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Abstract 

The following paper is intended to be an intoduction to petri 
net theory. The definitions of petri nets, coverability trees and 
coverability graphs are covered, along with the basic properties 
of same. It is shown that petri nets with regular firing languages 
exist and that it is decidable whether or not the firing language 
of a given petri net is regular. 
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Soctlon I - Preliminory Rosults: 

Segment 1.0 - Introduction: 

The first section of this paper contains tho definitions and 

theorems upon which our introduction to petri net theory is 

based. Its contents should be familiar to most readers, however 

the reader should be conversant with the specific statements of 

the definitions end theorems within before proceeding to the 

second section. For those who are not familiar with the theorems 

which follow, explicit proofs have been provided. Since this 

material is preliminary to the main thrust of this paper, the 

following definitions and results are listed with little or no 

comment. 

Segment 1.1 - Graph Theory and Trees: 

This segment contains the basic definitions from graph theory 

which we will require in section two. It also contains a 

definition of trees as a subclass of directed graphs. We prove 

that the standard properties of trees hold for our definition. 

Def 1.1.1 General Graph (gg): 

A general graph G is a system consisting of: 

1) a non-empty set V of objects called vertices, 

2) a set E of objects called edges, 

3) a function p. defined on E with values consisting of 
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subsets of V hoving ono or two olomonts. 

Wo writo G • (V,E,,t,,1) to roprosont o 88• 

Wo soy that a 88 is finite iff V ond E ore finite. 

If eE E, v,v'E Vend )'(e) • (v,v'J, we call v and v' the 

end points of e. 

Note: We avoid the usual notation and do not insist that the 

end points determine the edges. 

p~ 
'----..o':) 

Fig 1-1 Some General Graphs: 

Def 1.1.2 Connects: 

Let G = (V,E,,..) be a gg, 

v,v'i.V, 

e € E. 

Ifp(e) = (v,v'}, then we say that e connects v and v'. 

Def 1.1.3 Graph: 

Let G = (V ,E,.P) be a gg. 

Then G is said to be a graph iff l"e,e'! E, Af(e) =.M(e') ==> 

e = e'. 
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" 

Fig 1-2 Somo Grophs: 

Def 1.1.4 Path: 

A path in a gg G • (V,E,,.-) is a sequence 

T • v0e1v1 ••• vk-lekvk, kfH, 

where vi f V t i t! { 0 , ••• , k ) , 

e
1

E E ~iE{I, ••. ,k), 

ei connects vi_1 and vi YiE-(1, ••• ,kJ. 

v
0 

is said to be the initial vertex or initial point of 1r. 

vk is said to be the final vertex or final point of ?r. 

Given 7r, we define 

Thus the initial vertex of 'lf is the final vertex of ,,/' and vice 

versa. 

If 1r' and 1'r1 are paths in some gg such that 

k f H, 

,,.,, = v'e'v' v' e'v' J' L N " 0 I 1° 00 j-1 j j' ~ ' 
and vk = v~, (i.e. The final vertex of ?requals the initial 

vertex of '7f1 
• ) 

Then we define 'Ir~ as follows: 
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Noto thot the initial vortex oC 1rla tho initinl vortox of '1'f'lt' 

nnd that tho final vortox of .,,., ia the Cinol vortex oC "l'f?r'. 

Observe thot: 

('l'f'fl ) R • '11 R1,R • 
Finally, i£ .,,,,,, is defined and 'llw' is defined, then so are 

(11'"" )r' and 1r(1r'1,"), and further, 

(1'11' )tr" • 1'(11' ,.,,., ) • 

Def 1.1.5 Length of a Path: 

Let Ga (V,E~) be a gg, 

7'• v0e1v1 ... vk-lekvk, k~N, be a path in G. 

Then 1T' is said to have lens th k. In other words, the length of ?r' 

is equal to the number of edges in '11': 

Def 1.1.6 Connected: 

A graph, general or otherwise, is said to be connected iff 

V V, V 
1 4; V, V I, V 

1 
1 3 a path '7f' such that V is the initial vertex 

of 7r and v' is the final vertex. 

A Connected Graph: An Un-connected Graph: 

Fig 1-3: 

Def 1.1.7 Bipartite General Graph: 

A gg G = (V,E,,!'() is said to be bipartite iff 3V',V"C:.V such 
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that: 

1) V • V'c.,V", 

2) V '11 V" • 0, 

3) V' -/, 0; V" -/, 0, 

4) V e E E, ""'( e) " V ' -/, 0, 

,"( e)" V" 
-/, ". 

Def 1.1.8 General Directed Graph (gdg): 

A general directed graph is a system consisting of: 

1) a non-empty set V of objects called vertices, 

2) a set E of objects called edges, 

3) two functions 1:',4':E-->V. Given e, E, i'(e) is said to be the 

initial vertex of e and fte) is said to be the final vertex 

of e. 

We write D = (V,E,-t',f.) to represent a gdg. 

We say that a gdg is finite iff V and E are finite. 

Note that every gdg D = (V,E,i,f) defines a gg G(D) = (V,E,..t.() 

where: 

...«(e) = {i(e) ,<f(e)} Ye€ E. 

We call G(D) the gg associated with D. 

Fig 1-4 Some General Directed Graphs: 
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Def 1.1.8 Directed Path in a General Directed Graph: 

A directed path in a gdg D • (V ,B, ,·,4') is a sequence 

A• v0e1v1 ••• vk-lekvk, kGN, 

where vif V 'ti i ~(O, ••• ,k), 

ei£ V iiC {1, ••• ,k} and 

'C(ei) • vi_1 ; tl>{e
1) • vi tfiE(l, ••• ,k}. 

Note that A defines a path in G(D) and that a path in G(D) need 

not define a directed path in D. 

We define the length of ea to equal the length of the path in G(D) 
defined by A. 

Def 1.1.10 Loop: 

A path, directed or otherwise, is said to be a loop iff the 

initial vertex is also the final vertex. 

A loop is said to be simple iff no vertex other that the initial & 
final vertex occurs more than once in the loop. 

A path, directed or otherwise, is said to contain a loop iff one 

vertex occurs more than once. 

Def 1.1.11 Directed Graph (dg): 

Let D = (V,E,1:,<f) be a gdg. 

If \fe,e'{ E, ((1'(e) = t'(e') and {()(e) = f(e')) ==> e = e') 

Then Dis said to be a directed graph. 

Note that if we redefine E to be the set of ordered pairs 

E = { ("t( e) , c()( e)) / e ~ E} , 
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ve con vrito: 

D • (V,E) 

to fully doscrlbe D. 

Fig 1-5 Some Directed Graphs: 

Def 1.1.12 Bipartite General Directed Graph: 

A gdg Dis bipartite iff G(D) is a bipartite gg. 

Fig 1-6 Some Bipartite General Directed Graphs: 

Def 1.1.13 ·v and . 
V : 

Let D = (V,E) be a dg, 

V f V. 

Then v = (v' Iv'~ V, (v' ,v) f E} and 

v· = (v' Iv'" V, (v,v')E E}. 

Def 1.1.14 Pure.L.y .... ....., 

Let D = (V,E) be a dg. 

Then Dis said to be pure iff for all v,v'~ V, 
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(v,v') CV-> (v',v)(.V. 

Fig 1-7 Some Pure Directed Graphs: 

Def 1.1.15 Tree: 

Let T = (V,E,T·,~ be a directed graph with the following 
properties: 

1) a unique vertex r € V, called the root vertex, with the 
following properties: 

a) fJe~ Er cf(e) = r. i.e. no edge enters r. 
b) v~V ==> 3 O = v

0
e
1

v
1 

••• vk-lekvk, k,N, in T such 
that VQ =rand Vk = V. 

2) v f v,(r} ==> I "vi = 1. i.e. 't/v f V '{r} 3 one and only one 
e ! E such that tP{e) = v. 

Fig 1-8 Some Trees: 
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Thm 1.1.16: 

Let T • (V ,£, ,·,f> be a tree. 

Then there is no directed path A in T such that~ is a loop. 

Pf: by contradiction 

Suppose~ is a loop in T. 

Let v G V be a vertex in o. 

Since T is a tree, there exists a root vertex; r EV and a path 

o' such that: 

and 

vk = v. 

Since each vertex in V,{r) has one and only one edge entering 

it, tl must contain cl. 

But r has no edges entering it. 

Thus, while r must be the initial vertex of A, it cafinot be the 

final vertex of A. 

Hence C;) is not a loop. 

Thm 1.1.17: 

Let T = (V,E,t',<P) be a tree, 

v, v' f V and 

path in T. 

Then~ is unique. 

Pf: by contradiction 
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Suppose A is not unique. 

j EI, such that: 

' v
0

• v
0

• v, 

vj • vk • v' and 

either (j • k) or (3iE {l, ••• ,k) rv
1

-/. v1). 
But this implies that there exists some vertex v"(V which has' 

two edges entering it. 

But, by def of tree, this cannot occur. 

Thus o is unique. 

Def 1.1.18 Parent, Child, Sibling and Leaf: 

Let T = (V,E,1°,cf') be a tree, 

v,v',v"6V; e',e"~E such that 

i(e') = i(e") = v, 

tf(e') = v' and 

(f(e") = v". 

Then vis said to be the parent of both v' and v". Likewise, bbth 

v' and v" are said to be children of v. v' and v" are said to 

be siblings. Further, if 'je€ E 7-t(e) = v', then v' is said 

to be a leaf. 

Def 1.1.19 Depth(v): 

Let T = (V,E,-r·,~ be a tree, 

v 6 V. 

Then the depth of v, written Depth(v), is qefined to be the 
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length of the dlructod poth A such thnt r ls tho lnitlol 

vortex of A and v ls the final vortex. Since A is unique, so 

is Depth(v). 

Def 1.1.20 Finitely Branching: 

Let T • (V,E,i,~ be a tree, 

E • (elec: E, 't(e) • v) V vt V. 
V 

Then IE I < oo ~ v EV <••> T is finitely branching. 
V 

Def 1.1.21 Infinite: 

Let T = (V,E,r.,tf) be a tree. 

Then IVI =~<==>Tis infinite. 

Def 1.1.22 Subtree: 

Let T = (V ,E, r·,<f) be a tree, 

X ~ V. 

Define the subtree T = (V , E , r' , ff)) as follows: 
X X X X X 

V = {vi v EV, 3 a directed path A in T 7 x is the initial 
X 

vertex of A and vis the final vertex}, 

E = {ele fE, 3 v ,v'~ V j- 1'(e) = v and (/?(e) = v'} 
X X X X X X ' 

1:x = -c restricted to Ex, 

cp = <frestricted to E and 
X X 

xis defined to be the root vertex of T. 
X 

Note that by virtue of its definition, T fulfills the definition 
X 

of a tree. Specifically: 
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1) no edge enters x, 

2) by def of V , 't/ v ~ V , ~ a directed path in T with 
X X X X 

initial vertex x and final vertex v, 
X 

3) E f E and the definition of E above together imply that 
X X 

for all v f V .. (x), there exists a unique e E E such 
X X X X 

that fte) a V • 
X X 

Thm 1.1.23 Konig's Lemma: 

If T = (V,E,-r·,~ is a finitely branching, infinite tree, 

Then T contains an infinite path. 

Pf: We construct such a path via the following induction. 

Base step: 

Let Vo= r. 

Then the subtree T = T, and hence is both finitely 
V 

branching and infinite. 

Let ~O = v
0 

be a directed ~ath in T of length zero. 

Note that ~O has initial vertex rand final vertex v
0

• 

Induction step: 

Suppose that for if N, i L O we have found a finitely 

branching, infinite subtree T 
vi 

and a directed path 

'\ = VQelvl ... \_leivi', VQ = r, 

also in T. 

Since T is finitely branching, v. must have a finite 
Vi J. 

number of children. 
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Define C ~ V to be the set of children of vi: 
vi vi 

C vi • ( c 1, c2 , ••• , c j} , j EN. 

Since Tv is infinite, 3 k€ N, 1 i k i j Tthe subtree T 
i ck 

is a finitely branching, infinite tree. 

Define vi+l • ck. 

Thus T = T • 
Vi+l Ck 

By def of tree, 3 ei+l6- Evi ~ r'(ei+l) = vi and 

f?(ei+l) = vi+l 0 

Thus Ai+l = Aiei+lvi+l = v0e1v1 •.• v1ei+lvi+l is a 

directed path with initial vertex v
0 

=rand final 

vertex vi+l" 

By the above induction, ~. can be defined for arbitrarily 
l. 

large i. Hence T contains an infinite path. 

Segment 1.2 - Language Theory: 

This segment contains the basic definitions and theorems from 

language theory which we will require in the second segment of 

section 2. The reader should pay particular attention to the 

definition of the finite recognition automaton and its relation 

to regular languages and right linear grammars. 

Def 2.1.1 String: 

Let A~~ be a set, 

« = a1a
2 

••• be a sequence, finite or infinite, of elements 
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of A. 

Then octs said to be o strins of elements of A. 

Note that if 0t • o
1
o

2 
••• an' n EN, is o finite string, then oc is 

said to hove lensth n. 

Def 1.2.2 Nul Strins, Positive Closure and Closure: 

Let A~ 0 be a set, 

n EN. 

For n > 0, define An to be the set of strings of elements of A of 

length n. 

Define: 

1) A to be the string of zero length and call it the nul string 

or the empty string. 

2) AO = {A}. 

oa n lJ A, the set of all non-empty strings of elements n=l 
of A, to be the positive closure of A. 

Uoo n + 4) A* = A = A u (A}, the set of all strings of elements n=O 
of A, to be the closure of A. 

0 n Note that by definition, 0 = (A} and 0 = 0 for n > O. 

Thus 0* = (A} and 0+ = 0. 

Def 1.2.3 Concatination: 

Let A~ 0 be a set. 

ot.,# EA*, 

0( = a
1 

••• a , m ~ N', 
. m 
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,8• h1 ••• bn' nfN. 

Then CW • a1 ••• smbl ••• bn is said to be the concatination of oc 

and jl. 

Note that J\o< • oc • «A. 

Further, if rt. A*, 

(«..4)r a oc.(6r) 0 

Concatination is also defined for sets of strings: 

Let B,C ~A*. 

Then BC = (1~j4£ B, 1'~ CJ. 

Def 1.2.4 Regular Expression: 

Let A~ 0 be a set. 

Define the set of regular expressions on A as follows: 

1) 0 is a regular expression on A. 

2) Ais a regular expression on A. 

3) If a EA, then a is a regular expression on A. 

4) If rand r' are regular expressions on A, then so are (rr') 

and (rur'). Note that (r vr') is frequently written rjr' 

or r+r'. 

5) If r is a regular expression on A, then so is r*. 

Def 1.1.5 Regular Language: 

Let A~ 0 be a set, 

r,r' be regular expressions on A. 

Then r defines a regular language L(r)~A* as follows: 
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I) L(f) • f. 

2) L(A) • (A) • 

3) If a ( A, then L(a) • (a). 

4) L((rr')) • L(r)L(r'). 

5) L((rv r')) • L(r) vL(r'). 

6) L(r*) • L(r)•. 

Def 1.2.6 Length of a Regular Expression: 

Let A~ 0 be a set, 

r,r' be regular expressions on A. 

Then the length of the regular expression r on A, written l(r), 
is defined as follows: 

1(0) = 1, 

l(A) = 1, 

l(a) = 1 V a EA, 

l((rr')) = l(r) + l(r') + 2, 

l((r vr') = l(r) + l(r') + 3, 

l(r*) = l(r) + 1. 

DDef 1.2.7 Finite Recognition Automaton: 

A finite recognition automaton is a system consisting 

1) a gdg D = (V, E, r',(P,), where both V and E are finite, 

2) a set A, 

3) an A-labeling 1:E-->A*, 

4) two subsets S ,F 5 V ;-S = { V Q}, \'.o E- V ; F /, ~. 

17 
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Vo wrlto 

Q. • (D,A, l .S,F) 

to denote o finite recognition outomoton. Sand Fare called 

tho stort ond finish sets respectively 

A• {a,b,c,d,e} 

V • {v
0

, ••• ,v
4

} 

s = {vo} 

F = {v
4

} 

Fig 1-9 A Finite Recognition Automaton Recognizing 

( a ( b* ( ( c u d ) e )) ) 

Def 1.2.8 Admissable Path: 

Let Q = (D.A.l.S,F) be a finite recognition automaton. 

An admissable path in Q is a directed path in D with initial 

vertex in Sand final vertex in F. 

Def 1.2.9 Language Recognized by a Finite Recognition Automaton: 

Let a.= (D,A,1,S,F), D = (V,E,,',<P), be a finite recognition 

automaton, 

A= v 0e1 v 1 ... vk-l ek vk, k E- N, be a directed path in D. 

Define l(A) = l(e
1
)l(e

2
) ••• l(ek). Note that l(~)~A*. 

The.J~n.g~age recognized by a, written L(C<), is defined as 

follows: 

L(~) = {l(A)jA is an admissable path in Cil}. 
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Th11 1.2.10: 

Lot Abo o flnlto sot, 

L !A•. 

Thon Lis o regular longungo If£ thcro exists o ftnito rocognitlon 
automaton O with on A-labeling such that LC~)• L. 

Pf: (••>) by construction 

Suppose Lis o regular language. 

Then there exists a regular expression r on A such that 

L(r) • L. 

We now proceed by induction on the length of r to construct a 
finite recognition automaton ~ to recognize L. r 

Base step: 

Suppose l(r) = 1. 

