
Lehigh University
Lehigh Preserve

Theses and Dissertations

1974

A study of the efficiency of the bounded balanced
binary tree technique for physical storage
management of computerized data files /
R. Ian Bardsley
Lehigh University

Follow this and additional works at: https://preserve.lehigh.edu/etd

Part of the Industrial Engineering Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Bardsley, R. Ian, "A study of the efficiency of the bounded balanced binary tree technique for physical storage management of
computerized data files /" (1974). Theses and Dissertations. 4443.
https://preserve.lehigh.edu/etd/4443

https://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F4443&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F4443&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F4443&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=preserve.lehigh.edu%2Fetd%2F4443&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd/4443?utm_source=preserve.lehigh.edu%2Fetd%2F4443&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

.. '

..

.,;,:·

-.

.....
·'iw.:;.·

A STUDY OF THE EFFICIENCY OF

THE.BOUNDED BALANCED BINARY·TREE TECHNIQUE

FOR PHYSICAL STORAGE MANAGEMENT .

OF COMPUTERIZED DATA FILES

by

.
R. Ian Bardsley

A ~esi.s

Presented to the Graduate Committee

of Lelµ.gh University

•,• ..

in Candidacy for the Degree of

Master ot Science

Industrial Engi.neeri.;ng

Lehigh Universit~

1974

·"'!"

" . .

'. '.·, >·.:' ;

'' .-

. .

~--

' ,,

i.

. _)

......

•

.. . t . . '

·: ,,I

. --)

~ ' . l: .

•, ' . ', ;- .-. .
- (1 \~

..
'',.:;,_· '

.. ; .,f . ' <

·--
' ; ' ~ -· .' ,,
' .

.,
r • ..

. '

' . ..

. .. ·•.

. :. .,

CERTIFICATE OF APPROVAL

This thesis is accepted and approved.in partial fulfillment
~ /

of the req111rements for the degree or Master iof Science.

Date

•.

·,

. ,,,,·,• .• .. ,,,, .. ,,.,,-,

I

- I

' '·
'

. _ ... _.

• in

Chairman o the Department
Industrial Engineering

-~·

• • 11

I · •

·, .

• .

'

.,

. J·

' '· ;. . ~· ,.,, ..

·" ",, ,·,
: ,;< , .

. ,· '

, .. '~.)!{ I ,'' I • / i

"

. ·-=-:.-·-,·.-·"/_',-·;·.· ·!,, 'h . ,,.,_ ,.' ,_-,' -,·.,, ''"};' • '

ACKNOWLEDGEMENTS

The author expresses his appreciation to Dr. M. W. Shi veley for

his advice and guidance during the preparation of this thesis.

Mr. G. E. Whitney of the Western Electric Research Center staff

deserves special thanks for his counsel and support as well as for ·
"

the s:u.ggestion of' the topic- for this thesis ...

The author also wishes to thank Mr. C.R. Dudgeon for his

assistance and_ guidance in the statistical analys.es that were

required during the preparation of' this thesis.

."i
I· '•.

:,;

_i ,..

,. . ..
L 111

,

• I • -

;·,.

. . ','. . I'

' ·,

. . : -~ . I
• ')1>1

' ' . ,,.,, .. , ..

I·

' :·,

,.
. . ' ' .

' .

- '

.,·,

• ···1

. ..
t . ' .

. 'I. • -~ ' ,·-,
~ ',, ·., ,' 1 •

,' ·• 1

' . ,-

, ''

TABLE OF CON1'.ENTS

Page·

.ABSTRACT • 1

CHAPTER I BACKGROUND •••••••••••••• 3

CHAPTER II BOUNDED BALANCED BINARY TRESS •••••••••••• 11

CHAPTER III. DESCRIPTION OF THE MODEL •••••••••••••••••

CHAPTER IV EVALUATION OF THE TECHNIQUE •••••••••••••• 28

CHAPTER V SUMMARY AND CONCLUSIONS ••••••••••••••••••

"(..... ., - , •• ----· -._ I . • -,-_ ' ~- •

B'.IBLI ©GRAPHY • • • • -~ • • : • •· • • • • • • • • • • 'fi • .: ·r • • • • • i it ii· · • • ·• i ·• • ·•:rt • • i ii i ·

APPENDIX I -JlEFINITI·ON .. OF SCOPE •• · •••••••••••••• · •.•••..• 44

VITA • 46

-~.-- .. ·
--~

t

• 1V

•,:· "',, ·.·1·· ,. '

...... ,.'

..

l .

' '

..
A.."'.t

•

'-. :-·,

J
(

I

,,
''

,' ,,

i:'

..

•.• , .. · -,f"

Table

1.1

4.1

4.2

4.3

4.4

.4. 5

. '

.. \

LIST OF TABLES

Page

Expected number of probes to locate a given record ••••••••••• 7
~.t

Average path le~gths. • 3JJ<·

Number of rebalancipgs ••••••••••••••••••••••••••••••••••••••• 32

Analysis of variance of AVLEN •••••••••••••••••••••••••••••••• 33

.Analysis of variance of AVLEN •••••••••••••••••••••••••••••••• 34

Expected number of rebalancings ••••••••••••••••••••••••••.••• 38

• j

..
,

=;
.' .. ~ .

. ,

'i

J V

'·
,.L ...

. ,:•
'·' . I

t

.,

.'·,,·, :t• · ',,,,·; · · •; ·.' .r ;,.,. c;' · '

LIST OF FIGURES

Fi.gure

2.1 Sample tree before rebalancing •••••• • • • • • • • • • • • • • • • • • •

2.2 Sample tree after rotation. •
",

.. ::-,,..
rs ·3···. .::.·._. ·.·. Sample .tree af'ter split-rotation. •

,.

.r , ..

·.

\ .~ . '
·,~ !,. '

'<, I -~~I~:':,

•I,' ,.

Page

14

14

15

'•{• . . ~- ·, .

,_;:

I. .

. ..

' ., ;,

·,

'·'

'· ,.
I
;:

.....

)

,>

I
' ·,· ..

I.

.ABSTRACT.

Many different techniques have been proposed or developed for

the physical storage management of computerized data files. Ot these

numerous techniques no single one has emerged or even been suggested

of each technique is dependent

upon the environment within which they are used. A great number of

these techniques are based upon a tree type of structure so that they

can process data both sequentially and randomly. It is generally

accepted that an effective tree is one that is close to being

balanced, so that search times are short, able to be restructured

easily when it becomes necessary, and these restructurings should be

required infrequently.

A technique for constructing a Binary Balanced Binary Tree was

recently proposed by J. Nievergelt of the University of Illinois.

Mr. Nievergelt suggests that his technique provides a very good,

~f not the best, compromise between the conflicting requirements of

an effective tree type file management technique. Mr. Nievergelt

gives equations which will predict the expected performance of his

technique. These equations are based upon an analytical analysis

of the technique.

This thesis exSJDines the performance of this technique thro_ugh

simulation. To do this a computerized model of the technique.was

developed and used t~ build botmded balanced binary trees under

varying conditions. By recording the characteristics of the trees

.,,

. .'1 . . '
\ " '

.,
.) ~ .

.I

:·,,

-· .• '," i (' ..

. ':" : '

· l "· I

I'

{
r)

\.

r:

'

,,
.{..

\',
'• ...

•. ;

;·

. :.~ .. ,- . . · '"' -, '

as they were built it was pos~ible, through subsequent .·analyses,

to develop predictors which can be U:1ed to generate ·the expected

·- characteristics of a tree for any given environment.

A comparison ot these two sets of performance evaluations shows

that in the area of expected search times the predictors are veey

close, while those in the ·area of the expected n1JJDber of rebalancings

·· required by the technique differ greatly. 'lhese predictors can be

used in the development of cost models which will enable the effective

comparison of the performance of this technique against that of

other techniques for any given environment.

•:

2
~ ;-· .

... . .

' ·- ... ; , ... ,

' .,, ' . . ',"

.. ,
. ,,' '

" . . . •:,

..

' ,,
;

!

.,
;,

,-
i·.'·
[',

\
~
!'

'
''

IN'l'ltODUCTI·ON AND BACKGROUND

Methods for the storing ot data so that it can be stored and

,retrieved quickly· and efficiently have ·been developed and util-.

ized since the time man first recorded information in a recover""'

able format. The development of written l~~ages_ gave man the

ability to record large amounts of data and resulted in the crea~

tion of libraries in which to store that data. The physical

' storing and retrieval of data in such libraries was always a com~

pletely manual effort with the amount of time and effort requi.red

to locate a particular piece of data being dependent upon_ the

method of o_rga.nization of the library.

The i.nventi_on of the electronic ~igital c_omputer gave man the

ability to process l~rge amounts of data. in a relatively sh.ort

period of time. In order to be able to take full advant.age · of

this processing capability, techniques and devices had to be de~.

veloped that ___ not o~ly had the capabili.ty to -store data . in a ma.chine

readable format, but were able to organize the data so that it -could

be accessed quickly and efficiently when needed. The ti.rst -two

generations of computers were restricted mainly to sequential files·

such as cards, or paper or magnetic tape for ~gh volume data -

stor:~e. · ·Processing of the data was done in batch type systems

where the data was processed in the -same . sequence as it was stored·.

