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ABSTRACT } ··-

--

Th 1 s work examines through experimental means the 

capabil 1 ties or the binary ( 15. ?) BCH code, Which 1s 

guaranteed by algebraic oodlng theory to correct two or 

fewer error, in a fift~en bit block. A program was 

written for the PDP-8 minicomputer to oreate ~nd encode 

information sequences·, and to simulate transmission of 

the resulting codewords over a binary symmetric channel 

•1th variable crossover probab111ty. In addition, the 

program decodes each rece·1ved message with maximum 11ke--

11hood, majority logic. and Berlekamp decoders. 

When three or more errors are present 1n a fifteen 

bit block, the results indicate variations in the per

formance or the code depending on the deo~der used. 

Under certain circumstances the maximum likelihood de

coder was capable of correcting more than 20% of the 

messages having three or more errors. Under the same 

oonditicns the majority log1o decoder corrected more 

than 1oi of such mess~ges, while decoding raster than 

either of 1t• two eomJ)et1tora. The Berlekamp decoder 

gave the poorest performance, but was still able to 

correct about 5% of the messages nav1ng three or more 

.errors. 

The results· showed variation in the code's -.,. 
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performance when viewed rro11 a sta-t1st1cal standpoint. 
. 

However, each decoder. extracted more error correcting 
' C 

/ 

ability.from the code than-the minimum. promised by 

.algebraic coding theory •. Add1t1onally, the major1t7 

logic decoder was shown to be highly· praottoal for 

decoding the .binary (15,7) BCH code. 
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INl'RODUCTION. 

' ' 

Coding provides a means ror correot1ng errors intro-

duced into data during 1 ts transmfss ion.· This ab1li ty 1s 

measured by the largest number of errors per block of' data 

which a code. is guaranteed to correct. That· number, While 

it 1s one of the key -figures of merit offered by algebraic 

oodlng theory, really delimits the minimum ability oC the 

code. As a practical matter, a code's error correcting 
~ ' ee:'-

ab 1 ·11 t y _ ts influenced by the decoding method used to re-

cover the information. This work is an effort to explore 

through experimental means the nature of this influence in 

a specific case, that of the binary (15.7) BCH code. 

The binary ( 15, ?) BCH code is a linear, cyclic blook_ 

code. It has a block length of fifteen bits, with seven 

1nfol'Y:Jlat1on bits and eight parity check bits. Regardless 
' 

of the decoding method, the binary (15,7) BCH code can 

correct any patter~ of two errors within a block,· since 

it has a minimum distance of five. However, some code-

words are separated from all others by distances greater 

than five. A decoding method taking advantage of this 

fact should offer improved performance. 
- . 

The binary ( 15, ?) BCH oode provides a good subject 
' 

for this work_ because'1.t is amenable to decoding by a. 

variety of methods. 

: .. -

r 

'. 
·--

As it 1s a binary code, 1t can be ·:-· 
.,,, ........ . 
( . 
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.- .'°···decoded by a s1mpl1f1ed version of Berlekamp•s algo-
) 
"' 

. - . 

', 

r1trun< 1>. It yields to maximum likelihood decoding, 

which usually ls 1mpract1oal, w1~h only modest effort, 
--

there being but 128 codewords. Also, it is the only BCH 

code known which is·· one ste:p majori~f logic .deco~able. 
. . ~ 

'• .._::....'.'"~· ~ , \ 

An additional ravorable feature :·of the binary ( 1_.~ o 7) BCH 

code is 1 ts f 1fteen bit block lengtI:i, wh1oh·· is surf 1-
. ' ' . 

eiently short to pe,rm1t single -\~~dewo,rd' containment in a 
. ' . ~..:., , ~ 

. . . \ 

minimum number of computer ,,words. This is important 
,, 

because a study such as this must as a practical matter 

' be computer aided. The computer employed was the Digital 
. . ~ 

Equipme~t Corpo~ation's PDP~8. 
J 

~'. 

\ The overall strategy: 1nvqlve·s,. first, pseudo-random 

generat\On or an infOrma.tion eequence, followed by its 
C ~ 

encoding.· The codeword is transmitted over a binary 
I t; . 

s',mm~tr1c channel with crossover probabilit:, p
0

• It' is 

the??-_ decoded in turn by eaoh of t'he three decoding 

methods mentioned previously. The decoded information 

is compared -w1 th the source sequence. . Records are ·kept 1 

ffe 

h • 

of the number of times each decoder fails to recover the 

transmitted information sequence from the received ·· ' 

message. 

Th-e writing or the program for the PDP-8 which 

aceomplishes the procedure.just outlined was the major 
' 

endeavor of this the
1
sls work. It can pro.cess -roughly 
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nine thousand codewords in less than ten mi~utes, .making 

possible this study on a large statistical sample. 
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BCH CODES ANO BERLEKAMP DECODING 

BCH CODES AND THE BERLEKAMP DECODING ALGORITHM 

BCH oodes·are a olass or linear, cyclic, random 

error oorrect1ng codes. Discovered b7 Hocquenghem( 2) in 

1959. and indepem\ently by Bose and Chaudhuri (J) in 1960, 

they have received wide exposition 1n coding theory 
r 

literature and-have been used in many practical appl1ca--. 
~ . 

t1ons. The decoding technique credited to Berlekamp is 

1nherantly relevant in a generic d1scusslon of BCH codes 

bee·ause of its universal applicability1- The summary 

wh1oh ro11·ows ,includes an outline of the special version 

of the Berlekamp decoding algorithm used in this work. 
,;, 

BCH codes are characterized by the following 

parameters: 

Block length: n • 2• - 1 

Number of par1 ty check d1g1 ts: n - k ' mt 

Minimum distance: d ~ 2t + 1 · 

where m and t- are pcs~ tive integers and t < 2• ~ 1 • ·- They .. 

can correct any pattern or tor fewer errors in a block. 

The generator polynomial ror a BCH code is glven_bJ 

• • • • ••2t - 1 (X)) 
- . . 

' ,, •• ' ., ' • '> . 

,. 

