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Abstract

For decades, a great deal of nonlinear optimization research has focused on modeling and
solving convex problems. This has been due to the fact that convex objects typically
represent satisfactory estimates of real-world phenomenon, and since convex objects have
very nice mathematical properties that makes analyses of them relatively straightforward.
However, this focus has been changing. In various important applications, such as large-
scale data fitting and learning problems, researchers are starting to turn away from simple,
convex models toward more challenging nonconvex models that better represent real-world
behaviors and can offer more useful solutions.

To contribute to this new focus on nonconvex optimization models, we discuss and
present new techniques for solving nonconvex optimization problems that possess attrac-
tive theoretical and practical properties. First, we propose a trust region algorithm that,
in the worst case, is able to drive the norm of the gradient of the objective function below a
prescribed threshold of ε ∈ (0,∞) after at most O(ε−3/2) iterations, function evaluations,
and derivative evaluations. This improves upon the O(ε−2) bound known to hold for some
other trust region algorithms and matches the O(ε−3/2) bound for the recently proposed
Adaptive Regularisation framework using Cubics, also known as the arc algorithm. Our
algorithm, entitled trace, follows a trust region framework, but employs modified step
acceptance criteria and a novel trust region update mechanism that allow the algorithm
to achieve such a worst-case global complexity bound. Importantly, we prove that our
algorithm also attains global and fast local convergence guarantees under similar assump-
tions as for other trust region algorithms. We also prove a worst-case upper bound on
the number of iterations the algorithm requires to obtain an approximate second-order
stationary point.

The aforementioned algorithm is based on techniques that require an exact subproblem

1



solution in every iteration. This is a reasonable assumption for small- to medium-scale
problems, but is intractable for large-scale optimization. To address this issue, the second
project of this thesis involves a proposal of a general inexact framework, which contains
a wide range of algorithms with optimal complexity bounds, through defining a novel
primal-dual subproblem and a set of loose conditions for an inexact solution of it. The
proposed framework enjoys the same worst-case iteration complexity bounds for locating
approximate first- and second-order stationary points as trace. However, it does not
require one to solve subproblems exactly. In addition, the framework allows one to use
inexact Newton steps whenever possible, a feature which allows the algorithm to use
Hessian matrix-free approaches such as the conjugate gradient method. This improves the
practical performance of the algorithm, as our numerical experiments show.

We close by proposing a globally convergent trust funnel algorithm for equality con-
strained optimization. The proposed algorithm, under some standard assumptions, is
able to find a relative first-order stationary point after at most O(ε−3/2) iterations. This
matches the complexity bound of the recently proposed Short-Step arc algorithm. Our
proposed algorithm uses the step decomposition and feasibility control mechanism of a
trust funnel algorithm, but incorporates ideas from our trace framework in order to
achieve good complexity bounds.
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Chapter 1

Introduction

1.1 Motivation

For decades, the primary aim for many researchers working on solving nonconvex smooth
optimization problems has been to design numerical methods that attain global and fast
local convergence guarantees. Indeed, a wide variety of such methods have been proposed,
many of which can be characterized as being built upon steepest descent, Newton, or quasi-
Newton methodologies, generally falling into the categories of line search and trust region
methods. For an extensive background on such ideas, one need only refer to numerous
textbooks that have been written on nonlinear optimization theory and algorithms; e.g.,
see [1, 3, 23, 46, 57, 60]. Worst-case iteration complexity bounds, on the other hand, have
typically been overlooked when analyzing nonconvex optimization algorithms. That is,
given an objective function f : Rn → R and a sequence of iterates {xk} computed for
solving

min
x∈Rn

f(x), (1.1)

one may ask for an upper bound on the number of iterations required to satisfy

‖∇f(xk)‖2 ≤ ε, (1.2)

where ∇f : Rn → Rn is the gradient function of f and ε ∈ (0,∞) is a prescribed constant.
One may also go further and ask for an upper bound on the number of iterations required
to satisfy a second-order stationarity condition.
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The desire to design fast algorithms is obvious. Analyzing their worst-case iteration
complexity, on the other hand, might seem cumbersome and unnecessary to this goal.
After all, this is only one factor of the overall performance of an algorithm and it is not
always clear that such worst-case analysis accurately represents the typical behavior of
an algorithm. Such complexity bounds are typical in the theory of convex optimization
algorithms, and are often considered seriously when evaluating such methods. There are
numerous examples of scientific efforts in which the process of designing an algorithm
with improved worst-case iteration complexity bound enhances the performance of the
algorithm in general. One may refer to such advances in the realm of convex optimization,
such as the accelerated gradient descent algorithm [53], fast iterative soft thresholding
algorithm [2], and interior point methods for linear optimization. Therefore, it seems
reasonable for algorithm designers to investigate complexity bounds and develop methods
with improved bounds in the field of nonconvex optimization, too.

Traditionally, the most popular methods for solving (1.1) were in classes known as
line search and trust region methods. Recently, however, cubic regularization methods
have become popular, which are based on the pioneering work by Griewank [45] and
Nesterov and Polyak [56]. Their rise in popularity is due to increased interest in algorithms
with improved complexity properties, which stems from the impact of so-called optimal
algorithms for solving convex optimization problems. The complexity of a traditional
trust region method (e.g., see Algorithm 1 in §1.2.2) is O(ε−2) (see [13] and § 1.2.2),
which falls short of the O(ε−3/2) complexity for cubic regularization methods (e.g., see the
arc method by [14, 15]). This latter complexity is optimal among a certain broad class
of second-order methods when employed to minimize a broad class of objective functions;
see [16]. That said, one can obtain even better complexity properties if higher-order
derivatives are used; see [8] and [21]. The better complexity properties of regularization
methods such as arc have been a major point of motivation for discovering other methods
that attain the same worst-case iteration complexity bounds.

In this work, we propose algorithms for nonconvex optimization that attain, under
standard assumptions, optimal worst-case iteration complexity bounds. We begin by dis-
cussing a (nontraditional) trust region method known as trace (see [28] and Chapter 2)
with the same optimal O(ε−3/2) complexity, while at the same time allowing traditional
trust region trial steps to be computed and used. We show that these properties can be
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realized within the context of a trust region strategy by employing (i) modified step ac-
ceptance criteria and (ii) a novel updating mechanism for the trust region radius. Indeed,
our acceptance and updating mechanisms represent significant departures from those em-
ployed in a traditional approach; e.g., there are situations in which our algorithm may
reject a step and expand the trust region. A key aspect of the trace framework is that
a solution to an implicit trust region problem is obtained by varying a regularization pa-
rameter instead of a trust region radius. This key idea has been adopted and advanced
further by [5]; in particular, they propose an algorithm that has optimal iteration complex-
ity by solving quadratic subproblems that have a carefully chosen quadratic regularization
parameter.

The algorithm just mentioned is based on the assumption that an exact subproblem
solution can be efficiently computed in every iteration. This is a reasonable assumption
for small- to medium-scale problems, but is intractable for large-scale optimization. Thus,
we extend these ideas for a general inexact regularized Newton framework to improve
the practical performance of the algorithm, especially for large-scale problems. In fact,
the main contributions of this extension relate to advancing the understanding of optimal
complexity algorithms for solving the smooth optimization problem (1.1). Our proposed
framework is intentionally very general; it is not a trust region method, a quadratic regu-
larization method, or a cubic regularization method. Rather, we propose a generic set of
conditions that each trial step must satisfy that still allow us to establish an optimal first-
order complexity result as well as a second-order complexity bound similar to the methods
above. Our framework contains as special cases other optimal complexity algorithms such
as arc and trace (see [30] and Chapter 3).

We also propose a new method for solving equality constrained nonlinear optimization
problems. As is well known, such problems are important throughout science and engineer-
ing, arising in areas such as network flow optimization [48, 58], optimal allocation with re-
source constraints [24, 49], maximum likelihood estimations with constraints [47], and opti-
mization with constraints defined by partial differential equations [4, 9, 59]. Contemporary
methods for solving equality constrained optimization problems are predominantly based
on ideas of sequential quadratic optimization (commonly known as SQP) [11, 25, 26, 35–
37, 51, 57]. The design of such methods remains an active area of research as algorithm
developers aim to propose new methods that attain global convergence guarantees under
weak assumptions about the problem functions. Recently, however, researchers are being
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drawn to the idea of designing algorithms that also offer improved worst-case iteration
complexity bounds; e.g., see [17].

For solving equality constrained problems, a cubic regularization method is proposed
in [19] with an eye toward achieving good complexity properties. This is a two-phase
approach with a first phase that seeks an ε-feasible point and a second phase that seeks
optimality while maintaining ε-feasibility. The number of iterations that the method re-
quires in the first phase is O(ε−3/2), a bound that is known to be optimal for unconstrained
optimization [16]. The authors of [19] then propose a method for the second phase and
analyze its complexity properties. Such a two-phase approach is analyzed further—with
a careful emphasis on termination conditions for each phase—in [6]. (For related work
on cubic regularization methods, see [18, 20].) Notably, the methods in [6, 19] represent
a departure from the current state-of-the-art SQP methods that offer the best practi-
cal performance; see also [50]. One of the main reasons for this is that contemporary
SQP methods seek feasibility and optimality simultaneously. By contrast, the approaches
from [6, 19] might not offer practical benefits due to the fact that the first phase of each
algorithm entirely ignores the objective function, meaning that numerous iterations might
need to be performed before the objective function influences the trajectory of the algo-
rithm.

Our proposed algorithm can be considered a next step in the design of practical al-
gorithms for equality constrained optimization with good worst-case iteration complexity
properties. Ours is also a two-phase approach, but is closer to the SQP-type methods rep-
resenting the state-of-the-art for solving equality constrained problems. In particular, the
first phase of our proposed approach follows a trust funnel methodology that locates an
ε-feasible point in O(ε−3/2) iterations while also attempting to yield improvements in the
objective function. Borrowing ideas from the trust region method known as trace [28] (see
Chapter 2), we prove that our method attains the same worst-case iteration complexity
bounds as those offered by [6, 19].

1.2 Background

Consider an objective function f : Rn → R and a starting point x0 ∈ Rn. For the entirety
of this dissertation, we assume that f is twice continuously differentiable. The main goal
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in unconstrained optimization is to find a local solution x∗ of problem (1.1) such that

f(x∗) ≤ f(x), for all x ∈ Rn such that ‖x− x∗‖2 ≤ α and for some α > 0.

Many methods have been proposed to solve problem (1.1) with global and fast local
convergence guarantees. Global convergence is the ability of converging to a stationary
point, which can be a first-order or second-order stationary point, from any remote initial
point x0. On the other hand, for local convergence, the rate of convergence to a second-
order stationary point is considered when we are in the vicinity of such a point. Indeed,
a wide variety of methods with global and fast local convergence properties have been
proposed. In this section, we briefly discuss the main methods existing in the literature.

1.2.1 Newton’s method

The standard Newton method is an algorithmic framework in which in every iteration, a
quadratic approximation, q, of the objective function f is constructed by using second-
order Taylor’s expansion around the current point. The next point is then defined as
a minimizer (or approximate minimizer) of the constructed model q. In other words,
considering iteration k, we have:

xk+1 = xk + sk,

where
sk ∈ arg min

s∈Rn
qk(s) := f(xk) +∇f(xk)T s+ 1

2s
T∇2f(xk)s. (1.3)

When ∇2f(xk) is positive definite, the subproblem (1.3) is well-defined and there exists a
closed-form expression for a Newton iteration as the following:

xk+1 = xk − (∇2f(xk))−1∇f(xk).

Newton’s method in its original format as stated in (1.3) is not globally convergent,
even for strongly convex problems. Moreover, the solution of subproblem (1.3) is not well-
defined when ∇2f(x) is indefinite or negative definite. On the other hand, under some
standard assumptions, such as Lipschitz continuity of the Hessian function ∇2f(x) for all
x sufficiently close to a nondegenerate second-order stationary point x∗ such that ∇2f(x∗)
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is positive definite, Newton’s method enjoys a quadratic rate of convergence [31]. This
fast local convergence behavior, despite the fact that Newton’s method is not globally
convergent, has motivated much research around modifying this method to globalize its
convergence properties, such as using Hessian modifications combined with a line search,
a trust region methodology, or a regularization approach.

1.2.2 Trust region methods

As mentioned in the last subsection, Newton’s algorithm suffers from the possibility of
divergence, but the fast local convergence of this algorithm makes it attractive to explore
ways to globalize the method while maintaining its local convergence behavior. Over
the years, many variants of Newton’s method with globalization strategies have been
developed. For instance, one very popular approach has been to combine line search ideas
and Hessian modifications, the latter of which ensures positive definiteness of the Hessian
matrices so that the subproblems are well-defined. Another popular approach has been to
incorporate trust regions, in which a norm constraint is added to the subproblem to make
it well defined, even if the Hessian is not positive definite.

In line search methods, the search direction is chosen or computed first, then the step
size is decided, usually based on Armijo-Wolfe conditions [57]. In trust region methods, on
the contrary, a region, typically spherical in shape, is defined in which the approximation
of the objective function can be “trusted”. Within this “trust region”, a direction is
computed that minimizes the model. In a standard trust region method, the trust region
is defined by its radius, δ, such that ‖s‖2 ≤ δ ; therefore, the trust region subproblem at
iteration k is

sk ∈ min
s∈Rn

qk(s) = f(xk) +∇f(xk)T s+ 1
2s

T∇2f(xk)s

s.t. ‖s‖ ≤ δk.
(1.4)

To ensure the convergence of the algorithm, there are some rules used to update the
trust region radius. Any reasonable updating procedure has to consider the quality of the
step computed in each iteration; therefore, defining a proper measure of solution quality is
critical for the convergence of this algorithm. One popular quality measure in the literature
constructs the ratio of “actual reduction” over “predicted reduction” of the objective value,
called ρk at iteration k, and compares the resulting ratio with a pre-specified constant η. If
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ρk ≥ η, then the trial step computed by solving (1.4) will be accepted; otherwise, the trial
step will be rejected. In the latter case, an update in δ is necessary to generate a different
solution in the next step. As the Taylor approximation is more accurate within a smaller
region, a proper update is to decrease the trust region radius for the next iteration. While
not necessary, δ will be increased for the case ρk ≥ η, with the hope of faster convergence.
Algorithm 1 is a common representation of a standard trust region method [23].

Algorithm 1 Trust Region Method
Require: an acceptance constant η ∈ R++ with 0 < η < 1
Require: update constants {γc, γe} ⊂ R++ with 0 < γc < 1 < γe

1: choose x0 ∈ Rn, δ0 ∈ R++
2: for k = 0, 1, 2, . . . do
3: compute sk by solving (1.4)
4: compute ρk as the following:

ρk := f(xk)− f(xk + sk)
f(xk)− qk(sk) (1.5)

5: if ρk ≥ η then [accept step and expand trust region]
6: set xk+1 ← xk + sk
7: set δk+1 ← max{δk, γe‖sk‖2}}
8: else (ρk < η) [reject step and contract trust region]
9: set xk+1 ← xk

10: set δk+1 ← γc‖sk‖2

Under some standard assumptions, such as Lipschitz continuity of the gradient func-
tion ∇f , Algorithm 1 enjoys global convergence. In addition, under the assumption of
Lipschitz continuity of ∇2f for all x sufficiently close to a nondegenerate second-order
stationary point x∗ such that ∇2f(x∗) is positive definite, this algorithm has quadratic
local convergence, similar to Newton’s method [57].

1.2.2.1 Worst-case first-order complexity of trust region methods

Despite the good performance that people have seen for trust region methods, in terms
of their complexity, one can show that they might require O(ε−2) iterations to find an
ε-stationary point. In fact, an example, constructed by Cartis, Gould, and Toint [13],
shows that for any τ > 0, Newton’s method needs at least O(ε−2+τ ) iterations to achieve
the stationarity measure tolerance (1.2). The same example can be used to show that the
traditional trust region Algorithm 1 follows the same steps similar to those generated by
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Newton’s method [16].
Consider the following two-dimensional example in which the sequence {xk} is the one

that would be generated by Newton’s method:

x0 = (0, 0)T , xk+1 = xk + sk, sk =

( 1
k+1

) 1
2 +τ̄

1

 , (1.6a)

f(x0) = 1
2[ζ(1 + 2τ̄) + ζ(2)], f(xk+1) = f(xk)−

1
2

[( 1
k + 1

)1+2τ̄
+
( 1
k + 1

)2
]

, (1.6b)

∇f(xk) = −


(

1
k+1

) 1
2 +τ̄

(
1

k+1

) 1
2

 , (1.6c)

and

∇2f(xk) =

1 0
0
(

1
k+1

)2

 , (1.6d)

where τ̄ = τ/(4 − 2τ) > 0 and ζ(t) :=
∑∞
k=1 k

−t is the Riemann ζ function [13].
With the sequence of gradients as in (1.6c), the number of iterations needed to satisfy the
stationarity measure tolerance (1.2) is at least O(ε−2+τ ). For the defined sk, ∇f(xk), and
∇2f(xk), we have

∇2f(xk)sk = −∇f(xk),

with positive definite ∇2f(xk); therefore, sk globally minimizes qk(s). Furthermore,

f(xk + sk) = qk(sk),

which guarantees ρk = 1; therefore, according to Step 5, the trial step sk will be accepted.
The definition of sk in (1.6a) guarantees that ‖sk+1‖2 < ‖sk‖2 for all k ≥ 0. On the
other hand, from ρk = 1, Step 5, and Step (7), one can deduce that δk+1 ≥ δk for all
k ≥ 0. If δ0 ≥ ‖s0‖2 =

√
2, then the sequence of {xk} defined in (1.6a) can be reached by

applying the traditional trust region Algorithm 1 to minimizing a function satisfying (1.6);
therefore, Algorithm 1 requires at least O(ε−2+τ ) iterations to achieve the stationarity
measure tolerance (1.2).

