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ABSTRACT 

Thermally grown silicon dioxide layers on silicon contain 

an inherent positive charge regardless of growth conditions. This 

· positive charge can be increased by exposure of the oxide to low­

oxygen-partial-pressure atmospheres at elevated temperatures. This 

increase of charge has been attributed to the creation of oxygen 

vacancies which can be eliminated by reoxidation, allowing the charge 

to decrease to a normal lower value. 

In this study, the reoxidation process and consequential 

charge decrease have been examined in detail on reduced oxides 

(oxides exposed to the low-oxygen-partial-pressure atmospheres) and 

on non-reduced oxides. Reduced oxides have shown a non-growth time 

lag of 200 minutes during subsequent reoxidation at ,925°C, this 

period coinciding with the time required for the oxide charge to 

decrease to the values observed in normal (unreduced) oxides. After 

this time lag the reduced oxides were found to grow at the same rate 
~ 

as·unreduced oxides, although the growth rate observed is higher 

than expected. It has been found that oxides grown at a high tem­

perature and then reoxidized at a lower temperature have a higher 

growth rate than those grown completely at the lower temperature. 

During the first several minutes of reoxidation the charge has been 

observed to increase in initially reduced oxides, followed by a 

gradual decrease; no such effect has been observed during reanneals 

in nitrogen. The time required for new oxide growth has been found 

to be indepepdent of original oxide ~hickness, but to be strongly 

dependent on temperature. The oxide charge has been found to be 
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, located near the Si-Si02 interface. A qualitative model is proposed 

to explain the reoxidation process, and suggestions for further ex­

periments are given. 

-~ 

.. : .. · 



-~-· ., 

It is well known that the exposure of silicon to an oxiding 

atmosphere at high temperatures, g_enerally above 900°c, results in the 

growth of a layer of amorphous silicon dioxide on the silicon surface. 

TI-tis Si02 layer is used as an electrical insulator in the fabrication 

of metal-oxide-semiconductor (MOS) transistors and integrated circuits. 

'Ibis Si02 layer is always observed to contain positive charges regard­

less of the conditions under which it is grown. 

This positive charge has been the subject of numerous 

studies, 1-9 but its origin, ·despite these efforts, is still obscure.· 

One proposed explanation for the charge is that it originates at posi­

tively charged impurity centers, such as Na, 10 which are distributed 

throughout the oxide. Among others, Revesz and Evans 11 have demon­

strated, however, that Na is not likely to be the major cause of ~he 

positive charge. An alternate explanation attributes the charge to 

non-stoichiometry of the Si02 layer due to either an excess of silicon 

· or a deficiency of oxygen. Deal et al. 1. and Laverty and Ryan 12 have 

·suggested an excess of unreacted silicon atoms, most likely existing 

.in the Si02 layer near ~he Si-Sio2 interface, causes the _positive 

charge, while Thomas and Young2 and Fowkes and Hess7 suggested 
' 

charged oxygen vacancies, also near the Si-Si02 interface, as toe 

cause. 

Fowkes and Hess7 have purposely altered the stoichiometry 
~ 

" ·.9:f t:he Si02 layer by exposing it to a reducing ambient of CO-CO2 at 

a.P elevated temperature (910°c) which was found to increase mhe 

positive oxide charge and the surface state density through the 
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s:u·.pp.osed creation of charged oxygen: vacancies. Hess·8 has also 

~tudied the effect of refilling these vacancies with oxygen and found 

that the normal oxide growth was inhibited until1a certain time had 

elapsed and after this time the positive oxide charge had decreased 

to that of a normal oxide. 

