
Lehigh University
Lehigh Preserve

Theses and Dissertations

1974

A methodology for evaluating compiler
performance /
James Patrick Clancy
Lehigh University

Follow this and additional works at: https://preserve.lehigh.edu/etd

Part of the Industrial Engineering Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Clancy, James Patrick, "A methodology for evaluating compiler performance /" (1974). Theses and Dissertations. 4448.
https://preserve.lehigh.edu/etd/4448

https://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F4448&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F4448&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F4448&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=preserve.lehigh.edu%2Fetd%2F4448&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd/4448?utm_source=preserve.lehigh.edu%2Fetd%2F4448&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

i·.

p
(.' ',.

A METHODOLOGY FOR EVALUATING COMPILER PERFORMANCE

by

James Patrick Clancy

A thesis
\

Presented to the Graduate Committee

of Lehigh University

in Candidacy for the Degree of

Master of Science

• 1n

Industrial Engineering

Lehigh University

1974

' \

J

\

:,
,,, '.
; .

\ .

CERTIFICATE OF APPROVAL

This thesis is accepted and approved in partial
fulfillment of the req,1irements for the degree of Master
of Science.

Date

4.

hai an of the Department
of Industrial Engineering

• • 11

. ...

..

,- .. ·,·' ._ ... ;;,··:i,"-,.:.c;,_:-,··.·.-, ·.· .' .,•· '

ACKNOWLEDGEMENTS

The author wishes to express his appreciation to Dr.

w. Shively, who served as facility advisor, for his advice

and encouragement during the preperation and writing of

this thesis.

Appreciation is also extended to Mr. G. E. Whitney and

Dr. c. w. Cheng of Western Electric Company's Engineering

Research Center for suggesting the topic and providing

technical guidance and assistance throughout this project.

;

,·

/

•

• • • 111

··,
'

'·

TABLE OF CONTENTS

LIST OF TABLES ..•••.•

LIST OF FIGURES •••••

ABSTRACT ..•..•.••... ·~·
CHAPTER 1 Introduction •••••••••••••••••••••••

1.1 Problem Description ••••••••••••••
••••••
• • • • • •

CHAPTER

CHAPTER

CHAPTER

CHAPTER

1.2 Methodology •••••••••••••••••••••• • • • • • •
1.2.1 Abstract Computer Definition •••
1.2.2 Compiler Design ••••••••••••••••
1.2.2.1 Source Language ••••••••••••••
1.2.3 Experiment •••••••••••••••••••••

• • • • • •
• • • • • •
• • • • • •
••••••

2 Definition of Star Abstract Computer •••••
2.1
2.1.1
2.1.2
2.1.3
2.2
2.2.1
2.2.2

Architecture •••••••••••••••••••••••••••
Memory Structure •••••••••••••••••••••
Addressing •••••••••••••••••••••••••••
Registers ••••••••••••••••••••••••••••

Instruction Set ••••••••••••••••••••••••
Single Operand Instructions ••••••••••
Double Operand Instructions ••••••••••

3 Compiler Design ••••••••••••••••••••••••••
3.1 Compiler Description •••••••••••••••••••
3.1.1 Tables of Information ••••••••••••••••
3.1.2 Symbolic Addresses •••••••••••••••••••
3.1.3 Analysis Phase •••••••••••••••••••••••
3.1.4 Internal Form of the Source Program ••
3.1.5 Synthesis Phase •••••••••••••••• • • • • • •
3.2 Code Generation Techniques •••••••••••••
3.2.1
3.2.2
3.2.3
3.2.4
3.3
3.4

Basic Executable Code ••••••••••••••••
Register Map •••••••••••••••••••••••••
Register Status ••••••••••••••••••••••
Assiqned Base Register •••••••••••••••

rocedure Descriptions •••••••••••••••••
Compiler Simulation ••••••••••••••••••••
_/

4 Experiment •••••••••••••••••••••••••••••••
4.1 Cost Model •••••••••••••••••••••••••••••
4.2 Experiment •••••••••••••••••••••••••••••

5 Results and Conclusions ••••••••••••••••••
5.1
5.2

Results ••••••••••••••••••••••••••••••••
Conclusions ••

• 1V

Page

• V1

• • V11

1

3
4
6
7

11
11
13

15
15
15
16
20
22
25
25

27
27
27
29
31
32
34
35
36
38
40
41
42
46

48
48
so

56
56
65

;,
;

:.'.'

{·
!·

,.
i

,,
l'
.t. •,

TABLE OF CONTENTs<ccont'd)

5.3 Recommendations for Further Study ••••••

Page

66

BIBLIOGRAPHY.. 68

APPENDIX A List of Symbols •• .•••••••...•••••••••••• 69

APPENDIX B Quadruple Generation •••••••••••••••••••• 71

APPENDIX C Logical Procedure Descriptions •••••••••• 75

APPENDIX D FORTRAN Conversion Procedure •••••••••••• 78

APPENDIX E Analysis of Sample Data................. 80

APPENDIX F Glossary of Terms....................... 87

VITA. • 93

.,.

V

,:i

·/

Table

1

LIST OF TABLES

Storage Requirements and Execution Times of
Instructions Used for Simulated Execution ••••

2 Results and Analysis of Experiment with Five
Levels of Optimization for Small Program
Environment (17 Arithmetic Statements per

Page

51

Program)..................................... 57

3: Results and Analysis of Experiment with Five
Levels of Optimization for Medium Program
Environment (46 Arithmetic Statements per
Program) ••••••••••••••••••••••••••••••••••••• 58 J -

4 Results and Analysis of Experiment with Five
Levels of Optimization for Large Program
Environment (118 Arithmetic Statements per
Program) • 59

..

5 Results and Analysis of Experiment with Four
Levels of Optimization for Small Program
Environment (17 Arithmetic Statements per
Program) • 6 O

6: Results and Analysis of Experiment with Four
Levels of Optimization for Medium Program
Envirorunen3 (46 Arithmetic Statements per
Pro qr amr-~ -• •••••••••••• - ~//

7 Results and Analysis of Experiment with Four
Levels of Optimization for Large Program
Environment (118 Arithmetic Statements per

61

Program) • 6 2

:a

._9· . .

Cumulative Frequency Distributions of the
Number of Lines per Sampled FORTRAN Program
and the Total Number of Lines Sampled ••••••••

Cumulative Frequency Distributions of the
Number of Arithmetic Statements per Sampled
FORTRAN Program and the Total Number of
Arithmetic Statements ••••••••••••••••••••••••

Frequency Distribution of the Number of
Quadruples per Arithmetic Statement ••••••••••

~

• V1

..

81

83

86

'" '

..
' '· (
,\

'

I·
•' ' .

.. .. ,,'

·,

'.1

LIST OF FIGURES

Figure Page

1 Some Characteristics of the PDP-11 and IBM
3 6 0 Computers. • ... • • • • • • • • 8

2 Memory Formats of the IBM 360 and PDP-11 •••••• 17

3 The Structure of Star Abstract Computer(SAC) •• 23

Conceptual Diagram of a Compiler •••••••••••••• 28

5 Diagram of Experimental Procedure............. 55

6. Example of Quadruple Generation............... 74

·7· Frequency Distribution of the Ratio of
Arithmetic Statements to Program Size(Lines) •• 85

)"

·t __ , .. -~-

• • V11

·,

·~

ABSTRACT

The introduction of compilers and high-level (user

oriented) programming languages has made the computer

available as a tool to those with only limited programming

knowledge. Consequently, a great deal of effort was and

still is being devoted to developing techniques to improve

the object code produced by compilers. However, the

measurement of overall compiler performance in terms of

the cost of both compiling and executing a wide range of

programs has been neglected, primarily drie to the

variations in machine and program environments. A

methodology is proposed which can be applied to the

measurement of compiler performance. The methodology

consists of three parts: 1) define an abstract computer

which can mimic the machine environment by using

parameters 1 2) desig·n a compiler for this abstract

computer; 3) design an experiment that will allow the

application of statistical methods to the measurement of

performance for different machine and program

environments. The methodology is tested using a subset of

FORTRAN describing arithmetic operations and a simulated

compiler. A simplified abstract computer is defined and a

compiler is described which can generate code for this

computer. Three optimization techniques for allocating
.

registers in the compiler and the method of simulating

1
.,

,.
{-.

....

compilation are described. An experiment is described

which can serve as a prototype for implementation of this

methodology. Analyses of the experimental results using

an analysis of variance test and Duncan's multiple range

test are provided. The results indicate that this

methodology can be a valuable tool in measuring compiler

performance.

.,

\' . ,,
·s.:.J:·' ..

2
..: ..

' ' ;·,

~

.
,:

CHAPTER 1

1.0 Introduction·

A translator is a program which accepts as input a

program in one language called the source language and

produces as output an equivalent program in another

language called the object language. If the source

language is a high level programming language and the

object language is assembly or machine language, the

translator is referred to as a compiler and the object

program is referred to as object code OJ. Compilers, by

allowing the use of high level programming languages, have

made the computer available as a tool to those with only

limited programming knowledge, such as engineers,

scientists and businessmen. However, early compilers

produced code which was not as efficient in terms of

execution time and storage allocation as code written in

assembly or machine language by experienced programmers.

A great deal of effort was and still is being devoted

to developing techniques to optimize (a more accurate word

is improve) the code generated by compilers. These

techniques can generally be classified as machine

dependent and machine independent. Those techniques which

manipulate the source language are machine independent.

The elimination of common subexpressions is an example of

this type. Those techniques which manipulate the object

. 3

'·

;~
I,

code are machine dependent. Register assignment

algorithms are an example of this type. As a result of

the work in this field, most present day compilers for the

widely used programming languages can produce code which

is as good as hand coding in a fraction of the time that

hand coding requires. There remains, nevertheless, a

large and growing number of special purpose programming

languages which still require the design of compilers.

'

As in most design work, trade-offs must be made. The

compiler designer must decide what level of code

optimization is desired beyond the generation of basic

executable code. The more optimization techniques

included in the compiler, the more complex it becomes with

resulting increases in storage requirements and compile

time. The designer must trade-off these increases against

the hoped for improvements in the storage requirements

and/or execution time of the object code produced. These

decisions require some method of determining erformance

levels of different compilers (or different ver ions of

the same compiler).

1.1 Problem Description

If the performance measure is the cost, as yet

undefined, for compilation and execution of a program,

then, theoretically, a measure of performance could be

written as

4
.. ,Iii•

-Ct = Cc + hCe

where: Ct is the total cost of compiling and executing.

Cc is the total cost of compiling.

Ce is the total cost of executing.

h is the number of executions.

If these costs were known, then a decision could be

made as to the relative merits of different compilers as a

function of the number of executions of the object code.

However, since these cost elements vary for each compiler

program combination, this approach is not very practical.

Another difficulty in measuring performance is the

variation in computer environments. As an example,

consider the differences between an educational and

business environment. In an educational environment

involved in the teaching of programming languages, the

programs would typically be small, require little time to

execute and require few repeated executions. In the

business environment, the programs, which might involve

payroll, inventory or accounting applications, would

typically be large, require much execution time and are

executed periodically. The best compiler for the

educational environment would have little, if any,

optimization, since compile time would probably exceed

execution time. However, the business environment would

require a very high level of optimization, since the

5

•

savings in repeated execution costs would more than offset

the increased compile time. This variation in

environments also extends to machines. Due to the machine

dependence of many optimization techniques, the

performance of a compiler including these techniques will

vary depending upon the target machine.

Although there is an extensive literature on compiler

optimization, there is none on the measurement of compiler

performance. The typical paper [1,7,8] which describes a

technique for optimization also defines a criteria to

measure the performance of the technique. This criteria is

usually the total number of object code instructions

generated or the number of memory references required to

perform a specific operation. Since the effect of

optimization techniques on a specific compiler depend upon

not only the existence of the condition which is to be

improved but also the frequency with which this condition

occurs in the compiler environment, a method of measuring

overall performance which considers these factors is

required.

1.2 Methodology

An approach to this problem is to develop a

methodology for evaluating compiler performance. The

methodology proposed consists of three parts:

6

=~

,,

1) Define an abstract computer which can mimic the

machine environment by means of parameters.

2) Design a compiler (or compilers) for this abstract

~mputer which can generate code which (with some

intermediate processing) can be executed on the

target machines.

3) Design an experiment that will allow the

application of statistical methods to measure the

performance of this compiler for different machine

and program environments.

1.2.1 Abstract Computer Definition

The abstract computer developed is called the STAR -
- - Its definition requires the ABSTRACT COMPUTER (SAC).

specification of both an architecture and instruction set.

These are described in Chapter 2. Since the target

machines, IBM 360 and PDP-11, differ markedly in

instruction capability and architecture, in the interests

of simplicity, the definition of SAC was biased towards
\

the IBM 360. Figure 1 lists some of the characteristics

of the target machines. One advantage of this abstract

computer, quite apart from the subject of this thesis, is

its tutorial uses in teaching machine concepts without the

necessity of learning assembly language or pecularities of

specific machines.

·-
7

....

/

I • •

. - ----:--_--:...--~·-=--·,;--~-:-:~~~:,,->,~~~,-;~-~-~>~'._._:.-_ _.-::~.,:..,.j .. ---~,"~-~>-=--~-- "II':'.,-------·:-·:·.-.~-~----,··:,,--'-: - . -_··- . . ~- - '- .. , .. - . ~.;,-:__· ' -.~:r' ... -.. _ .: •. ' -,.. _'· :

•

PDP-11 IBM 360

ADDRESSING

. ·•'

Each operand consists of a register
number and an address mode
indicating how that register is to
be used. There are eight address
modes. The register mode indicates
that the value of the operand is in
the specdfied register. The index
mode indicates that the contents of
the register specified is to be
added to the contents of the word
following the instruction to form
the address of the operand. Two
modes are used to increment and
decrement registers to facilitate
stack operations. In addition, all
four modes can be used to specify
an indirect address where the
address obtained from the
instruction poin~s to the address
of the operand rather than the
operand itself. The use of the
program counter register in an
operand address permits immediate
addressing where the operand,itself
is in the word following the
instruction in memory.

