch flip (Mlist
hitch rows M)))

comp is op mm (
WWe=(rows MM) eachleft eachriaght and (cols MM);
XM:=shape MM Reshape (or. f£lip link WW);
s=MM or XM;
)

closure is op m(
Md:= M match 1;
Y:= shape M reshape, 0 1ink, first shape M reshape 17
Cs= Md and I}
repeat
mm $= C;?
comp mm;
ce=C and I;
until ¢ = mm endrepeat;
tce=1 (1 £indall, Md or MM) placeall (shape M reshape 0)7
frame tc Mlist;
)

sol is op x(
mt := tc > mX;
dex = 1 findall mt;
€or xa with tell am do
xg $= xa plck mlist;
for Xxb with tell am do
Xp = Xb pick mlist?
{f (xa xb) in dex then
writescreen *1s The Following Dependency
semantically Meaningful?(Y/N)':
writescreene. sketch xa 1link ¢ == > ° 1ink sketch Xpi

ap := readscreen :

76

i1f scan ap = scan ’n’ then
tc := 0 (xa xb) place tc:
endif;)
endif;
endfor;
endfor;
)

trans 1is op mm(, .
1t (1 £indall mm) placeall (shape mm reshape 0)
)

educes is op tc(
0 tc match 1;

trans (tc > trans (shape tc reshape or cols mo));
trans (r >=, shape tc reshape sum rows tc);
rxtrans(transpose, shape tc reshape sum cols r> 1);

r
m
r
r
r
)

displays is op x(

uh = 0;

num 0;

writescreen °SELECT THE FOLLOWING DISPLAY’;
writescreen °1, KEY WORD IN LIST®;
writescreen °°;

writescreen °2,., RELATIONSHIP SETS’;
writescreen *°’;

writescreen °3. ELEMENTARY RELATIONS’;

ba ¢:= read * °;

case ba from

1 : table 0 end

2 displ 0 end

3 : gen 0; rel 0; err ml 1lm; vh s=1 end
else writescreen’ERROR ? TRY AGAIN !’ endcase ;
)

search is op x(

repeat

flg := 1;

srch 0;

until £1g "= 0 endrepeat;
)

result 1is op Xx(

ec := 0;

ds ¢= 1 findall r; .

for 14 with tell ((tally ds) minus 1) do
XX ¢= 14 pick ds;

X0 ¢= 0 pick xx;

X1
cd
Yy
yo
vi

1 pick xX;?
id + 1;
cd pick ds;
0 plck vy’
1 pick vys
if = 0 then
mk x0 pick mlist;
if tally mk > 1 then
g = mk £ind kck;
rec := g pick nsn;
else g := mk find pck;
rec := g pick snsjendif;
endlf;
if x0 = y0 then
ec = 1y
{1f tally rec = 1 then
rec := rec 1ink °(* link (x0 pick mlist) 1link
, link (x1 pick mlist) 1ink °,° 1link
(yl pick mlist) 1link ',
else rec := rec link (yl pick mlist) 1link *,°;
endif;
else rec := (rest rec) link °)
writescreen sketch rec;
ec = 07
endif;
endfor;
writescreen, sketch rec link ‘
mi := trans (tc > r)?
for kc with tell (tally mlist)
mi := 0 (kc kc) place mi;
endfor;
sd := | findall mi;
for di with tell (tally sd) do
XX di pick sd;
X1 0 pick xx;¢
x2 1 pick xx;
g1 x1 pick mlist;
a2 x2 pick mlist;
if notin pck then _
writescreen, °(* link sketch gi 1ink *,’ link
sketch g2 1link °)‘:

se [D eo eos oo %0 9o
ottt nil

o o o5 oo o0
Mo unuu

Q

else)

writescreen, sketch gl 1ink * <<==«> ’ 1link sketch g2;
endif;

endfor;

)

design 1s op x(
repeat

writescreen SELECT THE FUNCTION IN
FOLLOWING MENU®?
writescreen
writescreen
wrjitescreen
writescreen
writescreen
writescreen
writescreen
writescreen
writescreen
writescreen
a := read *
case a from
1 : repeat
writescreen °‘SELECT THE FUNCTION FROM
THE FOLLOWING MENU’;

CONCEPTUAL DESIGN’;

STRUCTURE REFINMENT®}

DESIGN RESULT®;

® ® % ® @ @ & @ % s 9

writescreen
writescreen '’
writescreen ‘
writescreen *
writescreen ’
writescreen '’
writescreen °
[4
1[4
’
[
9
[}
L}

DATA ENTRY’;
REEDITING'?

SEARCH REDUNDANCY®;
writescreen
writescreen
writescreen
writescreen
writescreen
writescreen
b = read '
case b from
{ : writescreen’SELECT THE TYPE OF RECORD‘;
writescreen’i, RECORD WITH SIMPLE XEY’;
writescreen’ °;
writescreen’2, RECORD WITH COMPOSITE KEYS’;
bb := read ° ’; _
{f bh = 2 then check I= 1 else check := 0; endif}
e := entry e;
attr 0;
key 0 7
num 0
end
reedit 0 end
num O0; search 0 end
map 0 end
displays 0 end
cj := 1 end
e writescreen ‘ERROR ? TRY AGAIN .!° endcase;

MAPPING BETWEEN KEYS’;

DISPLAY DESIGN DIAGNOSTIC®;

e ® WO O “e O “e 8 “e ~o W

e > sl o) er o

14
6, EXIT’;?

.
’

79

until ¢j = 1 endrepeat ?
if uh "= 1 then gen 0; endif

end
repeat
writescreen

writescreen

writescreen

writescreen
writescreen
writescreen
writescreen
writescreen
writescreen
writescreen
v ¢= read *
case v from
1
2
3
4

g3

alt 0; mtrx 0; closure mx;
reduces tc;
displays 0 end

1 end

e)lse writescreen’ERROR

‘SELECT FROM THE
FOLLOWING MENU®?

TRANSITIVITY REMOVAL®;
REDUCING THE NO OF ERs®;

DISPLAY STRUCTURE DIAGNOSTIC';

@ W8 6 We & W D

D et s N ers o

EXIT®:

[
’

so]l 0 end

frame r mlist end

? TRY AGAIN 1* endcase ;

until gj = 1 endrepeat end

result 0;
writescreen
jc 1 end

*DESIGN COMPLETED?;

else writescreen °ERROR ? TRY AGAIN !’ endcase;
until jc = 1 endrepeat;

)

VITA:

The author was born to Capt, Kai=Ming Chong and his
wife Ya=Min Chung in Taipei, Tajwan, the Republic of
China, on December 27, 1959, He completed his
undergraduate study 1in Tunghai University, Talchung,
Taiwan, and received a Rachelor of Sclence degree in
Industrial Engineerina in June 1981, Upon graduation, he
was called to military service for two years, After that,

ne came to the United States for his graduate studies.

	Lehigh University
	Lehigh Preserve
	1985

	Computer assisted relational data base logical design /
	Chien-Chung J. Chuang
	Recommended Citation

	tmp.1551116526.pdf._1_Uq