'Ihe present investigation is concerned with gaining addi­

tional insight into the origin and properties of the oxide charge 

through a detailed examination of the reoxidation kinetics of oxides 

reduced in a CO-CO2 ambient. The effect of filling these vacancies 

with oxygen will be monitored by measurement of the oxide charge 

density versus reoxidation time. Upon reoxidation, the charge of a 

reduced sample is expected to show a gradual decrease with time, 

eventually decreasing to the value of an unreduced sample. The su.r-­

face state charge, which. i:s located within approximately 20A13 of 

the Si-Si02 interface, would be expected to show a very abrupt de­

crease because it should not decrease until a new :Si~S.i02 interface 

has been created by oxidation. 9 The reoxidation ·kine'tics will be 

further monitored by oxide thickness measurements ve:r·$:us reoxidation 

time for the reduced samples to determine the onset of :"additional 

oxide growth and to obser·ve effects on the growth rate._ 'the effects 
• ,, 

·of annealing in a nitrogen ambient will also be studie-d t.o determine 
"' 

whether, in fact, the vacancies must be annihilated in _order for 

the charge to decrease. 

,. 

:1_·_. 
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.2~0 Oxide Charge Considerations 

The existence of an inherent positive charge in thermally 

grown silicon dioxide layers on silicon has been noted by many 

workers,1-12,14 but its ~rigin is not understood. The oxide charge 
Q 

• 
·versus thickness has been measured by some workers by succesively 

etching the Si02 layer in hopes of determining the spatial charge 

distribution. 1 , 4 ,5,B,l2 Deal et al. 1 have found that most of the 
0 charge lies within 200A of the Si-Si02 interface, independent of the 

original oxide thickness, by assuming a constant charge density over 

distance from the.interface. A similar number (250i) has been pro­

posed by Laverty and Ryan, 12 who assumed a distribution linearly de­

creasing from the interface. Hess8 has found that the charge lies 
0 

within 200A of the interface, assuming a constant charge density; 

independent of the original oxide charge. Lindmayer's4 , 5 experiments 

showed the location of the oxide charge to be dependent on original 

oxide thickness if he assumed an exponential charge distribution. 

His findings, however, appear to be i.Il doubt, 1 due. to neglect of 

several important factors. 

The measurement of the charge distribution itself is com­

plicated by difficulties in uniformly etching a large surface area. 

'lbe shape of the oxide charge distribution, therefore, has in the 

past been assumed and numerically calculated after the fact for the 

best fit to the data. The amount of charge has been shown to decrease 

with increasing temperature of dry oxidation and a·1·so to decrease 

with _high temperature (900-1200°) annealing in N2.1,6 These effects 

are currently unexplained. 

I 
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'11ie study of reduced oxides appears to be particularly 

promising in the study of oxide charges, since the creation and 

removal of the charge can be controlled. The kinetics of the reduc­

tion process can be fairly well described and reproducible oxide 

charges can be obtained, 8 therefore a detailed study of the reoxida­

tion kinetics should yield both characteristics and distribution of 

the oxide charge. Hess had observed that the large positive oxide 

charge induced by his reduction experiments prohibited further oxide 
0 growth for 60 minutes at 910°C in a reduced 1250A oxide and that 

thereafter the charge and surface state density were reduced to low 

values characteristic of an unreduced oxide. This effect will here­

after be referred to as "completely reoxidizing" the oxide. Hess 

attributed the non-growth of the oxide to oxygen vacancies in the 

oxide which alter the oxygen flux and hence cause the oxidation 

rate to go to zero. End 14 has suggested that the reoxidation process 
0 ' is thickness dependent since a 1250A reduced oxide has been shown 

0 to be completely reoxidized in 60 minutes at 910°c while a 1500A 

reduced oxide only shows a 30% decrease in oxide charge and no de­

crease in surface state density during a 60 minute reoxidation at 
' 925°C. 

