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Abstract

Five basic models, derived from Signal Detection
Theory (SDT), were formulated to describefthe decision
process of a subject in detecting signal in a noisy back-
ground. Their differential predictions of the subject's
performance were compared in terms of a modified four
alternative forced-choice (LAFC) procedure in which orie or
two or three observations within a trial may contain sig-
nal. The threshold model was compared with four integra-
tion models differing along two dimensionss (a) amount of
information used in forming the decision (Total or Partial
Integration), and (b) the method employed by the subject
in-forming the decision (Majority or Absolute Decision
Rule), Two trained observers were used to generate the
data and a 2AFC procedure was used before and after each
test session to determine the subject's level of detection.

MUItiple'X2 comparisons indicated that the threshold
model was clearly superior in predicting the subject's
performance in the modified LAFC procedure. Attempts to
use the threshold model in predicting the subject'éwber-
centage of correct responses (p(c)) on the modified 4AFC
procedure from the results on the 2AFC procedure for each

test session were not successful, The predicted p(c)

values were consistent overestimates of the actual p(c)




diata, A predicted relationship of the threshold model,

l.c., p(c) increases as the number of obsarvations of

signal (n) within a trial increases, was upheld., In gen-

eral, the threshold model predictions were reliable esll- k

mates of the Actual data that was generated.




Introduction

Signal Detection Theory (SDT) 1s a psychophysical
theory used to explain how an "ideal" subject detects sig-
nals in a noisy backround, In the general SDT procedure,

a subject observes either noise alone (N) or signal-plus-
noise (S). The information he receives from a stimulus is
summarized internally by a real number. From repeated ob-
servations of the two stimuli, S and N, two random variables
are produced by the subject, QHE-arising.frpm'observations
of signal (Xg) and one from observations of noise (Xy) s

Bcth'are’ngrmally*distributed with variance< . The noise

distribution.héS-mean'E(XN).:/¥N~andthe signal distribution
u:hasTmeanwE(XS) =4¥S¢ The effect of adding signal to noise

is to shift the signal distribution to the right of the

noise distribution by distance d =4 g -4+ These assumpt-
ions of SLT describs tho ir-formaticn processing cor réceptive
stage of the hypothetical subject.

Further assumptions are neéessary to describe the dec-
isi@ngprgcess of the subject, The subject is considered to
” bevan_ﬁidEal-observef“ or a "Baysian caleculator', for in
order to make a4 déecisien, the obserVér”mustfanW"the para-
meters of the distributions for S and N and he must knéﬁ-the

4 priori probabilities of S and N. With this informationf

the ideal observer will setl a criterion value (¢) and com-

pare with it the number he internalizes from an individual

3




observation (X) in such a way that:

if X>C, he will respond S;

1f X<LC, he will respond N.
The value of this criterion value (C) is a function of the

a priori probabilities, the parameters of the distributions

and the subject bias--all of which the ideal observer

L knows. Therefore, if there is an fqual likelihood of § and
N and if there is no advantage of or bias for correctly |
identifying S rather than N, the subject will place the
criterion value such that it will maximize detection of S

and N, Figure 1 illustrates where the criterion value

would be set within the two distributions of S and N,

Two basic tasks are generally used in SDT research,
In the Yes-No task (YN), the subject is presented with a
single stimulus and must decide whether it was S or N.
The Forced-Choice procedure (FC) is different in that the
subject is presented with a number of stimulus alternatives
and must decide which one of them is signal, Fot example,
in a two-alternative forced-chojce procedure (2AFC), two
stimuli are presented: one signal and one noise. The sub-
ject must decide which one was S, There appears, then, to
be only a quantitative difference between these two pro-

cedures since a NAFC task caf be viewed as N Y-N tasks

with the single restraint of only one possible Yes re-




Figure 1

Distributions of S and N

with criterion value(C)
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sponses It is possible, however, to ask the subject to
‘makéa'decision baced on multiple observations of the test
stimulus, rather than just one, This is more than just a
quantitative difference in procedure, since it introduces
the question of how the subject combines the information
he receives from all the observations he has made to fcrm
a single decision. Two PDssible models will be:presgnted
to explain how the final decision is made.

The Integrationimodei_isSometimes-called the "detec-
tion-theory" model since it is moétcompatible with SDT.
The model assumes that the ideal observer has perfect
;memory for the real numbers used in summarizing the infor-
mation he receives from an observation. There is no loss
of information with increasing observations. This means
that the information the subject receives from the first
observation in a trial is preserved over all successive
observations. The real numbers used to summarize the in-
formation received from each observation are added together
to form the accumulation of evidence that is used in
making the final decision. To show that the assumption of
perfect memory can, in fact, hold up experimentally, a
detectability index 4°' = (Hg - AN) /a4 is computed. 4d'
measures the distance between the signal and noise distri-
butions in standard deviation units, The farther apart

they are, the easier they are to discriminate., Swets (1959)

-




found that observers operated with the same efficicncy

of alternatives., Since the calculation of d* assumes
perfect memory, those results imply that the observer is
capable of storing and selecting among eight measures ob- °
tained in a 8AFC task just as well as when fewer alterna-
tive: are offered. The integration model further assumes
that observations are independent (i,e., the information
received from one observation is not a factor of any pre-
vious observation) and that each observation is normally
~distributed with variance<1’2. Therefore, a special val-
ue of d* can be measured for each observation. It has been
found that, in gencral, d' increases by a factor of the
square root of the number of observationss d'_ =.Vﬁd'
(Swets, et. al., 1959).