The· introduction of the· "third generati_ont' computers not only· brougll.t· ' ' .

··~
;.•, -~

I ' ,

•·\/

' '• ' ,;.· '

...
',

~ ·.~ .,
f
-·
•t•

''\'
;

. .r:

,'•

,·_\:.
,:

t

)
I., :r;

., -·, :,
' ,\

... ~

.:-•

:', Ii
t ;_.
;I',

J· y,
,,,,

.t\:,:,
r:~

' .
i1::
i.:

Large increases in processing speed, ~ut also the advances in hard

ware which made large' random access files not only possible, but

.also feasible to more users. With each ad't{ance in computer hard-

ware, new software, especially file o.rganization techniques, had
.

to be continually developed and revised so as to be able to take

advantage of .the updates in hardware.

Many different techniques have been developed and implemented

'

for the physical storage management of computerized data files.

The main reason for the variety and number of such techniques that

are available is that the efficiency of any sigle technique is

dependant upon not only the characteristics of the data to be ..

stored, but also upon the requirements and priorities of the user.

This creates the si tuat±.bn where a technique that is highly effi

cient in one environment m~ be highly inefficient in others.

Probably the quickest, easiest·tand most efficient w,q to store

data is in a simple serial list. The first data item is placed at the

top of the list and each succesi ve item is placed at the end of

~

t:he current list. By keeping an indicator as to the location of

the last record in the list, new records can be added very quickly

and the end of list pointer updated with each addition. Using

this technique records in the file can also be located using a very

simple method. That method is to start at the top of the list and

searc~ serially through it until either the desired record is found

or the end of the list is reached, which indicates ;that the

• .. ·
, '. · ..

•

"

' '

...
... {

t,,, ·,' .. '',,,

' '

'· ',
~;

' :.::

;

·,
•, ,.

,.
'
'· ·'·· ,·
' '

f , .

.. -. '

r

(,

i
1
' ' 1

,.
·' .,
;
:< ,,
•·

{··'.

F·
'
' . . •.
:•

i

: '·

- -
'

method of locating a record is easily p~rfo:rmed, it may be a very

le;ngthy and inefficient procedure. The expected n11mber of probes

(a probe is def~ned as the process of locating and examining any

single record in the file or list) required to locate a record

that is known to be in the file is (n+l)/2, where n is. the num-

ber of records in the file [a] . . In the·worst possible situation,
. '~· ,,

when the desired record is as the end of the list, n probes are

required. When the desired· records are not in the· ti.le, n probes

are required to determine that it is not in. the· file. This limits

the usefulness of-this technique to small~ short lived files

where the effort needed to implement a more lophisticated tech

nique is greater than that wasted by the ineff'iciencY' of thi.s

technique.

For larger files vhen short retrieval times are desired a

method which utilizes scatter sto~age techniques such as has.hi~g

can be implemented. In these techniques an area of stor.age large

en~ugh to contain the· entire data file is allocated at the start

of processi;ng. This area· is. then divided into s_egments so that

each segment can contain one record and there are as least as

many segm~nts as there are records to be stored.. To place a- record

into stor.age in this type of file the key with which· the record is

identified must be processed thro_ugh a randomizi;ng ~goritbm. an.d

converted into a random n11:mber, or secondary key, between 1 and

y (the ni1mber of s_egment_s in the stor_age area) • . The· random-.

izi~g algorithm must be such. that .everj time ~ given key·.1.s.-.' fed·

5 .

•

, a•, • , '_ ~-: ,, , 's ', /,• ,._ -,,. __ ·, , " ', < -, • • _ , , ~, ,' , l," ,.',, , ', I

:~
.. ·:

'

...

~-

'.

'·

\....\

into it an i.dentical secondary- ker wi.11 be. generated. It is a1

lovable and expected that several primary keys (synonyms) may·

generate identical second~ keys (collisions). The record is

then stored in the segment associated with the secondary key. To

circumvent· the problem ot collisions, when they occur, additional
J routines must be executed to resolve the ·duplication. These

routines lDay be as simple as searchi.ng the stor_age area for the

next \mused segment, or as sophisticated as chaining or the use

of secondary psuedo-randomizing algorithms. To locate a rec9rd

in the file using this type of technique a similar process is

repeated. The key of the desired record is processed thr~ugh

the randorni zing ~lgori thm and converted into a s_egment address.

The record at that segment address is then examined. If that s_eg

ment is empty the desired record was not in the file. If a record

is contained in that segment it may- or may not be the desired re

cord. It may not be the desired record if a collision occurred

when entering the record and the technique needed to subsequently

locate the desired record is dependent upon the collision handling

~outine that was used.

The efficiency of scatter sto~age techniques is dependent .upon

three factors. The first is the load factor of the storage area

(The actual n11mber of records in storage/total capacity· of storage).

When the load factor is low, few collisions are likely to occur and

the expected number of probes required to locate.~ given record

is close to one. As the load factor increases, additional

6
'""~ ."'I .. ,.

... ~i

.-....

~ •. '•

',,1 '" L

I

·•

'. ' '' . '~ ·, . '' ':;. '

.· ·,' ': .·:
.! : '

.. ' :. :·,, ,',; ~l~

' I
,'

,r.' ,,.

•

•• d

probes will be required ·to resolve the collisions which now

occur more frequently.. A second factor is the collision

handli_ng technique. Techniques such as linear search, which are

simple to execute can often result in a large nmnber of probes

being necessary to resolve a collision, while techni_ques s.uch as

chaining or secondary pseudo-randomizers reduce the n11niber of·

probes but are often c.omplex and lengthy to execute. Table 1-1
•

[J.3] shows the expected number of probes required. tor various

tyJ;k:s of collisi~n handling techniques. In the case of chaini~g

Load
Factor

.1

.5

~-::7:5·

•. 9

1.5

2.0.

Collision Technique
Linear Random Chaining

1.06

1.50

2.50

5.50

-

-

1.05

.l.~9

1.83

-
TARI,E 1.1

1.05

1.25

1.38

1.45

1~75

2.00 ..

Expected Number ot Probes to Locate a Given·Record

load factors in exces.s ot one were obt~ned· by- allocati_ng addi~-
•

· tional st:o~age in which the collision records were placed~ The.

third factor is the randomi'.Zi~g algorithm itself. Ver.,· few·

;;

7
.t

• ,1 ,

' .~ . '

. , .. , .'· ·., ,,·.

...

.,

"

.¢?:· '
.t}·.,::

·c..: \'/" , ,_{"'.

' .

•

/"

' .

'

a;Lgoritbms produce truly random ,secondary keys. Most algorithms create

a condition called bunchi;ng where the secondary keys are not uniformly

..

distributed over the· entire sto~~~e area but concentrated in one or ,,"
•

several sections. It should be noted that the.data for Table 1-1 was

obtained analytical.J.T ~ ass11m:i _ng truly random randomizi_ng algori tbms.

If' b1n1ching did occur, the expected n11mber of probes ~uld increase

according to the am.01mt of bllllchi~g that occurred.

One of the main drawbacks to scatter storage ·techniques. is that.

to be effective they require l~rge amounts of unused stor_age space

in order to keep the load factor small. For dynamically growi;ng files

this means that either very large amounts of storage must be allocated

initially, or that when the file o~tgrows its present sto~age space a

larger area be alloeated, a new- randomizing algorithm ·developed, and

the entire file reprocessed into the new stor_age area.. Another factor

to be considered is that sequential processi~g of the file is extreme-.

ly difficult using scatter sto~age techniques unless an auxillary

sequential file of keys is also maintained.

When storage space must be kept minimal and/or s.equential

processing is desired, a sequential table can be .. VJ:1.ed. When

str~ght sequential tables are used, storage utilization can be kept

• j' • '

.,:,
';. ~'• I ";, '

low by allocating storage space only--when it is needed.st:J~ Because

the sequence of the file i~ known the utilization of binary type

tecb.J;liques can be used to keep access times relatively lo,r. . "• . '1',' ' ' -.

. ' ,·,.,,_~·,'.\'•·~,·-
•

.., ..
'A.1•

, ,
...

' ' I '.

•• •' I• , 1:,•, [ii •

. ;'.·,l,~ J , .. 1~· -' . :·~.l'(, ' ... --,.', .. ,:· .. ·,.- ··.,
. _:"·,,' ,' ' ,. . ' .. '' .

, ,"::',,:, r, ,· '· ' •• , ·'1, \

' , .

'
• ·, ,,' I .,•,

..

/.

·.'
:'.

'
I ·,·

,,
, . . ,

.•.
,,

r
~ ...
~, ...
..

.... , 'II

The· expected n11mber of probes needed to locate a record· is (~og n}

-1 wi.th a maximum o-r 1.og n in the w,;,rst case~· I 15 J. · r.t· the· t:t1·e··.
. '

is kept physically- in s·eq_uence the· addition of -rec.or~· ·to the

file can become quite lengthy, especially as n becomes l~ge. Thi.a

can· be ~voided by storing the· tile as a binary' tree in which the

pey-sical sequence is destroyed but thr~ugh the· use of pointers

the logical s.equence can be retained. Now additions can be made

in any available location and the sequence maintai.ned- bY' 'Updating

a few pointers.