The purpose of this investigation is to detennine the re­

oxidation time at which the reduced oxide is completely reoxidized 

and to study the reoxidation kinetics by observing the reduction of 

charge with increasing reoxidation time. Hopefully this time for 

complete reoxidation can be correlated with the time at which addi-
r ---- ------::_ 

-_-_ 1 

tional oxide growth is observed, as measured by the increase in oxide 
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thickness. Samples very similar to those used by End 14 (1500A oxides. 

originally grown in dry 02 at 1130°c for one hour) and processed 

similarly (all samples reduced at a partial pressure of oxygen of 

7 x 10-
18 

atm. for five hours at 910°c and reoxidized at 925°c in 

dry oxygen) are used so that this study can draw upon the results 

of End's work. 
Q 
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,3 .•. 0 ~xperimental Procedure 

3. 1 Device Fabrication 

The devices investigated in this study were fabricated on 

n-type (phosphorus doped) (100) chem-mechanically polished silicon 

wafers of 1 to 10 ohm centimeter resistivity. After a normal clean­

ing procedure (see Appendix A), the samples were oxidized to the 

desired thickness at 1130°c (and in one case at 925°c) in dry oxygen. 

All processing was done at a flow rate of 300-500 cm3-/min in a re-· 

sistance-heated Lindberg three-zone furnace with a mullite-lined 

silica tube. 

The oxidized samples were then reduced in a similar furnace 

with a CO-CO2 atmosphere at 910°c f~r five hours at a total flow rate 

of 900 cm3/min. This procedure has been shown7 to create an equilib­

rium charge of N0 x=(2. 7±.1) x 1012 /cm2 in a 1250A oxide when the par­

tial pressure of oxygen is 7 x 10- 18 atmospheres. This particular 

value of charge is obtained by equal partial pressures of CO and CO2 

in the reaction CO+ ~o2 < )CO2 and has been chosen as the only par­

tial pressure used in this investigation since it lies midway between 

the two extremes investigated by Hess·. 8 All samples were reduced at 

the same partial oxygen pressure in hopes of obtaining the same value 

of oxide charge and similar distributions. 

After reduction, the samples were reoxidized at 925°c in 

.dry oxygen in the furnace originally used for the initial oxidation. 

One sample was processed for each of the different reoxidation times • 

• 
Aluminum was then evaporated on the front of each sample 

. . d · 1 10-6 1n a sputter-ion pumpe vacuum system at approximate y torr. 
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A photolithographic operation was used to define a circular area, 

or dot,. for the metal contact of the MOS capacitors, having a diam­

eter of 20 mils and thus an area of 2.02 x 10-3cm2• This photolith­

ographic technique yields contact areas with an accuracy of better 

than 1%. The back oxide was then stripped in HF and aluminum evap­

orated onto the back of.each sample. 

3.2. Measurement Methods 

· The high frequency capacitance-voltage (C-V) technique15 

was used to measure the oxide charge and thi.ckness. The equipment 

consisted of a 1MHz Boonton 71A-R L-C meter and a DC ramp generator 

with a sweep rate of approximately 1 to 5 volts/second. '!he shift 

of the flat band voltage of this C-V curve from the theoretical curve 
•; 

is proportional to the oxide charge16 as i~dicated in Fig. 1 and by 

eq. (1). Eq. (1) shows the effects of (pms, the work function differ­

ance, Q0 , the oxide charge and Qss, the surface state charge on the 

flat band voltage: 

1 JXo X C ·x f (x)dx ox O 0 
(1) 

'Ihe last term of eq. (1) is the result of a charge distribution, 

f (x), summed over the entire oxide thickness (O< x< x0 ). This 

gives the total value of charges, Q0 , distributed in the oxide so 

that eq. (1) may be rewritten as: 

t V = f.MS - Qss -
FB Cox (la) -

The oxide charge, Q0 x, will be defined as Q0 x = Qss ·+·~.because the 

9 
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'two charges,· Qss and Q0 cannot readlly be separately determined as 

· shown in a recent study. 17 At flat band, Q8 s is considered small 

with respect to Q0 , so that we have ~x: ~ and: 

-

111.is.point will be considered in more detail later. 