The Threshold Model, on the other hand, does not
assume perfect memory. It is assumed that only the deci-
sion after each observation is retained and information
from previous observations is -lost., Therefore, the overall
decision is solely a function of the individual decisions
that are made from each observation. Indepcndence of ob-
servations is assumed, thereby inferring an increase in
detectability with increased observations, Each indepen-
dent observation presents another independent detection
opportunity, As the number of observations (n) increases,

the probability of detection increases: P, = 1 - (1 - p)n,

8




where p is the probability of detcction on a single obser-
vation, A positive;nesponse (S) is made for the overall
decision if any one of the multiple observations is posi-
tive (i.e., if any one of the sensory measures exceeds a
threshold). The Sensory‘thresholds,fluctyate over time and

the threshold levels are assumed independent from one ob-

servaticn to another.

The primary goal of this study is to compare the pre-
dictions of the threshold model along with various forms
of the integration.modéL. In order to do this, a modifi-
cation of the U4AFC procedure is used which allows for
multiple observations within a single trial. As indicated,
in the 4AFC procedure, the subject is presented with four
stimuli and must decide which one of them is signal. The
modified procedure, however, allows for one, two or three
of the stimuli to include signal. The subject, then, is
presented with two different sources of information, chan-
nel A and channel B, one of which always contains signal,
and the other, noise. A total of four observations of
these two channels, in various orders are offered in each
trials 3 from A and 1 frcm B; 3 from B and 1 from A;.or 2
from A and 2 from B, The subject must decide which channel,
A or B, contains the signal. This procedure, therefore,
generates the possibility of any one of 14 distinct comp-

inations of S and N on any given trial. Table 1 illus-

2




Table 1
Trial Sequences of 4 Observations

of S and N
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trates how the 14 possible trial sequences are formed over
foungbservations,

The integraticn model, as indicated above, assumes
that the information from observations of a channel is
summed to form a decision. However, the integration model
may be further characterized by the amount of information
used and the method in which this usable information is

employed to make the decision., Total integration assumes

that the information from all observations of a channel is

used in the decision process, Partial integraticn assumes

that information from only the last sequence of observa-
tions of a channel is incorporated into the decision pro-
cess, The intervening observations are assumed to inter-
fere with the integration of information, and the informa-
tion is discarded if not used for a declision., A decision
can be made by comparing the information obtained from
channel A (al, P aj,...an) Fo that obtained from channel

B (bl’ D, , b3""bm)' A majority decision rule is defined

as a rule by which the subject decides that the signal is

statistically more likely to be in channel A if;

Za ;/n2 gbj/m.

(.-l

An absolute decision rule is one in which the subject

compares both sets of information to a criterion value (c),
and decides that the signal is more likely to be in channel
A ify Za /n 2 ¢ and ;b / m<ec,

The information from both sources, S and N, is assumed to

12




be inte;rrable with cqual ‘case, Of course, 1if only one
source of information is being used to make the decision,
‘an absolute decision rule must be employed by the'subject.
" “-m
2 a, / n> ¢ andZJ. / m> ¢
(=1 1 'J':’ J —
or 1if;
" | Ll |
> a, /’rlféc;an§Zb.,/_m:é;c
(20 1 - 5= J
the subject simply guesses, \V
Four distinct integration models are offered as
possible models used in a subject's decision process.
Their predictions are discussed along with those of the

threshold model, in terms of the multiple observation

LAFC procedure outlined above.

I. Total Ma jority

The total majority model assumes that information
from all observations of a channel is used and a ma jority
decision rule is employed by the subject, Information
from both sources, S and N, is integrated and compared to
make the decision., The subject, therefore, using this
model, will maximize his chances of being correct when the
most information from both sources is available for com-
parison, This should occur when equal numbers of obser-
vations of S and N are presented on a trial. To illustrate
why a subject should be more successful on trials con-

taining 2S and 2N rather than three observations of one

13




channel and one of the other, an examination of the var-
lance resulting from these two types of trials is most
descriptive, Given 4 observations in a single trial, X,
Y, Wand Z, the 1nformatlon received on a trial with

JN + 1S or 3S 4+ 1IN will be;y

Q=X+ Y+ 2 - W

3
2 .
O'Q = 1/9(3)<f2 + V'2
= b/3q°

sinee:
T .. ¢% . q? -q2
X Y <TZ 'q/w v
Given that the trial consists of 2S and 2N, the informa-

tion received becomes;:

R=X+Y - W+ 2
2 2

Tr=1/4@)T% + 1/4(2)g 2
Rt

Since 4' = (445 - A \) /¢ 1is a function of the distance

between the distribution means and the variance, it can be
shown, Swets, ect, al., (1959), that detectability decreases
as the variance increases, Therefore. all trial sequen-
ces consisting of 2S + 2N (q' ) should yield better detec-
tability than any other trial sequence consisting of

3S +-1N or 3N + 1S, where the variance is larger (4/30’2).

