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ABSTRACT 

Detailed measurements of bulk density and vane shear strength 
• were made in situ and on gravity cores in the San Diego Trough, 

Wilkinson Basin, and Abyssal Plain and Mississippi Delta areas of the 

Gulf of Mexico. Comparisons of in situ and laboratory measurements 
were made to evaluate the influence of sample disturbance and test 
method on bulk density and vane shear strength. Location differences 
between in situ and gravity core .lpcations and the associated areal 
variation of bulk density and Vall~ :sh,ear strength were described in 

.,. 
detail for all comparisons. 

The influence of sample disturbance :on ·vane strength was diffi-
·\ .• cult to evaluate because of differences in vane rotation rate an:d vane 

size between in situ and laboratory vane measurements. Large strength 
differences resulted from the great differences in angular shear 

I 

. velocity at the vane blade edges between in situ and laboratory vane 
-measurements. A direct linear relationship between vane strength and 

angular shear velocity was found to exist in the Wilkinson Basin and 
San Diego Trough Test Areas. Comparison of in situ and laboratory 
vane strengths at. a standard shear velocity, rather than a standard 
rotation rate, is proposed to eliminate uncertainties associ.ated -with 
rotation rate and vane size differences. A vane test procedure for 
both in situ and laboratory vane tests based on angular shear velocity 

. -' 

is outlined. 
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INTRODUCTION • 

11le major problem associated with sampling in the marine 

environment is the unknown effect of physical and environmental dis
turbances on the engineering properties of fine-grained marine soils. 

Quantitative evaluations of disturbance effects on engineering 

properties have been hindered by the lack of accurate information on 

the undisturbed engineering properties of seafloor sediments. A 

number of investigations comparing laboratory vane shear measurements 

with in situ vane measurements have been made in recent years 
.,. 

(Fenske, 1956; Inderbitzen and others, 1971;. Demars and Taylor, 1971; 

Inderbi tzen and Simpson, 1972; Richards. ~d others, 1972). These 

investiga:ti·ons did no.t-, however, attempt to quantitatively evaluate 

the effect of sample. -disturbance on vane shear strength. Emrich 

(1970) utilized comparisons of laboratory and in situ vane measure-

• 

ments to' evaluate the performance or/ deep-penetration soil sampler 

for marine borings. Inderbitzen and others (1970) determined the 
. 

amount of disturbance associated with the Lockheed DEEP QUEST piston 

corer using in situ vane measurements. Lee (1973) evaluated the , 
, 
> quality of samples obtained with the NCEL DOTIPOS fixed-piston co:r--e:r 

using laboratory and in situ vane shear measurements. 

Several important factors other than sample disturbance are not 
. a.lways app~eciated by investigators and may greatly affect comparisons 

of in situ and laboratory measurements such as those described above. 

Vane test uncertainties are believed to be very important for measure- .... 
ments in fine-grained marine soifs .(Manney, 1971). Rot.ation rate . 

,,., 
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differences, which sometime exist between laboratory and in situ vane 
measurements because of high ship costs and limited test station time 1 

\ (Richards and others, 197~), are known to affect shear strength 
measurements (Cadling and Odenstad, 1950; Osterberg, 1956; Wilson, 
1963; Migliore and Lee, 1971; Halwachs, 1971; Monney, in press). The 
strength variation due to rotation rate differences is more pronounced 
for relatively undisturbed samples than remolded samples (Migliore 
and Lee, 1971). Confining stresses for laboratory vane measurements 
are generally much lower than in situ stress conditions (Fenske, 
1956; Hansen and Gibson, 1949). Since confining stresses directly 
influence vane strength (Singler, 1971), differences between labora
tory and in situ vane measurements may· result from the confining 
stress differences·.. Comparisons of in situ-.and laboratory vane 
measurements may also. b·e significantly affected by vane size differ-

~ . 

ences . Since the shear velocity at the· outer edges of the vane 
-

blades increases with increasing vane· size, considerable differences 
in the rate at which the failure surface is sheared exists between ·· 
in situ and laboratory vane measurements at identical rotation rates. 

~ Soil anisotropy also· may cause differences between in situ and 
lab9ratory vane measurements ·(Aas, 1965). Another factor which may 
significantly affect. ·comparisons of in situ and laboratory vane 
strengths is the unknown strength reduction resulting £rpm vane pene-
tration disturbance (LaRochelle and others, i973). Comparison of 

t> '' . • . 

·. 1 . v.ane shear me_asurements could be seriously misinterpreted if the con-·--·-· ·-·--·· 
·tributions· of. rotation rate differences·, vane size difference_s, sotl '< •. 
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anisotropy, and vane penetration disturbances are not considered. 
Another factor, important in comparisons of in situ measurements 

with laboratory measurements made on samples raised by surface coring 
_.,, 

techniques, is location difference. In situ and core locations are 
almost never at identical locations on the seafloor because of 
positioning inaccuracies and location uncertainties associated with 
lowering a coring device or test platform to the seafloor with a long 
cable. This would not be the case for in situ measurements and cores 
obtained from the same location using a tethered test platform \ 
{Demars and Taylor, 197~) or a submersible·(Inderbitzen and Simpson, 
1972). If the variation of geotechnical properties over the distances 
believed to exist between core and in. ·s-itµ sites .is not known, differ
ences between laboratory -~d in :s:itu measurements believed to result 
from sample disturbance may· :in· real.ity reflect only areal property 
variability. Interpretation of comparisons of in situ. and laboratory 

-measurements should also consider possible location differences. 
between core and in situ tes.t sites and the areal property variab,i l,:i.ty 

- in the area as well as test·method uncertainties. 

To better understand the influence of sample disturbances and 
test method on the engineering properties of fine-grained marine 

. . sediments, comparisons of in situ and laboratory shear strength and 
bulk density measurements in four different sedimentary environments 
were made. ' ! 

This. paper describes- in detail results of these measure-
ments from the S~n Diego Tro~gh, Wil~i,;11son Basin, and Abyssal Plain 
and .Missis.sippi Delta regions. of the -Gulf of Mexico. The effect of . 

. '· : . 
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sampling disturbances, test method uncertainties, and areal property 

variation associated ·with location differences on comparisons of in 

situ and laboratory measurements are ,evaluated. The effects of rota

tion rate differences, vane size differences, and vane penetration 

disturbances on vane shear strength are.discussed in some detail. 