Base-displacement addressing is
used. Register operands are
addressed by their number.
Operands in storage are addressed
by the sum of a displacement
included in the instruction and the
contents of a base register whose
number is included in the
instruction. The address may also
include the contents of an index
register specified in the
instruction. The differentiation
between a register number used as a
base or index register and a number
used to address a register is made
by the use of different instructions
for the different locations of
operands. Indirect addressing is
not available. Immediate
addressing is available but the
operand contained in the
instruction is limited to one byte
in length.

FIGURE 1. SOME CHARACTERISTICS OF THE PDP-11 AND IBM 360 COMPUTERS •

l
>·

.. ,- - - -~-·~ · . .;:'-,-~- -- .

PDP-11 IBM 360

INSTRUCTION SET

Both single and double operand
instructions are used. Operands
are designated as either a source
or destination operand. Results of
an instruction are left in the
address specified by the
destination operand. Neither
operand is required to be in a
register. Instructions include
register to register, register to
storage and storage to storage
operations. There is one set of
instructions which are used for the
various combinations of addressing
modes. For example, the "t-10V"
instruction can move an operand
from one register to another, from
a storage location into a register,
from a register into a storage
location or from one location in
memory to another, depending upon
the address modes of the operands.

Double operand instructions are
used. No single operand
instructions are available. There
are five types of instructions
which are used depending upon the
location of the operands. For
example, RR type instructions are
used when both operands are in
registers, RS and RX type
instructions are used when the
first operand is in a register and
the second operand is in memory,.
and SS type instructions are used
when both operands are in memory.
The SI type of instruction is used
when one operand is in memory and
the other operand is contained in
the instruction (this is the
immediate operand and is limited to
one byte in length).

"

REGISTERS

Eight General registers are
available numbered 0-7. Register 6

· is used as a stack pointer and has
hardware functions associated with

Sixteen general registers are
available numbered 0-15. Registers
O, 1, 13, 14 and 15 are reserved by
convention for such uses as passing

FIGURE 1. (cont'd) SOME CHARACTERISTICS OF THE PDP-11 AND IBM 360 COMPUTERS.

- ~ .. - .:

..

0

PDP-11 IBM 360

REGISTERS(cont'd)

interrupts and subroutine calls.
Register 7 is the program counter
register. (Some configurations can
expand to 16 registers - 3 sets of
6 general purpose registers, 3
stack pointers and 1 program
counter register.)

subroutine parameters. The program
counter register is not addressable
by the programmer.

FIGURE !.(cont'd) SOME CHARACTERISTICS OF THE PDP-11 AND IBM·360 COMPUTERS.

'•

1.2.2 Compiler Design

Since the design of an actual compiler is beyond t~j
\--scope of this thesis, a compiler was simulated in FORTRAN.

Chapter 3 describes the compiler and the methods used to

simulate its various functions. A subset of FORTRAN

describing arithmetic operations was chosen as the source

. language for the simulated compiler in order to allow the

sampling of arithmetic statements from actual FORTRAN

programs.

1.2.2.1 Source Language

This subset of FORTRAN consists of scalar variables

and constants of type integer. The allowable symbols are

the alphabetic characters, A-Z, and the numeric

characters, 0-9. Variable names may be single alphabetic

characters only. Although no execution of the code from

the simulated compiler is performed, scalar constants are

included for completeness and for possible future

implementation. The operators allowed in this language are

+ - I •

()

• I

Arithmetic operators

Precedence operators

Assignment operator

End of statement operator

The operations of addition, subtraction,

multiplication, division and unary minus are the only

arithmetic operations which will be considered. Since the

1 1

I ·",;' ' :

J

,l;

t .. ,,
'l:.

I'°
r.
,-; .

...

:,:_'

'

same operator is used to represent subtraction and unary

minus, the latter must be determined from the context of

the arithmetic statement. This language contains no

branches of any kind so that any section of code has only

one path to enter and one path to exit. This type of code

is referred to as straight-line code.

A program in the source language consists of a

sequence of arithmetic statements which have the general

form:

A= BJ

where A is a variable, Bis an expression,= is the

assignment operator and: is the end of statement

operator. At execution time, the expression Bis evaluated

and the resultant value is assigned to the variable A. An

expression is a sequence of scalar variables or constants

of type integer seperated by arithmetic operators and

parenthesis in accordance with mathematical convention and

the following rules:

1. An expression may consist of a single basic element

such as a scalar variable or constant.

2. Compound • be formed by • the expressions may using

arithmetic operators to combine basic elements.

3. Compound • must be constructed according expressions

to the following rules:

12

a. Any expression may be enclosed in parenthesis

and considered to be a basic element.

b. Expressions which are preceeded by a - sign are

also expressions. (For convienence, leading+

signs were not allowed)

c. If the precedence of operations is not given

explicitely by parenthesis, it is understood to

be the following (in order of decreasing

precedence):

*and/

+ and -

-~

multiplication and division

addition and subtraction or

• unary minus

In the case of operations of equal precedence,

the calculations are performed from left to

right.

d. No two arithmetic operators may appear in

sequence.

Arithmetic expressions described by the above rules

are said to be in infix notation.

1.2.3 Experiment

The last step of this methodology is to design an

experiment and select apropriate statistical tests which

will serve as a prototype for a systematic evaluation

procedure. These tests should have the ability to detect

differences among alternative compilers (or versions of

\
13

\
the same compiler) due to different machine and program

environments as well as indicating preferred alternatives.

Inherent in this step is the definition of a cost function

to characterize the compiler performance. The costs dealt
/

with are limited to simulated execution costs. The

compilation costs were not simulated since these would

depend upon the skill of the compiler designer rather than

the execution time of the simulated compiler. Chapter 4

describes the cost function, the experiment and the

statistical tests used.

14

•.• -l".•';

',

' i
;,
;'.' ,.
" f
f:·

.... _

CHAPTER 2

2.0 Definition of Star Abstract Computer

One of the reasons for using an abstract computer is

to reduce the variability in the machine environment. If

the common features of the target machines are identified

and included in SAC, then optimization techniques which

depend upon these features become "machine independent",

at least for the machines of interest. Since the purpose

of this thesis is to describe a methodology rather than

develop the ideal SAC, to facilitate presentation, the

architecture described below is biased towards the IBM

360, particularly in the method of addressing storage.

Similiarly, the instruction set is limited to those

operations which are required for integer arithmetic.

However, in an actual implementation of this methodology,

the desired instruction set would be the maximal

intersection of the instruction sets of the target

machines. Appendix A contains a list df symbols used in

this and subsequent chapters.

2.1 Architecture

2.1.1 Memory Structure

The basic unit of • word although the word memory 1S a
• • terms of bytes (one byte equals eight bits) will size in

not be specified. The two computers of interest use the

byte as the basic unit of storage (i.e. the smallest

15

" ,.
i•

!'',
t\
..
),,:'
)·1

(

directly addressable unit). However, their differences in

word size· makes a common ground difficult and would

unnecessarily complicate the symbolic nature of SAC. The

IBM 360 [10] uses four bytes per word (32 bits) and allows

half-word, full-word and double-"1ord references, while the

PDP-11 (11) uses two byte (16 bit) words and allows only

half-word and full-word references. Figure 2 shows the

memory formats of the target machines. Each word in

memory is numbered consecutively from zero to some upper

limit which is dependent upon the computer configuration

available. This number constitutes the actual address of

each word.

2.1.2 Addressing
..

Each word in memory is referenced by a number which

indicates its actual address. In order for an instruction

to reference an address, it must be able to contain a

number as large as the highest address available. This

could require extremely large instructions (large in the

sense of the number of bits required to express them). In

order to make all memory locations addressable, while at

the same time limiting the size of the instructions, a

scheme, which is derived from the IBM 360, is used. This

scheme uses a register to specify a base address (BA) and - -
the instruction to specify a displacement constant (DC), - -
which, when added to the base address, provides the actual

16

(·"

ARIES

--
WORD ~

-

WORD

BOUND

BYTE

HALF

FULL

DOUBLE WORD:

IBM 360 MEMORY FORMAT

D0UB1E WORD .
FULL WORD FULL WORD

HALF WORD /HALF WORD . HALF WORD HALF WORD

BYTE BY'rE BYTE BYTE BYTE BY'l'E BYTE BYTE

- -. - - - - . - -- - - - - . - -
x+l x+3 x+5 x+7 - - -- - - -

x+2 x+6
- -
x+4

--
K x+8

BOUNDARIES

HALF WORD

FULL WORD

ALLOWABLE ADDRESSES
BYTE x = p
HALF WORD x = P*2
FULL WORD x = p*4
DOUBLE WORD x = p*8

•

PDP-11 MEMORY FORMAT

FULL WORD

HALF WORD HALF WORD
f "O'{Tr.''
\ ..J... - I (BYTE)

.•
(BYTE) :: - -- -

x+l
- -- -

X x+2

ALLOWABLE ADDRESSES
HALF WORD(BYTE) x = p
FULL WORD x = p~2

x, ... ,x+i ARE NUMERIC MEMORY ADDRESSES (ACTUAL ADDRESSES)
p = 0,1.,2, •••

•

FIGURE 2. MEMORY FORMATS OF THE IBM 360 AND PDP-11.

'j

•

17

•

•

•

•

•

•

f
\··
.1.,
,,

~
L
!
' '

I
I

address required. Since registers are a full word in

size, this provides the ability to reference the entire

memory. (The IBM 360 requires only 24 of the 32 bits

available for addressing). This method also uses the

contents of another register called an index register.

The use of an index register allows modification of an

instruction address without permanently altering the

instruction in memory by the use of arithmetic operations

on the contents of this register. Thus, an address can be

symbollically represented in the form k(i,j) where k is

the displacement constant, -i is the base register number

and j is the index register number. The actual address

specified is then

actual address= k + contents of base register i

+ contents of index register j

The actual address calculation is done in an address

register, which is not addressable by the programmer, and

neither k nor the contents of registers i or j are

altered. By convention, if either i or j is zero, this

means the number zero, rather than register zero. Thus

k(O,O) addresses the k-th memory location. The

instructions must be able to hold a displacement and two

register numbers. The largest displacement allowed in SAC,

K{=max(k)), is dependent upon the number of bits available

in the instruction. In the IBM 360, there are 12 bits to

18

:-:. ·, ·, ,.

.-

hold the displacement constant. Thus, 4096(=2 12) bytes or

1024 full-words can be addressed from a given base

register. The PDP-11 has the ability of using a full-word

for the displacement constant and therefore can address

65536(=2 16) bytes or 32768 full-words from a given base

register. Since our basic memory unit is the word, K is a

parameter of SAC. For the IBM 360, K = 1023 and for the

PDP-11, K = 32767.

Another advantage of base-displacement addressing is

relocatability. Since the available memory locations,

which are unknown at compile time, are determined when the

object code is loaded, the addresses used in the object

code can be altered by changing the base address values.

Thus, the compiled program can be made relocatable to any

area of memory. This ability is required in a

multi-programming environment. Although this scheme allows

for the use of an index register, this need not be used

when dealing only with scalar variables and straight-line

code. Consequently, a short-hand notation will be used

such that k(i) is equivalent to k(i,O).

In addition to memory locations, data may be stored in

registers. The address of a register is indicated by a

unique number assigned to each register. Confusion with

memory addresses is avoided by the form with which

register addresses are specified. The address of a

19

··.~·-

·,

register will be indicated by Rn which addresses the

register numbered n. (The PDP-11 indicates register

addresses by specifying a register number and an address

mode indicating that the operand is in that regi~ter. The
. 1

IBM 360 uses different instructions depending upon whether

the operands are in memory or registers.)

2.1.3 Registers

Registers are hardware devices used for the temporary

storage of one or more words to facilitate arithmetic,

logical or transferral operations in the computer. They

are frequently referred to as "fast memory" because of

their extremely fast access time •.

Those registers which are used by the control unit of

t-he computer to control the execution of the program are

generally not addressable by the programmer. These include

the program counter (PC) register, the instruction - -
register and the address registers. The PC register holds

the actual address of the instruction currently being

executed. Upon completion of execution, this register is

automatically incremented by 1, thereby pointing to the

next instruction to be executed. The control unit uses

this register to load the next instruction into the

instruction register. This register controls the actual

address calculations using the address registers and the
I

execution of the operation code port~on of the

20
>

,.

I·

j.1,
Ii·,.

I,

• , _~,-.. el •• '

instruction.

The registers that are available for the programmers

use are referred to as general purpose registers. The

term general purpose register refers to those registers

which can be used as accumulators to perform arithmetic

operations or as base and index registers to address

storage locations.

A minimum of two general purpose registers are

required for arithmetic operations when base-displacement

addressing is used. This can be understood from the

situation when the value of one operand is in a register

and the other operand requires a register to address its

value in storage. However, the multiplication and division

operations in both the IBM 360 and the PDP-11 require two

consecutive registers. In multiplication of two full

words, the result will be a double-word (i.e. 16 bits

times 16 bits yields 32 bits) requiring two full-word

registers. In division, one register is required to hold

the quotient and another to hold the remainder. Since

these are the target machines of SAC, a minimum of three

general purpose registers will be assumed.

Since the source language is limited to scalar

variables of type integer, the remainder in division is

not required due to truncation. In multiplication, it is

usually sufficient to retain only the low-order register.

I

21

' ' ·. ,!,/,

....