The model prediction, then, in terms of trial sequences

listed in Table 1, can be stateds -
(5:6,7,8,9,18>[1,2,3,4,11,12,13,14]

1y




wherc the trial sequences listed within a set of brack-
ets ([J) are predicted to yield equivalent detection arnd
the common mathematical symbol (2 ) can be read in this

cage to'mean "Will yigid‘better @etg@tability than.n

II. Partial Majority

This model assumes partial integration of information
along with a majority decision rule. Partial integration
assumes thabv only the information from the last set of
observations of a channel is used in the decision process,
This allows fog the possibility of only 3 or even 2 obser-
vations being used to form a decision., In continuing our
examination of variance to include these possibilities,
we discover that given 3 observations, 2N + 1S or 2S + 1N,

T=X4+Y - 2

2
2
V/T

2(1/8)7° + 72
= 3/2q°
Given 2 observations, 1S + 1N,
V=X-Y%
Ty =T+ 7
= 2<T2

Combining these results with those shown above, we find

2

that the trial sequences can be rank ordered by degrees of

variance in the following order:

15




2S + 2N g <

35S + 1IN or 3N + 15 4/37 2

2S + 1IN or 2N + 1S 3/27 2

1S + 1N ZVFZ-
Since the majority decision rule is employed ih this
model, given the same total number of observations, equal
numbers of observations per channel will be optimal for a
subject's performance. However, the integration of infor-
mation will be dependent upon where those observations are
placed within a trial. Only the last sequence of obser-
vations of each channel will be integrated. It is clear,
then, that trial sequences 5 and 7 (Table 1) will maxi-
mize a subject's performance, since all the information is
integrated and there are equal numbers of observations
from each channel. Trial sequences 1, 4, 11 and 14 also
allow for all observations to be integrated, but there are
unequal numbers of observations per channel. The remain-
ing trial sequences allow for either 3 or 2 observations
to be integfated and the model thus predicts inferior
performance by the subject when presented with these trial

sequences based on their higher variance. The model pre-

diction, therefore, becomes;

5.2> [i,4,11,15>(3,6,10,17 >[2,8,9,17]




III. Partial--Last Channel

This model assumes a partial.iniegration<of~inf0r-
mation in which the subject takes the information from the
1ast.observationdn a}t;;al and makes a decision based on
tht single piece of infdrmatibn alorie, Effectively. this
becomes a YN task where the subject uses an absolute de-
cision rule. If the information he receives is

(a_or b)>ec,
he says signal, and if

(a or V)< ¢
he says noise. All trial sequencés yield equal predic-
tions in this case since the information from the first

three observations in each trial is discarded:

[1::2:3:'4':.... 14]

IV, Partial--Last Channel Sequence

This model assumes partial integration in which the
subject makes a decision based only on the last channel of
information observed. An absolute decision rule is again
employed and the model prediction becomes a factor of the
number of Qbservations in the last channel presented.l
Trial sequences 4L and 14 have three observations in the
last channel presented; trial sequences 3, 5, 7 and 13
have two observations and the remaining trial sequences

contain only one, Therefore, the model prediction

17




becomes s

E'lu 76'5'7'13]>‘:i‘_020608v90100119‘la

V. Threshold

The threshold model differs from all forms of the
integration model in that only the individual decisions
after each observation‘(detectzer-non-detect) are used to
make the final decision. In the threshold model, the sub-
ject "chooses" a channel if any observation of that chan-
nel leads to detection of signal. If no signal is detec-
ted, he guesses., Each observation from the S source adds
another detection opportunity and therefore ingreases the
subject's rate of performance, Clearly, the trial sequen-
ces with the most observations of signal will maximize the
subject's probabiiity of making a correct response, The
model prediction,'then, becomes a factor of the number of
SS 1n a trial;

Ev2o3o@>f3.6.7.8.9.1o >

— [

11,12,13, 14]

19




Me thod

Subjects. Two train@d'abservers, the experimenter

and his wife, served as subjects., Training consisted of
approximately 25 one-hour sessions of practice using a

2AFC procedure. Training continued until a criterion of at
least 5 consecutive sessions of non-significant variability

(as measured by a X 2 test) in detection level was reached,

Apparatus. The experimental room was soundproofed

and equipped with a comfortable chair opposite a wall on
which were mounted two 24 volt lights, approximately 1
inch in diameter, one green and one red. Through the use
of BRS Foringer digital logic equipment, the experimenter
could turn on either the red or the green light for .7
seconds. Along with the presentation of a light, white
noise was simultaneously presented over earphones with a
13 kHz tone present or absent. Robinson and Trahiotis
(1972) compared the procedures using simultaneous onset and
continuous noise conditions and found that the subject's
performance improved as the delay between noise and signal
onset increased. To avoid such differences as are found
with continuous noise, a simultaneous noise-signal onset
procedure was used. The subject also had the use of
three response buttons mounted on the arm of the chairs