(2) 

The effect of Q0 x is to shift the entire C-V curve to the 

left or in the negative voltage direction (see Fig. 1) with no change 

in shape. '!his is expected for an n-type substrate, because the 

larger the positive oxide charge, the more n-type the silicon surface 

becomes and the larger the negative charge required on the metal 

electrode to produce the flat band condition. 

The samples were placed on an x-y stage and after being 

contacted by a gold probe were shielded from light while the curves 

were recorded on an x-y recorder. Typically ten dots were se lee ted 

on each slice yielding ten different C-V curves from which a distri-,·,. 

bution of 6VFB was found (see Fig. 2a). 1he flat band. capacitance 

was found using the method of Wagner and.Berglund 18 and a visual mean 

recorded along with the error given by the two outsi4e curves. The 

oxide charge density was found from: 

Nox [cm-2] - -- Qox 
A···. q 

where A is the area of the dot. The work function difference, 

(3) 

~S (ref. 19), has been taken into account in all meas,urements be­

cause of its large effect on non-reduced and completely reoxidized 

samples. Typically, 4>Ms ranged between 0.15 to 0.4 volts for most 

11 
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of the samples. 

The oxide capacitance, C0 x, measured at a large positive 
~ bias to insure that the oxide is not shorted- and that· the surface is 

completely in acclDilulation has been measured on about five dots on 

each sample and averaged to determine the thickness from 

x 0 = (Ksio
2 

€
0 A)/Cox· 'llle dielectric constant, in this expression 

is Ksio2 = 3.9 for normal oxides, and has been found8 to be the same 

for reduced oxides. 

1he effect of Q8 s, the surface state charge, on the C-V 

curve can be noted qualitatively as in Fig. 2b. An oxide -charge, 

<kx, has been shown16 to translate the curve with no shape change 

while a surface state charge distribution has been shown1 to de­

crease the slope in the depletion region of the C-V curve or to 

"smear" the curve out and also to produce a "tail" before the curve 

reaches inversion. Quantitatively analyzing these effects on the 

shape of the high frequency C-V curve has been shown20 to .yield Qss• 

Recently McNutt and Sah17 have reexamined the distortion of the C-V 

curve from its theoretical shape and have shown that this deviation 

could also be caused by an inhomogeneous spatial oxide charge dis­

tribution. 

.. ~ . 

... 
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4.0 Results 
? 

4.1 'llle Oxide Charge 
Cl 

< 
The oxide charge has been measured as a function of reoxi-

dation time at 850°c and 925°c for reduced and for non-reduced oxides 
oflOOOX, 1440i and 17401 original thickness. Fig. 3 shows the oxide 
charge density versus· reoxidation time for 1440X and a 1000A reduced· 
oxide, as well as the data (dashed line) for the charge of an un­

reduced 1440! oxide. (Oxide charge measurements showed an observed 

scatter of +15% for dots randomly located across each slice.) When -
these curves are extrapolated until intersection with the normal 

oxide curve, the same reoxidation time (approximately 200 minutes) 
is found necessary to completely reoxidize the reduced oxides, inde­
pendent of thickness. Fig. 4 illustrates this same effect for the 

0 0 reoxidation of 1430A and 1740A reduced oxides, and again the data 

(dashed line) of the normal (unreduced) 14401 oxide. When these 

curves are extrapolated until they intersect with the dashed curve, 

a time of approximately 200 minutes is again found for complete 

reoxidation, independent of thickness. 'lb.ese results disagree with 
the results of Hess, 8 who found 60 minutes to be sufficient to de-

. 0 crease the charge to the original low value in his reduced 1250A 
oxides by reoxidation at 910°C. Tiiese results also disagree with 
End 1 s14 hypothesis that the longer time necessary for complete re­
oxidation was due to the thicker oxides of his samples. It is to be 
noted that End's reoxidation temperature was 925°C (rather than 910°c:_, 
which he reported), and was thus 15°c higher than the temperature 

used in Hess's experiments. The results of this study, as seen in 

14 
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Fig.· 3 do however, agree with End's 14 data for a 60 minute reox-
0 

idation of 1440A reduced oxide at 925°C, which produces a decrease 

in oxide charge of approximately 30%. The absence· of a thickness 

'dependence leads to the conclusion that the reoxidation process is 

not diffusion controlled, and instead an interfacial reaction must 

be the controlling mechanism. 

