Lehigh University
Lehigh Preserve

Theses and Dissertations

1974

Pragmatic aspects of action/rule matrix
partitioning with respect to time-space
considerations /

Rolf G. Pinckert
Lehigh University

Follow this and additional works at: https://preservelehigh.edu/etd

b Part of the Industrial Engineering Commons

Recommended Citation

Pinckert, Rolf G., "Pragmatic aspects of action/rule matrix partitioning with respect to time-space considerations /" (1974). Theses and
Dissertations. 4457.
https://preservelehigh.edu/etd/4457

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an

authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

https://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F4457&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F4457&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F4457&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=preserve.lehigh.edu%2Fetd%2F4457&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd/4457?utm_source=preserve.lehigh.edu%2Fetd%2F4457&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

| PRAGMATIC ASPECTS OF ACTION/RULE MATRIX |
o ~_PARTITIONING WITH RESPECT - T
| | ' TO TIME-SPACE CONSIDERATIONS o
- by 1 ' -
2 | , ROLF G. PINCKERT |
| ; l |

b A Thesis

- Presented to the Graduate Committee

of Lehigh University

in Candidacy for the Degree of

Master of Science -

| u in | 5 |
o | ~ Industrial Engineering . |
. .Lehigh University o
1974 | .
| 5 ‘ n‘ ;

R B A B e B o o e A L L Y L L e

T B PR R T

S -~ CERTIFICATE OF APPROVAL

This thesis is .accepted and approved in partia
i | fulfillment of"the.requirements for the degree of

; | Master of Science. | | ,

i. .
5 | ssor in Charge

fﬂ Chairman_Of.theDepartment o
: | of Industrial Engineering

AR LERY PN YA RS T A A e e R T R MRRET R RO RS

ACKNOWLEDGEMENTS

I would like to-ekpress my“sfncere appreciatioq‘to

Dr. thandéms, of the Industrial Engineeing Department

~of Lehigh University, and especially to Mr. Jonas Rabin,

of the Western Electric Engineering Research Center Staff

for their_guidénce and helpful Sugge;tions. .Mrs.rPaESy

Clemetson also deserves special thanks for her-patience‘

and effort in the typipg“of this manuécfipt;

Finally, I would like to express a special note of

- gratitude to my wife Sandra, for her continued encourage-

ment during the course of this effort.

iidi 1

ABSTRACT

CHAPTER 1

CHAPTER 2

CHAPTER 3

CHAPTER 4

" TABLE OF CONTENTS

____________________ - 1
FUNDAMENTALS OF DECISION TABLES AND -
PARTITIONING= = = = = = = = = = = = = = -3
Elements of Decision Tables- = = = = - 3
Action/Rule Matrix Partitioning
Fundamentals= = = = = = - - = o o - 4
Form of the Action/Rule Matrix - - - = ¢
Current Blocking Algorithms- - - - - - 11
. Primary Features of the New = o |
Partitioning Module (NPM) = - = - - 12 7
DETERMINATION OF THE EFFECTS OF

BLOCKING ON TIME AND SPACE- = = = = = - - 19

Measurement of Block Contribution

to Efficient Utilizatlon of

Space = = = = = = = = = @ = - = - = 19
Effect of Conditional-Transfer

Blocks on Potential Storage

Reduction = = = = = - - - - - - - =21
Effect of Conditional-Transfer

Blocks on Expected Execution

Time= = = = = = = = 0 o0 =0 =0 = o - - 22
. Integration of Time and Space
Considerations- - - - - - - --=- =22

DISCRIPTION OF THE NEW PARTITIONING

MODULE (NPM)=- = = = = = = = o = = « o - - 25
Introduction to the Technique- - - - - 25
Input Requirements - = - - - = - - - - 27

The Block Identification Stage - - - - 28
The Block Selection-Modification

Stage = = = = = = = @ - = - - - - - 34
OQutputs= = = = = = & 0 d c 0 - - oo - 40
Options Available to the User- - == =42

DISCUSSION OF NPM PERFORMANCE, MULTIPLE-
OUTPUT RESULTS, AND CONCLUSIONS - = = = =48

Comparison of NPM Results with Those
of Burnham's BLOCX Algorithm- - - - 48

iv

B tre - 12’ oy o Rem A P e BT ey - , - - e .- . .
oy T G » ., + ‘ - " ..
' ¢ ' h . m . s o, .) S
' " ’ . I . \ . - L i
" v - i . -
.
) 2
- N o 1 : .
. 3
[
. ‘) ‘
Y .
. - . \ w
) AN . *
-
! v
N . . o - K1
i -
. R . ‘ . :
. . ‘ .
. . 4 o
\ . N ‘ . . 1
‘ :) .

- . - -~ Comparison of NPM Results with those e
N - P of Penick's Algorithm = = - = = = =« . 50 -
. A . - Illustrative Example of Use of the NPM | ; '
- : - | Multiple-Output Option- - = = - - - 54
: | | Conclusions = = = = = @ o o0 0 - o - - 62 S

APPENBIX A ~ - e e e e e e e e e e e e e e e~ g5

a CAPPENDIX B = = = = = = = o - s = = = = = = = = == 73 | o

v v APPENDIX C -'- - ; _ --; _M- -‘_ _ "- é - - - . 83 o e

BIBLIOGRAPHY = = = = = = = - = = o = - = = = = = = 87

» o VITA = = = = = = & - s o o e e m e e e e = e == = 89

' Lt
]

Tra

- : - ¢

FIGURE
 FIGURE
FIGURE

FIGURE
FIGURE

FIGURE

FIGURE

FIGURE
FIGURE
FIGURE
FIGURE

FIGURE

FIGURE
FIGURE
FIGURE

FIGURE

FIGURE
FIGURE
FIGURE
FIGURE

FIGURE

1.1

1.2
1.3
1.41

1.42

1.5

1.6

1.7
2.1
2.2
2.3

3.1

3.2
3'3
3.41

3.42

3.5
3.6
3.71

3.72

3.73

TR LD S A N L) B VI RS AN IAD B b R 112175 7 S PP 0 i R B AW g 4 ey ool e dveritd g A T T N T L R Ty SN

LIST OF ILLUSTRATIONS

ELEMENTARY DECISION TABﬂE-M-'-‘+ - - -
BASIC BLOCKING CONCEPTS-'— - - - - - -
BLOCK OVERLAP — = = = = = = — — - - - -

DIRECT-TRANSFER & CONDITIONAL-.
TRANSFER BLOCKS - - = = = = = - = - - -

FLOW DIAGRAM FOR DIRECT & CONDITIONAL-

TRANSFER BLOCKS = = = = = ¢ & = = = = =

GENERALIZED ACTION/RULE MATRIX - - - -

GENERATING ALTERNATIVE PARTITIONED
MATRICES FROM A GIVEN INPUT MATRIX - -

BLOCK SELECTION DECISION TREE- - — - -
STORAGE REDUCTION INHERENT IN A BLOCK -
STORAGE, REDUCTION INHERENT IN A BLOCK -
EXAMPLE OF A TIME-SPACE PLOT - - — - -

BLOCK DIAGRAM OF NPM PARTITIONING
TECHNIQUE = = = = = = = = = = = - - - -

DETERMINATION OF RULE PROBABILITIES - -
FORMATION OF CUMULATIVE-SUM MATRIX - -
BINARY INPUT MATRIX - = = = = = — — — —

BLOCK VECTOR REPRESENTATION OF ZERO-
LEVEL BLOCKS - - - - - - - - - - - - -

DESCRIPTION OF IAR AND VNET TABLES- - -
DESCRIPTION OF IARB AND VNETB TABLES- -
BLOCK SELECTION-MODIFICATIONCYCLE— -
BLOCK SELECTION-MODIFICATION CYCLE- - -

BLOCK SELECTION-MODIFICATION CYCLE- - -

vi

10

14

16

20

21

23

26

28

30

32

32

33

35

36

36

37

777777

FIGURE 3.74

FIGURE

- FIGURE

FIGURE
FIGURE
FIGURE
FIGURE

FIGURE

FIGURE

@

3.8

309

EXAMPLE
EXAMPLE
EXAMPLE

EXAMPLE

EXAMPLE

EXAMPLE

PLOT OF

BLOCK SELECTION-MODIFICATION CYCLE - - -

OF PRIMARY OUTPUT - - - - = - -
OF SECONDARY OUTPUT - — - - - -
OF A SPARSE MATRIX - - - - - - -
OF A COMPLEX MATRIX - - - - - -
OF A MULTIPLE-OUTPUT RESULT - -
OF A MULTIPLE-OUTPUT RESULT - -

NET STORAGE REDUCTION VS.

INCREASED EXPECTEDﬁEXECUTIONiTIME----

PLOT OF

EXECUTION TIME REQUIREMENTS - = = - - -

NET STORAGE REQUIREMENTS VS.

_Vii. - : Ao

38

44
45
5%

52

Y

TABLE 4.1

TABLE 4.2

LIST OF TABLES

COMPARISON OF NPM RESULTS WITH

GENERATED BY BURNHAM'S BLOCX ALGORITHM

2@

2

THOSE

COMPARISON OF NPM RESULTS WITH THOSE

3

GENERATED BY PENICK ALGORI

%

I

THM

e a0 2i o1 g e e b e

6

~ ABSTRACT

- Until now, no'systematic apprdach has beendéveloﬁed
With regard to time-spacé optimizaﬁion'ofthe action/rule
matri;\of g limited-entry decisioﬁ'table; Existing
algorithms partition the éction/rule matrix either to
minimize storage requirements or response time. A'new
élgorithm developed in this thesiélprovidés a geperal'
approach in that both time and space considerations are
used in thepartifiéningprocess.

The new algofithmfembraces a more realistic approach
to the partitioning process than that provided by existing
algorithms. It is unrealistic to presume that all actiéns
in the matrix will require an ideﬁticél amount of storage.

It is likewise unrealistic to. assume that all decision

rules are equally likely to be selected. For these

reasons, a means is provided in the new algorithm to

specify variablg action weights and different rule
probability distributions, for use in the partitioning
process.

Finally, the new algorithm can generate a set of

AN

~

partitioned matrices for a given input matrix. There
are two main reasons for .generéting such a set of

matrices:

Ty
-

.

-\

An improved solution over that producéd,by

the single output usually results, -

Since the resultant set of matrices exhibit'

varying time-space requirements, these results

can be useful in-determining,pQSSible time-

space tradeoffs.

CHAPTER 1

' FUNDAMENTALS OF DECISION TABLES AND PARTITIONING

Elements of DeciSion Tablig

'A_baSic structural unit<of a decision table is thé,
"decision rule. It ié é statement that stipulates the
'set of conditions which must be satisfied in o:der that
a sequence of éctions be performed. Hence, decision
rules imply an if...then... relationship between unique
sets of conditions, and'the actions performed in
response to those condition sets. Consider the follow-
ing example: "If your net income is not more than $600
and you are the head of the household, use Tax Table II."
This statement represeﬁts a decision rule, where theAp
conditions are net incomg and financial responsibiliﬁy,
and thé use of Tax Table IT is the action to be performed
in response to the conditibns.{ Whenever we arrange the
decision rules pertaining to a particular process as a
set of combinations of conditions, we have created a
decision table. A represenéative table is illustrated in
Figure 1l.1. | | | ~

Each column in the matrix represents a decisioﬁ rule,
orvsimply,a rule. Thé condition and action stubs of
the table désé;ibe the conditions to be consideréd (or

tested) and the actions to be performed, respectivély. We

3

- R

P2 ‘ i
,.21 - W
LU
LA P

‘ L

S

‘can divide the table into two funct10na1 matrices, namely;

the condition/rule matrix and the action/rule matrix._ It
is the partitioning of the action/rule matrix which 1is

the major topic of this tﬁesis.