Then by definition of l(r), r must be equal to either 0, 
or a, where a EA. For each case we construct ct. as 
follows: 

r = 0: 

r = 

r = a: 

Gt : 
r 

C< : 
r 

Gl : 
r 

a 
vO---,.vl 

r 

S = {v
0} F = {v

1} 

L(a) = 0 = L(r). r 
S = {v

0
} F = {v

1
} 

L(a) = { } = L(r). r 
S = {v

0
} F = {v

1
} 

L(a) = {a}= L(r). r 
Thus for all regular expressions r on A of length 1, we can 

construct a finite recognition automaton recognizing 
L(r). 
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Induction Step: 

Suppose that for any regular expression on A of length less 

then k, kfl, k > 1, we can construct a finite 

recognition automaton recognizing it. Further suppose 

that l(r) • k. 

Then r must be of one of the forms (pq), (pvq) or p* where 

p and q are regular expressions on A. 

By definition of length of a regular expression, 

l(p) < k. 

Likewise, if r ~ p*, 

l(q) < k 

as well. 

Thus, by the induction hypothesis, we can construct a finite 

recognition automaton 

C<. = (D ,A,l ,S ,F ), p p p p p 
such that L(Q) = L(p). 

p 

D = (V ,E ,1',tf), 
p p p p p 

As above if r ~ p*, we can also 

construct a finite recognition automaton 

Q = ( D , A, 1 , S , F ) , D = ( V , E , (
0 

, f,, ) , q q q q q q q q q q 
such that L(Q ) = L( q). Further, we can choose Q and q p 
C( such that they have no vertices in common and no q 

edges connecting them. 

We now consider the above three cases individually: 

1) r = (pq): 

W& form the finite recognition automaton 

a. = (D ,A,l ,S ,F ), D = (V ,E ,"t· ,()), r r r r r r r r r r 
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88 follows: 

Let V • V vY • r P q 
We form E , t' and (/)_ &8 follows: r r r 

Initially, let E • E r., E , r p q 

-c' (e) • ("'/e) 
r t (e) 

q 

if.Ce) .,. P C
<fc(e) 

r <tq(e) 

t,'eEE 
p 

tleeE, 
q 

~e €E 
p 

Ve f E • 
q 

We then expand E, r' and(/' as follows: r r r 
For each vf ~Fp, we introduce a new edge 

e EE such that 
vf • r 
~ (e ) = v and 

r vf f 
r/!_( e ) = V , V ~ S • r vf s s q 

We complete our definition of a. with the following: r 
Let 1 (e) 

p 
if e (- E 

p 
1 ( e) = 1 ( e) r q 

ife6-E 
q 

A otherwise, 

S = S and 
r P 

F = F • r q 

Having defined C<, we must now show that r 
L(a) = L(~ )L(Q') = L(p)L(q) = L(r). r P q 

Suppose w~ L(Q ) • 
r 

Then we can find an admissable path I::) in a such that 
r 

~= v0e1v1 ••• vi-leivi, i.~lf, 

where {v0 } = Sr' 
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vi ( Fr ond 

l (•) • l (o1)1 (o2).,,l (o
1

) • "'• r r r r 

l .. ot J bo tho loost intogor such thot I i j i i and 

Yj( Vq, 

Sinco v0 £Sp and vi~ Fq, j must exist. 

Consider tho edge ej: 

~r(ej) • vj-lf VP. 

By construction of Q , the only edges which can have r 
both vertices not in the same set V or V are the 

p q 
edges e , 

vf 
Thus ej • e 

vf 

where v f ( F p. 

where v f C F p. 

Hence v j-l "" v f ~ F p, 

{vjJ .. Sq and 

lr{ej) "'J\.. 

Since the only edges connecting a vertex in V with a 
p 

vertex in V are the edges e E' E , vf € F , and no 
q vf r p 

edge in E 
r connects a vertex in V to a vertex in V, 

q p 
it follows that: 

v0 ,v1 , ... ,vj-l E \ 

V j' V j+l ' ••• 'Vi ~ V q. 

and 

Further, since the e ~ E , vf E F , are the only edges 
vf r p 

not in E VE , we have that 
p q 

~1 = v0elvl ••• vj-2ej-lvj-1 and 

42 = vjej+lvj+1···vi-leivi 

are admissable paths in a. and Cc. respectively. 
p q 
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Thus A• t.1ojo2 ond 

1 c6>. 1 c~1>"'1 CA..>. 1 c61>1 c62> • ..,. r p q - 2 p q 

Hence cutL(et )L(t.t ). 
p q 

Therefore L(t.t ) ~ L( Q )L('c ) • r p q 

Now suppose 3, L(tt )LC q ) , 
p q 

j • &1G>2 

where 9
1 

G L(t:<p) 

D
2

E L(Qq). 

and 

Thus there exist admissable paths ~ 1 and A2 in Qp and 

(tq respectively, such that 

lp(Al) • S1 and 

lq (A
2

) • G2• 

By definition of an admissable path, A1 must have its 

final vertex vf in Fp. Further, the initial vertex 

of A
2 

must be an element of Sq. 

By construction of a. , there exists an edge e ~ E 
r vf r 

connecting the final vertex of ~l to the initial 

vertex of A
2 

such that 1 ( e ) = A. 
r vf 

Since S = S and F = F, the directed path 
r p r q 

A= Alev:2 

is an admissable path in a such that 
r 

1 (A) = 1 (Al) 1 (A
2

) = (:) G> = j. 
r p q 1 2 

Hence 1 (~) = 'J ~ L(G( ). 
r r 

Therefore L(a )L(a )f L('< ). 
p q r 

Combining the above with the previous result, we obtain: 
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L(q) • L(a )L(Q) • L(p)L(q) • L(r). r P q 
2) r • (p ~ q): 

Wo form tho finito recognition automaton 

'<. • (D ,A,l ,S ,F ), D • (V ,E ,c· , 111 ), r r r r r r r r r rr 
as follows: 

Let V • V v V v { v
1 

, v f) , r P q 

We 

where C\ u Vq) l\{v
1 

,vf) • f 

and vi ~ v f" 

form E , y· and ~ as follows: r r 
Initially let E • E u E , 

r p q 

c-</·> if e~ E 
-r (e) = p 

r '( (e) if el E , q q 

(/J(e) = {;/•> if et: E 
p 

r 
fq(e) if e, E • 

q 
We then expand E , -r' and <I' as follows: 

r r r 

For each v f S v S we introduce a new edge e 
p q V 

to E such that: 
r 

1 (e) = v and r V i 

rf__(e) = v. 
r V 

For each v f F v F we introduce a new edge e 
p q V 

to E such that: 
r 

"f (e) = v and r V 

({)_ (e) = vf. r V 

We complete our definition of a with the following: 
r 
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Let 1 (e) 
p 

l (e} • 1 (e) r q 

A 

Sr• (v1} and 

Fr• (vf}. 

ifot-E 
p 

if a, B 
q 

otherwise, 

Having constructed ct, we must now show that r 
L(Q ) • L(Cl_J "L(c:1 ) • L(p) vL(q) • L(r). r P q 

Suppose '41, L(C\. ) • 
r 

Then we can find an admissable path A in Gir such that 

A• v0eivI ... vj-Iejvj, jGI, 

where 1 (.i). w, 
r 

VQ • Vi 

V j • V f" 

and 

By definition of C( , vI f S u S and vj I € F v F • r p q - P q 
Since S "S "' 0 and F /\ F = 0, vI and vj-I must be in p q p q 

either V or V, not both. 
p q 

Since there are no paths in ~ connecting a vertex of r 
VP with one of Vq, or vice versa, vI,v2, ••• vj-l must 

all be in either V or V, not both. Further, p q 
e2,e3 , ••• ,ej-l must all be in either Ep or Eq, not 

both, since the only edges in E which connect two r 
edges of V or V are in E and E respectively. p q p q 

Thus A'= v1e2v2 ••• vj-Zej-lvj-l is an admissable path 

in either C( or Gt • 
p q 

Since A= v0e1A'ejvj and 
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l (A) • 1 (e1)1 (a')l (aj) • Al ( ')4 • w, r r r r r 
Ve have that either 

'4J' L(Q) or wo L("' ). 
p q 

Thus Wf-L(a )u L(Q ). 
p q 

Therefore L(o ) f L(t. ) u L(Q ) • 
r P q 

Now suppose l { L(t.c ) u L(~ ) • 
p q 

Thus ve can find an addmissable path o' in either C(p or 

a. such that: 
q 

l(d) • "· 

Without loss of generality, assume that A' is an 

admissa ble pa th in Cc. • 
p 

Then A' has initial vertex vi E- S and final vertex 
p p 

vf , F • 
p p 

By definition of Ot. r, there exists an edge e i <f Er such 

that: 

"fr(ei) = vi, 

c:f/ei) = vip 

\Cei) = A. 

and 

Likewise, there exists an edge ef ~ Er such that: 

't/e f) = V ' 
fp 

<({(ef) = V and 
f 

lr(ef) = A. 

Thus we can define the admissable path 

~ = Vie i A' e f V f 

in a where 1 (A) = l(ei)l ( A1 )1 (e ) 
r r p r f 
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• A 1 ( A' )4 • 1 ( t.') • J. p p 
Since A is an admissable path in Ge., it follows that r 

'! • 1 (A') • 1 (6) f' L(&< ) • p r r 
Thus L(c:1 )uL(A )!L( ). p q r 
Combining the above with the previous result, we obtain: 

L(Q ) • L(c.c ) c, L(Q ) • L(p) v L(q) • L(r). r P q 
3) r • p*: 

We form the finite recognition automaton 
~ • (D ,A,l ,S ,F ), D • (V ,E ,1 ,<f), r r r r r r r r r r 

as follows: 

Let Vr = VP CJ {v
1 ,vf} where Vprt (v1 ,vf} = 0 

vi I,. vf. 
We form E , -c· and r.P as follows: r r r 

Initially let E = E, r p 
-( = '! and r P 

~ = <P.. r p 
We then expand E, 1· and<()_ as follows: r r r 

and 

For each v E F p we introduce a new edge e f ! Er 
such that: 

\<ef) = v and 

<Pr ( e f) = v f • 
For each v 6-S we introduce a new edge e f. E p s r 

such that: 
. 

-f (e ) = v and r s i 

fr(es) = v. 
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We introduce two no~ edges a and a to B 
n r r 

such that: 

-< (e ) 
r n • Yi tf)r (en) • yf and . 

'( (e ) 
r r • yf ~(er) • Yi• 

Ve complete our definition of Q 88 follows: r 
Let if ef E 

1 (e) • p 
r Dt' otherwise, 

s • (vi) and r 

F • {v ). 
r r 

Having constructed a , we must show that 
r 

L(a) = L(a. )* • L(p)* • L(r). r P 
Suppose c.c, E L(Q ) • 

r 
If c..a • A, 

Then, since A is an element of the closure of any set, 

w ... A~L(a. )*. 
p 

Suppose w -1, l\. 

Then we can find an admissable path ea in Q with no . r 

occurences of e (! E such that: 
n r 

~= v0e1v1 ••• vk-lekvk, k,N, and 

1 (~) = t.v tE L(C< ). 
r r 

By definition of a and A, 
r 

V = V , 
0 i 

VIG Sp, 

vk-1 ~ Fp 

vk = vf. 

and 
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Since Q.r vos constructed around Qp' and since v1 and 
vf are connected to C. only vio S ond F p p p 
respectively, A must contain one or more subpaths 
bl ,4)

2
, ••• ,4

0
, n E=N, which are odmissable in G<.p. 

Thus ve can rewrite~ os follows: 

a.• viesAlefvfervies62•••6nesvf 
where 

l (A) • Al (A. )J\.AAl (A.) •• • 1 (o )A r pl. pz pn 
• l(o

1
)1(A

2
) ••• l(6n) • w. 

Since Aj is an admissable path in ~p for all 
jc;.(1, ••• ,n}, 

lp(4j),L( P) V j~(l, ••• ,n}. 

Thus w ~ L(t.i )*. p 
Hence L(q )! L(Q. )*. r p 
Now suppose "3 ! L(Ct )*. p 
If J =A, 

Then A= v
1

envf is an admissable path in C(r such that 
1 (6) = .ll = ,, r 

and thus J = A. G L( a. ) • r 
Suppose]-/. .4. 

Then J is of the form 

j = j
1 

; ••• ~, n(N, 

where ~[L(ap) 'fl j 1.((1, ••• ,n} 
Thus for each '1, j ~{1, ••• ,n}, we can find an J 

admissable path ~j in ap such that: 
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lp(4j) • 1· 
Define .o. • vies6lefvfervies62 ••• ~nefvf. 

Since Q is on expansion of Q. , for each j ~ { 1, ••• , n) , r p 

Aj is a path in Dr with initial vertex v' E- Sp and 

final vertex v f F • 
p 

Since 'P(e) • v' and r s 

'(~(ef) • v, 

A is an admissable path in G(. • 
r 

Thus 1 (4) is defined, and may be written as follows: r 

1 (A)= 1 (e )1 (41)1 (ef)l (e )1 (e )1 (o..) ••• r r s r r r r r s r 1 

••• 1 (4 )1 (e) 
r n r s 

= A 1 (e.1 )4'A Al (6
2

) •• • 1 (6 ) A 
r r r n 

= 1 (0
1

)1 (~) ••• l (o) r r l r n 

= 1i ; • • • jn .. 'f. 
Therefore ~~ L( ~ ) and 

r 

L(a)*~L('c). 
p r 

Combining the above with the previous result, we obtain 

L('"') = L(Q )* .. L(p)* = L(r). r p 

This completes both the induction and the first half of the 

proof. 

( <==) 

Let a= (D,A,l,S,F), D = (V,E,r',<P.) be a finite recognition 

automaton where: 

V = { v 1 , v 2, ••• , v r} , r ~ N and 

S = {v
1

}. 
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We must shov that L(~) is a regular language. 

Let 1,j and k be integers such that 1 .S 1,j .Sr and 

1 i k i r+l. 

Define en (i,j,k) path to be a path 

l::J • w0e1w1 ••• ws_
1

e
8

v
9

, a, N, 

in D such that w
0 

• vi, 

w
8 

D Vjt 

and for all P"{l, ••• ,s-1}, 

(w = vt) ==> (t < k), tfN. 
k p 

Let ~i,j = {l(A)l4 is an (i,j,k) path}. 

We now show inductively that c9:,j is a regular language. 

Base step: 

Consider f~,j' I s. i,j < r. 

Then the associated (i,j,k) paths must be of the form: 

A= vie vj, et; E. 

Since Eis finite, so is 

~~.j = {1(6)1~ is an (i,j,O) path} 

= {l(e1),l(e
2
), ••• ,l(en)}, nfN. 

Thus CiO . is a regular language for all i,j ~ N, ,J 
l,Si,js_r. 

Induction step: 

Suppose that for k ~N, k LO, and for all i,j ~N, 

Is. i,j s. r we have shown that~~ . is a regular 
]. , J 

language. 

Th ek+1 = en l . . 
]. , J 

t'k pk _t1k * ck 
( l i, j V ( l i, k+l ( (.. k+l, k+l (, k+l, j))) 
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and hence is a regular language. 

Let jl ,j2, ••• ,jb, N, b f-1, be the indices of the vertices 

in F. i.e. v j ~ F t,' c l { 1, ••• , b) • 
b C [r+l 

Then L(~) • (J 1 l j • 
C• ' C 

Hence L(Q) is a regular language. 

Def 1.2.11 Formal Grammar: 

Let A~ 0 be a finite set. 

Then a formal grammar G on A is a system consisting of: 

1) Two subsets A , Ate A such that A I\ A ... 0, A cJ A ... A, 
n n t n t 

A ~ 0 and A ~ 0. t n 

2) A finite set P of ordered pairs («,4), oc,4~ A*. We write 

(}(-->/$ for (,r,/1) and call the ordered pair a production. 

3) A specific element S GA called the start symbol. 
n 

We write G = (A ,A ,P,S) to denote a formal grammar. 
n t 

Def 1.2.12 Derivation: 

Let G = (A ,A ,P,S) be a formal grammar, n t 

1i,Y2 ~A*, 

T. = (>tJ<(), Y. = f /9 $ and 
1 2 

O<-->t1~P. 

Then we write Y..-->r,, call it a single step derivation. 1 2 

If °i"•"i••••,~lA*, n~N and 

oi-->5i--> ... -->o;, 
* Then we can write "i--->o;; and call 'i•fi•···•o-;; a derivation 
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of ,-. 
n • Note that for any 1GA• vo con write r-->r. 

Def 1.2.13 Longuoge Generated by o Formal Grommar: 

Let G • (A ,A ,P,S) be a formul grammar. n t • Then L(G) • (ri<j« l' A •, S--->,rJ is defined to be the language t 
generated by G. 

Def 1.2.14 Right Linear and Normalized Right Linear Grammars: 

Let G • (a ,A ,P,S) be a formal grammar. n t 
If all the productions in Pare of one of the forms 

or u-->•v 

u--)IV where u,v{A and A't{A*, 
n t 

Then G is said to be a right linear grammar. 

If all the productions in Pare of one of the forms 

u-->11rv or 

u-->.11 where u, v ~ A and It'~ A* n t 
Then G is said to be a normalized right linear grammar. 

Lemma 1.2.15: 

Let G be a right linear grammar. 

Then there exists a normalized right linear grammar G' such that 

L(G) = L(G'). 