. •" ... -,:, ,, ,_,, ., .. ·.. , .. ,.,' .

' "''

However, if the high order register must also be retained,

this requires scaling and arithmetic shift operations to

save the contents of both registers in a full-word of

storage. Since this requirement would unnecessarily

complicate the instruction set, it is assumed that the low

order register need only be saved and the high order

register can be ignored. Even though these operations

ignore the result of the additional register, it is still

included to facilitate compatibility with the target

machines. The maximum number of general purpose

registers, N(=max(n)), is dependent upon the target

machines and is a parameter of SAC.

In addition to the N general purpose registers,

another register, with limited use, is required. This

register is assigned the special function of holding the

address of the first memory location available at

execution time. This register can be used only as a base

register and not for arithmetic operations. It is

assigned the address (N+l), and, for convienence, will be

referred to as the R-th register. The purpose of this

register will be described in the next chapter. A diagram

of the SAC memory structure is shown in Figure 3.

2.2 Instruction Set

The instruction set for SAC uses both single and

double operand instructions with eac~ instruction

22

CONTROL UNIT GENERAL REGISTERS
'

PROGRAM COUNTER REGISTER • Rl
t J -- R2

• INSTRUCTION REGISTER MEMORY -- ~

--,,, - •

JoP-CODE:Rn:k(i,j) I ~

~
•
RN

s- ••••

ADDRESS REGISTER RN+l
I I

!

•
•
•

FIGURE 3. THE STRUCTURE OF STAR ABSTRACT COMPUTER (SAC)

(-
::.. .

•;. , 1.,-·~·::-)·~~~,;_-~f;''",-!. f .. ··,,.•,·:· ·'·: ': ,:_·: ··. "; _., .. _ . . . ,· . -.;· '. ,.~-,: .. , ,,.,_.,,.·,."'.'If .• ,., . .,, ... ,., -. .

requiring a full word of storage. register to register

(R/R) operations as well as register to storage (R/S)

operations are available with a single set of instructions

used for both types of operations. (The IBM 360 uses

different instructions for the same operation depending

upon the location of the operands). Storage to storage

operations are assumed not available. All operations

require that the first operand be in a register. The

following notations are used to explain the instructions:

[Rn,Rn+l]

Either a register, Rn, or a memory

location, k(i). In the context of an

instruction, "ar" should be read as "the

address specified by@". In the

instructions which follow, @ may not be

the same register as the first operand but

may use that register as a base regi~ter.

For example, the instruction LOAD R2,R2 is

not allowed, but LOAD R2,k(2) is allowed.

This is possible since the address

calculation takes place before the

operation code portion of the instruction

is executed and does not change the

contents of the specified base register.

The concatenation of registers n and n+l.

This means that the indicated register

24

:,

J

i

:;

,1;.
>.

f .,

'

,,

pair functions as one register.

2.2.1 Single Operand Instructions

NEG Rn Changes the sign of the contents of Rn.

2.2.2 Double Operand Instructions

LOAD Rn,@

STORE Rn,k(i)

ADD Rn,@

SUB Rn,@

Places the contents of@ into Rn. The

previous contents of Rn are lost and the

contents of@ are unchanged.

Puts the contents of Rn into memory

location k(i) (i may equal n). The

contents of Rn are unchanged and the

previous contents of k(i) are lost.

Adds the contents of@ to the contents of

Rn. The contents of@ are unchanged and

the previous contents of Rn are lost.

Subtracts the contents of@ from the

contents of Rn. The contents of@ are

unchanged and the previous contents of Rn

are lost.

Both target machines require that multiplication and

division be performed in a consecutive even-odd pair of

registers. Therefore, the register, Rn, shown as the

first operand in the subsequent instructions indicates the

even-odd pair, [Rn,Rn+l]. (The PDP-11 also allows the use

of an odd register alone for multiplication, but restricts

the result to that register.)

25 .\

. '
, ..

' i_'.,

,,

: ..

MULT Rn, al

DIV Rn,@

1.

Multiplies the contents of Rn+l by the

contents of@ and leaves the result in
,

[Rn,Rn+l]. (Rn+l is assumed to hold the

only meaningful result.) The contents of

@ are unchanged and the previous contents

of [Rn,Rn+l] are lost.

Divides the contents of [Rn,Rn+l] by the

contents of@ and leaves the quotient in

Rn+l and the remainder in Rn. (The PDP-11

reverses the quotient and remainder.) The

contents of@ are unchanged and the

preyious contents of [Rn,Rn+l] are lost.

. ;;,,

26

'l~ '. •

•k·

CHAPTER 3

3.0 Introduction

A compiler can be described in two phases. The first

is an analysis of the source program which decomposes the

source language into its constituent parts. The second is

a synthesis of the object program using code generated

from these basic parts. Figure 4 shows a diagram of a

compiler. As information is gained at the local level in

the analysis routines, it is stored in tables to make it

available to all phases of the compiler.

3.1 Compiler Description

3.1.1 Tables of Information

The number and types of tables is determined by both
I

the preferences of the compiler designer and t~~ amount of
'

information required for code generation. One t~ble which
/ is common to all compilers is the symbol or name table.

This table holds the variable names of the source program

and their attributes which include such things as type,

precision, symbolic address and any additional information

required for code generation. The compiler used in this

thesis requires two additional tables. One is a constant

table which holds the value, type, symbolic address,

precision and other pertinent information about the

constant. The other is a temporary variable table.

Temporary variables are those used by the compiler to

27

J.

·,.'
'
I
,'

COMPILER

ANALYSIS ffiASE

-SCANNER (LEXICAL
ANALYZER}

-SYNTAX ANALyzER

-SEMANTIC ANALYZER

INTERNAL FORM OF
SOURCE PROGRAM

SYNTHESIS PHASE

-PREPERATION FOR
CODE GENERATION

-CODE GENERATION

SOURCE
PROGRAM

OBJECT
PROGRAM

(CODE)

TABLES

VARIABLE
TABLE

CONSTANT
TABLE

TEMPORARY
VARIABLE
TABLE

•
•
•

FIGURE 4. CONCEPTUAL DIAGRAM OF .A COMPILER.

28

..

,'·,
·,.,

' J:

-,.~' '' .

:.+

. , . ij-·,--, .. :-.._.,\·_ «··_1-.~·:_,,i-"':;,,··,-···~~~-;:·-\1-·'. , r
. 1 ·1

represent the intermediate results generated when

evaluating arithmetic expressions. The temporary variable

table holds the type, symbolic address, prec·ision and any

other information required for code generation.

Since the source language allows variables and

constants to have representations of varying length, this

compiler replaces variables and constants by unique fixed

length designations consisting of two integers. The first

refers to a particular table and the second refers to an

entry in that table. This form is also used for temporary

variables. Thus variables, constants and temporary

variables, all of which are called operands, can be

denoted as follows:

(1, Pointer to variable table entry)

(2, Pointer to constant table entry)

(3, Pointer to tempo.rary table entry)

(1,v)

(2, c)

(3, t)

where the form on the right is a shorthand notation for

these operands.

3.1.2 Symbolic Addresses
.

Since the memory locations that will be allocated at

execution time are not known at compile time, symbolic

addresses are assigned to variables, constants and

temporary variables. These addresses are kept in the

tables and used during code generation. Each address is

represented by an ordered pair of integers, (d,k), where d

29

~
~'
' I'

~

'
i

t
• •

',

I· .. · '

'
f rt ,,
i ~·
D
~

f
'

is the number of a data area and k is the displacement

within that data area.

SAC memory is logically divided into contiguous blocks

of words called data areas. The number of words in a data

area is determined by the maximum displacement, K, allowed

in an instruction. For example, the IBM 360 allows

displacements up :to 1023 full words. Thus, a data area
,,

for the IBM 360 consists of 1024 consecutive words of

storage. The maximum number of data areas available, D',

is determined by the memory capacity of the target machine

and the size of the displacement allowed in that machines

instruction set. Thus, if the IBM 360 configuration had a

memory capacity of 131,072 full words, then the maximum

number of data areas would be 121(=131072/1024). Data

areas are numbered from zero to (D-1) where Dis the

number of data areas required for a given program.

Then D(K+l) is the size of the memory needed for this

program (where K+l is the number of words in a data area).

If a contiguous memory block of size D(K+l) is allocated

at execution time and the actual address of the first word

in memory is denoted by T, then the actual address

corresponding to the symbolic address, (d,k), would be

actual address= T + d(K+l) + k
l~

The quantity, (T + d(K+l)), is the address of the

first word of data area d. This quantity is the base

30

r· IV·
•, .

~·.

' address of data area d and must be in a register in order

to implement the addressing scheme described in Chapter 2.

In order to implement base-displacement addressing, the

first D words in data area Oare reserved. Each of these

D words contains the address of the data area whose number .

corresponds to the displacement of the word in data area

O. (i.e. the word_ whose symbolic address is (O,d) holds

the base address of data area d) When the memory space is

allocated, the operating system loads these addresses into

the reserved area in data area O and also loads the

starting address, T, into the R-th register (recall that

the R-th register is the (N+l)-st ~egister). This allows

non-contiguous memory blocks to be allocated to different

data areas. Base addresses can be loaded into any

register, Rn, by using the R-th register as a base

register and the data area number as a displacement with

the following instruction

LOAD Rn,d(R)

3.1.3 Analysis Phase

The analysis phase is made up of the scanner, syntax

and semantic analyzers. The scanner reads the source

program character by character and builds the symbols

(tokens) of the source language. These symbols might

consist of variables, constants, key words, single and

double character operators, etc. The scanner also stores

31

..

variables and constants in their appropriate table,

replaces them with their fixed length form, identifies

operators and replaces them with their internal form

(usually an integer number). The syntax analyzer checks

the symbols for syntactic correctness, enters their

attributes in the tables and, when higher level syntax

entities, such as arithmetic expressions, are encountered,

calls the semantic routines to convert them to an internal

form.

3.1.4 Internal Form of the Source Program

The internal form of the source program depends

primarily upon the preferences of the compiler designer.

However, some optimization techniques can be implemented

more efficiently with particular internal forms.[6] For

the SAC compiler, the infix notation of the source

language is converted to quadruple notation which was

selected because its simplicity aids the tutorial uses of

SAC. Quadruple notation consists of a sequence of

quadruples of the form

(operator,first operand,second operand,result)

which, when taken in sequence, describe the operations

needed to evaluate an arithmetic expression. The

correspondence between the arithmetic and assignment

operators and the quadruples which represent them are as

follows:

32

'.

& .. ·. t' j,,
l', g,
i,I .

. B
(: ·,·
)'.

A+B

A-B

A*B

A/B

-B

A=B

...

(+,a,b,t)

(-,a, b,t)

(*,a,b,t)

(/ ,a, b,t)

(-,b, ,t)

(=,b,a,)

where upper case letters indicate symbols of the source

program and lower case letters indicate their internal

form. The operators themselves are used instead of their

internal form for convienence and t represents the internal

form of a temporary variable. An example of this notation

is shown below for the arithmetic statement: A=B•C+D;

{*, b, c,tl)

(+,tl, d,t2)

(=,t2, a,)

The notation ti indicates the i-th entry in the

temporary table. These are assigned sequentially to

quadruples beginning with tl for each arithmetic statement

processed. When code has been executed for an arithmetic

statement (a sequence of quadruples the last one of which

must be an assignment quadruple), the temporary variables

used for that statement have no further use. Thus, space

is allocated in the compiler for the temporary variable

table based upon the maximum number of temporary variables

that one statement can generate. This same principle is

33

. "IP.

' • ' f j
~

~

,·

applied to allocating storage for temporary variables at

, execution time bv reserving a sufficient number of words

in data area o. The temporary variable table contains

preassigned symbolic addresses. A temporary variable is

then made addressable by obtaining the displacement from

its entry in the temporary variable table and using the

R-th register as a base register. A procedure is described

in Appendix B which will convert an arithmetic statement

in infix notation to a sequence of quadruples based upon

the· precedence rules described in Chapter 1.

3.1.5 Synthesis Phase

The synthesis phase consists of preperation for code

generation and code generation itself. Applying

optimization techniques to the source program (in its

internal form - quadruples) is an important part of the

preperation for code generation. These optimization

techniques are machine independent. They will not be used

nor discussed further in this thesis. This is followed by

the code generation routines which generate target code

from the internal form of the source program. Optimization

techniques may be applied during or subsequent to the

generation of object code. These are machine dependent

techniques. Frequently a compiler will combine both

techniques. The compiler used in this thesis converts the

internal form directly to object code. Several compiler

·' .

34

•

;
j
e'

" ~-
/

' ' I
l

r
I

•· .. - ·', ,·._.·,·,,_,,.....; ...

techniques for generating code are discussed below. These

techniques are not int.ended to be unique but rather to

provide several distinct levels of object code for
• comparison.

3.2 Code Generation Techniques

Code generation for a quadruple can be divided into

three steps. The first step generates code to make the

operands addressable. This consists of insuring that

either the operand itself or its base address is in a

register. The second step generates code to load one of

the operands into a register. This consists of insuring

that the first operand is in a register. The third step

generates code to perform the required operation. The

implementation of these steps can be very simple or very

complex depending upon the design of the compiler.

A code generation procedure, which follows these three

steps, is discussed in the next section. This procedure

requires six variables. Four variables, OPER, OPND1,

OPND2, and RSLT, are designated for the elements of

quadruples where OPER is the operator, OPND1 and OPND2 are

the first and second operand respectively and RSLT is the

temporary variable identifying the result of the

operatiqn. Two other variables, ADDRl and ADDR2, are used

to hold the addresses of the first and second operand

respectively. These two variables may hold addresses of
,:

35

\ ·V

...

.';_

}

' ,,

·,

l
" '

•·, 1;

"

the form Rn, k(i) or blank. All six variables are global

since they must be available to all procedures of the

compiler.