ENTRY STUB -
R1|R2|R3|R4|R5|R6[|R7[RS
' ﬂﬂﬂﬂﬂlﬂﬂ
vl e s by I by Lo
alx x| x| k] L
a2 ..-..-..
x e bx e le | L [

Y = CONDITION PRESENT :
N = CONDITION ABSENT"

.X = PERFORM ACTION

NO ENTRY = DO NOT PERFORM ACTION

CONDITION
STUB

N © ACTION
| STUB

FIGURE 1.1

Action/Rule Matrix Partitioning Fundamentals

Since our emphasis will only be on the action/rule
matrix, we will simply refer to it as "the matrix". It
should be noted that the primary]use of decision tables

. is in computer applications. As such, the tables will

a8

~
! | \

&

i

. ﬁ}e.,

placeldemands upon the resources of the user system,
eince they are cenverted into\pipgfanmed statements
which require.a certain amount of storage and prdéeSsot
time fbr-their execution. In the case\of‘the acﬁionYrule
matrix, this demand is a fnnctionof the.number of
etatements associated'ﬁith each action, and the time
required to execute a path;(or sequence of actions)
through the matrix. geveral techniques, which we’will
brOa&ly classify as(partitioning methods, have been
developeé to minimize these effects on the user system,
There are basically three ways that the matrix can be
partitioned: 1) By rows, -2) by columns, and 3) into
smalier submatrices. The latter method is referred to
as "blocking", and is the basis for the procedures to
be described in’this thesis.

To provide insight into blocking concepts, we begin
with the following defigition: A block is an identical
sequence of two or more actionestipulated by at least
two rules. Since the action seqnences which form the
block are identical, we can eliminate all bnt one with-
out loss of information. Those sequences which can be
eliminated obviously represent a reduction in theﬁsystem
memory required te_store the matrix. We will refer to the
required action sequence corresponding to a particuler

block as the block sequence, and the rules to which this

&

sequence 1is commpn,as'block rQles.‘ Furthermore, the

action sequences which are specified by thé block rules,“

and which remain to be performed upon exiting the block

sequence, are called residual‘action‘sequences. Figure

-

1.2 illustrates these’ideas.

BLOCK- = {R2,R3;A1,A2}
BLOCK SEQUENCE = (Al,A2)
BLOCK RULES = {R2,R3}

RESIDUAL ACTION
SEQUENCE = EXIT (Rule 2) |
| A3, A4, EXIT (Rule 3)

\ FIGURE 1.2

There are several ways of classifying blocks. The
first is the relationship of a given block to other
blocks in the matrix. A block 13 independent if it does
not overlap with any other blocks in the matrix, where

an overlap is the common occurrence of at least one action

N

......
,,,,,,

and one rule in both‘blocks; .Figure 1.3 illustrates
tWo over1apping blocks, where the overlap is indicated

by the crosshatched area.

BLOCK 1 = {R1,R2;A1,A2}
BLOCK 2 = {R2,R3;A2,A3}

FIGURE 1.3

It is important to note_here,’fhat any reSultant block
set used to partition the matrix must Contain only
independent b19cks; Therefore, whenever a*potential
block from an overlapping pair iSASiiiiigd{ the over-
lapping portion cannot be consolidated into a block
sequence.

Another means of classifying blocks is with respect
to the tYpe of branching logic required at the termination
of the block sequence. A direct—transfer block is one
which has no associated residual action sequences, a

condition which arises if the given block immediately

v

7 I | SRR

Preceeds another block or, if the given block sequence

‘terminates at the exit point of the mattix.mmA con-
difional—transfér block haé assoclated fesidual'block
sequences which differ by at least one entry. An
exémple'of each block type, and the assbciated flow

0

‘diag}am'are illustrated in Figure 1.41 and 1.42,

respectively. Note theactienADinfhe b166k9§é§ﬁéﬁééM

of block 2 in Figure 1.42. ?This additional action is
necessary to provide for branching to the pr0per

residual action sequence upon termination of the block

sequence,

IrR1IR2 {r3 |R2 |R

[]
xlx frfr ||

BLOCK 1 = {R5,R6;A6,A7}
BLOCK -2 {Rl R2,R3,R4; A3 sA4,A5,A }
BLOCK 3 {Rl R23;A1,A2}

"FIGURE 1.41

B e

1 R2 R3 R4

BLOCK [aL
SEQUENCE = 9 |
'FOR BLOCK 3 [A2

T~

BLOCK A
SEQUENCE
FOR BLOCK 2 A5
A6 A6
A7 A7 A7
A8 A8
' &
N | 1

EXIT

FIGURE 1.42

Form of the Action/Rule Matrix

Figure 1.5 illustrates the form of the action/rule

BLOCK
SEQUENCE
FOR BLOCK 1

matrix used in the development of our generalized

ﬁblocking ;échnique.

In the matrix of Figure 1.5, the execution of an

action Ai for a particular rule R

presence of a one atplocation.(i,j).

J

zero at location (i,j) indicates that action A, is not

Jd
!

J

is specified by the

Conversely, a

to be executed for rule Rj; ‘Eurthermoré,ﬂwevaésign‘the

s

following charaéteristics\to the matrix:

NEAY §

FIGURE 1.5

(1)~ The action sequences for a given. rule wiil
be performed in the order specified in the
matrix;

(2) An action can represent either a single
statement or an entire program module.

(3) A weighting factor W, is associétéd with
each row i of the matrix, and is proportional

to the memory storage requirementwof the

A
Vo
D

action Ai' (-

10

Lol

(ﬁ)'Associatéd with each'rﬁle R

J
is the probability pj, that_the jth rule is

‘of the matrix

selected upon entry into the matrix, where

> 0, and

P
'ij=19 j=1329°°°9r

Current Biocking Algdrithms
There ére two Blockiﬁg algorithms'Ez,j]_presently
in use which vary somewhat-in the approach to partition-
ing the matrix, Because both techniques utilize the
blocking concept, the resulting effect in either case
is to maximize the efficient use of core meﬁory, However,
neither téchniQue provides a ﬁgans of measuring the
contribution of ea;h block towards the most efficient use
of both time and space resource of the user system. In
 addition, both algorithms constrain all'actions‘to be
equally weighted, and all rules to be equally likely to
be‘selected. . -
Thé initial application of blocking the action/rule
matrix is the algorithm developed by Penick [7]. ThisJ
procedure maximizes the number of direcf-transfer b}ocks

in the block set used to partition the matrix. This

results in a reduction of redundant coding while

]

minimizing the additional transfer logic requiréd. However,

priority given to.direct-transfef4blocks often precludes

11

S

théséieétiOn of.larger conditiqnal-tfansfegblocké’iﬁ
,thé matrix, which is a disadvantage wheniéérelmemory
is-a‘premiumreQOurce, ‘ ‘

~Another aﬁproach\topartitioningthe matrix was
develﬁpédby Burnham [2]. The basicphiIOSOphyofthis‘
mefhod is to seiectthe largest remaining.block at each
éearch through the mafrix. Thus, the final result consists
of é set of»independent'biocks“which'have'beénadetermined
in decreasing order of dimension. We feel that thé block
selection method may lead to results which do not reflect
the maximum savings obtainable., We ﬁill present a more

detailed discussion of this subject in the next chapter.

Primary Features of the New Partitioning Module (NPM)

'Liké ﬁhe Penickuand Bﬁrnham algorithms just
described, NPM also uses the blocking.concept. Unlike
these two algofithms,.NPhis completely flexible with
respect to.the block selection criterion. It is our
gontention that the matrixgshould be partitioned accord-
ing to tﬂe constraints of the environqent in which it
'iS‘tQ function. This implies that not only thé’resources
.of theuser system, but also the éharactéristics of thef~”'
process, which are inherent in the decisionrules, must

‘be considered in our approach to partitioning the matrix.

‘We feel that it is totally“unrealistic'to-assume that,

12

ktinféénefals'the decision tulesare'eqﬁéilyliikely\to”be

selected. Inhadditidn,it is;equally unreali;tic\tp”
'assune'that theistOrage,requirenentsei all actione are
identical. To overcome these limitations of existing'
algorithms, we have incerporated the folloﬁing features
into NPM: 'ﬁ '

(i). A means-of mbnitoring and updating rule

‘ffequencies Besed,on actnalkusage, end

(2) Action weights that are proportional to

the number‘of statements contained in ‘the
associated action.

A major emphasis in the development of NPM is to
provide a means of determining both time and space
requirements of a partitioned matrix, This is in
contrast to existing algorithms which address either
the time or the space aspect. If all of the blocks -
which are to form partitions of the input matrin are
selected on the basis of a specified, invariant,
‘selection criterion'(as‘they are in existing aléorithms),
then for a given input matrix, only one specific parti-
tioned matrix can result. However, if we.examinethe'
binary input matrix oanigure 1.6, we can identify
several alternative ways of partitioning the input

\

matrix, as shown.

13 |

-

. o m o e
BTSRRI

s hh,
IR

INPUT MATRIX ALTERNATIVE 2

Ve

Qh-.r ""
) | l

Ifewe:were to,ekemine‘311 poés1b1e partitioned matrices

‘that can«bejgenerated_froh a gived binary matrix, and

\

~determine the time-space requirements of each, we could

identify that result whieh optimally satisfies the

specified criterion. This total enumeration approach

requires a substantial amount ef eomputing time to
search all selection levels (firét block selection,
second block_selection, etc.) of a~1arge,‘comp1ex mafrix;”

However, results of our investigations indicate that

complete enumeration isxunﬂecessary to obtain results

which are improvements over those of existing algorithme.

Since we have determined that alternative partitioned’

matrices can be generated from a givem ,input matrix (i.e.,

.Figure 1.6), it would be useful to provide machine cap-

ability for generating such a set of matrices and determine

how each compares to the others of the set in terms of

time-space demands on the user system. This implies that
some degree of independence from the prescribed selection
criterion is required. 1In the case of NPM, this independ=

ence from the selection criterion is provided at the zero

level (i.e., fifst block selegtion), in that a source of

alternative blocks is provided. This set consists of all
blocks which can be identified in the original input

matrix, and is called the zero-level block set‘BQ- Thﬁg,

-«

by specifying a%?ro-levellblockinitiallyand.baSipg,~

subsequent sélections on the specified'criterioh eaéh'

time we partition the matrix, we can generaté as many

partitioned matrices as there are entries in BQ For

§
“

example, if

BO ={B1, BZ,"’ Bg} [y

then N partitioned matrices can be generated. This

%

concept is illustrated in Figufe 1.7. o

- ‘ ._..__. —— S : - - -

W -

83,8 B(n-1),s LEVEL 1

LEVEL 2

LEVEL L-1

LEVEL L

FIGURE 1.7

In Figure 1,7,thesuperScript.refersvto.theu
selection level, the first subscriptfindicates the*
zero'level block designation, and the subscript s'ﬂ
indicates that the block is a subset of the same
block on a previous 1evel. The block selections at
each level are identified by circles. For example,
if block 1 is specified as the f1rst block selection,
the resultant block set (B ; > g -Bg,s,...,Bg ; Bk,s)
will be used to partition the matrix. Obviously, a
set of matrices generated by specifyiné different zero-
level blocks is only a subset of all partitioned matrices
that can be generated from a given input matrix., How-
ever, since zero-level blocks, are, in general, much
larger (in total entries) than blocks at subsequent -
1evels, these blockswill have the most effect on the
time-space requirements of a partitioned matrix. |

We have incorporated into NPM, the capability (a
user option) of generating a set of alternative parti-
tioned matrices for two reasons. First, in spite of
an established block selection criterion, we‘have‘no
guarantee that the resultant partitioned matrix is
optimal or near optimal. By generating this set of

alternative.matrices, we increase -the likelihood that

an optimal or near optimal solution\has been_geBeratgd,,

17

[

- - software development, in that time-space tradeoffs

s
>

Second,'it is felt that snéh é set'of'matrices which"f
exhibit varying time-space requirements, will providé‘,L

. the designer with a useful tool for decision table

can be achieved, which best satisfy design const;aints.f

¥

{

-~

A

P

-

.