To find a function satisfying (1.6), Cartis, Gould, and Toint [13] have used polynomial
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Hermite interpolation on the interval [0,xk+1 − xk]. To do so, consider

f(x) = f1([x]1) + f2([x]2), (1.7)

where [x]i is the i-th component of x for i ∈ {1, 2}. Using Hermite interpolation, for all
k ≥ 0 we have

f1([x]1) = pk([x̂− xk]1) + f1([xk+1]2) for [x̂]1 ∈ [[xk]1, [xk+1]1] , (1.8)

where pk is the polynomial

pk(s) = c0,k + c1,ks+ c2,ks
2 + c3,ks

3 + c4,ks
4 + c5,ks

5, (1.9)

with coefficients defined to satisfy the interpolation conditions

pk(0) = 1
2

( 1
k + 1

)1+2τ̄
, pk([sk]1) = 0;

∇pk(0) = −
( 1
k + 1

) 1
2 +τ̄

, ∇pk([sk]1) = −
( 1
k + 2

) 1
2 +τ̄

;

∇2pk(0) = 1, ∇2pk([sk]1) = 1.

(1.10)

In addition, for the univariate function f2 we have for all k ≥ 0

f2([x]2) = wk([x̂− xk]2) + f1([xk+1]2) for [x̂]2 ∈ [[xk]1, [xk+1]2] , (1.11)

where wk is the polynomial

wk(s) = d0,k + d1,ks+ d2,ks
2 + d3,ks

3 + d4,ks
4 + d5,ks

5, (1.12)

with coefficients defined to satisfy the interpolation conditions

wk(0) = 1
2

( 1
k + 1

)2
, wk(1) = 0;

∇wk(0) = −
( 1
k + 1

)2
, ∇wk(1) = −

( 1
k + 2

)2
;

∇2wk(0) =
( 1
k + 1

)2
, ∇2wk(1) =

( 1
k + 2

)2
.

(1.13)
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Therefore, according to [13]

c0,k = 1
2

( 1
k + 1

)1+2τ̄
, c1,k = −

( 1
k + 1

) 1
2 +τ̄

, c2,k = 1
2

c3,k = 4
(

(k + 1)2

k + 2

) 1
2 +τ̄

c4,k = −7
(

(k + 1)3

k + 2

) 1
2 +τ̄

c5,k = 3
(

(k + 1)4

k + 2

) 1
2 +τ̄

.

(1.14)

Furthermore, according to [13]

d0,k = 1
2

( 1
k + 1

)2
, d1,k = −

( 1
k + 1

)2
, d2,k = 1

2

( 1
k + 1

)2

d3,k = 9
2

( 1
k + 2

)2
− 1

2

( 1
k + 1

)2

d4,k = −8
( 1
k + 2

)2
+
( 1
k + 1

)2

d5,k = 7
2

( 1
k + 2

)2
−
( 1
k + 1

)2
.

(1.15)

The proofs of Lipschitz continuity of ∇f(x) and ∇2f(x) and boundedness of f are pre-
sented in [13]; therefore, the function f constructed this way satisfies all the assumptions
needed for convergence of Algorithm 1. This example shows that trust region methods
can be inefficient, in the sense that they might take O(ε−2) iterations to achieve the sta-
tionarity tolerance (1.2). In the next subsection, we turn to an alternative framework that
achieves improved worst-case iteration complexity over trust region methods.

1.2.3 Cubic regularization methods

As mentioned, worst-case iteration complexity bounds have typically been overlooked
when analyzing nonconvex optimization algorithms. This situation in the field of non-
convex optimization has started to change with recent studies on cubic regularization
methods. Originally proposed in a technical report by Griewank [45], the foundation for

12



worst-case iteration complexity bounds for second-order methods using cubic regulariza-
tion was first established in the seminal work by Nesterov and Polyak [56]. (See also [61]
for another early article on such methods.) Nesterov and Polyak [56] proposed and ana-
lyzed an abstract algorithm called Cubic regularization of Newton Method (or CNM as
referred to in [55]). In this algorithm, to overcome issues related to ill-defined subproblems
when the Hessian is indefinite, a cubic term is added to the quadratic model qk(s). The
resulting subproblem is an unconstrained (potentially) nonconvex cubic problem

sk ∈ arg min
s∈Rn

ck(s) := f(xk) +∇f(xk)T s+ 1
2s

T∇2f(xk)s+ σk
6 ‖s‖

3
2,

where σk is the algorithm parameter whose value is set in every iteration to satisfy a
so-called sufficient decrease property defined as

f(xk + sk) ≤ c(sk). (1.16)

The inequality (1.16) is satisfied for every σk ≥ L, where L is the Lipschitz constant of the
Hessian function ∇2f(x); therefore, a procedure of increasing σk by multiplying with a
constant will eventually terminate after satisfying (1.16). Algorithm 2 shows the original
CNM algorithm from [56].

Algorithm 2 Cubic regularization of Newton Method (CNM)

Require: a constant L0 ∈ R++ with L0 ≤ L

1: choose x0 ∈ Rn
2: for k = 0, 1, 2, . . . do
3: find σk ∈ [L0, 2L] such that (1.16) is satisfied
4: set xk+1 ← xk + sk

The global convergence of Algorithm 2 to a second-order stationary point is proved
under the assumption of Lipschitz continuity of∇f and∇2f . While the former assumption
is pretty standard in the literature for convergence, the latter one seems strong because
it assumes global Lipschitz continuity of the Hessian, not just near a minimizer. But, one
should notice that they have proved the convergence to a local solution x∗ satisfying the
second-order sufficient condition, that is ∇f(x∗) = 0 and ∇2f(x∗) is positive semidefinite.
In addition, there exist several lemmas and theorems in their paper from which the worst-
case iteration complexity bound of O(ε−3/2) to a first-order stationary point and O(ε−3)
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to a second-order stationary point can be inferred for successful (those satisfying (1.16))
iterations.

Despite the salient properties of Algorithm 2, it is far away from being a practical
algorithm. First of all, the Lipschitz continuity of the Hessian function might be a strong
assumption for those who only need the convergence to a stationary point with zero
gradient. Second, the assumption of knowing the Lipschitz constant L beforehand to
use in the algorithm is extremely restrictive. Last but not least, finding σk ∈ [L0, 2L]
satisfying (1.16) as the way stated in Algorithm 2 might not be efficient in terms of
complexity bounds.

More recently, the Adaptive Regularisation framework using Cubics, also known as
the arc algorithm [14, 15], was developed with an eye towards practical implementations.
In this work as in [56], Cartis, Gould, and Toint propose an algorithm in which the trial
steps are computed by minimizing a local cubic model of the objective function at each
iterate. The expense of this computation is similar to that of solving a subproblem arising
in a typical trust region method, and their overall algorithm—which has essentially the
same flavor as a trust region method—is able to attain global and fast local convergence
guarantees. However, the distinguishing feature of arc and other cubic regularization
algorithms is that, under reasonable assumptions, they ensure that the stationarity mea-
sure tolerance (1.2) is guaranteed to hold after at most O(ε−3/2) iterations. Furthermore,
the analysis in [16] shows that the complexity bound for arc is optimal with respect to
a particular class of second-order methods for minimizing a particular class of sufficiently
smooth objective functions in the optimization problem (1.1).

In arc, the subproblems are similar to CNM, where a cubic regularization of a second-
order Taylor series will be solved, namely

sk ∈ arg min
s∈Rn

Ck(s) := f(xk) +∇f(xk)T s+ 1
2s

TBks+ σk
3 ‖s‖

3
2, (1.17)

where Bk is an estimation of ∇2f(xk) and σk is the algorithm parameter whose value is
updated dynamically by the algorithm. To measure the quality of the trial step sk, a ratio
of actual reduction over predicted reduction is computed as the following:

ρCk := f(xk)− f(xk + sk)
f(xk)− Ck(sk)

. (1.18)
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Then, based on this ratio the acceptance or rejection of the trial step is decided, moreover,
σk+1 is set properly. Algorithm 3 shows the arc algorithm.

Algorithm 3 Adaptive Regularization using Cubics (ARC)

Require: two acceptance constants {η1, η2} ⊂ R++ with 0 < η1 < η2 < 1
Require: update constants {γ1, γ2} ⊂ R++ with 1 < γ1 < γ2

1: choose x0 ∈ Rn, δ0 ∈ R++
2: for k = 0, 1, 2, . . . do
3: compute sk by solving (1.17)
4: compute ρCk using (1.18)
5: if ρCk ≥ η1 then
6: set xk+1 ← xk + sk
7: if ρCk ≥ η2 then
8: set σk+1 ∈ [0,σk]
9: else (η1 < ρCk < η2)

10: set σk+1 ∈ [σk, γ1σk]
11: else (ρCk < η)
12: set xk+1 ← xk
13: set σk+1 ∈ [γ1σk, γ2σk]

Because of the importance of the arc algorithm in the development and analysis
of our proposed algorithms described in later chapters, a more official statement of the
convergence properties and the complexity bounds of this algorithm is presented in the
following theorem.

Theorem 1. Suppose that f : Rn → R is continuously differentiable and the sequence {fk}
is bounded from below. If the gradient function is Lipschitz continuous and Bk is bounded
in norm for all k, then {∇f(xk)} → 0. Furthermore, if f is twice continuously differen-
tiable, Bk is a relatively close approximation of ∇2f(xk) such that ‖Bk −∇2f(xk)‖2 → 0
whenever ‖∇f(xk)‖2 → 0 and k →∞, and there exists a subsequence of iterates converging
to x∗ with positive definite ∇2f(x∗), then the whole sequence {xk} converges to x∗. In addi-
tion, if ∇2f(x) is locally Lipschitz continuous close to x∗, ‖(Bk−∇2f(xk))sk‖2 ≤ C‖sk‖22,
for all k, and some constant C > 0, and σk ≥ σmin for all k and some constant σmin > 0,
then xk → x∗ and ∇f(xk)→ 0 Q-quadratically. Moreover, if ∇2f(x) is globally Lipschitz
continuous on the path of computed iterates, then the whole sequence {xk} converges to x∗

with ∇f(x∗) = 0 and positive semidefinite ∇2f(x∗) from any remote initial point x0.
With the same assumptions, for any ε̄ > 0, the stationarity measure tolerance (1.2)

is guaranteed to hold after at most O(ε−3/2) iterations, where ε ∈ (0, ε̄]. In addition,
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the number of iterations required to find a point xk such that the smallest eigenvalue of
∇2f(xk) is greater than or equal to −ε is at most O(ε−3).

Although in Step 3 of Algorithm 3 the global solution of (1.17) is considered as sk, for
Theorem 1 to be valid, such a solution is not required, but sk needs to be a global solution
for (1.17) on a subspace containing the gradient ∇f(xk) with

‖∇Ck(sk)‖2 ≤ θ‖∇f(xk)‖, (1.19)

for some constant θ > 0. This milder requirement makes arc more practical especially for
large-scale problems where solving the nonconvex problem (1.17) might be prohibitively
expensive. Under this more relaxed assumption, sk must satisfy the following condition:

∇f(xk)T sk + sTkBksk + σk‖sk‖3 = 0, (1.20)

(which is equivalent to ∇Ck(sk)T sk = 0) and

sTkBksk + σk‖sk‖3 ≥ 0. (1.21)

The importance of the improvement in the complexity bound gets more noticeable
when it is compared to the trust region method. As one may notice that Algorithms 1
and 3 are very similar in terms of the framework. In fact, the similarity of these methods
are not restricted only to the framework; the subproblem solutions can be the same if
one chooses the appropriate parameters. For example, the solution sk of (1.17) is also
an optimal solution for (1.4) if δk is set to ‖sk‖2. Furthermore, an optimal solution sk

for (1.4) is also an optimal solution for (1.17) with σk = λk/‖sk‖2, where λk is the dual
variable associated with the trust region constraint.

Despite the improved worst-case iteration complexity bounds of arc, there is not a
noticeable performance improvement versus trust region method, yet in many cases, the
trust region algorithm, even in its standard version, beats the arc algorithm in terms of
solution time and even iterations needed to satisfy a measure of convergence as (1.2). One
of the main motivations of this dissertation is to answer the question if there exists a trust
region method with improved iteration complexity bounds as those of arc. In the next
chapter, we answer this question.

16



Our motivation of proposing a new trust region algorithm is to introduce an algo-
rithm which can perform well in practice while theoretically achieves improved complexity
bounds. To this end, an inexact regularized Newton framework is proposed in Chapter 3,
which allows inexact Newton steps whenever possible while achieves the improved worst-
case iteration complexity bounds, similar to those of arc and trace.

1.2.4 Methods for equality constrained problems

In real world problems, the decision variable x in problem (1.1) might need to be restricted,
e.g., due to resource limitations, state and federal regularizations, technology bounds, and
engineering designs. Therefore, many optimization problems are “constrained” problems
of the form

min
x∈X

f(x), (1.22)

where X is the set of all possible decisions defined by constraints. The set X in (1.22)
might possess different properties; e.g., it might be convex or not convex, closed or open,
connected or disconnected, etc. In this work, instead of the general form (1.22), we
assume that X can be defined by a multivariate continuous function c : Rn → Rm such
that X = {x ∈ Rn | c(x) = 0}; therefore, we assume that X is closed. For some algorithms,
there might be other assumptions on c such as differentiability, smoothness, and so-called
constraints qualifications. The constrained problem, then, will be defined as the following:

min
x∈Rn

f(x)

s.t. c(x) = 0.
(1.23)

The widespread application of (1.23) has motivated an enormous deal of research to
develop “reliable” algorithms to solve it. The term “reliable” itself needs clarification; for
us, a very loose definition of a reliable algorithm can be expressed as an algorithm with
the ability to find a point x∗ or generate a sequence of points {xk} converging to x∗ that
satisfies the Karush-Kuhn-Tucker (KKT) optimality conditions of (1.23) or, in the case
of an infeasible instance of (1.23), a sequence converging to a stationary point c. Once
again, the main body of research for many years was focused on designing algorithms with
global convergence properties and, similar to the unconstrained case, the analysis of the
worst-case iteration complexity bounds is a recent trend on this area; e.g., see the recent
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work in [18–20].
Before going any further, let us define the KKT optimality conditions. The Lagrangian

function of (1.23) is defined as L(x, y) := f(x) + c(x)T y. Let f and c be continuously
differentiable. The pair (x, y) is a KKT point if:

∇f(x) +∇c(x)T y = 0

c(x) = 0.
(1.24)

KKT conditions are necessary for any optimal (local or global) solution if some sort of
constraint qualification, such as the Linear Independence constraint qualification (LICQ)
[57], holds. Similar to the unconstrained case, there are also second-order optimality
conditions given f and c are twice continuously differentiable.

1.2.4.1 Sequential quadratic programming

Similar to unconstrained optimization algorithms, one may consider to iteratively solve
a model of problem (1.23) and take the step found by solving the model. Sequen-
tial Quadratic Programming/Optimization (SQP) is a well-known iterative framework
in which a second-order model of the objective function and a linearization of the con-
straint functions are considered as a model of the original problem (1.23), leading to a
subproblem of the form

min
s∈Rn

f(x) +∇f(x)T s+ 1
2s

TBs

s.t. c(x) +∇c(x)s = 0,
(1.25)

where B is positive definite. The optimality conditions (KKT conditions) for problem
(1.25) are

∇f(x) +Bs+∇xc(x)T η = 0

c(x) +∇xc(x)s = 0,
(1.26)

where η is an m × 1 vector of dual variables for problem (1.25). We can rewrite these
linear equations in matrix form as B ∇c(x)T

∇c(x) 0

s
η

 = −

∇f(x)
c(x)

 . (1.27)
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If one applies Newton’s method to solve (1.24), one will have the following linear
system of equations:∇2

xxL(x, y) ∇c(x)T

∇c(x) 0

∆x
∆y

 = −

∇f(x) +∇c(x)T y
c(x)

 . (1.28)

A closer look to two equations (1.28) and (1.27) shows that these two equations are exactly
the same if we set B = ∇2

xxL(x, y) and η = y + ∆y. This observation shows that solving
the problem (1.23) by using SQP is exactly the same as solving the KKT conditions (1.24)
by using Newton’s method; therefore, the SQP algorithm in its original form is not globally
convergent. Hence, combining other globalization frameworks such as line search or trust
region strategies is required. In addition, to be able to analyze the SQP method, assuming
that the KKT conditions are necessary is a standard assumption. This can be done, e.g.,
by making the following assumption.

Assumption 1. The matrix ∇c(x∗) has full row rank for any x∗ ∈ arg minx∈X f(x).

Assumption 1 means that the LICQ is satisfied at x∗; so the KKT conditions are
necessary for any minimizer of (1.23).