SAMPLING, TESTING, AND ANALYTICAL PROCEDURES 
' 

Sampling 

Cores from the four test areas were ra·i-s,ed with similar type 

plastic-barrel gravity samplers designed. -to :minimize disturbance 

(Richards :and Par)<er, 1968). Th~ sample:t·s: -consisted_ of a 3 m long 

plastic core barrel, a 1-a~ge diametie·r· check valve equal to _the width 

of the core barrel,. a simple ·friction clamp to attach the barrel to 

a weight stand, and a shroud for hydro<:lynamic stability. -An external 

core retainer was used when necessary to prevent sample loss after 

collection. 
" 

One other gravity sampler was used on a coring investigation 
• 

in the San Diego Trough~ This borrowed sampler, designed primarily 

for the penetration of sand, consisted of Kastenlot weight stand ·and· 

a 3 m long steel barrel with a-plastic liner. 
. 

' Measurement of Bulk Density . , __ 
. . 

Bulk density of gravity core sampl~s was rneasur:ed nondestruc

tively in the laboratory using gamma radiation (Preiss, 1968a; Chough· 

and Richards, in p:uess), and then destructively by the conventional 
f--·- l' ):~ - weight-volume method. 

r 

- -- I In situ· bulk density measurements··were made- using a, nuclear 

~ •• • ... Cl< • 
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transmission densitometer (Preiss, 1968b, 1969; Hirst and others, in 

pre~aration). The nuclear densitometer has been operated from the 

tethered Illinois Tower (Richards and others, 1972), tetl1ered Lehigh 

or modified Illinois Tower (Hirst m1d others, in preparation), the 

small submersible ALVIN (Perlow and Richards,· 1972; Richards, 1972), 

and the large submersible DEEP QUEST (Hirst and others, 1972; 

Richards, 1972; Terry and Richards, 1973). Deployment of the densi

tometer in each area is summarized. in- Table I. 

Measurement of Shear Strength 

Laboratory measurements of shear strength on the gravity ·core$ 

were made using a mil)iature vane. In situ shear strength measure

ments were made using ,a: .larg·e f.ielcl v:ane .d-evice operated from the 

tethered Illino.1s Tower (Ri•ch,ard:s an_d. others, 1972) and .submersible 

DEEP QUEST (Hirst and. others.,, .197·2·;. Richards, 1972)! The vane sizes 

' and rotation rates used'.· .in e·ach area are also s11nnnarized in Table .I. 
,· 

Vane shear strength determined at the higher (23 m rad/s) rotation 

rate is the Marine G~otechnical Laboratory's· (MGL) standard for 

in situ and laboratory vane strength • • this study. comparisons in 

Comparisons 

Laboratc;>ry bulk dens~ty and vane shear strength measurements on 

gravity cores are compared with.-in.situ measurements_made at,or near 

the core locations. Position inaccuracies and location differences ' ' . 
" -·.• ~ . 

. . 

between core arid in situ test sit·es. are described for each comparison. 
~ 

. 

. nte areal property variation believed t·o exist over· the distances-
~ . . . . 

1111
-· between core and in situ lo·cations·is.,asse·ssed. Finally, t~e .test 

·--6 
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method uncertainties, particularly those associated with the vane 
test which would contribute to differences between in situ and 
laboratory measurements are discussed. 

The comparisons of in situ and laboratory vane strength results 
described in this study are limited to only those comparisons at core 
locations where in situ strength measurements using two vane sizes 
have been obtained. 

SAN DIEGO TROUGH 

Investigations 

Detailed measurements of bulk density and shear strength were 
made in situ and on gravity core samples during a four-year coopera
tive program with Lockheed Ocean Laboratory to establish a small 
seafloor geotechnical test area in the San Diego Trough (Richards, 
1970; Hirst, 1972). The Test Area is located approximately 24 km 
sou~hwest of San Diego in a water depth of about 1.2 km. The surface 

,. 

sediments of the Test Area ar·e primarily uniform clayey-silts accord-
" 

ing to the Shepard (1954) classification and slightly organic (OH) or 
micaceous (MH) clayey-silts of high plasticity according to the 
U.t1ified Soil Classification. The geotechnical properties of the Test 

· Area have been partly described by Inderbitzen and Simpson (1972), . 
Hirst (1973), and in detail by Carius and Richards (in preparation). 

A total of nineteen short { < 1. 6 m) gravity cores were raised 
from the Test Area on two coring investigations during the four year 

. program. In s·itu bulk density measurements were made at four ··nt the 
gravity core·· 1ocations. -Although ·no in situ vane measurements were 

7 
0 

,I 
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.. ~· ' . 



,. 
' 

' . 

obtained directly at core locations, a number of vane tests were made 

within a distance of 0.5 km or less of six core locations. In situ 

vane measurements using two vane sizes were available only at a single 

core location in the east central portion of the Test Area. 

Bulk Density 

Core bulk density values, determined by both nuclear and volumet

ric methods, increased consistently with increasing sediment depth 

at the four core locations. In situ bulk density values, except for 

a small increase near the sediment surface, remained essentially, 

constant with depth. Comparison of in situ and laboratory density 

results at the four gravity core locations showed that in situ values 

were lower than values determined from the cores. A typical compari

son of in situ and laboratory bulk density results is pres.ented in 
• 

Figure I.-

In situ and gravity core locations were known to within! 0.3 km, 

and the areal variability of in situ and core bulk density over the 

entire Test Area was only 0.05 Mg/m3. 'lb.us, the differences between 

in situ and laboratory bulk density measurements detected throughout 

the Test Area are believed to result from sample disturbances and not 

are.al variability due ·to location differences. The relationship 

between.the laboratory and in situ bulk density results appears to 

indicate that an alteration in the clayey-silt sediment structure 

occurred during sampling causing densification of the cores with 

depth (Perlow .and Richards, 1974). 

8 .. 
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Shear Strength 

Laboratory vane s.trengths at the six core locations increased 

with increasing sediment depth to 1.6 m1 the maximum depth sampled. 

In situ vane strengths at these locations increased uniformly with 

increasing sediment depth to about 1.5 m, but at a greater rate than 

the laboratory vane strengths·. 

Comparison of in situ and laboratory vane strength measurements 

from the east-central core location in the Test Area showed that 

in situ vane strengths were notic~ably higher than the laboratory 

vane strengths (Fig. 2). 

In situ st_rengths obtained with a 10 by 20 cm vane at two 

sites near the core location were identical and averaged about 32 

percent higher than the MGL standard 23 m rad/s laboratory vane 

·strength based on linear regression analyses of the laboratory and 

in sit~.vane strengths with depth. In situ vane strengths measured 

with the smaller 7.5 by 15 cm vane averaged 27 percent higher ~han 

the 23 m rad/s laboratory strengths. Laboratory vane strengths _.de

termined at the 6 rn rad/s rotat·ion rate averaged about· 5 percent 

lower than the 23 m rad/s .laboratory vane strengths. 
.. 