·-
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where m1 (X) ls the m1n1mwn .polynomial ot oe 1, and .1 ta a · 

pr1•1t1ve element or the Ga1Q1S field GF(2m). 

Let····.:· 

( X) + X + X2 xn--1 V = VO v 1 V 2 + • • • • +. V n--1 

represent a transmitted oode veotor and 

+ •••. 
n-1 + r · X n-1 

represent the received oode vector. Define a syndrome 

vectors. with 2t components such that eaoh 
p 

for 1 = 1, 2. • .•• ,2t. The rece1v-ed code vector r(X) is 

the sum of' the error vector -
' 

•••• 

and the transmitted c.-ode vector: 

xn-1 · 
+ en-1 · 

. r(X) =· v(X) + e(X). 

Rewr1t1ng the expression for s1 1~ light or this: 

. · 1 1 
Si • V(ot' _) + 8(0( _). 

.. 

However, each syndrome vector component corresponding to 

the transm1·tted veotor v(X) is zero. This leaves 

1 
·,, 

.1· 

·"t'-· 
: ,., 

. . .. ,: 

• 

" 

'·. 

~·. 
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for 1 = 1, 2, •••• 2t. The s1 , which are oomputed from 

the received code vector, are the known values in a set 
' of equations having the error location numbers as 

unknowns:· 

s + e1 (et) + + ~ n-1) = eo • • • • • • • • • • 8 n--1 oC' 1 

S2 eo + e1(ec2) + + en-1 ( (-c2 )n-1) -- • • • • • • • • • 
,0 

• 

• 

• •••••• 

Although this set of equations does not in general have 

~ unique solution. the solution 11el~ing an error pattern 
' 

with fewest O errors 1s the one sought. c) This solution will 

correctly specify the error location numbers provided 

there are tor fewer errors< 4 >. 
The error correction process entails solution of 

the above set of equations to obtain the error location 

numbers. The latter are the reciprocals of the roots of 

a polynomial, <Y"'·(x) i, referred to as the error location 

polynomial. Berlekamp devised an iterative procedure 

for finding the error location pol7t1om1al, given the 

values of the s1• This procedure, which involves finding 

2t - 1 sets or table values o is applicable to the de

coding of all BCH co.~es. The version of the procedure 

outlined here, which involves finding only t - 1 sets or 

table values. appl1e~ only to .the decoding or binary BCH 

' . 

',, ~· 
,.. ........ , 

' 

8 

., "' ........ ..... 

--~--- ... , .. ,.,,, 
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··, 
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•. 

Set up the following table: 

p 
--

-i 
0 

1 

2 
• 
• 

t 

1 

1 

1 

S1-

0 

0 

-1 

0 

Assuming all row• are filled up to and including the pth 

row, the (p+1) 8 t row 1s oompleted as follows, 

(1) If dp = O. then a"(p+l) (X) = U-(p) (X). 

(2) If dp F 0, find another row preceding the 
p th. sa;r the f th • suoh that the. number 

2f • 1, in the last column of the table is 

as large as possible and <j,F.o. Then 

CTCp+1 >cx> = (l'<r>cx> + dpd1•1x2 <p·f>O"<f>cx>. 

In either case, 1,i+l is exactly the degree or 'ff(t,t+l)(X). 

and 

• . 

( 1) .. ( +1) 
«i,u+1 = 82p+3 + O"' 1 p+ 82µ+2 + 1' 2 p: 8 2p.+1 

.··,.·- ·f 

+ ~ (,1+1) 8 , . 
. + • ~. v 1p+1 r . 2p+)•lp+1 • 

where the ff 1 (µ+l) are the coefficients or ~(µ+l) (X) •. 
• 

,9 
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The value obta1n'ed.. for 1'( t) (X) in the last row or the 

table ts the error location pol,nomial, provided there 

are tor fewer errors~ The reciprocal-of each root of. 

o-<t) (X) 1s ah error location number. 
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THE BERLEKAMP DECODER 

While much w-ork 1s associated with softwa·re 1mp1e

mentat1on of the Berlekamp procedure, the first problem 

1s one of strateg7. It ts ,possible for the program to 
-

mimic precis·ely the procedural s·teps. com:puttng interim 

error location polynomials until finally the correct one 
' ts arrived at. This is an 1ntr1oate, therefore time 

consuming process. Alternately, determination can be 

made in advance of all the error locat1on polynomials 

wh1·oh can evolve from the procedure. These depend on . 

the values of the s1 , and on the particular BCH code 

being decoded. A program, which is written for a par

ticular oode, can evaluate the s1 and select.the oorreot 
• 

error location polyn.omial accordingly. This method 
' 

becomes increasingly advantageous if the number of pos-

sible error looation pol7nomlals ts small. 

In decoding the (15,7) binary BCH code the algorithm 

begins wtth three unfilled table rows. The first un~ 

f1lled row 1s completed based solely on the value or.s1 • 

The value of ~( 2 )(X) in the final table row depends on 

the values of both s1 and s3• The various possibilities 

can be seen in the following table:. 

,;. ... ,.: .. , ,i' 
. ;~·· 

... 

-·- .. ....... 
/ 

' . " .. ~· 

·. ,·· ~.. .. ':::'~.,; 

',..;·· 

....... ~ 
•:···•.,-/. . 

~·· 

.. 

,·. 

· 11 
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p ~ ... . 

--.. + . ' -
0 

1 
',.~. 