Fig. 5 shows the oxide charge density versus reoxidation 
0 time at 850°C for a 1440A reduced oxide. It can be seen by extrap-

olation that the time for complete reoxidation found by the inter­

section of the extrapolated line with the dashed normal oxide line 

is now approximately 1000 min, i. e. five times longer than the t_~e 

r.equired at 925°c. 'Ihis indicates that the reoxidation rate control-

1-:ing process is strongly tem.perature dependent. If it is assumed 

that the time required for complete reoxidation as a function of 

temperature involves a thennally a~tivated process, an activation 

energy of approximately 2.5 eV is found (see Appendix B). This 

activation energy compares favorably with those connnonly found for 

interface limited linear oxide g-rowth on silicon. 11 

The :sh.ape of the reoxidation curves is of great interest 

ails,o. It was expecte·d that the charge would show a sharper cutoff 

· wi:th reoxidation time, because it was assumed that the charge was 

lqcated near the Si-Si02 interface; if the rate were diffusion con­

trol-l.ed:: a sharper cutoff would probably have been noted. It is seen 

:.~fbo.ve, however, that the rate is not diffusion controlled, so that 

~ven, if the charge were located ;near· the Si-Si02 interface,._ a· sharp 

·cuto·ff wou.ld not necessarily be observed. 

17 
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.. ,_ The increase of charge with reoxidation time for the first 
. ., 

few mintit~s is surprising, since the charge was expected to decrease 

·with the time of reoxidation as the oxygen vacancies are filled. 8 

Fig. 6 shows the oxide charge density versus reannealing time in 

nitrogen for a reduced oxide at 925°C. It can be seen that the 

neutral ambient, nitrogen, does not affect the oxide charge. Three 
0 devices indicated by the star in Fig. 6 (1440A reduced oxides, 

annealed in nitrogen for 200 minutes at 925°c) were given subsequent 

reoxidation treatments at 925°c of 60, 120 and 240 minutes. 1hese 

samples' data is also plotted in Fig. 3 as stars. It can be seen 

that the nitrogen anneal had very little effect, if any, on these 

-devices since the data coincides with the curve in which the inter-

mediate high temperature nitrogen anneal was omitted. 'lhese experi­

ments indicate that the reduction of charge and also the initial 

increase of charge depend on the presence of an oxidizing species. 

Fi·g. 7 shows the oxide charge density versus reannealing 
I 

0 ·titne at 925°c for 1440A reduced oxides in oxygen and nitrogen am-

.bients. The samples were fabricated at a time when the deionized 

water supply was malfunctioning (resistivity, _p < 106.n. cm; normally 

J'> 107Jl cm) and further these samples had accumulated dust on their 

outer surface prior to the final reannealing. (In all other runs, 

dust effects were minimized by minimizing the time between processin:g. 

st.eps.) It is apparent that these factors have affected the·· initial 

large increase in positive charge with reoxidation. time when Fig. 7 

is compared with Fig. 3 and Fig. 6. The charge was not expected to 

change at all upon rea~nealing in nitrogen (Fig. 6) (especially not 

19 
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to increase) since the samples had al~eady been brought to equili-{ 

brium at 910°C in the reduction furnace. It can be concluded that 

contamination and dust definitely increase the oxide charge when 

further 925°c reannealing steps for times less than approximately 

100 minutes are carried out. 