Pf: by construction 

Let G = (A ,A ,P,S). n t 
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Wo construct G' • (A~,A~,P',S') us follows: 

Let A~ • Ae 
Include in P' each production in P of the form 

x-)wy or 

x-->A where x,y~A and (}('~A•. n t 
For each production in P of the form 

x-->«, + x~A, or~A, n t 
create a new non-terminal u G A , and add the x,,r n 
productions 

x-->«u and x,er 
u -->A 

X ,It' 

to P'. 

+ Let A'= A v{u /x--),rE'P, Of~At} and n n x ,K 

s' = s. 
Having constructed G', we must now show that 

L(G) = L(G'). 

Suppose .ilfL(G) and 

S = Ga-->°i--) ... -->"k =/!, k£lf, is a derivation of,,d 

in G. 

+ Suppose no production of the form x-->«, x ~ A , tK fA , occurs n t 
in the derivation of (J'. 

Then all the productions applied in the derivation of ~ are in P'. 

Since S = S', the derivation of ,4 is in G'. 

Thus ,6' tL(G '). 

+ Now suppose that a production of the form x--)Df, x~A
0

, ()(~At, 

34 



occurs in the derivation of ti. 
Note that such a production can only occur at the end of the 

derivation. 

Thus Gj;_1-->"k must be of the form 

('x->1ot .. /J, 
where xG A , r,t,t'~A* and or l,.A, n t 

Since the production x-->~is in P, the following productions 
must be in P': 

x-->ocu and 
X ,et 

u --> '1 where u ~ A' • x,or x,~ n 
Thus we can replace the last single derivation in the 

derivation of;! in G with the following: 

rr._ = Tx-->(orn -->To< = If. k-1 X 1 1(' 

The resulting derivation of ,tf is in G', and hence 
p'~L(G '). 

Thus L(G) ~ L(G'). 

Now suppose ;f~L(G' ). 

Then we can find a derivation 

S' = o-0-->ui-->"2--) ••• -->"k = #, k~H, 
of 4 in G'. 

Note that none of the new non-terminals in A',A can appear n n 
in "o• ••. ,~_2• 

Hence all the single derivations in 

S' = 17o-->~-->"2--> ••• -->"k-2 
are single derivations in G. 

35 



Since G' is a normalized right linear grammar, tho last two 
single derivations in tho derivation of ,8 in G' must be of 
form 

rx--)(llu --)flt • ,(J, x,., 
where X f A , x,u ~A', 11,r, A• and Ot-/. A. n x,« n t 

If u ( A , x,or n 
Then both of the above single derivations are in G, and 

hence ~ L(G). 

Suppose u ¢ A • x ,or n 
Then by construction of G', there must be a production 

x-->ct 

in P. 

We can use this production to replace the last two single 
derivations in the derivation of~ in G' with 

o;_2 = rx--)(lt =/1. 
and thereby obtain a derivation of/1 in G. 

Hence 4f L(G). 

Therefore L(G')~L(G). 

Combining the above with the previous result, we obtain 

L(G') = L(G). 

Thm 1.2.16 

Let G be a formal grammar. 

Then G is a right linear grammar iff there exists a finite 
recognition automaton C<. with an A-labeling such that 
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L(ta) • L(G). 

Pf:(-->) by construction 

Suppose G • (A ,A ,P,s) is a right linear grammar. n t 

By Lemma 1.2.15, we cnn assume that G is o normalized right 

linear grammnr, and thus that P contains only productions 

of the forms 

x-->ocy or 

x-->.A 

where x,y6An and K~At· 
We construct the finite recognition automaton 

a .. ( D, A , 1, S , F) , D a ( V, E, t' ,q')) , 

as follows: 

Let V • A , 
n 

A a A and 
t 

S a (s}. 

For each production in P of the form 

x--)ffy, x,y{" A , Dt'~ A*, 
n t 

include in Ethe edge e and define: 
X,K,Y . 

'1' (e 
X ,.c' y 

) = x, 

Ice > 
X ,oc, Y = y 

l(e ) = oc.. x,.e,y 
For each production in 

x-->A, x ,; A , 
n 

include x in F. 

and 

P of the form 

Having constructed q, we must now show that 
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L(a) • L(G). 

Suppose K~ L(G). 

Then there exists a derivation 

s--> '!--> °i--> .. . -->~->ot, k f N. 

Note that each °t, i tr=. ( 1, ••• , k}, must be of the form 

"1"2° 00 "ixi, ocl,,c2' 000 'ori~At, x~\• 
and tho t for enc h o;_, i f ( 2, ••• , k}, the production 

xi-1-->,\ xi~ p 

is applied to obtain it from o;:_
1

• Further °i is obtained 

from s via the production 

s-->«1 xl ~ p 

and I>' is obtained from 'k' though the production 

xk -->A ~P. 

Thus, by construction of~, we can construct the path 

in D. 

By construction of 

xk --)i\(:P ==> xk ~ F. 

Also S = {s}. 

Thus A is an admissable path in '1. 

Since l(~) = l(e )l(e ) 
s,«1,x1 x1,oci,x2 

= ocl oc2 ° 0 0 "k = K, 

we have that OC'~L('i'). 

Therefore L(G) ~ L(Q). 

Now suppose IX& L(~). 
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Then there exists an admiaaable path 

~ • a e x1 e x2 • • • xk-l e xk, 9 ,tc1,x1 x1,«2,x2 xk-l•°'k•xk 
k&'I, 

in a, such the t 

1(4) • l(e )l(e ) ••• l(e . ) 
s,~1,x1 x1,tci,x2 xk-1•'1c•xk 

• .. 1 ~ • • • 0ic. k • Kt 

where oc1, °"2, ••• , "le ~At• 

By definition of E, for each e , iG= (2, ••• ,JCJ, there 
xi-1 '°'i 'xi 

exists a production 

xi-C->°'i_ xi' xi-I 'xi E \' *"i € A~, 

in P. Likewise, P contains the productions: 

Thus we can construct the derivation 

s-->~ xl--)J)('l °'2x2-->. • .-->~«.2 • • ·"ic-1 xk-1-->Clj_~· • ·''ilk 
-->OCj_ 0(2 • • ·'\ = O("., 

Since this derivation is in G, it follows that 

'1('6L(G). 

Therefore L(a) = L(G). 

Combining the above with the previous result, we obtain 

L(t::t) = L(G). 

(==>) by construction 

Lett<= (D,A,l,S,F), D = (V,E,,·,9) be a finite recognition 

automaton. 

We construct G = (A ,A ,P,s) as follows: 
n t 
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Let At• A, 

A • V and n 

a• v where (v) • S. 
8 8 

For each v • F, place tho production 

v-->A 

in P. 

For each e, E, place the production 

't'(e)-->I(e)f{ e) 

in P. Note that t·(e),¢'<e)G V • A and l(e)~ A*• A*. 
n t 

Having constructed G, we must now show that 

L(G) = L(Q.). 

Suppose O(~L(Q). 

Then there exists an admissable path 

tl = v0e1v1 ••• vk-lekvk, k~ H, 

in (i where l(A) = l(e
1

)1(e
2

) ••• l(ek) 

= Kll('2" 0 .,c"k = 0C. 

By construction of G, for each ei, i~ {I, ••• ,k}, the 

production 
. 

~(ei)-->l(ei)'r(ei), 

which can also be written 

vi 1 , vi ~ A , P<. E=' A*, 
- n 1 t 

is in P. Likewise, since vk f F, the production 

vk-->4 

is also in P. 

Thus we can construct the derivation: 
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->"). • .ock • oc. 
Since A is on ndmissable path tna, v0 • s. 
Thus we have constructed a derivation of oc. in G. 
Hence ~6" L( G). 

Therefore L(Ci) , L(G). 

Now suppose O('t.:=L(G). 

Then we can find a derivation of OJ( in Gas follows: 

s Q vo->"J.v1-->«"1"2v2~> ••• -->~···~-lvk-l-->"J.•••"icvk 
-->oc1 •• ·'\ = or, k '""· 

By construction of G, for each production of the form 
vi_1-->°\vi' i E-(1, ••• ,k}, vi-l'viE-' An' "i ~A~, 

in P, we can find an edge e1f E such that 

-c'(ei) = vi-I' 

l(e
1

) = 
1 

and 

tf(ei) = Vi• 

Thus we can construct the path A in~ such that 

~ = vOelvl ••• vk-lekvk. 
Since v = s, {v} = S. 0 0 
Since the production 

vk-->.t\ 
is in P, v k G F. 

Thus A is an admissable path inG('.. 
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Thus 0('€ L(a). 

Therefore L(G) ~ L(q). 

Combining the above with tho previous result, we obtain 
L(G) • L(Gi). 

Thm 1.2.17: 

Let Ga (A ,A ,P,S) be a formal grammar. n t 
Then G is a right linear iff there exists a regular expression r 

on\ such that 

L(G) .. L(r). 

Pf: 

Follows directly from Thms 1.2.10 & l.2.16. 

Def 1.2.18 Pref( ): 

Let A be a set, 

L ~A* be a language on A. 

Then Pref(L) = {ocjor,,6'€A*, ot'# = rEL}. 

Note: If Of ,4 ~A*, oc~ = "i ~ L, we can write ~~r. 

Thm 1.2.19: 

If Lis a regular language on a set A, 

Then so is Pref(L). 

Pf: by construction 

Since Lis a regular language, by Thm 1.2.10 there exists a 
finite recognition automaton 
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aL • (D,A,l ,S ,F), D • (V ,E, r',f), 

such that L(OL) • L. 

We construct tho finite recognition outomaton 'lp in two 
stages os follows: 

1) We oxaidno D to find all vortices v ( v~ F such that 

there exists no edge e~ E such that •(e) • v. Since D 
is finite, we can do this. 

Since any path including such av must end with it and 
thus not be an admissable path, we can remove v from 
V and all edges e EE such the t t()( e) • v without 

changing the language recognized by the automaton. 
We do so, and repeat the process until there are no such 

vertices remaining. Call the result QL' 
Q1 = (D',A,l',S,F), D' = (V',E',1'',tf). 

Note that L = L('<r,) = L(Cl1). More importantly, note 

that given any path A
1 

in D' with initial vertex in 

S, we can find a second path ~
2 

in D' such that A
1
o

2 
is defined and is an admissable path in a.1. 

2) We form ~ from a: L by setting F equal to the set of 
all vertices in D', thus making every vertex a final 

vertex. Hence 

'<p = (D',A,l',S,V'), D' = (V',E',"f','?'9). 

Having constructed a,p' we must now show that 

Pref(L) = L(qp). 

Suppose ()(~ Pref(L). 
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Thon thoro oxiats o ti~ A* and a tG L auch thot 

K4 • T. 

Hence there exists an admissable path o in t:\L such that 

l(o) • r; and further, thero exist two paths 4)
1 

and o
2 

in 

ai such that 

6
1
o

2 
•O, 

1( A1) • oc and 

l(A
2

) • /f. 

Since 6 1 starts in Sand since each vertex in V' is a final 

vertex in QP' A1 is an admissable path in Qp• 

Thus~€ L(Qp). 

Therefore Pref(L)f L(Cip). 

Now suppose K~ L( p). 

Then there exists an admissable path o
1 

in ap such that 

~l = v0e1v1 ••• vk-lekvk, kGN, 

where v 
O 

€; S and 

l(o
1

) =«. 

As a result of the pruning process we used to obtain ~i• we 

can find a path A
2 

in D' such that 

A2 = vkek+l \+1 •• .vk+j-lek+jvk+j' j '°'ff, 

vk+j f F and 

1(~2) = Ii. 

Note that o 1o
2 

is defined in D' 

Recall that both a p and Ct.i use D'. 

Since v0 ~s and vk+jGF, ~ 1o2 is an admissable path in qi· 
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Hence Y • ot,4 • 1(~1o2) f L(a.J} • L(C\) • L. 
Thus 0(, Pref(L). 

Therefore L(~) ~ Pref(L). 

Combining the above with the previous result, we obtain 
L(Qp) • Pref(L). 

Hence, if Lis a regular language, so is Pref(L). 

Segment 1.3 - Zorn's Lemma: 

Zorn's Lemma and the three definitions given in this segment 
are used repeatedly in section two. 

Def 1.3.1 l,e: 

Define lfeo = I u {oo}. 

Def 1.3.2 Ineguality and Incomparable: 
Let X ~ 0 be a finite set. 

Q,Q' fi Hl~I. 
Define Q i Q' <==> Q(x) i Q' (x) 'rl x ~ X, 

Q < Q' <==>(Qi Q') A ('3x~X ~ Q{x) < Q'(x)), 
Q = Q' (==) {Qi Q') A (Q' i Q) (==) Q{x) = Q'{x) t/ X ~X. 

We say that Q and Q' are incomparable iff neither Qi Q' nor 
2 Q' i Q holds. For example, in Ne1,, (1,2) and (2,1) are 

incomparable. 
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Def 1.2.3 Pairwise Incomparable: 
Let X ~ 0 be a finite set, 

A 11!1 be o set. 

Then we say that A is a set of pairwise incomparable elements iff 
for all a,a'' A, a and a' are incomparable. 

Thm 1.3.4 Zorn's Lemma: 

Let X ~~be a finite set, 

A~ Nl:,I be a set of pairwise incomparable elements. 
Then A is finite. 

Pf: by contradiction 

Suppose A is infinite. 

Let S = { s Is , X} • 

Since Xis finite, so is S. 

For each s , S, define 

A = {ajaE A, (a(x) =cso) <==> (x E=s)}. s 

Note that A = U S A • sf s 
Thus, there exists s'' S such that A , is infinite. s 
Consider the following induction: 

Base step: 

Let BO = A ' and s 

eo = s'. 

Note that b
0

(x) = b0(x) ',/ b
0

,b0 G B
0

, x~ eo, 
b
0 

(t1o, Vb
0

! B
0

, xf'X,e
0 

and 

B
0 
~ Nl!l is an infinite set of pairwise 
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incomparable oloaonta. 
Induction atop: 

Suppose that for if N, i l 0, wo havo shown thot n
1'° 11!1 

is on infinite set of pairwise incomparable eloQents 
such that 

h
1

(x) • br(x) V b
1

,b1, e1
, xfe

1 
ond 

b/x) < ao Yb
1
~B

1
, xix,e

1
• 

We construct Bi+l and ei+l as follows: 
Consider bi G \. 

Since Bi is a set of pairwise incomparable elements, 
V bi, Bi, bi-/, b1 , 3 xfX,e

1 ~b1(x) < bi(x). 
Thus, for each xt!X,ei, we can define 

ex= {b1lb1fBi, h1(x) < b/x)}, 

where Bi • (Ux ~X•ei Cx) u(bi). 
Since Bi is infinite and x,ei is not, there exists 

x'f X•e such that C, is infinite. i X 

Since b.(x') <oo and jc ,I =CIO, ;J j~N, 0 i j < bi(x'), l X 
such that there are an infinite number of c ~ C , such 

X 
that c(x') = j. 

Define Bi+l = (bi+llbi+lf Cx'' bi+l(x') = j} and 
ei+l = ei"' {x'}. 

By definition of Cx' & j, Bi+l is an infinite set of 
pairwise incomparable elements. 
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bi+l(x) < eo 'ti bi+lf Bi+l' x(X,01+1· 
How conaidor Rk, k • IXI - lo0f. 
Since oach o

1 
hos ono moro olomont than o1_1, 

f ok I • IX I• 
Thus ek • X. 

Hence bk • bk 'ti bk, bk~ Bk. 
Since Bk is a set of pairwise incomparable elements, 

fBkf • 1. 
But by the above induction, Bk must be infinite - a 

contradiction. 

Hence A must be finite. 
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Section 2 - Petri Xt?t ·rhcory: 

Scgmont 2.0 - Introduction: 

Hnvlng completed the preliminaries, we now J>roccad wlth our 

devclopcmcnt o( patri net theory. This section is devidcd into 

two segments. The first covers the ha sic def in it ions and rcsul ts 

concerning petri nets and their related constructs. The second 

deals with those petri nets whose firing languges are regular. 

While the basic thrust of this paper remains theoretical, 

examples have been included both for clarity and to indicate 

possible applications. 

Segment 2.1 - Basic Definitions and Results: 

Before beginning our development of petri net theory, we 

pause briefly to consider the goal towards which our effort is 

directed. Generally stated we wish to find some convenient and 

reasonably intuitive method of describing asynchronous, 

concurrent processes, In addition, we would like to be able to 

use this representation to answer such such questions as "Can 

these two processes deadlock?" or "Is the work space of 

process A safe from being over writ ten by process B?", Finally, 

we would like to be able to automate much of the above so that 

we can deal with large systems of interrelated, concurrent 

processes such as operating systems or the more modern design 

natural language translators. ~1at follows is an effort in that 
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diroct ion, which r.mkos no m1sur:mptions nbout tho hnrdwnro in 

quostion except for tho oxistonco of n hordworo orbiter which 

prevents tho simultaneous uccess of n single memory location by 

two or more processes. Since this fcnture is stondord, the 

assumption is not unreosonoble. 

In our developement of petri not theory, tho following two 

problems will bo used repeatedly as examples: 

Problem II - Dijkstra's Dining Philosophers: 

Five philosophers live together. They spend their time either 

eating or thinking. They eat at a round table with five places. 