'
"
T
.
r
©
“
&
.
.
L.
Al L
.
.y
’
1
4

Py

t \

' 'CHAPTER 2

'DETERMINATION OF THE EFFECTS OF BLOCKING ON TIME

' " AND SPACE ‘
MgasUrementrdf Block Contribution to Efficient

Utilization of Space |

| We stated previously, that the{c04solidation of
action'sequences is a memory saving technique. iFor
minimiZatioﬁ of space requirements, the question of/
"how muéh" memory can be saved byzincorporating-a
particular block is of obvious importanée. Therefogg,
we must formulate a measure of the benefit derived from
the formation of a particular block.

Consider a block composed of k actions and m rules.
Because the action sequences forming the block are
identical for the m rules, we can eliminate éll»but one
of these action sequences without loss of information.
Thié implies that we can save the space required to
store theﬂk(m-l) unnecessary actions if we incorporaté
the block. Thus, thevquantity-k(mfl) represents the
inherent space savings of the block. In'contragt,i
Burnham's [2] selection criterion incorporates the blocﬂ
haVing the largest total number of actions. 1In the caSe'

of overlapping blocks which have the same‘total'number

of actions, the block having the largest number of actions

from Figure 2.2, where the symbblﬁi indicates“that the

in its blocksequence is-selected{‘ As we will\khbw in

tﬁe'fbllowing-eXample,.this'procedurefdoeswnotgguarantee
that-the seleqted hlock'pfovides.thé‘ﬁaiimum'savingsin
storage.:

Consider the two poténtialfblogksLndicated inﬂthe

matrix of Figure 2.1. S

Block 1 = {R1,R2;Al,A2,A3}

Block 2

{R1,R2,R3;A2,A3}

Y

Figure 2,1

If we assume that all actions have a unit weight then,
using Burnham's criteria for block selection, we would
incorporate block 1 since both blocks have the same

total number of actions (6), and block 1 contains the

largest number of actions in its block sequence (3 vs,

2 for block‘Z); We can determine the memory savings

(in terms of actions) inherent in each block directly

t

S

N

20

e

Corresponding action does not require programming.

\

BLOCK 1 ~ BLOCK 2

X 3 X X

X 32 X X % 3 3
X & X X 3 3

Figuré 2.2

From this simplé example, we één feadily see that block
2 actually results in a.largér réduction in memory
requiréments than is possible with block 1.

With these.ideas,in mind, we can formulate an
expression for the potential storage reduction,‘PSR,
obtainable from a block as follows: For a block con-

sisting of m rules and k actions,

PSR = (m—l)Zwk, ' (1)
k

where k indexes the actions in the block sequence, and

W, is the weight assigned to the k-th action of the

(O &

block sequence. Equation (I) provides a more realistic

w

approach to measuring storage reduction than existing

......

matrix to be equally weighted.

<&

"Effect of Conditional-Transfer Blocks on Potential

Storage Reduction

We indicated in Chapterll that conditional-tranSfer
blocks require additional logic to provide for prOpei

21

branching upon termination of the block'sequence. Since
this decision logic is associated with all of the block
rules, it effectively appears as an additional action,

AD, in the block sequence., If we assign a weight WD to

~this decision node, we can eXpress the net storage

reduction, NSR, as

Xecution Time.

NSR=-W_+(m-1) YW, . (I1)
Remiprim=bib . _

Effect oeron

ditional-TransferfBlocks~on Expected

| %
As indicated in the'previous1Sectiong the decision

log1c of a conditional- transfer block is common to all
block rules. Therefore, the increase in the expected
execution time, EET, of the matrix due to the formation

of the-conditionalrtransfer block»is;fi

H ‘«'7“
{i é,

TDZPm ’ o (I11)
m :

EET

where TD is the number of timefunits required to execute
the decision logic, m indexes the block rules, and p, 1is
the frequency of execution of the m-th block rule. Equa-
tions (II) and (III) provide us with a means of measuring
the effect incorporating a particular block will have on

the resources of the user~system.

Inte

ration of'Time and Space Considerations

Whenever we are faced with software design, we are

22

ot reavee -

-usually conStrained'By~the\amount oftimekallowed'for~
the program to execute and/or the amountlof storagepu
that the program can use. pnfortunately;'a reduction o
in storage requirements usually resultsfin a oorrespond--
ing increase in eXecution'time, and vice versa.' Byp

restructuring the basic programming scheme, we can Lot

.\ X

L

generate a, series of programs which provide identical i

results, but place varying demands upon system resources.-»\

oy

i_ Beizer [1] refers to this set of alternative programs as

.a "family ‘Of programs. - If we were to determine the 7'"\,~lff s
o spaoe—time-reqnirements~of each program in the family,

'lWe could produce afSpacertime plot similar to the

ekample illustrated in Figure 2.3,

GHRE 2 3

23

Tapent

. T

N1y

From this.plot; we can determine the most efficient

programs by ideﬁtifying the undominated entries of

~the set. The region of dominance of a program5P is

defined as those points located in the first quardrant

which has the space-time coordinate location p of the

program P as its-origin. Those entrieé in Figure 2.3
which are not‘in the region of dominance of an& other
entry, represent the most efficient programs.

If we now conéider the fact that a partitioned
matrix éorresponds to a unique flowchart, then any
al?ernative pértitioning of the matrix will»reéult in
a &ifferent flowchart. Thus, like the family of pro-
grams described by Beizer, we can generate a family of
flowcharts, each of which ﬁas associated time-space
requirements. If we generate the time-space coordinatei
corresponding to the Varibus partitioning alternatives,
and determine the undominated entries, we will have
identified the most efficient partit@énings of the matrix.

The procedure we will describe in the following
chapters will prdvide us with the caﬁlbility of generat-

ing the time-space coordinates corresponding to alterna-

tive partitioned matrices. We feel that‘this result will

provide the designer with the flexibility he needs to

select that partitioning scheme which best fits

requirements.

24

]4.
/o

~ CHAPTER 3
- DESCRIPTION OF THE NEW PARTITIONING MODULE (NPM)

Introduction to the Technique

——

The function of NPM is to transform a binary inpnt."
“matrix into either a single partitioned matrix or a set

of partitloned matrices, and to provide the analyst with
thertime-space requirements of eacﬁmsuch partitioned
matrix. As illustrated in Figure-B.l, the module inputs
consist of the binary input matrix and the associated rule
probabilities and action weights. The partitioning
technique is divided into two stages: 1)“the identification
stage, during which all zero-level blocks existing in the
input.matrix are determined, and 2) the selectlon-modifi—
~cation stage, during which the sequential selection of
blocks forming the partitions, and the modification of the
remaining blocks after each block selection are carried
out. Either a single.partitioned matrix, where all block
selections are hased on a specified criterion (i.e., max-
imize the-net storagereduction or minimize the increased
expected eXecution;time), or asetof\partitioned matrices
(multiple output),-where each matrix of the set 1is
partitioned in response to a different zero-level block
selection, can be generated by NPM at ‘the users discretion.
We will provide greater detail Wlth respect to the parti-

tioning processpin subsequent section of this.chapter;

25

RULE

BINARY
INPUT
MATRIX

 BLOCK
SELECTION-

- (STAGE 2)

PROBABILITIES [N

I3. TIME-SPACE REQUIRE-

~ BLOCK
IDENTIFICA-

| SET OF n
ZERO- |
LEVEL
BLOCKS

SINGLE OUTPUT

. PARTITIONED MATRIX
2. REPRESENTATION OF
BLOCKS FORMING
PARTITIONS

MENTS OF PARTITIONED
MATRIX |

MULTIPLE OUTPUT
PARTITIONED MATRIX
BASED ON INITIAL
FORCED SELECTION OF
ZERO-LEVEL BLOCK #1

PARTITIONED MATRIX
BASED ON INITIAL |
FORCED SELECTION OF

ZERO-LEVEL BLOCK #n

FIGURE 3.1

TR MR A L T R O R Y

Infut"Refuirements

Tﬁere are three inputs required by NPM;» '_).«_éA}"“'i.

1. Thebinaty%actibn[rule matrix,‘

2. an action weiéht vector Whose entrieS'aré
proportional to thé storgge requir’em'entsdf~~
the cdrrésponding actioﬁ, and .

'3. aprobability vector whose enttiesfare'the

brobabilities of the rules being-eXecuted.

Sinpe rule probabilities are used as a basis for
block selection, it is highly desirable’to obtain.éccurate
estimates of_their values. These estimates”can‘be
obtained By using a diagonal square matrix of dimension
eqqal to'the nﬁmber of rules in the original deeisiaﬁ'
table, as shown in Figure 3.2, Each element On-the ﬁain
diagonal'corresponds to a unique rule, and each.actiOny:

b,»i=1,...,r, records the number of times the associated

rule is executed during a prescribed number of entrie5f5f "

into the table. Using this.scheme,‘the.rule'probabilitiés
can be reexamined periodically, say every N entries.into

the table, to determine if a éignificant change has

'occﬁrred in their distribution. If a‘Significant Qiffer—

‘ence is detected, the new probabilities can be computed by,

b, »
pj = —ﬁ" j3=1 ,2 90 0 .’t.

27

A G R

>

B S T I Co o N i I MNP R E
TS AT el T

- 'The matrix can then.be repart1tioned-usipg.the:updated' f7‘

probabilities.

RULE
FREQUENCY
MATRIX

ACTION/RULE
MATRIX

FIGURE 3.2

The Block Identification Stage

It is the function of theBlockTIdentification’Stage
tc determine the zero-level blocks in the input matrix.
To.ideﬂtify these~zerd—leve1 blocks, the binary matrix is
cOnveited intoa ¢umu1ative-sum,matrix. A description of

this procedure follows, and,an‘illuStratiVe-eXampleis

"presented in Figure 3.3.

28

STEP 1

STEP 2

.

STEP 3

row, etc.

AsSign_to_each row of7the'biﬁary’matrix
an increasin®g powerfof-two;.assigning‘2°

to the 1last row, 21 to the next-to-last.

P

Starting with the next-to-last row, replace

3ll 1 entries with the sum of the agsigned

row value and the corresponding enfty in

the last row.

