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Abstract

The following paper is intended to be an intoduction to petri

net theory. The definitions of petri nets, coverability trees and

coverability graphs are covered, along with the basic properties
of same. It is shown that petri nets with regular firing languages

exist and that it is decidable whether or not the firing language

of a given petri net is regular,




Section 1 - Preliminary Results:

Segment 1.0 - Introduction:

The first section of this paper contains the definitions and
theorems upon which our introduction to petri net theory is
based. Its contents should be familiar to most readers, however
the reader should be conversant with the specific statements of
the definitions and theorems within before proceeding to the
second section. For those who are not familiar with the theorems
which follow, explicit proofs have been provided. Since this
material is preliminary to the main thrust of this paper, the

following definitions and results are listed with little or no

comment.

Segment 1.1 —~ Graph Theory and Trees:

This segment contains the basic definitions from graph theory

which we will require in section two. It also contains a
definition of trees as a subclass of directed graphs. We prove

that the standard properties of trees hold for our definition.

Def 1.1.1 General Graph (gg):

A general graph G is a system consisting of:

1) a non-empty set V of objects called vertices,
2) a set E of objects called edges,

3) a function m defined on E with values consisting of




subsets of V having one or two elements.

We write G = (V,E,m) to represent a gg.

We say that a gg is finite iff V and E are finite.

If e€E, v,v'€V and mu(e) = (vov'}, we call v and v' the

end points of e.

Note: We avoid the usual notation and do not insist that the

end points determine the edges.

Qt:::jl:i_ a
O
Fig 1-1 Some General Graphs:

Def 1.1.2 Connects:

Let G = (V,E,~) be a gg,
v,v'€v,

e€ E,

If m(e) = (v,v'}, then we say that e connects v and v'.

Def 1.1.3 Graph:

Let G = (V,E,4&) be a gg.
Then G is said to be a graph iff Ve,e'€ E, u(e) = m(e') ==

e=e’o




Fig 1-2 Some Graphs:

Def 1.1.4 Path:

A path in a gg G = (V,E,m) is a sequence
‘r- es e
voelv1 vk-lekvk' k €N,
where vie VVvie(o0,...,k},
eiGE Vie(l,...,k),
e, connects Vil and A Yie(l,..., k).
v0 is said to be the initial vertex or initial point of .

vk is said to be the final vertex or final point of

Given 7, we define

#ﬂvev sesV € V

k 'k k-1 110
Thus the initial vertex of W is the final vertex of 1} and vice

versa.
If 7 and 1r' are paths in some gg such that

= Ty ’
v0 v 1e vk k€N

1Y k-
w' = ! { ...V:'j 'V' je".

= Yo® 1555

and Ve = Vo (i.e. The final vertex of 7requals the initial

vertex of 7r',)

Then we define %' as follows:

w’ = v e LN ] * e 0 ' '.
@ 0 lvl vk 1ekvkelv1 v'! 1ejvj




Note that the initial vertex of is the initial vertex of 7o'

and that the final vertex of ' is the final vertex of 7o',

Observe that:

)R o ok,
Finally, if 24 is defined and %" is defined, then so are
()" and w(»'%"), and further,

(7o' )" = W(w'rt),

Def 1.1.5 Length of a Path:

Let G = (V,E,») be a gg,
U= vOelvl"'vk-lekvk' k éN, be a path in G,
Then T is said to have length k. In other words, the length of

is equal to the number of edges in .

Def 1.1.6 Connected:

A graph, general or otherwise, is said to be connected iff

Vvsw'€éV, v £ v', 3 a path % such that v is the initial vertex

of W and v' is the final vertex.

N VAU
o N— O

A Connected Graph: An Un-connected Graph:

Fig 1-3:

Def 1.1.7 Bipartite General Graph:

Agg G = (V,E,u) is said to be bipartite iff I V',V"€V such




1) VavVigyy",

2) V'inyv" a ¢,

3) VI A @V 4o,

4) VecE, ue)nVv' 4 ¢,
sle)nv" 4 g,

Def 1.1.8 General Directed Graph (gdg):

A general directed graph is a system consisting of:

1) a non-empty set V of objects called vertices,

2) a set E of objects called edges,

3) two functions ‘f,(ﬂ:E--)V. Given e¢E, t(e) is said to be the

initial vertex of e and ¢Xe) is said to be the final vertex

of e.
We write D = (V,E,t,@) to represent a gdg.
We say that a gdg is finite iff V and E are finite.
Note that every gdg D = (V,E,?,¢) defines a gg G(D) = (V,E,«)
where:
#(e) = {T(e),fe)} VecE.
We call G(D) the g8 associated with D.

Za

(= o (4]
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Fig 1-4 Some General Directed Graphs:




Def 1.1.8 liirected Path in a General Directed Graph:
——rlen e 20 AN 8 beneral Directed Graph

A directed path 1in a gdg D = (V,E,v,¢) is a sequence
Am voe1 vl"'vk-lekvk’ kéN,
vhere vié Vvie(0,...,k},
eiev vie(l,...,k) and
t(ei) -V, W(ei) -v, vVie(l,...,k).
Note that & defines a path in G(D) and that a path in G(D) need
not define a directed path in D.

We define the length of & to equal the length of the path in G(D)

defined by a,

Def 1.1.10 Loop:
A path, directed or otherwise, is said to be a loop iff the

initial vertex is also the final vertex.

A loop is said to be simple iff no vertex other that the initial &

final vertex occurs more than once in the loop.

A path, directed or otherwise, is said to contain a loop iff one

vertex occurs more than once,

Def 1.1.11 Directed Graph (dg):

Let D = (V,E,t,¢) be a gdg.
If Ve,e'€E, ((Y(e) =t(e') and @(e) = @e')) ==> e =e'")

Then D is said to be a directed graph.

Note that if we redefine E to be the set of ordered pairs

E = {(7(e),P(e))]|ecE]},




we can writoe:
D= (V,E)
to fully describe D.

O\

N

Fig 1-5 Some Directed Graphs:

Def 1.1.12 Bipartite General Directed Graph:

A gdg D is bipartite iff G(D) is a bipartite gg.

R

a a

N—,

Fig 1-6 Some Bipartite General Directed Graphs:

Def 1.1.13 ‘v and v':

Let D = (V,E) be a dg,
vev,

Then ‘v = (v'[v'€ V, (v',v)€E} and
vi = (v'|v'€V, (v,v')€E).

Def 1.1.14 Pure:.... onm

Let D = (V,E) be a dg.
Then D is said to be pure iff for all v,v'€V,




(vov') €V mm> (v',v) £V.

VIR

Fig 1-7 Some Pure Directed Graphs:

Def 1.1.15 Tree:

Let T = (V,E,*,® be a directed graph with the following

properties:

1) a unique vertex r €V, called the root vertex, with the

following properties:

a) ﬁeeE}qﬂ(e) =r, i.e. no edge enters r.

b) véV == J B =ve.v ..v k€N, in T such

011" " Vk-1%"k’

h = = .
that v0 r and vk v

2) veVrr} ==> |'v] = 1. i.e. ¥v eV+(r) I one and only one

e €E such that fe) = v.

o ]

N
l

o

g
|

Fig 1-8 Some Trees:




Thm 1.1.16:
Let T = (V,E,¢,¥) be a tree.
Then there is no directed path & in T such that & is a loop.
Pf: by contradiction
Suppose & is a loop in T.
Let veV be a vertex in o,
Since T is a tree, there exists a root vertex r ¢V and a path
&' such that:
Q' = Y0%1V1** Vie1’ % V! k €N,
o =T
Vi = Ve
Since each vertex in Vi(r} has one and only one edge entering
it, @ must contain &'.
But r has no edges entering it.
Thus, while r must be the initial vertex of &, it cannot be the

final vertex of a.

Hence o is not a loop.

Thn 1.1.17:

Let T = (V,E,t,@) be a tree,
vov'€V and

A‘= voelvl...vk_lekvk,
path in T.

,ICG‘N; 'v0‘= v = ' be a directed

Then & is unique.

Pf: by contradiction




Suppose & is not unique.
A\ - LI T Y 1 S, . :
Then there exists voelvl"'vj-lejvj' J€N, such that
Yo" Vo "V
=V = v! and

ther (j = k) or (3Jie€(l,...,k} 9-vi # vi).

v\
J
el

But this implies that there exists some vertex v" €V which has

two edges entering it.

But, by def of tree, this cannot occur.

Thus & is unique.

Def 1.1.18 Parent, Child, Sibling and Leaf:

Let T = (V,E,v,®) be a tree,
v,v',v"€V; e',e"€E such that
T(e') = 1(e") = v,
@e') =v' and
Pe") = v",
Then v is said to be the parent of both v' and v". Likewise, both
v' and v" are said to be children of ve v' and v" are said to
be siblings. Further, if ﬂeeE }fte) = v', then v' is said

to be a leaf,

Def 1.1.19 Depth(v):

Let T = (V,E,7,4) be a tree,
vev.
Then the depth of v, written Depth(v), is defined to be the

11




length of the directed path & such that r is the initial

vertex of & and v is the final vertex. Since & is unique, so

is Depth(v).

Def 1.1.20 Finitely Branching:

Let T = (V,E,7,® be a tree,

Ev = (e|le¢E, t(e) = v) Vvev,

Then lEvl <00 V veV ¢aud T is finitely branching.

Def 1.1.21 Infinite:

Let T = (V,E,7,¢) be a tree.
Then |V| = 00 ¢==> T is infinite.

Def 1.1,22 Subtree:

Let T = (V,E,7,#) be a tree,
x¢éV,

Define the subtree Tx = (Vx,Ex,rx,¢i) as follows:

v (v|lvev, Ja directed path & in T » x is the initial
vertex of & and v is the final vertex},
(ele €E, 3 vx,v)'(c Vx“} T(e) = v and #(e) = v)’(],
{restricted to Ex'
@restricted to Ex and
x is defined to be the root vertex of Tx.

Note that by virtue of its definition, Tx fulfills the definition

of a tree. Specifically:




1) no edge enters x,
2) by def of Vx, v v € Vx. 3 a directed path in 'I‘x vith
initial vertex x and final vertex v
3) ExéE and the definition of Ex above together imply that
for all vxé‘Vx~[x], there exists a unique exe Ex such

that ¢1ex) = Vo

Thm 1.1.23 Konig's Lemma:
IfT = (V,E,Y;fﬂ is a finitely branching, infinite tree,
Then T contains an infinite path.

Pf: We construct such a path via the following induction.
Base step:

Let VO = r,

Then the subtree Tv = T, and hence is both finitely
branching and infinite.

Let AO = VO be a directed path in T of length zero.

Note that ab has initial vertex r and final vertex vo.

Induction step:

Suppose that for i é N, i > 0 we have found a finitely

Vs v

branching, infinite subtree T = (Vv ,E ,t ,# ) in T
Vi Vi Vi Vi Y4

and a directed path

=V e V_ «s.V v

P
1T V%11 i1
also in T.

.9
1 .

Since Tv is finitely branching, v, must have a finite
i
number of children.




Define C ¢ V  to be the set of children of v.:
Vi Vi i

cvi - (CI'CZ'.'.'cj)' Jeuu ’
Since Tv is infinite, I k€N, 1 < k < j D-the subtree .Tck
i .

is a finitely branching, infinite tree.

Define vi+1 = ck.

Thus T =T ,
Vi+l Ck

By def of tree, 3 ei+1€- Ev > r(e1+1) =

i
¢%ei+1) = Vit

Thus Ai+1 = ‘iei+1vi+1 = vOelvl"'vie1+1vi+1 is a

directed path with initial vertex Vo = r and final

vertex v, _.
i+l

By the above induction, 4, can be defined for arbitrarily

large i. Hence T contains an infinite path.

Segment 1.2 - Language Theory:

This segment contains the basic definitions and theorems from
language theory which we will require in the second segment of
section 2. The reader should pay particular attention to the
definition of the finite recognition automaton and its relation

to regular languages and right linear grammars.

Def 2.1.1 String:

Let A # @ be a set,

X = alaz... be a sequence, finite or infinite, of elements

14




of A,

Then « is said to be a string of elements of A.

Note that if X = 88,0008, N €N, is a finite string, then o is

said to have length n.

Def 1.2.2 Nul String, Positive Closure and Closure:

Let A # @ be a set,
n €N,

For n > 0, define An to be the set of strings of elements of A of
length n.

Define:
1) Ato be the string of zero length and call it the nul string

or the empty string.

2) AO = {a).

3) A+ (j;il An, the set of all non-empty strings of elements

of A, to be the positive closure of 4.

4) A* LJ:ZO An = K+u {a), the set of all strings of elements

of A, to be the closure of A.

Note that by definition, ¢0 = {a)} and ¢n = @ for n > 0.

Thus @* = {A} and ¢+ = @.

Def 1.2.3 Concatination:

Let A # @ be a set.
*,E& €EA¥,

“:alu..am, méN,




ﬂ- blooobn. nél.

Then o = 81...smbl...bn is said to be the concatination of

and 4,
Note that AxX = x = xA,
Further, if ¥ ¢A¥,
(%8)7 = a(ar).
Concatination is also defined for sets of strings:
Let B,C ¢A*,
Then BC = (#r|®¢B, rec),

Def 1.2.4 Regular Expression:

Let A £ @ be a set.

Define the set of regular expressions on A as follows:

1) @ is a regular expression on A.

2) Ais a regular expression on A.

3) If a€A, then a is a regular expression on A,

4) If r and r' are regular expressions on A, then so are (rr')
and (rvr'), Note that (rvr') is frequently written r|rc'

or r+r'.

5) If r is a regular expression on A, then so is r¥,

Def 1.1.5 Regular Language:

Let A # @ be a set,

r,r' be regular expressions on A.

Then r defines a regular language L(r)s A* as follows:




1) L(@) = 9.

2) L(a) = (o).

3) If a€A, then L(a) = (a).
4) L((rr')) = L(r)L(r").

5) L((rvr')) = L(r) vL(r').
6) L(r*) = L(r)*.

Def 1.2.6 Length of a Regular Expression:

Let A # 0 be a set,

r,r' be regular expressions on A,

Then the length of the regular expression r on A, written 1(t),

is defined as follows:
i) =1,
1(a) =1,
I(a) =1 V acA,
I((rr")) = I(r) + I(x") + 2,
I((rvr') = I(r) + I(r') + 3,
I(r*) = I(r) + 1.

DDef 1.2.7 Finite Recognition Automaton:

A finite recognition automaton is a system consisting of:

1) a gdg D = (V,E,7,@), where both V and E are finite,

2) a set A,
3) an A-labeling 1:E-->A%*,
4) two subsets S,FEV >§ = [vo}, "-o"v‘ F #40.

17




We write
a L (D.A.I.S.F)

to denote a finite recognition automaton. S and F are called

the start and finish sets respectively
{a,b,c,d,e)

L e
ov._’ \@ = (VO'.'.'VI‘)
N - (v )
vy 0

= (v,)
Fig 1-9 A Finite Recognition Automaton Recognizing
(a(b*((cvd)e)))

Def 1.2.8 Admissable Path:

Let @ = (D.A.1.5,F) be a finite recognition automaton.

An admissable path in « is a directed path in D with initial

vertex in S and final vertex in F.

Def 1.2.9 Language Recognized by a Finite Recognition Automaton:

Let @ = (D,A,1,S,F), D= (V,E,¢,@), be a finite recognition
automaton,

A=vev...v k €N, be a directed path in D.