J 

1 

' ' . i 

. ,1 + s1x 
n 

·d 
Jl 

1 

(1) forS 1 •0 
(2) for S1 _, O 

0 

o., ( 1) 
1 (2) 

-1 

0 

2 ( 1)~: 
1 (2) 

. s2 is treated as a dependent variable in this discussion 

· because it oan be shown that s2 • s1
2 (5). I{ s1 ,!. o and 

s3 = 0, the error location polynomial ls 

whereas if both s1 ~ O and s3 ~ O, then 

Because these are the only error location polynomials 

~_. which arise 1n decoding the binary (15,7) BCH code, the 

second decoding strategy is selected • 
. , 

This analysis might appear to have overlooked two 

possibilities. First, there ts the case where s1 = 0 and· 

s3 = o. Techn1cal1J, this case gives rise to a third 

error location ·polynomial, cr2 (X) • 1. This indicates no .. ~ ... ~ .... 
-~ 
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errors have been detected. More interesting ts the case 

where s1 = O ~:nd s3 ~ 0, whioh indicates an uncorrectable 
' ' '" error_ pattern has bee,n encountered. To see this, con-

. ' 

· s 1der the terms available ·to the )summing process which . 

spec1f1es s1• S1nee s1 = r(cx). these terms are the non 
· ( 4) 2 zepo elements of GF 2 , or 1, 0(, o( • 14 

•••• t 0( • In the 

qase or S3(7 ,r(oe)), · the available terms are 1, ocJ. oe6, 

.,.9, and oe12 , each available thrice. ~~-Ir only one term is 

selected for summing in each case then, clearly, both s 1 
iP 

and. S:3 -dtffer from zero. This happ~ns when there is 

. error. In addition, no two distinct terms or GF(24) 

one 

sum 

~ 

to zero. Thus, when there are two errors s1 ts non zexo. 

In order for s3 to be non zero while s1 1s zero, three 

or more terms must be summed to get Sl = o. This means 

there are three or more errors. 1.e., an uncorrectable 

error patt.ern. An example will help t~ illustrate the 

latter ease~ Suppose the error vector e(X) 1s given by 
• 

l , 
e(X) = (0,0,0,0,1,0,1,0,0,0,0,0,1,0,0) 

Then s1 1s 

81 = e(oe) = oe4 + oe6 + 0<12 = o. 

However, s3 ror th1S error pattern __ ts 

13 
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There are uncorrectable error patterns·wh1ch, based 

upon the values of s1 and s3, appear to be correctable. ··· 

In these .instances correction 1s. attempted-. However, 

the decoded 1nrormat1on 1s then compared with the trans

mitted information. which has been retained· for checking 
-

purposes.· Should a d"iscrepancy exist, the decoder is 

charged with a failure to decode sueeessfully. 
-

While the preceding d1scuss1on outlines general pro-

~edures for the Berlekamp decoder, that which follows 

describes 1t with specific references to the program. 

Comments included 1n. the program itself should be re .. 

ferred to for more detail. In addition, a flow chart 

for the Berlekamp decoder is shown in Figure 1. When a 

process shown on the flow chart is associated w1th a par

ticular starting address.· the latter is g1 ven 1n paren-,, 

thesis near the bottom or the chart symbol for that 

process. 

The Berlekamp decoder begins at address DECOD2 with 

the clearing of storage locations and 1n1t1al1z1ng of 

counts~· The· first task is computation of s1 and s3• 

Subroutine SCOMPUT handles this, working in turn on the 

parity check and information portions of the received 

· message. SCOMPUT uses tables ,TABL91 and TABLSJ to selec-
. · · 14 

t1vely add terms 1 through~ to form s1• and terms 1, 
· J 6 9 12 
,( ' ot ' CIC • and 0( to form S.3' according to thr non zero 

14 

J 
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Begin 
(DECOD2). 

Compute 

s1 and S3 
C . 

, (SCOMPUT) 

no 

Compute 
S2 

(S2COMPUT) 

Which of ot, oe2 , ••• 
• , o( 7 are roots 

2 
of 

1 + S1X+ S2X 

yes· 

ERLOCl 

B 

,_ 

f 

,,.J, 

yes 
>------! 

no 

, 

' 2 
Which of °'• ot , ••• 

" i lit:f 7 are roots of 
l+S1X+ (S3/S1 +S2)x2 

ERLOC2 

Continued On Next Page. 
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Find error location 
numbersG Correct 

the received information 
(CORRECT) 

Is 
this in

formation the 
same as that which 

was tra.nse:i 
mitted.? 

yes 

Finish 

Declare the 
information 
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bits of the message. This process is .. facilitated because 

the ta·bles represent these terms as sums of the rollowing: 

1. ot, 1(
2 , and~J. This additive form for the terms from 

GF{24) permits summing b:y a .logical excluSive or sub

routine, XOR. 

Results of the addition are screened -at address OUT. ······· 

S1 .. is tested first. If it is zero, s3 ls immediately 

tested. If s3 is zero, the program branches to address· 

HOME. where the information portion of the message is com-

pa.red with the transmitted information. If s3 1s non 

zero, the counter wh1oh keeps track of ·unsucoessful de-

codings for the Berlekamp decoder 1s incremented. 
t 

If s1 is non zero, s2 1s immediately computed. since 

it will be needed regardless of the value of s3. This 

computation begins at location S2COMPUT. Entries 1n 

TABLS1 and TABLS3 contain, 1n addition to the additive 

representatio~ already ment1oned 0 a multiplicative rep

resentation of the terms from GF(24). The latter 1s a 

binary number between zero and fourteen in the four most 
-

s1gn1f1cant bits of ea.ch table entry. To determine s2 • ~-

TABIS1 is searched by subroutine SFORM to find the entry, 

corresponding. to the additive form of s1 •. The multi-
,_ 

pl1oat1ve portion of this table entry· is the output of 

SFORM. By doubling this nwa.ber, which is actually an 

exponent, 81 ts ·squared. The result 1S:·-~oprocesJed to 

17 
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reduce it to its s.1mplest form, a nUJ1.ber between one and 

fourteen. Th1B number is s2 1n mult1pl1cat1ve form, 

which ls stored by the instruction at address cc. 
s3 ts tested next. Depending on its· value, the pro-

, 

gram branches either to ERLOCl or ERLOC2, the·reby select

ing one of the two error location pol7nom1·a1 ealoulat1on. 

routines. Each of the latter calls subrout1ne·ERLOC, 
2 J 7 . where ot, oe -, cc. • • ••••• , 0( are substituted in turn for 

) 

case of ERLOC1 ~ 

This 1s the entire polynomial in the 

For ERLOC2, the remaining _(S3/s1)x2 term 

is computed separately and added to the output of EBLOC. 