3.2.1 Basic Executable Code

This procedure assumes that any operand or base

address required in a register must always be loaded from

memory. The following steps describe the procedure and

are implemented sequentially unless otherwise indicated.

Step 1 initializes the address variables and reads the

next quadruple.

I. Initialize ADDRl=" "and ADDR2=" "and read the

first (next) quadruple. If there are no remaining

quadruples, code generation for the program is

complete.

Step 2 generates code to make the first operand

addressable.

2. Generate "LOAD R3,dl(R)" (where dl is the data

area number of the first operand) and set

ADDRl="k1(3)" (where kl is the displacement of the

first operand).

Step 3 generates code to make the second operand

addressable.

3. If OPND2 equals"", go to step 4. Otherwise
...,

generate "LOAD Rl,d2(R)" (where d2 is the data

area number of the second operand) and set

36

' ' •:

'

ADDR2="k2(1)" (where k2 is the displacement of the

second operand).

Step 4 generates ·code to place the first operand in a

• register.

4. Generate 0 LOAD R3,ADDR1". If OPER equals either

"*''or''/'', set I=2. Otherwise set I=3.

Step 5 generates code to perform the required

operation using the procedure INSTR(!) where I is a

register number specified by the calling procedure.

This procedure will generate the appropriate machine

language instruction for each quadruple based upon the

operator involved. A detailed description of this

procedure is given in Appendix c.

5. Call INSTR(I).

Step 6 generates code to save the result of this

quadruple and is required by the basic nature of this

algorithm.

6. If-OPER equals"=", go to step 1. Otherwise

generate "STORE R3,kt(R)" (where kt is the address

in the temporary variable table entry pointed to

by RSLT) and go to step 1.

Even though the number of available registers is a
'

parameter of SAC, the registers used by this algorithm are

explicitely stated. In this procedure the compiler does

not keep track of the contents of the registers.

37

..

Therefore, the results of each quadruple must be stored

before the next quadruple is encountered. One result of

this is the lack of change in the object code if

additional registers are available. This algorithm will

generate the same code for three registers as for thirty

registers. This lack of information about the contents of

the registers prohibits the compiler from making a

decision as to which register to chose when one is needed.

3.2.2 Register Map [3)

It is intuitively appealing to leave certain

frequently used values in registers, thus eliminating some

LOAD and STORE instructions. In order to accomplish this,

the compiler must keep a running record of the contents of

the registers, a so-called register map, by using an array

named RV (Register Value). When then-th element of this - -
array, RV(n), contains an operand, this means that the

value of that operand is in register n. We have already

defined operands to describe variables, constants and

temporary variables. Since the registers can also hold

data area addresses, we define an additional operand as

follows:

(4,Data area number) (4 ,d)

If RV(n) contains (4,d), this indicates that the

address of data area dis in register n. Thus RV(N+l)

always contains (4,0). Each time code is generated which

38

")

changes the contents of a register, say Rn, the array

element RV(n) must be updated. This technique makes it

unnecessary to store the result·of each quadruple since

the result will be identified by an operand of the form

(3,t) in RV.

A register can now be classified as free if it may be

used without the necessity of saving its contents. Those

registers which are empty are obviously free. Those which

hold the value of operands of type (1,v), (2,c) and (4,d)

are also free since these values are·a1ways available in

memory. The only operand which must be stored when the

register holding its value is required is of type (3,t).

Thus Rn is free if it does not hold the value of a

temporary variable or, equivalently, if RV(n) does not

hold an operand of type (3,t).

When a register is required, this technique chooses

the first (lowest numbered) free register and avoids

storing temporary variables unless no free registers are

available. When a temporary variable in register n is to

be stored, the storage address is obtained from its entry

in the temporary variable table.

When implementing a register map, care must be taken

to preserve the addressability of operands. If then-th

register were used to address the first operand (either by

holding the value of the operand or by holding the base
\

39

., : .. \. ·-:·':.:,- ''!,. -.. ,

address of the operand), and there were no other free

registers, then, if the address of the second operand

required a free register, the addressability of· the first

operand would be destroyed. To avoid this problem a

register must be tested to insure that it is not

r'ferenced by either one of the address variables, ADDRl

and ADDR2, before it is reused or its contents stored.

3.2.3 Register Status [3]

The previous method of selecting a free register does

not differentiate between a register that is empty or one

that contains variables or constants. Another technique

which is used in combination with the register map

provides this capability by using an array called RS

(Register Status) to keep track of the importance of the - -
contents of each register. The possible values of the

n-th element of this array, RS(n), are:
l)

0 Register n is empty and may be used without storing

1

its contents.

Register n holds either a constant, variable or

data area address whose value is in memory and may

be reused without storing its contents.

2 Register n holds a temporary variable whose value

is not in memory and must be stored before bein·g

reused.

Each time the contents of a register are changed not

40

I

•

) ·-('

(
\ __

•.

only is the RV array updated but also the RS array. When

this technique requires a free register, it first searches

for a register with status O, then status 1 and finally

status 2. Thus it will show a preference for using empty

registers, thereby leaving constants, variables and base

addresses in registers. This increases the liklihood that

these values can be reused in subsequent operations

without the necessity of loading them from memory.

3.2.4 Assigned Base Register

Since symbolic addresses are assigned sequentially as

the variables and constants are encountered in the source

program, variables and constants occuring in adjacent

areas tend to be stored in the same data area. This

technique takes advantage of this fact by assigning a

specific register, RN, to be used as a base register.

This register is loaded with the base address of the

predominant data area and is not used for arithmetic

operations. The method of determining the predominant

data area for a particular block of coding and loading its

address into the assigned base register is beyond the

scope of this paper. This technique has the advantage of

reducing the requirements for loading data area addresses

but has the disadvantage of reducing the number of

registers available for arithmetic operations. Because of

this disadvantage, the minimum number of registers

41

,.
ij'

t·

~
)
~·
I• ,.
1
.,\
'
,r.
I ,

1

reqµired when using this technique is four.

3.3 Procedure Descriptions

Providing the compiler with the ability to make
•

decisions about register usage increases its complexity.

Gonsequently, the procedure which implements the three

steps of code generation using the techniques described

above, is best described (and implemented) using five

seperate procedures: FREANY, FREODD, FIXAD, PTINRG, and

INSTR. The first two procedures are used to find free

registers. The remaining three are used to perform the

three steps of code generation. The INSTR procedure has

been previously described. Functional descriptions of the

remaining four procedures are given below and detailed

logical descriptions are provided in Appendixc.

FREANY(I) This procedure is used to find a free register

consistent with the address constraints. If

none are found, code is generated to store the

contents of the lowest numbered register that

is not referenced by the address variables.

The number of the free register is returned in

I.

FREODD(I) This procedure is used to find a free even-odd

register pair. Since this procedure is used

only when loading OPND1 into a register, the

two registers involved may be referenced by

42
..

(

,1

·'

' .

ADDRl. If no free pair can be found, code is

generated to free a pair of registers and

_preserve addressability of the operands. The

number of the odd register is returned in I.

FIXAD(X,ADDR) This procedure is used to construct (fix)

the addresses of the operands.Xis either

OPND1 or OPND2 and ADDR is the corresponding

address variable (ADDRl or ADDR2). This

procedure first determines if either X or its
I

base address is in a register,(in which case,

no code is required and the address variable. i~ de- ()
set to the appropriate value. If neither is in ~,

'PTINRG (I)

a register, the procedure FREANY(I) is called

and code is generated to load the base address

of X into RI. The address variable is then set

to the appropriate value.

This procedure is used to place OPND1 in a

register. If OPER is either''*" or"/" (which

requires OPND1 to be in an odd register), this

procedure calls FREODD(J) and generates code,

if necessary, to load OPND1 into the odd

register, RJ. I returns the number of the

preceeding even register (J-1). If OPER is not

"*"or"/", this procedure first determines if

OPND1 is in a register, in which case, no code·

43

.,

' r
h
t
t'
r
'
' '

'

... ,,

,,

\

is generated and I returns the number of that

register. If it is not, FREANY(J) is called

and code is generated to load OPND1 into RJ. I

then returns register number J.

The procedure for code generation can now be

described using the procedures FIXAD, PTINRG and INSTR.

1. Initialize ADDRl=" "and ADDR2=" "and read the

first (next) quadruple. If there are no remaining

quadruples, code generation for the program is

complete.

2. Call FIXAD(OPND1,ADDR1)

3. Call FIXAD(OPND2,ADDR2)

4. Call PTINRG(I)

5. Call INSTR(I)

6. Go to step 1.

Both the register status and assigned base register

techniques require knowledge of the contents of registers.

Consequently both these techniques require a register map

for implementation. Four possible combinations of these

techniques will be considered.

a. Register map.

b. Register map with register status.

c. Register map and an assigned base register.

d. Register map with register status and an assigned

base register •

44

The differences between these four levels of code

generation appear when implementing the logical steps

described in Appendix c •

'1

One difference occurs in the method used to find a

free register. When using a register map without register

status, the RV array is searched in numerical order (from

1 to N) for the first entry which is not type (3,t). If

register status is used, then the RS array is searched in

numerical order (from 1 to N) for the first entry whose

value is o. If none are found, then RS is again searched

for the first entry whose value is 1. When an assigned

base register is used with either of the a\° techniques,

the range of the search is limited to the ar-ay entries

from 1 to N-1, since the N-th register is used as the

assigned base register.

The other differences consist of the requirements for

updating the RV and RS arrays when code is generated which

changes the value or status of the contents of a register.

Register to register LOAD instructions of the form

LOAD Rn,Rm require the values of RV(n) and RS(n) to be set

equal to the values of RV(m) and RS(m) respectively. No

changes are required in the values of RV(m) and RS(m).

Storage to register LOAD instructions of the form

LOAD Rn,d(R) require the value of RV(n) to be set equal to

(4,d) and the value of RS(n) to be set· equal to 1. STORE

45

~:

. ..
i•,

,,, y,
. '

\''

instructions (except in the INSTR procedure) and storage

to register LOAD instructions of the form LOAD Rn,k(i) do

not require any changes in either RV or RS because they

are always followed by an instruction which causes the

necessary changes to be made.

The requirements for the procedure INSTR(!) depend

upon the instruction generated. The ADD, SUB and NEG

instructions require RV(I) to be set equal to RSLT and

RS(I) to be set equal to 2. The MOLT and DIV instructions

require RV(I) to be cleared, RV(I+l) to be set equal to

RSLT, RS(I) to be set equal to O and RS(I+l) to be set

equal to 2. The STORE instruction requires RV(I) to be

set equal to OPND2 and RS(I) to be set equal to 1. All

entries in RV of the form (3,t) must be cleared and all

entries in RS that equal 2 must be changed to O.

3.4 Compiler Simulation

The simplification obtained by using a simulated

compiler occurs primarily in the analysis phase. The

limited scope of the source language and the fact that

execution is only simulated eliminates the need for

tables. All variables are assumed to be stored in data

area 1. Since displacements--were not required for the

simulation, the variable or temporary character was used

in the address variable in place of displacement. This

made printed code more readable.
~

46

.-,,
I

'i'~

'' ·,
.~-,

'

t

Since all variables and operators are single

characters, the scanner need not build any symbols.

Differentiating between variables and operators is

accomplished by testing the sign of the character since

alphabetic characters have negative values and operators

have positive values. Temporary variables were denoted by
.

literal numeric characters which also have positive

values. Syntax and semantic checking was not included

because of the simple nature of the source language. The

source language statements which were converted from

FORTRAN were visually checked for correctness •

47

CHAPTER 4

4.1 Cost Model

The purpose of evaluating compiler performance is to

provide a means of differentiating between different

compilers (or levels of the same compiler} in terms of
. -----.

some cost function. The ideal cost function would be the

one used by the computer center where the compiler is to
...

be implemented. The cost function used in this thesis is

relatively simple and an element of many computer billing

schemes[~. The cost is based on the time intergrated

storage requirements of a program. The storage or space

requirements of a program consist of two elements: the

instruction space, which is required for the object code,

and the variable space, which is required for the values

of variables, constants and temporary variables. Since the

space requirements of the variables used in the source

language are not typical due to the limited number of
~

variables allowed, the cost function was confined to the

requirements of the instruction space. The cost function
• 1S

• • 1

Ct= R n (i}T (i) 1:n(i,)S(i)

where T(i) is the execution time in seconds of the i-th

type of instruction.

s (i) i-s ··the storage requirement in kilo-bytes of the

i-th type of instruction.

... 48

~-

R is the rate charged per kilo-byte-second.

n(i) is the number of times the i-th type of

instruction is executed.

Ct is the "total" cost of executing a program.

This model shows no preference between space or time

considerations. If, in a particular computer environment,

either space or time were critical, than a different model

would be used which would allow the use of weighting

functions.

The different types of instructions refer to the

instructions described in Chapter 2 but differentiate

between register to register (R/R) and register to storage

(R/S) operations. Since the source language is limited to

straight line code, the number of .times an instruction is

executed is equal to the number of times that instruction

is generated in the compiler. Thus, the simulated

execution consisted of counting the number of times each

type of instruction was generated by the simulated

compiler. Execution times for each type of instruction

were derived from typical execution times for similiar

instructions published for the PDP-11 with the first

operand in the register mode and the second operand in

either the register mode for R/R instructions or index

mode for R/S instructions.P1J The space requirements were

obtained from the space required by the IBM 360 for R/R

49
~.

. '

~nd R/S instructions.[10) These are also the requirements

for the PDP-11. The data used is shown in Table 1.

LJ.2 Experiment

Two factors were selected for analysis: the level of

optimization and the number of registers. Five levels of

optimization were used:

1) Basic executable code.

2) Register map.