0°1"1" " Vik-1% "k’

Define 1(a) = l(el)l(ez)...l(ek). Note that 1(a) € A*,

The language recognized by @, written L(a), is defined as

follows:

L(@) = {1(a)|a is an admissable path in a).




Thm 1.2.10:
Let A be a finite set,
L €A%,
Then L is a regular language iff there exists a finite recognition
automaton @ with an A-labeling such that L(@) = L.
Pf: (==>) by construction
Suppose I, is a regular language.
Then there exists a regular expression r on A such that
L(r) = L,
We now proceed by induction on the length of r to construct a
finite recognition automaton Clr to recognize L.
Base step:
Suppose i(r) =1,
Then by definition of i(r), r must be equal to either @,

or a, where a €A, For each case we construct o.r as

follows:

r = @: : S = {vO] F = (vll
L(a;) =@ = L(r).
S=(vy) F (v,)
Lla) = {} = L(r).
S = {vo} F [vl}
L(a) = (a} = L(r).

Thus for all regular expressions r on A of length 1, we can

construct a finite recognition automaton recognizing

L(r).




Induction Step:

Suppose that for any regular expression on A of length less
than k, k€N, k > 1, we can construct a finite
recognition automaton recognizing it. Further suppose
that i(r) = k.,

Then r must be of one of the forms (rq), (puvq) or p* where
p and q are regular expressions on A.

By definition of length of a regular expression,

I(p) < k.
Likewise, if r # p*,
I(q) < k
as well,

Thus, by the induction hypothesis, we can construct a finite

recognition automaton

& = (D ,A,1,S8 ,F D = (V,E,t,®),
p (p!'p'p!p)’ p (p'p!p’;)

such that L(ab) = L(p). As above if r # p*, we can also
construct a finite recognition automaton
Ga = (Dq,A,lq,Sq,Fq), Dq = (Vq,Eq.ra,qZ),

such that L(aq) = L(q). Further, we can choose ap and
« such that they have no vertices in common and no
edges connecting thenm.

We now consider the above three cases individually:

1) r = (pq):
We form the finite recognition automaton

@ = (D418 ,F ), D = (V,E,*,f),

20




as follows:
Let V - V UV .
r P q
We form B , T and ¢ as follows:
r r r
Initially, let Er = Epu Eq.
VecE
p
VecE ,
q
vec€R
P
VecCE .
q
We then expand Er’ (;' and fr as follows:
For each vfG-Fp. we introduce a new edge
e € E_such that
Vf r
1 =
r(evf) Ve and
f;(evf) = Ve, vse Sq.
We complete our definition of ar with the following:
Let 1 (e) if e ¢E
p P
1 (e) =41 (e) if e¢E
r q q

N otherwise,

r

F = F .
r q

S =38 and
p

Having defined C(r, we must now show that
L(a) = L(ab)L(cg) = L(p)L(q) = L(r).
Suppose w¢ L(ar).

Then we can find an admissable path & in ar such that

A=VEV..-V_ ié",

011" Vi-1%"y0
where {vo} = Sr’




\r1 € Fr and

lr(.) - lr(ol)lr(cz)...lr(ol) - W,
Let § be the least integer such that 1<j<1and
v.ev .,
J q
Since voeSp and vie Fq. J must exist,

Consider the edge eJ:

tr(ej) = vj_lé Vp.

By construction of dr, the only edges which can have
both vertices not in the same set Vp or V are the

£

Thus e = e where v_ ¢ F .,
h] ve £ p

edges e , where v_¢F .
Vf P

Hence vJ_1 = vfé F'p.

[vJ] = Sq and
lr(ej) = A.

Since the only edges connecting a vertex in Vp with a

vertex in V are the edges e €E, v_€F » and no
q v r £ p

edge in Er connects a vertex in Vq to a vertex in V ,

it follows that:

vo,vl,....vj_levp and

o0 0 G [ ]
vj'vj+1' ,vi Vq
Further, since the e

\£3
not in EpUEq, we have that

é Er' vfer, are the only edges

A = es e
1 voelv1 vj-2ej-1vj-1 and
a =
2% V1% e Vi Yy
are admissable paths in ap and &

seeV

respectively,




Thus & = ‘1°j“2 and
L(a) = 1,(8)) A1 (8)) = 1,(a)1 (8)) = v
Hlence wcl.(ap)l.(aq).
Therefore L(a )¢ L(@ )L(&a ).
(«,) € (2 L(G,)
Now suppose Jé€ L(QP)L(C(q).
:f. eica
where OIGL(QP) and
02e L(Qq).
Thus there exist admissable paths 01 and 62 in ah and
Qq respectively, such that
lp(Al) = C& and
By definition of an admissable path, 61 must have its

final vertex v_ in Fp. Further, the initial vertex

f

of AZ must be an element of Sq.
By construction of ar. there exists an edge ev & Er
f

connecting the final vertex of Al to the initial
vertex of &a_ such that 1 (e ) =A.
2 r Vf
Since S =S and F =F , the directed path
r P r q
A =0e o

2
is an admissable path in ar such that

1r(°) 1p(41) 1q(az) = 0192 = $.

Hence lr(é) $e¢ L(a.r).
Therefore L(a )L(a@ )¢ L(& ).
p q r

Combining the above with the previous result, we obtain:




L(Qr) ) L(ai)b(da) = L(p)L(q) = L(r).
2) r = (pugq):

We form the finite recognition automaton

ar - (Dr'A'lr'sr'Fr)’ Dr - (vr'Er'tr'ﬁ)'

as follows:

Let Vr - VpU un(vivvf)v
where (VPU Vq) t\[vi,vf) =0
and v # Ve

We form E , ¥ and @ as follows:
r’ r r

Initially let E = E vE ,
r P q .

. < (e) if e€E

‘r (e) = {p p

r e if ec¢ E
q( ) q’

Qp(e) if e€ Ep
f(e) if e€E .
q q

We then expand Er' 1'1' and #_ as follows:

& (e) =
r

For each ve¢ SpuSq we introduce a new edge ev
to Er such that:
1 d
r<ev) v, an
¢r(ev) Ve
For each v€F v Fq we introduce a new edge ev
to Er such that:
1r(ev) v and
@le) =v.

We complete our definition of ar with the following:




Let lp(e) if e éBp
lr(e) = lq(e) if eé¢ Eq
A otherwvise,
Sr - (vi] and
Fr = [Vf}.

Having constructed “r, ve must now show that

l‘(“r) - L(qp)vl-(aq) = L(p) vL(q) = L(r).

Suppose w¢ L(qr).
Then we can find an admissable path & in ar such that

A‘vev.ocv jG.'

011
where 1!_(A) = W,

-1%3"3

vo a vi and

vV, =v_,

i~ Vs

By definition of ar, v € Spu Sq and v ¢F UFq.

1 -1 p

Since S NS =@ and FAF =@, v. and v must be in
P q P q ' 1 3-1

either Vp or Vq, not both.,
Since there are no paths in ar connecting a vertex of
V with one of V , or vice Versa, V_,V._ssesV must
q 1" 2 j-1
all be in either Vp or Vq, not both. Further,

€,49€ 400098 must all be in either E or E , not
23 P q

j-1
both, since the only edges in Er which connect two

edges of Vp or Vq are in Ep and Eq respectively.

Thus &' = v.e.v ...v is an admissable path

172727V 3-2%5-1" 41
in eithera or ¢ .
p q

Since A = voela'ejvj and




1(a) = lr(el)lr(o')lr(ej) = al (4 =w,

We have that either
wal.(ap) or wé L(aq).
Thus wéL(ap)UL(aq).
Therefore L(ar) < L(Gp)u L(aq).
Now suppose 3 ‘L(ap)v L(aq).
Thus we can find an addmissable path &' in either C(p or
aq such that:
1(y) = 3.
Without loss of generality, assume that &' is an

admissable path in Ctp.

Then &' has initial vertex v € Sp and final vertex
P
v. € F.
fp P

By definition of ar' there exists an edge eié Er such
that:
T =
(&) Vi
cpr(ei) = vy and
lr(ei) = Ao
Likewise, there exists an edge eféEr such that:
q?r(ef) = vf and
Thus we can define the admissable path
A=ve adev

ii ff
in Qr where 1r(4) = l(ei)lp(A')lr(ef)
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- AIP(A')A . lp(A') -3
Since 4 is an admissable path in Gl}. it follows that
S - 1,(a") = 1 (8) € Le ).
Thus L(ap)u[.(a.q)s L( r)'
Combining the above with the previous result, we obtain:
L(a) = L(ap)vL(aq) = L(p)VL(q) = L(r).
3) r = p*;

We form the finite recognition automaton

al‘ = (Dr'A'lr'sr'Fr)' Dl‘ = (vrogrof;oﬁ)o

as follows:
t v = =
Le . Vch[vi,vf} where fo\[vi,vf] @ and
A ¥ Vee
We form E , '3 and @ as follows:
r 'r r
Initially let Er
Tr =
@r =
We then expand Er' 1; and ?Z as follows:
For each VGFp we introduce a new edge efe Er
such that:
'(. =
r(ef) v and
41(ef) = Ve
For each véSp we introduce a new edge es(-‘Er
such that:

<
r(es) vi and

Qi(es) = v,




We introduce two new edges cn and e to Br
such that:
4‘ = -
Ce) vy ¢r(en) v, and
1r(er) = Ve ﬂ(er) =Yy
We complete our definition of Qr as follows:
Let lp(e) if eéBp

1l (e) =
r a otherwise,

Sr = [vil and
Fr = (vr].

Having constructed ar, we must show that

L(a) = L(&)* = L(p)* = L(x).

Suppose weL(ar).
If © = A,
Then, since A is an element of the closure of any set,
w = A‘L(a.p)*.
Suppose w # A,
Then we can find an admissable path & in Qr with no
occurences of enG Er such that:

A=V8V...V kGN. and

0171 " Vk-1%"k’
Q) = N
lr( ) = wé L(ar)

By definition of &r and &4,




Since dr was constructed around ap' and since vi and
V. are connected to & only via S and F
£ p P P
respectively, A must contain one or more subpaths
Al"Z"""n' n €N, vhich are admissable in a"p'
Thus we can rewrite & as follows:
A= viesélefvferviesoz...anesvf
where

lr(a) = Alp(Al)AAAlp(Az)...lp(an)A
= 1(41)1(42)...1(4n) = W,

Since AJ is an admissable path in ap for all

Js{lv'--vn}r
lp(dj)‘L( p) V JG“.,.-..H].
Thus w¢é€ L(ap)*.
x*
Hence L(Qr).‘ L(C\p) .
Now suppose Se L(ap)*.
If¥ =4,
Then & = vie Vs is an admissable path in Cfr such that
lr(d) = A = S,
and thus §=A ¢ L(ar).
Suppose 3 # 4.
Then § is of the form
§= Slgnoofn' n(",
where fjjé'L(ap) vVjic(l,...,n)
Thus for each fj, j€{l,...4n}, we can find an

admissable path Aj in dp such that:
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SORE:

Define O = viesalefvferviesaz...anefvt..

Since ar is an expansion of Ctp. for each j €(l,...,n),

AJ is a path in Dr with initial vertex v'GSp and

final vertex v ch.
Since ?(e ) =v' and
r's
t;'(ef) = v'
a is an admissable path in Clr.
Thus lr(é) is defined, and may be written as follows:
1(8) = 1.(e )1 (a1 (e)1 (e )1 (e )1 (a))...
...lr(oh)lr(es)
= A
lr(Al)AA. Alr(cz)...lr(an)A
= lr(°1)1r<%)"'lr(“n)
= fl?zaoofn = ?.
Therefore fGL(Gr) and
*
L(ap) ¢ L(ar).
Combining the above with the previous result, we obtain
L(a) = L(a%)* = L(p)* = L(r).

This completes both the induction and the first half of the

proof,
(<==)
Let & = (D,A,1,S8,F), D = (V,E,7,@ be a finite recognition
automaton where:
V = {VI,VZ,...,Vr], réN and

S=[V}-

1




We must show that L(@) is a regular language.

Let 1,j and k be integers such that 1 L£i,j£r and
1 <k <r+l,

Define an (i,j,k) path to be a path

O = woelwl...ws_lesvs. s€N,

in D such that wo = vi.

s vj.
and for all p€{l,...,s-1},

(wp = "t:) ==> (t < k), teN.

Let fdi(,j = {(1(e)|a is an (i,j,k) path).
k

We now show inductively that Ei 3
’

is a regular language.
Base step:
Consider {'g’j, 1<i,j<r.
Then the associated (i,j,k) paths must be of the form:
& =ve vj, ec E.

i
Since E is finite, so is

é"i) ;= (1(e)] @ is an (1,5,0) path)
’
. = {1(81).1(82)....,1(en)}, n€N.
Thus é?i j is a regular language for all i,jc¢ N,
’
1<i,j<r.
Induction step:

Suppose that for k €N, k 2 0, and for all i,j €N,

1<1i,j < r we have shown that é?: i is a regular
?

language.

k+1 k k k k
Then z?i,j = (d?i,j"(C?i,k+1(a?k+l,k+1* é?k+1,j)))
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and hence is a regular language.

Let jl.jz....,jbcl. beN, be the indices of the vertices

in Fo 1oe. v € F VC G(l,coo'blo

c
Then L(®) = ()0, £ e
tde

Hence L(G) is a regular language.

Def 1.2.11 Formal Grammar:

Let A £ @ be a finite set.

Then a formal grammar G on A is a system consisting of:

1) Two subsets An, Atc A such that Anf\ At: =0, Anu At = A,
At;‘¢andAn;‘¢.
2) A finite set P of ordered pairs (x,8), x,8¢ A*, We write

X-->% for («,A) and call the ordered pair a production.

3) A specific element SGAn called the start symbol.

We write G = (An,At,P,S) to denote a formal grammar.

Def 1.2.12 Derivation:

Let G = (An,At.P,S) be a formal grammar,
*
TI.XZGA '
)i = PxO, J; =PA6 and
“"‘)ﬂépo

Then we write 21-—))5 call it a single step derivation.

o

i o,
oi——>6-2-->o O u""">o—n—;

Then we can write 01---)0; and call o‘l‘,oi,...,a-; a derivation

:---;fnéA*, ncN and
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of 0; .
*
Note that for any J€A* we can write F--->p.

Def 1.2.13 Language Generated by a Formal Grammar:

Let G = (An.At.P.S) be a formal grammar,

*
Then L(G) = (wPKG'At‘. S-=->x} is defined to be the language

generated by G.

Def 1.2.14 Right Linear and Normalized Right Linear Grammars:

Let G = (8n'At'P's) be a formal grammar.

If all the productions in P are of one of the forms
u-->«y  or
u--> vhere u,v(An and r(A:,

Then G is said to be a right linear grammar,

If all the productions in P are of one of the forms
u-->xv  or
u~-->A vwhere u,vcfAn and A’fA*t

Then G is said to be a normalized right linear grammar.

Lemma 1,2.15:

Let G be a right linear grammar.

Then there exists a normalized right linear grammar G' such that
L(G) = L(G')c
Pf: by construction

Let G = (An’At’P’S).




We construct G' = (A;,A;,P',S') as follows:

] - N

Let At: At

Include in P' each production in P of the form
X--)xy or
x=-=>AA where x,yéAn and MFA:.

For each production in P of the form

+

create a new non-terminal u € A , and add the
X, n

productions
X==>icy and
X,

ux .Q-->A

to P'.