Another typical assumption is the following.

Assumption 2. It holds that dT∇2
xxL(x, y)d ≥ 0 for all d such that ∇c(x)Td = 0.

Assumption 2 is useful to guarantee local convergence when we are in a vicinity of x∗,
because positive definiteness of ∇2

xxL(x, y) is essential for fast local convergence of SQP.

1.2.4.2 SQP with a trust region constraint

In the case of SQP, similar to the unconstrained case for Newton’s method, to make
the algorithm globally convergent, using a line search, trust region framework, or other
globalization mechanism is required. Here, we discuss the use of trust regions to globalize
the method. In trust region methods, we try to find a solution for the model within a
“trusted” area which the original function is believed to behave almost the same as the
estimated function. In our present case, this leads to a subproblem of the form
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min
s∈Rn

f(x) +∇f(x)T s+ 1
2s

TBs

s.t. c(x) +∇c(x)s = 0

‖s‖ ≤ δ,

(1.29)

where δ is the trust region radius.
A challenge in constrained optimization is the possibility of achieving an inconsistent

subproblem by adding a trust region constraint. This will make the algorithm not well
defined unless modifications are made. Figure 1.1 shows such a subproblem in a two-
dimensional space.

s1

s2

c(xk) +∇c(xk)s = 0

Figure 1.1: Inconsistent trust region constraint

Several tricks have been proposed to handle this problem [57], but among all of
them, we will discuss the step decomposition strategy. In this procedure, the step sk

is decomposed into two components: nk and tk (where nk should not be confused with
the number of variables n). The first one, nk is chosen to find the minimum value of
‖c(xk) +∇c(xk)nk‖22 within the trust region (or as it is the most common, into a region
smaller than the original trust region). Then, tk is chosen in the null space of ∇c(xk),
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N (∇c(xk)) := {x ∈ Rn | ∇c(xk)x = 0}, to solve a possibly modified version of (1.29):

min
s∈Rn

f(xk) +∇f(xk)T s+ 1
2s

TBks

s.t. c(xk) +∇c(xk)s = c(xk) +∇c(xk)nk

‖s‖ ≤ δ,

(1.30)

where sk = nk + tk. Although not always necessary, nk is commonly assumed to be in the
range space of ∇c(xk)T , R(∇c(xk)T ) := {∇c(xk)Tx | x ∈ Rm}, which is why it is called
the “normal” step. In addition, tk is called the “tangential” step as it is in the null space
of ∇c(xk). (Notice that for any matrix A, the range space of AT and the null space of A
are orthogonal spaces.)

Another issue that we have to consider in designing a trust region SQP algorithm is
the definition of a good measure for progress such as a merit function. In unconstrained
problems, the natural merit function is simply f itself, but for constrained problems, a
merit function has to consider feasibility as well as the objective function value. For a
complete review of these issues and the possible solutions, one may refer to numerous
references such as [57].

The next two subsections are dedicated to two globally convergent algorithms for
solving (1.23) with two completely different approaches to solve these above-mentioned
issues and also with two different design objectives. The trust funnel algorithm is a method
based on a step decomposition strategy in which the main goal is to generate a globally
convergent algorithm. The Short Step arc (ShS-ARC) algorithm, on the other hand,
is designed to achieve not only global convergence but also to guarantee good worst-
case iteration complexity bounds for solving constrained problems. In this algorithm,
subproblems are unconstrained, so inconsistency of the subproblems is not an issue.

1.2.4.3 Trust funnel algorithm

A recent algorithmic framework with global convergence guarantees [27, 38] based on a
step decomposition strategy will be discussed here. We present this algorithm in details as
it will be used in our proposed new algorithm with good worst-case iteration complexity
bounds in Chapter 4. The trust funnel algorithm attempts to drive a measure of infeasi-
bility to zero at the same time that it tries to improve the objective value. In particular,
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progress towards reducing the constraint violation measures is guided by a tolerance that
is reduced dynamically by the algorithm. (See Figure 1.2.)

(0, f∗)T
‖c(x)‖2

f(x)

(a) The funnel condition: The algorithm is
not allowed to take steps on the right side
of the dashed line. The green points could
be accepted while the red one would not.

(0, f∗)T
‖c(x)‖2

f(x)

(b) Updating the funnel radius: Whenever
the algorithm takes a V-iteration (a
step toward the feasible region), the

funnel radius gets updated to create a
tighter region.

(0, f∗)T
‖c(x)‖2

f(x)

(c) Finding an approximate solution: The
algorithm generates a sequence of steps

while updating the funnel radius until an
approximate solution is found.

(0, f∗)T
‖c(x)‖2

f(x)

(d) The funnel algorithm: The algorithm
drives a measure of infeasibility toward

zero while improving the objective
function at the same time.

Figure 1.2: Illustration of the trust funnel algorithm
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For equality constrained problems, a reasonable measure of infeasibility can be defined
as the sum of squares of the constraint values, or equivalently, a function v : Rn → R is
defined which measures the infeasibility of a point x as the following:

v(x) := 1
2‖c(x)‖22. (1.31)

During the running of the algorithm, the hope is that the value of v converges to zero
while the solution approaches to a stationary point of the Lagrangian function

L(x, y) := f(x) + yT c(x); (1.32)

otherwise the algorithm fails in finding a first-order stationary point of the problem. In
addition, we define vmax as a dynamic parameter, whose value is set in each iteration such
that vmax

k+1 ≤ vmax
k . The trial step sk can be accepted only if v(xk + sk) ≤ vmax

k , which is
called the funnel condition.

In a typical trust funnel algorithm, three vectors are computed in each iteration k: the
normal step nk, the tangential step tk, and the multiplier estimate yk. The vector nk is
the step taken to minimize the Gauss-Newton approximation of the function v, subject to
a trust region constraint, defined as the following:

nk ∈ arg min
n∈Rn

mv
k(n) := 1

2‖c(xk) +∇c(xk)n‖22

s.t. ‖n‖2 ≤ δvk ,
(1.33)

where δvk is the trust region radius for normal step at iteration k. After finding nk, an
estimate of the Lagrangian multiplier yk is computed:

yk ∈ arg min
y∈Rm

1
2‖∇f(xk) +∇2f(xk)nk +∇c(xk)T y‖22. (1.34)

Problem (1.34) tries to find multiplier yk such that the difference of −∇f(xk)−∇2f(xk)nk
(an approximation of the negative gradient of the objective at xk+nk) and ∇c(xk)T yk gets
the minimum possible value. This, in turn, means that yk is found such that ∇c(xk)T yk is
the projection of −∇f(xk)−∇2f(xk)nk onto R(∇c(xk)T ). Hence, ∇f(xk)+∇2f(xk)nk+
∇c(xk)T yk is the projection of −∇f(xk) − ∇2f(xk)nk onto N (∇c(xk)). To justify the
appropriateness of estimating yk from (1.34) one may notice that at a first-order stationary
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point xk, KKT conditions are satisfied for the pair (xk, yk), where yk is computed from
(1.34).

After computing nk and yk, the tangential step tk is determined to solve the following
problem:

tk ∈ arg min
t∈Rn

mf
k(nk + t) := f(xk) +∇c(xk)T (nk + t) + 1

2(nk + t)T∇2f(xk)(nk + t)

s.t. ∇c(x)t = 0

‖nk + t‖2 ≤ δsk,
(1.35)

where δsk is the radius of the region within which both constraint model and objective
function model can be trusted. To this end, one may define δsk := min{κvδvk , δfk}, where
κv ∈ R++ with κv > 1 and δfk is the trust region radius for objective model. Another reason
for using (1.34) to estimate yk relates to the fact that ∇f(xk) +∇2f(xk)nk +∇c(xk)T yk
is in N (∇c(xk)); thus, this vector can be used as an initial search direction for (1.35).
In fact, for convergence purposes there is no need to solve (1.35) exactly, while finding a
solution which is at least as good as the optimal solution in the direction of ∇f(xk) +
∇2f(xk)nk +∇c(xk)T yk (sometimes referred to as the Cauchy direction) suffices.

After finding the normal step, new multiplier, and tangential step, the algorithm de-
cides to perform a so-called F-iteration or V-iteration based on the properties of the
trial step sk := nk + tk. In an F-iteration, the main focus is on decreasing the objective
function value while the main focus in an V-iteration is on decreasing the infeasibility
measure, v. After finding the trial step sk, a set of simple conditions is checked to find the
eligibility of an F-iteration. In a typical trust funnel algorithm, these conditions are

tk 6= 0 (1.36a)

v(xk + nk + tk) ≤ vmax
k (1.36b)

mf
k(0)−mf

k(nk + tk) ≥ κ
(
mf
k(nk)−mf

k(nk + tk)
)

, where κ ∈ (0, 1). (1.36c)

If the conditions for performing an F-iteration are not satisfied, then a V-iteration
is performed. In both an F-iteration and a V-iteration, the acceptance of the trial step
and updating of the trust region radius follow by trust region rules. In a V-iteration,
the quality of the trial step based on the infeasibility measure decrease is explored, then
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accordingly, the funnel radius vmax
k+1 is set. Algorithm 4 shows a version of a trust funnel

algorithm [27].

Algorithm 4 Trust Funnel Algorithm
Require: an acceptance constant η ∈ R++ for accepting steps in F-iteration and V-iteration,

with 0 < η < 1, some constants: 0 < κ < 1, κv > 0, κfv > 0, 0 < κcs ≤ 1, 0 < κns ≤ 1,
κts1 > 0, and 0 < κts2 < 1.

Require: a constant θ ∈ R++ with 0 < θ < 1 which identifies the fraction of trust region radius
in computing normal step.

Require: bound constants {σ,σ} ⊂ R++ with 0 ≤ σ ≤ σ;

1: procedure Trust Funnel Algorithm
2: choose x0 ∈ Rn, y−1 ∈ Rm+ , vmax

0 ≥ max{1, v(x0)}, δf0 ∈ R++, δv0 ∈ R++
3: for k = 0, 1, 2, . . . do
4: calculate vk
5: if ck 6= 0 then
6: compute normal step, nk, using (1.33);
7: else
8: set nk ← 0;
9: compute the Lagrangian multiplier, yk, using (1.34);

10: calculate gk +Hknk + JTk yk;
11: if ck = 0 and gk +Hknk + JTk yk = 0 then
12: terminate.
13: compute tangential step, tk, using (1.35);
14: set sk ← nk + tk;
15: if (1.36) is satisfied then [F-iteration]
16: set vmax

k+1 ← vmax
k

17: compute ρfk := f(xk)−f(xk+sk)
mf

k
(0)−mf

k
(sk)

;

18: if ρfk ≥ η then
19: set xk+1 ← xk + sk, δvk+1 ≥ δvk , δfk+1 ≥ δ

f
k

20: else
21: set xk+1 ← xk, δvk+1 ← δvk , δfk+1 ∈ (0, δfk )
22: else [V-iteration]
23: set δfk+1 ← δfk
24: compute ρvk := v(xk)−v(xk+sk)

mv
k

(0)−mv
k

(sk) ;
25: if ρvk ≥ η then
26: set xk+1 ← xk + sk, δvk+1 ≥ δvk , vmax

k+1 ∈ (0, vmax
k )

27: else
28: set xk+1 ← xk, δvk+1 ∈ (0, δvk), vmax

k+1 ← vmax
k

Algorithm 4 is globally convergent [27, 38]. However, to the best of our knowledge,
its complexity properties have not been studied in detail. In Chapter 4, we propose a
modification of this framework with good worst-case complexity bounds. Our algorithm
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borrows many ideas from the method proposed in Chapter 2.

1.2.4.4 The Short-Step ARC (ShS-ARC) algorithm

The success of arc in approximately solving unconstrained problems within O(ε−3/2)
iterations drew researchers’ attention to designing algorithms with improved iteration
complexity bounds for constrained optimization. Cartis, Gould, and Toint explored the
complexity of constrained optimization [18, 19]. Particularly, in [19], they introduce a two-
phase method for (1.23), where in both phases arc was used. They analyze the worst-case
iteration complexity bound of the proposed algorithm to locate a relative KKT point and
prove that it can even be as good as O(ε−3/2), under some assumptions.

In the Short-Step arc (ShS-ARC) algorithm (see Algorithm 5), the first phase is
used to find a (relatively) feasible point by using arc to minimize 1

2‖c(x)‖22. The second
phase, on the other hand, is trying to decrease the objective function within the relative
feasible region through a so-called “target following” strategy. During the second phase,
a target value t for the objective function is introduced. Then, arc is used to reduce the
1
2‖r(x, t)‖22, where

r(x, t) :=

 c(x)
f(x)− t

 . (1.37)

The target value t is carefully chosen and iteratively decreased until the termination con-
dition is satisfied. The termination conditions involve a function called “scaled gradient”
as a measure of optimality such that

gr(x, t) :=


∇c(x)T c(x)+(f(x)−t)∇f(x)

‖r(x,t)‖2 whenever r(x, t) 6= 0,

0 otherwise.
(1.38)

Phase 1 terminates either with an approximately feasible point x0 such that ‖c(x0)‖2 ≤
εp or an approximate infeasible first-order stationary point of ‖c(x)‖2. The number
of Phase 1 iterations to generate a point with ‖c(x1)‖2 ≤ εp or norm of its gradient,
‖∇c(x1)T c(x1)‖2
‖c(x1)‖2 ≤ εd is at most O(ε−3/2) with ε = min{εp, εd}. In Phase 2, on the other

hand, the algorithm starts from an approximately feasible point x1 generated by Phase 1,
keeps the relative feasibility such that for all iteration k ≥ 0, ‖c(xk)‖2 ≤ εp while trying
to decrease the distance of the function value with a monotonically decreasing sequence
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Algorithm 5 The Short-Step arc (ShS-ARC) algorithm

Require: a starting point x0,
Require: initial regularization parameters σ0 and σ1 and a minimal one σmin such that

min{σ0,σ1} ≥ σmin > 0,
Require: algorithmic parameters γ2 ≥ γ1 > 1 and 1 > η2 ≥ η1 > 0,
Require: the tolerances εp ∈ (0, 1) and εd ∈ (0, 1).
1: procedure Phase 1
2: starting from x0, apply arc to minimize 1

2‖c(x)‖2
2 until a point x1 is found such that

‖c(x1)‖2 ≤ εp or ‖∇c(x1)T c(x1)‖2

‖c(x1)‖2
≤ εd. (1.39)

3: if ‖c(x1)‖2 > εp then
4: terminate. (locally infeasible)

5: procedure Phase 2
6: set t1 ← f(x1)−

√
ε2p − ‖c(x1)‖2

2 and k ← 1
7: for k = 1, 2, . . . do
8: starting from xk, apply one iteration of arc to approximately minimize

1
2
∥∥(c(xk)T , f(xk)− tk

)∥∥
2

9: if ρCk ≥ η1 then
10: if ‖gr(xk+1, tk)‖2 ≤ εd and r(xk+1, tk) 6= 0 then
11: terminate.
12: else
13: set

tk+1 = f(xk+1)−
√
‖r(xk, tk)‖2

2 − ‖r(xk+1, tk)‖2
2 + (f(xk+1 − tk)2.

14: else
15: set tk+1 ← tk

{tk}, such that |f(xk)− tk| ≤ εp. All these are guaranteed by the definition of t1 in Step
6 and the updating of tk in Steps 13 and 15. Illustration of Phases 1 and 2 of ShS-ARC
can be seen in Figure 1.3.

When Phase 2 terminates, we are either at an approximate stationary point of ‖c(x)‖2
with f(x) = t, or at a relative KKT point with f(x) 6= t ([19], Lemma 4.2) such that

‖∇c(x)T y(x, t) +∇f(x)‖2
‖(y(x, t), 1)‖2

≤ εd, (1.40)
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(0, f∗)T
‖c(x)‖2

f(x)

Figure 1.3: Illustration of Phases 1 and 2 of ShS-ARC

where
y(x, t) := c(x)

|f(x)− t| .

In [19], the authors have justified the condition (1.40) by a perturbation argument: Con-
sider x = x∗+δx and y = y∗+δy where (x∗, y∗) is the primal-dual pair satisfying KKT con-
ditions. Then, a first-order Taylor’s expansion of ∇c(x∗)T y∗+∇f(x∗) to estimate its value
at the perturbed point (x, y) will give us the estimation

(
∇2f(x∗) +

∑m
i=1 y

∗
i∇2ci(x∗)

)
δx+

∇c(x∗)T δy. The presence of dual variable y∗ in this estimation justifies that the magnitude
of the dual variable should not be ignored in relative KKT point condition as in (1.40).

In the next theorem, the iteration complexity bound for Algorithm 5 and the required
assumptions are represented from [19].

Theorem 2. Assume that:

• The function c is twice continuously differentiable on Rn and f is twice continuously
differentiable in a sufficiently large open set containing C1 := {x ∈ Rn | ‖c(x)‖2 ≤
κc}, where κc > εp.

• The Jacobian ∇c(x), the components ci(x), and ∇2ci(x) for i ∈ {1, 2, . . . ,m} are
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globally Lipschitz continuous on the path of all Phase 1 and Phase 2 iterates and
trial points.

• f(x), ∇f(x), and ∇2f(x) are globally Lipschitz continuous on the path of all Phase
2 iterates and trial points.

• The objective function f(x) is bounded above and below in C1.