The structural alteration (densification) believed to occur 
' . 

duriµg. sampli.ng would probably· destroy many of the fragile inter

particle bonds in the clayey-silt sediment and res~lt in a significant 
., . 

reduction in laboratory vane strength. liowever, the low laboratory 

vane strengths. ·may·not be entir·ely the result of sample disturb·ance-. 

Location differences between core and in ·situ s·i tes were as great· as· 

9 
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0.5 km. Areal variation of in situ vane shear strength over 0.5 km 

in the eastern and central portion of the Test Area is believed less 

than about 2 kPa. Since small scale areal variability has been 

shown to be independent of distance between test sites (Inderbitzen 

and Simpson, 1972), the magnitude of shear strength variation over 

the distances between core and in situ locations is unknown. Tilere

fore, areal property variation may result in differences between 

in situ and laboratory vane strength measurements. 

Differences between in situ and laboratory vane strengths due 

to the test uncertainties associated with the vane test may be even· 

more important than the differences resulting from areal variability 

and will be discussed later. 
. . 

WILKINSON BASIN, GULF OF MAINE 

Investigations 

_ In situ·and laboratory measurements of bulk density and shear 

strength were made in the Wilkinson Basin Geotechnical Test Area, 

which is located in the Gulf of Maine approximately 120 km east of 

.Boston in a wat~r depth of about 260 m. The surface sediments or _____ _ 

the Basin are clayey-silts in the upper 0.2 m and silty-clays at 

sediment depths below 0.2 m according to the Shepard (1954) classifi

cation •. The sediments are inorganic clays of high plasticity (CH) 

according to the Unified Soil Classification. The geotechnical 

. properties of the Basin Test Area have been partially described by 

Richards and Keller (1970), Dzwilewski (1972) ,- Perlow and R.ichards 
I 

-· .10 



(1973), Parker (1973), Chough and Richards (in press), and in 

detail by Carius and Richards (in preparation). 

Gravity cores were raised at the four sides and center of the' .. 

NW-SE elongate Basin Test Area using a plastic-barrel gravity sampler. 

In situ bulk density and vane shear strength were made at the five 

core locations using the Illinois tethered tower (Preiss, 1968b, 1969; 

Richards and others, 1972). In situ vane measurements using a 7.5 by 

15 cm vane and 5 by 10 cm van.e were obtained at two of the five core 

locations; consequently, measurements at only the northwest and east

central sites will be discussed. 

Bulk Density 

· In situ bulk density values increased slightly with increasing 

sediment depth to about 0.4 m and then remained almost constant with 

depth to 1. 5 m,. the maximum depth penetrated. Laboratory bulk 

density values from the tnree central Basin core locations increased 

with increasing sediment depth to about 0.3-0.5 m, depending on loca

tion within the basin, and then remained neatly constant with depth 

except for some small scale microvariations. Laboratory density values 
- ---- - -··- -- - ------

from the southeast core location were constant with depth to 0.5 m, 

then increased slightly with increasing sediment depth to 1.1 m, the 

maximum depth sampled. Laboratory bulk ·density values from the 

northwes~ core location increased slightly with depth to 0.3 m and 

then remained nearly constant with depth to the maximum depth sampled 

(Fig. 3). 
- - -- . ------~-- - 4 

Comparison of in situ and laboratory bulk density results.at the 
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three central Basin core locations showed that in situ values were 

equal to or slightly greater than laboratory nuclear and voltm1etric 

density values. In situ bulk density measurements at the northwest 

and southeast Basin locations were equal to or slightly lower than 

laboratory values. The maximum density difference between in situ 

and laboratory measurements at the five sites in the Basin was only 

0.05 Mg/m3, and this value was found at the northwest core location 

(Fig. 3). 

The maximum location difference between in situ and core loca

tions was about 1 km. Variability of in situ bulk density is known 

to be as much as 0.05 Mg/m3 over a distance of 0.4 km in the northern 

portion of the Test Area and about 0.03 Mg/m3 in the central portion 

(Perlow and Richards, 1973). 1hus, areal variation of bulk density 

over the distances between core and in situ sites, may be responsible 

for all or part of the small density diffe~ence.s observed between 

in situ and laboratory measurements. The small density differences 
\( 

between in situ and laboratory bulk density results at each of the · 

five locations indicate that the gravity cores were not appreciably 
- - - . -- ------·--- --~ --- -

disturbed during sampling and are probably of high quality. 

Shear Strength 

Laboratory vane strengths at the five core locations generally 

increased with increasing sediment depth-to 0.2 - 0.3 m and then 
.11 

remained nearly constant with depth to I m, the maximwn depth sampled. J 
In situ vane strengths increased with in~:r~~sin~sediment~depthto 

. .. ., 

. approximately 0. 7 m; below this depth,. values remained nearly constant 

12 
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with depth to 1.6 m and then exhibited a slight increase with in

creasing sediment depth to the maximum depth penetrated. At the 

' northwest location, however, in situ vane strengths increased slight-. 
ly with increasing sediment depth below 0.7 m to the maximum depth 

penetrated. 

Comparison of in situ and laboratory vane measurements at the 

northwest and east-central locations showed that in situ vane 

strengths were approximately equal to the 6 m rad/s laboratory vane 

strengths in the upper 0.4 m. At the northwest core location, 

laboratory vane strengths for depths of 0.6 m to 1.6 m averaged 

about 2 kPa, in situ vane strengths obtained with the smaller 5 by 

10 cm vane averaged about 4 kPa, and in situ vane strengths obtained 

with the larger 7.5 by 15 cm vane averaged nearly 5.5 kPa (Fig. 4). 

At the east central location for the same depth range (Fig. 5), 

laboratory vane strengths averaged 3.1 kPa, the smaller in situ vane 

strengths about 3.6 kPa, and larger in situ vane strengths approxi

mately 4.1 kPa (Richards and others, 1972). 

The maximum position difference between in situ sites and the 
,,; 

,· . 

northwest gravity core location was about I km. The maximum position 
,, 

difference between in situ sites and the east-central core location 

was nearly 2 km; the distance between in s.i tti vane sites at this core 

location, varied by as much as 3.6 km. The accuracy of all core ·and 

in situ<! vane locations was known to.~ 0. 7 ,l<m of the stated position. 

Although areal, v~riability of in .. s.itu vane strength in the upper 2.5 m S> ' ' 

betwe.en the five Basin. test locations is only 1 kPa, informati.on on 
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small scale variability over the distances known to exist between 
test sites is not available. Therefore, the magnitude of strength 
differences between in situ and laboratory vane measurements result
ing from location differences, particularly at the east-central core 
location, although believed small, are unknown. 

The gravity core samples raised from the Test·Area are believed 
to be of high quality, so that the significant difference between 

in situ and laboratory vane strengths is not easily reconciled. Tile 
effect of rotation rate differences between in situ (23 m rad/s) and 
laboratory vane measurements (6 m rad/s) is believed to account for 
a portion of the strength differences detected. The unknown effects 
of differences in shearing velocity between different radii labora

tory and in situ vanes, soil anisotropy, and vane penetration 

disturbances are"believed significant and will be discussed later. 