Repeat this procedure for all preceeding
rows, replacing all 1 entries with the
sum of the row value and the previous
cumulant in the column corresponding to

the 1 entry. Note that the zero-entries

of the matrix are not altered,

The cumulants formgd in this manner are unique. Thus, if
identical cumulants are encountered in a particular row

of thevcuﬁuiative-sum matfix, we know that the correspoﬁd—
ing entries for the remainder of the columns associated
with these cumulants are alsoxideﬁtical. As the zero-level
blocks are identified, they must be méintained in a form
wﬂich will rea&ily provide inf?rﬁétionregarding block
1nterrelationships, and that can easily be ﬁodified‘iﬁ

response to a particular block selection. This réquirémeht_

29

TN L g e e e
‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

a) BINARY INPUT MATRIX b) ASSIGN POWERS-OF-TWO
c) BEGIN FORMING) d) COMPLETE CUMULATIVE-
CUMULATIVE-SUM SUM MATRIX
MATRIX
 FIGURE 3.3

+

' iis met by utilization of block vectors.‘ A block vector is
a storage array containing information about a particular
block in the matrix. The syntactical representation‘of a

block vector is given ae‘follows:“

<BLOCK VECTORz::5<ACTION-FIEED><RULE-FIELD>§MISCELLANEOUS
SUBFIELD #1><MISC. SUBFIELD #2><MISC.
'SUBFIELD #3>
where;
<ACTION FIELD> contains l-entries corresponding to the row
indices (action #) of the block.
<RULE FIELD> contains l-entries corresponding to the
column indices (rule #) of the block.
<MISC. SUBFIELD #1> contains; O=direct-transfer block
1=conditiona1-transferlblock
during block identification,'or
l=overlapping block
o2=zero(empty) vector

during block selection-modification.

<M1SC. SUBFIELD #2> contains the number of actions in the

block.
SMISC. SUBFIELD #3> contains the number of rules in the

bloeck., = ’

31

]
i
{ .

{

Lad

As an-exampleéof'howﬂawblock is#represented in:bIodk

.;yector form, cbnsider*the_biﬁary,input matrix of Figure

3v41,“Wﬁich has béen’located duringtheiblock-identificaé_

tion stage. The vector entries for this case are

,illuétrated in Figure 3;42.

BLOCK = {R2,R3;A1,A2}

FIGURE 3.41

Pos.#1 | Pos.#32 Pos.#1 Pos.#32

' I i
Wl 1 0 0 0...000 1 1 0 0 0...00 1 2 2

ACTION FIELD RULE FIELD
SUB-FIELD #1
SUB-FIELD #2
SUB-FIELD #3

'nFIGURE 3.42

Sy

oy .

{

:.In»fighre 3.42,.ther¢ are1-entries 1hb§siti§ns qné‘and‘
' two ofthe.agti;n,field,correSpbndingtothe.rows
u(actions) in the block, and-l-entriesvin'positions.twoc
and.three of the rule field, corresponding tovthé cOlﬁmns.~

-(rules) in the block. Subfield one contains a 1 since

ve are in block identification and the block is obviously
a conditional-transfer block. ' The 2 in subfield 2
represents the number of actions in the block and the 2

in subfield 3 is the number of rules in the block.

The zero-level bloeck vectors and the associated NSR

(net storage reduction) and EET (expected execution time)

1
values are stored in the IAR Table and VNET Table,

respectively, during the block identification stage as ism

illustrated in Figure 3.5.

BLOCK
IDENTIFI-
CATION
STAGE OF
NPM

(STAGE 1)

FIGURE 3.5

33

t;*.-l'f-g

T N Thymeco s R RO T N R e T e

RS s L SR S Za s i P,

|
|
|

Flchhart_l of Appendix B provides a detailed

description of the procedure used in.identifying the

~zero-level blocks in the cumulative-sum matrix described

earlier in this section.

The Block Selection-Modification Stage

It is the function of fhe selection-modification
stage to‘determine the partitions of the binary input
matrix. To accomblish this, the block remaining in the
matrix which best satisfies the specified block selection
criterion (either maximization of NSR Or minimization of
EET) is incorporated as a parkitiOn of the input matrix;
The remaining blocks of the input matrix which overla;
the selected block are then modified in response to this
selection. This insures that the modified blocks are
independent of the selécted block. As illﬁstrated in
F&gure 3.6, the IARB Table and the VNETB Table are used
to storé the block vectors and the corresponding NSR
and EET values, respectively, resulting during the
selection-modification proceés. As illustrated in
Figure 3,6, the IARB Main Sub-table is initialized from
the iAR Table at the start of‘each partitioning run. At

this point, the Main Sub-table will contain all zero-~level

blocks in the action/rule matrix.

34

T

'INITIALIZE IARB & INETB

BLOCK
SELECTION
MODIFICA-
TION STAGE|
OF NPM

B | (STAGE 2)

SUPPLEM.

SUB-TABLE

IARB -~ VNETB

FIGURE 3.6 : .

The initial block selection can be accomplished in
one of two ways;
1. Based on one of the available seleétion criteria

indicated above, or

35

-V : -{/.\‘";
. ¢ P

n~72, ‘a forced-sélectionnduring a’mﬁltiplegOUtPuf'fdni:

seléctions are based on the Specified'criterion.

in ait7pica1 selection-modifigation cycle.

Regardelss of the type of initial selection, all subsequent

The

following discussion will elaborate on the,step8°invOIVed

Consider the set of blbcfsillustrated in Figure 3.71

and the entries in the IAR Table as shown in Figure 3.72. .

Al

A2

A3
A4
* A5

A6

POSITION~1

R1 R2 R3 R4 R5 R6 R7

BLOCK 1

'BLOCK 3

FIGURE 3.71

IARB (MAIN) (PRE-SELECTION STATE)

32 1

32

VN ETB*
NSR EET

BLOCK 2 011000...01111111...0L123711.

 BLOCK1 111110...000111060...0153 9. 0.429

1.0

BLOCK 3 000011.,.00000110...0022 2. 0.0

FIGURE 3,72

,ﬂ36‘

' .

For this example ‘the specified selection criterion will be i'ﬁf"m7

to maximize NSR. Each.action_will.be assumed to haue a

weight of-one, and:all:rules'are assumed equaliy'probable;if'

Since selection is based on the maximum NSR value,
block 2 would be transferred to the Output Vector Sub-

table.‘ A snapshot of the post selection Main and Output

Vector Sub-tables is illustrated in_Figure 3.73.

IARB (MAIN)-(POST-SELECTION STATE)

o VNETB &
POSITION-1 . 32 1 - 32 NSR EET
BLOCK1 111110...00011100...0153 9, 0.429

- 000000...00000000...0200 0. 0.0

BLOCK3 000011,..00000110...0122 2. 0.0

IARB (0.V.)-(POST-SELECTION STATE)
| VNETB .
POSITION~1 32 1 32 NSR EET
011000...01111111.,.0127 11.0 1.0

FIGURE 3\73

At this point the blocks in the input matrix which

overlap with the selected block must be modified by at

least the amount of the overlap. There are two consequences

of modifying an existing block:

1. The modified block is eliminated in that there

N LA 3 AT e o et LoAtapemnat 9 g ot marenp bt e o

are insufficient non-overlappiugiagtion:sgquén¢§§h ijfffff§

@ .

remaining.to-erﬁ aiegitimate block;..»

2.' A new block(s)" 1s(aré) _génerated~£f6m thei'
non-oveflappingiaction,ééquencés.rehainipg‘
after the*modifiCation. .

Note that condition 1 épplies tdlﬁldck"B and condition 2 “?f';gil'

applies to block 1. ‘The post-quiﬁgcation IARB (Main)

Table is.illﬁstrated in Figure 3.74,.

IARB (MAIN)-(POST-MODIFICATION STAGE) °

VNETBE
POSITION 1 32 1 | 32 NSR EET

BLOCK1 000110,..00011100...0123 3..0.429
000000...00000000...0200 0. 0.00

0 O 0 O O 0...0 0 0 0 O 0 O 00000 2 0 0 1. 0000
FIGURE 3.74

In general, for two overlapping blocks M and N, if
block M is selécted, block N can no longer exist in'its
~original form because the entries common to both blocks

will be iﬁé%rporated in block M. However, the actions

actions which can form new blocks. The generation of a
new block can occur in two ways:
1. If identicaIAaction’seqﬁences consisting of at
least two entries are ffeedxby.theeliminationt-?'“}(
of the source block N, and these actiOQ,sequéﬁ§§§: °"°

38’ o

‘occur in two or more rules exclusive of the.

block rules of M, then these sequences can

combine to form a new blbck:_ Werefer'tomtﬁis

type'of modification as rule modification.

2, If two or more identical action sequences
- | 'i; | . ~containing at least two entries are freed
. w. by the eliminatidn ofathe source block N, and
the rules corresponding to these sequences inter-
sect the set of block rules of M, but are
exclusive of the block sequence of M, then .

these sequences can combine to form a new block.

We refer to this type of modification:as action

modification.

Each vector in the Main Snb—table is subjected to
both rule and action modification (if applicable) bj NPM.
Since this procedure can generate more than one new block -
from sgiven block vector,'the Snpplementary Sub-table
is used to provide for unique temporary storage (in vector o
format) for the second and subsequent new blocks geneérated
from a given block vector.

After allxbloqks in the ain'SubetaBie have‘been.
modified, the cententsofthe Suppiementary Sub-table are
transferred to the Main Sub-table, and the cycle is

repeated. A detailed description of the selection-modﬁff¢<,

~cation stage is given by Flowchart 2 of Appendix B.

39

e N

*butputs'

There are two types of outputs generated by NPM

classified as primary ‘and secondary outputs. -Primary
outputs were illustrated in abbreviated form in Figure 3 1
For the single output option the following information

1s generated:

1. lThe binary’input matrix,w

2. the block vectors corresponding to the blocks
forming the partitions,

3. the NSR and EET values forneach*block in (2),

4. the time-space coordinates of the partitioned
matrix, and -

5. the partitioned matrix.

For the multiple-output option, the binary input matrix is
only printed once for the set of matrices, Items 2
through 5 are printed for each partitioned matrix of the
set, In addition, the.initial forced zero-level block
selection is given for each matrix,. This last item
Provides a means of identification for regenerating a
particular matrix of thenset.

A'The secondary printout is optional,and consists of
intermediatereSults.ofeachblock selection and sub-
sequent matrix modification,“where each selection-

modification cycle is referred to as a "level". The-" ‘:vﬁr}

: ~information inclﬁdedin'theSecondary-outputié'liSté&J~
; as folloWSé | o o '_" | _ o
; ‘1. A listing of the IAR Table (i.e., the zero-
4 level block vectors).
7 - | | e T
2, the,N§R‘and EET values of the;zero-level blocks
in (1),
- 3. the block selection for the i-th level,
4. the NSR aiid EET values of each block,
remaining in the matrix prior to modification “
. during the i-th level;
5. the IARB Main Sub-table prior to the modification
in the i-th level,
6. the IARB Main Sub-table after i-th level
médification,
7. the IARB Supplementary Sub-table after i;th
level modification,
8. the Output Vector Sub-table after i-th 1éVel
modification,
9. the number of zero vectors in the Main Sub-table
after i-th level modifigation, and

' 41

10. the number of,hon-zete vectorsinthe
| Supp.l’eme’nt’ary Sub-table after the 1=th

level medification.

Examples of primary andLSECondaryoutPﬁtS;are ..

illustrated in Figures 3.8 and 3.9 respectively.