Many techniques have been developed utilizi~g the.features

of a binary tree. Pi,obably the best known offshoot is the Indexed

Sequential Access Method which is available on most l~ge computer

systems. Some of these offshoots guarantee low access times to

locate records but do so at the expense of requiri;ng complex and

le~gthy procedures to add or delete records from the tile. Many·

others do the opposite and guarantee ease of file update capabili.

ties ·but at the expense of access times.

The efficiency of binary trees is related to the shape of the

t·ree. Uniform, well balanced trees produce low record access times

but .are difficult to maintain uniform, and techniques which have

quick update capabilities ·do not produce uniform trees I 15].. Doz ...

ens of techniques a.re available that will fo,r any gi.ven set of data~}

build a uniform or nearly miiform tree, ho-wever, they- requi.re ex...-.

tremely lengtlly- update procedures for dynamic files.

' ' '~' I ' ; ,~·.. • .,

'~,~·
' .· "

' . . ./

9 . .

. '', ', ' . ·l

·· .. '

.. : ','. ' .

..

;.

"

' '\,' - ~

.-:-

. \•·

·.

·' ,,

.. ·, . '

To avoid these le~gtby restructuri.ngs a method was developed

by Adel' son-Vel' skii and Landis which was able to c·ontrol the

shape of the tree by regulating the height of all subtrees [i5] .

The height of a tree or subtree is defined as the maximum number

of probes needed to locate any record in the tree. By maintaining

indicators at each node, Adel'son.-Vel 1 skii and Landis were able·

~o devise a method of local restructurings. This method would

maintain the shape of· the tree by restructuring it whenever the

heights of the left and right subtrees of any node differed by

more than one, thereby restori.ng the difference in heights to at

most one.

This technique was la~er modified by Caxton Foster who allowed

the heights to differ by up to five [5]. By doing this his

technique enabled the user, through his choice of maximum allowable

height differences, to vaey the shape of the tree so as to best f'i t

his own requirements •

•
·,

10.
["'

._,(.

. . ,•

': ,·,,; .,,.·- '.,
'"

,<,t, . .., ,.,

• <'; ~-. •• \ I ' ' ' •·

.•, ' ,.,, ,""• . . .

r
,·

,.J
',,

{'

'

'
~

l'

' ' / ..

·, ,,

·' '·

;.;
r
t
, . . ,

i,',

..

'

'

CHAPrER II

BOUNDED BALANCED BINARY TREES
\

Another method of regulating the s~~e of a binary tree was

recently introduced by J. Nievergelt and E. M. Reingold of the

University of Illinois [14] . The tree produced by this tech

nique is cal 1 ed a Bounded Bal~ced Binary tree (BB tree) and it

is suggeste.d by Mr. Nievergelt that this technique will not only

provide for low storage requirements but also allow for easily
•

coded and efficiently executing algorithms wht:bh.will permit mi-

• """ '. •. . ,_., ~-- ~ '·':,; . 'Ii ·',· •· ':·, .-,.,. · •• ' '

:n:or modifications. of the tree to insure that access ~d update)

times will be kept minimal. The frequency of ·these modifications

to the tree can be controlled by the user and does not have to re-

main constant for the life of the tree. This feature enables the

user to encourage these modifications duri.ng low activity periods

and to discourage or limit them duri_ng high utilization periods or

periods when fast responses to file updates are r~quired. Mr.

Nievergelt recognizes that his algo~ithm will net guarantee opti-

m~tely with respect to any of the users re1uirements but suggests.

that it will provide the best compromise between the contiicting

requirements such as high storage utilization, ease in mo.dificati-on

and low access and ·update times. ..
In ·defini.ng a Bounded· Balanced Binary ·tree it is assumed that

the reader understands the structure of a stan~ard binary. tree in

addition to the following definitions:

. 11

!·1,

,.

'·· '·

.,·

Toi_ A binarr· tree which contains no nodes. It is sometimes

referred to as a null or empty tree.

Tn: - A binary tree containing n nodes. It is considered an

ordered triple (T.l., v, ~:., l , where T·i and T.7 are the left

and right· subtrees respectively end v is a si.ngle node . .

called the root of Tn. (Jt ~ 0, ,r• 2: 0, t+T+l=n) •

p(Tn): The balance or root~balance of a binary, tree (or subtree)

Tn where n t= 01· is given by

. p (Tn) = J.tt+.l.
,,, .. ;'1':11,+ .. · 1

.._o:.L&, . '

Bounded Balance; A binary, tree Tn is said to be in Bounded

Balance alpha (a) if and only if the following conditions hold:

0 ~ ·~ ~ 1/2
a :s; p.(Tn) ~ 1- a
Both Tl and Tr are of bounded balance

It is the choice of the balance limit a which allows the user

to control the shape of the tree. If a is chosen as zero, since

by. definition t, ·ca.n:cnev~:.'be.::e1ual!/"tO -o:·.er '.IL., no restrictions

are placed upon the gr,owth of the tree, whereas an a of • 5 will

place the maximum number of restriction on the tree and will

result in the creation of a perfectly uniform tree. It has been

analyticallY proved [14] that choices of alpha in the r~ge be-.

tween 1/3 and 1/2 will produce identical trees which gives alpha· en

effective rS11ge of Oto 1/3. In order to·ensure that the balance

''1.· ' '

of a tree is ma,jntained within the limits ·of a and 1--~.a it is

necessary to add a field to each record in the·-tree. Thi.s field will·

,: 1

' I' •/

12·

,..,
\

. ~., .
• ' 'r

ti

•

r. ,',- .,.,-•,,

;-,,

.I . 'I

,' . ' ' ~' .., . ' .. ·./•

,.

(

.

(~· .. _· ,. . . .

..
01i' ' ,., .. .-,.., .

containL.: the number of nodes or ~ecords contained in the subtre·e of

which the desired record is the root node.
o. ' ..

Since the shape of the tree cannot be changed duri;ng examination·

of the tree, it is only necessary to check the balance during updates.

To add or delete a recor~ first the root node must be examined to

dete~ne the subtree (T.l, TT) to which the change must be ma.de. As

each record contains a field which contains the number of records in

the tree below that point, it is a simple operation to calculate what

the new node balance will be after the update has been made. If the

balance limits are not violated the size field in the root node can

be updated to reflect the change and the process continued with. the

·r.oot node of the appropriate subtree. If the balanee limits are

violated the tree can be bro.ught back into balance by performing one

of two restructuring algorithms provided that a slight restricti.oit
..

is· placed upon the choice of alpha. That restriction "is that alpha

must be less than 1-(V2/2). It is called a slight restrictimn:

because 1-("2/2) is approximately .2928 and since an alpha of

between . 333 a.nd • 5 will produce identical trees, this leaves a.

range of approximately .04 unvovered, and if alpha was chosen within

this range the~resulting tree would be so close to being completely

uniform that it would be impractical to try to maintain.

Ass11mj ng that during the update of a tree an unbalance was cal..

culated to occur at node A ·an..d we have the followi;ng structure:

..
. ,. '•.)' ...

. ' .. ~

• , · I , ~ , , · I , ·

', ~J. . ' . . .

,,

. . '

I /' .::' "1

li-• '

", ,'.,''' ... ;, '',.,,' ' . ..

-
. f:

·l

, 'I'. • } .

,.

'~ ,,.. .
l

..

1l:gure 2. i. Sample t·ree before rebalancing

·Where A, B ·and · C are nodes and 1, 2,. 3 and 4 are subtrees (m~ be

null '.~'). Ass11ming that the update will be performed in the· right

subtree of node A it is only necessary to calculate what the bal~

a.nee of node C will be after the update has been performed. If

this balance ·Jj i.s such that a S {j S (1-2 a) / (l~a) then the· tree

can be returned to b.alance and by performing an a.lgorithm called

rotation _.which transforms the tree into tne f'ollowi:11g structure:

·'l .

Figure 2.2 Sample tree after rebalancing
:• {\ \ 1 ·. ' ' '.-·' •• . .e' ' ' -

~ I

•..
; . '' ,' -:··

'·

l . ,I' l p

- ··-• ... i• ,·

' ..
''_0' J., 'SI

. '
I . '''

i"' ': '

1 .

• /' , I _,

; ,i •. '' ' ' -;\ ' I

.. -· ,.

> ·'.~. I ,, ' ' . ,.

;,.,,

'·

' ' ' . .
.. '

..

,,

In situations where the balance limits have been recentlT

changed the new balance at node C is not guaranteed to be be-

tween a and 1-a but it will be closer than the old balance at

node A. In this situation repeated applications ot the restruc-.

t~i.ng al·gorithrns will bring the balance within the· desired limit11.

It the balance p does not tall within the previously· mentioned

li~ts a second restructuring ~lgoritbm called split. rotation must

be used. Thii algori tbm will result in the :followi~.g structure:·
..

Figure 2. 3 Sample tree after split-rotation

To pertorm these· tl{O- ~gorithms -i.t is not. necess·aey to, phys.1!11'·

ically· move any- records. The restructuri~s can. be achieved by

'

ch~ging the appropriate poi.nters and updat·i.~g the· appropriate si.ze.

fields.. In ·the examples of these two ~gortbiins it was ass11med

that the update would be performed in the right· sub:bree of the·
I

node where the imbalance occurred •. If it were to oc-cur in the··

left subtree the mirror ilD:8,ge ot these two ~gorithrns can be used.