3) Register map with register status.

4) Register map and an assigned base register.

5) Register map with register status and an assigned base

register.

The number of registers was chosen to reflect the

target machines. The IBM 360 has 16 registers numbeted

0-15. However, registers O, 1, 13, 14 and 15 are usually

reserved by convention for special uses, leaving registers

2-12 for arithmetic operations. The PDP-11 has 8

registers numbered 0-7. However, register 6 is used as a

stack pointer and register 7 is the program counter,

leaving registers 0-5 for arithmetic operations.

Therefore, the number of registers used were 6 and 11.

Since the PDP-11 considers registers O and 1 to form an

even-odd pair, both register configurations begin with

even-odd pairs. The simulated compiler was m°9ified to

ignore register 1 in order to simulate this same register ...

. so

·~

''
'·' ,,
~': ,.
r.

f
(I', ,,:
f'J'

,:

INSTRUCTION TYPE

NEG -
STORE R/S
LOAD R/S
LOAD R/R
ADD R/S
ADD R/R
SUB R/S
StJB R/R
MOLT R/S
MULT R/R
DIV R/S
DIV R/R

STORAGE
REQUIREMENTS

(BYTES)
i S(i)

1 2
2 4
3 4
4 2
5 4
6 2
7 4
8 2
9 4

10 2
11 4
12 2

EXECUTION
TIME

(MICROSECONDS)
T (i)

1.28
2.90
2.63
0.90
2.78
0.90
2.78
0.90
5.56
3.83

10.19
8.46

TABLE 1. STORAGE REQUIRE11ENTS AND EXECUTION TIMES OF
INSTRUCTIONS USED FOR SIMULATED EXECUTION •

•

51
.0

.....

,,,

.·,.,- ···:·,,,'.::: , ••• •- J

•

·,

configuration. Registers 2-12 were used for the IBM 360

and registers 2-7 were __ . used for the PDP-11. [1 O, 11 J

Since cost is a function of program size (particularly

with straight line code), the statistic chosen to

characterize performance was the total cost of a program

divided by the square of the number of quadruples which

generated the cost. Since both the total space and total

time requirements are each proportional to the number of

quadruples in a program, dividing by the square of the

number of quadruples should effectively eliminate program

size as a variable. In order to provide convienent

numbers for analysis, 'the rate charged per kilo-byte

second wa~ chosen as 108 (the units are irrelevant).

Thus, the statistic used is

X = (Ct/q2) 108

where Xis the observed statistic for each event

Ct is the total cost of the event

q is the number of quadruples comprising the event.

Eighty programs were randomly selected from a list of

836 FORTRAN programs provided by the local time sharing

center. These 80 programs yielded 3751 arithmetic
D

statements which were converted to the source language. A

description of the procedure used to extract and convert
·,,.

'

arithmetic statements from these programs to-the source

language is given in Appendix D and some analysis of this

52

•'

(

t
,,
'··,

,,

data is shown in Appendix E.

Seperate experiments were performed for program sizes

of 17, 46 and 118 arithmetic statements. These sizes were

selected as the 50%, 70% and 90J points respectively of

the cumulative frequency distribution of the number of

arithmetic statements per FORTRAN program. Each event

cdnsisted of randomly selecting the appropriate number of

statements from the 3751 available statements and

simulating compilation with a particular level of

optimization and a particular number of registers

available. The experiment used was a factorial design

which combined all levels of one factor (levels of

optimization) with all levels of the other factor (number

of registers). An experiment of this design can be easily
1

extended to several factors. The number of replications

(observations taken for each combination of factors) was

four.

A two factor analysis of variance (ANOVA) test was

used to analyze the results. The mathematical model for

the ANOVA test is

Xijk = u +Li+ Rj + LRij + €k(ij)

where Xijk is the k-th observation (k=l, ••• ,4) of the i-th

level of optimization (i=l, ••• ,5) combined with

the j-th number of registers available ..

(j=6,11).

53

.. ,.

...

(

;,

u is a common effect for the whole experiment.

Li is the effect of the i-th level of optimization.

Rj is the effect of the j-th level of available

registers.

LRij is the interaction effect of Li and Rj.

Ek(ij) represents the random error within the cell
• • 1,J.

Those factors which appeared significant in the ANOVA

test were further analyzed by Duncan's multiple range

test. This test orders the means of the factor being

tested from low to high and then tests the means for

significant differences.

A detailed explanation of both these tests can be

found in Hicks[,]. Both tests were conducted at the 95~

significance level, which means that there is a .OS

probability that a factor which appears significant is, in

fact, not significant. Those factors which were

significant in the ANOVA test at the 99% significance

level were noted. A diagram of the experimental procedure

is shown in Figure 5.

::-:·

54

. ~-· •·•·.

•

...

•

•.
• .

·1

l

!
' ,..

.I

LIST OF 836
FORTRAN
PR OGRJ\.:.:M:-S ---

~ ~
RANDOMLY
SELECT 80
-PROGRAMS

LIST OF 80
FORTRAN
PROGRAMS _

~ -~ ----.

•.

L
' , ----------&....---------..

F-IGq~ .5.

FOR EACH PROGRAM, EXTRACT ARITHMETIC
STATEMENTS AND CONVERT TO THE SOURCE
LANGUAGE (APPENDIX D). COLLECT LINE
SIZE DATA FOR FORTRA~ AND SOURCE
LANGUAGE PROGRAMS. PUT STATEMENTS IN
A FILE AND PRINT LINE SIZE DATA.

ARITHMETIC/
STATEMENTS
\. (3751) \

FOR EACH PROGRAM SIZE, P, PERFORM THE
FOLL.OWING .STEPS FOR EACH LEVEL­
REGISTER-REPLICATION COMBINATION (40).

, ,
RANDOMLY SELECT A PROGRAM BY MAKING P
RANDOM SE·LECTIONS OF AN ARITHMETIC
STATEMENT. CONVERT THIS PROGRA~ TO
QUADRUPLES (APPENDIX B). -

1 •

PSEUDO-COMPILE THESE QUADRUPLES,
CALCULATING THE COST AND STATISTIC
FOR EACH PROGRAM. ·

WHEN ALL 40 COMBINATIONS HAVE BEEN
COMPILED, ANALYZE THE STATISTICS WITH
THE ANOVA TEST AND DUNCAN'S TEST.
PRINT THE RESULTS.

,....-... ~'---......
ANALYSIS OF. r .
RESULTS
(APPENDIX F)

DI.AGRAM. OF. EXPERIMENTAL PROCEWRE
I • • • •• •• • - • ~ • • • ," •' • •, •, '• • ' -

•.

55

!'·

• •

/ ANALYSIS OF
..._,. __ --l-w SAMPLE DATA

~ (APPENDIX. E) J

·,

....

.r'•

\
,;.

•

,

. i

•

" ...
l ,, ,,,
,,,
•,,
!·.·-

t
,,
;.

: .

'
>

}

CHAPTER 5

5.1 Results

Tables 2 thru 4 show the results and analyses of three

experiments using program sizes of 17, 46 and 118

arithmetic statements respectively. Tables 5 thru 7 show

the results and analyses when the data for level 1 is

excluded.

The multiple range test orders the means of each

factor found significant from lowest to highest (left to

right). The actual means are not shown but are calculated

from the 8 values in a column {for levrls), from the 20
/

values in a row (for registers) or from the 4 values in a

colurn-row intersection (for level-register combinations).
l

Those level, reqister or level-register combination

indices which are underlined indicate that their means are

not signif·icantly different {i.e. they could have come

from the same population). Conversely, those that are not

underlined are statistically different. Thus, in Table 3,

levels 4 and 2 are significantly different from level 1.

In this same table, levels 5, 3 and 4 are significantly

different from levels 4 and 2. The overlap of level 4 can

.be interpreted as having two distinct population

distributions (i.e. ~?ifferent means) which have some

overlap. Levels 2, 3 and 5 belong to either one or the

other population, but, b ause of the overlap, level~

56

' .

...

•

• '._"-_r.:: ·,,,··;. ,>'('',- ·-: ' , ... '.'. ·•.,_:, }:,'·.··.';:.·;,"· •"' '·· :·.,' . ,

' LEVELS 1 2 3 4 5

23.17 3.66 3.45 3.06 3.46
REGISTERS 22.34 4.14 3.86 3.57 3.46

6 21.08 3.79 3.68 3.04 3.95
24.01 4.75 3.34 4.50 3.97

' ..

20.16 4.41 3.61 3.82 3.13
REGISTERS 23.24 4.03 2.82 3.88 3.22

11 23.68 4.22 3.29 4.35 3.17
22.10 3.90 4.11 3.82 3.24

ANOVA TABLE

SOURCE DF ss l-1S EMS
LEVEL (Li)••••••••••••••• 4 2255.09 563.77 1065.26
REGISTERS (Rj) • • • • • • • • • • • 1 0.11 0.11 0.20
L X R INTERACTION (LRij) • 4 1.08 0.27 0.51
ERROR (Ek(ij)) ••••••••••• 30 15.88 0.53 1.00

TOTALS 39 2272.15
,,.

MULTIPLE RANGE TEST (95%)

LEVEL 5 3 4 2 1

TABLE 2. RESULTS AND ANALYSIS OF EXPERIMENT WITH FIVE
LEVELS OF OPTIMIZATION FOR SMALL PROGRAM
ENVIRONMENT (17 ARITHMETIC STATEMENTS PER
PROGRAM).

57

.i.

SIG
99%

... '

,•

'·

•• :i·

-LEVELS 1 2 3 q 5 -
·.

21.96 4.37 3.24 3.52 4. 20· REGISTERS 20.73 4.14 3.34 3.90 3.62
6 23.11 3.53 3.76 3.59 3.41

23.61 4.05 3.26 3.56 3.26

24.18 3.65 3.21 3.83 2.61 REGISTERS 22.58 4.12 3.15 3.78 2.84
11 22.66 3.84 3.00 3.47 3.09

22.05 3.76 2. 94 3.76 2.78
.

ANOVA TABLE

SOURCE DF ss MS EMS
LEVEL (Li) ••••••••••••••• 4 2335.89 583.97 1951.46 REGISTERS (Rj) • • • • • • • • • • • 1 0.21 0.21 0.69
L X R INTERACTION (LRij). 4 1.88 0.47 1.57 ERROR (Ek (i j)) ••••••••••• 30 8.98 0.30 1.00

TOTALS 39 2346.95

MULTIPLE RANGE TEST (95,)

LEVEL .5 3 4 2 1

TABLE 3. RESULTS AND ANALYSIS OF EXPERIMENT WITH FIVE
LEVELS OF OPTIMIZATION FOR MEDIUM PROGRAM
ENVIRONMENT (46 ARITHMETIC STATEMENTS PER
PROGRAM).

..

58

.. , ,.,, !•.' .. ,'•\·,.,) • '

SIG
99% ------

,·~

.,
,;,

'll

LE\7ELS 1 2 3 4 5

23.65 3.94 3.61 3.94 3.09
REGISTERS 21.66 3.96 3 • 6LJ 3.83 3.49

'
6 22.74 4. 07 3.49 3.46 3.28

22.72 3.86 3.61 3.59 3.31

23.45 3.71 2.84 3.65 2.84
REGISTERS 23.51 3.66 2.65 3.19 2;_. 8 0

11 21.47 3.62 2.73 3.56 2.75
24.10 3.56 2.92 3.70 2.92

ANOVA TABLE

SOURCE OF ss MS EMS
LEVEL (Li) ••••••••••••••• 4 2435.78 608.94 2839.97
REGISTERS (Rj) • • • • • • • • • • • 1 0.70 0.70 3.28
L X R INTERACTION (LRij) • 4 1.68 0.42 1.96
ERROR (€k(ij)) ••••••••••• 30 6.43 0.21 1.00

TOTALS 39 2444.59

MULTIPLE RANGE TEST (95%)

LEVEL 5 3 4 2 1

TABLE 4 • RESULTS AND ANALYSIS OF EXPERIMENT WITH FIVE
LEVELS OF OPTIMIZATION FOR LARGE PROGRAM
ENVIRONMENT .(118 ARITHMETIC STATEMENTS PER
PROGRAM).

59

)

SIG
99~

•\

,··: .. ,,· •., ''

LEVELS 2 3 4 5

3.66 3.45 3.06 3.46
REGISTERS 4.14 3.86 3. 57 3.46

6 3.79 3.68 3.04 3.95
4.75 3. 3ft 4.50 3.97

4.41 3.61 3.82 3 .1·3
REGISTERS 4. 03 2.82 3.88 3.22

11 4.22 3.29 4.35 3.17
3.90 4.11 3.82 3.24

.

ANOVA TABLE

SOURCE DF ss MS EMS
LEVEL (IJi) ••••••••••••••• 3 2.14 0.71 4.53
REGISTERS {Rj) • • • • • • • • • • • 1 o. 01 0.01 0.09
L X R INTERACTION (LRij). 3 0.92 0.31 1.94
ERROR (Ek(ij)) ••••••••••• 24 3.77 0.16 1.00

TOTALS 31 6.84

MULTIPLE RANGE TEST {95%)

LEVEL 5 3 4 2

TABLE S·. RESULTS AND ANALYSIS OF EXPERIMENT WITH FOUR
LEVELS OF OPTIMIZATION FOR SMALL PROGRAM
ENVIRONMENT (17 ARITHMETIC STATEMENTS PER
PROGRAM).

60

•

SIG
95% ------

._. '

r -~ ~: 1 -~
·.·.·_·I ~--. l.' -.. . . ; . .

't,

t.

•,

{ ..

' ' ·:

LEVELS 2 3 4
.

4.37 3.24 3.52
REGISTERS 4.14 3.34 3.90

6 3.53 3.76 3.59
4.05 3.26 3.56

3.65 3.21 3.83
REGISTERS 4.12 3.15 3.78

11 3.84 3.00 3.47
3.76 2.94 3.76

..,..