In addition, consider εd ≤ ε
1/3
p . Furthermore, assume that the Hessian approximates used

in arc subproblems to minimize 1
2‖c(x)‖22 in Phase 1 and 1

2‖r(x, tk)‖22 in Phase 2 are
relatively accurate. Then, Algorithm 5 generates an iterate xk satisfying either a relative
KKT condition for (1.23) with

‖c(xk)‖2 ≤ εp and ‖∇c(xk)T yk +∇f(xk)‖2
‖(yk, 1)‖2

≤ εd

for some yk ∈ Rm, or an approximate first-order stationary point for ‖c(x)‖2 with

‖∇c(xk)T c(xk)‖2
‖c(xk)‖2

≤ εd

in at most O(ε−3/2
d ε

−1/2
p ) evaluations of c and f and their derivatives. Therefore, if one

chooses ε := εd = ε
2/3
p , then the complexity bounds will be O(ε−3/2), the same as the

unconstrained case when applying arc to solve.

Despite the worst-case iteration complexity bound of ShS-ARC, its performance in
practice is yet to be explored. In addition, the relatively poor performance of arc in un-
constrained problems in compared to trust region algorithm raises the question of whether
it is possible to design a trust region based algorithm for constrained problem (1.23) with
the same complexity bound of ShS-ARC. In Chapter 4, an algorithm is proposed which
uses the trust funnel framework to guarantee convergence while using trace ideas (intro-
duced in Chapter 2) to prove the worst-case iteration complexity bound. We believe that
the resulting algorithm will be more practical because, in contrast to the ShS-ARC, our
algorithm always uses constraint and objective functions information in every iteration.
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Chapter 2

A Trust Region Algorithm with a
Worst-Case Iteration Complexity
of O(ε−3/2) for Nonconvex
Optimization

The purpose of this chapter1 is to propose and analyze a trust region method that ensures
similar global and fast local convergence guarantees as a traditional trust region method
and the arc algorithm, but also attains, under comparable assumptions, the same worst-
case iteration complexity bounds proved to hold for arc. In particular, we show that our
algorithm, entitled trace, ensures that the stationarity tolerance (1.2) is met after at
most O(ε−3/2) iterations, and that a related tolerance for second-order stationarity is met
after at most O(ε−3) iterations. (Both of these bounds have the same order for the arc
algorithm.) We show that these properties can be realized within the context of a trust
region strategy by employing (i) modified step acceptance criteria and (ii) a novel updating
mechanism for the trust region radius. Indeed, our acceptance and updating mechanisms
represent significant departures from those employed in a traditional approach; e.g., there
are situations in which our algorithm may reject a step and expand the trust region, and
there are situations in which our algorithm sets a subsequent trust region radius implicitly
via a quadratic regularization strategy. In ways that will be revealed in our discussion

1A paper containing the original material of this chapter was published in 2017. Please refer to [28].
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and analysis, the effect of these changes is that the accepted steps in our algorithm have
properties that are similar to those that are critical for ensuring the worst-case complexity
bounds for the arc algorithm. That being said, our algorithm allows for the computation
and acceptance of steps that are not regularized (i.e., Newton steps), which is worthwhile
to note in contrast to arc in which the cubic regularization strategy is never “off” [14, 15].

For simplicity in our description and to highlight the salient features of it in our
analysis, our algorithm states that second-order derivatives be used and that each trial step
be computed as a globally optimal solution of a trust region subproblem. Admittedly, these
requirements are impractical in some large scale settings, which is why algorithm variants
that only require approximate second-order derivative information and/or subproblem
solutions that are only optimal with respect to Krylov subspaces are common in the
context of trust region methods; e.g., see [23]. We expect that such variations of our
algorithm can be designed that maintain our global convergence guarantees and—with
sufficiently accurate second-order derivative approximations and subproblem solutions—
our worst-case complexity bounds and local convergence guarantees. (Indeed, in [14, 15],
variants of the arc algorithm are discussed that are suitable for large-scale problems.)

This chapter is organized as follows. In §2.1, we propose our trust region algorithm,
highlighting the features that distinguish it from a traditional trust region approach as well
as those that allow it to obtain improved complexity properties. We prove convergence
guarantees for the algorithm in §2.2, illustrating that it converges globally from remote
starting points (see §2.2.1), reduces the norm of the gradient of the objective below a
prescribed ε ∈ (0,∞) after at most O(ε−3/2) iterations (see §2.2.2), yields an approximate
second-order stationary point after at most O(ε−3) iterations (see §2.2.3), and attains a Q-
quadratic rate of local convergence under standard assumptions for a trust region methods
(see §2.2.4). Finally, the result of our preliminary numerical experiments is presented in
§2.3.

Notation. Given an iterate xk in an algorithm for solving (1.1), henceforth we define
fk := f(xk), gk := g(xk) := ∇f(xk), and Hk := H(xk) := ∇2f(xk), where ∇f : Rn → Rn

has already been defined as the gradient function of f and ∇2f : Rn → Rn×n is its
Hessian function. Similarly, we apply a subscript to other algorithmic quantities whose
definition depends on the iteration number k. We use R+ to denote the set of nonnegative
scalars, R++ to denote the set of positive scalars, N+ to denote the set of nonnegative

31



integers, and N++ to denote the set of positive integers. Given a real symmetric matrix
A, we write A � 0 (respectively, A � 0) to indicate that A is positive semidefinite
(respectively, positive definite). Given a pair of scalars (a, b) ∈ R × R, we write a ⊥ b to
indicate that ab = 0. Similarly, given such a pair, we denote their maximum as max{a, b},
their minimum as min{a, b}, and, when (a, b) ∈ R++ × R++, we use the convention that
min{a, b/0} = a. Finally, given a discrete set S, we denote its cardinality by |S|.

Citations. Our analysis makes extensive use of Taylor’s Theorem, the Mean Value The-
orem, the Cauchy-Schwarz inequality, and the Triangle Inequality. However, for brevity,
we do not cite these tools in each instance in which they are used.

2.1 Algorithm Description

In this section, we formally propose our algorithm. Given an initial point x0 ∈ Rn, our
algorithm follows the typical trust region strategy of computing a sequence of iterates
{xk} ⊂ Rn, where at xk we compute a trial step by minimizing a local quadratic model of
f at xk within a trust region described by a positive trust region radius. Distinguishing
features of our algorithm are a set of step acceptance criteria and an update mechanism
for the trust region radius that are different than those employed in a traditional trust
region algorithm.

We make the following assumption about f throughout this chapter.

Assumption 3. The objective function f is twice continuously differentiable on Rn.

At an iterate xk, we define qk : Rn → R as a second-order Taylor series approximation
of f about xk, i.e., we let qk be defined by

qk(s) = fk + gTk s+ 1
2s
THks.

We also define, as dependent on a given iterate xk and trust region radius δk > 0, the
trust region subproblem

Qk : min
s∈Rn

qk(s) subject to ‖s‖2 ≤ δk.

As in a traditional trust region algorithm, the primary computational expense in iteration
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k of our algorithm is incurred in solving a trust region subproblem of this form. Given
(xk, δk), it is well known [23, Corollary 7.2.2] that a globally optimal solution of Qk exists
and is given by any vector sk to which there corresponds a dual variable, call it λk, such
that the following conditions are satisfied:

gk + (Hk + λkI)sk = 0 (2.1a)

(Hk + λkI) � 0 (2.1b)

0 ≤ λk ⊥ (δk − ‖sk‖2) ≥ 0. (2.1c)

(Strictly speaking, since the global minimizer of Qk may not be unique, the vector sk is
not uniquely determined in this manner; for our purposes, however, it suffices to let sk
denote any global minimizer of Qk.) For future reference, we also remark that, for a given
scalar λ ≥ 0 that is strictly larger than the negative of the leftmost eigenvalue of Hk, (2.1)
implies that the solution s ∈ Rn of the subproblem

Qk(λ) : min
s∈Rn

fk + gTk s+ 1
2s
T (Hk + λI)s,

or, equivalently, the solution of the linear system

gk + (Hk + λI)s = 0, (2.2)

corresponds to a globally optimal solution of a trust region subproblem with trust region
radius δ = ‖s‖2. That is, by perturbing Qk through the addition of a quadratic regular-
ization term with coefficient λ to obtain Qk(λ), we obtain the solution of a trust region
subproblem for an implicitly defined trust region radius.

2.1.1 Motivation for TRACE

We motivate the design of trace by first recalling the procedures of a traditional trust
region algorithm. In such a method, after the trial step sk is computed via Qk according
to the trust region radius δk > 0, the remainder of iteration k involves one of two possible
outcomes: either the trial step is accepted—in which case the next iterate is set as xk+1 ←
xk + sk and one may choose δk+1 ≥ δk—or rejected—in which case the next iterate is set
as xk+1 ← xk and one must choose δk+1 < δk. The typical step acceptance criterion
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employed to determine which of these outcomes is to be realized involves the ratio of the
actual-to-predicted reduction in the objective yielded by the trial step, i.e.,

fk − f(xk + sk)
fk − qk(sk)

. (2.3)

If this ratio is larger than a prescribed constant in (0, 1), then the step is accepted, and
otherwise it is rejected. (In the latter case, the contraction of the trust region radius may
continue iteratively until an acceptable step is computed.) Overall, in such an approach,
each iteration can be characterized as one in which either a trial step is accepted or the
trust region is contracted. Furthermore, the typical strategy of updating the trust region
radius involves multiplying the previous radius by a constant factor; such an approach
implies, e.g., that if the trust region radius is being reduced, then it is done so at a linear
rate.

When it comes to deriving worst-case iteration complexity bounds for a traditional
trust region method, an acceptance criterion based on the ratio (2.3) may yield accepted
steps that do not yield the level of decrease in the objective that is required to yield
complexity properties that are competitive with those of arc. Moreover, such accepted
steps may not be sufficiently large in norm in order to guarantee a sufficient decrease in the
norm of the gradient of the objective, which is critical for driving this quantity to zero at
a fast rate. Overall, by observing the analysis for arc in [15], one finds that the algorithm
computes a positive sequence of cubic regularization coefficients {σk} ⊂ [σmin,σmax] for
some user-specified σmin ∈ (0,∞) and unknown problem-dependent constant σmax ∈
[σmin,∞) that satisfy the following two critical properties for any accepted step:

fk − fk+1 ≥ c1σk‖sk‖32 and ‖sk‖2 ≥
(

c2
σmax + c3

)1/2
‖gk+1‖

1/2
2 , (2.4)

where {c1, c2, c3} ⊂ R++ are constants that are independent of ε ∈ (0,∞). (These in-
equalities can be seen in [15, Lemma 4.2, Lemma 5.1, Lemma 5.2]. By combining the
inequalities, one obtains the power of 3/2 that appears in the complexity bound for arc
in terms of finding an approximate first-order stationary point. Moreover, the first inequal-
ity leads to the power of 3 that appears in the complexity bound for attaining approximate
second-order stationarity.) In a traditional trust region algorithm, inequalities of this type
are not guaranteed [16].
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2.1.2 A detailed description of TRACE

Motivated by the discussion in the previous subsection, we designed step acceptance cri-
teria and an updating mechanism for the trust region radius in trace that guarantee
that all accepted steps possess properties that are similar to those in (2.4). We ensure
these critical properties by modifying a traditional trust region framework in three key
ways, as described in the following bullets. (A formal statement of trace is presented as
Algorithm 6 on page 39 and should be referenced as needed for additional context while
reading the remainder of this subsection.)

• Our simplest modification is that we measure sufficient decrease in the objective
function by observing a ratio inspired by the former inequality in (2.4). Specifically,
for all k ∈ N+, we define (as opposed to (2.3)) the ratio

ρk := fk − f(xk + sk)
‖sk‖32

. (2.5)

For a prescribed scalar η ∈ (0, 1), a trial step may only be considered acceptable if
ρk ≥ η; however, not all steps satisfying this condition will be accepted. (We provide
further motivation for this condition in §2.1.3.)

• In a traditional trust region algorithm, it is entirely possible that—due to a small
magnitude of the trust region radius—a trial step may yield a relatively large de-
crease in the objective (e.g., ρk ≥ η), but not satisfy a condition such as the latter
inequality in (2.4). That is, the step may yield a relatively large objective reduction,
but may not be sufficiently large in norm, from which it may follow that a sequence
of such steps may not drive the gradient of the objective to zero at a fast rate. In
trace, we avoid such a possibility by incorporating a novel strategy of potentially
rejecting a trial step in conjunction with an expansion of the trust region. The con-
ditions under which we may make such a decision relate to the magnitude of the dual
variable λk for the trust region constraint corresponding to the subproblem solution
sk.

• Our third modification relates to the manner in which the trust region radius is
decreased after a trial step is rejected. As previously mentioned, in a traditional
strategy, a contraction of the trust region involves a linear rate of decrease of the
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radius. In certain cases, such a rate of decrease may have a detrimental effect on the
worst-case iteration complexity of the method; specifically, after a single decrease,
the radius may jump from a value for which ρk < η to a value for which the norm of
the resulting trial step is not sufficiently large in norm (as described in the second
bullet above). In our algorithm, we confront this issue by designing a trust region
updating mechanism that may, in certain cases, lead to a sublinear rate of decrease
in the trust region radius. In particular, in any situation in which the trust region
radius is to decrease, we compare the radius that would be obtained via a traditional
updating scheme to the norm of the trial step obtained from Qk(λ) for a carefully
chosen λ > 0. If the norm of the step resulting from this procedure falls into a suit-
able range, then we employ it as the trust region radius in the subsequent iteration,
as opposed to updating the radius in a more traditional manner. (We remark that
if a sequence of consecutive trial steps are rejected in the arc algorithm, then one
finds that the norms of the trial steps converge to zero sublinearly. We believe this
feature is critical in its ability to provide an improved worst-case complexity bound
as compared to a traditional trust region method.)

Given this overview, we now state that our step acceptance criteria and trust region
updating mechanism make use of three sequences in addition to the standard sequences
{xk}, {δk}, and {ρk}. Our first such sequence is the sequence of dual variables {λk}. We
observe these values to avoid the acceptance of a step that yields a large decrease in the
objective function (relative to ‖sk‖2), but for which ‖sk‖2 is deemed too small. (Recall
the second bullet above.) Note that, as a dual variable for the trust region constraint,
a large value for λk as compared to ‖sk‖2 suggests that an even larger reduction in the
objective function may be achieved by expanding the trust region. In certain cases, our
algorithm deems such an increase to be necessary in order to compute an acceptable step
with desirable properties.

Our second auxiliary sequence is a positive parameter sequence that is set dynamically
within the algorithm. This sequence, which we denote as {σk}, plays a similar theoretical
role as the sequence of cubic regularization coefficients in the arc algorithm. In particular,
we use this sequence to estimate an upper bound for the ratio λk/‖sk‖2 that the algorithm
should allow for an acceptable step. When, during iteration k ∈ N+, a pair (sk,λk) is
computed that both yields a sufficiently large reduction in the objective function (relative
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to ‖sk‖2) and yields λk/‖sk‖2 ≤ σk, then we set σk+1 ← σk. Indeed, we only potentially
set σk+1 > σk when there is reason to believe that such an increase is necessary in order
to accept a step yielding a sufficiently large reduction in the objective function. (It is
worthwhile to note that, despite the similar theoretical role of our sequence {σk} vis-à-vis
the sequence of cubic regularization coefficients in the arc algorithm, our sequence plays
a decidedly different practical role. In particular, no element of this sequence is involved
in the definition of the trust region subproblem Qk; the sequence {σk} only appears in
our step acceptance criteria.)

The third auxiliary sequence employed in our algorithm, denoted by {∆k}, is a mono-
tonically nondecreasing sequence of upper bounds for the trust region radii. trace sets
∆k+1 > ∆k whenever sk is accepted and ‖sk‖2 is sufficiently large compared to ∆k. The
role of this sequence is to cap the magnitude of the trust region radius when it is increased,
which is needed in our analysis.

Since our method involves contractions of the trust region and a novel expansion pro-
cedure, we have chosen the name trace as an acronym for Trust Region Algorithm with
Contraction and Expansion. In many ways, our approach follows the same strategy of
a traditional trust region algorithm, except as far as the contract subroutine and ex-
pansion of the trust region in Step 17 are concerned. To motivate these procedures, we
provide the following remarks.

• Any call to the contract subroutine is followed by Step 19 in which a trust region
subproblem is solved. However, in many cases, the solution of this trust region sub-
problem has already been computed within the contract subroutine. Certainly, an
efficient implementation of trace would avoid re-solving a trust region subproblem
in such cases; we have merely written the algorithm in this manner to illustrate its
structure as a trust region method and so that our analysis may be more simply
presented. We also note that while the contract subroutine involves the solution
of a linear system involving a symmetric positive definite matrix, this should not be
considered as an additional computational expense in our method. Indeed, the solu-
tions of such systems are required in certain implementations of second-order trust
region algorithms. In Appendix A, we address this issue in further detail, showing
that our algorithm can be implemented in such a way that each iteration is at most
as expensive as that of a traditional trust region algorithm or arc.
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• The procedure in contract—specifically, the values for λ in Steps 25 and 33, as
well as the order of operations and conditional statements for setting δk+1—has
been designed in such a way that, corresponding to the newly computed trust region
radius δk+1, the primal-dual solution (sk+1,λk+1) of Qk+1 satisfies

λk+1 ≥ σ‖sk+1‖2.