one to start the trial, and two response keys, red and




) ey

The experiment consisted of five distinct partsi

Part 1

Procedure. The subject was presented with 100 2AFC

P
trials before each test session (pre-test) and.immediately

following each test session (post-test). These trials

were used to determine the subject's detection level

before and after each test session. The subject was pre-
scnted with two channels of information, green followed by
red, and his task was to select which channel contained
signal. Before each test session, the subject was given a
cue tone which gave him the opportunity to hear the signal
before the test sequence began, No trial-by-trial feed-
back was employed. Gundy (1961) found that subjects who
were permitted to hear the signal before the toest sequence
maintained a stable levél of performance throughout the
session in an SDT task while those who were not afforded
this opportunity performed at chance level initially and
gradually improved., Throughout the 100 trials, the chan-
nel containing signal was randomly assigned to red or
green, A target detection level of 75% was considered op-
timal and a comparison of the pre-test and post-test
scores for each session was used to give an indication of
whether or not this detection level varied throughout the

course of the session,

20




Results, Table 2 contains the pre-test and post-test

scores of subjects B and J for each of the 7 test sessions
of the experiment. A'}j% was obtained for each set of
scorcs. None of the:Xjf's were significant, indicating
thét for each pair of scores, the pre-test scores did not

differ significantly from the post-test scores.

Notes In this and in all other parts of the experiment, the:

data presented are pooled over 100 or 150 trials. Since
the models presented, describing the psychological process
in detecting a tone, are formulated in terms of events
which occur on each presentation of a stimulus, this;éy'
appear to raise the qﬁesfion of the subject's response,
reliability to a particular stimulus, That is, can massing
the data over trials tell us how the subject is respond-
~ing to an individual stimulus? Madigan (1971) tested re-
sponse reliability in a YN and 2AFC task and found that,
in both cases, the mean responses obtained are reliable

measures of detectability of individual stimuli.

Part II

Procedure., The modified Y4AFC procedure, described

above, was used to provide a test of the five models pre-
sented for comparison, Table 3 provides a summary of the
differential predictions made by each of the models in

terms of the trial sequences presented in Table 1, To

21




Table 2

Pre-test and Post-test scores
for subject B and J,with‘)ﬁ‘for sessions 1-7

L




€2

Session

1

N O W o= w N

Pre_test

65
83

B
post_test
68
83
76
81
o
77
63

22
1.0
O
106
206
972
394
088

Subject

Pre_test

75
59
78
82
74
62
60

J

post-test
69
g5

N

)
74
62
64

oA
./)L’
,892
. 51




Table 3

> Predictions of the models
presented for comparison

24




- Model Model Predictions

I. Total Majority 5.6,7,8,9,10] > [1,2,3,4,11,12,13,14]
II. Partial Majority [5.7]1> [1,4,11,14]> [3,6,10,13) > [2,8,9,12]
& III. Partial--Last Channel ‘ [1=2=3=....=14]
IV. Partial--Last Channel [u,14] > [3,5,7,13 > [1,2,6,8,9,10,11,12]
Sequence ,

V. Threshold t,2,3,4]> [5.6,7,8,9,10] > [11,12,13,11]




compare the predictions 6T‘each.mode1.37‘test-sessidns,
cach containing 4 different trial sequences, were run,

The trial Scquences were chosen in order to maximize the
differential predictions of the models and provide a clear
test betwecn~thcdiffereﬂt{model'predictions. Table 4
provides an outline of the trial sequences that were used
in each test session along with the prediction each model
makes about those particular sequences. For each test
sesslon, each sequence is presented 150 times, a total of
600:trials.per test session, The order of trial scquences
within a test session was completely random, as was the

channel, red or green, containing the signal.

Results, Table 5 contains the scores of both subjects
for each test session., A X ° analysis was performed on
these data to test each Aodel prediction, Table 6 shows
the results of the 7(2 tests. 1In many cases, only one Xz
test was needed to test a model prediction for a test ses-
sion, In test session 1, for example, Models I, II and I1I
predicted that trial sequences 1, 4, 11 and 14 would yield
the same results, To test this prediction, a'Xf was done
to determine if the four data points were 51gn1flcantly
different. Model IV, however, makes three predictions
about the trialsequences of session 11 it predicts that
sequence 4 will yield the same results as sequence 14;
séquence 11 will yield the same results as sequence 1; and

sequences 4 and 14 will yield better results than sequences

26




Table 4
Model Predictions of Results

for Each Test Session

27




Session

Stimuli
1,4,11,14
5.7..8.9
3,13.2,12
1,11,5,7

6,10,5,7

4,14,6,10

6,10,3,13

Same
Same
Same
(5:71> [1.1]]
Same
Same

- Same

28

Model

II

ERIRCI)

3,13 > [2,12]
[5:7]> [1.11]
[5.71> [6.10]
4. 18] > (6, 10]

Same

III

Same

Same

Same

Same

Same

Same

Same




Session

1

Stimuli

1,4,11,14

5’7’8'9

3,13,2,12

1,11,5,7

6,10,5,7

b,14,6,10

6,10,3,13

Model

foael>(a] L] [i1,04]
[5.7]> [8.,9] Same

po3]> 212 [2,3] > [12,13]

s>y Q1> 1]