ANOVA TABLE

SOURCE DF ss MS
LEVEL (Li) ••••••••••••••• 3 2.88 0.96

. REGISTERS (Rj) • • • • • • • • • • • 1 0.76 0.76
L X R INTERACTION (LRij). 3 0.79 0.26
ERROR (Ek(ij)) ••••••••••• 24 1.53 0.06

TOTALS 31 5.96

MULTIPLE RANGE TEST (95%)

LE\TEL
REGISTER

LEVEL

5
11

REGISTER

3
11

5

3
6

3

11

5
6

6

4
6

4
11

2
11

5

4.20
3.62
3.41
3.26

2.61
2.84
3.09
2.78

EMS
15.05
11.92

4.11
1.00

2
6

TABLE 6. RESlTLTS AND ANALYSIS OF EXPERIMENT WITH FOUR
LEVELS OF OPTIMIZATION FOR MEDIUM PROGRAM
ENVIRONMENT (46 ARITHMETIC STATEMENTS PER,
PROGRAM).

61

,;

SIG
99%
99%
95~

•• 1

. ,.

,.

I
(
)

LEVELS 2 3 4

3.94 3.61 3.94
REGISTERS 3.96 3.64 3. 83

6 4.07 3.49 3.46
3.86 3.61 3.59

3.71 2.84 3.65
REGISTERS 3.66 2.65 3.19

11 3.62 2.73 3.56
3.56 2.92 3.70

ANOVA TABLE

SOURCE DF ss MS
LEVEL (Li) ••••••••••••••• 3 2.92 0.97
REGISTERS (Rj) • • • • • • • • • • • 1 1.56 1.56
L X R INTERACTION (LRij). 3 0.43 0.14
ERROR (Ek(ij)) ••••••••••• 24 0.49 0.02

TOTALS 31 5.40
-

MULTIPLE RANGE TEST (95%)

LEVEL
REGISTER

LEVEL

3
11

REGISTER

5
11

5 3

11

5 4
6 11

4

6

3
6

2:

2
11

4
6

5

3.09
3.49
3.28
3.31

2.84
2.80
2.75
2.92

EMS
48.05
77. 07
7.13
1.00

2
6

TABLE 7. RESULTS AND ANALYSIS OF EXPERIMENT WITH FOUR
LEVELS OF OPTIMIZATION FOR LARGE PROGRAM
ENVIRONMENT (118 ARITHMETIC STATEMENtS PER
PROGRAM).

62

'·

SIG
99%
99%
99%

•

~· .

could be in either of the two populations. This overlap

has the effect of weakening the differences identified.

When all five levels of optimization were included in

the analyses (Tables 2 thru 4), the ANOVA test indicated a

very strong level effect and Duncan's test indicated

little, if any, difference in levels 2 thru 5. This

results from the very high cost of level 1 compared to the

other 4 levels. To offset this effect and gain additional

information about levels 2 thru 5, the same data was

reanalyzed with level 1 excluded. These results are shown

in Tables 5 thru 7. The differences (and lack of

differences) between the levels, registers and

level-register combinations are more apparent in this

analysis. The increase in the significance of the level

factor as well as the inclusion of additional factors as

the program size increases results from the increase in

opportunities for improvement in larger programs.

Even though the different levels of optimization were

used only as illustrations, care should be exercised when

interpreting the results of these experiments. The

assumption that all variables are allocated to data area 1

favors the use of the assigned base register. This

assumption may not be fully met in actual practice. Also

the use of only 26 variables (A-Z) increases the

63

..

.. _;,

----·

..•.

, ..

• ~ •. , •\ ·~··, ... ,.,,.~,_. ,,..,;,·' ,_.; ·• !•

\;

J . '

opportunities for improvements obtained by leaving

variables in registers. These opportunities may be

significantly reduced in practice where a much larger

number of variables are used.

The interpretation of these results would indicate

that the addition of a register map is highly desirable in

all cases due to the large improvement over basic

executable code. The additional techniques which give the

best performance tend to depend upon the number of ..
registers available and the size of the programs. In a

small program environment (17 lines), any of the levels 3

thru 5 provide the same improvement when added to the

register map regardless of the number of registers. In

the medium program environment (46 lines) with 6

registers, any of the levels 3 thru 5 provide essentially

the same improvement when added to the register map. With

11 registers, adding an assigned base register provides no

significant improvement over the register map. If used

with a status array, the improvement is significant but no

different than the improvement achieved with the status

array alone. In the large program environment (118 lines)

with 6 registers, a status array or an assigned base

register both provide the same significant improvement.

An additional improvement can be obtained by combining

these techniques. With 11 registers available, the

64
J.

..
'

results are the same as the medium program environment

with 11 registers.

The above interpretations are based on empirical

results relating specifically to a subset of FORTRAN

describing arithmetic statements. However, this does not

restrict the application of the methodology to other -

languages or to more complete versions of FORTRAN. If,

for example, the optimization levels were tested for a ...

language which made little use of arithmetic statements

and, as a result, the analysis of experimental data

indicated no significant differences in performance for

all levels of optimization, then, the design-er would still

have gained significant information. He would have

learned that the least complicated technique could be used

in the compiler without affecting the object code

produced.

5.2 Conclusions

The results of the exp~riments indicate that the

methodology proposed in this thesis can be a valuable tool

for measuring performance in the design and evaluation of

compilers (and compiler optimization techniques).

The definition of an abstract computer is feasible in

many machine environments (particularly those consisting

of sirniliar computers). Even in those environments

consisting of very dissimiliar computers, SAC can be

65

. '
'

f.
r
~ ..

• ··i .• ; .' _-a,,.•,.,;c···.:.: .. c,,,• .•

~·

useful for special purpose· user oriented languages of

limited complexity.

The design of a compiler for SAC requires no new

technology since a compiler, like any other program, uses

parameters, whether initialized inside the program or

initialized externally at execution time. Thus the

parameters of SAC do not restrict the design of a suitable

compiler for SAC.

The factorial experiment used can be extended to any

number of factors, both quantitative and qualitative, and

the ANOVA test provides a method for evaluating the

effects and interactions of these factors. Duncan's test

provides the ability to select a preferred alternative

among those being tested.

5.3 Recommendations For Further Study

Several areas of further study are indicated by this

proposed methodology. The most obvious is the enrichment

of the definition of SAC. The instruction set of SAC

could be expanded to include instructions which are common

to most computers, and, with additional effort, could be

extended to various combinations of computers. Included

in this effort would be the determination of the best

method of implementing in SAC the various addressing

schemes used by different computers. A very pertinent

area of study would be to determine whether.this problem

66

\

r\, ,,

r-
~ ,1',

' '

·•

..
i

l ..

is best handled by the intermediate processing which SAC

code requires before execution, or the use of an

addressing scheme in SAC which would reduce to various

addressing schemes as special cases or, possibly, some

combination of both approaches.
.., -·· /--.

Another area of study is the actual design and

implementation of a SAC compiler, particularly for
-.

languages more complex than that treated in this thesis.

This effort would involve not only the difficulties
1

inherent in compiler design but also the additional task
./

of incorporating in the compiler the ability to gather

information which is required for statistical analysis.

A third area of investigation would be the development

of a simplified SAC definition and several models of

program environments which would provide standards for

relative evaluations of various compiler techniques.

These standards need not be all encompassing in terms of

machine and program environments to be used as effective

indices of performance in the publications concerning

compiler performance.

' •. .

67
·,

.,

., ,;
'

Bibliography

l. Beatty, _J. c. "Register Assignment Algorithm for
Generation of Highly Optimized Object Code" IBM
J. Res. Develop. (Jan. 1974), 20-39

2. Bookman, P. G. "Make Your Users Pay The Price"
Computer Decisions 9 .(Sept. 1972), 28-31

3. Gries, D. Compiler Construction for Digital
Computers. New York, New York: John Wiley &
Sons, Inc., 1971

4. Hicks, c. R. Fundamental Concepts in the Desi~n of
Experiments. New York, New York: Holt, Rinehart
and Winston, 1964

s.
\

Knuth, D. E. "An Empirical Study of FORTRAN Programs"
Software Practice & Experience 1 (1971), 105

6. Mendicino, s. F., et al. "The LRLTRAN Compiler"
Comm. ACM 11 (Nov. 1968), 747-755

7. Sethi, R., and Ullman, J. D. "The Generation of
Optimal Code for Arithmetic Expressions" J. ACM 9
(Sept. 1972), 715-728

-8.- Sethi, R., Ullman, J. n., and Aho, A. v. "A Formal
Approach to Code Optimization" Proc. Symposium
on Compiler Optimization, ACM, (1970), 86-100

9. Sippl, c. J. and Sipp!, c. P. Computer Dictionary and
Handbook 2nd Ed. Indianapolis, Indiana: Howard w. Sams & Co., Inc. 1972

10. Struble, G. Assembler Language Programming: The IBM
System/360. Reading, Massachusetts:

11.

Addison-Wesley Publishing Co., 1969

PDP-11/45 Processor Handbook. Digital
Equipment Corp., 1973

68

~·· ~·-· . -··-._ .. J'
\

''-

APPENDIX A

List of Symbols

a-z a variable in internal form used by the compiler

A-Z a variable in the source language

c a pointer to an entry in the constant table

d a data area number

D the number of data areas required for a particular
program

D' the maximum number of data areas available

i the number of a register used to hold a base address
(a base register)

j the number of a register used to hold the index
portion of an address (an index register)

k a displacement constant (frequently called an
offset)

K the maximum displacement that an instruction may
hold (K=max (k))

k(i) the address obtained by adding the displacement
constant, k, to the contents of base register i. In
the context of an instruction, "k{i)" should be read
as "the contents of the address specified by k(i)".
Equivalent to k(i,O) where O is the number zero
rather than the register numbered zero.

k(i,j) the address obtained by adding the displacement
constant, k, to the sum of the contents of base
register i and index register j.

morn the number of a general purpose register available
for arithmetic operations as well as addressing
operations

N the maximum number of general purpose registers
available (N=max(n)).

R the (N+l)-st register

69

. -·

. l,'

' . .

\
1
''

Rm or Rn the register numbered m or n. In the context
of an instruction, "Rm" or "Rn" should be read as
"the contents of the register numbered morn".

[Rn,Rn+l] the concatenation (uniting in a series) of the
registers numbered n and n+l

t a pointer to an entry in the temporary variable
table

T the actual address of the first word in memory
allocated at execution time

v a pointer to an entry in the variable table

either a register, Rn, or a memory location, k(i).
In the context of an instruction,"@" ~hould be read
as "the address specified by@".

70

'

, ..
'•.;
.,

,,
'·

APPENDIX B

Quadruple Generation

·'

Quadruples are generated from the source language
described in Chapter 1. The method described uses two
procedures and is based upon the precedence relations
between operators.[3] The main procedure reads and
analyses each arithmetic statement and then calls the QUAD
procedure to generate the appropriate quadruples. The
precedence relationships between operators are defined by
a function, P(operator), as follows:

p (=) > p (*) = p (/) > p (+) = p (-) > p (() = p ()) > p (1)

·· This method requires two LIFO (last-in-first-out)
stacks. A stack is a storage device into which one stores
data. However, data can only be entered at the "top",
thus "pushing down" the data already in it. Accordingly
one can only reference or change the top (or the top few)
elements. When no longer required, the top elements are
deleted, thus "popping up" the ones below. The usual
method of implementing a stack is to use an arrays, and a
counter v. If V=O the stack is empty. If V=m, where mis
greater than zero, the stack contains S(l), S(2), ••• , S(m)
where S(m) is the top stack element.CJ] One of the stacks
required is an operator stack called OPS which holds only
operators. The other stack is an operand stack called
OPANDS which holds both operators and operands. The i-th
element of the stacks, counting the top element as 1, will
be denoted by OPS(i) and OPANDS(i). These stacks are
global since they must be available to both procedures.

Temporary variables are sequentially assigned to the
quadruples beginning with each arithmetic statement. A
counter, t, which is a global variable, is initialized to
zero when each arithmetic statement is read and
incremented by 1 each time a quadruple is generated. The
symbol, t, should be interpreted as the internal form of a
temporary variable, (3,t), which points to the t-th entry
in the temporary variable table.

The main procedure is described by the following rules
which are applied sequentially unless otherwise indicated.

1. Read the first (next) arithmetic statement and·
initialize the temporary variable counter, t,~o
zero. If there are no remaining statements,
conversion to quadruples for the program is
complete.

71

\

2. Put into the
character by
to righ:t.

variable CHAR the first (next) in~~t
scanning the input string from lef~

3. If CF.AR is an operator, go to steps.

4. Push CHAR on OPANDS and go to step 2.

5. If OPS(l) does not equal "=",goto st.ep 8.

6. If CHAR equals "; ", call Q.UAD and go to step 1.

7. Push CHAR on OPS and go to step 4.

8. If OPS(l) equals" " (i.e. the operator stack is
empty), go to step 7.

9. If P(CHAR) > P(OPS(l)), go to step 7.

10. ,If CHAR equals "(", go to step 7.

11. If CHAR does not equal ") ", call QtTAD and go to
step 5.

12. If OPS(l) equals"(", go to step 14.

13. Call QUAD and go to step 12.

14. Let SAVE=OPANDS(l), pop OPANDS(l), OPANDS(2) and
OPS(l) from the stacks, push SAVE on OPANDS and go
to step 2.

The procedure QUAD is defined by the following rules.

1. Increment temporary variable counter: t=t+l.

2.

3.

If OPS(l) equals

If OPS(l) equals

"+" ,

"-" - ,

"*"or''/", go to step S.

go to step 6.