Moreover, under the assumptions used in our complexity analysis, we show that
the procedure in contract ensures that the sequence {λk+1/‖sk+1‖2}—and, con-
sequently, the sequence {σk}—will be bounded above. (See Lemma 15.)

• Perhaps the most intriguing aspect of our algorithm is the calculation stated in
Step 30; indeed, in this step, the algorithm requests the solution of a trust region
subproblem for which neither the trust region radius nor a quadratic regularization
coefficient has been explicitly specified. We claim, however, that this calculation can
actually be less expensive than the solution of an explicit subproblem that would
arise in either a traditional trust region algorithm or arc. Indeed, one may view this
step as requesting the solution of an arc subproblem for any cubic regularization
coefficient in the range [σ,σ]. We discuss a practical implementation of this step in
Appendix A.

• The update for the trust region radius in Step 17 is designed so δk+1 > δk. In
fact, we prove in our analysis that, as a result of such an expansion, the subsequent
iteration will either involve an accepted step or a contraction of the trust region,
and that another expansion cannot occur until another step has been accepted. (See
Lemma 6.) Overall, an expansion of the trust region aids in avoiding steps that
are too small in norm, and our particular formula for an expansion guarantees that
at most one expansion can occur between accepted steps, which is critical in our
complexity analysis.

2.1.3 Further discussion on step acceptance in TRACE

We close this section with further motivation for the acceptance condition ρk ≥ η (which
clearly emulates the former condition in (2.4)). As is known in the theory of trust region
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Algorithm 6 Trust Region Algorithm with Contraction and Expansion (trace)
Require: an acceptance constant η ∈ R++ with 0 < η < 1
Require: update constants {γc, γe, γλ} ⊂ R++ with 0 < γc < 1 < γe and γλ > 1
Require: ratio bound constants {σ,σ} ⊂ R++ with 0 < σ ≤ σ

1: procedure trace
2: choose x0 ∈ Rn, {δ0, ∆0} ⊂ R++ with δ0 ≤ ∆0, and σ0 ∈ R++ with σ0 ≥ σ
3: compute (s0,λ0) by solving Q0, then set ρ0 as in (2.5)
4: for k = 0, 1, 2, . . . do
5: if ρk ≥ η and either λk ≤ σk‖sk‖2 or ‖sk‖2 = ∆k then [accept step]
6: set xk+1 ← xk + sk
7: set ∆k+1 ← max{∆k, γe‖sk‖2}
8: set δk+1 ← min{∆k+1, max{δk, γe‖sk‖2}}
9: set σk+1 ← max{σk,λk/‖sk‖2}

10: else if ρk < η then [contract trust region]
11: set xk+1 ← xk
12: set ∆k+1 ← ∆k

13: set δk+1 ← contract(xk, δk,σk, sk,λk)
14: else (i.e., if ρk ≥ η, λk > σk‖sk‖2, and ‖sk‖2 < ∆k) [expand trust region]
15: set xk+1 ← xk
16: set ∆k+1 ← ∆k

17: set δk+1 ← min{∆k+1,λk/σk}
18: set σk+1 ← σk

19: compute (sk+1,λk+1) by solving Qk+1, then set ρk+1 as in (2.5)
20: if ρk < η then
21: set σk+1 ← max{σk,λk+1/‖sk+1‖2}

22: procedure contract(xk, δk,σk, sk,λk)
23: if λk < σ‖sk‖2 then
24: set λ̂← λk + (σ‖gk‖2)1/2

25: set λ← λ̂
26: set s as the solution of Qk(λ) [σ ≤ λ/‖s‖2 holds; see Lemma 14]
27: if λ/‖s‖2 ≤ σ then
28: return δk+1 ← ‖s‖2
29: else
30: compute λ ∈ (λk, λ̂) so the solution s of Qk(λ) yields σ ≤ λ/‖s‖2 ≤ σ
31: return δk+1 ← ‖s‖2
32: else (i.e., if λk ≥ σ‖sk‖2)
33: set λ← γλλk
34: set s as the solution of Qk(λ)
35: if ‖s‖2 ≥ γc‖sk‖2 then
36: return δk+1 ← ‖s‖2
37: else
38: return δk+1 ← γc‖sk‖2
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algorithms (and can be seen in the proof of Lemma 24 in §2.2.4), one can show in a
neighborhood of a strict local minimizer x∗ with H(x∗) � 0 that the decrease of the
objective function yielded by a Newton step is expected to be ξ∗‖sk‖22 where ξ∗ is a
constant related to the condition number and norm of the inverse Hessian of f at x∗.
Correspondingly, a reasonable step acceptance criterion is one that requires objective
function decrease of this order. One way in which to design such a criterion is to employ
the ratio (2.3) in the traditional manner of a trust region algorithm. Alternatively, one
may be more explicit in such a ratio and replace the denominator with a quantity such
as ξ‖sk‖22 for some ξ > 0. However, an issue with this approach is that, unless one
knows a priori how to choose ξ ∈ (0, ξ∗], such a step acceptance criterion may reject
Newton steps in a neighborhood of x∗, which may impede fast local convergence. Our
approach is to require that any accepted step yields a reduction in the objective function
that is proportional to ‖sk‖32, which is reasonable when {sk} → 0. These observations
offer intuitive evidence for our claim (proved in §2.2.4) that, if {xk} converges to a local
minimizer of f satisfying certain properties, then our algorithm will compute and accept
Newton steps asymptotically.

On the other hand, one needs to consider the implications of our step acceptance crite-
ria when not in a neighborhood of a strict local minimizer. Indeed, while perhaps ensuring
the acceptance of Newton steps that are (relatively) small in norm, such a criterion may
reject those that are large in norm. We believe that the appropriateness of the criterion
can still be justified given that, when far from a stationary point, one cannot always guar-
antee the acceptance (under any reasonable criteria) of full Newton steps. In fact, often,
full Newton steps may not even be feasible for the trust region subproblem. Therefore,
while our step acceptance criterion may reject large Newton steps, the added benefits—as
shown in this chapter—are improved worst-case iteration complexity bounds.

As a side note, we remark that the arc algorithm only achieves its worst-case com-
plexity bounds by imposing a uniform lower bound on the cubic regularization coefficient,
which implies that the arc algorithm never computes Newton steps, even in a neighbor-
hood of a strict local minimizer. (Nonetheless, quadratic convergence of arc has still
been established.) Our algorithm clearly differs in this regard as our step acceptance cri-
teria may allow a full Newton step as long as it yields a sufficiently large reduction in the
objective function.
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2.2 Convergence and Worst-Case Iteration Complexity Anal-
yses

In this section, we analyze the convergence and worst-case iteration complexity properties
of trace. In addition to Assumption 3, we make a few additional assumptions related
to the objective function and the sequence of computed iterates. These assumptions will
be introduced at the beginning of each subsection in this section, as they are needed. For
brevity, we do not remind the reader of each standing assumption that is needed in the
statement of each lemma, but, for clarity, we do state the assumptions that are needed in
each theorem.

Throughout the analysis of our algorithm, we distinguish between different types of
iterations by partitioning the set of iteration numbers into what we refer to as the sets of
accepted (A), contraction (C), and expansion (E) steps:

A := {k ∈ N+ : ρk ≥ η and either λk ≤ σk‖sk‖2 or ‖sk‖2 = ∆k},

C := {k ∈ N+ : ρk < η}, and

E := {k ∈ N+ : k /∈ A ∪ C}.

We also partition the set of accepted steps into two disjoint subsets:

A∆ := {k ∈ A : ‖sk‖2 = ∆k} and Aσ := {k ∈ A : k /∈ A∆}.

2.2.1 Global convergence to first-order stationarity

Our goal in this subsection is to prove that the sequence of objective function gradients
vanishes. As such, and since a practical implementation of trace may terminate if the
norm of a gradient of the objective is below a prescribed positive threshold, we assume
without loss of generality that, at each iterate, the corresponding gradient is nonzero.
Throughout this subsection, in addition to Assumption 3, we make the following assump-
tion that is standard for global convergence theory for a trust region method.

Assumption 4. The objective function f is bounded below on Rn by a scalar constant
fmin ∈ R and the gradient function g is Lipschitz continuous with a scalar Lipschitz
constant gLip > 0 in an open convex set containing the sequences {xk} and {xk + sk}.
Furthermore, the gradient sequence {gk} has gk 6= 0 for all k ∈ N+ and is bounded in that
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there exists a scalar constant gmax ∈ R++ such that ‖gk‖2 ≤ gmax for all k ∈ N+. It follows
from Assumption 3, Lipschitz continuity of g, and [54, Lemma 1.2.2] that the Hessian
sequence {Hk} is bounded in norm in that there exists a scalar constant Hmax ∈ R++ such
that ‖Hk‖2 ≤ Hmax for all k ∈ N+.

One of our main goals in this subsection is to prove that the set A has infinite cardi-
nality. Toward this goal, our first result establishes a generic lower bound on the norm of
any subproblem solution computed in Step 3 or 19.

Lemma 1. For any k ∈ N+, the trial step sk satisfies

‖sk‖2 ≥ min
{
δk,
‖gk‖2
‖Hk‖2

}
> 0. (2.6)

Proof. If ‖Hk‖2 = 0, then, by (2.1a), gk + λksk = 0, which, since gk 6= 0, means that
λk 6= 0 and ‖sk‖2 6= 0. In fact, along with (2.1c), we have that ‖sk‖2 = δk > 0, in which
case (2.6) follows. Now suppose ‖Hk‖2 6= 0. If ‖sk‖2 = δk > 0, then (2.6) again follows,
but otherwise, by (2.1), we have Hksk = −gk. This implies ‖sk‖2 ≥ ‖gk‖2/‖Hk‖2, so that
(2.6) again holds.

We now state useful relationships related to the reduction of the model of the objective
function yielded by such subproblem solutions.

Lemma 2. For any k ∈ N+, the trial step sk and dual variable λk satisfy

fk − qk(sk) = 1
2s
T
k (Hk + λkI)sk + 1

2λk‖sk‖
2
2 > 0. (2.7)

In addition, for any k ∈ N+, the trial step sk satisfies

fk − qk(sk) ≥ 1
2‖gk‖2 min

{
δk,
‖gk‖2
‖Hk‖2

}
> 0. (2.8)

Proof. The equation in (2.7) follows in a straightforward manner from (2.1a). Further-
more, it follows from Lemma 1 that sk 6= 0. Therefore, if λk > 0, then the strict inequality
in (2.7) holds since, by (2.1b), we have Hk + λkI � 0. On the other hand, if λk = 0, then
we have from (2.1a) that Hksk = −gk 6= 0 and from (2.1b) that Hk � 0. Combining these
facts, we have sTkHksk > 0, which shows that the strict inequality in (2.7) holds. As for
the latter part of the lemma, we remark that the first inequality in (2.8) is standard in

42



the theory of trust region algorithms for sk being a solution of a trust region subproblem
that yields a reduction in a quadratic model of the objective function that is at least as
large as that yielded by the so-called Cauchy step; e.g., see [23, Theorem 6.3.1] or [57,
Theorem 4.4]. The strict inequality in (2.8) then follows since gk 6= 0 and δk > 0.

Our next result reveals that the contract subroutine is guaranteed to yield a decrease
in the trust region radius and nondecrease in the dual variable.

Lemma 3. For any k ∈ N+, if k ∈ C, then δk+1 < δk and λk+1 ≥ λk.

Proof. Suppose that k ∈ C, in which case δk+1 is set in Step 13 and λk+1 is set in Step 19.
We prove the result by considering the various cases that may occur within the contract
subroutine. If Step 28, 31, or 36 is reached, then δk+1 ← ‖s‖2 where s solves Qk(λ) for
λ > λk. In such cases, it follows by the fact that λ > λk and standard trust region theory
on the relationship between subproblem solutions and their corresponding dual variables
[23, Chap. 7] that we have

δk+1 ← ‖s‖2 < ‖sk‖2 ≤ δk and λk+1 = λ > λk.

The other possibility is that Step 38 is reached, in which case δk+1 ← γc‖sk‖2 < δk, from
which it follows under the same reasoning that λk+1 ≥ λk.

Using the previous lemma, we now prove important relationships between the se-
quences {δk} and {∆k} computed in the algorithm.

Lemma 4. For any k ∈ N+, there holds δk ≤ ∆k ≤ ∆k+1.

Proof. First, that δk ≤ ∆k for all k ∈ N+ follows by induction: the inequality holds
for k = 0 by the initialization of quantities in Step 2 and, assuming that it holds in
iteration k ∈ N+, the fact that it holds in iteration k + 1 follows from the computations
in Steps 7, 8, 12, 13, 16, and 17 and the result of Lemma 3 (i.e., for k ∈ C, we have
δk+1 ≤ δk ≤ ∆k = ∆k+1). Second, the fact that ∆k ≤ ∆k+1 for all k ∈ N+ follows from
the computations in Steps 7, 12, and 16.

We may now prove the following complement to Lemma 3.

Lemma 5. For any k ∈ N+, if k ∈ A ∪ E, then δk+1 ≥ δk.
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Proof. Suppose that k ∈ A, in which case δk+1 is set in Step 8. By Step 7 and Lemma 4,
it follows that ∆k+1 ← max{∆k, γe‖sk‖2} ≥ ∆k ≥ δk, from which it follows that δk+1 ←
min{∆k+1, max{δk, γe‖sk‖2}} ≥ δk, as desired. Now suppose that k ∈ E , in which case
δk+1 is set in Step 17. By the conditions indicated in Step 14, we have λk > σk‖sk‖2 ≥ 0,
from which it follows by (2.1c) that ‖sk‖2 = δk. We then have by Step 16, Lemma 4, and
the conditions indicated in Step 14 that δk+1 ← min{∆k+1,λk/σk} ≥ min{δk, ‖sk‖2} = δk,
as desired.

We next prove a result that is a simple consequence of the manner in which we update
the trust region radius and update the sequences {σk} and {∆k}.

Lemma 6. For any k ∈ N+, if k ∈ C ∪ E, then (k + 1) /∈ E.

Proof. Observe that if λk+1 = 0, then the conditions in Steps 5 and 10 ensure that
(k + 1) /∈ E . Thus, by (2.1c), we may proceed under the assumption that the trial step
and dual variable in iteration k + 1 satisfy ‖sk+1‖2 = δk+1 and λk+1 > 0.

Suppose that k ∈ C, which implies that ρk < η, and, in turn, that the algorithm sets (in
Step 21) σk+1 ≥ λk+1/‖sk+1‖2. If ρk+1 ≥ η, then it follows that (k + 1) ∈ A. Otherwise,
ρk+1 < η, which implies that (k + 1) ∈ C.

Now suppose that k ∈ E , from which it follows that

λk > σk‖sk‖2, δk+1 ← min{∆k,λk/σk} and σk+1 ← σk. (2.9)

In particular, λk > 0, which implies by (2.1c) that ‖sk‖2 = δk. Consider two cases.

1. Suppose ∆k ≥ λk/σk. It then follows from (2.9) that

δk+1 ← λk/σk > ‖sk‖2 = δk, (2.10)

from which it follows (by standard theory on the relationship between trust region
subproblem solutions and their corresponding dual variables [23, Chap. 7]) that
λk+1 ≤ λk. This, along with (2.9) and (2.10), implies that

λk+1 ≤ λk = σkδk+1 = σk+1‖sk+1‖2,

from which it follows that (k + 1) /∈ E .
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2. Suppose ∆k < λk/σk. It then follows from (2.9) and Step 16 that

‖sk+1‖2 = δk+1 ← ∆k = ∆k+1.

If ρk+1 ≥ η, then it follows that (k + 1) ∈ A∆ ⊆ A. Otherwise, ρk+1 < η, from
which it follows that (k + 1) ∈ C. Hence, in either case (k + 1) /∈ E .

Overall, we have shown that if k ∈ C ∪ E , then (k + 1) /∈ E , as desired.

Next, we prove that if the dual variable for the trust region constraint is sufficiently
large, then the constraint is active and the corresponding trial step yields a reduction in
the objective function that is large relative to the trial step norm.

Lemma 7. For any k ∈ N+, if the trial step sk and dual variable λk satisfy

λk ≥ 2gLip +Hmax + 2η‖sk‖2, (2.11)

then ‖sk‖2 = δk and ρk ≥ η.

Proof. By the definition of the objective function model qk, there exists a point xk ∈ Rn

on the line segment [xk,xk + sk] such that

qk(sk)− f(xk + sk) = (gk − g(xk))T sk + 1
2s
T
kHksk

≥ −‖gk − g(xk)‖2‖sk‖2 − 1
2‖Hk‖2‖sk‖22. (2.12)

Hence, from Lemma 2, (2.1b), (2.12), and the fact that (2.11) and (2.1c) imply that
‖sk‖2 = δk > 0, it follows that

fk − f(xk + sk) = fk − qk(sk) + qk(sk)− f(xk + sk)

≥ 1
2λk‖sk‖

2
2 − ‖gk − g(xk)‖2‖sk‖2 − 1

2‖Hk‖2‖sk‖22
≥ (1

2λk − gLip −
1
2Hmax)‖sk‖22

≥ η‖sk‖32,

as desired.