Options Available'td'the.User

In its present form, NPM provides the.ueer with
several options with regard‘to the type ef output and
the objective (i.e., minimization of space requirement
or miﬁimization of expected execution time) desired,

The options are controlled by switches in the program,

and their value must be specified by the user. A

summary of these option switches is given below:

| PURPOSE SWITCH VALUE RESPONSE
W L. Block Selection IOPTN 1 Blocks selected on
” Cr}terion basis of maximum NSR

2 'Blocks selected on

basis of minimum EET

2., Single/Multiple JOPTN 0 Single partitioned
Output o | -
. “ | - matrix & associated

time-space data

N : a L 1 Set,offpartitiohed'
matrices each with

associated time—spacé

data
3. Secondary"_ - KSKW2 0 - Secondary outputs are
Olitputs | | % |
~generated
1 no secondary outputs
. - generated

A variable, KKNT, is used in conjunction with the
JOPTN switch to specify the block vector from wyich initial
fprced selections are to begin for multiple output runs.
For example, {f there are 14 block vectors in the IAR
.Table and the value of KKNT is 12, three partitioned
matrices will be generated by NPM, where the initial blokk
selected for each run is 12, 13, and 14, respectively. For
test and<experimen£alpurposes, an action weight vector
ACTWT and a rule probability vector RLPRB have been
incdrporated in NPM. Both vectors are initialized by the
user by means of DAIA.stétements. ‘Finally, the variable

OUTF is used to specify the output device or file.

,,,,,

43

..-

THE BINARY INPUT MATRIX FOLLOWS

|
2
i
1
1
1
|
1

’ﬂ-”--
S et b et e e e ()
—“Q—-Q—-ous
Q-DQ--.-.——__

|
|
1
1
N
1
)
‘ :

Q—Q-Q-—-Q
e Q) et e ot o e

THE OUTPUT BLOCK VECTORS FOLLOW

* ,

L .

xkkkk

11Qeeaaaawae@eaﬂaae@aeaa0@0@@@@91aaaa1ﬁ@@1@6@@0@0@@000@@06@@9@900 2 3

- 00000111009300000030000000300000111 13000

0NAP000000000A0C00330P00A 3 4

.ﬁlll@lGGGGGGG@G@G@00900@06@00@0@0@%0lGl01EGQGGGOGGQQGQQGGGGBGQGQO 4 3
ﬂ@lllGG@GG@8@0033663600606000@00llllﬂlﬂl@l@ﬂﬂ@ﬂﬁﬁ@ﬁﬂﬂ@ﬂﬂ@ﬂﬁﬂ@ﬂ@ﬂl 317

THE INDIVIDUAL BLOCK VALUES FOLLOW

NSR

0.400000E+01

A+.900000E+01

0.150000E+02

B«650000E+02

EET

0.000000E+00
0.000000E+00
0.300000E+09
B.700000E+00

" THE TIME-SPACE COORDINATES ARE 0.100000E+01

THE PARTITIONED MATRIX FOLLOWS'

WWWMNO NN = -
QLWMMNMVe L
WoOwmmpNmNvI S
WLQwodmwOvdnme

TERMINATE ALGORITHM

~aocxoooeons

1 9 013 1
1 6 11 6 1}
2 6 2 6 2
2 6 2 6 2
2 0 2 9 2
9 6 06 6 0
8 0 12 0 14
2 10 9 @ 1S

FIGURE 3.8

0.930000E+02

' THE 1AR TABLE FOLLOWS

*

.-'*- . e e _ ’ ° A L e : e . o
1111111002002600090000000000000108100000000000802000000003000000

d111010100006000003300000303900600060101030000000000002300039000000

01111010000000000000003906020700000081010000030000000000302000300
0811111168000090000000008800020411118200000000000030022093A00A0B0
0300071 10080000000640000060000001 | 1100000 100000008030000000000000
1111101800000000006000200000000000000 1300 100302000000AAA0BE0N0AN |
11110100000000000000002000000000030000141003360003000200000000043 |
911101000000000000800000000000000A0A10101AGAAROACIGACARAAAAAIAAA1
0111101020007000000000000AGAABACEARG01010100090930a0AARPAS300000
1111103200000009090000000009200010000 1360 1 0000006300000NNGE000AA |

- 81111006000020000300000000700G000100101010106000900030000000000000 1

281110000090000000000000003A00021111010138100090000000002000000001

1111000006000080000070000002033AGA 100001101 10000000000000003000003]

21110090000000000073000900000000010A111111180000000000008000300000 |
0011000000900000000002000000200011111111110000000000009000A300020 1

THE INITIAL BLOCK VALUES FOLLOW

NSR EET
B.150000E+02 ?.000000E+20
B.900000E+01 2.00000AE+00
C.130CGOE+R2 G+.GOODIOE+DD
@.420000E+02 0.00P030E+00
Q.800000E+01 A .900000E+00
0.130090E+02 B.200000E+00
0.800000E+01 0.200000E+00
0.150000E+02 ?.300000E+00
B.250000E+02 ?.300000E+09
0.250000E+02 0.300000E+00
0.470900E+02 2.SP200RE+00
De6SP0BAE+D2 0.700000E+00
B.310000E+02 0.500000E+00
0.480000E+082 ?+.80000QE+00
0+.5300030E+92

0.100000E+01

FIGURE 3.9

»ububmwbu@momuq

arees

QRNUNNWWWON LD N DN

”» -

THE SELECTED VECTOR FOR LEVEL 0 FOLLOWS . . A |]

., o o T % e . e Ak kkE
0@1Il0@@00Gﬂﬁﬂﬂﬂﬂﬂﬂﬂﬁﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬁllllﬂl0101OOQQGGGQQGGGQQGUGGGGGGI'3’7

i oty s YA IRt Al -3 Py £ o1

ITS VALUE IS 0.650000E+02

THE BLOCK VALUES FOR LEVEL 0 FOLLOW

@.530000E+02

0.150000E+02 0.009000E+0Q
0.900000E+81 0.030000E+00
2.130000E+82 0.000000E+00
0.420000E+02 0.000000E+09
0.8000N0E+G] 0.09000AE+B9
0.130000E+02 9.200000E+30
0.800000E+@1 0.2000F0E+39
0.150000E+02 0.300000E+09
0.250000E+02 0.300000E+00
P+.250000E+02 0.300000E+00
 8.470000E+02 0.SANNOOE+00
0.000000E+00 0.000000E+00
2.310000E+02 (.500000E+00
0.480A00E+02 (.800000E+00
. 0.100000E+01

THE IARB (MAIN) TABLE FOR LEVEL © FOLLOWS

*v] ® ® * ® - e ® .

BlllllllZEQG@GGZGQGQQGGGQGQEGGGGl00l0@006@0@90060@60066@00069000l
01l10161QQG@B@GG@@0090%6@66@6@0000@0lﬂl00@ﬁﬂﬂﬂﬂﬁﬂﬂ@@ﬂ@@@@@ﬂ@ﬁﬂ@ﬂﬂ
ﬂllll@l@Gﬂﬂﬂﬂﬂ@ﬂ@@@@ﬂ9@936600080@66001010090@00@0060@000%0090600l
: G@lllll1ﬁ@ﬂ@@ﬁ@ﬂﬁﬂ@@@ﬂ@ﬂﬂﬂ@ﬂﬂﬁﬂ@1lllﬁ@ﬂﬂﬂ@ﬂﬁ@ﬂﬂ@960@@”0@60000099l

aaaa@ea1aaaaaeenzaeaagaaazaaaaoa1111@@00@1aegﬂaeaoagaee@@eaaeeaeo”
11111@:ee@eeeaoaoaaaanaacg@ano@@@goea1aaeaaoamaaazeoaaaazzaa@aaot:

1111@1aaﬁamaeaaeamaaaﬂoﬂagaaaaegaaeee@101@@eeeeﬂﬂ@ﬂaaaﬂ@aagaeaeeo
8111018000007000080000008008200003301 710 1060A00630000360AG30A0A0N

9111101000000000030080000300G000CA2AR 101010000A902000000AGBG00001
1111192000002700080000002000200A3100041000136A00029900A03306000031

011ll0@00@@060@G@ﬂﬁ@@ﬁ@ﬁ@ﬂﬂﬁﬁ@ﬁ@lGﬂlﬂlGl@10000@00@00006@00000@061
00008@0006@09@000@306@80@@3@9006800000@0@0@9600003900600809600002
'llll0060@90Bﬂﬁ@ﬂﬂﬁﬁﬁ@ﬂ@@ﬂﬂ@@ﬂ@ﬂ@lGEBGIl@lP@ﬁﬂ@ﬂ@@ﬁﬂ@ﬂﬂﬂﬁﬂ@@ﬂﬁﬂﬂﬁl
ﬁlllGﬁﬂﬁﬂﬂﬁGOQGGGGGGGGGBEQGGBﬂﬂﬂl091llllllﬂﬁﬂﬂﬂﬂﬂﬁﬂﬁﬁﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂl
ﬂ@llOﬂﬁﬁﬂﬂﬂﬂﬂﬂﬂﬂﬁﬂﬂﬁﬁﬂﬂﬂﬂ@ﬁ@ﬂﬂ@@llllllllllﬂ@ﬁﬂ@ﬂﬁﬂﬂﬂ@ﬂﬂ@ﬁﬂﬁﬁﬁﬂﬂﬂl

FIGURE 3.9 (continued)

4G

5
5

T

6
2
6
S
4
S
5
4
0
4
3
2

¥ ok ok kg

PRUAUNWWWONDWLL DD M

1

THE IARB (MAIN) TABLE AFTER LEVEL © FOLLOWS o | v

VRNV WIWNNULIEDD

THE IARB (SUPP) TABLE AFTER LEVEL @ FOLLOWS

| * ° ® ® *) . ° ° - kkkkg
llllﬁ@ﬂ@ﬁﬁﬂ@ﬂﬂﬁﬂﬂﬂﬂﬂﬂﬂﬂ@@ﬁﬂﬂ@ﬂﬁ@ﬂﬂﬂﬂﬁﬁlElﬂ@ﬂﬁﬂﬂﬂ@ﬂ@ﬂ@@@@ﬂﬂ@ﬁ@ﬂﬂﬂl'4 2
ﬂlllﬂﬂﬁﬂﬁﬂﬂﬂ@ﬂ@ﬁﬂﬂﬂ@ﬂﬂﬂ@9@@0@9@9@@@0I9!0!ﬂﬂﬂﬂﬂﬂﬂﬂﬁﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬁﬁl 3 3
ﬂﬂlL@Qﬂ@ﬂﬂ@ﬂﬁ@ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬁﬂﬁﬁﬁﬂﬁﬁﬁlﬁl@l@@ﬁﬂﬂ@@@@ﬁﬂﬁ@ﬂﬂ@ﬂﬂﬂﬂﬂﬂal 2 3

THE OUTPUT VECTORS AFTER LEVEL @ ARE

* o o e *kkii
llll01Gl0!@@GGGGGB&BBG@GGG@G@GGGI,3 7

~ 1

¥x ° . ® e
031l1G@Gﬁﬁﬂ000@@0@0@0@09909@09@@

IARB (MAIN) CONTAINS . 6 ZERO VECTORS

IARB (SUPP) CONTAINS 3 NONZERO VECTORS

FIGURE 3.9 (Continued)

. CHAPTER 4

~ DISCUSSION OF NPM PERFORMANCE, MULTIPLE-OUTPUT

RESULTS, AND CONCLUSTIONS

Com‘arison;of NPM Results With Those of Burnham's BLOCX

- Algorithm

' NPM-and'BLOCX performanne was compared on the baéiS'
inherent storage sanings fof the eight‘test matfices in
Appendix A, In addition,-for each eést matrix, both a
single partitioned matrix and a multiple nutput set waéuw'
generated by NPM. The purpose of this step was to deter-
mine if an improved solution over the single output would
result if alternative zero-level biock selections are
made. The selection criterion used in NPM for these com-
parisons was maximization of NSR. In establishing the
conditions of the experiment, all actions were considered
to be équally weighted (=1) and all rules equniiy probable.
To provide a common basis for éomnarison of the results,
thevspace savings,'reflected in the number of non-
programmed actions for each partitioned matrix was récord—
ed. These results are summarized in Table_4.1;

From the results indicatedﬂin Table 4.1, it can be

seen thnt NPM producgd equivalent results foi test matfix

4, and improved results for the seven remaining matriCés.