+
.
Let A' = Anu{ux'xlx >K€P, €A} and

S' = S,
Having constructed G', we must now show that
L(G) = L(G").
Suppose £€L(G) and
S = oa--)q--)...-—)a]'( =4, k&N, is a derivation of &
in G.
Suppose no production of the form X==D>&, X EAn, XGA:. occurs

in the derivation of &,

Then all the productions applied in the derivation of /A are in P',
Since S = S', the derivation of & is in G'.

Thus #€L(G"'),

Now suppose that a production of the form X—==Dp¢, xGAn, «GA:,
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occurs in the derivation of /4,

Note that such a production can only occur at the end of the

derivation.

Thus 6;_1

x==>)c = 8,

-->0;( must be of the form

vhere x¢€ An' or,réA: and & #.A,

Since the production x-->« is in P, the following productions
must be in P':

X—=DocU and
X, 6

u - where u ¢ A',
x,“‘ >A X,w n

Thus we can replace the last single derivation in the
derivation of 4 in G with the following:

Oy = Ix—-)l«ux k—-))'o( = /.

1

The resulting derivation of # is in G', and hence
AEL(G").
Thus L(G) ¢ L(G').
Now suppose #€L(G').
Then we can find a derivation
S' = o’o-—>oi—->a§—->...-->oi—< =4, k€N,
of 4in G',

Note that none of the new non-terminals in Ar'l\An can appear

in a’(-)’oo-,fl;_zo
Hence all the single derivations in
] — —_—— " — —— —— .
S' = % >0i >0§ Deve >0i‘<_2
are single derivations in G.




Since G' is a normalized right linear grammar, the last two

single derivations in the derivation of 2 in G' must be of

form

Vx-=>¥u
x

“-->l'0‘ 'ﬁv
' * .
RCAn, l,rFAt and & £ 4

L4

vhere x €A , x,u
n X,

If u €A,
X, n

Then both of the above single derivations are in G, and
hence # L(G).

Suppose ux,w¢‘n'
Then by construction of G', there must be a production

X-=>ac
in P.

We can use this production to replace the last two single
derivations in the derivation of £ in G' with
0?_2 = Fx-->rn = /8,
and thereby obtain a derivation of /4 in G.
Hence #£€L(G).
Therefore L(G') ¢ L(G).
Combining the above with the previous result, we obtain

L(G') = L(G).

Thm 1,2.16
Let G be a formal grammar.
Then G is a right linear grammar iff there exists a finite

recognition automaton & with an A-labeling such that




L(a) = L(G).
Pf: (==>) by construction

Suppose G = (An,At,P.s) is a right linear grammar.

By Lemma 1.2.15, we can assume that G is a normalized right

linear grammar, and thus that P contains only productions

of the forms
X-->xy or
X==>A
where x.yé‘An and & ¢ A:.
We construct the finite recognition automaton
Q = (D,A,1,8,F), D= (V,E7,9),
as follows:
Let V = An,
A= At and
S = {s}.
For each production in P of the form
X-=Jy, x,y{An, o(éA:,
include in E the edge e and define:

15y

1(ex,x,y) =

@le

XyacrY

1(e ) =,
Xyt» Y

For each production in P of the form
X-->A, X€A ,
n

include x in F.

Having constructed Q, we must now show that




L(a) = L(G).
Suppose x'€L(G).
Then there exists a derivation
s“) q--> rz--"> o0 -""')0;"‘“)“, k € ".
Note that each 01. 1€(1,...,k), must be of the form

*
“1’2“'"1"1' “l,xz.ono.RiGAt' xéAn.

and that for each g~ , i€(2,...,k), the production

xi-l--”(ixi €P

is applied to obtain it from a;‘l. Further 7 is obtained

from s via the production

s——)otlxl &P

and x is obtained from or though ﬁhe production

xk-">A CP.

Thus, by construction of Q » We can construct the path

a=s eS,K'I,XI xl exl,nz,XZ x2 *ee xk-l exk_l,gk,xk xk
in D.

By construction of ’

xk"‘">A‘P ==> Xkc Fo

Also S = (s}.
Thus & is an admissable path inq,
Since 1(®) = 1(e )1(e ) ee 1(e )
Sre X X12%9+%) Xp~194% 0 Xk
= “1“2...“1( = 5
we have that € L),
Therefore L(G) € L(Q).

Now suppose iesL(a).




Then there exists an admissable path

LN x

A=s es,xl.xl *1 exl,xz,xz Xy k-1 e"k-l”‘k"‘k *k?

k&N,
in 4, such that

1@) - l(esv“lv"l)l(e*lv“z-"z

= “lﬁ unckk -K,

) co e l(e

)
Xk-11%%r Xk

*,
where “1'%'...'ﬁ(€At

By definition of E, for each e i€(2,...,K}, there

’

Xi-100¢ 1%y
exists a production

- *

Y1170y Xy % A w e At

in P. Likewise, P contains the productions:

s-->0<1x1 and
_— _ *
X —-=>A, s,xl,xk(An, K‘IGAt.

k
Thus we can construct the derivation

s-->0t1x1-—>k10<2x2-->. . .-->x1x2. . "ﬁc-lxk-l--)ai&z oehg XL
-—>°‘]'.D(2...Pﬁ( = &,
Since this derivation is in G, it follows that
X EL(G).
Therefore L(a) € L(G).
Combining the above with the previous result, we obtain
L) = L(G).
==>) by construction
Let & = (D,4,1,5,F), D = (V,E,7,?) be a finite recognition
automaton. |

We construct G = (An,At,P,s) as follows:
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Let At L J A.
A =V and
n
8 =v where (v ) =S8,
s s

For each v ¢F, place the production

v=-=>A
in P,
For each e¢E, place the production
7(e)-->1(e)e)
in P. Note that t(e),fe)EV = A and 1(e)€ A* = A%,

Having constructed G, we must now show that
L(G) = L(a).

Suppose &eL(a).

Then there exists an admissable path

A=V8V...V k€",

011" Vik-1%"k’
in & where 1(a) = l(el)l(ez)...l(ek)

= KIKZ...Kk = 65

By construction of G, for each ei, ie{l,...,k}, the
production
(e )--
(ei) >1(ei)¢1ei).
which can also be written
_— *
> v, vi_l,viGAn, A'iG‘At,

Y1-1777% Y
is in P. Likewise, since vkéF, the production

vk——>11
is also in P.

Thus we can construct the derivation:




VO'->“3VI">’5'5VZ">""->~i"‘*i-lvk-l-->‘1"'“kvk
“”ﬁ”'“k = X,
Since 4 1s an admissable path in Q, Vo ™ 8-
Thus we have constructed a derivation of & in G.
Hence a’€L(G).
Therefore L(a) € L(G).
Now suppose «¢L(G).
Then we can find a derivation of & in G as follows:
8 = VO"'>“iv1-->“1“§v2->'"—->“i'"“i—lvk-l-'>“i"'~kvk
-->x1...o<k =0, kEN.

By construction of G, for each production of the form

- = A¥
Vi_1 >°§_vi. iefl,...,k}, vi-l’visAn' .xiGAt.

in P, we can find an edge eiG E such that

Tley) = v, 1

1(ei) i and

¢(ei) = vi.
Thus we can construct the path a in Q such that
A AR AL A A
Since Vo = S [vO] = S.
Since the production
vk—->A
is in P, vaF.
Thus & is an admissable path in q.
Note that 1(a) = 1( el)l(ez)...l(ek)

= “1"2. ..xk = X,
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Thus ore L(a).
Therefore L(G) € L(4).

Combining the above with the previous result, we obtain

L(G) = L(a).

Thm 1.2.17:
Let G = (An,At,P,S) be a formal grammar.
Then G is a right linear iff there exists a regular expression r
on At such that
L(G) = L(r).
Pf:
Follows directly from Thms 1.2.10 & 1.2.16.

Def 1.2.18 Pref( ):

Let A be a set,
L €A* be a language on A.
Then Pref(L) = {x|w,@€ A%, g = 7€1),

Note: If o,8c A%, ¥ = Y L, we can write <Y,

Thm 1,2.19:

If L is a regular language on a set A,
Then so is Pref(L).

Pf: by construction

Since L is a regular language, by Thm 1.2.10 there exists a

finite recognition automaton




Q = (D,A,1,5,F), D= (V,E,7,9),

such that L(aL) = L,

We construct the finite recognition automaton qp in two
stages as follows:

1) We examine D to find all vertices v € V-F such that
there exists no edge e¢ E such that "(e) = v, Since D
is finite, we can do this.

Since any path including such a v must end with it and
thus not be an admissable path, we can remove v from
V and all edges e €E such that @(e) = v without
changing the language recognized by the automaton.

We do so, and repeat the process until there are no such

vertices remaining. Call the result al,

QI" = (D'vAol'vst)o D' = (V',E',f",?).

Note that L = L(QL) = L(QI:). More importantly, note
that given any path Al in D' with initial vertex in

S, we can find a second path AZ in D' such that Alaz
is defined and is an admissable path in QI".

2) We form CtP from QI', by setting F equal to the set of
all vertices in D', thus making every vertex a final
vertex. Hence

4, = (D',4,1',8,V"), D' = (V',E', ", @),
Having constructed C(P, we must now show that
Pref(L) = L(QP).
Suppose «€ Pref(L),




Then there oxists a #¢A* and a Y €L such that
ag = 7.
Hence there exists an admissable path o in Ql: such that
1(e) = ¥, and further, there exist two paths 61 and 02 in
a': such that

8,0, =5,

1(41) = & and

Yo)) =A4.

Since 41 starts in S and since each vertex in V' is a final

vertex in ap. Al is an admissable path in QP.

Thus acé L(ap) .

Therefore Pref(L)¢ L(GP).

Now suppose &€ L( P).

Then there exists an admissable path dl in GP such that

S =V e V...,V k&N,

1~ 01 1 Yk-1% Yk

where VO&S and

1(41) =,

As a result of the Pruning process we used to obtain QI", we

can find a path 42 in D' such that
22 7 k1 ka1 Ve g 1% g ea g I ENs
vk+j€ F  and
I(a) = 4,
Note that Alcz is defined in D'
Recall that both QP and QI" use D',
Since v_€S and v €F, 6.0, is an admissable path in QI".

0 k+j 1%2
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Hence ¥'= x9 = l(olaz)g L(ql") - L(QL) = L.

Thus o€ Pref(L).

Therefore L(ap) € Pref(L).

Combining the above with the previous result, we obtain
L(ap) = Pref(L).

Hence, if L is a regular language, so is Pref(L).
Segment 1.3 - Zorn's Lemma:
Zorn's Lemma and the three definitions given in this segment

are used repeatedly in section two,

Def 1.3.1 Ny:

Define N, = N (e},

Def 1.3.2 Inequality and Incomparable:

Let X £ @ be a finite set.

0.0'e nl¥l,

Define Q < Q' <==> Q(x) < Q'(x) Vxe¢ X,
Q<Q <==> (@< Q") A (FxeXx > Q(x) < Q'(x)),
Q=10Q"<==>(Q<Q") A (Q' L£Q <==>Q(x) = Q'(x) ¥V x €X.

We say that Q and Q' are incomparable iff neither Q < Q' nor

Q' < Q holds. For example, in Ni, (1,2) and (2,1) are

incomparable,




Def 1.2.3 Pairwvise Incomparable:
——tles COlTviSe lIncomparable

Let X £ @ be a finite set,
A NL’E_,’ be a set.

Then we say that A is a set of pairwise incomparable elements iff

for all a,a'€ A, a and a' are incomparable.

Thm 1.3.4 Zorn's Lemma:

Let X £ @ be a finite set,

ASNL’:' be a set of pairwise incomparable elements.

Then A is finite.
Pf: by contradiction
Suppose A is infinite.
Let S = (s]s ¢X]).
Since X is finite, so is S,
For each s¢ 8, define
As = (alae A, (a(x) =) <==> (x €s)).

Note that A = UsGS As.

Thus, there exists g'¢ S such that As' is infinite.
Consider the following induction:

Base step:

Let B0

e0=

_ Kt '
Note that bo(x) = bo(x) v bo,bOGBO, xéeo,

% €X-
b0< ’ VbO€BO, X Xeo and

BO€ Nloi, is an infinite set of pairwise
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incoaparable cleaments.

Induction step:

Suppose that for 1¢N, 1 2 0, we have shown that Bi‘ ll,xol

is an infinite set of pairwise incomparable elements

such that

= 1] ]
bi(x) bi(x) Vbi,bi(Bi, xsei and

bi(x) < o Vbit- Bi' xéX‘ei.
We construct Bi+l and e”l as follows:

Consider bi € Bi'

Since Bi is a set of pairwise incomparable elements,

Vbje By» by 4 by 3 x €Xve, >bi(x) < bi(X).

Thus, for each x6X~ei, we can define

C, = (bi'lbi'cBi. bi(x) < b, (x)}],

where Bi = (uxGX\ei Cx) u[bi].

Since Bi is infinite and X~ei is not, there exists

x'€ X\ei such that Cx' is infinite.
Since bi(x') <% and le,l =0, 1 j€N, 0< j< bi(x'),

such that there are an infinite number of cer, such

that c(x') = j.

! =
Define Bi+1 [bi+1,bi+1€ Cx" bi+1(x ) = j) and

— ?
ei.,_1 eiu{x ).

By definition of Cx' & j, Bi+1 is an infinite set of

pairwise incomparable elements,
. c B b [] = 3
Further, since Bi+1‘ i and i+1(x ) =3V bi+16 Bi+1'

d
lGBi+1’ X €e an

= h! '
TSI R O LTI 1+1
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bip1(x) <m0 v b1 € By x€Xey .
Now consider B, k = |X| - lool.

Since each oi has one more clement than °1—1'

Joul = Ixl.

Thus e, " X.

- [ ] '
Hence bk bk v bk,bkc Bk.

Since Bk is a set of pairwise incomparable elenents,

But by the above induction, Bk must be infinite - a
contradiction.

Hence A must be finite.




Section 2 - Petri Net Theory:

Segment 2,0 - Introduction:

Having completed the preliminaries, we now proceed with our

developement of petri net theory. This section is devided into

two segments. The first covers the basic definitions and results

concerning petri nets and their related constructs. The second
deals with those petri nets whose firing languges are regular.
While the basic thrust of this paper remains theoretical,

examples have been included both for clarity and to indicate

possible applications,

Segment 2.1 - Basic Definitions and Results:

Before beginning our development of petri net theory, we
pause briefly to consider the goal towards which our effort is
directed. Generally stated we wish to find some convenient and
reasonably intuitive method of describing asynchronous,
concurrent processes. In addition, we would like to be able to
use this representation to answer such such questions as "Can
these two processes deadlock?" or "Is the work space of
process A safe from being overwritten by process B?", Finally,
we would like to be able to automate much of the above so that
we can deal with large systems of interrelated, concurrent
processes such as operating systems or the more modern design

natural language translators. What follows is an effort in that




direction, which nmakes no nssumptions about the hardware in

question except for the existence of a hardwore arbiter which

prevents the simultancous access of a single memory location by

two or more processes. Since this feature is standard, the

assumption is not unreasonable.