An · anal:y-ti c proof for these two ~lgori thms can be tound i.n an ·

.,
. .. . "'·

15
--~.\' ~- ' '•.

·~ ,., :•,
(' ''

, .. · ' ~ ,, . 1' ,:. ' ,· ' '

'i . '
' {.t' ., ..

'
Jo'

,•
.,,

~
'
f
'

,.
,.

!ti

/' ,!·,

•

article entitled "B~ary Search Trees of ·Bounded Balance" by J.

Nievergelt and E. M. Rei.ngold published in the Procedures of the

4th annual A. C. M. Symposium on Theory ot Computing (1972)[=14].

If during an update of the tree one.or more rebalancings

were performed and it was later determined that either the record

to be added already existed, or the record to be deleted did not

exist, it is only necessary to correct the size fields that were

r,

ch~ged during the update and no:!L re~rebalanci_ngs will be necessary

as the original rebalancings will only have brought the balance

closer to 1/2 ~ven though no actual update was performed.

Using a straight binary tree techniqu~ with no rebalancing

the,expected average search time is approximately 1.39 log2n but

can go as high as n searches for the worst case. As no rebalanc

ings are performed, addition and deletion are very easy to perform

·rn. the . ti1ghtest~ balance 1/2, the expected average search time is

lhog2n-l and the worst possible search time is log2n, but restruc

turing algorithms are extremely difficult and in the worst case

may require restructuring every node. A tr.ee of bounded balance

(1- v'2 / 2) has an expected search time of less than 1.115 1.og2n

(experimental data suggests it is actually closer to 1.05 l_og2n}

and the worst possible search time is only 2 log2n with the max

imum number of restructurings to be performed in the worst possible

cas~ being 2 log2n. ·The aver.age number of rebalanci~gs needed to

add a si~gle record has been analytically proven to be independent

. :~ ..

(I'

; ·'- ,'" ... _,, •; ·. ·• ,_· . ·., ... ' . _.··. ·, . ,,·,; c';,,· i,._, • :

• I

J • .

. ·,:

,I

ot the tree size and less than 2/1=2n. • Mr. Nievergelt suggests that

experimentation indi~ates the actual number is tar less than this.

The discrepancy between the analytic and experimental results is

probably due to the unknown distribution of the balances of the nodes

within a tree. The analytic !esults were ~chieved ass11ming a uniform
.

distribution while experimentation ·shows "it to be more close to a

truncated normal distribution.

The main objective of this thesis is to, through simulation,

attempt to build a model thro.ugh the use of which the efficiency of

BB trees can be accurately predicted •

.17'

. " .;" _, ,• ;

,,. ..

,
\',.
•.
}-'

..
'·

A,.·
.. ,

CHAPTER. III

DESCRIPrION OF THE MODEL

The model used· -to tes-t the Bounded Balanced Binary tree techniq,ue

was written in PL/1 for the I~B.M. 360,_ utilizing cor.e for storage of

the data. PL/1 was chosen because 9f its pointer variable feature.

Through the use of pointer variables it was possible to maintain the

entire storage file in core using a technique which is. almastidentical

to that which would have been necessary if auxillary random access

storage devices had been used.. This was done by storing the actual

core addresses of the records in the pointers~ If auxillary storage

:had been used the physical addresses (such as corTRRR; C = cylinder #,

:T = track #, ·R = record· #) would have been used. The choice-fJOf core

·for storage of data was made in order to reduce the run times of the·

many runs which were required to evaluate this technique.
' .

The model was written as a self.,..contained package with all

interface performed by a single parameter, or set of parameters.. The

model performs its own storage allocation and dealloc~tion algorithms

b_ased upon the parameters passed to it by the user. All calls to the

model can be performed by use of a single statement,

CALL BALTREE (P ARAM3} ;

where PARAMS has the following structure:

1 PARAMS,

3

:3"

3.:.

3

COMMAND~ODE

ERRORt;.CODE.

KEY~OI~ER

DATkPOINTER

18

~CHARAC'rER (1) ,

FIXED DECIMAL (5 10) ,

POINTER,

POINTER; . ,.

. 1"-''

~

-,

' ·-
,,

•.·

' ' .•·
' :,,

;~·

The command code indicates to the model which of the 14 operations

that is to be performed. The error code field is used as a feedback

device so that the model can indicate .. to. the user the status of his

last request. ··Ia field should be checked after each call -with zero

indicating successf'ul · completion~ The key and data pointers are used

to point to the Key and data portions of the current record,· . Both .

the ltey and data portions of the record must be in the PL/1 version

of variable length fields. That is the actual data portion of the

field must be preceded by a two byte binary field which contains the

length of the data portion of the field. It does not include the

two bytes needed for the length indicator Ce .• g. ~ g)3KEY '. where ~3 would

be in binary) .

The first command to the model must be an initialize commend.

To execute this command the command code must be ·set to '~' and the .Jey
pointer field set to point to a set of four half word binary fields which

are set up as follows:

1. FIEL:00,

-_o. -~

FLDl

FLD2.:

FLD3

FIXED BINARY (15 ,o·)' ,

FIXED BIN.ARY (15,0),

FIXED BINARY (15 10) ;

FLDl must contain the largest nimiher of records that the file

will be used to store. FLD2 must contain the maximum length of the

key field and FLD3 must contain· the maximum length of the data field.

FLD4 is not used for this command. Based upon the information supplied

to it the model will calculate the amount of_ storage required and

obtain that amount of storage. In this version of the model each -

19

"

•

·~· ' \ , . ' .

' ,, ':.'\ :.) \ (, ·;,,·

,, :i

'7 , .. ' .I,'

)-·

~-

\' ,I

' '

record is allocated sto;r_age space based upon its maximum possible length •
. In addition to. the record ltey and data. fields, three additional fields

are added before any record is placed in stor.age, One of these fields

is a size. indicator which w·ill contain the n1miber of records in the

subtree of which this record is the root node, and the remaining two

fields will contain pointer variables which contain the addresses of

the left and right subtrees, or null indicators if the respective

subtrees are empty.

Once storage allocation has been made to accommodate the n11mher

of records specified in FLDl, these storage slots, which are now

empty, are chained together to al.low efficient allocation when they

are needed. Starting with the first slot in the file, the left

.pointer in each slot is initialized with the address of the next

sequential slot , with the lef't pointer in the 1~a.st- slot being set

as null. ·The right pointer of the· first slot ·is then set to null.

The first slot is never used for storage of :any input records but

is reserved for record keeping purposes. The left pointer of slot 1

always points to the next available slot into which an inputted record

can be placed. The right pointer always points to the root node of

the storage tree. It should also be noted that the size field of-teach

storage slot is preset to zero to prepare for the use of a debugging

aid which will be explained later. The initialization routine also

presets the .balance limits -~~·pba) of the tree to a default limit

of .25. Using this alpha it calculates D~A equal to 1 ""a and

1" 2a BLIM equal to · a · .

••

. '

r

,,
1!~ 1 ''

~:-'-
!{

' ,,

if
,·
'f

Upon successful completion the initialization routine will s·et

the· error code field to zero and return cont.rol to the user. If in

calculati:ng the amount of stor_age . space required the model :f'inds an

eeror, that either less than 1 byte. or more than 1,000.,000. bytes are

requested, it will return an error code of 7~

If it is desired to set the balance limits of tha;tree at other

than the default values the command SET~HA (command code "A') is

used. When this conmand is issued, similar to the initialize command,

the ley pointer must be set to point to a two byte binary field.

This field must con-:tain the desired alpha value multiplied by 10 ,ooo~
When the model accesses this field it will divide the centents·~(by. :l©,}000

and calculate the corresponding values for BETA and BLlM. The model

will also data check the setting of alpha and if found to be in error

it will reset it- to the default value and return an error code of 6.
When it is desired to examine the storage file to retrieve data

'.f;rom it the command SE.ARCH (command code 'S'') is used. The only

requirements to use this command are that the iey pointer field must

point to a field which contains the itey of the desired record and the

data pointer field .must point' to an area into which the data portion

of the record can be placed. In order to locate the desired record

the model first examines the le·ft pointer of the first siot in the

storage area to determine where the root node of the tree has been '

stored. The model then compares the ~y of this node against the ~1
or- the requested record.

If these lfeys are equal the data portion of that record ·is .copied

into the field pointed to by the data pointer field and control is·

21

~ I

. "

. r-:;.

.. ~ ,., . , .

. } ··\

i.···

'' .

' !
~'
~ ,,

f
f, ,.

..

•

.' ~·

. ...

returned to the user. If the .leys are unequal ··: '.) the left or r_igh.t

pointer can be examined, dependi~g upon whether the desired record is

lower or h_igher lex.ographically than the obtained root node, This

procedure can then be repeated usi~g the subtree whose root node is

pointed to bY" the appropriate left or r.ight pointer. This process

· continues until either the desired record is located or a null pointer

is reached which indicate(s that the desired record is not in the file

and control is returned to the user with an error code of' 1~

Should it be necessary to change the data field associated with

an existing record the command UPDATE (Command code ~U') is· used. As

in the· search command the Xey pointer must point to a field which con~

tains the ~ey of the desired record and also the data pointer must

·point to a field which contains the new data which is to be placed

into storage. To locate the desired record in storage the model

initiates a search command. Once the record is located it is a simple

operation to replace the data field of the record with the new data.