48

e LI o A S TN ST VI, ' S M3 510

| "“NUMBER”OF‘NGNPROGRAMMED'ACTIONS"
TEST | | " NPM NPM

MATRIX ~ BLOCX (BEST OF SET) (SINGLE OUTPUT)

“ 1 37 42 39
2 46 s 52
3 25 a6 25
4 22 22 22
5 44 55 - 52
6 71 83 73
7 19 27 27
8 16 17 17

— —_—

TABLE 4.1

It is especially interesting to note that for half of the
test matrices, improvement over the single output results
was obtained wheh the multiple-output set was generated.,
This'confirms our earlier contention, that basing all

block selections on a specific criterion does npt_gﬁaf&ntee
‘the best results., The degree of sucgess obtainable by

- generating the multiple-output set for a.giyen input
'matrix,‘is a fungtipn of the zero-level block interrela-
ti;nships ih the input ﬁatrix. Ffom our analysiS'bf the'
test matrice83welsuggesﬁthe,ﬁollowipg‘guidelines for

using the multiple-output option of NPM:

49

o

. n .
13 . - .
: ' e .

A complex matrix, where complexity can be'e

measured in terms of the number of over-hﬁ

rlapping zero~1eve1 blocks in the input matrix

will,,in_general, yield'improved.results when

the:multiple'output.set is generated. This is

-illustrated by the results obtained for test

,matrices.S and 6. - .

Figures 4,

and a com

Com

The
Penlck al

of BLOCX

aI'lSOIl O

A sparse (having few entries) natrix;.which has

a proprotionatély high number of independent
zero-level blocks, will not, in general, result
in a substantial improvement (if any) when the
multiple output option is used. This is
illustrated by the results obtained for test

matrix 8.

1 and 4.2 illustrate an example of a sparse

Plex matrix, respectively.

f NPM Results With ThoSeiof*Penick's.Al‘orithm

comparison -0f NPM results with those of the
gorithm was not as¢stralghtforward as in the case

"This is due mainly to an apparent inconsistency

of the Penick algorithm in.thehinclusion of conditional-

transfer blocks in the output set. For example, in the

case of three of the test matrices (indicated by * in

table 4.2

),.no conditional-transfer blocks were seleCted@-

50

t

. ‘ v .
m‘N A
' -~ ——
. \\
, "W\‘ \
s A ’\ \ ~
. \ Y o . .
- - / L o
AL .
Ay -
¥ ’
s ¥

-THE BINARY INPUT MATRIX FOLLOWS TEST MATRIX 8 .

1 0 0 00000 0 0O O O OO OOOOOTUO 00
0O 1 0 000 OO O OO O OO OO OO OO OO 0 O
0O 01 000 OO0 OOOOO OO OOUOOOUOUOO0O O
o 001 00 O1!1 00O OUOU OOUOOOOUOU OO
0o 00 01 0 00O '@ 00 O OO OUOU OO 1 0 00
o 00 0 00 & 0 0O ¥ 1 0O0 131 0 O0O00O0O0O 1 O
O 0 000 O 1 0 0O0OT1 1 001 000001 0
00 0 001 &t O OOUOU OUO11 01 000 O O0 1}
o 00 01 000 O O0O1 011 00100 0 000
0 0 01t 00 00 @1 01 01 0O0O0CT1 00 01
o 0t 000 01 01 11000011 0010
6o *+ o 00 0 1 1 1 0011110010101 00O
-THE IAR TABLE FOLLOWS

*x | &,

00000001000lOOO00000000000000000000000l00000000100000000000000000’
000000001010000000000000060000000000000000010000010000000000000000

00000000010100000000000000000000000000001000000000000010000000000

30000000001ll00000000000000000000000000000001000001000000000000000'
00000000001 100000000000000000000000000010001000001000000000000000
000000001 1000000000000000000000000000000000001000000001000000000%
0000000001 1600000000000000000000000000000101000001000000000000001
: 000001l0000000000000000000000000000000000000001000001000000000001-
'1000001l0000000000000000000000000000000000001001000001000000000001
~000001l00000000003000000000000000000000000l1001000001000000000001‘
0000011000000000000000000000000000000010001lOOlOOOOOlOOOOOOOOOOOlj

-THE INITIAL BLOCK VALUES FOLLOW

_ FIGURE 4.1

‘@m@»»»namg&

~O~==00000000

%
%
*
%
*

VPONLRWOOP® &

aEH T
RS C

-THE BINARY INPUT MATRIX FOLLOWS TEST MATRIX 6

T = v

0o o

O O
0O O
O O
0O O
0 1
R |
1 1
1 1
0O O
0O 0
1 1
1 1
11
1 1
1 1
1 1
0O o
1 1
0 0
1 1
o 1
1 1
1 1
1 1

odo-o~°-~é-o~ooooopooo
ooo—noec—-~e-co°ooooodpd
~ OO0 O rrmrremO=—er0000000O
OCDC>~1D-O-—uono—uouc—CDQWDC)~WfC>OWDC>O
COOmOmOmmmeree00000000000

. O‘OOQOOQOOOOOOO!-OO0,00-—OO-Q—-
3-c:o<:c>~<:n-w~—-w-n~9'-éo;-cio-c>~w:

THE IAR TABLE FOLLOVS

¥ e ° _ K3 * o T e ° N .***** “ o

000000000001111l10101100000000000010l0009000000000000000000000@60 9.2 o s
.OQOOOOOOOOQIIllllIQJOIQDOOOOOOOOOODOOQOOIlOOOO@OOQOOQOOOQQOQOOOQO.9}2 | ol
000000000000000000000011100000001100010000000000000000000OOOOOOQOg3~ | e

00000000000111111101010000000000000000101100000000000000000000001 9
/0000000011011 111110106000000000000000101000000000000000000000000110
0009000000911rtktatomueaeeooooooox101ooooooooooooooooqoooooooooot.9.
00000011100111£11010100000000000110000000000000000000000000000001 11
- 00000000110111111101000000000000000001 110000000000000000000000001 10

POPLw

000000000001111110101000000000001 1101000000060000000600000000000001 8
00000000000111111101000000000000000001111100000000000000000000001 8
~ 00000000010111111000000000000000001001 110000000000000000000000001 7
100000000000111111000000000000000111¢11111100060000000000000000003 6
- 000000011000000000000000000000001 1000 1600000000000000000000000001 - 2
000001100000000000000000000000000 10000001000000000000000000000001 2
=THE INITIAL BLOCK VALUES FOLLOW n | -

Rwoswdo

A COMPLEX MATRIX |
FIGURE 4.2

52

even tROQgh;suchzblocké were.available‘after.seléction,pf;

. " ' - et
4 0 [

the.direct-transferAhiocks were,incpfporated; Tﬂé_
criterion'usedby-NPM'for this cdmﬁarison'Was.minimization'
of EET, with the‘provi;ion.that conditional-transferrblqcks-
would be .allowed after all direct-tréhsfenrbiocks-haVe

Been incorporated. The comparison of the resﬁlts,generated

by the twd algorithms-is summarized in‘Table 4.2.

PENICK ALGORITHM ~_NPM

TEST | | ,
MATRIX = NSR = EET _ NSR___ EET

1 26 0.2 31 0.2
2% 21 - 34 0.5
3 18 0.857 18 0.857
4 17 0.364 20 . 0.364
5% 29 - 36 0.2

6% 34 - 43 . 0.4

L M

TABLE 4.2

A meaningful'homparison between the two techniques
is ogiy possible for‘tesf matrices 1,‘3, and 4, since
conditional-tranéfer.blocks were incorperated by both
algorithms for thése‘cases. From'the.resu1tsofTable»4.2, r

<

we note that the EET values of the three partitioned

‘matrices in question are the same. However, the NSR values’

of the NPM outputs are higher thanhthg carreSbonding-Valugs

SR
. '.‘n'. =

4

'for the Penick algorithm for test matrices l and 4

hThis indicates that the NPM algorithm is more conserative

with space requirements while requiring the same increase

in-expected execution time.

5=

‘Illustrative Exam.le of Us%\bfjthe NPM.Multi le-Outlut

OptiOno

We indicated in Chapter 3 that NPM-was‘capable.df

_generating a set of partitioned matrices having'different'

time-space requirements, The following discussion will

o

illustrate user requirements for generating a.mnltiple-

output set, the type of results generated, and the
interpretation of these results. We‘will nse-tést
matrix 1 of Appendix A as the input matrix. For the
sake of simplicity-we will assume a weight of 1 for
each action and a orobability of O.l for each rule.

The user inputs required to produce almultiple-
output set for test matrix 1 are:

l. Set the Single/Multiple Output Switch for

multiple output: JOPTN = 1

2, Set the Block Selection Criterion Switch for

&

maximum NSR; IOPTN =.1 .

3. Set the Secondary Output Switch to inhibit

secondary printouts: KSW2h=°l«

A

" . : .
e DL ot
. iy . N PN
b BY 4 SO .
; - oy
e’ * . =

B S . . e

4, Specifytentries Of'fheua¢tibn W?isht-vech?"

DATA ACTWT/8%*1., 24%0,/ o

5. Specify entries of ;herrule'prbability vector:
DATA RLPRB/10*.,1, 22%*0./

N\

6."Specify file‘containing the input matfix:

IDF = Input File Number

- 7. Specify output device:

OUTF = Output Device Number
8. Execute NPM

The system will fespond with a printout (br oéher display)
of fifteen primary outputs kref: to'Chaptér 3) correspond-
ing to the fifteen zero-level block vectors. An
illustration of two of these outputs is given in Figures

4.3 and 4.4. We will now discuss the outputs indicated

in Figure 4.3,

The first output specifies the initial forXeed block

selection made for that partitioning run. ‘he output block

- vectors correspond to the blocks forming the partitions of

the output matrix, and are followed by the corresponding

~ NSR and EET wvalues for each block vector. The NSR-value_

is proportional (based on the action weights) to the net.

storage savings inherent in the block representedﬁyfhe

rd

-THE BINARY INPUT MATRIX FOLLOWS

1 1 0 0 o0 1 1
1 8 8 1t 1 1 1
1 1 1 1 1 11
1 1 1 1 1 1
1 11 1 @ 1 @
1 1 1 1 1 0 1
1 1 1 {1 @ 1 o
1 1 1 1 1 @ 1

LY I~ T

—-Q-.-o-—-.