In our developement of petri net theory, the following two

problems will be used repeatedly as examples:

Problem #] - Dijkstra's Dining Philosophers:

Five philosophers live together. They spend their time either
eating or thinking. They eat at a round table with five places.
Each philosopher has his own place and will eat at no other. At
each place there is a plate of food. Between each plate there is
a fork. Each philosopher requires two forks to eat with, and will
use only those forks on either side of his plate. A philosopher
can only pick up one fork at a time, and once a philosopher picks
up a fork, he will not put it down until he has finished eating,
at which point he will put each fork back where he found it. No
philosopher will eat forever. Design a scheduling algorithm for

the dining philosophers such that no philosopher starves,

Problem #2 The Mutual Exclusion Problem:

Suppose an arbitrarily large number of processes share some
resource (i.e. a printer). Assume that once a process obtains

control of the resource, it will release it eventually, Design a




scheduling algorithm with the following properties:

1) At most one process will have control of the resource at

any one time,

2) Any process which requests control of the resource will

obtain it eventually.

Unfortunately, most of the problems in concurrency require
petri nets that are too large for us to deal with in this paper.

Thus the above two examples have been chosen as much for brevity

as for any other quality.

We now offer the definitions leading up to our definition of

the petri net,

Def 2.1.1 Place Transition Graph (P/T Graph):

Let P = {pl.pz,...,pm], méN, be a set whose elements are called
places,
{tl,tz,...,tn], neN, be a set whose elements are called
transitions,
PAT = @,

V=PvT be a set of vertices and

E€(P x T)uw(T x V) e(V x V) be a set of edges.

Then the resulting bipartite directed graph, written (P,T,E), is

said to be a place transition graph.




Def 2,1.2 Edge Multiplicity Function:

Let (P,T,E) be a p/t graph.

Define W:E-~>N to be the edge multiplicity function. Unless

otherwise stated,

W(e) = l V eéEo

Def 2.1.3 Adjacency Functions:

Let D = (V,E) be a dg,
v,v'e V
1 if (v,v')€E,
N((v,v')) =
0 otherwise,
W:E-->N be defined as in Def 2.1.2.
Then A:E-->N, A((v,v")) = P((vyv')IW((v,v')) 1is said to be the

ad jacency function for D.

Further, if D = (P,T,E) is a p/t graph, then two functions

B,F:(P x T)-->N, called the backward ad jacency function and

the forwards ad jacency function respectively, are defined as

follows:

B((P,t)) =

0 otherwise,

{A((p,t» if (p,t) €E

A((t,v)) if (t,v)é€E
F((Pvt)) =

0 otherwise,

where p€éP and teT,.

Note that A,3 & F can all be expressed as matrices.




Def 2.1.4 Incidence Function:
—te el Shcldence Function

Let (P,T,E) be a p/t graph and
B & F be defined.
Then the incidence function D:(P x T)-->N is defined as Follows:

D(p,t) = F(p,t) - B(p,t), v peP, t€T.

Note that D can also he expressed as a matrix, and in this form,

D is called the incidence matrix.

Def 2,1.5 Marking and Token:

Let (P,T,E) be a p/t graph.

Then a marking is a function M:P-->N. Note that M can be written

as a column vector.

If for some peP, M(p) = n, néN, then P is said to contain n

tokens in the marking M.

Def 2,1.6 Capacity Function:

Let (P,T,E) be a p/t graph.

Define the capacity function, K:P~->Neo, to represent the

maximum number of tokens which may reside in any given place at

any given time.

Thus for any marking M on P and any place peéP, M(p) < K(p).

Unless otherwise stated, assume K(p) =e0 ¥ pepP,

Def 2.1.7 P/T Net:

Let (P,T,E) be a p/t graph,




B:(P x T)=-=DN be the backward adjacency Eunction associated
vith (P,T,E),
F:(P x T)=-=->N be the forward ad jacency function associated
with (P,T,E),
KiP-->Nos be a capacity function on P and
W:E-=>N be an cdge multiplicity function on E,
Then (P,T,B,F,K,W) is said to be a p/t net.
Note that B and F together uniquely define E.
If X is ommitted, assume K(p) =00 V¥V pep,

If W is ommitted, assume W(e) = 1 VeeE.

Def 2.1.8 Petri Net:

Let (P,T,B,F,K,W) be a p/t net and

MO be a marking on P such that M(p) < K(p) ¥ peP.

Then N = (P,T,B,F,K,W,MO) is said to be a petri net, and MO is

called the initial marking of N.

Def 2.1,9 Strict Transition Rule:

Let N = (P,T,B,F,K,W,MO) be a petri net,
M,M':P-->N be markings on P,
u€T, u# ¢ be a set of transitions and

c:T-->(0,1} be the characteristic function of u, i,e,

1 if teéu
c(t) =
0 otherwise.

Then we write M[udM' iff




1) M(p) 2 ztéu B((p,t)) V pér,
2) M'(p) = H(p) + Z“u D((p,t)) VpeP,

3) M'(p) < K(p) V peP and
HVetleud>ebt', (Ctvt)n("t'vt') = . i.e. No two

transitions in u can involve the same place.
Note that if we view MM',K and c as column vectors, B and D as
matrices and the relations and operations X + Y, X-Y, X=ayY

and X < Y componentwise, we can rewrite 1), 2) and 3) above

as follows:
1) M > Bec,
2) M' =M + Dec  and
3) M' <K,
Unless otherwise stated, this notation will be used hence

forth.

M[udM' holds, then we say that u is a set of concurrently

fireable transitions with respect to M according to the strict

transition rule.

Note that M[A>M always holds.
We say M[->M' iff there exists u €T such that Ml u>M'.

Define [=> to denote the reflexive, transitive closure of the

relation [-),

Let M [u >M , Ml[u2>MZ,...,Mn_l[un>Mn, n€N, all hold.

Then we may write M_[u_,u veees DM |, and if ¢, is the
0"1" 72 n n i

characteristic function of ui vV i€{1,... ,n}, then

n
M o= My + D). c.




Further, if u, - (ti) Vie(l,...,n), ve ommit the brackets
and write

No[t:ltz...tnmn
for short. The word w = tltz...tne T* is said to be a firing

sequence which leads from Mo to Mn.
For all wéT*, M:P-->N, we write M{w> 1iff there exists an M':P-->N

such that M[w)M',

Finally, if w = t_¢

] 2...tn€ T*, né€N, is a firing sequence, we

define
(Dw)(p) = T D(p,t,) ¥ peP.

The reader should note that the pairs of transitions shown in
Fig. 2-1 cannot be fired concurrently under the strict transition
rule. Recall that if R is a relation on a set S, a,b,c€8, R is
said to be reflexive iff aRa holds for all a€S8. R is said to be
symmetric iff aRb <==> bRa for all a,be S. Also R is said to be
transitive iff aRb and bRc ==> aRc. Finally the closure of R in §
is defined to be the set C defined as follows:

C = (alCea, a,a'eC ==> ((aRa') or (a'Ra))).

o

]
N !

Fig 2-1 Pairs of transitions which cannot be fired concurrently

under the strict transition rule:




In the above figure, and all others which follow, we represent

places with circles and transitions with bars or lines.

Def 2.1.10 Weak Transition Rule:

Let N = (P.T.B.F,K.W.Mo) be a petri net,
M,M':P-->N be markings,
ueT, u ¥4 be a set of transitions and

¢ be the characterisic function of u, i.e.

1 if tey
c(t) =
0 otherwise.

Then we write M(udM' iff
1) M > Bec,
2) M' = M + Dsc,
Note that the matrix notation defined in Def 2.1.9 is use here.

If M(u>M' holds, we say that u is a set of concurrently fireable

transitions with respect to M according to the weak transition

rule,
Note that M(a>M always holds.

We say that M(->M' iff there exists u €T such that M(udM' holds.

Define (=> to denote the reflexive, transitive closure of the

relation (->.

Let Mo(u1>M1, Ml(u2>M2,...,Mn_1(un>Mn, n €N, all hold.

Then we write M_(u. ,u,,...,u DM , and if c, is the characteristic
01 2 n n i

function of ui'V ie(l,...,n}, then

n
M_ =My +D Zi=1 c -




Further, if u = [tl) Vie{l,...,n}), ve may ommit the brackets
and write
A
Ho(tltz...tn>dn
for short. The word v = tltz...tné’T* is said to be a firing

sequence which leads from Mo to Mn.
For all weT*, M:P-->N, we write M(w> Liff there exists an M':P-=>N

such that N(w>M'. Further, if w = tltz...tn. n €N, we define:

(D-w)(p) = Y1 D(pit,) ¥ péP.

Hence forth we refer only to firing sequences since any set of
concurrently fireable transitions can be represented as a firing

sequence but not vice versa.

Def 2.1.11 Enabled:

Let N = (P,T,B,F,K,W,MO) be a petri net,
té€T and
M,M':P-->N be markings on P,

If M[t>, we say that the transition t is enabled on the marking M
under the strict transition rule.

If M(t>, we say that the transition t is enabled on the marking M
under the weak transition rule.

Note that M[->M' ==> M(->M'. However the converse need not be
true even if K(p) =90 for all p€P., If w&T* and K(p) = e for

all peP then M[wdDM' <==> M(wdM'.




Def 2.1.12 Reachable:
et N = (P.T.B.F,K,H.Mo) be a petri net and
H,M':P-<>N be markings on P.
Then we say that M' is reachable from M according to the weak
transition rule iff there exists w&T* such that
M(woM',
Further, if there exists w €T* such that
M{wOM',
Then M' is reachable from M according to the strict transition

rule.

Def 2.1.13 Marking Sets:

Let N = (P,T,B,F,K,W,MO) be a petri net and

M:P~->N be a marking on P.

Then we define the strict and weak forward reachable marking sets

of M as follows:
[M> = (M'"|M[=DM"},
(M> = (M'[M(=>M").

We define the strict and weak full marking sets to be:

[M] = (M'[M s M),

(M) = (M'|M w M").
where s is defined to be the transitive and semetric closure
of tue relation [=> and w is defined to be the transitive and
semetric closure of the relation (=>.

Finally, we define




R(N) = (MO)

to be the reachability set of the petri net N.

Having defined the petri net and the strict and weak
transition rules, we now apply these definitions to our two
problems. In both cases, we use the weak transition rule.

Consider the following solution to Problem #1. Place the
philosophers dining table in a dining room with a narrow entrance
so that only one philosopher can enter the dining room at any one
time. When a philosopher feels hungry and comes to the dining
room, he looks in before he enters., If either of the philosophers
who sit on either side of him are in the dining room, he goes away
and comes back later., If neither are present, he enters the room,
sits down and eats. Upon finishing, he leaves the dining room.

We can represent the above solution to problem #1 with the
petri net N1 in Fig. 2-2, For i €{(1,...,5), a token in A

implies that philosopher i is thinking, a token in fi implies that

Fig 2-2 A Graphic Representation of le




fork i is not in use and a token in e implics that philosopher {
is eating. The representation of Nl in Fig 2-2 is graphic. ¥e
can also represent Nl = (P.T.B.P.K.H.MO) mathematically as

follows:

P o= (cloczocavcl‘ocsvfl cfzpf3of4|f51910‘92093094005)'

Tom (epatyrtgit ataitoit, tauto e, o),

OD—-OCOOOOOOOOOQO
HOOOOOOOOOOOOOO

OOOOO'—'OOOO—OOOO'—
OOOOOOOO'—‘HOOO'—‘O
OOOOOOO'—"—‘OOO'-‘OO
OOOOOO*—‘HOOO'—OOO
OOOOO'—H—OOO'—OOOO
OOOO*—‘OOOOOOOOOO
OOO'—‘OOOOOOQOOOO
OOP—'OOOOOOOOOOOO

K(p) =00 v pePp,
W(e) =1 we€E,
(Note: Recall that B & F together uniquely define E.)

OOOOO)—‘»—I&-—:;—A»—I;—:;—‘HHH

OOOOO!—'I—'OOOD—'OOOO

OOOO'—-‘OOOOOOOOOO
OOO!—'OOOOOOOOOOO
OO’—'OOOOOOOOOOOO
OHOOOOOOOOOOOOO
D—‘OOOOOOOOOOOOOO
OOOOO!—!OOOP—'OOOO'—‘
OOOOOOOOD—"—‘OOO'—‘O
OOOOOOOD—'!—'OOO’—'OO
OOOOOO!—"—'OOOP—'OOO

(o))
—




At this point, we also include D for later reference:

0 0
-1 0

]
—
000
—_OCO0

1
_CcC Qoo
1

1
OCOO0COoO~~ocoo
11
——0oCc
LWL
-0 0 Q
!

CoO0C~~OCO0OOoC~OooOo e —

COOC—=OoCOoO0oOC~~coo~c

OO»—OOOO'—'—'OOO'—OO

c-—-ococ-—-»—-occ-—oco
'-'Oooct—--ooc»-ocoo

O=—0C0C0OC
o000

Note that we represent B, F & D as |P| x |T] matrices and MO
as a lPl x 1 matrix. The places are represented top to hottom in
the order in which they appear in P. Likewise, the transitions are
represented left to right in the order they are listed in T. Thus

the third column of B represents the tokens removed from c3, f2 &

f3 by transition t3 with "1"s in rows 3,7 & 8. This notation will

be used hence forth,

Now consider the following solution to Problem #2. When a
process A requests control of the resource, check to see if there
exists some process B which already has control. If there is no
such process, give A control of the resource. If there is, wait
until B yields control, and then give control to A. If more than
one process is awaiting control at a given time, place them on a
queue and deal with them on a first come/first served basis.

We can represent the above solution to problem #2 with the




petri net in Fig., 2-3. Each token in pl represents a process

doing what ever it is that processes do when they don't want

control of the resource. Tokens in p, represent processes which

have requested control of the resource but have not yet recieved
it. (Note that since we can not tell one token from another in a
petri net and since we require our petri nets to be finite, we
can not represent an arbitrarily large first come/first served
queue explicitly.) A (hopefully single) token in Py represents a

process which has control of the resource.

Fig 2-3 A Graphic Representation of N2:

Again, we can represent N2 mathematically, and do so as

follows:




P - “’lvl’zopznl’,"u
T = (tl'lz’ta'ta'ts).

1
0
0

Bw
0

K(p) =oe VY pepP,
H(e) =1 ¥V pep,
Again, we include D for our later convience:
-1 -1 0 1
0 1 -1 o0
0 0 1 =1
0 0 -1 1

1
0
0
0
In both of the above examples, we can verify by inspection that
Nl and N2 are correct representations of our solutions to problems
#l & #2. (Since our initial statements of the solutions are
written in English, they are, perforce, somewhat inexact,)
llowever, that is all we have achieved.
The remainder of this segment is devoted to developing

constructs which can be used to determine whether or not our

solutions are correct,

Def 2.1,14 Strict Marking Graph:

Let N = (P,T,B,F,K,W,MO) be a petri net.

Then the strict marking praph of N is a system consisting of a

directed graph
G = (Z,E)

and a labeling function 1:E-->P defined as follows:




Z = [rl())sﬂlpl is the set of vertices,
L€Z x 7,
E= ((z,2')]2z,2'€ 2, 3t €T »2[t>2') is the set of cdges,
and for all (z,2') E,
I(z,2') = ¢
where t €T and z[t>z'.
We write
SNG(N) = (G,1), G = (Z,E)

to denote the strong marking graph of N.

Def 2.1.15 Weak Marking Graph:

Let N = (P,T,B,F.K,W.Mo) be a petri net.

Then the weak marking praph of N is a system consisting of a

directed graph
G = (Z,E)

and a labeling function 1:E-->P defined as follows:

Z = (MO>5NlPl is the set of vertices,

E£Z x 2,
E = ((z,2")|z,2'€2Z, FtecT» z(t>z) is the set of edges,
and for all (z,z') E,
1(z,z") = ¢t
wvhere t € T and z(t>z'.
We write
WMG(N) = (G,1), G = (Z,E)

to denote the weak marking graph of N.