ABYSSAL PLAIN, GULF OF MEXICO 

Investigations 

In situ and laboratory measurements of bul·k density and vane· 
shear strength were made at two locations int~~ Sigsbee Abyssal 

Plain of the Gulf of Mexico in water depths of about 3.7 km. The 
surface sediments at the two test locations are clays according to 
the Shepard (1954) classification and light brown organic clays of 
medium to high plasticity (OH) according to the Unified Soil Classi
fication. The geology and geotechnical properties of this area have 
been described by· Bryant and others· (1967), Bryant and Delflache · 

" 
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(1971), and Richards and others (1969), and Richards and others 

(1972). 

Four vane profiles, three using a 10 by 20 cm vane and one 

using a 7.5 by 15 cm vane, were obtained at one of the two Abyssal 

Plain test locations (Richards and others, 1972). In situ bulk 
~), . density measurements were obtained at the other test location (Hirst 

-

and others, in preparation). A single gravity core was raised at 

both locations. 

Bulk Density 

Results of the in situ and laboratory bulk density measurements 

are presented in Figure 6. In situ bulk density values increased 

with depth to 0.1 m. Between 0.1 m and 0.3 m, values exhibited 

noticeable microvariation with depth. Below 0.3 m, values remained 

nearly constant with depth to 0.5 m, the maximum depth penetrated. 

Laboratory bulk density values increased with increasing sediment 

depth to the maximum depth sampled. 

Comparison of in situ and -laboratory volumetric measurements 

(Fig. 6) showed that at a depth of 0.1 min situ and laboratory 

density values were nearly equal. At a depth of 0.5 m, in situ b~lk 

density values were about 0.1 Mg/m3 lower than laboratory values. 

The observed.density differences, similar to those detected in the 

San Diego Trough, are possibly the result of core densification which 
may have occurred during sampling. 

. ,, 

. ~ 
,• .. · The gravity core was raised- shortly after the in situ test was 

.,, 
~om_pleted., thus little loGation differ~nce in ·the surface ship position I 
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between the core and in situ sites is believed to exist. However, 

due to the considerable water depth and great outlay of cable re

quired, an unknown amount of location difference between the core 

' and in situ test sites probably exists. As there is no information 

on the areal variation of bulk density for the Abyssal Plain area of 

the Gulf of Mexico, the density differences observed between core and 

in situ measurements may be partially the result of loca~ion differ~ 

ences and not entirely the result of sample disturbances. 

Shear Strength 

Results of the laboratory and four in situ measurements are 

presented in Figure 7. In situ vane strengths measured with the 

larger 10 by 20 cm vane increased with depth to 0.7 m, except for 

the in situ profile which begins at 0.2 m. Strength values then de

creased appreciably with depth to approximately 1.0 m. Below 1.0 m, 

in situ vane strengths increased uniformly with increasing sediment 

depth. In situ vane strength obtained with the 7.5 by 15 cm vane 

increased to a depth of 0.26-m then decreased appreciably with in-
.. 

creasing depth to 1 m. Laboratory vane strengths -exhibit.ed a marked 
' ' 

str~ngth increase in the upper 0.2 m due to the presence of an iron

rich sediment layer. - Below 0.2 m, laboratory strengths exhibited 

considerable variation with increasing sediment depth to about Im, 

below which depth laboratory strength values increased uniformly 
. 

with~depth. 

In situ vane strengths in the upper I m were I to 2 kPa greater 

than the 23 m rad/s laboratory values, except at the irOn .. rich sedi-

16 
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ment layer. Below 1 m, in situ and laboratory vane strengths were 

about equal. In situ vane strengths in the upper 1 m exhibited 

noticeable areal variability (3 kPa). Laboratory vane strengths de

termined at the lower 6 m rad/s rotation rate were generally greater 

than the 23 m rad/s laboratory vane strengths except at the iron-rich 

sediment layer and between 1.0 and 1.4 m. 

Vane strengths obtained with a 7.5 by 15 cm vane were about the 

same or slightly greater than vane strengths obtained with a larger 

10 by 20 cm vane. This is contrary to results obtained from the 

Wilkinson Basin and San Diego Trough where higher vane strengths were 

consistently measured with larger vane sizes. 1he difference may be 

partly explained by the use of two different torque sensors for the 

two vane sizes. AC-ring torque sensor was used for the 7.5 by 15 cm 

vane measurement while a load cell torque sensor was used for the 

three 10 by 20 cm vane measurements. 

The maximum location difference between the in situ vane and 

gravity core locations was about 3.7 km. Location differences be

tween the four in situ test locations was approximately 1.7 km. Even 

if the ship positions for the in situ and core locations were identi-

cal, the true locations of the core and in situ test sites would not 

be known .due. to the uncertainties associated with operating at such a 
'. - l" 

water depth of 3.7 km. Little is known of the areal variability of 

. ,shear strength in this area of the Gulf of Mexico. Therefore, com-
• 

. , .. 

pl:li-ison of in situ and .laboratory vane measurements is complicated 
' " . ~----

by the ~known variation of strength between test )ocations. The 
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difference observed between vane strengths obtained with the two 
vane sizes may be the result of areal property variation as well as 

systematic error between the two torque sensors used. The uncertain

ties due to rotation rate differences, vane size differences, and 

penetration disturbances associated with the vane test are believed 

to be important also in the comparison of in situ and laboratory 

vane measurements and will be discussed in a later section. 

MISSISSIPPI DELTA, GULF OF MEXICO 

Investigations 

In situ and labora·tory vane shear strength measurements were 

made at a single test· location east of the South Pass of the 

.Mississippi River in_ a water dep-th .of about 95 m. The surface sedi-
• 

ments for the area investigated ·are silty-clays accord·ing to the 

.Shepard (1954) classification, aI1d brown organic clays of high 

,plasticity (OH) according to the Unified Soil Classification. The 

geology and geotechnical properties for the Mississippi Delta sedi

me.nts have been described by Kolb and Kaufman (1967), McClelland 

(i967), Bryant and .others" (1969), and Richards and others (1972). 

Two in situ vane profiles were obtained from the Delta site. 
~ 

In situ vane strength measurements were made using a 7. 5 by 15 cm 

vane and a 10 by 20 cm vane. A single gravity core was also raised 

· · from the same location (Richards and others, 1972). In situ bulk 

densi tv measurements were. not· made:: at this location .. 
• . - . 

. ~ . 