BLOCK 14 .IS THE INITIAL FORCED SELECTION

-THE OUTPUT BLOCK VECTORS FOLLOW

-THE TIME-SPACE COORDINATES ARE

*

¥k

kkkgh

GGIl00900@9@0@60@00000@660@0@0@@0ll0@%0000@660ﬁﬂﬂﬂﬁﬂﬂﬁﬂﬂ@ﬂﬁﬂﬂ@ﬂﬂﬂ 22
00N0210109000ANA0G000000000300000000210100020000030000000030000000 22

'GG@@IHl@060000G@@ﬂﬂﬂﬂ@ﬂﬁﬂﬂﬂﬁ@@@@@@ﬁﬂ@l010lﬂﬂ@ﬂﬂﬂ@@@ﬂﬂﬂﬂﬂﬂﬁﬂﬂ@ﬂ@ﬂﬂ 2 3

0301111000000000000000000000003111100000000002000000000000003001 4 4
ﬂlll09@@@0@006600@906@0@00@00000l001llllll@@ﬂﬂﬂﬂ@@ﬂﬂﬂﬂﬂﬂﬂ@ﬂﬂﬂ@ﬂﬂl 38
-THE INDIVIDUAL BLOCK VALUES FOLLOW

NSR

0.200000E+91

0.200000E+01
0 .300000E+01
O.120000E+02
?.200000E+02

EET

0.000000E+ 00
0.000000E+30
8. 300G00E+ 00
0.000000E+0d0
0.800000E+00

‘ﬂollﬁﬂﬂﬁE+ﬁl

THE PARTITIONED MATRIX FOLLOWS

WWWWO NN =
G’@(@G’U(ﬂsﬁb
VOLLLUNES
WOWWOONS

oA MODOS

RNV N~

9 0 10 12
2 2 2 2
2 2 2 2
2 2 2 2
2 8 .0 8
6 011 0
2 8 0 8
6 0 013

FIGURE 4.3

SI;

0.390000E+02

.
//\\
s v
« 1
£, |

B T A

L ey sy L SR e

Pt o b1 s L8

BLOCK 15 IS THE INITIAL FORCED SELECTION
=THE OUTPUT BLOCK VECTORS FOLLOW

x e *x e “ **##‘

GGOGﬂlﬂlﬁﬂ@@00@000@000@000@0”0@00@00lﬁl00000@0006@009066@000@@000 22

00N01010000000000300000000003000CANNA101010000000000000030CARNAGE 2 3

113000060A3000000002ANAAABCVA000100001101100000008000300A00000000 .2 S

00001111000000000000000200037A00111100003000000000020300000ANA0N1 4 4

00110000000000000000000A3N00G00111111111100000000030000000000001 210
-THE INDIVIDUAL BLOCK VALUES FOLLOW

NSR EET

0.200000E+@1 ©.600000E+N0
0.300000E+01 0.300000E+00
0.80000GE+01 0.30000PE+0G
8.120000E+02 0.NGAO0OE+30
0. 17600GE+@2 . 1 00DOVE+D]
~-THE TIME-SPACE COORDINATES ARE @.130000E+01 0.420000E+02

- THE PARTITIONED MATRIX FOLLOWS
1 4 6 0 6 1 1 08 1 1
1 2 8 5S 6 1 1 9 1 1
2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2.2 .
3 3 338 0 8 0 8
33 33 7 @0 71 610 @
3 3 33 0 8 0 8 0 8
'3 3 3 3 7 08 7 0 011
-TERMINATE ALGORITHM
FIGURE 4.4

57

relative’to the non-partitioned'CruleSgeXecuted,

’correspondihg.outputsvector.' The EET value representnthe

increase in the expected execution time of the matrix,

b,

sequentially) matrix,.dﬁe to the formulation of’the

block. As discussed in Chapter 1, the only time a non-

-_zero (positive5 EET value will occur is in the.case'of_a“

conditional—traasfer block Thus, the blocks correspond-
ing to the thitd and fifth block vectors are conditlonal-'
transferablocks, which increase'theﬁexpected-execution‘time
of the matrix 0.3 and 0.8 time units respectively. The
time-space coordinates indicate the total EET and NSR for
all blocks in the partitioned matrix. Finally, the
partitioned matrix itself is printed.

To illustrate how the multiple-output results can
be used, we-have Plotted the generated time-space
coordinates ih Figure 4.5. Since all coordinates are
provided by NPM, such a plot can be generated by using
a system.plotting routine; if desired. In this plot,
the circled entries are the undominated.entries of the
set. - Since the undominated entries.represent the mos t

efficient partitionings of the input matrix, it may be

desirable to modify NPM to output only.these values,

o .

If, as in this example, each action (or décision

node) requires one unit of memory for storage and one . ~

NET STORAGE REDUCTION

| P

0.4 0.6 0.8 1.0 1.2 1.4

INCREASED EXPECTED EXECUTION TIME
- TEST MATRIX 1

FIGURE 4.5

59

Q

O P R Rl IR e T PR
EoNn i A e e e L S S T

e

r

[

‘unit 6f time for -execution, we can produce ‘a time-space

';reqpirement.plot based bn.the‘follbwipg calculaﬁidﬁs:

1. jcalcﬁlatéthe differenge-between thé'totall
space requirement'pf-the matrix.before,
pattitioning (i.g., 62.memofy-units”fof
matriﬁ 1) aﬁd each NSR va1ue_of Fighre«é.S.
to obtain the space requirement coordinateé

£

2. Calculate the-expected-éXécution time of

the matrix before partitioning,
X |

Expected Execution Time of Non-Partitfoned Matrix

t
1

P.
1 34

=]
I~ 8

; i?
Where, pj.is the rule probability of the‘j-th'rule
and ti is the execution time of the i-th action.
Add this value (i.e., 6.2 for matrix 1) to the

EET coordinates in Figure 4.5 to obtain the expected

execution time requirements.

r'é

The corresponding time-spacerequirement.cdordinates'are
then plotted as shown in Figure 4.6. Knowing the time-
space requirements of the'matrices corresponding to the
undominated entries, the analyst will be.betterfequipped
to select fhat pértitioned matrix which.best gg¢ts.thg

constraints of his problem.

sk

b .

e e aagn i pp oo s, . e e ———

e B TR, SR T e g S I o T i

NET STORAGE REQUIREMENT

6.6 6.8 7.0 7.2 7.4 7.6
REQUIRED EXPECTED EXECUTION TIME
"TEST MATRIX 1

FIGURE 4.6

.61

" Conclustions

In,this.and the previqus chapters, we have attempted'

~ to illustrate some of thesignificant advantages offered

by the new partitioning module over existing partitioning

techniques. We can categorize these improvements in the

following areas:

1.

Effectiyeness: Although comparisons between NfM
aﬁd existipg.algoritth“Were soméwﬂat limited

in number, the fesults tend to indicate the
consistency of NPM in producing more effective
results than existing algorithms. In the case of

maximization of space savings, NPM produced better

results than Burnham's BLOCX algorithm for all but

one matrix. Ih the case of minimization of
increased expected execution time, NPM produced
results identical to those generated by Penick's
algorithm;‘ However, NPM resulted in a greater

savings in space than the corresponding results

of the Penick algorithm. 1In all of these

comparisons, NPM results were at least as good

as thoée of existiné algorithms.

Flexibility: As we have indicatéd, NPM is capablej-

of partitioning the action/rule matrix based either

on minimization of increased expected execution

‘time or maximization of memory Savings,'merely by

62

P —— » " . A Y VN8 4500 R =t 1 Py s © < -arm @ B et AT e et e vy 0 n Py rres i AT TN . I T T LNy g P

specifying the desired option. In addition, NPM

".,fis not restricted to the use’ of identical action]
weights or equal rule probabilities. 'We.feel
that removal of these restrictions results in a

more realistic approach to partitioning than that

offered by existing algorithms.

3. Potential'for'Appiication:' We feel that the
greatest potent1a1 for NPM is its use as an
ana%ysis tool. We have illustrated how the
present capability of the multiple-output
option of NPM can be used to provide the
analyst with a set of partitioned matrices
corresponding to a given input, each having
different time and space requirements. This is
very useful in determining~time.space tradeoffs
in the case of systems subject to both execution
time and storage constraints. With minor
‘modification of the existing a@gorithm, it
will be possible for the user to specify the
desired biock selection at all selection'levels.

The information required by the user to make

these multi-level selections is already provided.

by the optional secondary output of NPM;

- There is a limitation on the number of rows in the - . -

,input"matrix that NPM-wiil.aCCQPt. :Due/tq'the:poﬁers-;'
‘of;twoschemeused\to_geﬂeratethé:cumulativé-gﬁmmatrix:‘
-uséd forblock.identificaﬁidn, ﬁhe,maximumrow.dimension
‘of an input matrix thét-canfbéghand;ed by'most cqmpﬁtefs‘
is 32. S°me'Preliﬁinary work has been done on removipg .'
this reétfiétion,andan.outline of-qhe pr6posedprocedﬁre
iS'preSented in'Appendix C. ThiSfprObedure will replace
the current block.idenpification stage of NPM without

requiring any changes in the selection-modification stage.

Co : : . e D g N " " " . e e e e e \
W ey Al

. ey

. . 11N . N R

<
s

i

r P

AT

APPENDIX A

© O H O K K = M
' H O K H H B M

© H O H O+ K H H H H M

11000110
10011111
11111111
11111111
1111010
11111010
11110101
11111010
TEST MATRIX
0010011
1111111
1111111
1111111
1111111
1111111
0111110
1011111
0111110
1011111
0111110
1111000
TEST MATRIX 2

66

e R

100000
110000
111000
111100
111110
111111
111111
111111
111110
111100
111000
110000
100000
TEST MATRIX

67

N

y
N

10000000000
10000000000
01000000000
01000000000
00001001001
00001001001
00100100000
00111100100
00010010010
00100000000
00000000111
00110110000
00111111111
10111111111
01000000000

TEST MATRIX L

68

H P FHFFKFEFOFOHKELELHKFEEPFELPFEOONRE KIEOOOOO O

69

0
;
;
0
1
1
1
;
;
1
1
1
1
1
1
0
1
0
1
0
1
1
1

TEST MATRIX 6

70

0
0
1
.
0
0
0
0
0

0

»
0
]
0
0
0
0
0
0

H H M M M M O O OU UMMM OHMHO O+ O M
O O HF H HHFFKFFHFHFRFEFHFHFHOMMOIRKE O H

1
,0_
1
5
0
0
1
1
1
1
0
0
0
1
1
1
1
1
1

TEST MATRIX T

71

0
1
0
1l
0
1
0
1
1
1
1
1
1
1
1
1
1
0
0

e
,,,,,,

©O O O O O O © O © 0o o M
H O O O o o © o o o + o
©O H O O O 0o © O © H o o

© O H O O O O O+ O O O

© O O O O O O O o o

00
00
00
01
00
10

10

10
00
00
01
11

0
0
0
0
1
0
0
0
0
1
0
1

©O H H O O ©O O 0 0 o o o
© H ok OHFH H O O o o o
H H M O O HH FHF O O O O o
H O O FF O O O o o o o o
© © H FHF HF O O O © o o o
©O O ©O O OH MM O OO O O
H O O O F © O 0O 0o o o o

TEST MATRIX 8

72

©O H © H O O O O 0o 0o o o

© H O O O H O O O O o

©O O OH O OO0 o o o o

18

i

. . \
& 4 : : 3

APPENDIX B

LOCK IDENTIFICATION
SEGMENT

et number of fon- |
ero rows equal to .
umber of rows in
unmulative-sum
(C.S.) matrix

Have
two or
more new
~identical

entries been
ocated in IRS,

. Is
” the number
of nonzero rows

Store Column (rule)!
indices of these
entries in the rulel]
field of comparison
vector ICOMP

Initialize row . B
index -
I =]

Starting with row IJ

. - I search all rows of
the C.S. matrix

under the rule

2 corresponding to |

' | the first identical

entry found above

. and determine all

Store row I of C.S. | entries >0.

matrix in working
vector IRS

Have
two or
more non-
2ero entries
~ been found

?