Each philosopher has his own place and will eat at no other. At 

each place there is a plate of food. Between each plate there is 

a fork. Each philosopher requires two forks to eat with, and will 

use only those forks on either side of his plate. A philosopher 

can only pick up one fork at a time, and once a philosopher picks 

up a fork, he will not put it down until he has finished eating, 

at which point he will put each fork back where he found it. No 

philosopher will eat forever. Design a scheduling algorithm for 

the dining philosophers such that no philosopher starves. 

Problem #2 The Mutual Exclusion Problem: 

Suppose an arbitrarily large number of processes share some 

resource (i.e. a printer). Assume that once a process obtains 

control of the resource, it will release it eventually. Design a 
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scheduling algorithm with tho following proportios: 

1) At most one process will hove control of the resource ot 
nn y one time. 

2) Any process which requests control of the resource will 
obtain it eventually. 

Unfortunately, most of the problems in concurrency require 
petri nets that are too large for us to deal with in this paper. 
Thus the above two examples have been chosen as much for brevity 
as for any other quality. 

We now offer the definitions leading up to our definition of 
the petri net. 

Def 2.1.1 Place Transition Graph (PIT Graph): 

Let P = (p
1 

,p
2

, ••• ,pm}, m EN, be a set whose elements are called 

places, 

T = {t
1 ,t

2, ... ,\J, n~N, be a set whose elements are called 

transitions, 

Pl"'IT = 0, 

V = P v T be a set of vertices and 

E ~ (P x T) "(T x V) c: (V x V) be a set of edges. 
Then the resulting bipartite directed graph, written (P,T,E), is 

said to be a place transition graph. 
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Def 2.1.2 t;dge Hultiplicity Function: 

Let (P,T,F.) be n p/t graph. 

Define W:E-->H to be the edge multiplicity function. Unless 

otherwise stated, 

W(e) • I ~ efF.. 

Def 2.1.3 Adjacency Functions: 

Let D • (V,E) be a dg, 

v,v'E V 

"')( ( V , V 1 
)) --(01 if (v,v') EE, 

otherwise, 

W:E-->N be defined as in Def 2.1.2. 

Then A:E-->N, A((v,v')) = ,((v,v'))W((v,v')) is said to be the 

adjacency function for D. 

Further, if D = (P,T,E) is a p/t graph, then two functions 

B,F:(P x T)-->N, called the backward adjacency function and 

the forwards adjacency function respectively, are defined as 

follows: 

__ {

0

A((p,t)) 
B((p,t)) t, 

[A( (t ,v)) 
F((p,t)) = (o 

where p E P and t ET. 

if (p,t)~E 

otherwise, 

if (t,v) f E 

otherwise, 

Note that A,3 & F can all be expressed as matrices. 
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Dor 2.1.4 Incidenco Function: 

Lot (P,T,E) bo u p/t graph and 

8 & F be defined. 

Thon the incidence function D:(P x T)-->H is defined as follows: 
D(p,t) • F(p, t) - B(p,t), ~ p ~ P, t~ T. 

Note thnt D can also be expressed as a matrix, and in this form, 
Dis called the incidence matrix. 

Def 2.1.5 Marking and Token: 

Let (P,T,E) be a p/t graph. 

Then a marking is a function M:P-->N. Note that M can be written 
as a column vector. 

If for some p6 P, M(p) = n, n ~ N, then p is said to contain n 
tokens in the marking M. 

Def 2.1.6 Capacity Function: 

Let (P,T,E) be a p/t graph. 

Define the capacity function, K:P-->N .. , to represent the 

maximum number of tokens which may reside in any given place at 
any given time. 

Thus for any marking Mon P and any place pt:P, N(p) i K(p). 
Unless otherwise stated, assume K(p) = oo Y p6P. 

Def 2.1.7 P/T Net: 

Let (P,T,E) be a p/t graph, 
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B:(P x T)-->N bo tho hockwnrd ndjnconcy function associntod 

vi th ( P, T, E) , 

F:(P x T)-->N be the forwnrd odjncency function ossociotod 

vi th ( P, T, f~) , 

K: P-->H oe be o capaci.ty function on P nnd 

W:E-->H be an edge multiplicity function on E, 

Then (P,T,B,F,K,W) is said to be a p/t net. 

Note that 8 and F together uniquely define E. 

If K is ommitted, assume K(p) • oo Y peP. 

If W is ommitted, assume W(e) a 1 Yet E. 

Def 2.1.8 Petri Net: 

Let (P,T,D,F,K,W) be a p/t net and 

N
0 

be a marking on P such that M(p) < K(p) 't/ pf P. 

Then N = (P,T 1 B1 F 1 K1 W1 M
0

) is said to be a petri net, and M
0 

is 

called the initial marking of N. 

Def 2.1.9 Strict Transition Rule: 

Let N = (P,T,D,F,K,W,M
0

) be a petri net, 

M,M':P-->N be markings on P, 

u , T, u -/: 0 be a set of transitions and 

c:T-->{O,l} be the characteristic function of u, i.e. 

{

l if t f u 
c(t) = 

0 otherwise. 

Then we write M[u>M' iff 
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1) H(p) l It f u B((p,t)) y Pi P, 

2) n'(p) • H(p) + Lt, u D((p,t)) 'f/ pt: P, 

J)M'(p)_iK(p) VptP ond 

4) Y t , t ' f u ~ t /. t' , ( • t u t ·) n ( · t' " t ' • ) • 0. i.e. No two 

transitions in u con involve tho same place. 

Note that if we view H,M',K and c as column vectors, Band Das 

matrices and the relations and operations X + Y, X - Y, X • Y 
and Xi Y componentwise, we can rewrite I), 2) and 3) above 

as follows: 

1) M 1. B•c, 

2) M' = M + D•c and 

3) M' i K. 

Unless otherwise stated, this notation will be used hence 

forth. 

If M[u>M' holds, then we say that u is a set of concurrently 

fireable transitions with respect to M according to the strict 

transition rule. 

Note that M[.A)M always holds. 

We say M[->M' if£ there exists u f T such that M[u>M'. 

Define [=> to denote the reflexive, transitive closure of the 

relation [->. 

Let M0fu/M1, M1[uiM2, ... ,Mn-l[u/Mn, n~N, all hold. 
Then we may write M

0[u
1,u

2, ••• ,un>Mn' and if ci is the 

characteristic function of u. "I iE{l, ••• ,n}, then 
1 

C. • 
1 
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Further, if u
1 

• (t
1 
J Vi~ (1, ••• ,n}, wo ommit the brackets 

ond write 

M0[t 1t 2 •• ,t/Mn 

for short. The word w • t
1

t
2 

••• tnf T* is said to be a firing 
sequence which leads from N

0 
to Mn. 

For all w~T*, M:P-->H, we write M[w> iff there exists an N':P-->N 
such that M[w>M'. 

Finally, if w = t
1 

t
2,., tn f T*, n ~ H, is a firing sequence, we 

define 

The reader should note that the pairs of transitions shown in 
Fig. 2-1 cannot be fired concurrently under the strict transition 
rule. Recall that if Risa relation on a set S, a,b,cES, R is 
said to be reflexive iff aRa holds for all a f S. R is said to be 
symmetric iff aRb <==> bRa for all a,b~ S. Also R is said to be 
transitive iff aRb and bRc ==> aRc. Finally the closure of R in S 
is defined to be the set C defined as follows: 

C = (ajCSA, a,a'f C ==> ((aRa') or (a'Ra))}. 

~ - -
r r 

Fig 2-1 Pairs of transitions which cannot be fired concurrently 

under the strict transition rule: 
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In the above figure, ond nil others which follow, we represent 

plocos with circles and transitions with hors or lines. 

Def 2.1.10 Week Transition Rule: 

Let N • (P,T,D,F,K,W,M0) be a petri net, 

H,M':P-->H be markings, 

u ~ T, u /. 0 be a set of tronsi tions and 

c be the characterisic function of u, i.e. 

c(t) • c if t ~ u 

otherwise. 

Then we write M(u>M' iff 

1) M 2, B•c, 

2) M' = M + D•c. 

Note that the matrix notation defined in Def 2.1.9 is use here. 

If M(u>H' holds, we say that u is a set of concurrently fireable 

transitions with respect to M according to the weak transition 

rule. 

Note that M(A)M always holds. 

We say that M(->M' iff there exists uET such that M(u>M' holds. 

Define(=> to denote the reflexive, transitive closure of the 

relation (->. 

Let M
0

(u
1

>M
1

, M
1 
(u/M

2
, ••• ,Mn-l Cu/Mn, n t N, all hold. 

Then we write M
0

(u
1

,u
2

, ••• ,un>Mn' and if ci is the characteristic 

function of u. "'Ii ~{1, ••• ,n}, then 
1 

Mn = Mo + D r~=l Ci. 
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F'urthor, H u
1 

• (t
1

) V 1 f (I, ••• ,nJ, wo mny ommlt tho brnckets 

and wrlto 

MO(tlt2'''tn>nn 

for short. The word w • t 
1 

t
2
.,. tn ~ T* is soid to be n firing 

sequence which lends from M
0 

to M
0

, 

For all wf T•, M:P-->H, we write M(w> Hf there exists nn H' :P-->H 

such that M(w>M'. J.'urther, Jf w a t
1

t
2 
... tn' n EH, we define: 

(D•w)(p) • r;.J D(p,t
1

) Vp6P, 

Hence forth we refer only to firing sequences since any set of 

concurrently fireable transitions can be represented as a firing 

sequence but not vice versa. 

Def 2.1.11 Enabled: 

Let N = (P,T,B,F,K,W,M
0

) be a petri net, 

t ET and 

M,M':P-->N be markings on P. 

If M[t>, we say that the transition tis enabled on the marking M 

under the strict transition rule. 

If M(t>, we say that the transition tis enabled on the marking M 

under the weak transition rule. 

Note that M[->M' ==> M(->M'. However the converse need not be 

true even if K(p) =OOfor all pEP. If w.iiT* and K(p) = o,ofor 

all p E P then M[w>M' <==> M(w>M'. 
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Def 2.1.12 Raochoblo: 

Let N • (P,T,O,f,K,W,M
0) bo n petri net nnd 

H ,M': P-->N bo markings on P. 

Then we say thot M' is reachable from M according to the weak 
transition rule iff there exists w ET• such thot 

M(w>M'. 

Further, if there exists w~T• such that 

M[w>M', 

Then M' is reachable from M according to the strict transition 
rule. 

Def 2.1.13 Marking Sets: 

Let N = (P,T,B,F,K,W,M
0

) be n petri net and 

M:P-->N be a marking on P. 

Then we define the strict and weak forward reachable marking sets 

We 

of M as follows: 

[M> = {M'IM[=>M'}, 

(M> = {M' IM(=>M'}. 

define the strict and 

[M] = {M' IM s M'}, 

(M) = {M' IN w M'}. 

wheres is defined to 

weak full marking sets to be: 

be the transitive and semetric closure 
of tue relation[=> and w is defined to be the transitive and 
semetric closure of the relation(=>, 

Finally, we define 
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R(N) • (H
0
> 

to be the renchnbility sot of the petri net N. 

Unving defined the petri net and the strict nnd weak 

transition rules, we now apply these definitions to our two 

problems. In both coses, we use the wenk transition rule. 

Consider the following solution to Problem #1. Place the 

philosophers dining table in a dining room with a narrow entrance 
so that only one philosopher con enter the dining room at any one 
time. When a philosopher feels hungry and comes to the dining 
room, he looks in before he enters. If either of the philosophers 
who sit on either side of him are in the dining room, he goes away 
and comes back later. If neither are present, he enters the room, 
sits down and eats. Upon finishing, he leaves the dining room. 

We can represent the above solution to problem #I with the 

petri net NI in Fig. 2-2. For i E {I, ••• ,5}, a token in ci 

implies that philosopher i is thinking, a token inf. implies that 
l. 

Fig 2-2 A Graphic Representation of NI: 
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fork i 1H not .ln use nnd n token in Ci lmr,llos thnt philosopher .l 

is eating. Tl1c rcprosentatlon of N
1 

in ns 2-2 ls graphic. We 

con also represent N
1 

• (P,T,R,F,X,W,M
0) mathcmntically os 

follows: 

p • (cl,c2,c3,c4,c5,fl,f2,f3,f4,f5,ol,e2,c3,c4,c5), 
T • (tl ,t2,t3,t4,t5,t6,t7,t8,t9,tl0), 

1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
1 1 0 0 0 0 0 0 0 0 
0 1 1 0 0 0 0 0 0 0 

B = 0 0 1 1 0 0 0 0 0 0 
0 0 0 I 1 0 0 0 0 0 
1 0 0 0 I 0 0 0 0 0 
0 0 0 0 0 I 0 0 0 0 
0 0 0 0 0 0 I 0 0 0 
0 0 0 0 0 0 0 I 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 I 

K(p) = 00 ~ p E P, 

W(e) = 1 'ff eE E, 

(Note: Recall that B & F together uniquely define E.) 

0 0 0 0 0 1 0 0 0 0 1 
0 0 0 0 0 0 1 0 0 0 1 
0 0 0 0 0 0 0 1 0 0 1 
0 0 0 0 0 0 0 0 1 0 1 
0 0 0 0 0 0 0 0 0 1 1 
0 0 0 0 0 1 1 0 0 0 1 
0 0 0 0 0 0 1 1 0 0 1 

F = 0 0 0 0 0 0 0 1 1 0 M = 1 
0 0 0 0 0 0 0 0 I I 0 1 
0 0 0 0 0 1 0 0 0 I 1 
1 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 I 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 
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At this point, wo ulso include J) for lntor roforcncc: 

-1 0 0 0 0 1 0 0 0 0 
0 -1 0 0 0 0 I 0 0 0 
0 0 -1 0 0 0 0 I 0 0 
0 0 0 -) 0 0 0 0 1 0 
0 0 0 0 -1 0 0 0 0 1 

-1 -1 0 0 0 1 1 0 0 0 
0 -1 -1 0 0 0 1 1 0 0 

D118-F• 0 0 -1 -1 0 0 0 I 1 0 
0 0 0 -1 -1 0 0 0 1 I 

-1 0 0 0 -1 1 0 0 0 1 
1 0 0 0 0 -1 0 0 0 0 
0 I 0 0 0 0 -1 0 0 0 
0 0 l 0 0 0 0 -1 0 0 
0 0 0 1 0 0 0 0 -1 0 
0 0 0 0 1 0 0 0 0 -1 . 

Note that we represent B, F & Das /Pl x /Tl matrices and M
0 

as a /Pl x 1 matrix. The places are represented top to bottom in 

the order in which they appear in P. Likewise, the transitions are 

represented left to right in the order they are listed in T. Thus 

the third column of B represents the tokens removed from c
3

, f2 & 
f3 by transition t3 with "l"s in rows 3,7 & 8. This notation will 

be used hence forth. 

Now consider the following solution to Problem #2. When a 

process A requests control of the resource, check to see if there 

exists some process B which already has control. If there is no 

such process, give A control of the resource. If there is, wait 

until B yields control, and then give control to A. If more than 

one process is awaiting control at a given time, place them on a 

queue and deal with them on a first come/first served basis. 

We can represent the above solution to problem #2 with the 
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petri net In Fig. 2-3. fnch token in pl represents o procosn 

doing what cvor it is thnt processes do when they don't wont 

control of the resource. Tokens in p
2 

represent processes which 

have requested control of the rcnourcc but hove not yet recicvcd 

it. (Note that since we con not tell one token from another inn 

petri net and since we require our petri nets to be finite, we 

can not represent on nrbitrnrily large first come/first served 

queue explicitly.) A (hopefully single) token in p
3 

represents a 

process which hos control of the resource. 

Fig 2-3 A Graphic Representation of N
2

: 

Again, we can represent N
2 

mathematically, and do so as 

follows: 
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p • IJ• 1 ,P2 ,P3 ,P1,l, 

T II ft1,t2,t3,t4,t5J, 

0 I J 0 0 I 0 0 0 J. 0 
0 0 0 I 0 0 0 1 0 0 0 n • 0 0 0 0 I F • 0 0 0 1 0 HO• 0 0 0 0 l 0 0 0 0 0 I I 

K(p) aoo " p6 P, 

V(e) • I V p E P, 

Again, we include D for our Inter convience: 

I -I -1 0 I 
0 0 I -I 0 o .. n-n .. 0 0 0 I -I 
0 0 0 -1 I 

In both of the above examples, we can verify by inspection that 

N
1 

and N
2 

are correct representations of our solutions to problems 

01 & #2. (Since our initial statements of the solutions arc 

written in English, they are, perforce, somewhat inexact.) 

However, that is all we have achieved. 

The remainder of this segment is devoted to developing 

constructs which can be used to determine whether or not our 

solutions are correct. 

Def 2.1.14 Strict Marking Graph: 

Let N = (P,T,B,F,K,W,M
0

) be a petri net. 

Then the strict marking graph of N is a system consisting of a 

directed graph 

G = (Z,E) 

and a labeling function l:E-->P defined as follows: 
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Z • (M
0
> ~ Hf Pf Js tho oot of vorttcus, 

l! S Z X Z, 

E • ((1.,z')fz,z'€ Z, 3 t (T >'z(t>z') J.s tho sot or odgcs, 

and Cor all (z,z') R, 

l(z,z') • t 

where tfT ond 1.[t>z'. 

We write 

SMG(N) a (G,l), G • (Z,E) 

to denote the strong marking graph of N. 

Def 2.1.15 Weak Marking Graph: 

Let N = (P,T,B,F,K,W,M0) be a petri net. 