We may now combine previous results to show that if the algorithm were only to
compute contraction steps from some iteration onward, then the sequences of trust region
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radii and dual variables would converge to zero and infinity, respectively.

Lemma 8. If k ∈ C for all sufficiently large k ∈ N+, then {δk} → 0 and {λk} → ∞.

Proof. Assume, without loss of generality, that k ∈ C for all k ∈ N+. It then follows
from Lemma 3 that {δk} is monotonically strictly decreasing and {λk} is monotonically
nondecreasing. Combining this former fact with the fact that {δk} is bounded below by
zero, we have that {δk} converges.

We may now observe that if Step 38 is reached infinitely often, then, clearly, {δk} → 0,
from which it follows by standard trust region theory [23, Chap. 7] that {λk} → ∞.
Therefore, to complete the proof, let us assume that this update does not occur infinitely
often, i.e., that there exists kC ∈ N+ such that Step 28, 31, or 36 is reached for all
k ≥ kC . In fact, we claim that we may assume without loss of generality that Step 28
or 36 is reached for all k ≥ kC . We prove this claim in the following manner. Suppose
that, for some k ≥ kC , Step 31 is reached and the algorithm sets δk+1 ← ‖s‖2 where
(λ, s) is computed by Step 30. Then, it follows that λk+1 ← λ and sk+1 ← s where
λk+1 ≥ σ‖sk+1‖2. Therefore, during iteration (k + 1) ∈ C, it follows that the condition
in Step 23 will test false, implying that the algorithm will set λk+2 > λk+1 in Step 33.
Since {δk} is monotonically strictly decreasing and {λk} is monotonically nondecreasing,
it follows that {λk/‖sk‖2} is monotonically strictly increasing, implying that the condition
in Step 23 will test false in all subsequent iterations, i.e., Step 31 will not be reached in
any subsequent iteration. Overall, this analysis proves that we may assume without loss
of generality that Step 28 or 36 is reached for all k ≥ kC .

Consider iteration kC . If λkC = 0, then the condition in Step 23 tests true, in which
case Step 25 will set λ > 0 and Step 28 will be reached so that λkC+1 = λ > 0. On the
other hand, λkC > 0 implies from Steps 25 and 33 that the algorithm will set λ > 0, which,
since either Step 28 or 36 will be reached, implies that λkC+1 = λ > 0. In either case, we
have shown that λkC+1 > 0, meaning that λk+1 ≥ min{λk + (σ‖gk‖2)1/2, γλλk} > λk for
all k ≥ kC + 1. Moreover, since k ∈ C for all k ≥ kC , we have xk = xkC (and so gk = gkC )
for all k ≥ kC , which implies that, in fact, {λk} → ∞. It now follows by standard trust
region theory [23, Chap. 7] that ‖sk‖2 = δk > 0 for all k > kC , and, in addition, that
{δk} → 0, as desired.

We now prove that the set of accepted steps is infinite.
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Lemma 9. The set A has infinite cardinality.

Proof. To derive a contradiction, suppose that |A| < ∞. We claim that this implies
|C| = ∞. Indeed, if |C| < ∞, then there exists some kE ∈ N+ such that k ∈ E for all
k ≥ kE , which contradicts Lemma 6. Thus, |C| = ∞. Combining this with the result of
Lemma 6, we conclude that there exists some kC ∈ N+ such that k ∈ C for all k ≥ kC .
From here, it follows from Steps 10 and 11 that xk = xkC and ρk < η for all k ≥ kC , and
from Lemma 8 that {‖sk‖2} ≤ {δk} → 0 and {λk} → ∞. In combination with Lemma 7,
we conclude that there exists some k ≥ kC such that ρk ≥ η, which contradicts the fact
that k ∈ C for all k ≥ kC . Having arrived at a contradiction under the supposition that
|A| <∞, the result follows.

We now prove that the elements of the sequence {∆k} are equal for all sufficiently
large k ∈ N+, the set A∆ has finite cardinality, and there exists a uniform upper bound
on the norms of the trial steps.

Lemma 10. There exists a scalar constant ∆ ∈ R++ such that ∆k = ∆ for all sufficiently
large k ∈ N+, the set A∆ has finite cardinality, and there exists a scalar constant smax ∈
R++ such that ‖sk‖2 ≤ smax for all k ∈ N+.

Proof. For all k ∈ A, we have ρk ≥ η, which implies by Step 6 that

f(xk)− f(xk+1) ≥ η‖sk‖32.

Combining this with Lemma 9 and the facts that the sequence {fk} is monotonically
decreasing and f is bounded below, it follows that {sk}k∈A → 0; in particular, there
exists kA ∈ N+ such that, for all k ∈ A with k ≥ kA, we have

γe‖sk‖2 ≤ ∆0 ≤ ∆k, (2.13)

where the latter inequality follows from Lemma 4. It now follows from (2.13) and the
updates in Steps 7, 12, and 16 that ∆k+1 ← ∆k for all k ≥ kA, which proves the first
part of the lemma. Next, we may observe that (2.13) also implies that ‖sk‖2 < ∆k for
all k ∈ A with k ≥ kA, from which it follows that k /∈ A∆. This proves the second part
of the lemma. Finally, the last part of the lemma follows from the first part and the fact
that Lemma 4 ensures ‖sk‖2 ≤ δk ≤ ∆k = ∆ for all sufficiently large k ∈ N+.
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Our next result ensures a lower bound on the trust region radii if the gradient sequence
is asymptotically bounded away from zero.

Lemma 11. If there exists a scalar constant gmin > 0 such that

‖gk‖2 ≥ gmin for all k ∈ N+, (2.14)

then there exists a scalar constant δmin > 0 such that δk ≥ δmin for all k ∈ N+.

Proof. If |C| < ∞, then the result follows as a consequence of Lemma 5. Therefore, we
may proceed under the assumption that |C| =∞.

We claim that there exists δthresh > 0 such that, if k ∈ C, then δk ≥ δthresh. Indeed, as
in the proof of Lemma 7 and by Lemma 2, we have for all k ∈ N+ that there exists some
xk on the line segment [xk,xk + sk] such that

fk − f(xk + sk)

= fk − qk(sk) + qk(sk)− f(xk + sk)

≥ 1
2‖gk‖2 min

{
δk,
‖gk‖2
‖Hk‖2

}
− ‖gk − g(xk)‖2‖sk‖2 − 1

2‖Hk‖2‖sk‖22. (2.15)

Consequently, we have ρk ≥ η if δk ∈ (0, gmin/Hmax] is sufficiently small such that

1
2gminδk − (gLip + 1

2Hmax)δ2
k ≥ ηδ3

k ≥ η‖sk‖32.

This fact implies the existence of a positive threshold δthresh ∈ (0, gmin/Hmax] such that,
for any k ∈ N+ with δk ∈ (0, δthresh), we have ρk ≥ η. Hence, as desired, we have proved
that if k ∈ C, then δk ≥ δthresh.

Now suppose that k ∈ C and consider the update for δk+1 in Step 13, which calls the
contract subroutine. If Step 28 is reached, then it follows that

δk+1 ← ‖s‖2 ≥
λ

σ
= λk + (σ‖gk‖2)1/2

σ
≥ (σgmin)1/2

σ
,

while if Step 36 or 38 is reached, then it follows that

δk+1 ≥ γc‖sk‖2 = γcδk ≥ γcδthresh,
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where we have used the fact that λk > 0 (see Step 32) implies by (2.1c) that ‖sk‖2 = δk.
In all of these cases, we have proved a constant lower bound for δk+1. All that remains is
to consider the value for δk+1 obtained if Step 31 is reached. For this case, let us use (λ, s)
to denote the values obtained in Step 30 while we use ŝ to denote the solution that was
obtained in Step 26. Since λ ∈ (λk, λ̂), we have that ‖s‖2 ≥ ‖ŝ‖2. Now let Hk = VkΞkV T

k

where Vk is an orthonormal matrix of eigenvectors and Ξk = diag(ξk,1, . . . , ξk,n) with
ξk,1 ≤ · · · ≤ ξk,n is a diagonal matrix of eigenvalues of Hk. Since λ̂ > λk, the matrix
Hk + λ̂I is invertible and

‖ŝ‖22 = ‖Vk(Ξk + λ̂I)−1V T
k gk‖22 = gTk Vk(Ξk + λ̂I)−2V T

k gk,

which implies from the orthonormality of Vk, Step 23, and Lemma 10 that

‖ŝ‖22
‖gk‖22

= gTk Vk(Ξk + λ̂I)−2V T
k gk

‖V T
k gk‖22

≥
(
ξk,n + λk + (σ‖gk‖2)1/2

)−2

≥
(
ξk,n + σ‖sk‖2 + (σ‖gk‖2)1/2

)−2

≥
(
Hmax + σsmax + (σgmax)1/2

)−2
.

Hence, under the conditions of the lemma, there exists a constant smin > 0 such that, for
all such k ∈ C, we have δk+1 ← ‖s‖2 ≥ ‖ŝ‖2 ≥ smin. Combining all of the cases in the
above analysis, we have shown that, for all k ∈ C, we have

δk+1 ≥ min
{

(σgmin)1/2

σ
, γcδthresh, smin

}
> 0.

Overall, the result follows by combining the constant positive lower bound for δk+1

for k ∈ C provided by the previous paragraph with the fact that Lemma 5 ensures that
δk+1 ≥ δk for all k ∈ A ∪ E .

We now prove a standard result for trust region algorithms showing that the limit
inferior of the norms of the gradients of the objective is equal to zero.

Lemma 12. There holds
lim inf

k∈N+,k→∞
‖gk‖2 = 0.
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Proof. Suppose that there exists a scalar constant gmin > 0 such that (2.14) holds. Then,
by Lemma 11, there exists a scalar constant δmin > 0 where δk ≥ δmin > 0 for all k ∈ N+.
This fact, along with (2.6), (2.14), and boundedness of {‖Hk‖2}, implies that there exists
a scalar constant smin > 0 such that ‖sk‖2 ≥ smin for all k ∈ N+. On the other hand, for
all k ∈ A we have ρk ≥ η, which implies that fk−fk+1 ≥ η‖sk‖32. Since f is bounded below
on Rn and Lemma 9 ensures that |A| =∞, this implies that {sk}k∈A → 0, contradicting
the existence of smin > 0. Overall, there cannot exist gmin > 0 such that (2.14) holds, so
the result follows.

We close with our main global convergence result of this subsection.

Theorem 3. Under Assumptions 3 and 4, it holds that

lim
k∈N+,k→∞

‖gk‖2 = 0. (2.16)

Proof. To reach a contradiction, suppose that (2.16) does not hold. Combining this with
the results of Lemmas 9 and 12, it follows that there exists an infinite subsequence {ti} ⊆ A
(indexed over i ∈ N+) such that, for some ε > 0 and all i ∈ N+, we have ‖gti‖2 ≥ 2ε > 0.
Additionally, Lemmas 9 and 12 imply that there exists an infinite subsequence {`i} ⊆ A
(indexed over i ∈ N+) such that, for all i ∈ N+ and k ∈ N+ with ti ≤ k < `i, we have

‖gk‖2 ≥ ε and ‖g`i‖2 < ε. (2.17)

We now restrict our attention to indices in the infinite index set

K := {k ∈ A : ti ≤ k < `i for some i ∈ N+}.

Observe from (2.17) that, for all k ∈ K, we have ‖gk‖2 ≥ ε. Hence, by Lemma 1, we have
for all k ∈ K ⊆ A that

fk − fk+1 ≥ η‖sk‖32 ≥ η
(

min
{
δk,

ε

Hmax

})3
. (2.18)

Since {fk} is monotonically decreasing and bounded below, we know that fk → f for some
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f ∈ R, which when combined with (2.18) shows that

lim
k∈K,k→∞

δk = 0. (2.19)

Using this fact and (2.15), we have for all sufficiently large k ∈ K that

fk − fk+1 ≥ 1
2‖gk‖2 min

{
δk,
‖gk‖2
‖Hk‖2

}
− (gLip + 1

2Hmax)‖sk‖22

≥ 1
2εmin

{
δk,

ε

Hmax

}
− (gLip + 1

2Hmax)‖sk‖22

≥ 1
2εδk − (gLip + 1

2Hmax)δ2
k.

From this inequality and (2.19), it follows that fk − fk+1 ≥ εδk/4 for all sufficiently large
k ∈ K. Consequently, we have for all sufficiently large i ∈ N+ that

‖xti − x`i‖2 ≤
`i−1∑

k∈K,k=ti
‖xk − xk+1‖2

≤
`i−1∑

k∈K,k=ti
δk ≤

`i−1∑
k∈K,k=ti

4
ε (fk − fk+1) = 4

ε (fti − f`i).

Since {fti − f`i} → 0, this implies that {‖xti − x`i‖2} → 0, which, in turn, implies that
{‖gti − g`i‖2} → 0. However, this is a contradiction since, for any i ∈ N+, we have
‖gti − g`i‖2 ≥ ε by the definitions of {ti} and {`i}. Overall, we conclude that our initial
supposition must be false, implying that (2.16) holds.

2.2.2 Worst-case iteration complexity to approximate first-order sta-
tionarity

Our goal in this subsection is to prove a worst-case upper bound on the number of iterations
required for trace to reduce the norm of the gradient of the objective below a prescribed
positive threshold, namely ε ∈ (0,∞). For this purpose, in addition to Assumptions 3
and 4, we add the following assumption about the objective function and the sequences
of iterates and computed trial steps.

Assumption 5. The Hessian function H is Lipschitz continuous on a path defined by the
sequence of iterates and trial steps; in particular, it is Lipschitz continuous with a scalar
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Lipschitz constant HLip > 0 on the set {xk + τsk : k ∈ N+, τ ∈ [0, 1]}.

We begin our analysis in this subsection by providing a refinement of Lemma 7 under
the additional assumption made in this subsection.

Lemma 13. For any k ∈ N+, if the trial step sk and dual variable λk satisfy

λk ≥ (HLip + 2η)‖sk‖2, (2.20)

then ‖sk‖2 = δk and ρk ≥ η.

Proof. For all k ∈ N+, there exists xk on the line segment [xk,xk + sk] such that

qk(sk)− f(xk + sk) = 1
2s
T
k (Hk −H(xk))sk ≥ −1

2HLip‖sk‖32. (2.21)

Hence, Lemma 2, (2.21), and (2.1b) imply that, for any k ∈ N+,

fk − f(xk + sk) = fk − qk(sk) + qk(sk)− f(xk + sk)

≥ 1
2λk‖sk‖

2
2 − 1

2HLip‖sk‖32.

This and (2.20) imply ρk ≥ η, whereas (2.20) and (2.1c) imply ‖sk‖2 = δk.

We now prove bounds for a critical ratio that hold after any contraction.

Lemma 14. For any k ∈ N+, if k ∈ C, then

σ ≤ λk+1
‖sk+1‖2

≤ max
{
σ,
(
γλ
γc

)
λk
‖sk‖2

}
.

Proof. Let k ∈ C and consider the four cases that may occur within contract. The first
two correspond to situations in which the condition in Step 23 tests true.

1. Suppose that Step 28 is reached so that δk+1 ← ‖s‖2 where (λ, s) is computed
in Steps 25–26. It follows that Step 19 will then produce the primal-dual pair
(sk+1,λk+1) solving Qk+1 such that sk+1 = s and λk+1 = λ > 0. Since the condition
in Step 27 tested true, this implies that

λk+1
‖sk+1‖2

= λ

‖s‖2
≤ σ.
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On the other hand, a lower bound for this ratio can be found using a similar technique
as in the proof of Lemma 11; in particular, as in that proof (where (λ, s) from
Steps 25–26 temporarily appeared as (ŝ, λ̂)), we have

‖s‖22
‖gk‖22

= gTk Vk(Ξk + λI)−2V T
k gk

‖V T
k gk‖22

≤
(
ξk,1 + λk + (σ‖gk‖2)1/2

)−2
.

Hence, since λk ≥ max{0,−ξk,1}, we have that

λk+1
‖sk+1‖2

= λ

‖s‖2
≥ (λk + (σ‖gk‖2)1/2)(ξk,1 + λk + (σ‖gk‖2)1/2)

‖gk‖2
≥ σ.

2. Suppose that Step 31 is reached so that δk+1 ← ‖s‖2 where (λ, s) is computed in
Step 30. Similarly to the previous case, it follows that Step 19 will produce the
primal-dual pair (sk+1,λk+1) solving Qk+1 such that sk+1 = s and λk+1 = λ > 0.
Since Step 30 was reached, this implies that

λk+1
‖sk+1‖2

= λ

‖s‖2
where σ ≤ λ

‖s‖2
≤ σ.

The other two cases that may occur within contract correspond to situations in which
the condition in Step 23 tests false, in which case λk > 0 and the pair (λ, s) is computed
in Step 33–34. This means, in particular, that

σ ≤ λk
‖sk‖2

≤ λ

‖s‖2
, (2.22)

where the latter inequality follows since λ = γλλk > λk, which, in turn, implies by standard
trust region theory [23, Chap. 7] that ‖s‖2 < ‖sk‖2. We now consider the two cases that
may occur under this scenario.