When we represent either of the marking graphs graphically,
instead of writing the vertices as column vectors (recall that
the vertices are markings), we use the following notation: Lot H
be a marking/vertex in a marking graph. Then for each p P, we

write pi, H(p) = i, if 1 > 0 and ommit p entirely if 1 = Q,

Thus if P = (pl,pz,p3), H(pl) =1, H(pz) = 0 and M(p3) = 4, we

write p;pg.

11 111.1171.1.1
c1c2c3c4c5£1f2[3£4f

Consider WMG(Nl) in Fig 2-4., Note that since WMG(NI) is finite,

. . . . ”
wve can determine by inspection that Nl 1s a correct solution to
problem #1, since for all i {l,...,5) and for each vertex/marking

M in WMG(NI), we can find a directed path to a vertex/marking M'
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such that H'(ei) = 1,
Now consider HZ. The reader can verify that HHG(Nz) is
infinite. Thus we cannot use WMG(NZ) to determine whether or not

N2 is a correct solution to problem 2.

Def 2.1.16 Weak Coverability Tree CT(N):

Let N = (P.T.B.F,K.W.HO) be a petri net.

Then the weak coverabilty tree of N is a system consisting of the

tree
T' = (V'E!{l%

and two labeling functions lv:V-->NL};' and lE:E-->T which are

defined via the following induction:
Base step - Depth 0:
Introduce the root vertex r €V such that

lv(r) = MO.
Induction step - Depth n + 1:
Assume that all vertices of depth £n néN, n> 0, have
been defined,
Let s€V be a vertex such that
Depth(s) = n
and
RN
where QGNOO .
one of the following hold, then s is a leaf:

1) On the path from r to s there exists a vertex s'eV,




Depth(s') < n, such that
! -
lv(s ) = Q.
2) There exists no t €T such that Q(t).

If 8 is not a leaf, then there cxists at least one te€T

such that

Q(e>Q'
for some Q'€ N,P,.

For cach such t, introduce a new vertex st to V and a new

edge e, to E such that
{.(et) = 8,
lE(et) =t and
Ple,) = s, .
We define lv(st) as follows:
Let P(Q') = (Q"]Q" labels a vertex on the directed path
from r to s.» Q"< Q') vl(Q'),
d=0q"+ ”’Zo"ep(o') Max(0, (Q' - Q")).

Recall that by convention, 0-¢0 = (,
Define lv(st) = Q.
Note that for all p €P such that
Q"(p) < Q'(p) VQ"€P(Q"),
we have that
Ap) = oo,
and for all p €P such that
Q"(p) 2 Q'(p) ¥Q"€P(Q"),

we have that




Q(p) = Q'(p) = Q(p) + D(p,¢).
Note also that (Q(p) = co==)> {j(p) woe) V¥ peP
Repeat the above process for all vertices of depth n. This

defines all vertices of depth n + 1, or stops if there

are no such vertices.

We write

CT(N) = (T'21,,1.), T' = (V,E,7\¢)

to denote the weak coverability tree of N.
Note that since T is finite, for all vev,
[(ele €E, t(e) = v}| < |T] < oo,

Thus CT(N), or more correctly T', is finitely branching.

Def 2.1,17 Strict Coverability Tree:

The strict coverability tree is constructed in the same fashon

as the weak coverability tree, save that the strict transition

rule is used in place of the weak transition rule,

We provide CT(NZ) in Fig 2-5 as an example of a weak
coverability tree. Note that we use the same notation for labeling
vertices as we did for the weak marking graph of Nl. The following

four theorems give us the information we require to interpret the

weak coverability tree,




9 CT(NZ):

Fig 2-5 The Coverability Tree of N

Thm 2.1,18:
Let N = (P,T,B,F,K,W,MO) be a petri net and
CT(N) = (T',1,,1.), T' = (V,E,7,#) be the coverability tree
associated with N,

Then T' is finite.
Pf: by contradiction

Suppose that N is a petri net such that T' is infinite.

Since T' is finitely branching, by Thm 1.2.23, Konig's lemma,

T' must have at least one infinite path.

Call this path

a = voelvlezvz...




wvhere Y is the root vertex of T'.

By definition of CT(N), associated with & is a scquence of

labelings

L =1 o1

0.11 2,0!0

where lv(vi) = 11 for all i €N,

By the construction rules for CT(N), L has the following

properties:
1) 11 ¢ 1J for all 1,jeN, i # §,
2) For all i €N, there exists tiGT such that li(ti>.

The above must be true, for were they not, & would terminate

and hence be finite.
Consider 10 = MO' the initial marking of N,

Since Mo is a marking, it must, by definition, be finite. i.e.

M (p) < e ¥ peP.

Hence there is at most a finite number of labelings lcNLJ

such that
1< 10.
Further, since P, the set of places in N, is finite, by Thm
1.3.4, Zorn's Lemma, the set of pairvise incomparable
labelings l'ethil, which are also incomparable with 10
and any labeling 1" ¢ 1O which may occur in L, must also be
finite.

Thus there must exist some finite i €N such that li > 10.

By the construction rules for CT(N), there exists p €P such

that




ll(P) .”'

Since the definition of the edge multiplicity function requires
o finite multiplicity on cach edge in N, for all jeN, > 1
and pe P,

li(p) = 00 m=) lj(p) = 00,

Thus there are only a finite number of possible labelings

1 GN',!:' such that

1<11.

Again by Zorn's Lemma, the set of pairwise incomparable

labelings 1'¢€ N,Pl which are also incomparable to 1. and
i i

any labeling 1" ¢ 1i which may occur in L, must be finite.
Thus there must exist some finite keN, k > i, such that
1k > li'
By the construction rules for CT(N), there exists p € P such
that
1
1(P) < oo

and
1 = 00,
L (P)
The above argument can be repeated indefinitely.
However, since P, the set of places in N is finite, we must
P
eventually reach some labeling 1 GNLJ, m € N, such that
m
1 (P) =eo vpeP.
But then, since the edge multiplicity function is defined to

be finite for all edges in N,

lm+1(p) =00 VWpeP




Thus 1ﬂ = ln+l'

But this is precisely one of the conditions for the termination
of a path given in the construction rules for CT(N).
llence & is finite and T' cannot contain an infinite path.

Therefore T', and hence CT(N), is finite.

Lemma 2.1.19:

Let N = (P,T.B,F,K.B’.Ho) be a petri net,
CT(N) = (T',IV,IE), T' = (V,E,7,#) be the coverability tree
associated with N,

A= Voelvl...v

that Y is the root vertex of T' and v is a leaf.

n=1%n"n’ n€N, be a directed path in T' such

1,(v)) = QicNLI;l Vig(0,...,n),

P;‘QP be the set of places such that Qi(p) = 00 {==) peP;‘

for all i €{0,...,n) and
le(ei) =ti€T Vlé[l,..-,n}o

Then for all kéN, 0 L k < n, such that P;‘lcp » there exists a

k
b €N, 0 < b

K < k such that

k
- «poO
Qk(p) = Qbk(p) V p¢P Pk

and

k o8 - po
(D Zh=bk+1 £)(p) >0 ¥ pe PP .

Further for each such k, we can construct a firing sequence

wkeT* with the properties:
1) (0w )(p) =0 ¥ péP\PT:,
. ¢ PR p
2) (D wk)(p) >0 Vv pCIk Pbk,
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3) v, 18 cnabled on any marking M on P such that

a) M(p) > Qbk(p) v psP~P':.
b) M(p) 2 (Bew )(p) V peEPPe.
k
Pf: by construction

The existence and properties of bk follow dircctly from the

definition of CT(N).

We demonstrate that wk can be constructed via the following

recursive procedure:

Initially let v, = bk + 1 by +2...t

By the construction rules for CT(N), the following

must be true:

1') (D-w J(p) =0 V pe P\Pk.

") (D o2 poo
2') (D-w )(p) >0 VpePR*P2 ,

3') wk is enabled on any marking M on P such that

a') M(p) > Q, (p) V pe P Pk 1’
b') M(p) > (B W )(p) Vpe P;"l
Note that 1') is identical to 1),

Further, if Pk°°1 = P;", 2') and 3') are identical to 2)
k

and 3) respectively,

k-1 P;;, wk as initially defined satisfies

properties 1), 2) & 3) and we are done.

Thus, if P%°

Suppose P;:c P;’l

Then we modify wk as follows:

Initially, let r = k - 1,

Note that by the construction rules for CT(N), the




folloving are true:

") (Dew )(p) = 0 ¥ pepp

" . * pr
2") (b k)(p) >0 vV pel’k Pr.
") L is enabled on any marking ¥ on P such that:
a") M(p) 2.0, (p) v pe PP,
k r
b") M(p) 2 (8w )(p) ¥ peP®

We proceed via the following cycle:
i) Decrement r by 1.
ii) Modify v, s indicated below.
11i) Demonstrate that 1"), 2") & 3") hold for the new
value of r.

iv) If r > bk' we return to i) and start over. If
ra bk' we are done, since 1"), 2") & 3") have
become equivalent to 1), 2) & 3) respectively,

Our modifications to ) in ii) and our argument in iii)
depend upon whether P®= p%® P:’:P:’ « We deal

r r+l +1
with the former in Case 1 and the latter in Case 2.

1
No additions are required to wk.

o0 _ (-} " n " : .
Since Pr Pr+1' 1"), 2") & 3") still hold

— (D%, pOI .
Case 2 (Pr cP”_l).

Case 1 - (P*®= p®®
r r+

Define s = r + 1,
Construct ws via recursive application of this
procedure,

Then L has the properties:




1Y) (Dew )(p) =0 V p:M;’.
2%) (Dew )(p) >0 V¥ pé p;‘lp".

8
3') vy is enabled on any marking M on P such that:

°) M) 29, (») ¥ pe PP,

b*) H(p) > (Bew S(P) Vpe P;"
]

vhere b €N, 0 < b ¢ s,
s < s
Do
% (P) = Q(p) v peP-P]

and
.k ®po
(D Zhubs-l-l t,)(P) >0 V pepp .
Choose K&€N such that
» ® 08
K> 2((B wk)(p)) V pe Ps Pr.
Choose m € N such that
[ ] ~; os
mn ((D ws)(p)) >K \'/p&PS Pr'
By 2%), such an m must exist since

PRP®™) ¢ (PRp%),
( s P:)’ (Ps Pbs)
Let I be the firing sequence formed by concatinating

W with itself m times.
Note that I has the following properties:
D (:D)p) =0 ¥V pep-p¥
2) (DI)(p) >0 V¥ peP P,

s
3) I is enabled on any marking M on P such that

a) M(p) > Q (p) vV peP: P;’

b) M(p) > (B- I)(p) v psP;’
s

t teoot *

by +1 s éT and

t e * i i

s+l tkeT be firing sequences such that




wk = ab.

Define wé = alb,

We must now show that wé has the properties:

1#) (Dew!)(p) = 0 V¥ psw;:‘,‘
2"’) (D-w!)(p) >0 ¥ p‘P]‘:!P::

a
37) wé is enabled on any marking M on P such

a®) mep) > Q, () V perpl?
b°) MCp) > (Bew!)(p) ¥ peP
By 1), (D-w)(p) = 0 V peP-PX
Further, by I), (D-I)(p) =0 V pe P~P:.
. {3
Since P:g Pk”, we obtain 1#).
By definition of I,
(D-I)(p) > (B-w )(p) V peP¥p®
k s r
which implies
ow! ®poe
(D wk)(p) >0 Vv péPk Ps.
By 1), (D*I)(p) =0 V pe P\P:’.

Thus we obtain 2#).

#
To obtain 37), it is sufficient to show that w]: is

enabled on the the marking M on P, where:
Q, (p) V peP\pP¥
M(p) = k o
'
(B wk)(p) v peP=
Since for all m¢N, bk < m< s,

pR
WORTILETIN S

by the construction rules of CT(N) and the weak

transition rule, a must be enabled on M.




Thus there exists a marking M' on P such that

H(ad>M'

vhere

H'(p) = Q(p) = Q, (p) V pePPX
8

and
H'(p) 2 (B+(Ib))(p) V peP™
By 3), to show that I is enabled on M', it suffices

to show that
M % poo
M'(p) 2 Qbs(p) V peP =P
Consider the firing sequence

c .‘lt .
s

= t t
bs+1 bs+2

Either b ¢ b or b >b,.

s k s~ 'k

Suppose bs 14 bk'

Letd=t eeel

bs+1 bk

Then ¢ = da. This is true since we have not yet

modified wé for i ¢ r.

Let M be a marking on P such that
o Q, (p) V pe PP®
M(p) = s - r
(Ded)(p) + (B'Wl:)(l)) vV pe Pr.
Since for all mé€N, bS £m< s,
)
Qm(p) <o Vpe€P Pr,
by the construction rules for CT(N), and the weak
transition rule, c is enabled on M, as is d.

[

Hence there exists a marking M' on P such that

M(d>H'.




Further, by the weak transition rule,
' = ¥
Thus we have
fAca>i
and
H(a)y'
where fi' = M.
But, by def of CT(N):
]

o
(D:c)(p) >0 V pei’s\Pr.

Hence
' 8 1,00
M'(p) > Qbs(p) VpeP Pl
and thus I is enabled on M'.
On the other hand, suppose bS'Z bk'
Now let d = t S
by +1 bg
Then a = dc.
Since a is enabled on M, so is d.
Thus there exists a marking fl on P such that

M(d>H.
Since for all m €N, bk £<m<s,

<poe
Q,(P) <o ¥peP PS5

by the contruction rules for CT(N) and the weak

transition rule, we have that:
f(p) = Q, (p) V peP PR
s r
Since c is enabled on M, and since, by the

construction rules for CT(N)




(0:e)(p) > 0 V pePRp?
we have that
M(d>R(e>u
and
H'(p) > Qbs(p) ¥ pe PP
llence, in this case as well, we have shown that I ig
enabled on M',
Thus there exists a marking M" on P such that
M (I>M",
It remains to be shown that b is enabled on N",
By 1), (D-I)(p) =0 V¥ pEPPY.
Thus M"(p) = M'(p) = Q(p) Ve P;
' By definition of I and the weak transition rule,
M'(0) 2 (B+b)(p) ¥ peP™p2
By definition of M and the weak transition rule,
M"(p) > (B*b)(p) V¥ pe P
To summarize:
M"(p) = Q. (p) v péP~P:.
M"(p) 2 (Beb)(p) ¥ PeP?

By 3"), wk, and hence a, is enabled on the marking

M on P, where:

. {Qb (p) v pe P\P®
M(p) = k S
(B-w )(p) VWpe P2

Thus, by the weak transition rule, b is enabled on

A

the marking M' on P, where




Q(a)ﬁ',

M'(p) = Q(n) VpePp
and

N (p) > (B b)(p) V¥ pere.

Since M"(p) = ‘l'(p) 14 pGP\P » and both M"(p) and
M'(p) are greater than or equal to (Beb)(p) for
all pe'ng by the weak transition rule, b is
enabled on M" iff b is enabled on ﬁ'.

Since we have shown that b is enabled on H', we have

obtained 3#).