B,7j> [6,1@ Same

[4,14]> [6,10] (47> [6,10] > [14]
B.13]>[u10]  [B1>.10)(15]

29




Table 5
Number Correct for Subjects B and J

for All Test Sessions in Part II

- 30




‘Trial
Sequence

Session

~~ o> N N
— o~ e PN TN N — > o~ o~
N DLW\ O O~ \Un gl LN ol

b ey b N o~ P SN N D

N
oOOoNET & S\ N O O N\

PN SN

o~ ~~
oo~
W\ O O\

SSSN
NSSS
NNNS
SNNN

SSNN
NNSS
SNSN
NSNS

SNSS
NSNN
SSNS
NNSN

SSSN
NNNS
SSNN
NNSS

SNNS
NSSN
SSNN
NNSS

NSSS
SNNN
SNNS
NSSN

SNNS
NSSN
SNSS
NSNN

31
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Table 6

2
')( Tests of Model Predictions

on All Test Sessions
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——— . -

Stimuli I II
St _ v g II r
Same Same |
1,4,11,14 B J B J
| | 49,03%% . 22,23%% | L4g O3 22,23%% |
[5.7] > [8,9]
| Same
B J B J
5,7+8,9 2,38 .06 5,7] 1.37 0
8,9] .89 .06
[5.718,9] .11 0
3,13 >[2,12]
Same _ B J
3,13,2,12 B J 3,13] .15 U9
4,61 9,00% 2,12] L,17% 7,05%%|
B.13[2,13] .21 1.12
| 1
[5,7]>[1,11] G,7)>0,11 .
B J J
1,11,5,7 (5.73 .05 .68 L{ j .05 .68
i,11] 8,71%% 5,954 B.71%% 5,95%
(5,740,110 1.16  3.77 | B.7] 1,16  3.77
[5.7]>[6.1oj
Same
6,10,5,7 B J 73 2 15
e 4, 38 1o .3# 2,19
| .i] 17 .28
6.1@>EL.1ID @.1@>£6.16J
J
4,14,6,10 6,1 . L,14 12, Al 20, 49*H
L, 14 12, 14**20 u 6,10] .38 .08
i | B,1004,14] .19 @1@6 10) .19 .80
[6.1o]>[3.13]
Same
6 10, 3 13 6,1 § 2 53 B J
21.88% 21.8 *[22.21** 25,06%%
| | 6,10]3, 13 07 .17
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Model

timuli III IV
r T [wawl>hr, 0 I
Same
| B ,u J
1,4,11,14 B J (4,180 43,88" g yo#s
. 4g,03n 22 ,23%# 11,10 4,91% 11,78%#
b,140711,17 .11 1.25
. [5'73 >£8097
Samef
B J
5:7+,8,9 B J ,7 1, 37 0
2,38 .06 .06
| [5 78, 0
,13]>[2,12
Same [3 3] [ ]
3,13,2,12 B J - : Ju
] ) D 3,13 015 o 9
h.61 9.00* 2,12] 4,17% 7, 0g5%s
LB’]'B]‘\Z'I'Z 021 1012
. 7] >, 11
| Same E 7] [ ]
| B J
| 9.78% 11.,07* 1, 11 8,71%% 5 Q5%
/5, z‘[g 11] 1.16 3. 77
7] > /6,10
Same ["5 7] [ 7
| B J
6,10,5,7 B J 5,71 .22 2,15
.94 4,38 10 .34 2,19
B.7k6,10] 17 28
-
[4,14]> [6,1q]
Same
b, 14,6,10 B J 1§12 18" 20, a9**
| 12, 59%% 22 ,52#%% 6 10/ .38 .08
4,146,161 .19 .80
B B,131>6,10]
Same
Buw J
6,10,3,13 B J 2. 1121.85 21.88%%
| 22,21 %% 25,06%% .01  2.55
L L[B lj6 101 007 017

%
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*Stimuli_f_

Model V
a,4]> 11,14
. B J
1,4,11,14 [1, t% L, 50% 1,81
511 14 5,96% 2
[1 bh1, 14 39,13#% 20, 96%#*
i Same
5,7,8,9 B J
2,38 .06
Lr—
[2,3]>]12,13]
B J
3,13,2,12 [2.3% .29 .37
P2,13 1,26 2.81
I [2,3][12,13 2,99 5.79*
[11>5,7]> [11]
1,11,5 7] B Jé
b 11,5,7 .05 . 68
[ﬂlP b, 6L .01
§ 71 48 6,34
[11[5 7l 9,384 9, 37#4
H Same
6,10,5,7 B . J
. 94 4,38
[4]>]6,10]>]1L]
| B J
b,14,6,10 [6,10] . 38 .08
(46,10 4,23 3. 57
[14.[6 10 2,06 7, L6un
| [4]6,10]A4T 12,34« 21, 6lin
[31>[6, 103>L'137
J
6,10,3,13 [6,10] .o1 2.55
D] [6,10] 5.33% 5.57%
13][6 101] 6.13% - 5,61%
‘ 1 DBl61gls]  22.05+ 22, 39+
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11 and 1, were perfecrmed to determine the aceura cy of
cach prediction. 1In a like manner, each model prediction
was tested for each set of trial sequences in the 7 test
sessions, 58 'Xz tests were performed overall, The 7( <
tests were not all independen£ in that identical mode]
predictions were tested with the samc 7(2 test. Table 7
contains the numbers of'kiz'tests used to test each model
along with the number of tests which yielded accurate pre-
dictions, Table 8 shows the results of the 7(2 tests
over each test session., Checkmarks (V') are used to indi-
cate which model(s) are supported for each test session.
The last column in Table 8 indicates the subjective eval-.
uation of the experimenter as to how mdch-support was given