If the desired record is not in the :file the data portion cannot be

updated and the model will return an error code of 1. It will not

:~nter the record into the file as a new record.

In order to place a new record into the file the command ADD

(Command code 'A') must be used. When this command is executed the ltey

and data pointer parameters must po_int to fields which contain the- k.ey

and data portions of the new record. To add the record into the binary

tree the model performs a routine similar to the search routine,

. Starting with the root node of ~h~ tree it will determine into which. ·
' ' i

subtree the new record will be added~ It will then start checking to

22.

., ; .. \J '.' '

r·

• I '.. r'

•

' ;,.,

see if the addition of the new. record will violate the balance limits

of the tree 4'

than 1/a + 2.

If first checks the· size. of the tree to see if it is less
. If it is, the addition of the new record cannot torce

the tree to violate the balance restrictions and the record can be
I

added with no further balance checking. For alph~ values between .2.

and • 5 this eliminates between 3/4 and 7 /8 of the nodes in the tree

as possible candidates for restructuring and as alpha decreases this

:·fraction becomes larger. If however, the tree is a possible candidate

for- restructuring, the actual new balance at the candidate node must

be calculated. As the :model already knows into which subtree the

·· new record will be added the new balance can be calculated easily.

.•.. ,,·'!-

If the balance limits are violated, then one of the two restructuring

algorithms described in the previous chapter can be executed. If no

restructuring ·!-.s: necessary, then the size field of the considered record

·is updated by one and the process repeated with the root"1ode of' the

appropriate subtree.· The position within the tree that the new record

is to be placed is found when a null pointer is reached, To enter the

record into the tree _it first must be added into the storage file.

-nie :right pointer of slot one in the storage area contains the address

o,f the next available slot in the storage area_ into which\) the new

record can be placed. The right pointer of this open slot contains the

address of a second available area and this .address is used to update

the field in slot 1 for future additions • The Key and data of the new

record can now be placed in the storage file. The null pointer which

was previously realized can be updated to the a9,dress of· the new

.•

,•,', I ,.r'
I, ' ' ,

'i.,

1,·

,_,;.~~·..:.:
' '

•,

i'

,,.

record arid the left and right pointers ot the new record.set to null,

Now control can be returned to the user. If in this process it is

found that the· record bei~g added already exists in the file the error

code is set to 2. Before control can be returned to the user all of

the size. fields which were updated by one must be retutned to.their

original value. If any restructurings were performed during the

addition they need ·not be undone as even with the removal of the

r:e.c,ord the tree will be closer to a balance of • 5

Deletions are performed by cal.ling the model using a DELETE

command (Command Code 'D'), with the ·ifey pointer field pointing to a

field which contains the lfey of the record to be deleted11 The pro ..

·cedure to locate the record to be deleted :i.s identical with that used

-to· f'!nd the position in the tree. into which a new record would be

added except that when null pointer is reached an error condition

exists because this indicates that the record to be deleted is not in

the file.. If this error condition is realized the error code will be

s:et·, to. l and the size fields corre.cted before cont~ol is returned to

the user. Once: t·he record to be deleted is located one of three contiil

di tions will. be found to exist. Condition 1 i.s· when the le:f't and right

subtrees of the record to be deleted are null-. Condition 2 i·s when

only one subtree is null and the third condition is when neither sub~

tree is null. IDf the record to be del~ted is in condition 1 or 2 it

can be removed from the tree by simply replacing the· pointer which

points to it with whichever of its ·pointers that is non~ull, or if

both .are null with a ~ull pointer. If condition 3 exists a small

24 ' ,

l,•l,J".'\

./ '
' '. ·., ~

I

'
;

.
,.

,,

'

'·

.... ·,

a.lgorithm must be executed, This fl:lgorithm first determines which

subtree of the record to.be deleted is l~rger and locates within that

subtree the· record whose key is lex~graphically closest to the ~ey

of the record to be deleted. This secondary record will be in con"

di tion l or 2 and can be deleted from the file as previouszy described,

· The actual deletion of the desired record is then accomplished by
.-replacing the Atey and data portions of it with those of the secondary

record that was just deleted.

Sequential processing of the tree is accomplished through the use

of two additional commands. The first command is ST.ART SEQUENTIAL

(Command Code 'X'). When this command is executed. the Itey pointer

para.meter must point to a field which contains the ltey with which

sequential processing is to begin md the data pointer to an area in

which the data portion of the record can be returned. To execute this

command the model performs a routine identical to the SE.ARCH routine

except that it records the path from the root node to the desired record

:in an address queue. If in this process it does not find a record with

the desired~~ it will auiomatically locate the next record in sequence

by generating a NEXT SEQUENTIAL command and return control to the user.

After sequential processing has been started by a ~X' command it

can be continued with the NEXT~EQUENTIAL Command (Command Code 'N').
For successful execution of this command the previous command must have

been either a 'X' or 'N' command which executed successfully. To locate·

the next sequential record the model will examjne the record whose

address is at the end of the current address queue. If tli'e.t · record has

a right pointer which is non~u11·, that pointer will be added to the

end of the queue. The· record at that address will then be examined

for a nonNlull le:rt pointer~ If the.pointer is non~ull it will be

adde~ to the end of the address queue and the process of exemini~g the

le:rt pointer will continue until a null_ pointer is found. At that
.,

· point · the lfey and data portions of that record will be t'eturned to the

user ·after its address has been added to the queue. If in the initial

examination no right pointer was found the last address on the address

queue will be deleted from the queue, Th·e record which is now at the

end of the· queue is exa;mi ned and if it~. r_ight pointer is equal to the

address which was just deleted .. from. the ·queue, it·s address is deleted

from the queue and the process ,¢.onti~)1~ed until an unequal address is

found. The .key and data of the .. ;.1~st record in the queue are then

returned to the user. When in this process of retracing up the tree

the root node of the entire tree is deleted from the queue, an error

c,od~ ot 4 is returned to tl;le :~e:r to indicate that the entire file· .h·a,.s

b.e·en processed.

-·
For debugging purposes the model has a Command of DUMP (Command

Code 'G'). Upon receipt of this command the model will-provide a

printout of all records presently active in the storage area along

with the contents of their left and right address pointers. This

command was added to enable the user to eonfirm the conten1E of the ·

storage file in order to help deb:u,g his user subroutines or check the

operation.of the model.

... When processi:D.g of the f'ile has be.en completed th;e

26

...

,.

•z•) should be. used. This c~mma.nd will not only

delete all of the· records in the· file but will also return the storage

area. to. the operati.ng system. If this instruction is used the only

instruction which can follow it is another INITIALIZE routine, It

should be noted that this deletion routine will also delete the present

value of alpha requiring th·at alpha must be reinitialized when

processing is continued or it will be p~eset to the default value.

~· There are also four additional commands which deal with SCOPE.

:SC!OPE i.s.: a feature which allows the model to store lfeys that have one

or more ·.prefixes._ A description of these commands and a definition

·or SCOPE has been deferred to Apendix I as ·th·is. feature does not

affect the :mo·del as it will be used to evaJ:u.at:e· the efficiency of the

Bounded 'Balan·:ced Binary tree technique.

.. .
. •' ' '· 1.

>-, •. ;I,• C '•'

. •

i
·'

t

CH.APrER . IV

EVALUATION OF THE TECHNIQUE

r.
.I

-·..-· '·
~fl;_, j •

Before any attempt could be made to evaluate the Bounded Balanced

> technique thro~ simulation, criteria had to be established by which

the tree produced by the mo~el could be ~asured •. The two criteria

chosen were the average path le~gth of the final tree, and the n11rnber

of times the rebalancing algorithms had to be· executed in order to

build tree. The average path length was chosen because it is a

...

measure of the expected search time required to either locate a record

in the tree or to locate the position within the tree where a new

record will be added. The n11rnber of rebalancings is an indicator as

to how difficult it was to produce the tree within its bound limits

.and how diffic.ult it will be to maintain it during future update~ •

In order to be able to evaluate these two measurement criteria,

or dependent variables, the model as previously described had to be

modified slightly. In order to inform the control program of the

number of rebalancings that were performed during ·each addition, the

rebalance algorithms were modified to subtract one from the error

code each time the algorithm was execute~.. In this way the control

program -could sum these negative error codes to obtain the total

number of rebalancings performed to build the tree. To obtain the

average path length the sequential processi~g routine was modified,

In order to obtain th·e average path length the supervisor or, control

program would request the model to sequentially process evecy record in.

the tree. By doing this the model was easily modified to eal.culate.

28

•· I ','1 - /'! ,/',,•,

. ·-:,'·, '

'). ' I

~ ;,;,;,,

'·'

' '•
O!W".

' , I -

' 1 ,•

A

l

·,

~
,·

... ,, /' ., ' . •, '

the average path length of the· entire tree and return it to the control

pr.ogram.