We now redefine Wy to equal wé, and note that 1#),

2#) & 3#) are equivalent to 1"), 2") & 3"),
This concludes our handling of Case 2,

One point remains to be delt with in our argument for

our recursive construction procedure for Wy e We must

show that the recursion is not infinite.
We do so by observing that if the construction of wk requires

the construction of w_» then P:c P:.
Since P, and hence P;f is finite, the recursion must also be

finite.

Thm 2.1.20:
Let N = (P,T,B,F,K,W,MO) be a petri net,
CT(N) = (T',lv,lE), T! (VfE,(,¢D be the coverability

tree asscoiated with




veY and
1,(v) = Q eu"".
Then 1) If Q(p) <00 V¥V peP,
Then Q€ R(N).
i1) If there exists P®¢P, P* £ ¢, such that
Q(p) = co<mm> p € P,
Then there exists an infinite sequence of markings
Ml. MZ""'“i""
such that
8) M (p) = Q(p) V¥ pePP%
b) M (p) < My(p) < ... V¥ peP® and
c) Mie R(N) Vie(1,2,...}.
Pf: by construction
Let & = voelvl...vn_lenvn, né N be a directed path in T'
such that Y is the root vertex of T' and v is a leaf.
Recall that by Thm 2.1.18, T' must be finite. Thus every
vertex in V must lie along some such directed path,
lv(vi) = Qi V i€(0,...,n},
lE(ei) = ti vV i€{l,...,n} and

P?SP be the set of places such that

[Qi(p) = 00 {==) peP‘i’] Vie(o,...,n}.

We proceed by induction on i:
Base step - (i = 0):
By definition of CT(N),




the inictial marking of X.
llence QO - ”O € R(R).
Induction step - (i > 0):

Suppose that the Thm holds for all Qj’ 0Ljgi.

We demonstrate that the Thm holds for { + 1 as follows -
three cases:

Case 1 - (Pi+1 = @)
By def of CT(N), P1 = f#,
Hence Qi € R(N).

By def of CT(N), t is enabled on Q1 and

i+l

Qe 12Q e
Thus Qi+le R(N).

Case 2 - (Pi = Pi+1 # @)
By the induction hypothesis, there exists an infinite
sequence of markings
r‘[l,blzpcocybih,-ol éR(N)
such that
M (P) = Q,(p) vpcmy; h€(1,2,... ) and
- -]
Ml(p) < Mz(p) < vee & Mh(p) < ves W pe-Pi,
h‘[l,z,'oo ]o
By def of CT(N) and the weak transition rule,
= poe
(Bet, () < Q;(P) =M (p) Vv peP oy
hG{l,z,-.. ]o
Further, since the edge multiplicity function is defined

to be finite:




[- )
(B-t“_l)(p) < o0 VpGPi.

Thus there exists some j €N such that

(Bt )P <M (p) Vhe(gg4l,e ), pePh

Therefore, is cnabled on all M such that

ti+l h
hé€({j,j+l,000 ).

llence ve can define a sequence of markings

' = . \ 4 .

Hk Mk-o-j"'nti-i-l kéN, k>0

Since M,(p) = Q;(p) V he(l,2,... ), pe PP by
definitions of CT(N) and the weak transition rule,
we have:

g =
a) Mi(p) = Q

Further, since

(p) V pePP™_ , k€N, k > 0.

i+l i+l’

Y ')

we have that

] [] P- 23
b) M1<p) < Mz(p) < ves W p€Pi+1.

Finally, since M € R(N) for all h €{1,2,... }, and since

h
ti+1 is enabled on all Mh > héN, h > j, we have that:
C) b‘lzeR(N) kafl,z,... ]c
. ®_ poo
Thus, if Pi Pi+1 # @, we have shown that Qi+1
satisfies the Thm.,
Case 3 - (PPcP%_ 4 ¢):
i i+l
By the construction rules for CT(N), there exists b €N,
0 < b<i, such that
= ¢p.po
Q,(p) Qi+1(p) Vpep P

and




0 F e 6P >0 ¥ PEPT P
By Lemma 2.1.19, we can construct a finite {iring
sequence w € T%* sguch that:
1) (Dew)(p) =0 V péP~Pi’:1.
2) (Dew)(p) >0 Vv pepmsp‘l’,’,
3) w is enabled on any making M on P such that
a') M(p) 2 Q,(p) V peP P
b') M(p) 2 (B-w)(p) ¥ peP
Suppose Pb = @,
Then, by the induction hypothesis, Qb R(N).
Since (Dew)(p) > 0 ¥ peP, we can define the sequence
of markings
Mh = Qb + h*Dew Vhe(l,2,... )
where
c) Mhe R(N) ¥V he(l,2,..,)
holds by construction.
Since (D-w)(p) =0 V¥pe P\P;:I, we have
a) M (p) = Q,(p) = Q. (M) Vperr® ,
hé€(1,2,.,. }.

. . 0o Oo= (-]
Since (D-w)(p) > 0 VWp éPi_,_l\Pb Pi+1' we have

[ -]
b) Ml(p) < Mz(p) < ve. VpePi+1.

On the other hand, suppose Pb £ 0.
Then, by the induction hypothesis, there exists an
infinite sequence of markings

M_,M o M

1, 2,-0 [ h,ouo




vhere

a") #,(p) = Q () V pe PP

b) H (p) < Hy(p) < ouv ¥ pe Py’ and
dUF%GRW) Yhe(l,2,... ).
Since the arc weighting function is defined to be finite,
and since w is finite, there exists K €N such that
K~ (Bw)(p) >0 V])EP:.
Define the function f:N-->N such that f£(r) is equal to
the least integer h such that
M (p) > 2-r-K VpéP:.
Note that by b"), f must be defined for all r eN.

Then we can define a sequence of markings

r€(1,2,... )c

H; = Mf(r) 14

Since for all r',r" €N, r' < r", there exists h',h"e N,
h' < h", such that

H', = M and  M!, =M

hl hn’

have
a) NL(p) = Q () ¥ pe PP
b) Hi(p) < Mj(p) < ... VpeP® and
c) MI'_éR(N) Vre(l,2,... }.
By 3), w concatinated with itself 2r times is enabled
on 1‘11'_ for all re{1,2,... }.
Thus we can define the infinite sequence of markings

on P:

M" = M' + r(D.w)
r r




vhere
c) :-l;jen(ra) Vre(l,2,... )

holds by construction,

Since (D.w)(p) = 0 for all p€I’~P;_l we have

a) Hi(p) = Qu(p) = Q,, ,(p) W pe PyPE

8 [ ] ” LY ”
Since (Dew)(p) > 0 for all pé Pi+1 Pb and

H(p) 2 2r(Bew)(p) v péP;, réf{l,2,... ),

we have
YU " (-]
b) Hi(p) < My(p) < oov W pep® .
Thus if Pic Pi+1 # @, we have shown that Qi+1
satisfies the Thm,
By the construction rules for CT(N), cases 1), 2) & 3) are

the only possible cases in our induction.

Thus our induction is complete.

Thm 2.1.21:
Let N = (P,T,B,F,K,W,MO) be a petri net,
CT(N) = (T',lv,lE), T' = (V,E,<,@), be the coverability
tree associated with N and

M:P-->N be a marking on P,
Then M€ R(N) <==> there exists a vertex v éV such that lv(v) = (

and a set P®€¢P such that

Q(p) =00 <==> pe P®
and

M(p) = Q(p) V¥ pe P\P™,




PE: (==>) by construction
Suppose M€ R(N).
Then there cxists a firing sequence
= so e ® €
U} I:lt:2 I:HG'P. née
such that
A H A ] : SH o M
do(t1>dl(t2>d2...Hn_l(tn>nn M
or, more simply,
MO(V>M.
Proof follows by induction on Mi, 0<1ign.,

Base step:

By definition of CT(N), the root node r is labeled by MO'
the initial marking of N.
Therefore the Thm holds for NO.

Induction step:

Suppose that we have proved the result for'Mi, i€éN, i > 0.

If i = n, then we are done.

If i < n, we showv that the Thm holds for i + 1 as follows:

Since the Thm holds for Mi, there exists a vertex vic v

such that 1 (v.) = Q. and a set Pf"EP such that:
V' i i i

= == d
Qi(p) 0 <{==> p¢ Pi
and
‘DO
Mi(p) Qi(p) V péP Pi

We show that the same holds for Mi+1' We do so in the

following cases:

Case 1 - (vi is not a leaf):




Since Ql. 2 .'!1, t:“_l 13 cnabled on Ql'
Thus, by the construction rules for CT(N), there exists
. , ©
an edape c“_léh, a virtex Vi léV and a set Pl ISP
such that:

“eyy)
1 (c
« Ce1? = Vig

Lyvigy) = %
QP = Q) + (06, )(p) Vpeppe

{and Qi 1(p) = ®, Note also that hy

-Vl'

141) = ¢ i+]’

, )
wvhere pe Pi 1

definition of CT(N), P”CP'°1

, , Y .
Since the Thm holds for H » Since “i-i-l ali + D ti+1

and since P"’ <P '°1 € P, we have that
Hipa(P) = Q. (p) ¥ pepe P
Case 2 - (vi is a leaf):
By the construction rules for CT(N), either
1) There exists no t €T such that t is enabled on Qi
or

2) There exists a virtex v'€V on the directed path

'y o
from r to v:,L such that lv(v ) = Qi.

Since t, . is enabled on M, and Q. > M , 2) must hold.
i+l i i~ i

Thus we can set vi equal to v' without changing Q..
i

We do so and proceed as in Case 1,

Follows directly from Thm 2.1.20.




Def 2.1.22 Bounded and Unbounded on k:
Lot N = (P,T.B,F,X.H,Ho) be a petri net,
per.

Then p in said to be bounded on X 1iff there exists a X €N such

that
H(p) < K V MHERM).

If there is no such K, p is said to be unbounded on X.

Thm 2.1.23:
et N = (P,T,B,F.K,N,Mo) be a petri net,
CT(¥) = (T',1,,1p), T' = (V,E,,@) be the coverability
tree associated with N and
p€P.
Then p is unbounded on N iff there exists a vertex v €V such that
lv(v) = Q where Q(p) = oo,
Pf: (==>) by contradiction
Suppose that:

p is unbounded on N and

There exists no vertex v éV such that lv(v) = Q and

Q(p) = oo,

Since p is unbounded on N, there exists an infinite sequence
markings Mié R(N), i €{1,2,... }, such that
}I PI LN I | .00 L
1(p) < ,(P) < <M (p) <
By Thm 2,1.21, for all such Mi’ there exists vié V such that

1 = .
V(vi) Qi and Mi £ Qi




By hypothesis, Q(p) <@ V 1€ (1,2,... .
Thus, again by Thm 2.1,21, Qi(p) - Hi(p) vV 1€(1,2,... }.
Let Pi”s P be a subset of P such that
Q(p') = @0 <au> p'e pE
Since H(p) < Hy(p) < oot ¢ H(p) < .ue
we have that .
Ql3vey >y =)Ao = w6 pe)
Alp P)))
is an infinite set.
lence T', and thus CT(N), must be infinite,
But this contradicts Thm 2.1.18.
(K==)
Follows directly from Thm 2.1.20.

Return now to CT(N2) in Fig 2-5. By Thm 2.1.23, Pq is bounded

on NZ' Further, by Thm 2.1.21, M(pS)‘S 1 for all M R(N2)° Thus

our solution to problem #2 meets the first requirement.

We demonstrate that N2 meets the second requirement as follows:
By the weak transition rule, t5 is enabled on any marking M R(N2)
such that M(p3) > 0. Since it is given that any process which
obtains control of the resource will relinquish it eventually, t5
must fire eventually and yield some marking M' on P such that
M'(p4) = 1 and M'(p3) = 0. Since M' > MO and since there exists
w € T* such that Mo(w>M, we have M'(w>. Thus another process can

obtain control of the resource. Since the above argument can be




repeated indelinitely, we have obtained the second condition,

The development of the coverability graph which follows, will

be of use in scgment 2.2,

Def 2.1.24 Weak Coverability Graph:

Let N = (P,T.B,F.K.W,HO) be a petri net and
CT(N) = (T',lv,lE). T' = (V',E',¢', ') be the weak
coverability tree associated with N.

Then the weak coverability praph is a system consisting of the

directed graph
D! = (viE,t‘QO)
and a labeling function 1:E~->T defined as follows.

Let V = {QlQG Nl,:,, Jvlev' > lv(v') = Q}.

For each e'€ E' such that 1V(¢"(e')) = Q, lE(e') =teT,

lv(c?'(e')) = Q' and Q,Q'€V, introduce a new edge e€E

such that:

(e) = q,

1(e) t

P(e) = Q'.
Note that the labeling function 1:E-->T need not be
distinct - i.e. for all e ,ezé-E, l(el) = l(ez) =#£>

1

e, =e,. However, (f’(el) 1.(e2))/\ (0(e1) =¢(92))

/\(l(el) = l(ez)) == e1 e2.
We write

CG(N) = (D”l)' D= (VtE!{!¢)




to denote the weak coverability graph associated with .
dlote that ve could also define the strong coverability graph by

substituting the strong coverability tree of N for CT(X).

CG(Hz) in Fig. 2-6 is offered as an example of a coverability
graph. As will be shown in the following theorems, we can obtain
much the same information from the coverability graph as we can

from the coverability tree.

%3

Fig 2-6 The Coverability Graph of N2 CG(NZ):

Thm 2,1,25:

Let N = (P,T,B,F,K,W,MO) be a petri net,

93




CG(XN) = (D',1), D' = (V.E,".?) be the weak coverability

graph associated with i,

loQJ
P. PPEP be subsets of P such that

i
©
Q) =00 ¢am> p € P

and
oo
. J.
Then 1) If c€E, t(e) = Qi' ) = QJ and 1(e) = t €T,
Then a) Qi(p) 2Bt(p) vpeP,

@, noo
b) Ping and

c) Q(p) +Dt(p) ¥V pePP?
Q.(p) = o)
(- PGPj,

Qj(p) m 00m=) pEP

2) Qit V ==> for all k€N there exists Mké R(N) such that

M () = Q,(p) ¥ pe N’; and
M (p) 2k 14 pepi“’,
3) A place p €P is unbounded on N iff there exists a Q€V
such that Q(p) = oo,
Pf:
1) Follows directly from the definitions of CT(N) and CG(N).
2) Follows directly from Thms 2.1.20 & 2.1.21.

3) Follows directly from Thm 2.1.23.

Thm 2.1,26:
Let N = (P,T,B,F,K,W,Mo) be a petri net,
CG(N) = (D',1), D' = (V,E,1,@) be the weak coverability




graph associated with ¥ and
w€T# label o loop in D',

Then there cxists a marking M€ R(N) such that M(w>,

Pf:

For each Qie V, define P;'sl’ such that

Qi (p) = ®0 <um> p¢ P

= so e ! 8
Let L QoelQ‘1 Qn-lenQn be a loop in D' where
Qo = Qn'

l(ej)gtj V j€(1,2,...,n) and

W= tltzncotno

By Thm 2.1.25 - 2), for all k €N there exists Mké R(N) such

that

v = . ”
Hk(p) Qo(p) V pcP P0 and

o
Hk(p) >k V pé PO.

ol - P = =oo-=)o
By Thm 2.1.25 - 1), P = P, P

Suppose Po = ), then by definitions of CT(N) and CG(N),

Qié R(N) vVie{0,1,...,n) and
Qi-l(ti>Qi Vie {1,2,...,n).
Hence Q0 = M(wdM = Qn' and we are done.
Now Suppose PO # 0.
Choose K€ N such that
K2 (Bew)(p) ¥ pePP.
By Thm 2.1.25 - 2) there exists M = ﬁo = Mn such that
Hp) = Qy(p) ¥ pePrp,

M(p) > K > (B-w)(p) ¥ pe P5° and




M<C R(N).
Define ﬂ:l. - ﬂo + D(tl...ti) Vi€(1,2,...,n).
By definition of CT(N) and CG(N) and the weak transition
ru1°.
R(p) = Qi(p) V pepry
ﬂi(p) > (B'(ti-t-l"'tn))(p) vp GP: and
ﬂié R(N)
for all { ¢{0,1,...,n).