4.2 Surface State Density Considerations 

Fig. Ba shows the high frequency (1MHz) C-V curves for 
0 different reoxidation times for a 1440A reduced oxide. 1he curves 

can b.e seen to distort after the first few minutes of reoxidation, 

and a tail forms in strong inversion·which gradually decreases with 

time, which disappears completely after 200 minutes. A similar dis­

tortion of the C-V curves had been observed by Deal et al. 1 on de­

vices in which a negative field was applied across the oxide (metal 

negative) during anneals at temperatures of 300°- 450°c for periods 

of two minutes or more. Previous workers 1 , 20 have suggested that 

distortion of the C-V curve is due to an increase in the Si-Si02 

interface surface state density, which might be responsible for the 

increase in oxide charge after the first several minutes of reoxida­

tion of reduced samples. This causes an increase in the apparent 

oxide charge because any flat band voltage shift causes the calcul­

ated oxide charge to increase (Sec. 3.2), as seen in Fig. Ba, which 

·shows· a definite increase in the flat band voltage due to the dis­

tortion. Fig. 8b shows that nitrogen reannealing at 925°c does not 

produce this effect. Hence, even if the oxide charge Q0 remained 

constant, a large increase in the surface state charge Qss could 

cause· the apparent oxide charge Qss to increase. 
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Fig. Bb Effect of N2 reannealing at 925°c on C-V curves 

as a function of reanneal time (minutes). 
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In light of the recent work by McNutt and Sah, 17 the de­

crease in slope and the distortion of the C-V curve could theoreti­

cally be caused by an inhomogeneous oxide charge distribution.' A 

change in the spatial charge distribution could also cause an in­

crease in the apparent oxide charge ~x, but is is not possible at 

this time to clearly differentiate between these mechanisms. 

4.3 Oxide Thickness 

In order to demonstrate that a reduced oxide grows at the 

same rate as an unreduced (normal) oxide, an oxidation curve was 

obtained for growth at 925°C in dry oxygen and is plotted in Fig.9. 

(Oxide thickness measurements showed an observed scatter of +1.5% 
. -

for dots randomly located across each sl·ice.) This was ·done since 

insufficient data was available on (100) oxides at this low tem-

perature. 

Fig .. 9 also shows a plot of oxide thickness versus time 

0 for samples originally grown at 1130°c to a thickness of 1440A and 

then add1tionally oxidized at 925°C. 'Ihese samples are observed to 

grow at a faster rate than samples which have been grown completely 

at 925°C. This effect has not been noted previously in the litera­

ture. Unreduced samples originally grown at 925°c in dry oxygen 

grow at the same rate when reoxidized at 925°c as expected. Reduced 
0 

samples of 1440A originally grown at 1130°c have also been reoxidized 

at 925°C and after a period of approximately 200 minutes are found 

to grow at the same rate as unreduced samples which were originally 

grown at 1130°c (Fig. 9). This effect has been stated, without 

supporting evidence, in Hess's work. 8 Hence the same conclusion 
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that Hess reached is now substantiated; however great care must be 

taken in comparing the growth of the two oxides since the data clear­

ly show that reoxidation of a normal oxide at a lower temperature 

causes a higher growth rate than expected. 

1he 200 minute time delay before oxide growth coincides 

with the 200 minute time for the oxide charge to decrease to its 

normal low value, which shows that the Si-Si02 interface is not 

changed by the oxidizing species until the delay period has elapsed. 
0 0 1he 1000A and 1740A reduced oxides did not grow during their respec-

tive 60 minute and 120 minute reoxidations as- expected since their 

0 charge had not returned to the normal low value. The 1440A reduced 
. ' 

oxide which was reannealed in a nitrogen ambient also did not grow 

during its 400 minute treatment. 

4.4 Etchback Experiments 

In order to determine the location of the oxide charges, 
0 etchback experiments were performed on three 1440A reduced oxides 

which had been previously reoxidized for 0, 5 and 50 minutes. The 

oxides were etched in dilute HF (20H20:1HF) at room temperature 
0 yielding an etch rate of approximately 140A/minute. One sample was 

processed for each etched thickness. Aluminum contacts were then 

defined as described earlier. 