4. If OPS(l) equals"-" and OPANDS(3) equals either
''=''or''(", go to step 7.

5. Generate (OPANDS(2),0PANDS(3),0PANDS(l),t). Pop
OPANDS(l), OPANDS{2), OPANDS(3) and OPS(l) from
the stacks. Push ton OPANDS and return.

6. Generate (OPANDS(2),0PANDS(l),OPANDS(3),"blank").
Pop OPANDS(l), OPANDS(2), OPANDS(3) and OPS(l)
from the stacks and return.

72

.~:

...

7. Generate (OPANDS(2),0PANDS(l),•b1ank",t). Pop
OPANDS(l), OPANDS{2) and OPS(l) from the stacks.
Push ton OPANDS and return.

An example is shown in Figure 6 for the following
arithmetic statement: a=-b+c-(d+(-e)/f): •

.

73

·"

:,j,

a=-b+c-(d+(-e)/f);

OPANDS OPS CHAR QUADRUPLE
a

a --
a= - --

a==-- =- b
a=-b =- + (-,b, ,1)
a=l - + -

a=l+ =+ C
a=l+c =+ - (+,1,c,2)

a=2 - --
a=2- =- (

a=2-(=-(d
a=2-(d =-(+

a=2-(d+ =-(+ (
a=2-(d+(=- (+ (-

a=2-(d+(- =-(+(- e
a=2-(d+{-e =-(+(-) (-,e, ,3)
a=2-(d+(3 =- (+ ()

a=2-(d+3 =-(+ I
a=2-(d+3/ =-(+/ f

a=2-(d+3/f =-(+/) (/, 3, f, 4)
a=2-(d+4 =-(+ l (+,d,4,5)

a=2-(5 =-()
a=2-5 =- • (-,2,5,6) ,

a=6 - • (=,6,a,) - ,

FIGURE 6. EXAMPLE OF QUADRUPLE GENERATION.
r ·.·.

'\

74

i

{,

' .,
'
'

,
\"

APPENDIX C

Logical Procedure Descriptions

In the descriptions which follow, all steps are
executed sequentially unless otherwise indicated. In all
except the INSTR procedure, the letter t, when used in the
STORE instruction should be interpreted as the
displacement of a temporary variable obtained from the
entry in the temporary variable table pointed to by an
operand of type (3,t) in the RV array. The variables and arguernents used are described in Chapter 3 .,,

FREANY (I)

1. If a register, Rn, is free and is not referenced
by either address variable, set I=n and return.

2. Find the lowest numbered register, Rn,
referenced by either address variable.
"STORE Rn,t(R)", set I=n and return.

that is not
Generate

In the FREODD procedure, all references to an odd
register refer only to odd registers numbered three or
greater.

FREODD(I)

1. If OPND1 is in an odd register, Rn, go to step 5.

2.

3.

If an odd register, Rn, is

If ADDR2 references Rn, go

not frE!e, go

to ,,"atJ 9 •

to step 7.

4. If ADDRl does not reference Rn, go to step 8.

5. If ADDR2 does not reference Rn-1, go to step 14.

6. If a register, Rm, other than Rn and Rn-1, is
free, go to step 19. Otherwise set m=l, generate
"STORE Rm,t(R)" and go to step 19.

7. If an odd register, Rn, which is not referenced by
ADDR2, is available, generate "STORE Rn,t(R)" and
go to step 8. Otherwise find the first register,
Rn, that is not referenced by ADDRl (either Rl or
R2) and go to step 20.

8. If ADDR2 references Rn-1, go to step 15.
Otherwise go to step 13.

75

•i,

'

9. If an odd register, Rm, other than Rn is free, set
n=m and go to step 13.

10. If a register, Rm, other than Rn and Rn-1, which
is not referenced by ADDRl, is not available, set
n=2 and go to step 20.

11. If Rm is not free, generate "STORE Rm,t(R)•.

12. Generate "LOAD Rm,Rn", change the reference ton
in ADDR2 tom.

13. If ADDRl references Rn-1, set I=n and return.

14. If Rn-1 is free, set I=n and return. Otherwise
generate "STORE Rn-1,t(R)", set I=n and return.

15. If a register, Rm, other than Rn and Rn-1, is
free, go to step 17. Otherwise set m=l.

16. If ADDRl references Rm, go to step 18. Otherwise
generate "STORE Rm,t(R)" and go to step 19.

17. If ADDRl references Rm, go to step 18. Otherwise
go to step 19.

18. Generate "LOAD Rn,Rm", change the reference tom
in ADDRl ton.

19. Generate "LOAD Rm,Rn-1", change the reference to
n-1 in ADDR2 tom, set I=n and return.

20. If Rn is free, go to step 22. Otherwise generate
"STORE Rn,t(R)".

21. If n equals 1, go to step 22. Otherwise generate
"LOAD R2,Rl" and change the reference to 1 in
ADDRl to 2.

22. Generate "LOAD Rl,R3", change the reference to 3
in ADDR2 to 1, set I=3 and return.

FIXAD(X,ADDR)

1. If X equals " n I return.

2. If the value of Xis in a register, Rn, set
ADDR=Rn and return. Otherwise form the operand,
OP=(4,d) (where dis the data area number for X).

76

3. If the value of OP is in a register, Rn, set
ADDR=k(n) (where k is the displacement constant
for X) and return. Otherwise call FREANY(I),
generate "LOAD RI,d(R)", set ADDR=k(I) and return.

PTINRG{I)

1. If OPER equals"*" or"/", call FREODD(J) and go
to step 3.

:2. If the value of OPND1 is in a register, Rn, set
I=n and return. Otherwise call FREANY(J),
generate "LOAD RJ,ADDRl'', set I=J and return.

3. If the value of OPND1 is in a register J, set I=J-1
and return. Otherwise generate "LOAD RJ,ADDRl",
set I=J-1 and return.

In the INSTR procedure, since the characters
themselves are used to represent their internal form, the
unary minus operator must be determined from the context
of the quadruple (i.e. there will be no second operand).

INSTR(!)

1. If OPER equals"+", generate "ADD RI,ADDR2" and
return.

2. If OPER does not equal"-", go to step 4.

3. If ADDR2 .equals''", generate "NEG RI" and return.
Otherwise generate "SUB RI,ADDR2" and return.

4. If OPER equals
return.

II* II , generate "MULT RI,ADDR2" and

s. If OPER equals"/", generate ''DIV RI,ADDR2" and
_.. return.

6. If OPER equals
return.

,.,

H - II - , generate ''STORE RI,ADDR2 and

77

t'
? ,.
:J:' ,, . .. ,

r

.c1·

APPENDIX D

FORTRAN Conversion Procedure

The procedure described below was used to extract
arithmetic statements from FORTRAN programs and reduce
these statements to the single letter variables, (A-Z), and
operators described in Chapter 1. Operators which are not
included in the source language were replaced with the
following substitutions.

Operator Substitution
.AND.,.XOR.,.EQV.,.OR.,.EQ.,.NE. +
.NOT.,.GT.,.GE.,.LT.,.LE. -
.NOT. (when preceeded by any of blank

the above operators)
** I

This procedure uses a sequential input file which
holds the FORTRAN program to be processed and a random
access output file which holds the reduced arithmetic
statements. Since the record length of these files was
limited to 126 characters and a";" must be added to each
record, any arithmetic statement whose length exceeded 125
characters was rejected. The following steps are
performed sequentially unless otherwise indicated.

1. Read the first (next) line in the input file into
the array variable, ICOL(i), for i=l, ••• ,72. If
there are no remaining lines, go to step 14.

2. If ICOL(l) indicates a comment line, go to step 1.

3. If ICOL(6) indicates a continuation line, go to
step 1.

4. If ICOL(i) does not have an"=" at the zero
parenthesis level for i=7, ••• ,72, go to step 1.

S. If ICOL(i) does have a"," at the zero parenthesis
level for i=7, ••• ,72, go to stw 1.

6. Place the non-blank characters in ICOL(i) for
i=7, ••• ,72 into the array variable, KCOL(j), for
j=l, ••• ,L where Lis the index of the last
non-blank character.

7. Read the next line in the input file into the
array ICOL(i) for i=l, ••• ,72. If there are no.
remaining lines, go to step 12.

78

8. If ICOL(l) indicates a comment line, go to step
12.

9. If ICOL(6) does not indicate a continuation line,
go to step 13.

10. Place the non-blank characters in ICOL(i) for
i=7, ••• ,72 into KCOL(j) for j=L+l, ••• ,M where Mis
the index of the last non-blank character. Set
L=M.

11. If L exceeds 125, go to step 1. Otherwise go to
step 7.

12. Set KCOL(L+l)=•;". Write KCOL(j) on the output
file for j=l, ••• ,L+l and go to step 1.

13. Set KCOL(L+l)=";". Write KCOL(j) on the output
file for j=l, ••• ,L+l and go to step 4.

14. Substitute single letter variables for all
constants, multiple character variables, array
elements and function calls. Substitute for
logical, relational and exponential operators.

15. Conversion is complete.

79

APPENDIX E

Analysis of Sample Data

•'t.';

A list of the names and locations of 836 FORTRAN
programs (distributed among 144 programmers) was provided
by the local time-sharing center. From this list 80
programs (distributed among 44 programmers) were randomly
selected. This sample of 80 programs consisted of 12994
lines (card images). The cumulative frequency
distribution of the number of lines per program as well as
the cumulative distribution of the total number of lines
is tabulated in Table 8. In the interest of space, only
non-zero frequencies are shown in this and subsequent
tables.

Using the procedure described in Appendix D, 3751
arithmetic statements were extracted from these programs.
The cumulative frequency distribution of the number of
arithmetic statements per program is tabulated in Table 9.
The program sizes of 17, 46 and 118 arithmetic statements,
\'7hich were selected for the experiment, are the 50%, 70%
and 90% points respectively of this distribution. Also
shown in Table 9 is the cumulative distribution of the
total number of arithmetic statements.

The frequency distribution of the ratio of the number
of arithmetic statements obtained from a program to the
size (number of lines) of that program is shown in Figure 6.

The 3751 statements used in the experiment contain a
total of 6493 arithmetic and assignment operators (an
average of 1.7 operators per statement) distributed as
follows:

OPERATION
Assignment(=)
Addition(+)
l·1ul tiplication (*)
Division(/)
Subtraction(-)
Unary 1.1inus (-)

NO. OF OCCURRENCES
3751

795
699
672
457
119

% OF TOTAL
57.8
12.2
10.8
10.3
7.0
1.8

The frequency distribution of the number of operators
per statement is tabt1lated in Table 10. This distribution
is very similiar to the results obtained by Knuth[SJ.

80

PROGRAM CUMULATIVE CUMULATIVE
SIZE OCCURRENCES LINES

(LINES) NO. % NO. J r
5 1 1.3 5 o.o

) 6 2 2.5 11 0.1
8 3 3.8 19 0.1
9 5 6.3 37 0.3

11 7 8.8 59 o.s
12 8 10.0 71 0.5
13 9 11.2 84 0.6
16 10 12.5 100 0.8
18 12 15.0 136 1.0
19 15 18.8 193 1.5
22 17 21.3 237 1.8
23 19 2.3. 8 283 2.2
24 20 25.0 307 2.4
25 24 30.0 407 3.1
32 26 32.5 471 3.6
33 28 35.0 537 4.1
34 30 37.5 605 4.7
37 31 38.7 642 4.9
38 32 40.0 680 5.2
39 33 41.3 719 5.5
40 34 LJ2.5 759 5.8
45 35 43.8 804 6.2
47 36 45.0 851 6.5
49 37 46.2 900 6.9
so 38 47.5 950 7.3
53 40 50.0 1056 8.1
57 41 51.3 1113 8.6
61 42 52.5 1174 9.0
72 43 53.8 1246 9.6
75 44 55.0 1321 10.2
79 46 57.5 1479 11.4
82 47 58.7 1561 12.0
90 48 60.0 1651 12.7
95 49 61.2 1746 13.4

106 50 62.5 1852 14.3
113 51 63.8 1965 15.1
114 52 65.0 2079 16.0
115 53 66.3 2194 16.9
141 55 68.8 2476 19.1

ti,'- 145 56 70.0 2621 20.2
158 57 71.2 2779 21.4
163 58 72.S 2942 22.6
169 59 73.7 3111 23.9

t'' TABLE 8. CUMULATIVE FREQUENCY DISTRIBUTIONS OF THE NUMBER ' ...
"),

r· OF LINES PER SAMPLED FORTRAN PROGRAM AND THE ,,
Iii'
f,i

t. TOTAL NUMBER OF LINES SAMPLED. I'.
!,'•

i,'

" , ..

81
'
11:,
',,:
('
/-'I

\' j. r.
1,\:
\·.
t,.=,'
~l\
/

,,
,) .

PROGRAM CUMULATIVE CUMULATIVE
SIZE OCCURRENCES LINES

(LINES) NO. % NO. ' 176 60 75.0 3287 25.3
184 61 76·. 3 3471 26.7
197 62 77.5 3668 28.2
212 63 78.8 3880 29.9
221 64 80.0 4101 31.6
223 65 81.3 4324 33.3
247 66 82.S 4571 35.2
270 67 83.7 4841 37.3
338 68 85.0 5179 39.9
366 69 86.2 5545 42.7
371 70 87.5 5916 45.S
395 71 88.8 6311 48.6
415 72 90.0 6726 51.8
438 73 91.3 7164 55.1
450 74 92.S · 7614 58.6
490 75 93.8 8104 62.4
534 76 95.0 .,,. 8638 66.S
541 77 96.2 9179 70. 6
557 78 97. 5 9736 74.·9

1186 79 98.7 10922 84.1
20·12 80 100.0 12994 100.0

...