Then the weak marking graph of N is a system consisting of a 

directed graph 

G = (Z,E) 

and a labeling function l:E-->P defined as follows: 

Z = (M
0

> !HIP! is the set of vertices, 

E ~z x z, 
E = ((z,z')lz,z', Z, 3t<T ~ z(t>z} is the set of edges, 
and for all (z,z') E, 

l(z,z') = t 

where t f T and z(t>z 1 • 

We write 

WMG(N) = (G,l), G = (Z,E) 

to denote the weak marking graph of N. 
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When wa roprcsant either of the mnrklng graphs grnph!cnlly, 
!nstcnd of writing the verticos os column vectors (rccnll thot 
the vertices arc markings), we use the following nototion: Let ff 
be a marking/vertex in a marking graph. Then for onch p P, we 

i write p , N( p) .. i, if i > 0 and ommit J> entirely if i .. O. 
Thus if Pa (p

1 ,p
2,p

3), ~{p
1

) a 1, M(p
2) • 0 and H(p

3) • 4, we 
1 4 write p
1

p
3

• 

I I 1 
f 4 el e3 

Fig 2-4 The Weak Marking Graph of N
1 

1 2 1 
f3e5e5 

WMG(N
1

): 

Consider WHG(N
1

) in Fig 2-4. Note that since WMG(N
1

) is finite, 
,,, we can determine by inspection that N

1 
is a correct solution to 

problem #1, since for all i {1, ••• ,5} and for each vertex/marking 
Min WMG(N

1
), we can find a directed path to a vertex/marking M' 
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such thnt H'(c
1

) • l. 

Now consider H2• The render cnn verify that WMG(H
2) is 

infinite. Thus we cnnnot use W:·IC(N
2

) to determine whether or not 
N2 is o correct solution to problem 12. 

Def 2.1.16 Wenk Coverability Tree CT(N): 

Let N • (P,T,8,F,K,W.M
0

) be a petri net. 

Then the weak covernbilty tree of N is a system consisting of the 
tree 

T' = (V, E,i ,tf) 

and two labeling functions lV: V-->Nl!) and lE:E-->T which are 
defined via the following induction: 

Base step - Depth 0: 

Introduce the root vertex r EV such that 

1/r) = M
0

• 

Induction step - Depth n + 1: 

Assume that all vertices of depth in, n~N, n L 0, have 

been defined. 

Let s EV be a vertex such that 

Depth(s) = n 

and 

lyCs) = Q 

where Q €NI:). 
If one of the following hold, thens is a leaf: 

I) On the path from r to s there exists a vertex s'~ V, 
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Dopth(s') < n, such thot 

ly(s') • Q. 

2) Thero exists no t t·r such thnt Q(t>. 

If s ls not n lenf, then there exists nt lcmst one t'°T 

such thnt 

Q(t>Q' 

for some Q' € Hl!I. 

For each such t, introduce a new vortex s to V nnd n new 
t 

edge et to E such that 

'f(et) D St 

lE(et) at and 

q')(et) .. st. 

We define lv(st) as follows: 

Let P(Q') = (Q"/Q" labels a vertex on the directed path 

from r to st' Q" i Q'} u(Q'}, 

Q = Q' + oo•[Q"(P(Q') Max(O, (Q' - Q")). 

Recall that by convention, O·oo = O. 

Define lv(st) = Q. 

Note that for all p ~ P such that 

Q"(p) < Q' (p) V Q"E' P(Q I) I 

we have that 

Q(p) = oo, 

and for all p € P such that 

Q"(p) > Q'(p) lfQ"E=P(Q'), 

we have that 
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ij(p) • Q'(p) • Q(p) + D(p,t). 

Noto also thnt (Q(p) • oo••> Q(p) •OO) If p~P 

Ropoot tho abovo process for nll vortlcoa of depth n. This 

doflnos nll vertices of depth n + J, or stops H thoro 

ore no such vortices. 

We write 

CT(N) • (T',lv,lE), T' • (V,E,t·,~ 

to denote the weak coverability tree of N. 

Note that since T is finite, for all v £ V, 

Jc e I e , E. t' ·cc> 11 v J I i 1 ·r I < oo. 

Thus CT(N), or more correctly T', is finitely branching. 

Def 2.1.17 Strict Coverability Tree: 

The strict coverability tree is constructed in the same fashon 

as the weak coverability tree, save that the strict transition 
rule is used in place of the weak transition rule. 

We provide CT(N
2

) in Fig 2-5 as an example of a weak 

coverability tree. Note that we use the same notation for labeling 
vertices as we did for the weak marking graph of N

1
• The following 

four theorems give us the information we require to interpret the 
weak coverability tree. 
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Fig 2-5 The Coverability Tree of N2 CT(N2): 

Thm 2.1.18: 

Let N = (P,T,B,F,K,W,M
0

) be a petri net and 
CT(N) = (T' ,lV,lE), T' = (V,E,i,ff) be the coverability tree 

associated with N. 

Then T' is finite. 

Pf: by contradiction 

Suppose that N is a petri net such that T' is infinite. 
Since T' is finitely branching, by Thm 1.2.23, Konig's lemma, 

T' must have at least one infinite path. 

Call this path 
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whoro v
0 

is the root vortex of T'. 
By doftnltion of CT(U), ossocinted with A is a sequence of 

la be lings 

r. • 1
0 

, 1
1 

, 1
2 

, ••• 

where ly(v
1

) • 1
1 

for all i ~N. 

Dy the construction rules for CT(N), L hns the following 

properties: 

1) 1
1 

-/. lj for all i,j E-N, i (: j, 

2) For all i ~ N, there exists t1 ET such that 1
1 
(ti>. 

The above must be true, for were they not, A would terminate 

and hence be finite. 

Consider 1
0 

= M
0

, the initial marking of N. 

Since M
0 

is a marking, it must, by definition, be finite. i.e. 

N
0

(p) < oo V pl.P. 

Hence there is at most a finite number of labelings 1 ~ Nl.!,1 
such that 

Ii lo. 

Further, since P, the set of places in N, is finite, by Thm 

1.3.4, Zorn's Lemma, the set of pairwise incomparable 

labelings l' € Nl!l, which are also incomparable with 1
0 

and any labeling 111 < 1 which may occur in L, must also be - 0 
finite. 

Thus there must exist some finite i ~N such that \ > 1
0

• 

By the construction rules for CT(N), there exists p ~ P such 

that 
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11 (p) • -. 

Sinco tho doflnitlon of tho odgo multiplicity function requires 
n Cini to multiplicity on coch edge in ff, for nll j ~ff, j > i 
nnd p• P, 

li(p) • • ••> 1/p) ••• 

Thus there are only o finite number of possible labelings 
l, Hf!f such that 

1 < li. 
Again by Zorn's Lemma, the set of pairwise incomparable 

lnbelings l'~ H~I which are also incomparable to li and 
any labeling l" i 1

1 which may occur in L, must be finite. 
Thus there must exist some finite kE= H, k > i, such that 

lk > li. 
By the construction rules for CT(N), there exists p F P such 

that 

and 

l(p)=OO. 
k 

The above argument can be repeated indefinitely. 

However, since P, the set of places in N is finite, we must 

eventually reach some labeling 1 € N~I, m ~ N, such that m 
l(p)=oovp~P. m 

But then, since the edge multiplicity function is defined to 

be finite for all edges in N, 

1 
1

(p) =oo\t'p~P m+ 
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Thus l • l 
1
• 

Ill 111+ 

But this 1s procisoly ono of tho conditions for tho tormlnotlon 

of o pnth given in the construction rules for CT(N). 

Hcnco A is finite nnd T' connot contnin on infinite poth. 

Thorcfore T', and hence CT(N), is finite. 

Lemma 2.1.19: 

Let N • (P,T,B,F,K,W,H
0

) be a petri net, 

CT(N) • (T',ly,lE), T' = (V,E,i,f') be the coverability tree 

associated with N, 

A= v0e1v1 ... vn-lenvn, n£N, be a directed path in T' such 

that v0 is the root vertex of T' and v is a leaf. 
IP/ n 

lv(v1) = Q1 £N00 Vi£(0, ••• ,n}, 

r7~ P be the set of places such that Qi (p) = 0e <==> p ~ P~ 

for all if (O, ••• ,n) and 

\Ce1 ) = t 1 tT tJ' iG(I, ••• ,n). 

Then for all kc!- N, 0 i kin, such that r;
1 

c: Pk, there exists a 

bk£ N, 0 i bk < k 

Qk(p) = Qb (p) 
k 

and 

such that 

(D·L~=bk+l th)(p) > 0 V p~P;,pk~1· 

Further for each such k, we can construct a firing sequence 

wkeT* with the properties: 

1) (D•wk)(p) = O V p~ p,~ 

2) ( D • wk)( p) > 0 V p t; P~ P °" , 
k bk 
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3) "k ls onnblod on ony marking Mon P such thot 

a) M(p) > Qb (p) V 
- k 

b) H(p) 1 (B•wk)(p) 

Pf: by construction 

Tho existence nnd properties of bk follow directly from the 

definition of CT(N). 

We demonstrate that wk can be constructed via the following 

recursive procedure: 

Initially let wk• tbk + 1tbk +2 ••• tk 

By the construction rules for CT(N), the following 

must be true: 

1 ') (D•wk)( p) = 0 V p~ p,p; 

2') (D• wk)(p) > 0 _, p E p; ... r:
1

, 

3') wk is enabled on any marking Hon P such that 

a') M(p) 2 Qbk(p) V pf P"P:.1, 

b') N(p) L (B·wk)(p) V p~ P:1, 

Note that 11 ) is identical to 1), 

Further, if P~
1 

= P~, 2') and 3 1
) are identical to 2) 

and 3) respectively, 

Thus, if P~
1 

= P~, wk as initially defined satisfies 

properties 1), 2) & 3) and we are done. 

Suppose Pb00 c. P00 
, 

k k-1 
Then we modify wk as follows: 

Initially, let r = k - 1. 

Note that by the construction rules for CT(N), the 
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follovtna nro truo: 

1") (D•vk)(p) • 0 V piP'P~ 

2") (D•vk)(p) > 0 Y P'° P~J>~ 
3") vk is cmnbled on ony marking H on P such that: 

n") M( p) l Qb (p) V p(! p,~, 
k 

b") M(p) l (H•vk)(p) ~ p• P~ 
We proceed vio the following cycle: 

i) Decrement r by 1. 

ii) Modify wk as indicated below. 
iii) Demonstrate that l"), 2") & 3") hold for the new 

value of r. 

iv) If r >bk.we return to i) and start over. If 
r a bk• we are done, since 111

), 211
) & 311

) have 
become equivalent to 1), 2) & 3) respectively. 

Our modifications to wk in ii) and our argument in iii) 
depend upon whether P00 = P •

1 
or P00c P00

1• We deal r r+ r r+ 
with the former in Case 1 and the latter in Case 2. 

Case 1 - (P00 = P00

1): r r+ 
No additions are required to wk. 
Since P00 = P00 • 111

), 211
) & 311

) still hold. r r+l 
Case 2 - (P..,, P00 

) : r r+l 
Defines= r + 1. 

Construct w via recursive application of this s 

procedure. 

Then w has the properties: s 
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l ') (D.v )(p) • 0 V P'° p,p~ 
S 8 

2') (D.v
8
)(p) > 0 VP' r:er=:, 

3') v is onoblod on ony mnrking ff on P such thnt: 
8 

o') M(p) l. Qb (p) y p~ p,p;o, 
8 S 

b') M(p) 2, (B•w
8
)(p) ti p~ r;o. 

s 
where b ~ N, 0 < b < s, 

s - s 

Qbs'p) • Q/p) V pt P-P: 

and 

(D·Ihk b I th)(p) > 0 V P"p'!p"'1· as+ s s-
Choose K ~ N such that 

K > 2((B•wk)(p)) V p~ p-tp ... 
s r 

Choose m t N such that 

m ( (D•w )(p)) > K 'r/ p '° P~P~ 
s s r 

By 2'), such an m must exist since 

(P-tP"') e (P~P-). 
s r - s bs 

Let I be the firing sequence formed by concatinating 

w with itself m times. 
s 

Note that I has the following properties: 

i) (D •I)(p) = 0 V p ~ p,p~ 
s 

2) (D•I)(p) > 0 V p £P"-.p t' 
s s 

3) I is enabled on any marking Mon P such that 

Let a = tb 1 t ••• t cf T* and 
k+ s 

a) N(p) 2. Qb (p) If p ~P·P:, 
s s 

b) M(p) ?-. (B•I)(p) V p ~ P:. 
s 

b = \+i ... tk ~ T* be firing sequences such that 
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"k • ab. 

Define wk • nib. 

Uc must now show that wk has the properties: 

00 • 0 V pGP,Pk, 

wk is enabled on any marking Mon P such that: 

a
1

) H(p) 2. Qb (p) tf pe:-p .. p~ 
D k 

b ) H(p) 2. (B•wk)(p) ti p ~ P~ 

By I"), (D•wk)(p) = 0 V pf P•P;. 

Further, by i), (D•I)(p) = 0 V pE=-P,P~ 
s 

Since P;t=P~, we obtain 1°). 

By definition of I, 

(D•I)(p) > (B.wk)(p) ti pG P~ P_, 
s r 

which implies 

(D•w{)(p) > 0 V p (; P; P: 
By i), (D•I)(p) = 0 'v P' p,pOD. 

Thus we obtain 2#). 
s 

To obtain 3#), it is sufficient to show that w' is 
k 

enabled on the the marking Mon P, where: 

[

Qb (p) V P ~ p,pOc:1 
M(p) = k r 

( B •wk) ( p) 'ti p t= P;. 

Since for all m € N, bk s. m < s, 

Qm ( P) .. < oo ."1 p E P.~ P~-- .. ·~·- ,. 

by the construction rules of CT(N) and the weak 

transition rule, a must be enabled on M. 
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Thus there oxists n marking H' on P such that 

H(n>M' 

where 

and 

H'(p) 1 (B•(Ib))(p) V p~P~. 

By j). to show that I is enabled on M'. it suffices 

to show that 

N' {p) 1 Qb {p) V PE P;-P~ 
s 

Consider the firing sequence 

C = th Ith 2···t. 
s+ s+ s 

Either b < bk or b > bk. 
s s -

Suppose bs < bk. 

Let d = tbs+1 ••• tbk• 

Then c = da. This is true since we have not yet 

modified w~ for i < r. 

Let M be a marking on P such that 

N(p) = bs ' - £Q (p) 

(D•d)(p) + (B•w~)(p) 

Since for all m ~ N. b < m < s. s -

Q (p) < 00 
m 

VP~ p,p~ 
r 

by the construction rules for CT(N), and the 

transition rule, c is enabled on M, as is d. 

Dence there exists a marking M' on P such that 

M(d)M I. 

78 

weak 



r·urthor, b)• tho wonk transition rule, 

ti' • M 

Thus we havo 

and 

H(o>M' 

where f.i' • M. 

But, by def of CT(N): 

( D • c )( p) > 0 V p ~ pC.: p•. 
s r 

Hence 

M' ( p) 2 Qb C p) V p ~ P; P~ 
s 

and thus I is enabled on M'. 

On the other hand, suppose b > bk. 
s-

Now let d = tbk+1 ••• tb
5

• 

Then a= de. 

Since a is enabled on M, so is d. 

Thus there exists a marking Mon P such that 

M(d>M. 

Since for all m E-N, bk i m < s, 

Q ( p) < 00 'r/ p ~ p ... p~ 
m r 

by the contruction rules for CT(N) and the weak 

transition rule, we have that: 

M(p) = Qb (p) 
s 

Since c is enabled on M, and since, by the 

construction rules for CT(N) 
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(D,c)(p) > 0 V pGP~P-: 
s r 

wa hnva thnt 

M(d>R(c>M' 

nnd 

M' C p) > Qb C p) V p G P~ P~ 
8 s r 

Hence, in this case ns well, we hnvo shown thnt I is 

enabled on M'. 

Thus there exists a marking M" on P such that 

M' (I>M". 

It remains to be shown that bis enabled on N". 

By i), (D• I)( p) = 0 I,' p ~ P• p•. 
s 

Thus M"(p) = N'(p) = Q (p) V p~ P~ 
s s 

Dy definition of I and the weak transition rule, 

N"(p) L (B• b)(p) 

By definition of N and the weak transition rule, 

N"(p) L (B• b) ( p) 'o' pt.= P~ 
r 

To summarize: 

M"(p) = Q (p) ~ P ~p,p~, 
s s 

N"( p) > (B• b)(p) ti p, P~ 
- s 

By 3"), wk, and hence a, is enabled on the marking 
... 
Mon P, where: 

Thus, by the weak transition rule, bis enabled on 
" 

the marking M' on P, where 
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" " H(n>N', 
" 

and 

" 
N'(p) 2 (B•b)(p) t pt~ 

" Since H"(p) • }l'(p) Y pt p,p~ nnd both M"(p) and s " M'(p) are greater than or equal to (B•b)(p) for 

all p C P~ by the weak transition rule, b is s .. 
enabled on M" iff bis enabled on M' • 

.. 
Since we have shown that bis enabled on M', we have 

obtained 3'1). 
# We now redefine wk to equal wk, and note that 1 ), 

n n 2) & 3) are equivalent to I"), 211
) & 3"). 

This concludes our handling of Case 2. 

One point remains to be delt with in our argument for 

our recursive construction procedure for '"k. We must 

show that the recursion is not infinite. 