When the result or any such -oomput~tion 1s 1, an error 

location has been found, and the contents of FACTOR are 

set to 0001_8 • Otherwise, FACTOR 1s reset. 

The oorreot1on process is handled by subroutine 

CORRECT. Only the f 1rst seven mess,age bi ts are corrected, 

stnoe these ~lone constitute the information. Correction 

is done on a bit by bit basis, depending on the current 

value of FACTOR, wh1oh is recomputed for each bit. For 

example. recalling th&t the reciprocals of error location 

polynomial roots specify errors, o( is substituted into 

the error location polynomial to ascertain whether the 

r 14 bit ts in error. 

Following oorreot1on the program transfers to ad .. 

dress HOME, where the .corrected information 1s compared 

~-
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•1th that which was transmitted. If the correction pro·c- :· 

ess has left the result in error, the Berlekamp de-coder. 

ta _charged w1 th failure to decode successfully. 
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MAJORITY LOGIC DECOD-ING 

... THE MAJORITY LOGIC DECODING ALGORITHM 

l 

Early work 1n majority logic decoding was done by 

.Reed< 6>, Muller(?), and Massey<B>. Today this decoding 

technique is widely known and understood. It depends on 

the extstenoe of a special set or parity check sum equa

tions, written either 1p terms or the error vector bits 

or the received mes$age vector bits. This set of equa-· 
' 

tions must be orthogonal in the sense that each equation 

cheeks a set of bits d1fferent···from those checked by the 

other equations, with the exception that one bit is· 

. cheeked by all the equations. Such a set of equations· 

is said to be orthogonal on the bit which is checked by 

each equation. For a particular code, there must be at 

least twice as many equations in the set,,numerioally 

speaking, as the number or errors the code can correct. 

In the case of cyclic codes, such as the binary (15,7) 

BCH code. the existence of a set of equations ~rthogonal 

on any one bit.ensures that sueh a set can be found for " 

·any other bit. This is due to the cyclic symmetry of 

such codes. 

The binary ( 15, 7) BCH code is the only one-ste-p 

majority logio decodable BCH code known. This property .. .. 
. ·~ ..... •· 

permits decoding with. a single major1t·7 gate, 

20 
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considerably s1m.pl1fy1ng the computer program required to 
• 

implement the decoder •. In addition, the majority 1og1c 

decoding scheme using_the rec®ived codeword, called~ 
. . . 

Type II decoder, was chosen for this work because it 

promised a less complicated 1Jiplementat1on __ 'Which would 

execute raster on the computer. 

The Type II decoder relies on the fact that parity 

check sums or certain received bits are equivalent to 

check sums of error bits. · Certain sets of the former 

can be round which are orthogonal on a given error bit. 

To illustrate this, let v, e, and r be n element trans~ 
. . 

m.1tted, error, and received code vectors respectively,. 

Let w be any veotor 1n the row space of H, the parity 

check matrix~ Then 

rw = ( v + e ) w = vw + ew. 

But vw = O because v is a oodeword. so that 

• 

rw = ew, 

where rw is a par1 t7 oheck sum. The problem of finding 

a set of parity check sums orthogonal on en-l 1s now re

duoed to f 1nd1ng a set of' vectors w { 1), 1 = 1, 2, ••. J, 

in the row s-pace of H, such that the set of check sums 

A1, A2 , ••• , A J ts orthOgonal on rn-l' where A1 = rw( 1 ), 

and J ror a one-step majority logic decodable oode 1s 

(r .... -..... 
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numertcally·one. less than the minimum distance. Thus, 

·-· .. ror the binary (15,?) BCH code, four check sums are 

required. 

To ft_pd the w(i)·ror.the binary (15,7) BCH code the 
,~.... I' i 

parity check matr1xH 1s needed: 

ho 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 

h1 0 1 0 0 0 0 0 0 0 1 1 0 1 O 0 

h2 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0 

h:3 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 
H = = 

h4 0 0 0 0 1 0 0 0 1 1 0 1 1 1 0 

h_5 0 0 0 0 0 1 0 0 0 1 1 0 1 1 1 

h6 0 0 0, 0 0 0 1 0 1 1 1 0 0 1 1 

h7 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 

The w< 1> can now be found b7 1nspectton: 

w< 1) - h3 ='(o,o,o,1.o,o,o,o,o,o.0,1.1.0,1) -
.... < 2) = h1 + h5 = (o,1.o,o,o,1~0,o,o,o.o,0,0.1.1) 
.<3) - ho+ h2 + h6 = ( 1, 00100000001gO90 L' 0' 0' 0., 0 i) 0 t 1) -
.<4) ~ - h7 = (o.o,o.o,o,o,0,1,1,0,1,o,o,o,1) -

These vectors specify the parit1 check sums of the 

rece 1 ved bi ts : 

}" 
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A2 = r1 + r 5 + r13 + r14 

A3 = ro+ r2+ r6 + r14 

A4 • r7+ ra+ r10 + r14. · 

,r 

This set of equations 1s orthogonal on r 14• Two errors 

1n bits other than r 14 can result in at most two equa

tions summing to 1. If r 14 is 1n error, and at most one 

other received bit is in error, then at least three of 
~ 

the equations will sum to 1. Thus, the decoding rule 

says r 14 1s in error only when a clear majority of the 

check sums sum to 1. This bolds provided there are J/2 

or fewer errors. 