Three independent variables or variables which would.be inputted

to·the model to force it to var:, the.type of tree it produced were

chosen. The first was t·he choice o.f the balance limit (a} and the

second was the n11rnber of records in the tree (n) • As the shape of

binary trees is not affected by the type of distritution of the

inputted data (i.e., normal, skewed, uniform) but only by the amount

of sequentia]ness in the data, a measure of the sequentialness (p)

was chosen as the third independent variable.

The data inputted to the model was generated by a modified random

nmnber generator. The modification was made to eliminate the

possibility of generation of duplicate record keys and to force some

sequentialness into the data when desired, Although the model would

have rejected the duplicate Jfeys automatically, it was considerably

.e·a,.sier to program to ensure that no duplicate keys were generated

than to initiate corrective action when they were rejected- In order

t~ provide sequentialness into the data the random nirmber generator

was programmed to vary the mean of ~he distribution from which the

teys were generated. The generator was programmed to produce

n11merical lfey uniformly distributed over a range of +5000 from the -
m.ean, with the mean being initialized at 5000. If no sequentiaJ ness

was desired in the data, the mean was maintained at 5000 for the

entire run. When sequ.entia,lness was desired the variable p was
',

introduced with permissable values between· 0 and 1. The mean of the

29

:~-

...

distribution was then incremented by.p times the r~ge of·the dis~

tribution between the generation of each record Xey, If, for example,

p was chosen as • 001., the mean would be incremented by 10 each· time :tt
~·~,.,,,,.~,, ..

the. generator was executed.

The values at which the independent variables were set for the
..

. . . initial simulation runs were chosen so as to span the range of

reasonable possible values for that variable, The initial values

chosen were:

a -
.o

... 1

.2929

n -.
250

50~)',.

75.0:

1000

.0000

..0·02.5 .

•. 0050· .

• ·Obi

Choosing one of these values tor ·e·ach: variable the model was run

,1·0 times before any of the variab·lee were varied. In order to ensure

that no two runs were made using identical input data the seed of the

random Jtey generator was varied betw.een each run. After each run was

made, the average path length (AVLEN) of the resulting tree an·d the

n11mber of rebaiancings required to build it (NREB) were record~d.

After each set of 10 runs was complete the mean and variance of AVLEN

and NREB for that set of independent variable~, or cell, were computed.

The results of these Boo. runs are shown in Tables 4...J. and 4"2,

..
'

,,, , ,., .,,., I, •

... . ~-.· '

'

' '" .

•

BALANCE LIMITS (.a)
Tree

Sequen~. Size
.o .1 .2 .2929 tialness (n) Mean var. Mean var~ Mean var" Mean ·var.

(P) . .

250 9. 470 . .275 8.312 .061 7.631 ,015 7.212 .002 .

500. 10.864 .241 9,474 .089 8.713 .029 8.218 .001
.0000 .. . 750 11.620 .269 10.162 .105 . 9.322 .021 8.816 ~001

1000. 12.201. .254 10.574 .062 9.755 .019 9.226 .001

\ 250 9.686 .180 8.602. ,115 7.758 .044 7.272 .oo4
500 14.866 .554 10.585 .240 8.870 .008 8.238 .oo4

.0025 750 22.007 . 1.217 11.205 .063 9.378 .022 8.843 .003
1000 29,616 2.370 11.996 .067 9.821 .005 9.248 .003

·-
250 12.300 .578 9.026 .103 7.755 .025 7.224 .002
500 22.011 1.4~3 10.682 .085 8. 782 .022 8.276 .004

J

.0050
·7

750 32.762 4.158 11.404 .068 9.455 .017 8.816 .002
1000 43.721 6.587 11.746 .168 9. 757 .033 9.241 .003

250 14.020 1.884 9,302 .144 7.763 .036 7.239 .003
500 28.727 a.920 10.738 .151 8.924 .024 8.235 .005

.0075 750 41.508 5.973 11.201 .140 9.336 .018 8.812 .002
1000 55.474 9.311 11.873 .215 9.863 .016 9.226 .002

250 17.694 2.300 9.275 .095 7. 783 .029 7 ,23.7 .002
.01 500 32.335 4.505 10.664 .056 8.754 .014 8.237 .003

750 48.334 7.246 11.538 .128 9.360 .015 8.802 .003
1000 64.172 12.004 11.835 .184 9.767 .025 9.250 .. 003 I

~-

t

3i.

.I' '
' • ''1'M,i '

•• ,·

,

BALANCE LIMITS (a)

Sequen~. Tree

tialness Size • 0 . ~1 • 2 .2929
(P) (n)

' -~ •. , ... ,. --,, "' -- ·"II·"' 11,1 ... ~ '"'!"'. -- -- ,., ,. - - .. - - ~ - - -· - - _.. - .• - .. • ·~· - -· - - -Mean . Var. Mean Var, Mean Var. Mean Var, - . - ·. - . .. Ill'• - - • -; ' - - - --· ·-· --..,, ... - ~ - . . -.. ", .

250 ·. o.o. o.o 13.4 23 .• 6 40.3 25 .• 6 90~3 54.5
.0000 .. 500 .. 0 ttO . o.o 26.0 . 58.4 80.2 51 .. 3 180.6 137.4

750 . o.o . o.o 38.0 56.7 122. 7.1 · 77.6 265.6 274.o
1000 .. o.o . o.o 49.2 74.4 165.1 75.9 360.8 379,9

250 . o.o. o.o 14.6 13.8 43.9 . 16.3 92.1 63.9

.0025 500 o.o o.o 32.9 17.9 89.9 35.7 189.1 181.2
750 o.o o.o 54.8 19.3 138.8 44.8 284.1 234.8

1000 o.o o.o 76.6 64.9 186.8 83.5 381.9 255.2

250 o.o o.o 16.6 14.o 46.7 19.6 96.4 30.5
I

I .0050 500 o.o o.o 40.5 54.5 100.2 31.5 193.4 85.1
.

65.6 78.0 299.3 87.7 750 o.o o.o 150.7 50.5
1000 o.o o.o 94.2 119.7 205.4 46.7 399.8 131.1

250 o.o o.o 19.0 28.9 47.3 33.6 95.0 85.6
.0075 500 o.o o.o 48.8 51.7 100.0 26.0 199,5 133.8

750 o.o o.o 79.5 75.2 159.2 78.6 305.6 132.4
1000 o.o o.o 110.0 86.o 215.9 192.5 405.2 135.1

.

250 o.o o.o 22.6 6.3 49.0. 15.3. 102.0 27.3
.0100 500 o.o o.o 55.1 35.4 107.2 37~5· 205.0 54.o

750 o.o o.o 84.6 25.6 163.7 77.6 312.7 135.6
1000 o.o o.o . 118.1 99.9 220.7 122.2 419.4 103.4

.

•

TABLE 4-2

NUMBER OF REBALANCINGS

i.
I

! '
I'
,, ,.

·, 32··

'1 I ' ' '

' ·.- '. _.' ·I'., , , .

·•

I•,,· 'e> tf-1

.,.,. . .

From a brief' glance the data. from these ·runs appears reasonable.

As could be expected, as the tree size. increased so did the average

path length. and number of rebalanci:ngs. These variables also increased
I

as the amount of' sequentialness was raised. When the balance limits

were raised, the resulting tree had a smaller aver.age path length but

this caused an increase in the number of rebalanci.ngs.

To determine which of the independent variables had an effect

upon the dependent variables., a three wa;y analysis of variance was

performed on the data. A portion of these results are shown in

Table 4-3. This analysis indicated that all variables had an effect.

:pubsequent attempts at regression analysis on this data were only able

to produce regression equations that explained at most 80% of the

Source of
Variation

p

n

pa

pn

an

pan

Degrees of
Freedom

4
:3:.

3

12

12

-9:

Sum of
Squ·ares

6102.2

45880.6

8532.3
16609~9

1717.6
14329.7

5174.8
...

Mean
Square

1525.5

15293.5
2844.1
1384.1
143.1
159.2
143.7

F
Value

1817.6
18220.9

3388.5
1649.1

170.5

1896.9
171.2

within repiicateJ

total

36.
1~6.
799

604.3
98951.6

.8

.Analysis of' Variance of' AVLEN

TABLE 4-3
'

variation. A closer look at the analysis of variance, especially

plotti~g the interaction of the variables at the various levels,

suggested that the variation of the dependent variables -~~uld best be·

· 33

,,

,·

~-

,:.., !" I

explained if the data were divided into. two groups. One where ~pha '

is zero and the tree is allowed to. grow uncontrolled, and a second

where the balance limits actually controlr=~ the growth of the tree.

To verify that this condition actually existed the data from the

simulation runs for which alpha·was set·at Owere d4eleted and the

three way analysis of variance was again performed. Table 4~4 shows

a portion of the results of this analysis.

Source of·
Variation

p

-a:

n

pa

pn

an

pan

Within

Total

Degrees of
Freedom

4
2

3·
....

,8:·

.12:·

:6.
:2:4:

:5-40.

59.9

Sum of
Squares

15.8
488.~o

,',

429.0
24.4

1.7
9.2
3.3

25. 5

996.9

Mean
Square

4.o I

244.o

143 .. 0

3i··O.
... 1

"

1 .. ·5:

• .'l.

.... 0.5.