We do so by observing that if the construction of wk requires 

the construction of w , then P00c P00
• 

s s k 
Since P, and hence P;1! is finite, the recursion must also be 

finite. 

Thm 2.1.20: 

Let N = (P,T,B,F,K,W,M
0

) be a petri net, 

CT(N) = (T' ,lV,lE), T' = (V,E,i,tp} be the coverability 

tree asscoiated with N, 
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v f V nnd 

ly(v) • Q EN~f. 

Thon i) If Q(p) < oo V p 6 P, 

Then Q E R(N). 

ii) If there oxists pOo' P, p# ,/. ~. such thot 

Q(p) • oo <••> pf Po., 

Then there exists on infinite sequence of markings 

HI, M2••••,M1,••• 

such that 

a) Mi ( p) a Q ( p) Y p £ p, p 0.: 
b)M

1
(p)<M

2
(p)( ••• >,/pEPoo and 

c) Mi~ R(N) V'i f {1,2, ••• }. 

Pf: by construction 

Let 6 = v0e1v1 ... vn-lenvn' nc N be a directed path in T' 

such that v
0 

is the root vertex of T' and vn is a leaf. 

Recall that by Thm 2.1.18, T' must be finite. Thus every 

vertex in V must lie along some such directed path, 

lyC Vi) = Qi 'r/ if{O, ••• ,n}, 

lE(e.) = t. V i'{l, ••• ,n} and • l l 

pOOc p be the set of places such that . -l 

[ Q • ( p) = oo ( == > p E ~] 'v i € { 0, ••• , n} • 
l l 

We proceed by induction on i: 

Base step - (i = O): 
''··---·· .. ·. By definition of CT(N), 
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tho initlnl mnrking of 9. 

llcncc Qo • no f noo. 
Induction step - (i l O): 

Suppose that the Thm holds for nil Qj, 0 i j ii. 
We demonstrate that the Thm holds for 1 + l os follows -

three coses: 

Case 1 - (Pi+l • 0): 
By def of CT(N), Pi a 0. 
Hence Qi£ R(N). 

By def of CT(N), ti+l is enabled on Q1 and 

Qi(ti+l>Q1+1· 

'l'hus Qi+l t: R(N). 

Case 2 - (P1 = Pi+l ~ 0): 
By the induction hypothesis, there exists an infinite 

sequence of markings 

N
1 

,N
2

, ••• ,Mh, ••• E R(N) 

such that 

and 

" p E- p~ 
1 

h,{1,2, ••• }. 

By def of CT(N) and the weak transition rule, 

( B • t . l ) ( p) < Q . ( p) = Nh ( p) V p ~ P , P ~ 1+ - 1 1 

h,{1,2, ••• }. 

Further, since the edge multiplicity function is defined 
to be finite: 
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0-(D•ti+l )(p) <,. V pf P1• 

Thus there exists some j t-H such thnt 

(B•ti+l)(p) ! M
11 (p) ~ hE {j,j+I, ••• ), pf p~ 

Therefore, ti+l is enabled on nll M
11 such that 

h ' ( j .j+l,... ) • 

Hence we con define n sequence of markings 

Mk a Mk+j + D·ti+l V ktH, k > O. 

Since Mh(p) a Q/p) If h ~ {1,2, ••• ) , pf' p,p~ by 

definitions of CT(N) and the weak transition rule, 

we have: 

a) t·l~(p) = Qi+/P) \I pt!! p .. pi-:l' k ~N, k > O. 

Further, since 

Ml(p) < M2(p) < ••• 
we have that 

Finally, since Mh~R(N) for all h E'{l,2, ••• }, and since 

\+I is enabled on all Mh )- h ~ N, h L j, we have that: 

c) M~ fR(N) \/ k ~ {1,2, ••• } • 

Thus, if p•= poo -/: ~ we have shown that Q. 
1 i i+l ' i+ 

satisfies the Thm. 

Case 3 - (~c P~
1 

-/: 0): 
1 1+ 

By the construction rules for CT(N), there exists bf-N, 

0 i bi i, such that 

and 
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(D •r~:!+l t 11 )(p) > 0 V p~ 11;:
1
, rr: 

By Lemmn 2.1.19, we con construct o finite firing 

sequence w ~ T* such that: 

1) (D•w)(p) • 0 V pf p,pr+i • 

2) (D•w)(p) > 0 V piPi':t'~ 

3) w is enabled on any making Mon P such that 

a')_M(p)2Qb(p) Vp~P,~, 

b') N(p) > (B•w)(p) V p E ~ 

Suppose Pb=~. 

Then, by the induction hypothesis, Qb R(N). 

Since (D• w)( p) L O t p ~ P, we can define the sequence 

of markings 

Nh = Qb + h • D • w I,' h ~ { 1, 2, • • • } 

where 

c) Mh f R ( N) V h f { 1, 2, • • • } 

holds by construction. 

Since (D•w)(p) = 0 

a) Mh(p) = Qb(p) = Qi+l(p) ',/ p!-P,pi:l' 

h~{l,2, ••• }. 

Since (D•w)(p) > 0 t(p~P 00 ,p°"= P 00 we have 
i+l b i+l' 

b) M/p) < N2(p) < ••• ~pEP:
1

. 

On the other hand, suppose Pb~~. 

Then, by the induction hypothesis, there exists an 

infinite sequence of markings 
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whore 

n") M
11

(p) • Qb(p) V p~ p,p:: 

b") H
1 (p) < H

2(p) < • • • ~ pe P:' nnd 

c") HhE R(N) Vhf'(l,2, ••. J. 
Since the ore weighting function is defined to be finito, 

ond since w is finite, there exists K f H such that 

K - {B •w)( p) > 0 t/ p E ~ 

Define the function f:H-->N such that f(r) is equal to 

the least integer h such that 

Mb { p) 1 2 • r · K V p f P:. 

Note that by b"), f must be defined for all r £ H. 

Then we can define a sequence of markings 

M; = Mf{r) 't/ rE {1,2, ••• ). 

Since for all r' ,r" ~ N, r' < r", there exists h' ,h"~ N, 

h' < h", such that 

M;, = Mh' 
we have 

and 

a) N;(p) = Qb(p) ~ p~ P•P:: 

b) Mi(p) < M;(p) < ••• \fpfP: and 

c) M't-R(N) "lr~{l,2, ... }. r 
By 3), w concatinated with itself 2r times is enabled 

on M' for all r f- { 1, 2, • • • ) • r 

Thus we can define the infinite sequence of markings 

on P: 

M" = M' + r(D•w) r r 
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where 

c ) H" f R ( N) ~ r i ( l , 2 , • • • ) r 
holds by construction. 

Since (D•w)(p) • 0 for oll p € P• P7+
1 

wa hove 

a) M;(p) a Qb(p) • Qi+l(p) V pi P,P;:1• 
Since (D•w)(p) > 0 for all pf P:

1
,P;-and 

M;(p) l. 2r(B•w)(p) .. p£P;, r &(1,2, ••• ), 

we have 

b) M"(p) < M"(p) < 1 2 ... 
Thus if Pie Pi+l ~ 0, we have shown that Qi+l 

satisfies the Thm. 

By the construction rules for CT(N), cases 1), 2) & 3) are 
the only possible cases in our induction. 

Thus our induction is complete. 

Thm 2.1.21: 

Let N = (P,T,B,F,K,W,M
0

) be a petri net, 

CT(N) = (T' ,lV,lE), T' = (V,E,i,f), be the coverability 
tree associated with N and 

M:P-->N be a marking on P. 

Then Mf R(N) <==> there· exists a vertex v '-V such that lyCv) = Q 
and a set P"°S P such that 

Q( p) = Ct,(==) p 6 pCIO 

and 

M(p) = Q(p) \f p' p, p«'. 
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Pf: (••>) by construction 

Suppose n f R(N). 

Thon thoro exists n firing soqucnco 

w • t
1

t
2 

••• tnGT*, n~H 

such that 

no<t:1>M1<t2>N2···Hn-1Ct/l\. H 

or, more simply, 

N
0

(w>M. 

Proof follows by induction on Mi, 0 iii n. 

Base step: 

By definition of CT(N), the root node r is labeled by N
0

, 

the initial marking of N. 

Therefore the Thm holds for N
0

• 

Induction step: 

Suppose that we have proved the result for M , if!. N, i _> O. i 
If i = n, then we are done. 

If i < n, we show that the Thm holds for i + I as follows: 

Since the Thm holds for M., there exists a vertex v.~ V 1 1 

such that 1V(v
1
.) = Q. and a set pOdcp such that: 1 i -

Q. ( p) = 00 <==> p' p~ 
1 1 

and 

M. ( p) = Q. ( p) " p ~ P• P~ 1 1 1 

We show that the same holds for M 
1

• We do so in the i+ 
following cases: 

Case 1 - (v. is not a leaf): 
1 
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Sinco Q1 i :\, tf+l ls onnblod on Q
1

• 

Thus, by the construction rulos for CT(:l), thoro oxlsts 

nn odno ci+l ~ £, n virtox v i+l f V and n sot Pt":.
1 

£ P 

such that: 

• V ' i 

lE(ei+l) • ti+l' 

4'1(ci+l) • vi+l 

1v<v1+1> = Qi+l 

Qi+l(p) = Q/p) + (D·ti+l)(p) -,pf!P"P1°:1 

where p ~ P t:.1 <=a> Qi+l (p) = •. Note also that by 

definition of CT(N), P~f P 
1
':i. 

Since the Thm holds for N1 , since l\+i "' M
1 

+ D· ti+l 

and since P~c P
1
~

1 
f P, we hove that 

.l - + 
1\+1 (p) = Qi+l (p) tf p ~ p, p 1°:1 • 

Case 2 - (v. is a leaf): 
1 

(<==) 

By the construction rules for CT(N), either 

1) There exists no t f. T such that t is enabled on Qi 

or 

2) There exists a virtex v'E Von the directed path 

from r to vi such that lV(v') = Qi. 

Since t. 1 is enabled on M and Q. > N., 2) must hold. 
l+ i 1 - l 

Thus we can set v. equal to v' without changing Q .• 
l l 

We do so and proceed as in Case 1. 

Follows directly from Thm 2.1.20. 
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DoC 2.J.22 Doundod and Unboundod on U: 

Lot Zl • (P,T,D,F,X,ll,H
0

) ban petri not, 

P'°l'• 

Thon p in snid to be bounded on N if£ thoro exists o KG- H such 

that 

H(p) ! K V H ~ R(!l). 

If there is no such K, pis said to be unbounded on N. 

Thm 2.1.23: 

Let N = (P,T,D,F,K,W,M
0

) be a petri net, 

CT(N).,. (T',lv,lE), T' = (V,E,c',f) be the coverability 

tree associated with N and 

P' P. 

Then p is unbounded on N iff there exists a vertex v EV such that 

lV(v) = Q where Q{p) = •. 

Pf: (==>) by contradiction 

Suppose that: 

pis unbounded on N and 

There exists no vertex v ~V such that lV(v) = Q and 

Q(p) = oo. 

Since pis unbounded on N, there exists an infinite sequence 

markings M.~ R(N), i f{l,2, ... J, such that 
1 

Nl(p) < M2(p) < ••• < Mi(p) < ••• • 
By Thm 2.1.21, for all such M., there exists v ~ V such that 

1 i 
lV(v.) = Q. and M. < Q .• 

1 1 1 - 1 
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Dy hypothesis, Q(p) < ao Vi~ (1,2, ••• ). 

Thus, ngain by Thm 2.1.21, Q
1
(p) • H/J>) V if {1,2, ••• }. 

Let Pf~ P be u subset of P such that 

Q/p'). •<••> p'tP~ 

Since H
1
(p) < H

2
(p) < ••• < M

1
(p) < ••• 

we have that 

(Q
1

j;JvfV ~((lyCv) a Q
1

)A(Q
1

(p 1
) = N

1
(p') 

/\(p Pi))} 

is an infinite set. 

llence T', and thus CT(N), must be infinite. 

But this contradicts Thm 2.1.18. 

(<==) 

Follows directly from Thm 2.1.20. 

Return now to CT(N
2

) in Fig 2-5. By Thm 2.1.23, p
3 

is bounded 
on N

2
• Further, by Thm 2.1.21, M(p

3
) i 1 for all M R(N

2
). Thus 

our solution to problem #2 meets the first requirement. 
We demonstrate that N

2 
meets the second requirement as follows: 

By the weak transition rule, t
5 

is enabled on any marking M R(N
2

) 
such that M(p

3
) > O. Since it is given that any process which 

obtains control of the resource will relinquish it eventually, t
5 

must fire eventually and yield some marking M' on P such that 
M'(p

4
) = 1 and M'(p

3
) = O. Since N' l M

0 
and since there exists 

w ET* such that M
0

(w>M, we have N' (w>. Thus another process can 
obtain control Of the iesource. Since the above argument can be 
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rapontod tndoCinttoly, we hovo obtained tho socond condition. 

Tho dovolopmont of tho covorabUity grnph which follows, will 

bo of use in scnmont 2.2. 

Def 2.1.24 Weak Covorobility Grnph: 

Let N • (P,T,B,1 ... ,K,W,M
0

) be a petri net and 

CT(N) • (T',lv,lE)' T' • (V',E',i',f') be the weak 

covernbility tree associated with N. 

Then the weak coverability graph is n system consisting of the 

directed graph 

DI 
a ( V, E, f, f) 

and a labeling function l:E-->T defined as follows. 

Let V = {QfQF N~f, 3 v'G V' r lyCv') = Q}. 

For each e' E E' such that 1/ ~·' ( e')) = Q, IE ( e ') = t E T, 

We write 

1 (tl'(e')) = Q' and Q,Q'&-V, introduce a new edge e~E V 

such that: 

'C(e) = Q, 

l(e) = t and 

f(e) = Q' • 

Note that the labeling function 1:E-->T need not be 

distinct - i.e. for all e
1

,e
2

f E, l(e
1

) = l(e
2

) =#> 
e
1 

= e
2

• However, (1'(e
1

) = 1'(e
2

))A (4'(e
1

) =f(e
2
)) 

A ( 1 ( e 
1 

) = 1 ( e 
2

) ) == > e 
1 

= e 
2 

• 

CG(N) = (D' ,1), D = (V,E,1',t/) 
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to donoto tho 11onk covornbUity graph ossocintod with N. 

Joto that wo could olao do!ino tho strong covorobility graph by 

substituting tho strong covorobUity troo 0£ ~ for CT(lJ). 

CC(N
2) in Fig. 2-6 is offered ns on example of u covcrobility 

graph. As will be shown in the following theorems, we con obtain 

much the some information from the covcrability grnph as we can 

from the coverubility tree. 

Fig 2-6 The Coverability Graph of N
2 

CG(N
2
): 

Thm 2.1. 25: 

Let N = (P,T,B,F,K,W,M
0

) be a petri net, 
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CC(?;)• (D 1 ,l), I>'• (V,£,1',f>) ba tho waok covornbility 

graph osaociotad with U, 

Qi ,Qj E' V 

P7,Pj'! P be subsets of P such thnt 

Q1 ( p) • OIi <••> pi P7 
ond 

Q/p) a 00(••> p E P7' 
Then I) If cfE, f

0

(e) • Q
1

, ct'(c) • Qj and l(o) • t~T, 

Then a) Q/p) 2. n t(p) V p E P, 

Pf: 

b) pCIDc pQ:» and 
i - j 

c) p G P•Pj -p E Pj, 

2) Qi€ V ==> for all k f N there exists Mk f R(N) such that 

Nk(p) = Qi (p) ~ pf p .. p~ and 

Nk ( p) 2. k r pf P~ 

3) A place p £ P is unbounded on N iff there exists a Q EV 

such that Q(p) = oo. 

1) Follows directly from the definitions of CT(N) and CG(N). 

2) Follows directly from Thms 2.1.20 & 2.1.21. 

3) Follows directly from Thm 2.1.23. 

Thm 2.1.26: 

Let N = (P,T,D,F,K,W,M
0

) be a petri net, 

( ( I I 'A}, CG N) = D ,1), D = (V,E,t,~1 be the weak coverability 
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graph ossociotod with H and 
wt T~ lnbel o loop in D'. 

Then there exists a marking N~ R(N) such that H{w>. 
Pf: 

For each Q
1 

f V, define P~~ P such that 

Qi C P > • '° < •• > P , r7-
Lc t L • Q

0
e
1
Q
1 ••• Qn-lenQn be a loop in D' where 

Qo. Qn' 
l{cj) ... tj V jf(l,2, ••• ,n} and 

By Thm 2.1.25 - 2), for all k€N there exists Hlc~R(N) such 
that 

l\(p) = Q
0

(p) V p,p,p~ and 

Mk(p) l k 'i pE- p~ 

By Thm 2.1.25 - 1), P
0 

= P
1 

= ••• = Pn. 
Suppose P

0 
= ~. then by definitions of CT(N) and CG(N), 

Q.fR(N) \fi~{O,l, ••• ,n) and 1 

Q. 
1 

( t . >Q
1 

'rl i E- { 1 , 2 , ••• , n } • 1- 1 

Dence Q
0 

= M(w>M = Qn' and we are done. 
Now Suppose P

0 
I¢. 

Choose K f N such that 

K > ( B • w )( p ) '</ p E- P~. 

By Thm 2.1.25 - 2) there exists M = R = R such that 0 n 
M(p) = Q

0
(p) 'V p~P'-P;, 

M(p) l K 2. (B· w)(p) If pf P~ and 
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HC R(N). 