Fig11re 2 shows a Type II majority logic decoder for 

the binary (15,7) BCH,code. Initially, gate 1 ts on and 

gate 2 ls orr·. The received codeword is loaded into the 

shift register so that bit r 14 is 1n stage r 14, bit r 13 
1s in stage r 13 • and so forth. Gate 1 ls then turned 

orr and gate '2 turned on. The logical exclusive or of 

bit r 1~ and the majority gate output, whtoh ts the func

tion of the check sum's sum described above, is the cor

rected version of r 14. This appears immediately at the 

output, and on the input line to stage r 0• The shift 

register 1s then shifted one place to the right. Be,._~ 

cause the oode 1s cycl1o. the shifted data should also 

be a codeword. In general, parity is, ,rechecked by again . ' . . 
,, 
~~ I " 

solving the equations orthogonal on r 14 _ j for 
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j = 1, ·-·., · (k·- 1). In the present case, k = 7, and the 

first output followed by the out·put data stream over six 
' successive shifts is the corrected 1nformat1on. 
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THE ~JOHITY LOGIC DECODER 

The ma·jor1ty logic decoding algorithm described 
0 .. 

above was implemented on the PDP-8, beginning mt address 

DECOD1. A flow chart for the program, w1 th address ref

erences, 1s given 1n Figure J. At the outset, counts 

u. 

and addresses are 1n1tial1zed. The shift reefster (actu~ 

ally sequential storage looat1ons) '1s cleared. At ad

dress-qONTIN, the information portion of the received 

message is loaded into the shift register. This 1s fol

lowed by the loading of the parity check portion at ad

dress CNTINU. The parity oheok sums mra formed starting 

at adcfress NEXT. The oheok sum totals are added together, c3 
and the result, a number between zero and four, is stored 

at address MAJ. When the process is complete, this num-

ber is tested. If it exceeds two. the message bit stored 

at a,ddress REG14 (which 1s r 14) is inverted. At address 
r' 

SHIFT a corrected version of the message 1s assembled, 

one bit at a time. The routine which shifts the shift 

"register starts at address MORE~ When all the information 
'" 

bits have been subjected to the correction process. the 

corrected information 1s compared with the transmitted 

information, whloh has been retained for checking pur

poses. If the transmitted information has not been re

covered by the decoding process, the majority logic de

coder is charged with a failure to decode successfully. 
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MAXIMUM.LIKELIHOOD DECODING . . 

THE MAXIMUM LIKELIHOOD DECODING ALGORITHM 

Maximum likelihood decoding 1s conceptually simple 

and straightforward. Compared with tbe deterministic 
• < 

techniques already discussed, maximum 11kel1ho_od decod--

1ng is probabilistic in nature. It usually serves as a 

way to compare the performance of decoding algorithms 

more amenable to implementation than itself • 
. , 

Maximum likelihood decoding requires computation, 

given the received sequence X, of the conditional prob~ 

ab1·11t1es p(X/V1), for each codeword v1 , where 

1, = 1. 2, •••• n. Vj 1s selected as the transmitted 

codeword 1:f p(X/V j) > p(X/V 1 ) for all 1 ~ j. If the prob-

ability of transmission is the same for each codeword. 

the decoding rule selects as the transmitted codeword the 

one which ts least distant from the received message 

sequence. Thus, the Hamming distances betwe.e.n the re~ 
.. 

_ oe1ved sequence X and all codewords v1 must be calculated. 

For example, 1n the case of the binary· (15,7) BCH code 
i I , 

which has 27 = 128 codeW'ords: 128 distances must be 

calculated. 
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THE MAXIMUM LIKELIH.90D DECODER 

The maximum likelihood decoder ts depic,ted in flow 

chart form 1n Figure 4. It beg1.ns at address DECODO. 

Initially, tables are established of each possible in

formation sequence and 1ts associated parity oheok bits. 

There are separate tables for information and parity 

b~cause the word length of the PDP-8 is only twelve bits, 

not long enough to acoomodate a fifteen bit codeword 1n 

a single memory location. A marker is set to indicate 
,. 

the tables are complete. 
. 

When the maximum likelihood 

decoder is used the second (and succeeding) times, the 

marker causes a branch around the table setup routines 

to address MXLHD. This is poss.ible, sinoe the tables 

are used in a read-only mode. 

At address MXLHD further initializing 1s done to 

prepare looat1ons to receive the d1stanoe calculation 

results. Starting at BACK1 the distances are computed 

and stored. Actual computation ls done by subroutine 

PROCED, the output of which is the Hamming distance 

between the received message and a particular codeword 
··-

e:x:pre ssed as a binairy number. At address AGAIN the table 
'' or distanoes just compiled 1s scanned for its smallest 

entry. This procedure is complicated by the· pos·S1b1l1ty ,_' 

that there might not exist a unique smallest entry. 

Should this cond1t1on be deteoted, the program transfers 
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to address ERRBELL, where the max1m11m likelihood decoder 

is charged with failure to deoode successfully. This is 

done because f$1lure to.find a unique smallest table ~ 

entry means two or more codewords have equal probability. 

·· If a unique smallest table entry is found during the 
't'-

• ,n ,i'',,,.,_,.._~ search procedure, the 1nfori11ation portion of the cor-

responding codeword is retrieved starting at address 

FINISH. This corrected information 1s compared with the 

transmitted 1·nformat1on which has been retained for 

checking purposes. If a disorepanoy is found, the max

imum. likelihood decoder 1s charged with failure to decode 

successfully. 
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THE SUPERVISORY PROGRAM 

A means is needed to oreat_e and encode information 
" 

sequences, create errors and inject them into the message 

. sequences, and supervise the various decoding processes 

and record the results. These services are provided by 

the superv1s.ory program, a flow chart for which 1s shown 
I' 

in Figure 6. 

Information sequences are created by a seven bit 

maximum length shift register. This device, shown in 

Figure 5, produces all seven bit sequences pseudo

randomly, ex~ept for the all zero sequence. Repetition 

begins after 127 different information sequences. This 

-
~ +~-
~ 

" ~ 

4 ~ 
' .. 

. 
' 

. 

.... 
IREGl IREG2 !REG) IREG4 IREG5 IREG6 !REG? i,r 

• 

Figure 5. The Information Register 

1nrormat1on generation process starts at address RUCK. 

The 1nformat1on register (IREG1 through IREG7) is 1n1-
.. ·-· tially loaded with all 1°s. These always form the first 

1nformat1on sequence. The information register is then, 
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shifted, w1th outputs from stag~s three and seven added 
- . 

to form the input to the first stage. The feedback 

connections correspond to the primitive, irreducible 

polynomi&l 1 + x.3 + x7. which guarantee-a the maximum 

length properties or the shift register. (9) 

Each information sequence is encoded in systematic 

form using a k= 7 stage shift register encoding circuit, 

which 1g connected according to the parity polynomial 

h(X) = 1 + x4 + x6 + x7. Codewords are formed,. starting 

at address DATACOM. 