The etchback data appears in Fig. 10 and shows that most · 
0 of the charge lies within approximately 300A of the Si-Si02 interface. 

The results of these measurements agree with similar results obtained 

on normal oxides1 and on reduced (but not reoxidized) samples.a 
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5·. 0 Discussion 

lbe decrease of the oxide charge with reoxidation time at 

925°c of an initially reduced oxide to its normal value has been 

shown to coincide with the time required for new oxide growth at 

this temperature. The 200 minute time of complete reoxidation is 

much longer than the time of 9 minutes which is expected by assuming 

normal diffusion of oxygen through the film (see Appendix C). Tiiis 

indic.ates that a mechanism other than diffusion impedes the oxygen 

transport through the film. After this time lag of 200 minutes of 

non-growtk the reduced oxide is observed to grow at the same rate 

as an unreduced oxide; however, it is very important to note that 

this growth rate is very different than would be expected. An 

oxide originally grown at a high temperature and then reoxidized 

at a lower temperature grows at a faster rate than one which has 

been completely grown at the low temperature. This has not been 

previously noted in the literature. This may suggest that the oxide 

"remembers" the high temperature treatment (perhaps at the outer 

surface) and yields a field aided growth or perhaps a higher oxygen 

solid solubility when reoxidized at a lower temperature. Field re­

tarded growth on normal oxides to produce the lower temperature 

growth rate could yield a measurement of the expected charge distri­

bution. Variation of the oxygen partial pressure could be _used to 

determine if the oxygen solid solubility is affecting the higher 

growth rate. 21 

'!he oxide charge of a reduced oxide was found to increase 

·in the first several minutes of reoxidation and this may be 
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attributed :to an increase in the surface state dens!ty which is ob­

serve·d as a dist·ortion of the C-V curves. It has also been observed 

that an oxidizing species is necessary for this increase and also 

for the subsequent decrease of oxide charge. Etchback experiments 

have shown the charge in all of the samples to be near the Si-Si02 

interface. 

) 
In light of the above facts and the observed non-thickness 

dependence of the time required for complete reoxidation, along with 

the strong temperature dependence (Ea: 2.5eV), a qualitative model 1 
can be developed to deduce the possible mechanisms involved 

·.(see Fig. 11 ) • 

Dissociation of an oxygen molecule at the outer surface 

could produce a singly charged02 ion and a charged hole. This 

charged hole could rapidly diffuse to the Si-Si02 interface under 

the influence of an accelerating field existing near the outer sur­

face. This diffusion of charged holes could produce the increase 

of charge noted in the first several minutes of reoxidation. The 

dissociation of oxygen could reach equilibrium in the first several 

minutes of reoxidation as the solid solubility for oxygen in Si02 is 

attained and the net flux of charged holes across the film would 

decrease to zero causing no further increase of charge. The field 

which has accelerated the charged holes would be a retarding field 
.. for the oxygen ions and hence the decrease of charge by elimination 

of vacancies and the growth of additional oxide would be impeded due 

to field retarded diffusion. 22 As the diffusion flux of oxygen 

overcomes the ret~rding field, the oxygen vacancies could start to 
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fill. When most of these are filled, thereby eliminating the charge, 
.~ . the oxide could start to grow again. 

'Ibis model is qualitative and additional work seems ne­

cessary to explain the exact nature of the reoxidation mechanism. 