Define A
1 

• A
0 + D(t1 ••• ti) V iE (1,2, ••• ,n). 

By definition of CT(N) and CG(H) and tho weak transition 
rule, 

Ri(p) • Qi(p) ~ pf p,p~ 

Ai(p) 2 (B•(ti+l···tn))(p) \Ip fP; and 
A
1 
~ R(H) 

for all i ~co,1, ••• ,n). 

Thus ti+l is enabled on Ai for all i e::-co,1, ••• ,n). 
Therefore R

0 •Rn• M(w>. 

Segment 2.2 - Petri Nets with Regular Firing Languages: 

In this segment, we show that petri nets with regular languages 
exist, and that for a giv_en petri net N, it is decidable whether 
or not the firing language of N is regular. Since any actual 
problem in concurrency would be too unwieldy, we restrict 
ourselves to small examples chosen to illustrate specific points. 

This section begins with some definitions of boundedness 
conditions for sets of places and results concerning them and 
their relationship with the weak coverability tree. This 
relationship is used to demonstrate the decidability of the 
regularity of the the firing language of a petri net. Thus if we 
seem to go far afield at first, the reader is asked to persevere 
as all is tied together in Thm 2.2.1. This said, we begin. 
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Dof 2.2.1 Characteristic Function of a Subset: 

Let P be a set, 

P'~ P be a subset of P. 

Then we define the characteristic function of P', written UP'' as 
follows: 

Note that Up, can also be thought of as the characteristic vector 
of P'. 

Def 2.2.2 Boundedness for Sets: 

Let Na (P,T,B,F,K,W,M
0

) be a petri net, 

M:P-->N be a marking on P, 

P' SP be a set of places and 

Up,:P-->N be the characteristic function of P'. 
Then a) P' is bounded for M iff there exists k, If such that for 

each M'6 (M>, 

M' (p) < k for some p~ P'. 

b) P' is uniformly bounded for M iff there exists k-r N such 
that for each M' G (M>, 

M'(p) < k tfp~P'. 

c) P' is bounded below for M iff there exists k F N such that 
for each M' ~ (M + n·Up,>, n ~ N, 

M'(p) 2. M(p) + n - k 

for some p €P'. 
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d) P' is uniformly bounded balov for H iff there exists k f N 

such that for each H', (H + n•Up,>, n EI, 

H'(p) 2 M(p) + n - k Vp~P'. 

Thm 2.2.3: 

Let N • (P,T,B,F,K,W,M
0

) be a petri net, 

M:P~)I be a marking on P and 

P' ~ P be a set of places. 

Then a) P' uniformly bounded for M ••> P' is bounded for M. 

b) P' uniformly bounded below for M ••> P' is bounded below 

for M. 

c) P' uniformly bounded for M <=•> for all p ~ P', {p} is 

bounded for M. 

d) P' uniformly bounded below for M •=> for all p~ P', {p} 

is bounded below for M. 

Pf: Follows directly from Def 2.2.2. 

Fig 2-7 The petri net N': 
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Tho oaaymitry of d) may bothor tho roodor at first, hovover a 
glonco at tho petri net H' in Fig 2-7 that vhilo both (p1) and 
(p

2
) are bounded bolov for tho initial marking, (p

1,p
2
J is not 

even bounded below for the initial marking, much leas uniformly 
bounded below. 

Def 2.2.4 Unbounded With Context M: 

Let N • (P,T,B,F,K,W,M
0

) be a petri net, 

M':P-->1 be a marking on P and 

P' ! P be a non-empty set of places. 

Then P' is said to be unbounded with context M' if£ 
a) M' ( p) = 0 v' p E"P' • 

b) For all k f I there exists M" ~ R(N) such that 

1) M"(p) = M'(p) ti p(P'P' and 

2) M" ( p) l k 'ti p £ P ' • 

Def 2.2.5 Maximal: 

Let N = (P,T,B,F,K,W,M
0

) be a petri net, 

~be the set of couples (P',M'), P'f P, M':P-->N a marking on 
P, such that P' is unbounded with context M' and 

(P',M'), (P",M")l";x' 

Define the partial ordering relationship <t!- on ~by 
(P' ,M') ~ (P" ,M") 

iff 

1) P'~ P" and 
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2) H'(p) .S. H"(p) ~ p C P-P". 
Let (P',H')lf • ((P",H")f(P",H")i7,(P',H')s:E(P",H")J. 
We say that (P',H') is maximal or maximally unbounded vith 

context H' if£ 

(P',M')=E' • {(P',M')) 

(i.e. ( (P' ,M'), (P" ,M")f:'7')" ((P' ,M') ~(P" ,M")) ••> 
P' • P" and M' • M".). 

Thm 2.2.6: 

Let N • (P,T,B,F,K,W,M
0

) be a petri net, 

7 be defined as in Def 2.2.5 and 

(Pl,Ml) ( ~. 

Then there exists (P m'Mm) cf (P 1 ,M
1) ~ such that (P m'Mm) is maximal. 

Pf: by contradiction 

Suppose that (P 
1

,M
1

) ~ contains no maximal element. 
Let (P',M')E(P

1
,M

1
)1'. 

Since P
1

~ P'~ P and JPI < CIC), the set 

P = {P'j(P',M')E(P
1

,M
1
)~} 

must be finite. Further, there must exist at least one P* l P 
such that 

{P'IP'f P, P*~P'} = {P*J. 

Consider the subset of (P
1

,M
1
)~ defined as follows: 

S = { ( P ' , M' ) I ( P ' , M ' ) ~ (Pl , Ml ) =t: , P ' = P*} • 
Note that by our choice of P*, if 

(P*,M') ES 
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is maximal in S, it is also maximal in (P1,H1)~. 
By hypothesis, (P

1
,M

1
)11(: has no maximal element. 

Thus S has no maximal element. 
Hence for all (P*,M') ~ S, there exists (P*,H"), S, M' < M" such 

that 

(P* ,M') ~ (P* ,M"). 
Therefore Sis infinite, and we can define an infinite sequence 

of couples 

(P*,Mi)i£ N'= S ti if N 
with the property 

M1 < Mi+l 't/ ii I. 
Since IP I < IO, there exists ~ E p, P* such that 

l(tlt,N, M/~) < Mi 1(~)}1 =00. A + 
Define P = P*u(PIPGP'P*, l{ijie:-N, M/~) < Mi+l<MJI =oo}. 
Since 

A l{iliGN, M/p) < Mi+l(p), pf P'-P)I < OCJ, 
there exists j EN such that 

A 

M/p) = Mi+l (p) V p! p,p, i ~N, i 2. j. 
A 

Define • £0 't/ p E P M(p) = 
A M/:> A V pE: p P. 

Consider the pair (P,M). 
A 

A We now show that Pis unbounded with context M, and hence A A 

(P ,M)E-''Y. 

" " By construction, M(p) = 0 \;'pfP. 

Let k ~ N. 
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.. 
By construction of P,P•, there exists h ( N, h > j such that .. 

Mh ( p) 2. k 't/ p i P' P*. 

Since (P*,Mh) e::-s ~(P
1 

,M
1
)~! ~. there exists R ~R(N) such that 

R{p) • Mh{p) If p~ p .. p• and 

A(p) 2. k '1pE P*. .. .. 
But A{p) .. Mh (p) • M(p) 'fl p, P"P, .. 

A(p) • Mh(p) 2. k ',/ p €'P•P* and 

A(p) 2. k 'f/ p E= P*. 
A 

A A A Thus P is unbounded with context M and (P ,M) f :,7: .... 
Since (P 

1
,M

1
) ~ (P,M), .. .. ~ 

(P,M)€ (P 
1

,M
1 

)"" • .. 
But P*C P, a contradiction. 

Hence (P
1

,M
1
)~ contains a maximal element. 

Def 2.2.7 Maximal Vertex of a Coverability Graph: 

Let N = (P,T,B,F,K,W.M
0

) be a petri net, 

CG(N) = (D' ,1), D' = (V ,E, r',tf'), be the weak coverability 
graph associated with N and 

Q c: V • 

Then Q is said to be a Maximal vertex of CG(N) iff for all Q'~ V, 
Q' 2. Q ==> Q' = Q. 

Thm 2.2.8: 
··-··-- .. ~--~ 

Let N = (P,T,B,F,K,W,M
0

) be a petri net, 

CG(N) = (D' ,1), D' = (V,E,'f'·,'f) be the weak coverability graph 
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associated with N, 

P1! P be a non-empty set of places and 

H1:P~>I be a marking on P. 

Then P1 is maximally unbounded with context H1 iff there exists a 

maximal vertex Q, V in CG(N) such that 

loo 
Q(p). 

Ml(p) 

Pf: (->) 

Suppose P1 is unbounded with context M1 and (P
1,M

1) is maximal. 

Then for all k 'N there exists M' ~ R(N) such that 

a) M'(p) "'M1(p) V p ~P·P
1 and 

b)M'(p)2_k 'igpEP
1

• 

Since CG(N) is finite, we can find a constant h €-H such that 

Q(p) > h <==> Q(p) = oO t7' Q~V, p&:P. 

Choose k > h and let M' ~ R(N) be defined as above. 

Let CT(N) = (T'ly,,li,), T' = (V',E',i',C,) be the weak 

coverability tree associated with N. 

By Thm 2.1.21, M'€ R(N) ==> there exists a vertex v CV' such 

that lyCv) = Q, and a set P: P such that 

Q(p) = M'(p) V p <:= P~P and 

Q(p) = ~ ~ p£ ii. 
By the construction of CG(N), Q , V. 

By our choice of k, P 
1 
~ P. 

We must now show that P = P: 
1 

Suppose P
1 

I: P. 
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Thon by part two of Thm 2.l.2S, for all j f N thoro exists 
Hj t: R(N) such that: 

M/p) • Q(p) I>' p( p,p 

H/P> l j If p~P 

or, to put it more simply, Pis unbounded with context M, 
where_ [Q(p) b'p£p .. p 

M(p) • -
0 \/pE P. 

Note that (P 
1

,H
1

) ~ (P,M). 
But, by hypothesis, (P

1,M
1

) is maximal. 
Hence Pa P

1
• 

It remains to be shown that Q is a maximal vertex in CG(N). We 
do so by contradiction: 

" " Suppose there exists Q Go V such that Q > Q. 
" Define P such that 

" " Q(p) = oo <==> p 6: P. 
" " Define: " [Q(p) \1 pl p,p M(p) = " 
0 \fpEP. 

Again, by part two of Thm 2.1.15, for all i~ N there exists 
Mi f R(N) such that 

" " Mi (p) = M(p) ~ pf p,p 
" 

" " 

M, (p) > i 
l. -

'i pf p 

which is to say that Pis unbounded with context M. 
By hypothesis, either 

" P = pep 
1 

or 
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" A 

There exists PE'p,p such thot H(p) > M
1

(p). 
A A 

In either cose, (P
1

,M
1
)~(P ,M). 

But this contradicts (P1,M1) maximal. 

Hence ij is o maximal vertex of CG(N). 
(<••) 

Suppose Q is a maximal vertex in CG(N). 
Let P 

1 
€. P be a set of places such that 

Q(p) = CIC> (=a) p ~pl• 

Define: CQ(p) \:fp~P,P1 Ml(p).. 0 
VP<=-Pl. 

Again, by part two of Thm 2.1.25, P
1 is unbounded with 

context M
1

• 

It remains to be shown that (P
1

,M
1

) is maximal. 
By Thm 2.2.6, (P

1
,M

1
)~ contains a maximal couple (Pm,Mm). 

By the first half of this Thm, there exists Q ~ V such that 
Q (p) = M (p) \f P' P\P , m m m 
Qm ( p) = o<S '1' p f pm 

and Q is a maximal vertex in CG(N). m 

m 

Since P
1
= P and M (p) > M

1
(p) \,'p!P,P , we have Q > Q. m m - m m-

By hypothesis, Q is a maximal vertex in CG(N), hence 
Q = Q • 

m 
Thus P = P and M = M. 1 m 1 m 
Therefore (P

1
,M

1
) is maximal. 
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Th111 2.2.9: 

Let N • (P,T,B,F,K,W,H
0

) be o petri net ond 

CG(N) • (D',l), D' • (V,E,~~()) be the weak coverability graph 
associated with N. 

Then there exists P 
1 
~ P, P 

1 
/. 0 and M

1 
~NIP( such that 

I) P1 is maximally unbounded with context M1 and 

2) P1 is not uniformly bounded below for M1 
if f there exists a maximal vertex Q ~ V, a loop A in CG(N) such 
that l(o) = w T*, and ~~P

1 
such that 

3) ~ has initial and final vertex Q, 
4) D(~,w) < 0 and 

5) Q(~) = "°· 
Pf: (==>) 

Suppose (P
1

,M
1

) is maximal and P
1 

is not uniformly bounded 
below for M

1
• 

By Thm 2.2.8, there exists a maximal vertex Q~ V such that: 

Q(p) = { 00 

ZM1 (p) 

Since P 
1 

is not uniformly bounded below for M
1

, for all k f N 

there exists nk~N, M~~(M
1 + Up· nk>, wk~T* and pkfP

1 1 
such that 

(M1 + Up • nk )( wk >M~ and 
1 

M~{pk) < Ml{pk) + nk - k. 

Thus for all k~N, D(pk,wk) < -k. 

Since P 
1 is finite, there exists ~ f P 

1 
such that the set 
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,\ • ( k I k E N. pk • ~) 

is infinite. 

Let d • - Hin{D(p,t)lpE-P, t~T}. 
Noto thot tho number of tokens thot con be removed from any one 

place by the firing of any one transition is bounded by d. A A 
Choose k ,N such that k > d•IVI. 

A 

By our choice of k, we can devide wk into IVI firing sequences 
A 

wk a vlv2"""vlVI 
such that D(~,v

1
) < 0 for all i ~N, 1 iii IVI. 

Q(p) = 
Since coo 'rJ pf P 1 

M/p) V pf p,p l' 
CG(N) must contain a path~ starting at Q and labeled by wk. 

Since l(A) =wk= v
1

v
2 

••• vlVI' we can devide ~ into IVI 
segments such that 

~ = A1A2· •• AIVI 
and 

1 (bi) = Vi '7 i c; N' 1 i i .s. IV 1. 
For all iEK, 1 .s, ii IVI let 

Qi be the initial vertex of o
1 and 

Qi be the final vertex of Ai. 
A 

By our choice of k, there exists j,j'~N, 1 i j i j' .s, IVI 
such that 

Qj = Qj, and 

D(~, v .vj 1 ••• v.,) < O. " J + J 
Define Q = Q = Q ,, j j 
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A ya 'J'J+l''''J'' 
If Q is moximnl, wo oro dono. 

A A A If not, thore odsts o amximnl Q', V such thot Q' 2 Q. 
A A 

Since Q l Q, by the construction of CG(N), there must exist o 
A circuit in CG(N), labeled by v, which storts ond ends in Q'. 

Since D(~,v) < 0, we hove proved the first half of the Thm. 
(<••) 

Suppose there exists a maximal vertex Q , V, a loop a in CG(N) 
such that 1(~) • w,T• and ~ E=P such that 

1) A hos initial and final vertex Q, 

2) D(~,w) < 0 and 

3) Q(~) ... oo. 

Let P
1 

= {pjp f P, Q(p) = oo} and 

Ml(p) = 
(

0 11pc.=Pl 

Q(p) l>'"p ,P •P
1

• 

By Thm 2.2.8, P
1 

is maximally unbounded with context M
1 

By the construction of CG(N), D(~,w) < 0 ==> Q(') = OO==> 
~ E P 

1
, as otherwise ~ could not be a loop. 

It remains to be shown that P
1 

is not uniformly bounded below 
for M1• 

For all k ! N, let 

nk = (k + l)·Max{B(p,w) IP~ P
1

} and 
k+l wk= w = w concatinated with itself k + 1 times. 

Then (M1 +UP, nk)(wk>. 
1 

Hence for all k f N there exists M~ G (M
1 

+ Up , nk> such that 
1 
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(H1 + Up • nk)(wk>Hk. 
1 

Sinco D(~,w) < 0, 

D(~,vk) < -k 'r/ k I' N. 

Thus for all k 4F N 

H~CP> < H1CP> + "k - k. 
Ucnce P1 is not uniformly bounded below for H1• 

Def 2.2.10 Language of Firing Sequences: 
Let N • (P,T,B,F,K,W,M

0) be o petri net and 
F(N) • (wlw~T*, H

0(w>}. 

Then F(N) is said to be the language of firing sequences of N, or 
the firing language of N. 

Def 2.2.11 Regular Petri Net: 

A petri net N is said to be regular iff F(N) is regular. 

Thm 2.2.12: 

A Petri Net N = (P,T,B,F,K,W,M
0

) is regular if£ there exists kf-N 
such that for all M R(N), M' !- (M> and p F P, 

M'(p) 2. M(p) - k. 

Pf: (<==) by construction 

Suppose N = (P,T,B,F,K,W,M
0) is a petri net such that there 

exists k ~ lf such that for all M (- R(N), M' ~ (M> and pt!- P, 
M'(p) 2. M{p) - k. 

We must show that F(N) is a regular language. We shall do so by 

109 



conntructlng o flnito rocognitlon nutoamton o.' which 
rocognizoa F(N). 

Lot c • k + Hox{M
0
(p)fpf P) + Mox(B(p,t)fp~P, tE TJ. 