Thus ti+1 is enabled on ﬂi for all i ¢(0,1,...,n).

Therefore ﬂo - ﬁn = M(w>.
Segment 2,2 - Petri Nets with Regular Firing Languages:

In this segment, we show that petri nets with regular languages
exist, and that for a given petri net N, it is decidable whether
or not the firing language of N is regular. Since any actual
problem in concurrency would be too unwieldy, we restrict
ourselves to small examples chosen to illustrate specific points.

This section begins with some definitions of boundedness
conditions for sets of places and results concerning them and
their relationship with the weak coverability tree. This
relationship is used to demonstrate the decidability of the
regularity of the the firing language of a petri net. Thus if we
seem to go far afield at first, the reader is asked to persevere

as all is tied together in Thm 2.2.1. This said, we begin.




Def 2.2.1 Characteristic Function of a Subset:
M

Let P be a set,
P'€ P be a subset of P.

Then we define the characteristic function of P', written Up" as

follows:

l1 ypep!
up'(P) =
0 VpeP P!,

Note that UP' can also be thought of as the characteristic vector

of P'.

Def 2.2.2 Boundedness for Sets:

Let N = (P,T,B,F,K,W,MO) be a petri net,
M:P-=>N be a marking on P,

P'€P be a set of places and

UpyiP-->N be the characteristic function of P'.

Then a) P' is bounded for M iff there exists k ¢ N such that for

each M'€ (M,
M'(p) < k for some péP'.
b) P' is uniformly bounded for M iff there exists k<€ N such

that for each M'€ (M,
M'(p) < k VpéP',
c) P' is bounded below for M iff there exists k € N such that

for each M'€ (M + n-U_, >, né€N,

P'
M'(p) > M(p) +n - k

for some peP!'.




d) P' is uniformly bounded below for M iff there exists keN

such that for each M'¢ (M + n- P'>' néeN,
M'(p) > M(p) + n - k VpéP',

Thm 2,2.3:
Let N = (P,T,B,F,K,H,Mo) be a petri net,
M:P-->N be a marking on P and
P'€P be a set of places.
Then a) P' uniformly bounded for M ==> P' ig bounded for M.
b) P' uniformly bounded below for M == P' ig bounded below

for M.
c) P' uniformly bounded for M <==> for all péP', (p) is

bounded for M,

d) P' uniformly bounded below for M ==> for all p€P', (p)

is bounded below for M.,
Pf: Follows directly from Def 2.2.2.

Fig 2-7 The petri net N':




The assymitry of d) may bother the reader at first, however a

glance at the petri net N' in Fig 2-7 that while both (pll and

{p2] are bounded below for the initial marking, (pl.pzl is not

even bounded below for the initial marking, much less uniformly

bounded below.

Def 2.2.4 Unbounded With Context M:

Let N = (P,T.B,F,K.W.Ho) be a petri net,
M':P-->N be a marking on P and
P'£P be a non-empty set of places.
Then P' is said to be unbounded with context M' iff
a) M'(p) = 0 V pep',
b) For all k €N there exists M"¢€ R(N) such that
1) M"(p) = M'(p) V¥ pEP'P' and
2) M"(p) >k Vpep',

Def 2.2.5 Maximal:

Let N = (P,T,B,F,K,W,MO) be a petri net,
7’ be the set of couples (P',M'), P'€ P, M':P-->N a marking on
P, such that P' is unbounded with context M' and
(P',M"), (P",M")e %
Define the partial ordering relationship < on by
(P',M") < (P",M")
iff
1) P'€P"  and




2) M'(p) < M"(p) V¥ peP-P",
Let (P',H')¥ (CP",M") |(P",M")€ 7, (P' ,M' ) = (P", H") ).

We say that (P',M') is maximal or maximally unbounded with

context M' iff
(P', M) w ((P',H"))
(i.e. ((P',M"),(P",M)€VP)A ((P',M") Z(P",M")) mu)

P' = P" and M' = M",),

Thm 2.2.6:
Let N = (P,T,B,F,K,W,MO) be a petri net,
V be defined as in Def 2.2.5 and
(P M) e 7.
Then there exists (Pm,Mm)G(PI,Ml)< such that (Pm,Mm) is maximal.
Pf: by contradiction
Suppose that (Pl,Ml)< contains no maximal element.
Let (P',M') € (P M )%,
Since P/SP'SP and |P| <w, the set
P = {p'l(P',M')e(Pl,Ml)"}
must be finite, Further, there must exist at least one P*¢pP
such that

(P'|P'€ P, PrEP') = (p¥),

Consider the subset of (PI,MI)" defined as follows:
S = ((LM)[P M) € (P LN)S, pr 2 pa),

Note that by our choice of Px, if

(P¥,M")€ S




1s maximal in S, it is also maximal in (PI,H1)< .
By hypothesis, (PI,HI)‘§ has no maximal element.
Thus S has no maximal element,
Hence for all (P*,M')€ S, there exists (P*,M") ¢S, M' ¢ M" guch
that
(P*,M") ¢ (P*,M"),
Therefore § ig infinite, and we can define ap infinite sequence
of couples
%
(P 'Mi)ie‘ N‘ S ViéN
with the property
Mi < Mi+1 Vien.
Since |P| < 00, there exists p € P~P* such that
[ilse®, w(p) <M (D))] =,
Define P = P* u($|fp ¢ P P¥, |[{i]ieN, Mi(ﬁ) < Miﬂ(p))] = 00},
Since
laliem, u,) <u, 1), pepp) < o,

there exists j€ N such that

Mi(p) = Mi+1(p) V peP\P, i¢N, i 2 .

Define a 0 Vpep
M(p) A
Mj(p) V peP P,

A A

Consider the pair (P,M).

We now show that }: is unbounded with context I‘"}, and hence
(P,M)€P”

By construction, Iti(p) =0 VpGI;.

Let k€N,




By construction of ;\P*. there exists he N, h > J such that
M(P) 2 kY p€ Pups,
Since (P*,Mh)GS £(P1,M1)4§ 7 » there exists M €R(N) such that
M(p) = Mh(p) V p€ P~P* gapd
M(p) > k ¥peps,
But f(p) = () = M(p) Vpepep,
M(p) = M.(p) 2k WpePP* and
F(p) > k Vpep*,
Thus l; is unbounded with context 1:1 and (5,1&)67:
Since (PI,MI)A(B,P‘;),
(P,M)e¢ (P ,M)S,

But P*C P, a contradiction.

Hence (Pl’Ml)é contains a maximal element.

Def 2.2.7 Maximal Vertex of a Coverability Graph:

Let N = (P,T,B,F,K,W.MO) be a petri net,
CG(N) = (D',1), D' = (V,E,7,®), be the weak coverability
graph associated with N and

Q¢€v,
Then Q is said to be a Maximal vertex of CG(N) iff for all Q'e v,

Q' 2 Q==>Q"'=4q.
Thm 2,2.8:
Let N = (P,T,B,F,K,W,Mo) be a petri net,

CG(N) = (D',1), D' = (V,E,7,) be the weak coverability graph
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associated with N,
PIE P be a non-empty set of places and
HI:P->N be a marking on P,
Then P, is maximally unbounded with context Ml iff there exists a

1
maximal vertex Q €V in CG(N) such that

o v PGPI
Q(p) =
Ml(p) Vp6P~P1.

Pf: (==))
Suppose P1 is unbounded with context Ml and (PI'MI) is maximal.
Then for all k € N there exists M'€R(N) such that
a) M'(p) = Ml(p) l/pGP*P1 and
b) M'(p) > k VpGPl.
Since CG(N) is finite, we can find a constant h€N such that
Q(p) > h <==> Q(p) =% VQeV, peP.
Choose k > h and let M' € R(N) be defined as above.
Let CT(N) = (T%1.,,12.), T = (V',E',¢*,@) be the weak
coverability tree associated with N.

By Thm 2.1.21, M'€ R(N) ==> there exists a vertex v € V' such

that lv(v) = (-), and a set PSP such that

Q(p) = M'(p) V pEP\P and
Q(p) = w0 ¥V peP.
By the construction of CG(N), QeV.

By our choice of k, PIQF.

We must now show that Pl = P;

Suppose P1 # P,




Then by part two of Thm 2.1.25, for all j&N there exists
HJG R(N) such that:
M (p) = Qp) V pepp
M(p) 21 VpeP
or, to put it more simply, P is unbounded with context M,
vhere _ Q(p) v pe€P-P
M(p) = =
0 VpeP.
Note that (PI,M1)<(§.E).
But, by hypothesis, (Pl’Ml) is maximal,

Hence P = Pl.

It remains to be shown that Q is a maximal vertex in CG(N). We
do so by contradiction:
Suppose there exists (35\’ such that (3 > Q.
Define ; such that
6(p) = 00 <{==)> p Gl;.
Define: a(p) Vpe P‘};
M(p) = A
0 ¥YpeP .
Again, by part two of Thm 2.1.15, for all i€ N there exists
MiG R(N) such that
M (p) = M(p) ¥ pepip
M(p) 21 Vpe P

A

which is to say that P is unbounded with context M.

By hypothesis, either

P, = Pcp
1




There exists peP~P such that H(p) >M (p)
In either case, (P, )“<(P -H)
But this contradicts (pl'Ml) maximal,
Hence Q is a maximal vertex of CG(N).

(K==)

Suppose Q is a maximal vertex in CG(N).
Let PIQP be a set of places such that

Q(p) = o (=a) pePl.
Define: {Q(p) Vpe’-l’\P1

M (p) =
0 ¥p c—Pl.

Again, by part two of Thm 2.1,25, P1 is unbounded with

context Ml'
It remains to be shown that (P oM ) is maximal.
By Thm 2.2.6, (P ,M )\ contains a maximal couple (P M ).

By the first half of this Thm, there exists Q €YV such that
‘P
Q (p) M () vpeP 0’
Q) =0 ¥p €P

and Qm is a maximal vertex in CG(N).

i (< N o
Since Pl_ Pm and Mm(p) > Ml(p) VpeP Pm, we have Qm >2Q

By hypothesis, Q is a maximal vertex in CG(N), hence
Q=0Q.

Thus P P and M =M,
1 m 1 m

Therefore (Pl,Ml) is maximal,




Thm 2.2.9:
Let N = (P,T.B,F.K.H.Ho) be a petri net and

CG(N) = (D',1), D' = (V,E,7,@) be the weak coverability graph
associated with N,

Then there exists Pls P, P1 # @ and MIC-NIP' such that

1) Pl is maximally unbounded with context Ml and

2) F’1 is not uniformly bounded below for Ml
iff there exists a maximal vertex Q€V, a loop & in CG(N) such
that 1(e) = w T*, and ﬁGPl such that

3) & has initial and final vertex Q,

4) D(P,w) <0 and

5) Q(B) = ea.

Pf: (==))
Suppose (PI’MI) is maximal and P1 is not uniformly bounded
below for Ml'

By Thm 2.2.8, there exists a maximal vertex Q€ V such that:

oo VpeP
Q(p) = 1
Ml(p) Vo €P~P1.

Since P1 is not uniformly bounded below for Ml' for all k¢ N

' . * ¢
there exists nke’ N, Mké (Ml + UPl nk>, wch and kaP
such that

1

. ?
(M1 + UPl nk)(wk>Mk and
' —
Mk(pk) < Ml(pk) +n -k
Thus for all k¢ N, D(pk,wk) < =k,

Since P1 is finite, there exists ﬁGPl such that the set




A = (k|keN, P = B)
is infinite,
Let d = - Min(D(p,t)|p€&P, teT).
Note that the number of tokens that can be removed from any one
place by the firing of any one transition is bounded by d.
Choose k ¢ N such that k > d-|v].
By our choice of k, we can devide wl‘; into [V| firing sequences
wk = Vlvz...v,v,
such that D(D.vi) <0 for all 1 €N, 1 <1< |V].
Since oo v pGP1
Q(p) =

CG(N) must contain a path & starting at Q and labeled by wl:.

k 12
segments such that

Since 1(0) = w* = v v re+V|y[r ¥e can devide o into [V|

a = A].AZ...AIVI

and

1(e,) = v, VieN, 1 <i¢|v].

For all i€N, 1 < i < |V] let
Q be the initial vertex of ai and

Q be the final vertex of A .

By our choice of k there exists j,j'&N, 1 LigLi'« lVl

such that

Q,=10Q,, and

J J
D(ﬁ’ Vjv ...VJ_,) < 0.

j+1

Define (3 = Qj = Q

i’




. Ve vjvju...vj,.
If Q 13 maximal, we are done.
If not, thore exists a maximal Q'G V such that Q' 2 Q
Since Q 2 Q, by the construction of CG(N), there must exist a
circuit in CG(N), labeled by v, which starts and ends in Q'.
Since D(f,v) < 0, we have proved the first half of the Thm.
(<==)
Suppose there exists a maximal vertex Q €V, a loop @ in CG(N)
such that 1(&) = w€ T* and f €P such that
1) a has initial and final vertex Q,
2) D(f,w) <O and
3) Q(p) = oo,
Let P1 = {p|p €P, Q(p) = ®) and
VPG%

Ml(p) =
Q(p) W¥p GP‘PI-

By Thm 2.2.8, P1 is maximally unbounded with context Ml

By the construction of CG(N), D(f,w) < 0 ==> Q(P) = o0 ==>
bGPI, as otherwise & could not be a loop.

It remains to be shown that P1 is not uniformly bounded below

for Ml.
For all k€N, 1let

nk = (k + 1)-Max{B(p,w)lpGP1} and

k
wk =W + = w concatinated with itself k + 1 times,
Then (M1 + UPI- nk)(wk>.
Hence for all k€ N there exists MILG (M1 + UP . nk> such that
1




(Ml + u’,l. LRICA,
Since D(p,v) < O,
D(b.vk) < -k VEkEN,

Thus for all k€N
Mé(ﬁ) <H(P) + n - ke

llence Pl i3 not uniformly bounded below for Hl'

Def 2.2.10 Language of Firing Sequences:

Let N = (P,T,B,F,K.W,Mo) be a petri net and

F(N) = (w]weT*, Mo(w>).
Then F(N) is said to be the language of firing sequences of N, or

the firing language of N.

Def 2.2.11 Regular Petri Net:
A petri net N is said to be regular iff F(N) is regular.

Thm 2.2.12;
A Petri Net N = (P,T,B,F,K,W,MO) is regular iff there exists keN

such that for all M R(N), M'¢ (M> and pep,
M'(p) 2 M(p) - k.
Pf: (<==) by construction
Suppose N = (P,T,B,F,K,W,MO) is a petri net such that there
exists k¢ N such that for all M€R(N), M'€ (M> and pEP,

M'(p) > M(p) - k.
We must show that F(N) is a regular language. We shall do so by




constructing a finite recognition automaton a' vhich
recognizes F(N).