. .. ·.~ 

.;~·. .•, 
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Shear Strength 

Comparison of in situ and laboratory vane shear strength 

results are presented in Figure 8. In situ vane strengths increased 
uniformly with depth to 0.7 m. Below 0.7 m, in situ strengths ob

tained with the 10 by 20 cm vane remained nearly constant with depth 

to 1.6 m; strengths obtained with the smaller 7.5 by 15 cm vane were 

higher, and they continued to i~crease slightly with depth to 2.5 m, 

the greatest depth penetrated. Laboratory vane strengths increased 
•, uniformly with depth to about 0.7 m, then exhibited small scale 

strength microvariations to a depth of ·1. 2 m. Below 1. 2 m, 1:al,.or·a-II.;_ • 

tory values again incre·as·ed uniformly with depth to 1-. 8 m:., t'.he 

maximum depth sample·d. 

In situ vane str~ngth·s· wer'e abou:t. equ-~1.. t,o. l·aboratory 

· strengths in the upper O. 7 m.. In situ strengths ·meas-ured with the 

larger vane equaled laboratory values to 1.8 m, the maximum depth of 
' 
the core. In situ vane strengths obtained with the smaller vane 

below 0. 7 m were about 2 kPa greater than both the laboratory _and 

the 10 by 20 cm in situ vane values. Laboratory strength values 

determined at the lower. 6 m rad/s rotation rate were very slightly 

lower than the MGL standard 23 m rad/s rate. 

Two different torque sensors were again used for the two in situ 
vane tests .. AC-ring torque sensor was used for the vane measurements 
with the smaller (7.5 by 15 cm) vane while ·a load-cell sensor was 

used for measurements with the lar.ger -(10 by 20 cm) varie. The higher . 
vane strengths obtained with the smaller vane size, also detected in 

lie .--~ 
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the Abyssal Plain results, may again partly be the result of a 
systematic er1·or associated with the C-ring torque sensor. However, 
since the vane tests were made near the mouth of the Mississippi 

Delta, considerable shear strength variability may also exist over 
small distances as a result of the changing sedimentary environment. 
Although the ship positions for the in situ and core sites are nearly 
the same, location differences between bottom core and in situ test 
locations may exist due to ship drift and cable outlay:- Therefore, 
the appreciable difference between the two in situ vane profiles may 

I 

be the result of areal property variation as well as systematic 

differences between the two to:r.que sensing arrangements. The good . 
r--agreement ·of the 10 by 2·0 cm· vane strengths and laboratory values 

may be fortuitous because of possibly areal property variation. The 
unknown effects of the vane test uncertainties on the· -:laboratory and 
in situ vane measurements may also be important and ar·e· discussed 
later. 

BULK o·ENSITY DISCUSSION 

Methods of in situ and laboratory density measurements are -di
rectly comparable (Preiss, 1968b, 1969) and are not affected by test 
method uncertainties sµch as those associated with the vane shear 

,. 

test. Bulk density usually exhibits little areal variability, so. 
comparisons of in situ and laboratory density measurements are not 
affected by loc.ation differences to the extent that in situ and labor

atory vane shear strength comp,arisons: are. 

Results of comparisons of in situ and laboratory bul.k density.· 
·' 

"' 

·• .·> 
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measurements from the San Diego Trough, Wilkinson Basin, and Gulf of 
Mexico Abyss al Plain ,a1ere very useful in evaluating the changes ~n 

sediment structure tl1at occur~ a result of sampling disturbances. 

Comparison of in situ and laboratory bulk density results from the 

San Diego Trough Test Area and the Gulf of Mexico Abyssal Plain en

abled the detection of core densification. Comparison of in situ and 

laboratory density results from the Wilkinson Basin Test Area sub

stantiated the belief that tne gravity cores raised from the Basin 

were not significantly altered by sampling disturbances and were of 

high quality. 
.. 

SHEAR STRENGTH DISCUSSION 

Comparisons o:.f· in situ ~d laboratory va11e· shear strength 
I measurements are dif:fi.ctilt to evaluate because of th.e many uncertain-

ties associated -w-ith the-- vane test. The important effects of vane 

rotation rat.e, yane size, and vane penetration disturb·ance on measure-
~ ments of in situ and laboratory vane shear strength are not well 

understood. 

The vane test measures the torsional force required to shear a 
.. -·-~--

cylindrical failure surface described by the vane blade edges. Un-· 

drained shear strength is .obtained by converting the torsional force 

to a unit shearing resista~ce of the cylindrical failure surface 

(American Society for Testing and Materials, 1974). However, the 
. 

shearing resistance at the failure surface is greatly. influenced by ·· 

the rate at· which shear occurs. -The anguiar velocity at· ·the outer 

edges of the vane blades determines the. rate of shear and therefore 
.... . ..... 
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significantly influences vane strength measurements. Angular shear 

velocity at the vane blade edges is a function of vane rotation rate 

and also vane size as sho,-1n by the expression presented below: 

v = rw 

where v = angular velocity, r = vane radius, and w = vane rotation 

rate. 'Ibe effects of vane rotation rate and vane size differences on 

measurements of vane shear strength are important and must be consi

dered when evaluating comparisons of in situ and laboratory vane 

measurements. 

Another vane test uncertainty, wh-ich is believed to appreciably 
1111.. 

affect comparisons of in situ and labqr_~t.o:ry vane measur··ements, is 

vane penetration disturbance. Significa:nt st·re~g:th :redµctions in . , . 

\_, 

sensi ti veA cla.ys are known ·t.o result from disturban·ce cause.d by vane 
-

penetration.· The effec:ts. of vane penetration disturbances, however, 

have only been investigated for one sediment type and are unknown 

for fine-grained mar1ne sediments. 

Rotation Rate Differences 
~ 

The effect of vane rotation.rate on vane strength measurements 

has lo_ng been recognized as an important consideration in vane shear 

testing. Cadling and Odenstad (1950) showed that in situ vane 

s_trength measured at a rotation rate of 17 m rad/s was 20 percent · 

higher than strengths determined at a rotation rate of 1.7 m rad/s. 

Monney (in pre~s) found that laboratory vane strengths obtained at a 
. . ' 

rotation rate of 26 m .rad/s were nearly 30 pe!cent higher than 
. / 

strengths measured at 0.3 m rad/son relatively undisturbed marine 
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clayey-silts. Migliore and Lee (1971) showed that laboratory strength 

differences resulting from vane rotation rate differences increased 

with increasing core quality. The effect of vane rotation rate on 

vane shear measurements is highly dependent upon sediment type (Wilson, 

1963) and has only been investigated in the laboratory for several 

types of fine-grained marine sediments. 

Laboratory vane strengths for all the gravity cores considered 

in this study, except the five samples raised in the Wilkinson Basin 

Test Area, were measured at two .otation rates (Table I) to evaluate 
-

vane strength differences due to differences in vane rotation rate. 