3. Suppose that Step 36 is reached so that δk+1 ← ‖s‖2. It follows that Step 19 will
produce the primal-dual pair (sk+1,λk+1) solving Qk+1 such that sk+1 = s and
λk+1 = λ. In conjunction with (2.22), we may then observe that

σ ≤ λk+1
‖sk+1‖2

= λ

‖s‖2
= γλλk
‖s‖2

≤ γλλk
γc‖sk‖2

.

4. Suppose that Step 38 is reached so that δk+1 ← γc‖sk‖2. It follows that Step 19 will
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produce the primal-dual pair (sk+1,λk+1) solving Qk+1 such that λk+1 > 0 since
‖sk+1‖2 = δk+1 = γc‖sk‖2. Also, since the condition in Step 35 tested false, we
conclude by Lemma 3 that λk ≤ λk+1 ≤ λ = γλλk. Hence, with (2.22),

σ <
σ

γc
≤ λk
γc‖sk‖2

≤ λk+1
‖sk+1‖2

≤ γλλk
γc‖sk‖2

.

The result follows since we have obtained the desired inequalities in all cases.

The results of the two preceding lemmas can be combined to prove that the sequence
{σk} is bounded above.

Lemma 15. There exists a scalar constant σmax > 0 such that, for all k ∈ N+,

σk ≤ σmax.

Proof. Observe by Steps 9, 18, and 21 that {σk} is monotonically nondecreasing. More-
over, Lemma 10 ensures the existence of kA ∈ N+ such that, if k ∈ A with k ≥ kA, then
k ∈ Aσ. We now consider three cases for any k ∈ N+ with k ≥ kA.

1. If k ∈ Aσ ⊆ A, then λk ≤ σk‖sk‖2, which implies by Step 9 that σk+1 ← σk.

2. If k ∈ C, then ρk < η, which implies by Lemma 13 that

λk < (HLip + 2η)‖sk‖2.

Hence, by Step 21 and Lemma 14, it follows that

σk+1 ← max
{
σk,

λk+1
‖sk+1‖2

}
≤ max

{
σk,σ,

(
γλ
γc

)
(HLip + 2η)

}
.

3. If k ∈ E , then Step 18 implies that σk+1 ← σk.

Combining the results of these three cases, the desired result follows.

We now establish a lower bound on the norm of any accepted step in Aσ.

Lemma 16. For all k ∈ Aσ, the accepted step sk satisfies

‖sk‖2 ≥
(

1
2HLip + σmax

)−1/2
‖gk+1‖

1/2
2 .
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Proof. For all k ∈ A, it follows from (2.1a) that

‖gk+1‖2 = ‖g(xk + sk)− (gk + (Hk + λkI)sk)‖2

≤ ‖g(xk + sk)− (gk +Hksk)‖2 + λk‖sk‖2.

By Taylor’s theorem, the first term on the right-hand side of (2.2.2) satisfies

‖g(xk + sk)− (gk +Hksk)‖2 ≤
∥∥∥∥∫ 1

0
(H(xk + τsk)−Hk)skdτ

∥∥∥∥
2

≤
∫ 1

0
‖H(xk + τsk)−Hk‖2 dτ‖sk‖2

≤
∫ 1

0
τdτHLip‖sk‖22

= 1
2HLip‖sk‖22,

which, with (2.2.2) and the fact that λk ≤ σk‖sk‖2 for all k ∈ Aσ, implies that

‖gk+1‖2 ≤ 1
2HLip‖sk‖22 +

(
λk
‖sk‖2

)
‖sk‖22

≤
(

1
2HLip + σk

)
‖sk‖22.

This, along with Lemma 15, implies the result.

We are now prepared to prove a worst-case upper bound on the total number of
certain accepted steps that may occur in iterations in which the norm of the gradient of
the objective is above a prescribed positive threshold.

Lemma 17. For a scalar ε ∈ (0,∞), the total number of elements in the index set

Kε := {k ∈ N+ : k ≥ 1, (k − 1) ∈ Aσ, ‖gk‖2 > ε}

is at most 
 f0 − fmin

η
(

1
2HLip + σmax

)−3/2

 ε−3/2

 =: Kσ(ε) ≥ 0. (2.23)
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Proof. By Lemma 16, we have for all k ∈ Kε that

fk−1 − fk ≥ η‖sk−1‖32

≥ η
(

1
2HLip + σmax

)−3/2
‖gk‖

3/2
2

≥ η
(

1
2HLip + σmax

)−3/2
ε3/2.

In addition, we have by Theorem 3 that |Kε| <∞. Hence, the reduction in f obtained up
to the largest index in Kε, call it kε, satisfies

f0 − fkε =
kε∑
k=1

(fk−1 − fk)

≥
∑
k∈Kε

(fk−1 − fk)

≥ |Kε|η
(

1
2HLip + σmax

)−3/2
ε3/2.

Rearranging this inequality to yield an upper bound for |Kε| and using the fact that
f0 − fmin ≥ f0 − fkε , we obtain the desired result.

In order to prove a result similar to Lemma 17 for the total number of iterations with
‖gk‖2 > ε, we require an upper bound on the cardinality of the set A∆, as well as an upper
bound on the total number of contraction and expansion iterations that may occur until
the next accepted step. We obtain the first such bound with the following refinement for
the second part of the result of Lemma 10.

Lemma 18. The cardinality of the set A∆ is bounded above by⌊
f0 − fmin
η∆3

0

⌋
=: K∆ ≥ 0. (2.24)

Proof. For all k ∈ A∆, it follows along with Lemma 4 that

fk − fk+1 ≥ η‖sk‖32 = η∆3
k ≥ η∆3

0.

Hence, we have that

f0 − fmin ≥
∞∑
k=0

(fk − fk+1) ≥
∑
k∈A∆

(fk − fk+1) ≥ |A∆|η∆3
0,
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from which the desired result follows.

Now, for the purpose of deriving an upper bound on the numbers of contraction and
expansion iterations that may occur until the next accepted step, let us define, for a given
k̂ ∈ A ∪ {0}, the iteration number and corresponding set

kA(k̂) := min{k ∈ A : k > k̂}

and I(k̂) := {k ∈ N+ : k̂ < k < kA(k̂)},

i.e, we let kA(k̂) be the smallest of all iteration numbers in A that is strictly larger than k̂,
and we let I(k̂) be the set of intermediate iteration numbers between k̂ and kA(k̂). Using
this notation, the following result shows that the number of expansion iterations between
the first iteration and the first accepted step, or between consecutive accepted steps, is
never greater than one. Moreover, when such an expansion iteration occurs, it must take
place immediately.

Lemma 19. For any k̂ ∈ N+, if k̂ ∈ A ∪ {0}, then E ∩ I(k̂) ⊆ {k̂ + 1}.

Proof. By the definition of kA(k̂), we have under the conditions of the lemma that I(k̂)∩
A = ∅, which means that I(k̂) ⊆ C ∪ E . It then follows from Lemma 6 that (k + 1) /∈ E
for all k ∈ I(k̂), so that E ∩ I(k̂) ⊆ {k̂ + 1}, as desired.

We now turn our attention to contraction steps that may occur between consecutive
accepted steps. We first show that, when a critical ratio is bounded below by σ, then it
must increase by a constant factor during a contraction.

Lemma 20. For any k ∈ N+, if k ∈ C and λk ≥ σ‖sk‖2, then

λk+1
‖sk+1‖2

≥ min
{
γλ, 1

γc

}(
λk
‖sk‖2

)
.

Proof. Since k ∈ C and λk ≥ σ‖sk‖2 > 0, it follows that the condition in Step 23 tests
false. Hence, (λ, s) is computed in Steps 33–34 where λ = γλλk > λk and s solves Qk(λ).
We now consider the two cases that may occur in contract.

1. Suppose that Step 36 is reached, meaning that ‖s‖2 ≥ γc‖sk‖2. It follows that
Step 19 will produce the primal-dual pair (sk+1,λk+1) solving Qk+1 such that (recall
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Lemma 3) ‖sk+1‖2 = δk+1 < δk = ‖sk‖2 and λk+1 = γλλk, i.e.,

λk+1
‖sk+1‖2

>
γλλk
‖sk‖2

. (2.25)

2. Suppose that Step 38 is reached, meaning that ‖s‖2 < γc‖sk‖2. It follows that
Step 19 will produce the primal-dual pair (sk+1,λk+1) solvingQk+1 such that ‖sk+1‖2 =
δk+1 = γc‖sk‖2 and (recall Lemma 3) λk+1 ≥ λk. Consequently,

λk+1
‖sk+1‖2

≥ λk
γc‖sk‖2

. (2.26)

The result now follows from (2.25) and (2.26).

Our next result shows that the number of contraction steps between the first iteration
and the first accepted step, or between consecutive accepted steps, is bounded above by
a scalar constant.

Lemma 21. For any k̂ ∈ N+, if k̂ ∈ A ∪ {0}, then

|C ∩ I(k̂)| ≤ 1 +
⌊

1
log(min{γλ, γ−1

c })
log

(
σmax
σ

)⌋
=: KC ≥ 0.

Proof. The result holds trivially if |C ∩ I(k̂)| = 0. Thus, we may assume |C ∩ I(k̂)| ≥ 1
and, by Lemma 19, may define the iteration number kC(k̂) ∈ {k̂+ 1, k̂+ 2} as the smallest
element of C ∩ I(k̂). It follows along with Lemmas 3 and 4 that, for all k ∈ N+ with
kC(k̂) + 1 ≤ k ≤ kA(k̂), we have

‖sk‖2 ≤ δk ≤ δkC(k̂)+1 < δkC(k̂) ≤ ∆kC(k̂) ≤ ∆kA(k̂).

In particular, for k = kA(k̂), this shows that kA(k̂) ∈ Aσ. Now, from Lemma 14,

λkC(k̂)+1
‖skC(k̂)+1‖2

≥ σ,

58



which, by the fact that kA(k̂) ∈ Aσ and Lemmas 15 and 20, implies that

σmax ≥
λkA(k̂)
‖skA(k̂)‖2

≥ σ
(

min
{
γλ, 1

γc

})kA(k̂)−kC(k̂)−1
,

from which it follows that

kA(k̂)− kC(k̂) ≤ 1 + 1
log(min{γλ, γ−1

c })
log

(
σmax
σ

)
.

The desired result follows from this inequality since |C ∩ I(k̂)| = kA(k̂)− kC(k̂).

We are now prepared to prove our main complexity result of this subsection.

Theorem 4. Under Assumptions 3, 4, and 5, for a scalar ε ∈ (0,∞), the total number of
elements in the index set

{k ∈ N+ : ‖gk‖2 > ε}

is at most
K(ε) := 1 + (Kσ(ε) +K∆)(1 +KC), (2.27)

where Kσ(ε), K∆, and KC are defined in Lemmas 17, 18, and 21, respectively. Conse-
quently, we have that K(ε) = O(ε−3/2) as ε↘ 0.

Proof. Without loss of generality, we may assume that at least one iteration is performed.
Lemmas 17 and 18 guarantee that the total number of elements in the index set {k ∈
A : k ≥ 1, ‖gk‖2 > ε} is at most Kσ(ε) + K∆, where, immediately prior to each of the
corresponding accepted steps, Lemmas 19 and 21 guarantee that at most 1+KC expansion
and contraction steps are performed. Also accounting for the first iteration, the desired
result follows.

2.2.3 Convergence and complexity to (approximate) second-order sta-
tionarity

We have established by Theorem 3 that any limit point of {xk} is a first-order stationary
point for f , i.e., the gradient of f must be zero at any such point. Moreover, we have
established by Theorem 4 that, in the worst case, the number of iterations required to
compute an ε-stationary point (i.e., an iterate at which the norm of the gradient of f
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is less than a prescribed tolerance ε ∈ (0,∞)) is O(ε−3/2). Building on these results,
our goal in this subsection is to analyze the global convergence properties and worst-case
iteration complexity of trace toward (approximate) second-order stationary points. For
our purposes in this section, we continue to make Assumptions 3, 4, and 5. In addition, we
continue to use the notation introduced in Lemma 11, where, for all k ∈ N+, we let Hk =
VkΞkV T

k where Vk is an orthonormal matrix of eigenvectors and Ξk = diag(ξk,1, . . . , ξk,n)
with ξk,1 ≤ · · · ≤ ξk,n is a diagonal matrix of eigenvalues of Hk.

Along with Theorem 3, the following theorem establishes that the iterates of trace
are driven toward second-order stationarity.

Theorem 5. Under Assumptions 3, 4, and 5, it holds that

lim inf
k∈N+,k→∞

ξk,1 ≥ 0.

Proof. For all k ∈ Aσ, we have fk − fk+1 ≥ η‖sk‖32. Hence, since {fk} is monotonically
decreasing and bounded below, Lemma 9 yields {‖sk‖2}k∈Aσ → 0. This, along with the
fact that by Lemma 15 we have λk ≤ σk‖sk‖2 ≤ σmax‖sk‖2 for all k ∈ Aσ, implies that
{λk}k∈Aσ → 0. We may now recall from (2.1b) that ξk,1 + λk ≥ 0 for all k ∈ N+, which,
along with the fact that {λk}k∈Aσ → 0, yields

lim inf
k∈Aσ ,k→∞

ξk,1 ≥ 0.

The result now follows from the above lower bound, the fact that Lemma 10 provides that
A∆ has finite cardinality, and since Hk+1 = Hk for all k /∈ A.

We now provide an upper bound on the number of accepted steps that occur when the
leftmost eigenvalue of the Hessian matrix is below a negative threshold.

Lemma 22. For a scalar ε ∈ (0,∞), the total number of elements in the index set

Kε,2 := {k ∈ Aσ : ξk,1 < −ε}

is at most ⌊(
f0 − fmin
ησ−3

max

)
ε−3
⌋

=: Kσ,2(ε) ≥ 0.
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Proof. For all k ∈ Kε,2, we have by (2.1b) that λk ≥ −ξk,1 > ε, which along with Steps 5–6
and Lemma 15 implies

fk − fk+1 ≥ η‖sk‖32 ≥ ηλ3
kσ
−3
k ≥ ηε

3σ−3
max.

In addition, we have by Theorem 5 that |Kε,2| < ∞. Hence, the reduction in f obtained
immediately after the largest index in Kε,2, call it kε,2, satisfies

f0 − fkε,2+1 =
kε,2∑
k=0

(fk − fk+1) ≥
∑

k∈Kε,2
(fk − fk+1) ≥ |Kε,2|ηε3σ−3

max.

Rearranging this inequality to yield an upper bound for |Kε,2| and using the fact that
f0 − fmin ≥ f0 − fkε,2+1, we obtain the desired result.

We now present our main complexity result of this subsection.

Theorem 6. Under Assumptions 3, 4, and 5, for a scalar ε ∈ (0,∞), the total number of
elements in the index set

{k ∈ N+ : ‖gk‖2 > ε or ξk,1 < −ε}

is at most
K2(ε) := 1 + (Kσ(ε) +Kσ,2(ε) +K∆)(1 +KC), (2.28)

where Kσ(ε), K∆, KC, and Kσ,2(ε) are defined in Lemmas 17, 18, 21, and 22, respectively.
Consequently, we have that K2(ε) = O(ε−3) as ε↘ 0.

Proof. The proof follows in a similar manner as that of Theorem 4, except that we must
now account for additional accepted steps—an upper bound for which is provided by
Lemma 22—that may occur until the leftmost eigenvalue of the Hessian matrix is above
the desired threshold.

We remark that the specific upper bound in (2.28) may be reduced by observing that
the terms Kσ(ε) + Kσ,2(ε) might double-count certain accepted steps. However, we have
presented the result in the above manner for simplicity.
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2.2.4 Local convergence to a strict local minimizer

Our goal in this subsection is to prove that if there exists a limit point of {xk} at which
the second-order sufficient condition for optimality is satisfied, then, in fact, the entire
sequence of iterates converges to this point, and the asymptotic rate of convergence is
Q-quadratic. For this purpose, in addition to Assumptions 3 and 4, we make the following
assumption. (Note that our analysis in this subsection does not require Assumption 5;
instead, the following assumption only involves the looser requirement that the Hessian
function of f is locally Lipschitz in a neighborhood about a particular limit point of the
iterate sequence.)

Assumption 6. For some infinite S ⊆ N+, the subsequence of iterates {xk}k∈S converges
to x∗ ∈ Rn at which the Hessian of f is positive definite, i.e., H(x∗) � 0. Furthermore,
there exists a nonempty open convex set about x∗ in which the Hessian function H is
locally Lipschitz continuous with a scalar Lipschitz constant HLoc > 0.

Our first result, the proof of which follows as for a traditional trust region algorithm,
states that the entire iterate sequence converges.

Lemma 23. The sequence {xk} converges to x∗ and g(x∗) = 0.

Proof. By Theorem 3, it follows that g(x∗) = 0. The remainder of the result follows
similarly to that of [23, Theorem 6.5.2].

The next lemma reveals asymptotic properties of the computed trial steps.

Lemma 24. There exists an iteration number kA ∈ N+ such that, for all k ∈ N+ with
k ≥ kA, the trial step, dual variable, and iteration number satisfy sk = −H−1

k gk, λk = 0,
and k ∈ A, respectively. That is, eventually, all computed trial steps are Newton steps
that are accepted by the algorithm.