Beginning with address ERBADD. each codeword is 

first stored in its original (or transmitted) form. and 

then corrupted. The corruption process relies on the 

use of six independent maximum length shift registers, 

each seventeen stages in length. The content. of the last 

stage of each register is designated as its output. The 

probability of any register's output equalling 1 is very 

close to 1/2, differing only because no register ever 

contains .all zeros. By logical anding together q such 

outputs, all of which are independent, a variable is 

obtained which has the value 1 with the probability 
. q 
(1/2) • For example, letting Y be the variable, for 

q = 4, we have 

:: 

.. 

4 p(Y= 1) = \(1/2) = ·1/16. 

-· 
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The number or outputs to be- used, q, 1s set up in binary 

on the PDP .. 8 switch register before the program 1s 

started. 

The technique just described allows generation of 

a random error with prespeo1f1ed pr.o.}?ab111ty. The value ........ .. 

of this random err-or ( either O or 1) -1s recalculated for 

eaoh bit in the codeword •. The si:x: maximum length shirt 

registers are eaoh shifted once prior to a caloulat1on. 

This procedure 1s handled by subroutine ERCMPr, whose 

output is a seven bit error sequence for the information, 

and an eight bit error sequence for the parity portion of 

each codeword. These error sequences are added to the 

appropriate r,ortion of the codeword by the XOR (logical 

exclusive or) subroutine. The resulting message, which 

now includes oorrupt1on, is then decoded by each of the 

three decoders. 

It 1s important that errors be ore!\,ted on a random 
"' ta.sis. This is achieved by- c1ollng the six maximum 

length shift registers, which actuall7 are pseudo-random 

generators, only once per data run. "' The correlation or 
a seventeen stage maximum length shift register used in 

this manner is essentially zero, differing by only one 

part 1n 131,070.(lO) Earlier in the course or this work, 
; 

- shorter maximum length shift registers (having nine 

stages) were used, with several cycles per data run. 
•, ,T • • 

38 

., -~ 



.; 

...... _! 

... 

;' •)• 

:\, 

This effort, though unsuccessful, created awareness or 
= 

the problem of 1n1 t ial bias Which tends to interfere 

•1th randomness • 

Initi~l bias is most easily seen when two or more 

registers start with identical contents. This afCects 

the result when outputs are logical anded together be

cause the outputs of two or more registers will remain 

identioml despite ~hift1ng. Every effort is made. of 

course, to randomize the initial loading of the six 

error registers. and no registers begin wt th t'he same 
,(-

- contents. However. a problem remains. •,(' 
• ,.., ,"\• ~ I '¢} 

'!'he seventeen stage maximum length shl'ft re.g1sters 

each have feedback from the third and sev®nteenth stages· 

(according to the pr1m1t1ve, irreduc.ible polynomial 

1 + xJ + x17) added to form the input for the f 1rst stage. 

This means the output value_s for th"e first fourteen 

shifts are solely determined by the initial contents or 
the re~iste~s. To the extent the initial loading is not 

random, a bias 1s introduced. The effect of this bias 

is minimized by not recyol1ng the set of Shift registers. 

In addition, mo~®·than one set of initial shift register 

contents is used, and the results are averaged. 

The 1n1t1al contents of the six error registers are 

loaded from the same paper tape used to load the program., 

and the 1ntorlllllt1on generating re·gister always begins 

--
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with all 1·•a. By thus fixing the initial cond1t1o~s it 

is possible to repeat data runs, thereby checking the 

results. 

The supervisory program keeps records of unsuc

cessful decoding ~fforts for each decoder. These .results 

are stored at addresses ERBSTO through ERRST2. Another 

portion of the supervisory program determines and records 

the total number of error vectors whose weight exceeds 

two. This routine begins at address AZURE!. It does 

·not affect" the encoder o~ de.coders, and serves only as a., 
~{ ~~ 

monitor. 
• 
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EXPERIMENTAL DETERMINATION OF DECODING ABILITY 

· The binary (15.?) ·BcH code is guaranteed to correct 

two errors in a fifteen bit message bl9ok. This 1s the 
' 

minimum ability of the oode. An 1nd1oat1on of the 

.. b.1nary ( 15, 7) BCH code's actual ab111t7 to correct errors 

1
• is presented here. 

·,,..,,.,. ·• 

:~ 

·t~ . . f 

·":'•. 

The total number of failures to decode ·successfully 
---

1 s made available QT the program for each decoder at the 

conclusion of a data run. An estimate of the expected 

number of decoding failures is needed to cheek the val1d-

1ty of these results. To this end, it ts possible to ,, 

calculate the expected number of decoding failures by 

making the assumption that addition to a codeword of any 

error vector having weight exceeding two w111·cause such 

a failure. This is reasonable, sinoe the code is 

guaranteed to oorreot only two or fewer errors per blook. 

The addition of errors to codewords, in the manner 

prev1ous_ly discussed, simulates the action o~ a binary 

symmetric channel with crossover probability Pe = (1/2)q 

( recall that q is specif 1ed by the program user-). The 

expected number of decoding failures 1s, function of p
8

• 

For example, let Pe= 1/64, and let Pt be the probability 

41 
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that within- a.block of fifteen bits, three or more will 

be 1n error. Then 

Pt = 1 - ( p( 0) + p( 1) + p( 2)) 

where p(O), p(1), and p(2) are the probab111t1es that 

zero, one, and two bits respectively w111 be in error 

w1th1n a fifteen bit block. 'l'hese probabilities are 

easily caloulated: 

p(O) = {~~(6)/64)15 - 0.7896021 -
p(l). (\5)(1/64)(63/64) 14 - 0.1880005 -

(1~ ( 1/64) 2 ( 63/64) lJ p(2) = - 0.0208888 -

so that 

Pt = 0.0015086. 