Results showed that vane strengths measured at the faster 23 m rad/s 

rotation rate consistent.ly yielded slightly higher values :than> 
. ~ 

strengths determined at the slower 6 m rad/s rotation rate. The 

strength differences re~µlting from differences in the laboratory 
'· 

rotation rate, however, were small compared to those· obs~rved lretween 

in situ and laboratory measurements. It is believed that the small 

strength differences between the laboratory vane measurements at the. 

fast and slow rotation rates are the result of the small angular 

shear velocity difference of 0 .. 11 rnm/s between the laboratory measure

ments at the two rotation rates. The angular shear veloc.i ty difference 

between the lal;>oratory and in situ measurements is 1.1 mm/s, an en

tire order of magnitude greater than the difference between the 

laboratory measurements. 

In t·he Wilkinson Ba.siri, a difference of 17 m. rad/s existed be- · 

tween in situ and laboratory vane rotation rates (Tab le IJ. An 
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unpublished study of laboratory streng·th differences due to a 17 m 

rad/s rotation rate difference for a series of ten gravity cores 

raised from the Basin Test Area indicated that strengths determined 

at the faster 23 m rad/s rotation rate averaged about 11 percent 

higher than vane strengths determined at the slower 6 m rad/s rota

tion rate (Smith and Richards, in preparation). However, the 11 

percent laboratory strength difference associated with the 17 m rad/s 

rotation rate difference is again only a small portion of the 100 

percent strength difference observed between in situ and laboratory 

vane measurements in the Basin Test Area. The angular shear velocity 
differences between ·the laboratory vane measurements (0.11 mm/s) and 

.in situ and labora:t·ofy vane measurement·s (1.10 mm/s) we:+e almost 

identical to ·the, .corres·p.ondini· oQse.n,ed' streng.th differences -of 11 

and 100 percent .• 
·. 

The close correlat.ion of observed strength di.fferences witl1 

corresponding angular she-a:r velocity differences from the Wilkinson 

Basin indicated that ·vane s'trength may be directly related to angular 
·shear velocity. ' '. ~ 

Vane Size Effects 
'. 

Little attention has be~n paid t·o strength differences that may-
b result from the large angular shear velocity differences which exist 

between in situ and laboratory vane measurements. The large size 

difference between_ labo;ratory and in situ vanes results in a signifi-. . 

cant difference in the angular shear·velocity at the failure su~f.ace, 

even at the same -rotation rate· (Fig. 9). The angular· she·ar .velocity ·· ' 
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differences at the standard itGL rotation rate of 23 m rad/s associated 

with the laboratory and in situ vanes used in this study are illus

trated in Figure 9. At the 23 m rad/s rotation rate the angular shear 

velocity is about 0.15 mm/s for the laboratory vane, 0.60 nun/s for 

the 5 by 10 cm vane, 0.90 rrun/s for the 7.5 by 15 cm vane, and 1.20 

mm/s for the 10 by 20 cm vane. The angular shear velocity for a 10 

by 20 cm vane rotated at a rate of 23 m rad/sis 8 times greater than 

that of the laboratory vane. When laboratory vane rotation rates are 

smaller than those used for in situ vane measurements, the angular 
- . 

shear velocity difference between in situ and laboratory vane measure-

ments becomes even greater. This was the case in the l~ilki11son Basin 

where in situ angular shear veloc,i:ty· w;as art o:rder of magnitu~e greater 
,. 

(10 times) than the angular shear velocity as·sociated with. the. 

laboratory measurements. 

The close correlation of ob.served str~ngth differences with 

differences in angular shear velocity for the in situ and laboratory 

measurements from the Wilkinson Basin indi'cated that vane strength 

may be a direct function of the angular shear ·velocity at the vane 
• 

blade edges. To evaluate this possible relationship, comparisons of 

vane shear strengths from both in situ and laboratory vane measure

ments with the angular shear velocity at which these strengths were 

determined were made for test locations in the Wilkinson Basin and. 

San Diego Trough. 
.. 

" . , . . Figq.r~.- 10 presents results of vane strength and angular shear 
.. 

velocity comparisons at four sec;Iiment1

• depths from the northwest 

.. 
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Wilkinson Basin test location. A nearly linear relationsl1ip between 

vane shear strength and angular shear velocity existed for three of 
the four sediment depths compared. A linear relationship was not 

indicated at a sediment depth of 0.4 m possibly because of small 
.._, 

s~le areal or vertical variability of shear strength at this depth. 

milar comparison of vane strength and angular shear velocity at 
-

the east-central \~ilkinson Basin test location did not exhibit the 

linear relationship detected at the northwest test location. It is 
• believed that areal and vertical property variability over the large 

distances (3.7 km) between in situ vane test sites masked the expec

ted linear relationship of vane strength and angular shear velocity. 

~comparison of in situ and laboratory vane strength with 

angular shearing _velocity was made for t11e east-central test location 

results from the San Diego Trough (Fig .. 11). Again, a nearly linear 

relationship between vane shear strength and angular shear velocity 

was observed at two of the four sediment depths. Laboratory vane 

strengths at the 1.0 and 1.4 m sediment depths appear to be higher 

than would be expected at the two shearing velocities. The gravity 

core considered in this comparison was significantly shortened during 

sampli_ng, having a recovery ratio of only O. 45. Also, the core was 

-;.s·ectioned at O. 5 and 1.1 rn ~nd transported to .the laboratory. Leakage 

occurred in each of the three sections causi~g the core to dry some

what at the top and bottom of each section. Th·e net effect of these 

disturbances on laboratory vane shear strei:i.gth is unknown. · The lack 

of ·.a linear relationsh-ip between vane strength and angular shear 
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velocity at the two lower sediment depths is probably the result of 
shortening and drying disturbances. A significant location difference 
(O.S km) existed between the core and in situ test locations. 1bere
fore areal property variability could also obscure any linear rela-

tionship which may exist at the two lower sediment depths. 

Similar comparisons of vane strength and angular shear velocity 
for the Abyssal Plain and Mississippi Delta test locations in the 

Gulf of Mexico were not attempted due to the possible test uncertain~ 
ties associated with the C-ring and load-cell torque sensors and 

appreciable location differences known\to exist between in situ~and 

gravity core sites. 1
--· 

The observed relationships between vane shear strength and angu
lar shear velocity from the Wilkinson Basin (Fig. 10) and San Diego 
Trough (Fig. 11) appear to indicate that vane shear strength is a 
direct function of tl1e velocity at which the vane failure surface is 
sheared. 1he large strength differ~nces (100 percent) observed be
tween in situ and laboratory vane strength measurements from the 

Wilkinson Basin, originally believed the result of sampling disturb
ances (.Richards and others, 1972), may be entirely explained by 

artgular shear velocity differences. 