to Model V ovér each test session,

Part IITI

Procedure, A possible deficiency in the procedure of

Part I is that the order of channel predentations is not
random, i.,e., green was always presented first, followed
by red. Thus the subject did not have to attend to the
lights to identify which channel of information was being
presented. Maloney and Welch (1972) found that the pre-
sence of an accessory tone decreased the percentage of
light detections when the tone was loud and continuous,
Tones of short duration ang lower intensity were found to

increase visual detectability. 1In order to determine 1f
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M
Table 7

Number of7< 2 Tests Yielding
Predicted Results for Each Model
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Model

IT

IIT

IV

a
#of‘)i
Tests

13

17

21

20

38

# of
Predicted
Results

14

18




Table 8
Models Supported by X ° Tests

for All Test Sessions in Part II
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Oty

Preferred Model

II

IIT

v

IV

\

Evaluation

of Suprort
for Model V

unequiveoecal

reasonable

dqualified

unegquivocal

reascnable

unequivocal

unequivocal




the presence of the channel indicator lights had any such
ef%ects on the detcctability of a tone, Part III of the
experiment was run, comparing the 2AFC procedure in Part I
(Pre-test I) with a 2AFC procedure in which the order of
channel presentations was randomized (Pre-testII). Note ﬂ
that in Pre-test I, the subject does not have to attend t§
the lights in order to identify the channel of information,
- while the Pre-test II procedure makes this attention'neca |
essary., Pre-test I was compared with P§§(t93t ITI in 5
test sessions, each containing 3 blocks of 100 Pre-test I
trials and 3 blocks of 100 Pre-test II trials., This pro-
cedure provided a test of whether or not attending to the
lights which identified the channels of information had
any effect on the detection level of the subject.

Results. Table 9 contains the scores yYielded by

both subjects in the 5 test sessions of Part III. An
analysis of variance was performed on the data from each
subject separately, which determined the effects of Test

Phase (I or II) and Test Session (1 - §5). Only the effect

 of Test Session for subject J was found to be significant

(Fb 50 = 18,228, p £,01)., Tables 10 and 11 contain the

results of both analyses of variance,

Part IV
Procedure. Given the apparent success of the thresh-

old model in predicting the direction of results for both

41




Table 9
Pre-test I and Pre-test II Scores

for All Test Sessions of Part III
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Test Subjects

Session g B J
Test Test
Phase Score Phase Score
I 74 I 70
IT 69 IT 65
I I 73 I 54
LI 75 II 65
! I 71 I 60
; 11 68 II 62
I 72 II 87
II 75 1 77
I1 I 70 II 83
II 65 I 79
I 80 II 80
11 69 I 85
I 78 I 81
II 67 II 90
III | 61 I 84
II 79 II 74
I 62 I 78
II 60 I1 88
II 72 II 80
I 67 I 76
IV II 68 II 78
- I 74 I 81
IT 71 II 83
I 66 I 80
II 78 IT 74
I 71 I 78
' II 72 II 69
I 7 I 73
II 73 II 71 /““Arﬂ
I 80 I 67
N =100




Table 10

Analysis of Variance of Subject B

Data in Part III




Source SS

A 188,2

B 4.8
AB 36.8667
Error 608

Test Session
Test Phase

A
B

20

47,05

4,8

9.2167

30.4

F Ratio

MS, / MSg

MSp / MSg

MS,g / MSg

I

1,5477

1579

« 3032




Table 11
Analysis of Variance of Subject J

Data in Part III
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A 1698,.8667

B 22 . 5444

AB 20,4556
Error Lé66 ‘

Test Session
Test Phase

td »>
" |

20

44,7167

22,5444

5.1139

23.3

F Ratic

MS, / MSg
MSy / MSg

MSpp / MSg

F

18,2282#%

. 9676

2195

*% = significant p <£,.01




subjecls, additicnal analysis of the data was pcrformed teo
test the model's ability to predict the magnitude of the
results. From Green and Swets (1966) we see that the prob-

ability of detecticn, in the threshold model, based on n

observalions, is equal to one minus the product of the
probability that detcction will not occur on any of the
n observations;
n
p =1- JT(1 - p.) | (1)
n = 1 )
When it is assumed that all individual probabilities are

equal, this formula becomes;

pp=1-(1-p)" (2)
Applied to the forced-choice task, with two response al-
ternatives available (as is the case in this experiment),
the probability of a correct response on a single trial
becomes

p(e) =1 - (1 - p@N™ + 1/2(1 - pO)™  (3)
where n is the number of observations of signal on a given
trial and p(D) is the probability of detection on that
trial, Table 12 contains the actual percentage of correct
responses over all test sessions, along with the predicted
probability of correct responses from the threshold model.,
P(D) was calculated from the pre-test and post-test data
of each test session and this value was then used in
equation (3? to obtaiq{the predicted p(c) within each test

session for n = 1, 2 or 3. This provided a test to see if

the threshold model could predict from the subject's per-
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Table 12