/-
~ 

The number of codewords prooessed per data run was 

chosen to ensure &~inst recycling of the error registers. 

The seventeen stage maximum length shift registers permit • 

2 17 - 1 or 131,071 shifts per cycle. Each shift specifies 

the error input for one codeword bit. Since 

(1)1,071/15) = 87)8.066, 

"'"·c 

there are 8738 fifteen bit codewords per data run.- The · 
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expeote.dr number or error vectors having weight exceeding 

· two during a .data run of this length is · 8?38( Pt). For 

Pe= 1/64, 87J8(0Q0015086) or about 13.2 such error 

vectors oan be expected. This number varies, of course, 

with changes 1n the crossover probability. The right

hand column of Table 1 shows results of such calculations 

based on the various crossover probability values for 

which data was obtained. Since the code is guaranteed 

to correct only two or fewer errors per block, these 

results specify an upper bound on the expected number of 

dee.oding failures for each crossover probability. This 

serves as a valuable guide to the credibility of the data 

obtained experimentally. 

The program analyzes eao·h error veotor as 1 t is 

formed. Those vectors having we1'ght exceeding two are 

counted. It is possible. therefore, to compare minimum 

and actual performanoe of .the decoders straightaway. 

This oomparitive data is given in Table 1, above which 

the binary symmetric channel 1s depicted. The values 

tabul~ted are averages from three data runs, each or 
wn1ich w~s made with different initial error register 

contents. Figure 7 displays this same compar1t1ve data 
-· i ,. 

graph1ca·l1y. 'The· probability of decoded error plotted 
;,> ~. ' 

, . 

on the ordinate is the ratio of unsuccessful decodings. 

to the total number oC .message~ decoded. The probability 

that transmission over the channel Will occur without 

4) 
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1/64 

1/32, 
' 
,I . .. . 

; 

1/16 1 

' I 

.. ··. • ... 

: 

1/~ 

.. ,·. 

0 
1 - Pe 

·O 

1 
1- Pe 

·1 

The binary symmetric channel 

Unsuccessful Decoding Attempts Error Vector Data 
' . . . .. . . .- -· . 

:: 
(, 

' 

:; Berlekamp Maximum . Majority Error 
Vectors 

Likelihood Logic Decoder ,.. Having 
- Weight 

Decoder Decoder ~3 

7.J 9.J 9.7 

" 64.o ?4.7 84eJ 881P7 
.. - . 

.. 

411.0 468.J 516.0 54407 
•· . . ··-

.... -•·-· .. 

202303 2226.7 237907 2496.J 
........ - . ·- .. 

Table 1. Experimental Results and 
. Expected Error Vectors 

With Weight~ J . 
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Vectors 
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~rror, 1 - Pe~ for each bit ls plotted on the abscissa. 
' 

,, Referring to Table 1, in all instances the decoders 
u 

were successful in recovering the information from some 
-· 

messages having more than two errors. With crossover 

probabilities o~ 1/J2 and 1/16, for example, the maximum 
.. : \ 

likelihood decoder recovered the information in more than 

23% of the messages having three or more errors. Even 

the Berlekamp decoder recovered the information 1n at 

least 5% of the messages under the same conditions, and 

recovery by the majority logic decoder exceeded 13%. 

Thus, when viewed from a statistical standpoint, the 

ability of the code to correct errors is a function both 

of its structure and the decoding algorithm employed.· 

The enhanced error correcting ability of the maximum 
"' 

likelihood decoder is attributable to the fact that not 

all codewords have only minimum distance -separation 

from all others. In some of these cases, the probability 

p(X/V1 ) computed by the maximum likelihood decoder will 

still be greatest for the correct sequence v1 , despite 

the presence of three or more errors in the message.. ,, 

The decoder will correctly select the transmitted code-

word in these cases. 

Those elements which contr1bm,e to the majority 

logic decoder's ability to correct some patterns of three 

or m(?re errors are more. veiled. Recall first the choice 
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or vectors from the row space or parity check matrix· 

H, such that rw(i) = ew(i) for 1 = 
0 

.. 

1, 2, ••• , J. This 

shows the parity check sums A1 used in the majority logic 
..,. 

decoding process, written previously in terms of the re-

ceived vector, can also be expressed in terms of the 

error vectors. Thus· 

A1 - e3+ ell+ 8 12 + 8 14 -
-~~-~~·"· . . : 

A2 - el+ e5 + 8 13+ 8 14 
.. :); ... -

.. 
A3 - eo+ e2 + 86 + 8 14 -
A4 = e7+ ea + 8 10+ 8 14 

,, 

Notice that errors in positions e4 and e9 do not 

enter 1nto the process of check sum computation for the 

correction of bit 14. In other words, the process is 

blind to errors in these positions. Additionally, 

oertain pairs or errors are self canceling. For example, 

if e0 and e 2 are simultaneously 1 (and e6 and e 14 are 0), 

check sum A3 still sums to zero. 

The two mechanisms just outlined acting 1n concert 

can cause the 1J&jority logic decoder to render a suc

cessful decoding even if more than two errors exist. 

Consider, ror example, the following three error s1t

ua.t1on: Suppose e(O), the unshifted error vector, 1s 

given by 

-·co) < . > 
8 = 0 t 1 t 1 t O • 0 t 1 t O t O t O t O t O t O t O t O I O ·• 

., . .:.:~: 
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Because bits e5 and e1 are 1, A2 is o. In raot, only A.3 

sums to 1 in this case (this 1s due to e2 ). Since the 

majority result 1s zero, no change 1s made to e14• Next 

the vector ts shifted once to obtain e< 1>. The check sum 

· results for this and subsequent shifts are given below. 