.Analysi_·s of Variance of AVLEN

TABLE 4-4

F
Value

83.8
5161.3
3024.6

..

64.4
3.0

32.4
3.0

A comparison of the two sets of results shows that with the group

·of data where alpha was zero removed, the interaction of the indepen

dent variables was greatly reduced and subsequent attempts at

regression analysis were able to explain in excess of 95% of the

variation in the dependent variables with relatively simple models.

As the purpose of this investigation is to evaluate the

performance of the BBT technique, and since where a= 0 the

technique is never allowed to function, it was decideq. to delete the

34

'

,.

~i ,',', . ' : I • ,'

?
1::· ,.
-,· ,·.

.• ,.
I

' ;·,

. .

{.

. .~·
·''

,·.

:I
.I

data obtained where a= 0 and replace it with correspondi~g data by
,.

rerunning the model setti~g a at .05.. After the appropriate 160 .

simulation runs were rerun the analysis of variance and ~egression

analysis were _again performed upon the· new data.
I

With the conditions that complex transformations would be avoided

and that regression analysis would be limited to second degree terms ,

two regression equations were developed that would predict y, the

expected average path length, and w, the ·expected number of

rebalancings to be experienced when an update (addition or deletio~)

is made to a tree of size n. To obtain these equations only one

transformation was made. That, transformation is z = (log2n)-l. The.

regression equations are

y == l.167z - 1430pa + 43. 79pz + 103.1a2 - 5. 7az - .o6~.:2

w = -6.36p - 277.3p2 + l.842pz + 4.125~g

These regression equations were able to explain 99.6% of the

variation in the observed values of y and 99.9% of the variation

in the observed values of w. For situations where no sequentialness

was introduced these equations should be able to be reduced by

simply removing the terms whic~ contain p. They would reduce to:

1 y =

1 2 w = 4.125«

In order to check these equations similar regres~ion analysis

3.5:
·l

•

~ ·-

•.

and analysis of variance were performed on the data obtained when

p = o. As this subset o.f data contained only 160 data points an

additional. 40 simulation runs were made setting .a at .15 and .25

which increased the number of data _observations to 240.

The regression equations obtained from this data were:

.

.I.
y = - 5.66g + 1.4oz + 18.56t;f - .99az

:i.' 4 ,2 w = .oi«

with 99.9% and 99.1% of the respective variation being explained.

A visual· examination shows that for w the expected and actual

equations are very close whereas the two equaions for y appear

quite different. In an attempt to explain the seemingly large

difference between the two equations for y the regression analysis

was repeated several times allowing only the variables with relatively

large F values to enter the ~quation. The resulting equations were:

y = l.17z - 10920p2 - 2818pg + 84.4pz

y1 = l.28z - .9«z

:and explained 98. 7% and 99-9%· of the respective variation.

When the terms containing p are removed from the. equation for

y the two equations appear to be more equal than· previous but

there is still some discrepancy between them. This indicates that.

even though the regression equation for y explains 99.6% of the

36

. "I

~' ,:"' I '

...
,, , ': ..

• ·'· _,, J _·

...

,,

variation of y, that a large part of the remaining • 4% of the

variation occurs when p = 0,'·:.andt.that for cases where extreme

accuracy is desired, the equation for y·1 should be used.

The actual data upon which the previously described analyses

were performed were the<:ceu.i means which were obtained by
. \

performing ten runs within each cell. In order to attempt to .

predict how subsequent observed values of AVLEN and NREB could be .

I•

expected to deviate from the values predicted through the use of the

previously mentioned regression equations an analysis of how much

the observed values varied within each cell was made. The resulting

equation for the variance are given in table 4-5. The equation

for yL and wJ.. were obtained using only the data obtained when p = a.

Variable

V(y)

V(w)
.

V(y.,·)

V(w·!)

% of Variation Regression Equation
Explained

71.16 2. 55<fi2 - .156ay + .0024y 2

84.82 .0086'."« - .OOlw - • 082p~a. + .O.ticz
.,

(.
95.04 .982tt2 - .016zT· + • 0146yl:2

,j

93.58 .009w1 - .00911~

Expected Variance of Observed Values

TABLE 4-5

-.

- .00065zw.t

The low percentage of variance explained by the above regression

equations is probably due to making only 10 observations within

each cell but they are high enough to give a reasonable estimate

as to how much variation from the predicted value could be expected
•

if a subsequent observation were ta.ken •

•

•'' :I •

n

/,'., ' ..
• , • r· . ,'.'''. \'

' '• .. · ' : ::\. ,' ', .

• . t ,···;

r:
1·:·,.

...

·-·

CHAPTER V

SUMMARY AND CONCLUSIONS

'
'I I

I

When Mr. Nievergelt proposed his technique [14] he made sev

eral assumptions in order to be able to analytically calculat·e the

expected performance of his technique. The main assumption that he

made was that the distribution of node balances throughout the en-

tire tree was uniform over the interval a to 1- a • He also

admitted that this was a very weak assumption and that the distri

bution was probably more like a truncated normal distribution. Using

a uniform distribution, he was able to show analytically that the

number of rebalancings that could be expected when a record is added

or deleted from an existing tree to be 2/(l~2a)

His proof also stated that the number of rebalancings is indepen.-.

dent of the size of the tree to which the update is made. The re

sults in Chapter 4 support that ·the expected n11mher of rebalanci~gs

is independent of the tree size by the fact that no term in the

regression equation contained the variable n or z , but shows a

large difference in the number of rebal.ancings expected by the

analytic proof.

a

.2.9

.25

.2·0

.15

.10

.05.

Table 5-1 shows the difference.

Nievergelt Simulation

4.83 .36
4.oo .25
3.33 .16
2.86 .09
2.50 { .. .04 ''

2.22 .01
Expected. Niunber of Rebalanci~gs

... ,
'

TAB~- 5-1
38

i .-1,"1":' , .

' .

.)
' ·.·

~\:· ·,~' ~-

. '..'' '

. ' .

..

,\ .,

' : !'~- '.· ,. ;,_-, ·) .. := -., .

The large difference between· the·two predictions either supports

Mr. Nievergelt's theocy that his assumption was a poor one or that

there is an error in this proof.

Mr. Nievergelt does not give a method of predicti_ng the ex

pected average path le;ngth of the resulting trees. He only states

that :for an alpha value of l-v'2/2 or approximately .293, that the

expected average path le~gth is less than 1.115 log2n and probably

close to 1.05 log2n. Using the ~egression equation :fztom Chapter 4
one would get

-:r'~ -5 .66(_. 293)+1. 4((log2n)-J.)+18. 56(. 293)2 -. 99(. 293)_ ((log2n)-l)

vhich simplifies to

which is less certain values of a it is

close to 1. 05 log2n.

One of · the purposes of this study was to be able to predi.ct the

performance of this technique so that for a specific environment an

efficient choice of alpha could be made so as to be able to tai.lor

the technique performance to the requirements of the user. Thr~ugh

the use of the s~gested regression equations it is now possible to

do this.

The results of this study do not proviq.e for a direct comp(Lrison

of this techni-que to others such as the A. V~.L. method. Whi.le the

' '·'
•.i•'

··nl •

I .
h ,. ...

,,

(

.39' "·
·,

. I .

r

·,

' ' I ,,
• r .• ,.

resul ti~g trees of each. method can be compared on the basis ot ex

pected average path le;ngth, they- cannot be ef'tecti vely compared on

n,miber ot rebalancings. If method A requires twice as many rebal

ancings as method B, it does not mean method B is better as the re

balancing algorithm for method B may take three times as long execute
I

as that of.method A. For an effective comparison to be made, some

type of cost model must be developed for each. technique. This model

should include the cost of items such as st~r-~e space for both pro

gram and data and the cost of computer time to execute a file inquiry,

update and restructuri_ng. Only after this type of costing model has

been developed for two or more techniques can the performance of

these techniques in a given environment be compared. This stud1 has

provided sufficient understanding about the Boimded Balanced tech

nique that such a model could now be built.

This study only considered the behavior of the tree in a s.tatic

envi.ronment, that is the input variables ·· a, and p were held constant

whila n was increased. The study could now be extended to include

the behavior of the technique in a transient environment. If one

were to build a tree using spe~itic.·.values for a ,:P and n,.,_::;tlae

characteristics of the tree can be easily predicted from the equa"9-

tion in Chapter 4. Af'ter this initial tree is completed th.e values

of a or p could be changed and the building of' the tree· continued.

·From this study it would be possible to predict what the tree would

' be like if the variables had been at their new level for the entire ' . .

life of the tree. Usi~g these characteristics; it is possibie to

40

i· \

'' "', :il"'. '

' .

.. ·:;
' • I '\ '

, .•
..

' ·.

~.-
i
;
'·· ,.

f
l .-.·

observe the actu~ growth ot th.e tree and· determine the tree·~s

behavior during its transition from its old set of characteristics

to the new set that it must approach as growth continues.

It is the conclusion of this study that the technique of

Bounded Balanced Binary Tree is competitive enough to be. considered

for use as a technique tor physical storage management of data

storage files but the decision as to which method is best i~ depen

dent upon the environment in which it is used.

t.

.•

. -..

·,

.'1

·)

41 ..

,.,.i: ··-

'\

' .·

J"··

, .. ., .