In the Wilkinson Basin, little strength difference was detected 
between in situ and laboratory vane measurements in the upper 0.4 m 
despite the large angular shear velocity difference fl.I mm/s). It ' , 

is believed that the very low shear ·strength of 2 to 3 kPa causes the 
.. 

sediment to act as a viscoelastic material (Sherif· and ot~ers, 1971), 
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thus diminishing the influence of shearing rate along the failure 

surface. The close correlation of in situ and laboratory vane 

measurements at strengths of 3 kPa or lower was also observed at 

both the Abyssal Plain and Mississippi Delta test locations. 

The establishment of a standardized vane rotation rate for in 

situ and laboratory vane measurements has been the subject of mucJ1 

controversy. The vane rotation rate currently considered the 

standard for field vane tests is 1.7 m rad/s (American Society for 

Testing and Materials, 1974). No standard rotation rate exists for 

the laboratory, although 1. 7 m rad/s has been conunonly used by .coni...; 

vention throughout the wor Id. However, experience with laboratoiJ' 

vane measurements at this slow rotation rate indicate that possibl_e 
~ ... l 

drainage m~y occur. )?ecause of the slow rat·e o~ shear at the failure 

surface. Thus .. , higher vane r.otat-ion rates· ·a·re being· used to ensure 

drainage does not occur: and. ,a1.-s.o ·to save. t.es·t· t:·ime .. The standard 

rotation rate at the Marine Geot:eehnic.al Laboratory was arbitrarily 

adopted at 23 Ill-rad/sin 1967. More- recently the Naval Civil Engi

neering Laboratory adopted 26 nt. ·tad/s as their standard vane rotation 

rate. This rate has also been adopted as a standard by the JOIDES 

~·Committee .. on Sedimentary Petrology and Mass Properties for the Deep Sea 

Drilling Project (Richards, in press). Monney (in press) recommends 

that 26 m rad/s be the standard rotation rate for the laboratory vane 

test because (1) this rate wilI·probably always.result in an un

drained test, (2) the change in strength with small changes in 

rotation rate near 26 m rad/sis smaller than at 1.7 m rad/s, and 
I ., 

' ·!--•;, •. 
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(3) the tests at 26 m rad/s are fast and save time. 

The establishment of a single standard rotation rate for labora

tory a.nd in situ vane tests does not, however, take into account the 

large angular shear velocity differences which can exist between large 

' 
and small size vanes. All the uncertainties associated with rotation 

rate and vane size would be eliminated if vane shear strengths were 

compared at similar angular shear velocities. It is proposed that 

an angular shear velocity of 0.15 mm/s be considered as a possible 

standard. An angular shear velocity of 0.15 mm/s would correspond 

to a vane rotation rate of 23.6 m rad/s for the standard 2.5 cm 

diameter laboratory vane (Fig. 9). The difference in vane strengths 

between 23 and 26 m rad/s ap{ears to be minimal (Richards, in press), so 

that any vane laboratory rotation rate within this range would be 

acceptable. To maintain an angular shear velocity of 0.15 nun/s for 

in situ vane measurements, the vane rotation rate would have to be 

6 m rad/s for a 5 by 10 cm vane, 4 m rad/s for a 7.5 by 15 cm vane, 

and 3 m rad/s for a 10 by 20 cm vane (Fig. 9).· The in situ strength 

differences between 3 and 6 in rad/s are probably no_t signifi.cant, so 

that anr rotation rate within this range would again be acceptable. 

The in situ vane rotation rates corresponding to the 0.15 mm/s angu-

lar shear velocity are slightly higher than the standard rotation 

rate of 1. 7· m rad/s for the field vane test- (American Society for 

Testi'rig and Materials, 1974). The strength differences between 1.7 

and 6 m rad/s rotation rates may be small enough to retain the 1.7 
--. 

m rad/s rotation rate.as standard. 
.· ...... 

-~·· 

29 



The advantage of comparing vane shear strengths at a standard 

angular shear velocity (0.15 mm/s) is that the uncertainties associ

ated with different rotation rates and vane sizes would be eliminated. 

Laboratory vane strengths based on an angular shear velocity of 0.15 

mm/s would be determined at a fast rotation rate (23 to 26 m rad/s) 

that is recommended to insure drainage does not occur (Monney, in press). 

In situ field vane measurements at an angular shear velocity of 0.15 

mm/s would be determined at rates (3 to 6 m rad/s) very near the 

~ accepted standard ASTM rate of 1.7 m rad/s. 

.... ~ . ...! 

A single standardized vane shear test method for both laboratory 

and in situ vane may be possible based on comparisons of vane strength 

~t' :a :standard angular snea.r velocity. An additional advantage to 

comparing. vane st·r-engths· at a common angular s·hear velocity woulci :be 

that if the relationship be.tween vane strength and angular ·she.ar 
//1 

velocity could accurately be e.stablished for a given area., then vane 

measurements obtained at d.iffe.rent angular shearing velocities could 

still be compared. This. would be particularly important for in situ 

marine vane testing where ship or submersible time is expensive and 

station time may be very limited. 

Vane Penetration Disturbances ' . 

·- .. Studies by LaRochelle and others {1973) on the effects of vane 
,. 

penetration distu~bance indicated that significant strength reduc-

tions result from intrusion of the vane in very sensitive ,Champ!ain 
. (Leda) ·clays. Strains generated l?y -din_trusion of. the vane were large 

I • 

-- -····· enough to .destroy many. of the inter...;p~rticle _bonds thereby causing a 
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significant reduction in vane strength. In their study, a perimeter 

ratio (al was defined by 
4e 

a= -
trD 

where a= perimeter ratio, e = vane blade thickness, and D = 

vane diameter. This ratio relates the disturbed vane perimeter to 
< 

the total perimeter of the cylindrical failure surface. In situ 

vane measurements ,.,i th four vanes of differing blade thicknesses 

(perimeter ratios) were made at rotation rate of 1.7 m rad/s artd 

angular shear velocity of 0.04 mm/s. Results showed that greater 

"
1
sire,th reductions occur with vanes having higher perimeter ratios. 

The range of perimeter ratio considered by LaRochelle and others 

(1973) was about 4 to 12 percent. ·, 

An evaluation of the perimeter ratios for the vanes used in 

this study (Table 1) showed that perimeter ratios were lowest 

(1.6 percent) for the largest vane size (10 by 20 cm) a.nd highest 

(4.9 percent) for the laboratory vane (1.2 by 2.5 cm). Thus, 

strength reductions due to vane penetration disturbances may be 

more important for laboratory vane strength measurements than in situ 

vane measurements. However, the effect of vane penetration on , 

laboratory and in situ vane strength measurements have not been in-

vestigat~d for fine-grained marine sediments.· 

..... ~-- ... -- ···---·--·- -· - . - ·-~·~--- -- ·-
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SUMMARY AND CONCLUSIONS 

Comparisons of in situ and laboratory vane shear strength and 

bulk density measurements from the San Diego Trough, Wilkinson Basin, 
and Abyssal Plain and Mississippi Delta regions of the Gulf of Mexico 

were made to evaluate the influence of sample disturbance and test 

method differences on shear strength and bulk density. 