Wo dofino "-' • (D',A',l',S',F'), D' • (V',E',.i',q"') as 
follows: 

Let V' • (HfHGIIIPI, H(p) i c V pl'P) u(v
8

} 

where v is a garbage vertex, 8 
S' • (M

0
), 

F' • V' \ ( v J and 
8 

A'• T. 

For each M,M'fF', t"T such that 

M(p) 2. B(p,t) V p ~p 

and 

M' ( p) = Min { c, M ( p) + D( p, t)} If p ~ P, 

include an edge e in E' such that 

r'' (e) = M, 

1' ( e) = t and 

'f'(e) = M'. 

For all M EF' and t ~ T such that there exists p ( P such 
that 

M(p) < B(p,t), 

include an edge e in E' such that 

-<'(e) = M, 

l'(e) = t and 

<f'(e) = V • g 
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llnvtna doCinod A', vo •uat now sbov thnt 

VI F(H) <••> V' L(ct' ). 

Suppoao thnt v ~ F(H). 

Let n oqunl the nu•ber of tronaitlons in w. 

Thon we con write 

W • t 1t 2 ••• tn• 

Further, for all iG N, i ,! n, there exists Mi~ R(N) such that 

"o<t1>H1<t2>H2···"n-l(tn>Mn. 

We now construct inductively an admissable path A in a' such 

that 

1 '(A) • w. 

Base step: 

Since S' • (M} F, the directed path of length zero 0 

Ao= Mo 

is admissable in Q '. 

Since 

1 '(4
0

) = A 

the nul firing sequence is accepted by Gt '. 

Induction step: 

Suppose that for i~N, i _! n, there exists an admissable 

path Ai in a.' such that 

Ai= M~e1M1 ... M~-leiM~ 

where l'(~i) = l'(e
1
)l'(e

2
) ••• l'(ei). 

If i = n, 1'(4.) =wand we are done. 
l. 

If i < n, we construct ~i+l via one of the following two 
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cosos: 

Caso 1 - (Hj • HJ I/ j '- I, j ~ i): 

Since H1(ti+l>Hi+l' by the construction of Ct', 

there exists ei+ll B' and Ml+I' F' such that . 

Hence 

1 '(ei+l) • "1' 
l'(ei+l) • ti+l' 

q"(ei+l) • "1+1 end 

M~+l (p) • Hin ( c, M1(p) + D(p, ti+l) J fl pf P 

• Min(c, Mi+l (p)J V pl- P. 

40
1+1 = Moe1Mie2M2•••M:lei+IMi+l 

is an admissable path in q' such that 

l'(Ai+l) = l'(e1)1'(e2) ••• l'(ei+l) 

·= tl t2·· .ti+1 • 

Case 2 - (there exists j G- H, 1 .i j .i i and ~ & P such 

that Mj(~) > Mj(p) = c): 

If there is more than one such j, choose the least. 

Let v = tj+ltj+2 ••• ti. 

Since Mi~ (Mj>, by hypothesis, 

Mi(~) 2. Mj(~) - k. 

Hence D(v,~) > -k. 

Since Mjej+l • •• e1M1 is a path in a.' and 

l'(ej+I) ••• l'(e1) = v, by construction of Q' we 

have that 
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Thus Mi(J) l C - k 

l Hax(B(t ,p) Ip IP, t'° T) + Hox{M0 (p) Ip~ P) > O. 
Honea ti+l is enoblod on H~ for all ~ t:- P such thot 

there oxists j ~ I, 0 i j i i such that 

Mj(p) > Mj(P) • c. 
For all p ,p such that for all j tN, 0 i j ii, 

Mj(p) • Hj(p) we have that 

Mi(p) • Mi(p). 

Since Mi(ti+l>Mi+l' ti+l is enabled on M1 for all 
such p. 

Thus ti+l is enabled on M1. 
Therefore, by the construction of 't', there exists 

an edge ei+l€ E' and Mi+l~ F' such that 

t '(ei+l) .. Mi, 

l'(ei+l) = ti+l' 

q'.>'(ei+l) = Mi+l and 

Mi+l (p) = Min(c, Mi(p) + D(p,ti+l)} V p €P. 
Thus we can construct 

A = ~ e M' i+l i i+l i+l 
M' ' M' M' = oe1m1··· iei+l i+l 

where l'(Ai+l) = l'(Ai)l'(ei+l) 

= l'(e
1
)1'(e

2
) ••• l'(e

1
)1'(e

1+1) 

= t1t2···t1ti+l 
and A 

1 
is an admissable path in Gt'. i+ 

Therefore w,F(N) ==> w6"L(~'). 
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Nov auppo10 that v, L(c:t'). 

Lat n oqual tho nuabor of trnnsltlon1 Inv. 
Thon vo can vrtto 

V • t
1
t
2 
••• t

0
• 

Since v fL(c:t'). thoro odats an ad11issablo path 

6 • HOelHje2H2•••H;_lenH; 
such that 

l'(e1 ) • ti Viii. 1 .s, i .s_ n. 

M' ~ S' and 0 

MO• MO. 
We now show inductively that w is enabled on M

0
• 

Base step: 

Since M0 • M0, by the construction of Q', the firing 

sequence 

WI .. tl 

is enabled on M
0

, and thus there exists an M
1 

f R(N) 

such that 

Mo(w1>M1. 
Induction step: 

Suppose that for i~H, 0 iii n, the firing sequence 

wi = tlt2 ... ti 

is enabled on M
0

, and thus for all j lN, 0 i i i n 

there exists Mj { R(N) such that 

MO(tl>Ml(t2>M2° 00 Mi-l(ti>Mi. 
If i = n, we are done. 
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If 1 < n, va must shov that thora exists Hi+l' R(H) 
such that 

Hi(ti+l>H1+1• 
By construction of O.', 

Hj+l(p) • Min(c, Hj(p) + D(p,tj+l)) 
for all p6P, jfN, 0 i j < n. 

Thus Mj l Mj for all j{N, 0 i j < n. 
Dy the weak transition rule, 

((Mil Mi) i\ (Mi(ti+l>)) ••> M/ti+l>. 
Hence there exists Mi+l { R(N) such that 

Mi(ti+l>Mi+l 
which concludes our induction. 

Hence w, L( ~') ==> w f F(N). 
Combining the above with the previous result, we obtain 

w ,F(N) <==> w f L(4.'). 
Since F(N) is recognized by a' and ct.' is a finite recognition automaton, by Thm 1.2.10, F(N) is a regular language. 

(==>) by contradiction 
Suppose that N = (P,T,B,F,K,W,M

0
) is a petri net such that 

F(N) is a regular language. We must show that there exists 
k 6 N such that for all M & R(N), M', (M> and p~ P, 

M'(p) l M(p) - k. 
Proof follows by contradiction. 
Suppose that for all kf' N there exists Mc;:R(N), M' ~ (M> and 

~ ~ P such that 
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H'(~) < M(~) - k. 

Since F(N) is regular, by Thm 1.2.10, thore exists a finite 

recognition automaton 

Q.' • (D',A',1',S',F'), D' • (V',E',.i',f") 

such that F(N) • L( 11'). 

Let k • fV'f•(-Min(D(p,t)fpE P, t~TJ). 

Then, by hypothesis, there exist firing sequences v, w, T*, 

markings M,M' f R(N) and ~ ~ P such that 

M0(v>M(w>M', 

M(M > k and 

M'(p) < M(~) - k. 

Further there must exist two paths~ and~ in Gl' such 
V W 

that 

l'(o)=v, 
V 

l' ,~ ) = w 
w 

and a o exists and is an admissable path in a'. i.e. V W 

I '(a ~) = vw ,L(Q.') = F(N). 
V W 

By our choice of k, w can be devided into at least /V'/ shorter 

firing sequences such that 

w = "'1 "'2· • .w/V' / 

where D(~,wi) < 0 for all i~lf, Iii i /V'/. 

Similarly, we can devide ~ into /V'/ subpaths such that 
w 

~ = 0 A •••A 
w w1 w2 w/V'/ 

where 1' (A ) = w b' i ;; ff, I i i i. / V' / • 
wi i 

Let M~ ,W' i' V, i ~ N, I < i < / V' / be respectively the initial 
]. ]. - -

116 



and final vertices of A • 
"1 

Thus H1 • Hi+l for au 1,1, l ii< fV'I, 
Hi is the initial vertex of Qw and 

Mjv'I is the final vertex of .t.av. 

Since we have defined IV'I + 1 vertices as initial and/or 
final vertices of the A , there must exist j,j'~ I, 

"1 
1 i j i j' i IV'I such that 

Mj • Mj,. 
Let r • vw1w2 ••• wj-l ~ T*, 

s • wjwj+t···wj, "T*, 

A • o 4 '°'~~ ••• o r v w1-w2 wj-1 
0 :a O o • • .o • S Wj Wj+l Wjt 

Thus 1 '(Q ) • r and r 
1 '(~) = s. 

s 

and 

Since Pref(F(N)) £ F(N) and vw l F(N), it follows that rs~ F(N) 

and thus c) A must be an admissable path in Q.'. r s 
Hence M" ~ F' j' • 

Note that by our construction of wi, i "lf, 1 i i i f V' I, 
D(~,s) < O. 

n Since ~ is a loop, a followed by o n times, written ~ o , s r s r s 
must also be an admissable path in C('. 

Let A = A AM(M+l and 
u r s 

u = l'(A) = rsM(~)+l. 
u 

Then u,L(a'). 

But u{F(N), since firing u would leave a negative number of 
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tokona in,. 

Honce L(«)-/, F(N), which contradicts tho hypothesis thot F(N) 

is regular. 

Therefore there exists k ~ I such that for all HE R(N), M' G (H> 

and pGP, 

M'(p) 1 H(p) - k. 

Thm 2.2.13: 

Let Na (P,T,B,F,K,W,M
0

) be a petri net. 

Then N is not regular iff there exists a marking M
1 

E N~f and a 

set P 
1 

£ P such that 

1) P1 is maximally unbounded with context M
1 

and 

2) P1 is not uniformly bounded from below for M
1
• 

Pf: (==>) 

Suppose N is not regular. 

Then by Thm 2.2.12, for all k~ N there exists Mkjf R(N), 

M~ € (Mk> and pk€- P such that 

M~(pk) < Mk(pk) - k. 

Since jP I < oo, there exists p tr P such that 

et= (kjk N, pk= Pl 

and lal = oo. 

Further, by Thm 1.3.4, Zorn's Lemma and since jPj < oo, we can 

define the infinite set 

'8= (kjk~Q,((k,k'~8, k < k') ==>(Mk< Mk,))} 

which in turn defines an infinite increasing sequence of 
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markings 

(Mk)k lZ'r 

Let P' • {pjp~P, I {Mk(p)f (k,k'~6, k > k') ••> 

(Hk(p) > Hk,(p))}f •A:>}. 

Note that ~ f P'. 

By our choice of P', we can find an infinite subset C! 11 such 

that 

C. • {k!kE'~, ((k,k'GC, k < k', p t:P') ••> 

(Mk(p) < Mk,(p)))}. 

By definition of G and P', 

!(Mk(p)fp,P,P', kfC, ((k'~c::, k > k') ••> 

(Mk(p) > Mk,(p)))}I •N. 

Thus there must exist some infinite subset J> ~ C such that 

J) = ( k I k ' C' ( k 'k 'f' .& ) == > ( Mk ( p) ... Mk' ( p) V p ~ p \ p' ) } • 

Since .& f II, ~ is well ordered and thus contains a least 

element k £,/;. 

Define e = ~\(k}. 

Since e is also well ordered, we can assign an index i ~ N to 

each k G e9 such that 

\ < ki+l " ki ,ki+l €~. 

Further, by our choice of e, 
i<k. Vi~N,k,Ge9. 

J. J. 

Also, by our choice of C and ~. 

Mk ( p) > i V p ~ P' , i ~ lf. 
i 

To recapitulate, we have defined an infinite sequence of 
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markings (Mk ) 
1 

l I' whore k1 ft V i 'N with tho i 
following properties: 

1) For all if I there exists k
1,l1 $ N, \ ~ R(N) and 

i Mk & (Mk > such that i i 
0 i Mk' (~)<Mk(~) - ki. i i 

2) Mk i Mk V i c N. 
i i+l 

3) Mk (p) > i Vp&,P', iEN. 
i 

4) Mk ( p) = Mk ( p) "fl i , j G N, p ~ p, P' • i j 
5) i < k

1 
ti i CS: N. 

b' p~ P' Define: ~O M'(p) = 
Mk (p) Vpf~P'. 

1 By definition of M' and properties 3) & 4) above, P' is 
unbounded with context M'. 

By Thm 2.2.6, (P',M')~ contains a maximal element (P1,M1). 
We must now show that P

1 
is not uniformly bounded from below 

for M
1

• 

For all iGN, define wk f T* to be the firing sequence such i 
that 

Mk (wk >M~ 
i i i 

For i, N, define nk G If such that 
i 

nk
1 

= Max{B(p,wk/lP tP1J. 
Since M

1
(p) 2. M'(p) = Mk (p) 'r/ p "p,p1 , iE-N, by the weak i 

transition rule, 

(Ml + Upl• nki)(wk/ Vi~ N 
where Up is the characteristic function of P1• 1 
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Hence for oll i f N thore oxis ts Mk E- 1f Ip I such that 
1 

(M1 + UP , nk )(wk >Mk • 
1 i i i 

By properties I) & 5) above and since OE P '· P 1, 

-D(~,vk) > k1 > i. 
i 

Thus for all i € If there exists ~ ~ (M
1 i that 

Mk(~)< M1(~) + nk - i. i i 
Therefore P

1 is not uniformly bounded from below for M
1• 

((aa) 

Suppose that P
1 is maximally unbounded with context M

1 
and 

not uniformly bounded from below for M
1• 

We wish to show that for all k~ N there exists Mk~ R(N), 
Mk' € (Mk> and pk~ P such that 

M~(pk) < Mk(pk) - k 

which will yield the desired result via Thm 2.2.12. 
Since P

1 
is not uniformly bounded from below for M

1
, for all 

k fN there exists pk e P1, nk E- N, nk > O, wkE: T* and 
Mk, NIPI such that 

(Ml+ nk,UP )(wk>Mk 
1 

where up
1 

is the characteristic function of P
1

, and 
Mk(pk) < Ml(pk) + 0 k - k. 

Since (P
1

,M
1
) is maximal, by Thm 2.2.8, CG(N) contains a 

maximal vertex Q such that 

(M (p) 
Q(p) ~ ( ~ 
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" By port two of Thm 2.1.2S, for all k ~• there exists HkG R(N) 

such that 

" 
Mk(p) • M1(p) V pE'P,P

1 
and 

" 
Mk ( P) > "k V P ~ p 1 • 

Thus, by the weak transition rule, for all k~ I there exists 
" Mk~ R(N) such that 

" " 

" " 
Mk(pk) < Mk(pk) - k. 

Therefore, by Thm 2.2.12, N is not regular. 

Thm 2.2.14: 

The regularity of a petri net N = (P,T,B,F,K,W,M
0

) is decidable. 

Pf: 

( ' ' .i/0\. Let CG(N) = D ,1), D = (V,E,~,r, be the weak coverability 

graph associated with N. 

By Thms 2.2.8 & 2.2.13, we have that N is not regular iff the 

following condition*) holds: 

*) There exists a maximal Q f. V, p' ~ P such that 

Q(p ') = oo, and a loop o in CG(N) with 1(6) = w lfT* 

such that 

1) 4 has initial and final vertex Q and 

2) D(p' ,w) < O. 

If we provide an effective procedure for testing the truth of 

*), we will have shown that the regularity of N is 
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decidable. We begin by showing thot it is sufficient to 
test*) for simple loops only. 

Suppose there exists Q £ V, p '~ P and a loop A in CG(N) where 
l(A) • w f: T* satisfying *). Further suppose that o is not a 
simple loop. 

Then there exists Q
1~v such that D can be devided into three 

segments 

A a 06 A 
1 2 3 

such that o
1 

has initial vertex Q and final vertex Q
1, o

2 
is a simple loop with initial and final vertex Q1 and ~3 
has initial vertex Q

1 
and final vertex Q. 

By part one of Thm 2.1.25, 

Q(p) = oo <==> Q1 (p) = I() fl p € P. 

Define: l(o
1

) = vl • 

Two 

1(02) = v2 and 

l(c ) = v3. 3 
cases: 

Case 1 - (D(p',v
2

) 2. O): 

Then D(p',v
1
v
2

) i D(p',w) < 0 and 6
1

o
3 

is a loop 

satisfying*). 

If ~
1

6
3 

is simple, then we are done. 

If .:.
1

o
3 

is not a simple loop, then it can be devided 

into three parts as before, at which point either 

case 1 or case 2 applies. 

Case 2 - (D(p',v
2

) < O): 
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By constructlon of CG(N), there exists a maximal vertex 

Q V such that ij 1 Q1• 

Again by construction of CG(N), there exists a simple 
loop A' in CG(N) with initial and final vertex Q 
such thnt 1(4') • v

2
• 

Thus we have shown that N is not regular iff there exists 
QEV, p'" P, wET* and a loop o such that 

1) Q,p',w and o satisfy*) and 

2) ~ is simple. 

Since Vis finite, the set of all simple loops~ in CG(N) which 
start and end in a maximal vertex is also finite and hence 
can be enumerated. 

For each such A let l(o) = w6 e T*. 

Since IPI < oo, we can calculate D(p,w6 ) for all p cP and for 

Hence the regularity of N is decidable. 
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