'' /

..

~ • "' ' • I .. • ~

I ,

BIBLIOGRAPHY

,l. Bachman, c.w., "The Evolution of Storage Structures", Comm. ot
A.-C.M., July, 1972, pp. 628 - 636.

··2._. Buchholtz, W., "File Organization and Addressi_ng", I .B.M. Syst.
J., June, 1963, pp. 86 - 111.

:3·.. Clampelt, H.A., "Randorni zed Binary Searchiz.ig with Tree
Structures", Comm. of A.C.M., March, 1964,· pp. 163 - 165.

.:4. Flores, J. , and Madpis, G. , "Average Binary Search Length for
Dense Ordered Lists", Connn. of A.C.M., Sept., 1971, pp. 602 - 603.

·5~ Foster, C.C., "A Generalization of A.V.L. Trees", Comm. of A.C.M.,
August, 1973, pp. 513 - 517.

6. Johnson, L.R., "An Indirect Chaining Method for Addressing on
Secondary Keys", Comm. of A.C.M., April, 1961, pp. 218 - 223.

7 .•. · ' .

8.

Kennedy, S., "A Note on Optional Doubly-Chained Trees", Comm. of
A.C.M., November, 1972, pp. 997 - 998.

Landauer, W. I. , "The Balanced Tree and Its Utilization
Information Retrieval", IEEE Trans. on Elec. Computer,
pp. 863 - 871.

• in
1963,

9. Lum, V. Y., "General Performance .Analysis of Key~to~ddress
Transformation Method Using an Abstract File Conept0 , Co:rmn. of
A. C. M. , October, 1973, pp. 603 - 612.

1()·. Martin, W.A., and Ness, D.N., "Optimizing Binary Trees Grown with

11.

12.

13.

14.

A Sorting Algorithm", Comm. of A.C.M., February, 1972, pp.-88·- 93.

Maurer, W .D., ".An Improved Hash Code for Scatter Stor_age", Comm.
of A.C.M., January, 1968, pp. 35 - 38.

Mcilroy, M.n.,· "A Variant Method of File Searchi;ng", Comm. of
A.C.M., March, 1963, p. 101.

Morris, R., "Scatter Storage Techniques", CollDD.. of A.C.M.,
January, 1968, pp. 38 -· 44.

Nievergelt, J., and Reingold, E .M. , "Binary Search Trees of
Bounded Balance", Proc. of 4th Annual A.C.M. Symp. on Theory-'
of Computing, 1973, pp. 137 - 142.

•

0

t.
(~

·'

\ '

··~.

BIBLIOGRAPHY (CONTINUED)

15. Nievergel t, J. 1 "Binary Search Trees and File Organization",
Sigf'idet Workshop Data Descriptions and Access Control, 1972,
pp. 165 - 187.

16. Overholt, K.J., "Optimal Binary, Search Methods", BIT, 13 - 1,
1973,· PP• 84 - 91. ,)

17. Price, C.E., "Table Lookup Techniques", A.C.M. Computing Surveys, J
June, 1973,· pp. 49 -. 65. ·~

18.
..

19.

20.

21 .•

:22.

Scidmore, A.K. and Weinberg, B.L., "Storage and Search Properties
of a 'free-Organized Memocy' System", Comm. A.C.M., January, 1963,
PP• 28 - 31·.

Shniederman, B., "Optimum Data Base Reorganization Points",
Comm. of A.C.M., June, 1973, pp. 362 - 365.

Stanfel, L.E., "A CJo:mment on Optimal Tree St~ctures", Comm. of
A.C.M., October, 1969, p. 582.

Stanfel, L.E., "Practical Aspects of Double Chained Trees for
Retrieval", Journal of A.C.M., July, 1972, pp. 425 - 436.

Stanfel, L.E., "Tree Structures for Optimal Searching", Journal
of A.C.M., July, 1970, pp. 508 - 517.

Sussenguth, E.H., Jr., "Use of Tree Structures for Processing
Files", Comm. of A.C.M., May, 1963, pp. 272 - 279.

24. Tan, K .. C. , "On Foster's Information Storage and Retriev$1 Using
A.V.L. Trees", Comm. of A.C.M., September, 1972, p. 843.

25.

26.

Ullman, J.D., "A Note on the Efficiency of Hashi.ng Function",
Journal of A.C.M., July, 1972, pp. 569 - 575.

Walker, W.A., and Gotlieb, C. c., "Hybrid Trees - a Data Structure
f'or Lists of Keys", Sigfidet Workshop - Data Description and
Access Control, 1972, pp. 189 - 211.

27. Zimmerman, B., Lefkovitz, D., and Prywer, N.S., "The Naval Aviation
Supply Office Inventory Retrieval System -- A Base Study in File
Merchanization", Moore School, University o~ Pennsylvania,
Philadelphia, Pa. , Tech. Rept1~;J;fc,~~;'l(~ieetcf'.illiaval ·Res·earch,
Bureau of' Supplier and Accounts, NOnr551(.4b); · 1963.·

·-,, .. . • •' ·. ··' 1,\

I) ,,
·'·1

·' '

,I

. ./

· ..
':
l. ;-,
·'j

\.''.

,,.

APPENDIX I

DEFINITION OF SCOPE

As was mentioned in Chapter III the model developed tor this

study includes tour commands wh!.ch deal vi.th. what is called scope.

Scope is a technique bY' which records whose keY$· have ·prefixes can

be stored. An example of such a key is A. KEY 1 where KEY 1 is the

record key and A is a prefix.

Before such a record is stored the prefix is removed from the

record. Within the storage area a separate bounded balanced binary

tree is maintained which contains all the uniqu~ prefixes that have

been used so far. The data portion of the records in thi.s tree con

tain not data, but the address of the root node of the tree whi.ch

contains all the records that have that unique pretix. By· doing this

it is not necessary to store the prefix with each record yet the

model retains the ability to distinguish between records havi~g iden

tical keys but different prefixes. If' a record does not have a pre-.

fix, it is. stored exactly as described in Chapter III.

There are four commands that make possible the· use of scope.

The first is DECLARE SCOPE (command code tp') • When thi.s command is

issued the key pointer field must point to a field which contains

only the prefix with which all subsquent records are to be processed.

When the model receives this command, it will add the prefix record to

the scope tree and all subsequent records processed will be assumed to
.

ha~ this prefix altho.ugh the prefix will not be present in the keys.

,,

.\

_,

W'·
-~'._
·;·

' ' I '
I

It the user w:lahea to cha*1,ge · -the scope or prefix presently in

'"use, it 8.D.Y', to one which has previously been declared, this can be

accomplished with the: SET SCOPE command (command code 'E'). When

thi.s command is issued the· model- will delete the previ_ous. scope dec

laration, if any, and assume th~t all subs·equent records to be pro-.

·· ceased are· preceeded bY' the new- prefix which is pointed to by· the

key pointer field. ..

If after setti_ng or declaring scope the user wishes to con

tinue processing without usi~g prefixes the user can use either the

FREE SCOPE or RELEASE SCOPE commands. (Command codes 'F' and 'R'). ·

It the prefix presently _active is to be removed from the SCOPE tree

the command RELEASE SC©:tE is used. This command can only be success

fully executed when no records exist in the tile containi~g the pre

fix presently active. The free scope connnand simply ass,rrnes that

processing is to continue without using prefixes, but that those

recor~ in storage which have prefixes are maintained as is the SCOPE

record of the prefix which was active when the comma.nd was iss.ued.

There is a version of the model under development which will

process records having multiple levels ot prefixes such as A.B.C. KEY 1.

This version uses the same four scope commands and a similar techni-

que of separating the prefixes from the actual keys but has not yet

been completely debugged.

~ ..

-4·5 .. , ... ·' ; __

,,

•-f

'
i

,.,
t;,
\
, ..

PERSONAL HISTORY

Name:

Birth Place:

Birth Date:

Parents:

Wife:

Children:

EDUCATIONAL BACKGROUND

PROFESSIONAL EXPERIENCE

' .
,,-..,"-:, .. ,.):.': ·,., .. ', /.·';•., .'.·.•. ,, ', ,,;, •,•',

I ", " '- '"

' ~ . .-.

VITA

\.

., .i·

R. Ian Bardsley

·Ashton-under-Lyne, Lancashire, Engl~d

September 8, 1944

Victor and Eva Bardsley

Joanne M. Bardsley

Dawn M. Bardsley

State Universi~y Col~ege of New York at

,.

New Paltz - Bachelor's ~egree in mathematics

- 1966

Lehigh University

Candidate for Master of Science

~egree in Industrial Engineeri.ng

Western Electric Company, Inc.
_.,.

Headquarters Finance Division

Member of Information Systems Staff :{-1966-1972)

Personnel Division-· Lehigh P~ogram

Member of Information System Staff (1972-1974) .

46

•.

' .
' ' ··," ,,

.• ·· ·.1··.,· .

'., . 1'1 .:·<: '.
' ···,,, ...

. \

r
I

~ .
' '

	Lehigh University
	Lehigh Preserve
	1974

	A study of the efficiency of the bounded balanced binary tree technique for physical storage management of computerized data files /
	R. Ian Bardsley
	Recommended Citation

	tmp.1551116526.pdf.KMxoe