Only cheek sum totals of 1 are listed: 

e(l) = (0,0,1,1,0,0,1,0,0,0,0,0,0,0,0), A1= 1 

(2) 
e = ( O, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0) , A1 = 1, A4 == 1 

e ( .3 ) = ( 0 , 0 , 0 , 0 , 1 , 1 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 ) , A2 = 1 , A4 = 1 

(4) 
e = ( O, 0, 0, 0, 0, 1, 1, O, 0, 1, O, O, O, O, 0) , A2 = 1, A .3 = 1 

e CS) • ( O, O, 0, O, 0, O, 1, 1, O, O, 1, 0, O, O, O) , A.3 = 1 

e( 6) = (0,0,0,0,0,0,0,1,1,0,0,1,0,0,0), A1 = 1 

The actions of error cancellation (in e< 0>, e< 1>, 

and e< 6)) and error blindness (in e< 2 >, e{J>, and 

(5) 
e ' 

(4) e ) 

have combined in such a way that 1n no case do three or 

.more of the cheek sums sum to one. Because or this, none 

of the information bits 1s altered. Since the 1nform-

at1on portion of the message was without error to begin 

with (refer to e(O)), the majority logic decoder is 

credited with a successful decoding. 
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It is more d1ff1eult 1n the caae of the Berlekamp 

decoding algorithm to identify specific mechanisms which 

promote correct decoding in the presence of more than 

two errors • However, as shown b7 the ex~r1m.ental 
---- -. 

results, there are circumstances where thzee or more 
. 

errors can exist without disruption of the decoding 

process. The following example illustrates this point. 
, .. 

Consider transmitted, error; and rec.e1ved vectors 

given respect1vel7 by the following: 

v • (o,1.1,0.0,1,1,1,0,o,1,o,o,o,o) 

e = (1,1.0.0.o.o,o,1,o.o,o,o,o,o,o) 

r • ( 1 • 0 • ~I. 0 • 0 f' 1 • 1 • 0 f O f O f 1 f O • 0 , 0 ' 0 ) 

From the received vector s1 and SJ can be found as 

follows: 

81 • 1 + e<2 + o(5+ 0(6 +0(10 = GtJ 

SJ • 1 + o< 6 + 1 + o{.3 + 1 • Clf 8 

Based on these values, (s3;s1 + s2) • -<9. · · Tabulated 

be1ow are the results found by substituting 0( through O(? 

for X in the error location polynoa1al:-'>- ·t 

~: 
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S2)X2 
-~·.i1·-

X S1X + (S3/S1 ·+ 
- C7 

CIC oc 4 + 0(11 

" 1 
·~. 

oe2 oc5 + 13 
OC' ~ 1 

:,,!,~' . 

0() 0(6 + 1 " 1 .. 

D(4 0( 7 ·+·ot2 

" 1 

0( 6 cc 9 + 0( 
6 

~ 1 ... ~ ,·· 

o( 7 0(10 8 

" 1 
., l +oe 

Because (s1x + cs3;s1 + s2 )x2 ) -# 1 for X • °'• oc2 •••• «?. 
no errors are specified 1n the information bit positions, 

oc14 through o(8. wh1oh are checked by subStt tut1ng these 

values for X. However, since these bits were transmitted 

error free (refer to the error vector above) the 

Berlekamp decoder 1a credited with a successful decoding • 

so 
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The time required for each decoder to process 4,096 

·i ·~--· codewords was measured. The results, presented in Table · 

.:i:..,.: ._1 ·:,,..: .. ~ 
• _,. • •. ,,.· •'Jw-• 

· 2, serve-as a guide to the relative practical me·itts of 

each deood1ng scheme. In each case, program optim,1.zation 

oould reduce the running time slightly. In addition, 

fairness requires mention of the considerable penalty 

imposed on the maximum likelihood decoder by the twelve 

bit word length or the PDP-8, although this was an 

impediment for the other decoders as well. In.each case 

p8 wss. 1/16, causing roughly one error per message, on 

the average. 

Time to Decode Deood1ng Rate Decoder 4096 Blocks (information bits/sec) 
. -

.... ._ .... -~ 

Maximum 
Likelihood 1_57 sec • 182. 6 

. - . ·-· .. 

Majority 
6.5 4411.1 Logic seo. 

. -·· 

Berlekamp . 18 seo. 159209 

Table 2. Decoding Speed • 

. ,\'J~. 
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, SUMMARY AND · CONCLUSIONS 

This work demonstrated the ability of the binary 

(15,7) BCH code to eorrect in excess of two errors per 

message. Th1s ability was seen to be related to the 

decoding algorithm used to recover the information. 

Although it performed best, the maximum likelihood de~ 

coder was much less err1-c1ent in terms of running time 

than either or its competitors. The Berlekamp decoder 

twas fast, though least capable of recovering information 

from me~sages having three or more errors. The majority 

logic d~ooder was impressive in recovery of information, 

and 1n addition had the best performance ln terms of 

running time. 

With the advent or commercially available micro- __ 

processors, results such as those obtained here could be 

important in the selection of codes and decoding schemes 

to be implemented by these devices in a wide variety of 

praotlcal applications. Microprocessors, after all, are 

much like the minicomputer used· ··1n;;this work, the key 

differences being slower speed (on the bad side) and 

vastly reduced size and cost (on the good side). Based 

on the results obtained 1n this work, for example, the 

majori_ty logic decoder for the binary ( 15, ?) BCH code 

would be the best choice in a microprocessor system. 
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- It decodes faster while requiring less stora-ge space than · 

e1 ther of the other decoders. This 1s important because 

the m1oroprooessor program might be stored in a read only 
u memory of limited size. 

The fact that this work treated just one oode makes 
• 

. p 

generalization difficult. T·he results, however, suggest 

the po~sible existence or codes whose performances viewed 

from a stat1.st1oal standpoint may differ signif ic~ntly 

from the minimum performances predicted by alg~bra1c 

coding theory. To the extent these d1frerences may be 

advantageously utilized in an engineering situation, they 

are important. At the least, there should be an aware

ness of their existence. 

The considerable time required to write and debug 

the computer program used in this work, which ult1Dl&tely 

permitted examination of but a ~ingle code, suggests the 

need for analytical techniques to f'ao111tate similar 

1nqu1r1es into other codes and decoding methods. Such 

techniques would permit more accurate statistical 

.,. · characterizations of specific code-decoder systems than 

those now readily derivable. 

,. 
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