Predicted and Actual Probability
0f Correct Responses
for all Test Sessions with X* Comparisons




0$

Pretest

n=1

n=2

n=73

Subject/ Est., Posttest Actual Pred, o>  Actual Pred, Actual Pred. _, »
(Session. p(D)  ple) _ ple) ple) X __p(e) _p(e) p(c) p(s) X
B/1 23 615 U437 | .615[/39,48 .69 0772 |11,89%%
B/2 ey .83 | | 4593 | .9k2)1325.3" i
B/3 S| 077 69 | .77 |10.85" | 753 | +951 [244, 28%s!
B/ | 59 4795 | W52 | .79568.35" | .56 | .916] 499.55% 687 | .966 136k, omex
B/5 | .52 | .76 598 | .885|u84,47" J
B/6 .58 .79 0593 | .79 [36.59 | .67 912|224, 41 | .78 .963'126.56**;
B/7 | .28 .64 547 | .64 | 5.67% | 683 | .7815.0060% .80 .sfi 1757 |
J/1 | Jubs | 72 .723 | .72 | .0165 873 | .912 | 6,064%
J/2 | 13| .565 ” 633 | .622| 3473 '
J/3 . «60 80 «723 «80 11.03* « 807 . 968 238, 34%%
I/W | «57 | <785 | .7k | .785| 1.946 |.857 | .908| 8.88% | .853 | .96 | uu. uues
/5 | a8 | Lou 753 | .865| 64.0%"
J/6 | .24 .62 (66 | .62 | 1,019 [.80 | .711] 11.80% | .88 | .781 | 8.ouqes
| /7 | .2 .62 68 | W52 | 2,29 |.803 | .711] 12,65 | .90 | .781 | 12,594

1

significant p <.,05
significant p<,01




formance on the pre-test and post-test (Part I) the re-
sults on the modified UAFC task in Part IT of the CXper-

iment.,

Results, As revealed by the—x.2 comparisons betwecen
the actual and predicted probabilities of correct respon-
ses, shown in Table 12, the threshold model was not able
to consistently predict the subject's level of perfor-
mance. Accurate predictions would yield no significant
differences between the actual and predicted p(c) data.
However, 21 of the 30‘X:2 comparisons showed significant
differences (p <.05). 1In almost all cases, the predicted
values of p(c) were overestimates of the actual p(c)

results,

Part V

Procedure, Despite the fact that the threshold model

was not able to demonstrate reliable predictive ability in
estimating the subjects' performance in Part II from the
results in Part I of the experiment, further data analysis
was conducted to determine whether or not the predicted
relationship between probabilities of correct responses
when n = 1, 2 or 3 still holds within a test sessicn,

That is, does equation (3) accurately predict the increase

in p(c) as the number of observations of signal (n) within %

a trial increases from 1 to 3? Three test sessions (4, 6

and 7) incorporate trial sequences which yield all three
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values of n within a test session. The data from these
three test sessions for both subjects was converted into
log scores to make a straight-line fit possible. Equation
(3) was transformed into a straight-line equation in the
‘following manner: |

plc) = 1 - (1 -pd)"+1/2(1 - pO)™  (3)

= 1= 1/2(1 - p(D))"
2(1 - p(e)) = (1 - p(D))"

-log 2(1 - p(c)) = -n log (1 - p(D)) (4)
Equation (4), then, is a straight-line equation of the form
Y = mx + b where:

y = =1log 2(1 - p(c))

X =n
m = -log (1. - p(D))
b =0

In theory, the straight line should go through the origin
(b = 0). The least squares technique was used to fit the
data from the three appropriate test sessions (4, 6 and 7)
to fhis straight-line equaticn,

Results. Figure 2 (A - F) contains the best-fitting

straight lines, along with the actual data points for each
of the three test sessions for both subjects, It should be
noted, that only one of the test sessions (i.e., session 4
for subjéct J) yielded results which deviated from the pre-

diction fhat p(c) increases as n increases. All other
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Figure 2 (A - F)
Least-squares Fit of Data from Sessions
4, 6 and 7 for Both Subjects
to Straight-line Equation (4)
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sessions yielded results with high correlations between
the actual data points and the straight line fit, Only

one, however, from session B?, was significant (p<,05).

hr T o




Discussion
| N

The results obtained in Part I of the cxperiment are
stralghtforward., With no significant differences between
pre-test and post-test scores on any of the test sessions,
it 1s reasonable to assume that the detectiocn level for
both subjects reﬁained stable throughout the experiment,
The use of trained observers, therefbre. appears to have
effectively eliminated threshold variability within a test
session,

The results of Part II, although not conclusive, are
very suggestive, and appear to lend strong support to the
contention that both subjects were operating according to
a threshold model in this detection task. Although the
data presented in Table 7 suggest that some support was
also given to the other models, this may be misleading.