Let ¢ = k + Hax(ﬂo(p)lpsl’) + Max(B(p,t)|peP, teT).

Wo define @a* = (D*,A%,1%,S%,F"), D° (V'E*, @) as

follows:

Let v* = (MiMenl?l M(p) <c V peP) olv )

where v8 1s a garbage vertex,
S* = (M),
F*' = V' (vg) and
A =T,
For each M,M'€ F*, t € T such that
M(p) > B(p,t) Vpe€P
and
M'(p) = Min(c, M(p) + D(p,t)} v peP,
include an edge e in E° such that
T'(e) = M,
1'(e) =t and
¢‘(e) = M',
For all M €F* and t¢T such that there exists p ¢ P such
that
M(p) < B(p,t),
include an edge e in E‘ such that
*(e) = M,
1'(e) = t

@ (e) vg.




llaving defined &*, we must now show that
vEF(R) <am> wel(a').

Suppose that wéF(N).

Let n equal the number of transitions in w.

Then we can write

w = tltz...cn.

Further, for all L€ N, 1 ¢ n, there exists MiG R(N) such that
Mo(tl>Ml(t2>M2...Mn_l(tn>Mn.
We now construct inductively an admigsable path & in Q" such
that
1‘(6) = W

Base step:

Since S' = (MO} F, the directed path of length zero

AO = MO

is admissable in Q°.
Since
1'a) = A
the nul firing sequence is accepted by q°.

Induction step:

Suppose that for i€ N, i { n, there exists an admissable

path Ai in Q@' such that

A - . \... LY A}
L = MoSMyee oMo

where 1 (ai) =1 (el)l (ez)...l (ei).
If 1 = n, 1‘(Ai) = w and we are done.

If i < n, we construct Ai+1 via one of the following two




cases:

Case 1 - (M} - Nj ViceN, j<1):
Since Hi(ti+l>"1+l' by the construction of & ’
there exists 91“6 E* and M} € F* such that

_ 141
L} L Y
ey ) =M

P ULILRY

@(eiu) =My ond

Mi+1(p) = Min(c, Mi(p) + D(p.t“l)) VpeP
= Min{c, Mi+1(p)) VpéP,

o = L) A Y ‘.'. LY A Y
141 = MooyMyeye o Mie, (M0

is an admissable path in Q"' such that
1 (ai+1) =1 (el)l (ez)...l (ei+1)

- = tltzoo-ti+lo

Case 2 - (there exists jeéN, 1 < j<1iand peP such

that Mj(ﬁ) > Mj‘(p) =c):

If there is more than one such J» choose the least.

Let vV = tj+ltj+2..otio

Since Mi G(Mj>, by hypothesis,
M () 2 Mj(b) - k.

Hence D(v,p) > -k.

. A Y ces A3 th a\
Since Mjej-i-l eiMi is a path in and

1‘(ej+1)...1‘(ei) = v, by construction of Q° ye

have that

MB) 2 My(B) - k = ¢ - k.
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Thus M3(8) > ¢ - k

2 Max(B(t,p)|péP, téT) + Max{M (p)[p€ P) > O.

Hlence t1+1 is enabled on Hi for all p€é P such that

there exists jeéN, 0 < J < i such that

HJ(P) > H‘(P) = C.

For all p¢P such that for all j€N, 0 ¢ j < i,
Hj(p) = Mj(p) ve have that
M (p) = M (p).

Since M (ti 1 1 1’ t:i 1 is enabled on Mi for all

such p.

Thus ti-l-l is enabled on Mi'

Therefore, by the construction of Q‘, there exists

an edge e, .€ E* and M’ _€ F* such that

i+1 i+1
t (e ) =M

1 (ei+1) = t:i+1'

@(ey,) =My, and

Mi+1(p) = Min{c, Mi(p) + D(p.ti+1)l VpeEP,
Thus we can construct

A =4 e
i+l 1 i+l
Myee 'Miei+1Mi+1

114+
= M'e
0

1
where 1° (A ) =1 (Ai)l (e

i+1)
1‘(e )1'(e )...1‘(ei)1‘(e
= tltzo..titi 1

and Ai 1 is an admissable path in Q°,

Therefore w¢F(N) ==> w¢L(a').

i+1)




Now suppose that veL(Q').
Let n equal the nuaber of transitions in w.
Then we can write

Vs tltz'..tn.

Since w ¢L(Q'), there exists an adaissable path

o= Moelnlez zoloHn_len"n

such that

1‘(31) - t:i Vién, 1<1i<n,
MOGS and

A )
MO - Mo.

We now show inductively that w is enabled on Mo.

Base step:

Since Ma = Mo, by the construction of Q@‘, the firing

sequence

w1=t1

is enabled on MO, and thus there exists an Mle R(N)

such that
Mo(w1>M1.
Induction step:
Suppose that for i€ N, 0 L1 < n, the firing sequence
Wi = tltzoooti
is enabled on MO' and thus for all j€N, 0 < i £n

there exists MJG'R(N) such that

Mo(t1>M1(t2>M2. . .Mi__1 (ti>Mi .

If i = n, we are done.




If 1 < n, vo must shov that there exists H1+IG'R(N)
such that

LT ANY
By construction of a*,
"J“(p) = Min{c, Hj(p) + D(p.tj+l))
for all p¢P, JEN, 0< § <,

Thus MJ_ZH:; for all jeN, 0< j < n.

By the weak transition rule,

(("1 2 l‘li)A(Mi(t:i“))) ma) Mi(ti+1>.
Hence there exists Mi+1€ R(N) such that

MM

which concludes our induction.
Hence w¢ L(Q') ==> w €F(N).

Combining the above with the previous result, we obtain
w €F(N) <==> wel(a').
Since F(N) is recognized by " and Q" is a finite recognition

automaton, by Thm 1.2,10, F(N) is a regular language.

(==>) by contradiction

Suppose that N = (P,T,B,F,K.W,MO) is a petri net such that

F(N) is a regular language. We must show that there exists

k €N such that for all M¢ R(N), M'€ (M> and pé P,
M'(P) 2 M(P) - kc
Proof follows by contradiction.

Suppose that for all k€N there exists MER(N), M'
B €P such that

€ (M> and




M'(B) < M(P) - k.
Since F(N) is regular, by Thnm 1.2.10, there exists a finite
recognition automaton

Q' = (D*,A*,1%,8°,F'), D° a (V‘,B‘.i‘.@‘)
such that F(N) = L(@"),
Let k = |V*|(~Min{D(p,t)[pe P, teT)).
Then, by hypothesis, there exist firing sequences v

markings M,M'€ R(N) and p¢P such that
MO(V>M(V>M',

M(B) > k and

M'(B) < M(P) - k.

'WETH,

Further there must exist two paths

© and o in Q' such
v W
that

1‘(nv) = v,
1‘(4;) = W

and AVGQ exists and is an admissable path in a*, i

.e,
1‘(av¢%) = vw cL(a') = F(N).

By our choice of k, w can be devided into at least IV‘I shorter

firing sequences such that

W = Wlwz...wlv‘,
where D(ﬁ,wi) <0 for all i €N, 1 ¢i ¢ |V,

Similarly, we can devide a, into |V*| subpaths such that

4 = o

W ahIAWZ

h 1'(a =
where 1°%( wi)

o
le\
we wich, 1 <ig [V,

Let MJ,'_,M'i'e’V, i€N, 1 i< |V be respectively the initial
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and final vertices of °v .
i

Thus M = M) . for all 1C¢N, 1 <1< |VY],

i i+]

Mi is the initial vertex of Aw and

MY .| is the final vertex of & .
[V v

Since we have defined |V*| + 1 vertices as initial and/or
final vertices of the A“'i’ there must exist j,j'G N,
1<3<3"< |V such that

Mj = M},.
Llet r = vwlwz...wj_le'l‘*,
ijj+1...wj,

Ar = avdwlawz ese ‘wj-l

8 = €T*,

AS = éw Owj+looodwj'o
Thus 1‘(41_) =r and
1 (as) = g,
Since Pref(F(N)) € F(N) and vw € F(N), it follows that rse¢ F(N)

and thus Arés must be an admissable path in Q°,
Hence M}', €F*,
Note that by our construction of W, 1€N, 1< ¢ AME
D(g,s) < 0.
Since As is a loop, Ar followed by As n times, written Aro:.
must also be an admissable path in &°.

Let Au = drAM(p)+1 and

s
u = 1‘(Au) = rsM(ﬁ)H.

Then u €L(qa").

But ufF(N), since firing u would leave a negative number of




tokens in f.

Hence L(a') ¥ F(N), which contradicts the hypothesis that F(N)

is regular.

Therefore there exists k € N such that for all M€ R(N), M'€ (M>
and p€eP,

M'(p) > M(p) - k.

Thm 2.2.13:
Let N = (P,T,B,F,K,H,Mo) be a petri net.

Then N is not regular iff there exists a marking M GHLI;' and a

1

set PIE P such that

1) l”1 is maximally unbounded with context Ml and

2) P1 is not uniformly bounded from below for M
Pf: (==))

1.

Suppose N is not regular.
Then by Thm 2.2.12, for all k€N there exists Mke R(N),
Mlzé (Mk> and pkéP such that
Mé(pk) < Mk(pk) - k.
Since IPI < %9, there exists § € P such that
@ = (k|k N, P, = B)
and |a| = eo,
Further, by Thm 1.3.4, Zorn's Lemma and since |P| < o0, we can

define the infinite set

f= [klkfa,((k,k'ég, k < k') ==> (Mk < Mk'))]

which in turn defines an infinite increasing sequence of




markings
My ez
Let P' = (p|pePs (M (p)|(k,k'€&, k > k') ma>
(M (p) > M ,(p)))] =),
Note that feP’',
By our choice of P', we can find an infinite subset ¢€ & sych
that
C = (k]ke&, ((k,k'€C, k < k', peP') ma>
(M,(p) < M ,(p)))).
By definition of € and P',
,[Mk(p)IPGP\P', ke, ((k'€c, k > k') a=>
M (p) > M, ,(p)))]] =,
Thus there must exist some infinite subset & ¢ C such that
O = (k[ké <, (k,k'ed) ==> M (p) = M .(p) V pePP)),
Since <N, & is well ordered and thus contains a least
element k €4,
Define g=a9‘(§}.
Since @ is also well ordered, we can assign an index i €N to
each k ¢ € such that
v ky ok, €€,

1 1
Further, by our choice of é',

ki < ki+

i<k, Yien, kel
1 1

Also, by our choice of C and é',

M (p) >1 VW peP', ié€N.
ky

To recapitulate, we have defined an infinite sequence of
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markings (Hki)iél’ vhere kife V i €N with the

following properties:
1) For all i¢&N there exists kie'e.’s N, Hk ¢ R(N) and
i

]
Mkie (Mk1> such that

0 <M D) <H D) - k.

3) Mk (p) 1 VpeP', i€N.
i

4) Mk (p) = Mk (p) Y i,j€N, pepP-p',
i J

5) 1 ¢ ki V i€N.

Define: 0 vV peP!
M'(p) =

kg

By definition of M' and properties 3) & 4) above, P! is

unbounded with context M'.
By Thm 2.2.6, (P',M')< contains a maximal element (Pl.Ml).

We must now show that P1 is not uniformly bounded from below

for Ml .

For all i¢ N, define W € T* to be the firing sequence such
i

that
M (w, >M'
ki kg ky
For i € N, define nk € N such that

i
nki = Max{B(p,wki) Ip €P1].

Since Ml(p) 2 M'(p) = Mk (p) v p CP‘Pl, i €N, by the weak
i . .
transition rule,

M, +U_+n_ )w > Vi€EN
17 7P iy

where UP is the characteristic function of Pl'
1




Hence for all 1 €N there exists M" H, , such that

(M + U )(w SMT
Py " kg" kg

By properties 1) & 5) above and since fpe P'- P 1

"D(p,vki) > ki > io

Thus for all i€ N there exists M]"' (S (Hl + U
i

«n, >, n, € N such
Py kg™ Tky
that

" -
Mki(ﬂ) <M (B) + nki i.
Therefore Pl is not uniformly bounded from below for M

1.
({==)
Suppose that Pl is maximally unbounded with context M. and

1

not uniformly bounded from below for Ml'
We wish to show that for all ke N there exists Mkc- R(N),

?
Mk € (Mk> and pkeP such that
' -
Mi(p) <M (p) - k
which will yield the desired result via Thm 2.2.12.

Since P1 is not uniformly bounded from below for Ml' for all

%
k €N t,;hclare exists pke Pl' nkC-N, nk > 0, wkéT and
M éN such that

(M1 + nk )(wk>Mk

is the characteristic function of Pl' and
1

Mk(pk) < Ml(pk) + n, - k.

Since (Pl’Ml) is maximal, by Thm 2.2.8, CG(N) contains a

where UP

maximal vertex Q such that

M.(p) vpepPP
Q(p) = 1 1

€P_,
vp 1




By part two of Thm 2.1.25, for all k€N there exists Mké' R(N)

such that
tlk(p) = Ml(p) v p€P~P1 and

Hk(p) > n v péPl.
Thus, by the weak transition rule, for all k€ N there exists

k A
'
M, Cw M)

M! € R(N) such that

where
' -
Therefore, by Thm 2.2.12, N is not regular,

Thm 2.2.14:
The regularity of a petri ﬁet N = (P,T,B,F,K,W,Mo) is decidable.

Pf:
Let CG(N) = (D',1), D' = (V,E,,®) be the weak coverability

graph associated with N.
By Thms 2.2.8 & 2.2.13, we have that N is not regular iff the
following condition *) holds:
*) There exists a maximal Q€V, p'eP such that
Q(p') =, and a loop & in CG(N) with 1(a) = weT*
such that
1) & has initial and final vertex Q and
2) D(p',w) < O,
If we provide an effective procedure for testing the truth of

*), we will have shown that the regularity of N is
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decidable. We begin by showing that it is sufficient to
test *) for simple loops only.

Suppose there exists Q€V, p'€ P and a loop & in CG(N) where
1(6) = wéT* satisfying *), Further suppose that & is not a
simple loop.

Then there exists QIGV such that © can be devided into three

segments

o = 616263

such that 01 has initial vertex Q and final vertex Ql,¢52

is a simple loop with initial and final vertex Q1 and 43
has initial vertex Q1 and final vertex Q.
By part one of Thnm 2.1.25,
Q(p) =00 <==> Q (p) =w ¥ peP.

Define: l(ai) =V
1(62) =V,

1(43) = V3.

Two cases:
Case 1 - (D(p',vz) 2 0):
Then D(p',vlvz) £ D(p',w) < 0 and 6103 is a loop
satisfying *),
If o o, is simple, then we are done.

13
If & &,  is not a simple loop, then it can be devided

13
into three parts as before, at which point either
case 1 or case 2 applies,

Case 2 - (D(p',vz) < 0):




By construction of CG(N), there exists a maximal vertex

§ V such that § > Q-

Again by construction of CG(N), there exists a simple

loop &' in CG(N) with initial and final vertex {

such that 1(a') = Vo

Thus we have shown that N is not regular 1ff there exists
Q€V, p'€ P, wéT* and a loop o such that
1) Q,p',w and o satisfy *) and
2) & is simple,
Since V is finite, the set of all simple loops & in CG(N) which

start and end in a maximal vertex is also finite and hence

can be enumerated.

For each such o let 1(a) = W, € T*,

Since lPl {0, we can calculate D(p,w‘) for all p€P and for

each W .

Hence the regularity of N is decidable.
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