TABLE B.(cont'd) CUMULATIVE FREQUENCY DISTRIBUTIONS OF
THE NUMBER OF LINES PER SAMPLED FORTRAN PROGRAM
AND THE TOTAL NUMBER OF LINES SAMPLED.

82

\

) ,,
;·

' ,.,
[,

I

ARITHMETIC
STATEMENTS

1
2
3
4
5
6
7
8
9

10
12
13
14
15
17
19
20
21
23
28
29
30
31
35
37
41
42
44
45
46
52
54
55
58
62
72
74
78
79
91
97

110 ,,

CUMULATIVE
OCCURRENCES

NO.
1
8

11
15
18
22
26
30
31
32
34
35
36
39
40
41
42
43
45
46
47
48
49
50
51
52
53
54
55
56
57
58
61
63
64
65
66
67
68
69
70
71

%
1.3

10.0
13.7
18.8
22.5
27. 5
32.5
37.5
38.7
40.0
42.5
43.8
45.0
48.8
so.o
51.3
52.5
53. 8
56.3
57.5
58.7
60.0
61.2
62.5
63.8
65.0
66.3
67. 5
68.8
70.0
71.2
72.5
76.3
78.8
80.0
81.3
82.5
83.7
85.0
86.2
87.5
88.8

CUMULATIVE
STATEMENTS

NO.
1

15
24
40
55
79

107
139
148
158
182
195
209
254
271
290
310
331
377
405
434
464
495
530
567
608
650
694
739
785
837
891

1056
1172
1234
1306
1380
1458
1537
1628
1725
1835

~
o.o
0.4
0.6
1.1
1.5
2.1
2.9
3.7
3.9
4.2
4.9
5.2
5.6
6.8
7.2
7.7
8.3
8.8

10.1
10.8
11. 6
12. 4
13.2
14.1
15 .1
16.2
17. 3
18.S
19.7
20.9
22.3
23. 8
28. 2
31.2
32. 9
34.8
36.8
38.9
41. 0
43.4
46. 0
48.9

TABLE 9. CUMULATIVE FREQUENCY DISTRIBUTIONS OF THE NUMBER
OF ARITHMETIC STATEMENTS PER SAMPLED FORTRAN
PROGRAM AND THE TOTAL NUMBER OF ARITHMETIC
STATEMENTS.

83

•

,, .,
:,;,. .
:{
l1,·
I'
', ..

.,.i .. 1

ARITHMETIC CUMULATIVE CUMULATIVE
STATE1.-1ENTS OCCURRENCES STATEMENTS

NO. i NO. ~
118 72 90.0 1953 52.1
125 73 91.3 2078 55.4
129 74 92.5 2207 58.8
131 75 93.8 2338 62.3
189 76 95.0 2527 67.4
200 77 96.2 2727 72.7
278 78 97.5 3005 80.l
281 79 98.7 3286 87.6
465 80 100.0 3751 100.0

TABLE 9. (cont'd) CUMULATIVE FREQUENCY DISTRIBUTIONS OF
THE NUMBER OF ARITHMETIC STATEl-1ENTS PER SAMPLED
FORTRAN PROGRAM AND THE TOTAL NUMBER OF
ARITHMETIC STATEMENTS.

84

'. '' ~...,.

•

,., ,·'":-· (.. ·', ,.'?'·- ~-- '-.<')· .. ,

G

24 ·

s ..

23 •

20

13

9

6
5

·-

[O - . l) [.1-.2) i2-.3) i3-.4) ~4-.5) is-.6) [.6-.7)

RATIO

MEAN. • • • • • • 31
MEDIAN.. . . . 30
STD DEV... .15:
RANGE... • • • 65·.
MINIMUM... • 05
MAXIMUM. • . . 70·

FIGURE 7. FREQUENCY DISTRIBUTION OF THE RATIO OF
ARITHMETIC STATEMENTS TO PROGRAM SIZE (LINES).

85

,.

(

.

. ,
,.

,,
,. '•

' ;,
.•,

'

QUADRUPLES FREQtJENCY CUMULATIVE
PER OF OCCURRENCES

STATEr-1ENT OCCURRENCES NO. %
1 2195 2195 58.5
2 1082 3277 87.4
3 254 3531 94.1
4 103 3634 96.9
5 41 3675 98.0
6 20 3695 98.5
7 12 3707 98.8
8 10 3717 99.1
9 5 3722 99.2

10 5 3727 99.4
11 4 3731 99.S
12 3 3734 99.S
13 3 3~7 99.6
14 3 3.40 99.7
15 3 3743 99.8
16 1 3744 99.8
17 1 -, 3745 99.8
21 2 3747 99.9
22 1 3748 99.9
23 1 3749 99.9
24 1 3750 100.0
26 1 3751 100.0

TABLE 10. FREQUENCY DISTRIBUTION OF THE NUMBER OF
QUADRUPLES PER ARITHMETIC STATEMENT.

86

APPENDIX F

Glossary of Terms[9]

access time - 1. The time interval between the instant at
which information is called from storage and the
instant at which ~elivery is completed (the read
time). 2. The time interval between the instant at
which data are ready for storage and the instant at
which storage is completed (the write time).

accumulator - A register in which are formed algebraic
sums and other arithmetic and logical results.

address - 1. A label, name or number identifying a
register, location or unit where information is
stored. 2. To call a specific piece of information
from the memory or to put it in the memory.

address, actual - The real or de~igned address built into
the computer by the manufacturer as a storage
location or register. Adjacent addresses usually
have adjacent numbers.

address, base - A number used in symbolic coding in
conjunction with a relative address. The address
of the first storage location in a data area, thus
the address of a data area. Also an address used
as a reference for a group of related addresses.

addressing, base-displacement - A system that uses a base
address plus a displacement to designate all
core-storage locations and provides abilities to:
(1) easily relocate a program at load time, (2)
address a very large amount of storage with
relatively few address bits in each instruction and
(3) convienently address three dimensional arrays.

addressing, direct - A procedure for specifically citing
an operand in the instruction by the operand's
location in storage. The direct address is the
number representing the storage location.

addressing, indirect - Addressing in which the address
part of an instruction specifies a location
containing an address.

address, symbolic - A label, alphabetic or alphanumeric,
used to specify a storage location in the context
of a particular program. Often programs are

87

' ,_·, --'11, ·-;.,-~·.i'~-:-::,:,'~:::•-.;·:,-c',-,,--, ,,'," ·

bit -

..... ._..,,,

written first using symbolic addresses in some
convienent code which is then translated into
actual addresses by an assembly program.

An abbreviation of binary digit. A unit of
information capacity of a storage device. A unit of
data in binary notation (0 or 1).

branch - 1. To depart from the normal sequence of
executing instructions in a computer. 2. A machine
instruction that can cause such a departure.

byte - 1. A measureable portion of consecutive binary
digits (8 bits). 2. A sequence of adjacent binary
digits operated upon as a unit and usually shorter
than a word.

code, object - The code produced by a compiler or special
assembler which can be executed on a target
machine.

code, target - The machine language code that is the final
output of a coding system.

compile time - The time required to compile a program.
Also the time at which a program is being compiled.

computer - A device capable of accepting information,
applying prescribed processes to the information,
and supplying the results of these processes. It
usually consists of input and output devices,
storage, arithmetic and logical units and a control
unit.

concatenation - Uniting in a series, linking together,
chaining. For example, when referring to a pair of
16 bit registers, their concatenation is considered
to function as one 32 bit register.

constant - Any number that does not change from one
execution of a program to the next.

constant, displacement - The address of a variable
relative to the beginning of the data area in which
it is stored. Also called offset or displacement.

execution time - The time required to execute a program.
Also the time at which a program is being executed.

high order - Pertaining to the weight or signif ic.ance

88

assigned to the digits of a number. The high order
position is the leftmost position in a number or
word.

infix notation - A method of forming one dimensional
expressions (arithmetic, logical, etc.) by
alternating single operands and operators. Any
operator performs its indicated function upon its
adjacent terms which are defined subject to the
rules of operator precedence and grouping brackets
which eliminates ambiguity.

instruction - A set of characters together with one or
more addresses (or no addresses), that define an
operation and which, as a unit, causes the computer
to operate accordingly on the indicated quantities.

instruction set - The set of instructions defining the
operations that a given computer is capable of
performing.

instruction space - A part of storage allocated to receive
and store the group of instructions to be execu~ed.
The storage locations used to store the program.
Also instruction area.

language - A defined set of characters that is used to
form symbols, words, etc., and the rules for
combining these into meaningful communications.

~anguage, assembly - The machine oriented programming
language belonging to an assembly system.

language, FORTRAN - Programs are written directly as
algebraic expressions and arithmetic statements.
Various symbols are used to signify equality,
addition, subtraction, exponentiation, etc.
Additional statements are provided to permit
control over how the algebraic expressions and
arithmetic statements are to be processed. These
include transfer, decision, indexing and
input/output statements.

language, high-level programming - A computer programming
language that is less dependent on the limitations
of a specific computer; for instance,
pseudo-languages; problem oriented languages; ._:.--
languages .. common to most computer systems, such as
ALGOL, FORTRAN and COBOL; and user oriented
languages.

89

,'i
i'

' 1.:

• -.··--:·-"-, .. ·•·'~'-~.,;-:~~ . .; .o-:-- • ' •.

language, machine - A language for expressing information that is intelligible ·to a specific machine (i.e. a computer). Such a language may include instructions that define and direct machine operations, and information to be recorded or acted upon by these machine operations.

language, object - A language which is the output of an automatic coding routine. Usually object language and machine language are the same. However, a series of steps in an automatic coding system may involve the object language of one step serving as a source language for the next step, and so forth.
See object code.

language, source - The original form in which a program is prepared prior to processing by.the machine.

language, target - The language into which some other
language is to be translated.

low order - Pertaining to the weight or significance
assigned to the digits of a number. The low order position is the rightmost position in a number or word.

machine, target - The computer which accepts the object program to execute the instructions, as contrasted to a computer that might be used to merely compile
the object program from the source program.

memory - Any device into which a unit of information can be copied, which will hold this information and from which the information can be obtained at a later time. Synonomous with storage.

n,ame - A term of one or more words or symbols to identify
one of a general class of items, e.g. machine
component, operation code, variable, etc.

operand - A piece of data upon which an operation is
performed. The address or name portion of an
operation. Any one of the quantities entering into or arising from an operation.

parenthesis level - The number by which left parenthesis exceed right parenthesis in an arithmetic statement when counting from left to right.

pointer - The address of (or a reference to) another

90

(

. '
,r ,.

' .

· ·,•" ., · ·'•_- ;·, ",.j ,:•:·,' '.' : ' V,« ·· ." ~-: . ,

;:
J.

value. For example, an index of an array
references (points to) the value contained in that
array element.

pointer, stack - The address of the location at the top of
a stack is often called the stack pointer and is
held in a pre-assigned register.

procedure - A precise step-by-step method for effecting a
solution to a problem.

program - A set of instructions or steps that tells the
computer exactly how to handle a computer problem.

program counter - See program counter register.

register - A device for the temporary storage of one or
more words to facilitate arith.rnetic, logical and
transferral operations. Frequently referred to as
"fast memory" due to the speed with which it can be

\ accessed.

register, address - A register that is used by the control
unit to calculate and hold addresses.

register, base - An index register which holds the value
of a base address.

register, index - A register that permits automatic
modification of an instruction address without
permanently altering the instruction in memory.

register, program - Register in the control unit that
stores the current instruction of the program and
controls computer operation during the execution of
the program. Synonomous with instruction register.

register, program counter - A register in which the
address of the current instruction is stored.
Synonomous with instruction counter.

routines - A sequence of machine instructions that carry
out a well defined function (analogous to
subroutines in FORTPAN).

storage - See memory.

symbol - A substitute or representation of
characteristics, relationships or transformations
of ideas or things.

91

,

token - A distinguishable unit in a sequence of
characters.

variable - A symbol whose numeric value changes from one
repetition of a program to the next, or changes
within each repetition of a program.

variable, global - A variable whose name is known to a
main program and all its subroutines (analogous to
COMMON variables in FORTRAN).

variable space - A part of storage allocated to receive
and store the variables, constants, temporary
variables and parameters of a program.

variable, temporary - A variable which is used to
represent intermediate or partial results which
occur when evaluating an arithmetic expression.

word - A set of characteristics that occupies one storage
location and is treated by the computer as a unit
and transported as such. Ordinarily a word is
treated by the control unit as an instruction and
by the arithmetic unit as a quantity.

92

..
'

;,

" '

l
-:_,
,,
·,

'

',

'·

i

•··

....
•-
i,

-'

:
'.
'

Personal History

Naine:
Date of Birth:
Place of Birth:
Parents:

B:lucational Background

Xaverian High School
Brooklyn, New York

Manhattan College
Riverdale, New York

VITA

James Patrick Clancy
December 13, 1943
Brooklyn, New York
Joseph E. and Rita G. Clancy

Graduated - 1961

Attended - 1961-1963

Polytechnic Institute of Brooklyn
Brooklyn, New York

1963-1971

Bachelor of Science
in Electrical Engineering

Lehigh University
Bethlehem, Pennsylvania

Candidate for Master
of Science in Industrial
Engineering

Professional Experience

Consolidated Edison
New York, New York

Technician

Western Electric Company, Inc.
Newark, New Jersey

Engineering Associate

Western Electric Company, Inc.
New York, New York

Pricing Specialist

Western Electric Company, Inc.
Princeton, New Jersey

Development Engineer

•

93

1972-19711

1963-1965

1965-1970

1970-1972

1972-19711

	Lehigh University
	Lehigh Preserve
	1974

	A methodology for evaluating compiler performance /
	James Patrick Clancy
	Recommended Citation

	tmp.1551116526.pdf.WaNIO