Significant differences between in situ clild laboratory bulk 

density measurements were observed in the San Diego Trough and to a 

lesser extent in the Abyssal Plain of the Gulf of Mexico. These 

differences are believed the result of core densification that occurs 

during sampling. In situ bulk density values agreed closely with 

laboratory values in the Wilkinson Basin indicating that little or 

no densification occurred. 

In situ vane strengths were significantly higher than laboratory 

vane strengths in the San Diego Trough. In situ vane strengths from 

the Wilkinson Basin were approximately equal to laboratory vane 

strengths in the upper 0.4 m. Below this depth, -in situ vane strengths 

were nearly 100 percent greater than the laboratory strength values . 

. In situ vane strengths from. the Abyssal Plain were somewhat· higher 

than laboratory vane strengths in the upper 1.0 m, below which depth 

they were about equal. At the Mississippi Delta location, in situ ,.--, 

vane strengths were about equal to a depth of 0.7 m. Below this 

depth in situ vane measurements obtained with· a 7.5 by 15 cm vane 

were nearly double the laboratory vane measurements. . .Tn situ vane 

strengths obtained with a 10 .by 20 cm vane were .nearly identical· to 
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laboratory vane strengths. 
• In the Wilkinson Basin and San Diego Trough Test Areas, in situ 

vane strengths obtained with large vane sizes were consistently higher 

than strength values obtained with smaller vane sizes. This was not 

exhibited in the two Gulf of Mexico test locations where vane strengths 

obtained with a smaller vane were equal to or greater than vane 

strengths measured with a larger size vane. This discrepancy is 

believed the result of location differences between in situ test sites 

and possible test uncertainties associated with the two torque sensors 
• used with the two vane sizes. 

The influence of sample disturbance on vane strength and bulk 

density was difficult to establish because of areal property variation 

over the distances known to exist between in situ and gravity core 

locations. Information on areal property variability from locations 

other than core locations was usually available. In. most cases, the 

known areal property variability was of sufficient magnitude to be 
. ~ important in the comparison of in situ and laboratory measurements.·· 

The influence of sample disturbance on vane shear strength was 

very difficult to evaluate because of .. vane rotation rate and vane size 

differen·ces between in situ and laboratory vane measurements. Also, 

strength reductions resulting from vane penetration disturbances 

complicated the comparisons of in situ and laboratory vane measure-
.. 

men ts. Laboratory vane strength differences resulting from vane 

rotation rate differences were found to be small compared to the 
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strength differences observed between in situ and laboratory measure
ments. Strength differences were noticed to be directly proportional 
to angular shear velocity differences. Large strength differences 
resulted from the great difference in angular shear velocity between 
in situ and laboratory vane measurements, while only small strength 
differences were observed for the small difference in angular shear 
velocity between laboratory vane measurements at the two rotation 
rates. 

Comparison ·of :in situ.and. laboratory vane strengths with angular 
shear velocity at the vane blade edges in the' Wilkinson Basin and 
San Diego Trough Test Areas. :indicate the exist·ence of a direct linear· 
relationship between vane ·s-tr·.e.ngth .and :anguJ:ar· she:ar velocity. Thus .1 

. 
the large streng·th differenc·es obs·erved between in .situ and laboratory 
vane measurem_ents may be. partially or entirely the restil·t of angular 
shear velotity differertces. 

Comparison of in s~tu and laboratory VB:ne .she~r strength measure
ments at a standard ~gular shear velocity wou·ld: eliminate many of the 
uncertainties associated with differences in vane rotation rate and 
vane size. An angular shear velocity of 0.15 mm/sis proposed as the 
standard for in situ and laboratory vane measurements. Laboratory 
vane measurements with a standard 2.5 cm diameter vane would be deter
mined at a rotation rate of 24 m rad/s to maintain an angular shear 
velocity of 0.15 nm/s. In situ vane measurements, depending upon vane 
size., would be ~etermined at rotation rates. ranging from 3 to 6 
m rad/s. .The a~_va~tage of cqmparing in situ and laboratO!Y vane. 
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· measurements at an angular shear velocity of 0.15 mm/s is that: (1) 
iaboratory vane measurements are made at a rotation rate high enough 
to insure that drainage does not occur, (2) the laboratory rotation 
rate is very near the rotation rate of 26 m rad/s that has been 
adopted as a standard laboratory rate by a number of organizations, 
and (3) the in situ vane rotation rate is near the standard field 
vane rotation rate of 1.7 m rad/s that has been used since the 
development of the vane test. 
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Table 1. '· 

·rn Situ and.Laboratory Test Information 
~- S.an Diego MEASUREMENT · · ' · · · · · · · · · · · · · Tr6u$!h · · · 

In Situ Bulk Density 
. ' ~ 

Deployment 

In Situ Vane Shear 

Deployment 

Vane size 1 cm 
(Perimeter ratio,%) 

·Rotation rate, m rad/s 
deg/min 

Laboratory V_ane Shear 

Vane size, cm 
(Perimeter ratio,%) 

~--
Rdtation rate, m rad/s 

deg/min 

DEEP QUEST 

DEEP QUEST 

10 by 20 (1. 6) 
7.5 by 15(2.6) 

21 
72 

1. 2 by 2. 5 ( 4. 9) 

6 and 23 
21 and 79 

Wilkinson 
Basin 

Illinois Tower 
and ALVIN 

Illinois Tower • 
• • 

7.5 by 15(2.5) 
5 by 10 (3. 8) 

23 
79 

1. 2 by 2. S ( 4. 9) 

6 
21 

36 

Gulf of Mexico .. 
Abyssal 
Plain 

Lehigh Tower 

Illinois Tower 

10 by 20(1.9) 
7.5 by 15(2.5) 

23 
79 

1. 2 by 2 • s C 4. 9) 

6 and 23 
21 and 79 

~1iss iss ippi 
Delta 

---

Illinois Tower 

10 by 20 (1.9) 
7.5 by 15(2.S) 

23 
79 

1.2 by 2.5(4.9) 

6 and 23 
21 and 79 
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APPENDIX II.-NOTATION 

D = vane diameter; 

e = va.ne blade thickness; 

r = vane radius; 

v = angular shear velocity; 

a= vane perimeter ratio; 

w = vane rotation rate. 
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