3

. A

Search IRS for a
set of identical
entries not
previously
considered

FLOWCHART 1

- . - | ‘ 74

. g T s s s e D T R T ———

) i v N
i t “ J
) Store the row 'h o | Compute: -
indices of the non- NSR--WD+(m-1){wk
zero entries in the and -k
action field of o
ICOMP o - EET=T }p . Store
, ' n
| ‘ these values in
value vector VNET,
corresponding to " ;
block vector in
IAR Table
) . Is
Potential
o block a
. conditional
e transfer block ©
Y ;
Set position 65 of
ICOMP = 1‘
Hhregent block\
a subset of- an
existing block in
IAR Table
6 ?
Is 4
this the
first block
found
? Transfer ICOMP to
first empty vector 4
of IAR Table * %
Y .
° [
Transfer ICOMP to .
first block vector -
in IAR Table 9 -
/ '
7
FLOWCHART 1 (Continued)
5,] :) | 75 |) -« o

i
|

11

Compute:

NSR=-W +(m-1) JW,
k

and

EET-TDEpm. Store

these values in
VNET, corresponding
to block vector in
IAR Table

Zexro comparison
vector ICOMP

Have all
entries in
IRS vector been
examined

?

Zero working
vector IRS

12

Is
row 1
the next-
to~-last non-
ero row in C.S.
matrix

Increment row
index I«I+]}

13

Subtract contents
of last nonzero row
in C.S. matrix from
the corresponding
nonzero entries of
all preceeding rows

14

Initialize IARB
and VNETB Tables

Stop

FLOWCHART 1 (€Continued)

TR 2 TN

At

—]
BEGIN SELECTION-
- MODIFICATION

i

| Is
"a "family" of
Partitioned ma-
trices desired

Specify initial
block selection _
(KKNT) for present
run ‘

- Are
any nonzero
blocks in
Main Sub-
table

?

FLOWCHART 2

77

;or max. NSR). If
more th an one such

Junspecified crite-
rion '

Search VNETB for
value of block |
which best satisfi

the selection
criterion (min. EET

block exists, - .
select block which
also best.aatisfies»

4 N v o

14

JTransfer block

vector correspond-

JVector Subtable and

ftively

ing to this value
(or KKNT) and the
associated VNETB
entry to Result

corresponding entry
in VNETB, respec-

jthis block vector

Assién,a unique. .
negative number
(ISET) to the
entries in the
binary input matrix
which correspond to

Iblocks in the Main

165 of these

Determine~whiCh

Subtable overlap
with the selected
block. Set position

vectors = 1.

-

&

e

8
4
2
1
A
o
i
7]
CE

Pl

| | , Initialize row o - '} Determine 1f the
o | | ‘index into Main - K new block 1is a
e Subtable - ‘conditional
- ’ | | I=1 | transfer block

e

Compute: ‘ | - a

- 1s
position 65

-NSR?“V§+(°‘1£"
of block I=1

k:

‘and;

? EET=T_ T, |
EET-TDEpm -

Ta

| Copy rule entries
. Retain in the of I-th vector
?? E _ storage array , ' cotresponding to
o JSAV those rules rule indices in :
- of the I-th vector JSAV and the entire
- 1l which are | action field of
. exclusive of the I-th vector in
rules in ICOMP corresponding |
- : positions of the |
{first empty vector
}in Supp. Subtable.
Copy calculated
NSR & EET values: in]
corresponding
position in VNETB

j

Is
the number
of exclusive
rules >2

| .

Initialize:

?

K8 = 0
Kl =0 — I
KSTRT = 1 : e

FLOWCHART 2 (continued)

R e e TP

<

- e A A e M SRS 1 1o

r

Ihitialize'lqdéx”
) into action field
of I-th vector

LI = 1 ° = .

Is
- action LI
in the I-th
vector = 1

Zero entries in
action field of
I-th vector between
KSTRT and LI-~1

L R

?

Update KSTRT

Is
action
LI {n ICOMP
= 1

-1 KSTRT«LI

o Set branching
- | switch KSWl=1l,
Increment the
Lnumber‘_of'blocks
- | found during action
) fmodification of
"]I-th vector.

Increment the

- number of actions
found in possible’
new block

K1+K1+41

FLOWCHART 2 (continued)

TN T

i

Detéfmiherif new
block 1s condition~
al-transfer block

~ ICompute:

NSR=-W_+(m-1) }W

k K

and,

| 'Ear-rnzpm
m

Y

Transfer action
field between KSTRT
and LI-1 of the
I-th vector & copy
entire rule field
of I-th vector to
corresponding
positions of first
empty vector of
Supp. Subtable,

Copy calculated NS
& EET values in ¥
corresponding
position in VNETB

15

80

_deWCHART 2 (continued)

;
Updatgé
KSTRT+LI
Set K1 = 0
,Haé‘
entire ac- \
tion field of
I-th vector
Y been exa-
- mined
?
Increment LI
LI«LI+1

é .

Y .

Increment
K8+R8+).

Set branching

switch KSW1 = 2

of matrix.

Set LI = Last row

14

Zero I-th vector
] and the

corresponding
"VNETB entry

FLOWCHART 2 (continued)

82

Have
all dependent
vectors in Main
Subtable been
examined

?

Increment the row
index into Main
Subtable -

I<«I+]

Transfer vectors
presently in Suppl

mentary Subtable to}
empty block vectors|
in Main Subtable.

.- et

Print ‘block]
vectors in Result
Vector Subtable
‘and their asso=-

values. Print the
time-space
requirements of.
.partitioned matrix

. |

Assign a unique
positive number to
each nonzero entry
] in the input
-matrix, where
entries correspon-
ding to a
particular block
are assigned the
same positive
number.

Print the
partitioned matrix

Is
a "family" of
matrices de-

sired

1l

ciated NSR and EET

g

FLOWCHART 2 (continued)

.82

. Have
" all zero-le-
vel blocks been
tried

?

Reinitialize IARB

Main Subtable.

Increment -
KKNT<«KKNT+1

.

o B e :

e

- APPENDIX C - PROPOSED BLOCK IDENTIFICATION STAGE S

Sa
g
pis
o <
i
: ‘ .
L
T ’
[- .
Lt
. - . ’
¢
H .
L ¥
h 1
‘.
‘
. N .
- o ‘) N . .
N g -
» . . ;
’, " -
!
B . 2
EH .
. oh
‘- i - 0
A - N - | | O -
. ' - e
? - . WX = i v oy A

APPENDIX C

‘iAtfth present time, NPM will only accpet matrices
naving a maximum of 32 rows. vThis is a consequence»Of

the powers-of two scheme used to produce the cumulative—

 sum matrix required for block identification. We propose7‘

s,
‘‘‘‘‘‘

a possible approach to eliminating the pOwers—of-two
cumulative sum matrix anproachto blockidentification.
The results'usingthe'suggested apnroach willjallom the
use of the'present selection-mbdification stage of NPM._

Consider the binary input matrix of Figure 5.1

RI R2 R3 R4
AL 1 1 1 1
A2 0 .1 1 1
A3 1 0 1 1
A 1 1 0 1

A5 1 1 1 0

FIGURE 5.1

- STEP 1 Form the exclusive-or of all rule combinations_

as shown in Figure 5.2, where the column
headings specify the rules of the original

- matrix involved in the -exclusive-or,

b
-
et
o

(- (- =

T
o
-

| o
-
o
-

- FIGURE 5,2

Determine the runs of zeros in each column

of Figure 5.2 which contain at least two

entries whose value in the original matrix

is 1, The'zhns which meet this criterion

are shown in Figure 5.3.

ROW ~ (1,2) (1,3) (1,4) (2.3) (2,4)

FIGURE 5.3

STEP 3 From Figure 5.3, form the interSecti@ns of,a11

runs, and retain those results which have

such result, namely = = N

N | . o~
S 85

"ROW
2. 0 o

‘Retain all runs which are not proper subsets of

larger.runs. In this case there are three such

runs, namely"

1 0 3 o 4 0
2 0 4 0 5 0
3 0
These four runs represent the all of the biocks

in the input matrix. Since the row and colunmn

indices are known, we can store this information

in block vector format.

BIBLIOGRAPHY
1. eBeizer,'B., "The Architecture and Engineeriﬁg of
Digital Computer Complexesg,Volume 1",‘P1enem Press; r
2. wBurnham; M. J., Pfivate Communication, Western | . | :
'ElectricCo.,Princeten, N. J., Concerning the |
Partitiening-of the Action Part‘of a Limited-Entry
Decision Table, May 1973. A
‘3. Dingee, W. L., "Pragmatie Problems ofMDecisionaTable
Optimization", M. S. Thesis; Department of induStrial
Engineering, Lehigh University, Bethlehem,
Pennsylvania, 1973. &
4. Dixon, P., "Decision Tables end Tﬁeir Application"”,
Computers and»Automation, April 1964,
5. Grad, B., "Tabular Form in Decision Logic", g
DetamatiOn, July 1961.]
6. Montalband, M., "Tables, Flowcharts and Pragram
Logic", IBM'SJStemSIournel; September 1962.
, A | L
/7. Penick, L. C., Private Communication, Western Electric
Co.,'Princeton, N.J., Concerning the-Partitioning of
3&@% o < the Action Part of a Limited Entty~Decision Table, ”}%_; 7
February 1972. . I ‘ SR

e Sk NI A Ay s o (TS B YT LT A I M T g T e e e e e b T T o et 172 o ottt > dcte e LT v o

‘8. Rabin, J., "Conversion of Limited-Entry Decision -
| Tables into Optimal'Decisibn Trees: Fundaméntal}-j
.'COncepts",“Si"laanotices, September 1971.';

. 9, Reinwald, L. T., and Soland, R. M., "Conversion df
- Limited Entry Decision Tables to'Optimal;Computer
Progfams I Minimﬁm Average‘Processing“Time",

Journal of the ACM, July 1966.

10. _ |) "Patt II: Minimqm S;orage_Require-;

ments", ‘Journal,ofmthe'ACM,.October 1967.

!

11. Yasu, Tashio, "Some Aspects of Decision Table

Conversion Techniquésf:'Sigglan'Notieés, Septembér

1971,

, "'Conversion of Decision Tables into
Decision Trees", Ph.D. Thesis, Department of Computer
Science, University of Illinois at Urbana-Champaign,

Urbana, Illinois, February, 1972,

Educational Backgroundx

e e ot e Lo e et S I e R R E R T "oy = [
DI AT At YTl TG e v e e e e g et e s —— e R S TR s+ = gt TR . — o

VITA

"Personal History

Name: Rolf G. Pinckert

. Date of Birth: April 27, 1943

Place of Birth: Plauen, Germany
Parent: Martha T. Vinson

Wife: Sandra M. Pinckert

‘Children: Stephanie and Valerie Pinckert

%

Menard Memorial High School
Alexandria, Louisiana (1958-1961)

Louisiana Pblytechnic Institute
BSEE -~ 1969

Lehigh University
MSIE (Candidate) - 1974

Honors

Tau Beta Pi | |
Eta Kappa Nu (President of local chapter)

Professional Experience

United States Navy
Electronics Technician
Petty Officer 2nd Class
1961-1965

Western Electric Co.
Southwestern Region
Ballwin, Missouri
Engineer 1969-1971
Planning Engineer 1972

Lehigh Masters Program
Western Electric Corporate
Education Center 1972-1974

‘‘‘‘‘‘

	Lehigh University
	Lehigh Preserve
	1974

	Pragmatic aspects of action/rule matrix partitioning with respect to time-space considerations /
	Rolf G. Pinckert
	Recommended Citation

	tmp.1551116526.pdf.2bXTi