Surface state density measurements might be conducted to monitor 

the change of this·cnarge as a function of reoxidation time to gain 

further insight into the possibility of charged hole movement. Vari­

ation of the partial pressure of oxygen during the reoxidation of 

reduced oxides could be used to determine whether the measured acti-

vation energy is related to the inner interface limited oxide growth, 

which in earlier studies 21 ,23 had been shown to be dependent on pres­

sure. Growth in the presence of an external field could be studied 

to verify the proposed retarding field explanation for non-oxide 

growth, while at the same time monitoring the effect on the surface 

state density to reexamine the charged hole explanation. Sucessive 

etching of the outer surface followed by subsequent reoxidation 

could also be used to verify the existence of the proposed retarding 

field near the outer surface. 

Although much information has been gained by the reoxida­

tion of reduced and non-reduced oxides, many additional questions 

have been raised and much more work is required along the lines of 

the suggestions which have been offered • 

.. 
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Appendix 'A 

\. 
~. 

Cleaning Operation for the Silicon Wafers 
' 

The samples were d~greased by boiling in trichloroeth­

ylene, acetone and methanol for about five minutes each. After 

rinsing ·in deionized water, the samples were further degrea.sed by 

boiling in H2so4 buffered with approximately 20% H2o2 • Next the 

samples were rinsed in deionized water, etched until hydrophobic in 

HF, and again rinsed in deionized water. The samples were then pre­

oxidized at 1130°c in wet oxygen for about 50 minutes, yielding a 

0 

thickness of approximately 6000A. This oxide was then etched un-

til hydrophobic in HF to remove surf ace contamination and ·the sam­

ples rinsed in deionized water and oxidized to th.e desired t:h_ick~ 

ness. 

·.~-

-~ 
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Appendix B 

Reoxidation Process Activation Energy 

A distribution of the time required for complete reoxi­

dation, 6t, as a function of temperature, T(°K), for a constant 

oxide thickness is assumed to be of the fonn: 

6t = A exp(-Ea/kT) 

.Ea = activation energy for 
complete reoxidation 

k = Boltzmann's constant 

A = constant 

At two different temperatures Ti and T2 we have 

Fo·~::. Tl 
.. 

:T2: 

--

·--·-

6t1 = A exp(-Ea/kT1) 

6t2 = A exp(-Ea/kT2) 

llt1/6t2 = exp [-Ea/k(l/T1 - l/T2)] 

925°c 

850°c 

- 1198°!{ -

1123°K --.. 

• 

' 
• 

' 

6t1 = 200 minutes (see ·Fi.g-. 3) 

~ t2 = 1000 minutes (see. Fig. 5) 

1.38 X 10-23 J/°K 
'Ea= ln(l/5) 

Ea: -2.5eV 

3.S': 
. · .. 
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Appendix C 

Expected Oxi-dation Time to Eliminate Charge· 

An initially reduced oxide typically has a charge density. 

of N0 x = 2.5 x 10-12/cm2 (Fig. 3). If this charge is assumed to 
0 be concentrated within 50A of the Si-Sio2 interface, .a charged 

vacancy concentration of 

vox = Nox / 50K = (2.5 x 10-12/cm2)/(5 x l0-7cm) 

= 5 X l018 /cm3 
i.~ 

is:. :found. Assuming the vacancies (charged or uncharged) to be 

:uniformly distributed across th:e oxide, .the quantity of oxygen 

. required to fill these is: 

Q{t) = V0 x·Xo = (5 x 1018/cm3)(1.5 x l0-5cm) 

= 7 .5 x 1013 /cm 2 

As.surning an infinite source diffusion of oxygen through the film and 

solving for the diffusion time at 925°c. 

~-

Q{t) = 2 (D0 •t/'fY)\ N0 = 7.5 x 1013/cm2 
2 

t = 

t = 

n02 = diffusion constant of dry 
oxygen in SiOz 

= 3.2 x 10-9cm2/sec (ref. 15) 

N0 = dry o2 solid solubility in 
Si02 

= 5 x 1016 /cm3 (ref. 1,,, :P• .28) 

(ff /4) Q2/(Do2 ·N0
2) • 

(N/4)(7.S x 1013/cm2) 2 

t = 550 seconds = 9 minutes 
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