As indicated in the results of Table 8, on individual test
sessions, some of the integration models make the same
prediction as the threshold model., Therefore, although the
~overall results overwhelmingly support the threshold model.
individual test session results will also support the

other models as well.

In attempting to explain why the threshold model was
supported in favor of the integration modeis. 1t may be
helpful to re-examine some of the assumptions integration

theory, as a whole, makes about the subject's receptor
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stage of detection, An important assumption,cf'integré-
tion theory is that both S and N are integrable with
cqual case., That is, the subject will receive Just as
much usable information from a presentation of N/as he
will from a presentation of S, In effect, this ég;ump-
tion implies that the subjeet can just as successfully
detect a stimulus as "noise withoutfsignal"‘as he can
"noise plus signal." This assumption, although mathemat-
ically'convienent, may nof be entirely accurate, BellAand
Nixon (1971) tested this assumption using a YN task in
which they asked their subjects to rate the stimulus pre-
sentations they received on the degree to which the wave-
form had signal or noise quality. That is, they respon-
ded on a 10 point scale how sure they were that the infor-
mation they received was S (1 - 5) or N (1 - 5). The
results obtained indicated greater reliability for ratings
of S than for ratings of N. These investigators point to
insufficient variations in the N waveform to permit
meaningful rating of them. Whatever the explanation,
there is evidence to support differences in observer abil-
ity fo detect S and N presentations.

Another necessary and important assumptibn of inte-
gration theory is independence of observations., The infor-
mation received from one observation, therefore, is not a
factor of any previous observation. Again, however, this

assumption may not hold due to a subject's tendency to
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ectablish some sortOf:PeSpanéa pattern. Speetﬁ and
Mathews (1961), using a UAFC procedure, found dependen-
cies between successive response intervals, That is, the
subject's response depended, in part, upon his sequence of
past responses, The length and degree of this dependency
varied over subjects and wifh the particular sequence of
intervals used, but it was shown to extend as far aéj or
4 past intervals, These discrepancies between model assum-
ptions and the actual behavior of subjects in a detection
task may have strong consequences resulting in the lack of
support shown for the integration models in this study. |
It should be noted, however, that the threshold model also
assumes independence of observations, It is possible that
any dependencies which resulted between observations in
this task may have helped lead to good threshold model
predictions,

Part III of the experiment attempts to show that the
data from Part I are valid despite the fact that attending
to the channel indicator lights was not necessary. In
view of the results comparing the Pre-test I with the
Pre-test II procedure, it can be stated that the two
tasks do not yield differential results, The fact that
subject J's results differ significantly over test ses-
sions.is unimportant, since all comparisons were made
within a particular test session.

Part IV also yielded very conclusive results, Theo-

63

|
g
"l
1
.
{
s
1
)
y
A |
i
i




e ] o S ¥, Y —o—a e -

[OS

retically, -the threshcld model should be able to predict

from the results of aAZKFCprocedure. the subject's per-
formance in a YAFC procedure. Howcver, the data in Part
IV show that the prediction equation (3) for the most
part yielded overestimates Qf‘the actual percentage of
correct responses. There are a number of explanations for
why this predicted relationship did not hold. Perﬁaps
there is more than a quantitative difference between a
2AFC and a WAFC detection task. The SUbiéCt'S-reSpQﬁSe
strategy could change when presented with these different
tasks., Also, the term "modified" in the modified LAFC
procedure used 1n Part Ii‘may'have had greater conse-
quences on the.resultS'thanéXpected. Instead of only one
observation of signal in a 4AFC task, the subject could
receive 1, 2 or 3 observations in the modified brocedure
with 2 rather than 4 response alternatives, Clearly,
these procedures could differ in an unknown qualitative
way, making theoretical comparisons cumbersome, if not
impossible.,

Part V data, however, show that relatignships within
the modified U4AFC procedure are consistent, That is,

given a subject's performance when one observation of sig-

nal is observed (n = 1), his performance when n 2 and
n = 3 will follow from the relationship specified in equa-
tion (4). Although only one correlation is significant

individually, the fact that 5 out of the 6 correlations
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exceed 94 is highly sugrestive of the existence of a
streng rcelationship., Since only 3 data points are used in
forming the straight-line fit, the correlations are forced
to be prohibitively high (r = ,997, b<(.05) in order to
atfain significance. Perhaps, due to the use of a modi-
fied rather than traditional 4AFC procedure, equation (&)
does not specify the exact linear relationship in this
particular case.

In conclusion, it is felt that the evidence presented
strongly supports the threshold model's explanation for a
subject's behavior in a signal detection task. More inves-
tigation is needed, however, before a definitive statement
can be made regarding the predictive relationships which
hold when using the tasks employed in this eXperimént. It
would also be interesting to compare the same models using
different types of tasks to see whether the success of the
threshold model would generalize beyond the modified U4AFC

procedure,
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