Proof. By Lemma 23, continuity of the Hessian function implies that H(xk) � 0 for all
sufficiently large k ∈ N+. Hence, for all such k, we either have sk = −H−1

k gk or the
Newton step −H−1

k gk lies outside the trust region, i.e., in either case,

‖sk‖2 ≤ ‖H−1
k gk‖2 ≤ ‖H−1

k ‖2‖gk‖2 =⇒ ‖gk‖2 ≥ ‖sk‖2/‖H−1
k ‖2. (2.29)
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Along with Lemma 2 (specifically, (2.8)), this implies that

fk − qk(sk) ≥ 1
2‖gk‖2 min

{
δk,
‖gk‖2
‖Hk‖2

}
≥ 1

2
‖sk‖2
‖H−1

k ‖2
min

{
‖sk‖2, ‖sk‖2

‖Hk‖2‖H−1
k ‖2

}

≥ 1
2

‖sk‖22
‖Hk‖2‖H−1

k ‖22
.

Thus, with ξ∗ := 1/(4‖H(x∗)‖2‖H(x∗)−1‖22), we have for sufficiently large k ∈ N+

fk − qk(sk) ≥ ξ∗‖sk‖22.

Furthermore, since {xk} → x∗ implies {H−1
k gk} → 0, it follows from (2.29) that {sk} → 0.

Combining these facts with the above displayed inequality, we have, as in the proof of
Lemma 13, that, for sufficiently large k ∈ N+,

fk − f(xk + sk) = fk − qk(sk) + qk(sk)− f(xk + sk)

≥ ξ∗‖sk‖22 − 1
2HLoc‖sk‖32 ≥ η‖sk‖32,

meaning that for all sufficiently large k ∈ N+ we have ρk ≥ η so that k ∈ A ∪ E .
By the result of the previous paragraph and Lemma 5, it follows that there exists a

scalar constant δmin > 0 such that δk ≥ δmin for all sufficiently large k ∈ N+. Moreover,
continuity of the gradient and Hessian functions imply that for some sufficiently small
τ ∈ R++ we have

‖H−1
k gk‖2 < δmin whenever ‖xk − x∗‖2 ≤ τ .

Hence, for sufficiently large k ∈ N+, we have Hk � 0 and the Newton step lies in the
trust region, which implies that sk = −H−1

k gk and λk = 0 for all sufficiently large k ∈ N+.
Since we have shown that k ∈ A ∪ E for all sufficiently large k ∈ N+, this implies that, in
fact, k ∈ A for all sufficiently large k ∈ N+, as desired.

We now provide our main local convergence rate result.

Theorem 7. Under Assumptions 3, 4, and 6, it holds that

‖gk+1‖2 = O(‖gk‖22) and ‖xk+1 − x∗‖2 = O(‖xk − x∗‖22) (2.30)
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i.e., the sequences {gk} and {xk} Q-quadratically converge to 0 and x∗, respectively.

Proof. With the conclusions of Lemmas 23 and 24, the result follows from standard theory
of Newton’s method for unconstrained optimization; e.g., see [31].

2.3 Numerical Experiments

We implemented the proposed algorithm along with the traditional trust region (ttr)
and a standard arc algorithm in MATLAB for a preliminary performance examination.
Figure 2.1 compares the performance of the implemented algorithms using performance
profiles (see [32]) for the number of iterations, function/gradient evaluations, and matrix
factorizations. The results show that trace is at least competitive in terms of number
of iterations and function, gradient, and Hessian evaluations, while is completely superior
in terms of matrix decompositions. One can justify this superiority of trace by notic-
ing that there are some iterations in which trace only needs to solve a system of linear
equations with just one matrix factorization. We admit that this result is based on our
preliminary implementation of these algorithms and restricted to the unconstrained prob-
lems in the CUTEr test collection [40]. However, we believe that the result from a larger
scale experiment would not be very different.

For practical purposes, in the implementation of trace we have changed the definition
of ρk to

ρk := fk − f(xk + sk)
min{‖sk‖32, fk −mc

k(sk;σ)}
,

where
mc
k(σk) := fk + gTk sk + 1

2s
T
kHksk + σ

3 ‖sk‖
3
2.

This change guarantees that the function decrease for a successful step sk is proportional
to ‖sk‖32 as it is proved in [14]. In addition, this change relaxes the acceptance condition
when the norm of sk is large. At these points, using the modified ρk may improve the
performance of the algorithm because it will decrease the number of unsuccessful steps.

To run this experiment, we removed 9 problems due to memory or decoding errors.
In addition, 21 problems on which all algorithms failed were removed. The performance
profiles shown in Figure 2.1 are based on 130 remaining unconstrained problems in the
CUTEr collection. For all of these algorithms, the same subproblem solver [23] was used to
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find an approximate global solution of the subproblem. We terminated the algorithms as
soon as they reached

‖gk‖∞ ≤ 10−6 max{‖g0‖∞, 1}.

Updating the parameters was done as

(ttr) δk+1 ←


max{δk, 2‖sk‖2} if ρqk ≥ η2

δk if ρqk ∈ [η1, η2)

δk/2 if ρqk < η1

,

(arc) σk+1 ←


σk/2 if ρck ≥ η2

σk if ρck ∈ [η1, η2)

2σk if ρck < η1

, and

(trace) δk+1 ←


max{δk, 2‖sk‖2} if ρk ≥ η2

δk if ρk ∈ [η1, η2)

contract if ρk < η1

,

where contract (see Algorithm 6) uses

σ = 10−10, σ = 1010, γλ = 2, γc = 10−2.

We also collected some extra statistics for trace to have a better understanding
of the performance of the algorithm. According to our experiment, only 1.01% of the
iterations were expansions (Table 2.1). In addition, there was no contraction through
Step 31 (Table 2.2). This observation shows that although defining a contraction step as
the one in Step 31 is necessary for the analysis, using this type of contraction in practice
is very rare. In fact, appropriate choices of σ and σ can decrease the usage of Step 31.

Table 2.1: Percentage of iteration types

Accepted Contraction Expansion
63.73% 35.26% 1.01%
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(a) Performance profile for the number of
function evaluations

(b) Performance profile for the number of
gradient evaluations

(c) Performance profile for the number of
iterations

(d) Performance profile for the number of
matrix factorizations

Figure 2.1: Performance profiles comparing numbers of evaluations, iterations, and matrix
factorizations between trace, ttr, and arc.

Table 2.2: Percentage of contraction types

λk + (σ‖gk‖2)1/2 σ ≤ λ/‖s‖2 ≤ σ γλλk δ ← γc‖sk‖2
2.70% 0.00% 88.09% 9.21%
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Chapter 3

An Inexact Regularized Newton
Framework with a Worst-Case
Iteration Complexity of O(ε−3/2)
for Nonconvex Optimization

In this chapter1, we proposes another algorithm for solving problem (1.1), where the
(possibly nonconvex) objective function f : Rn → R is assumed to be twice-continuously
differentiable. The optimization problem (1.1) has been widely studied, as evidenced by
its appearance as the focal point of numerous textbooks; e.g., see [1], [3], [23], [46], [57],
and [60].

For many years, the most popular methods for solving (1.1) were in classes known as
line search and trust region methods. Recently, however, cubic regularization methods
have become popular, which are based on the pioneering work by [45] and [56]. Their rise
in popularity is due to increased interest in algorithms with improved complexity prop-
erties, which stems from the impact of so-called optimal algorithms for solving convex
optimization problems. For problem (1.1), by complexity properties, we mean a guaran-
teed bound on the number of iterations (or function evaluations or derivative evaluations)
needed by an algorithm before the norm of the gradient of the objective must fall below a

1A paper containing the original material of this chapter has been accepted for publication in the IMA
Journal of Numerical Analysis. Please refer to [30].
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positive threshold ε > 0. The complexity of a traditional trust region method (e.g., see Al-
gorithm 6.1.1 in [23]) is O(ε−2) (see [13] and Chapter 1), which falls short of the O(ε−3/2)
complexity for cubic regularization methods (e.g., see the arc method by [14, 15]). This
latter complexity is optimal among a certain broad class of second-order methods when
employed to minimize a broad class of objective functions; see [16]. That said, one can
obtain even better complexity properties if higher-order derivatives are used; see [8] and
[21].

The better complexity properties of regularization methods such as arc have been
a major point of motivation for discovering other methods that attain the same worst-
case iteration complexity bounds. For example, the recently introduced (nontraditional)
trust region method known as trace (see [28] and Chapter 2) has the same optimal
O(ε−3/2) complexity, while at the same time allowing traditional trust region trial steps
to be computed and used. A key aspect of the trace framework is that a solution to an
implicit trust region problem is obtained by varying a regularization parameter instead
of a trust region radius. This key idea has been adopted and advanced further by [5]; in
particular, they propose an algorithm that has optimal iteration complexity by solving
quadratic subproblems that have a carefully chosen quadratic regularization parameter.

The main contributions of this chapter relate to advancing the understanding of opti-
mal complexity algorithms for solving the smooth optimization problem (1.1). Our pro-
posed framework is intentionally very general; it is not a trust region method, a quadratic
regularization method, or a cubic regularization method. Rather, we propose a generic
set of conditions that each trial step must satisfy that still allow us to establish an op-
timal first-order complexity result as well as a second-order complexity bound similar to
the methods above. Our framework contains as special cases other optimal complexity
algorithms such as arc and trace. To highlight this generality of our contribution, we
describe one particular instance of our framework that appears to be new to the literature.

During the final preparation of the material of this chapter, we came across the work
in [33] and [34]. This work shares certain commonalities with our own and appears to
have been developed at the same time. Although there are numerous differences, we shall
only point out three of them. First, the precise conditions that they require for each
trial step are different from ours. In particular, the condition stated as (3.1c) in [34]
requires that regularization is used to compute every trial step, a property not shared
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by our method (which can employ Newton steps). Second, they do not consider second-
order convergence or complexity properties, although they might be able to do so by
incorporating second-order conditions similar to ours. Third, they focus on strategies for
identifying an appropriate value for the regularization parameter. An implementation of
our method might consider their proposals, but could employ other strategies as well.
In any case, overall, we believe that our work are quite distinct, and in some ways are
complementary.

Organization In §3.1, we present our general framework that is formally stated as Algo-
rithm 7. In §3.2, we prove that our framework enjoys first-order convergence (see §3.2.1),
an optimal first-order complexity (see §3.2.2), and certain second-order convergence and
complexity guarantees (see §3.2.3). In §3.3, we show that arc and trace can be viewed
as special cases of our framework, and present yet another instance that is distinct from
these methods. In §3.4, we present details of implementations of a cubic regularization
method and our newly proposed instance of our framework, and provide the results of
numerical experiments with both.

Notation We use R+ to denote the set of nonnegative scalars, R++ to denote the set of
positive scalars, and N+ to denote the set of nonnegative integers. Given a real symmetric
matrix A, we write A � 0 (respectively, A � 0) to indicate that A is positive semidefinite
(respectively, positive definite). Given a pair of scalars (a, b) ∈ R × R, we write a ⊥ b to
indicate that ab = 0. Similarly, given such a pair, we denote their maximum as max{a, b}
and their minimum as min{a, b}. Given a vector v, we denote its (Euclidean) `2-norm as
‖v‖. Finally, given a discrete set S, we denote its cardinality by |S|.

Corresponding to the objective f : Rn → R, we define the gradient function g :=
∇f : Rn → Rn and the Hessian function H := ∇2f : Rn → Rn×n. Given an iterate
xk in an algorithm for solving (1.1), we define fk := f(xk), gk := g(xk) := ∇f(xk), and
Hk := H(xk) := ∇2f(xk). Similarly, we apply a subscript to other algorithmic quantities
whose definition depends on the iteration number k.

69



3.1 Algorithm Description

Our algorithm involves generic conditions that a trial step toward solving problem (1.1)
must satisfy. A step satisfying these conditions can be obtained by computing—for ap-
propriate positive lower and upper bounds σl

k and σu
k , respectively, on the ratio between

a regularization variable λ ≥ 0 and the norm of the trial step—an approximate solution
of the subproblem

Pk(σl
k,σu

k ) : min
(s,λ)∈Rn×R+

fk + gTk s+ 1
2s
T (Hk + λI)s

s.t. (σl
k)2‖s‖2 ≤ λ2 ≤ (σu

k )2‖s‖2.
(3.1)

For a given value of the regularization variable λ, this problem involves a quadratic objec-
tive function and an upper bound on the norm of the trial step, just as in a trust region
method. However, it also includes a lower bound on the norm of the trial step, and, in
general, with λ as a variable, it encapsulates other types of subproblems as well, including
those present in a cubic regularization framework. For additional details on the properties
of this subproblem and its solutions, see Appendices B.1 and B.2.

The conditions that the kth trial step and regularization pair, i.e., (sk,λk), must
satisfy are stated in Assumption 7 below, wherein we invoke the following (unregularized)
quadratic model of f at xk:

qk(s) := fk + gTk s+ 1
2s
THks.

Assumption 7. The pair (sk,λk) is computed such that it is feasible for problem (3.1)
and, with

∆k(sk,λk) :=

‖sk‖ if λk = 0
1√
6

√
‖gk‖‖sk‖

λk
if λk > 0

(3.2)

and constants (κ1,κ2,κ3) ∈ R++ × R++ × R++, the following hold:

fk − qk(sk) ≥
‖gk‖
6
√

2
min

{ ‖gk‖
1 + ‖Hk‖

, ∆k(sk,λk)
}

; (3.3a)

sTk (gk + (Hk + λkI)sk) ≤ min{κ1‖sk‖2, 1
2s
T
k (Hk + λkI)sk + 1

2κ2‖sk‖3}; and (3.3b)

‖gk + (Hk + λkI)sk‖ ≤ λk‖sk‖+ κ3‖sk‖2. (3.3c)
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To see that Assumption 7 is well-posed and consistent with problem (3.1), we refer
the reader to Theorem 17 in Appendix B.2 wherein we prove that any solution of prob-
lem (3.1) with s restricted to a sufficiently large dimensional subspace of Rn satisfies all
of the conditions in Assumption 7. We also claim that one can obtain a pair satisfying
Assumption 7 in either of the following two ways:

• Choose σ ∈ [σl
k,σu

k ], compute sk by minimizing the cubic function

ck(s;σ) := qk(s) + 1
2σ‖s‖

3 = fk + gTk s+ 1
2s
THks+ 1

2σ‖s‖
3 (3.4)

over a sufficiently large dimensional subspace of Rn (assuming, when σ = σl
k = 0,

that this function is not unbounded below), then set λk ← σ‖sk‖. This is essentially
the strategy employed in cubic regularization methods such as arc.

• Choose λk ≥ 0, then compute sk by minimizing the objective of (3.1) with λ = λk

over a sufficiently large dimensional subspace of Rn (assuming that the function is
not unbounded below). The resulting pair (sk,λk) satisfies Assumption 7 as long
as it is feasible for (3.1). This is essentially the strategy employed in [5] and partly
employed in trace.

One can imagine other approaches as well. Overall, we state problem (3.1) as a guide for
various techniques for computing the pair (sk,λk). Our theory simply relies on the fact
that any such computed pair satisfies the conditions in Assumption 7.

Our algorithm, stated as Algorithm 7, employs the following ratio (also employed, e.g.,
in trace) to determine whether a given trial step is accepted or rejected:

ρk := fk − f(xk + sk)
‖sk‖3

.

One potential drawback of employing this ratio is that it is not invariant to scaling of
the objective function. However, this choice can be justified. For example, if one were to
compute sk by minimizing the cubic model (3.4) for some σ > 0, then the reduction in
this model yielded by sk is bounded below by a fraction of σ‖sk‖3 (see [15, Lemma 4.2]),
meaning that ρk ≥ η holds when σ ≥ η and the actual reduction in f is proportional to
the reduction in the cubic model. For further justification for this choice—such as how it
allows the algorithm to accept Newton steps when ‖sk‖ is small—we refer the reader to

71



[5] and Chapter 2 of this dissertation.

Algorithm 7 Inexact Regularized Newton Framework

Require: an acceptance constant η ∈ R++ with 0 < η < 1
Require: bound update constants {γ1, γ2} ⊂ R++ with 1 < γ1 ≤ γ2
Require: ratio lower and upper bound constants {σ,σ} ⊂ R++ such that σ ≥ σ

1: procedure Inexact Regularized Newton
2: set x0 ∈ Rn
3: set σl

0 ← 0 and σu
0 ∈ [σ,σ]

4: for k ∈ N+ do
5: set (sk,λk) satisfying Assumption 7
6: if ρk ≥ η then [accept step]
7: set xk+1 ← xk + sk
8: set σl

k+1 ← 0 and σu
k+1 ← σu

k

9: else (i.e., ρk < η) [reject step]
10: set xk+1 ← xk
11: if λk < σ‖sk‖ then
12: set σl

k+1 ∈ [σ,σ] and σu
k+1 ∈ [σl

k+1,σ]
13: else
14: set σl

k+1 ← γ1
λk
‖sk‖ and σu

k+1 ← γ2
λk
‖sk‖

3.2 Convergence Analysis

In this section, we prove global convergence guarantees for Algorithm 7. In particular,
we prove under common assumptions that, from remote starting points, the algorithm
converges to first-order stationarity, has a worst-case iteration complexity to approximate
first-order stationarity that is on par with the methods in Chapter 2, [15], and [5], and—at
least in a subspace determined by the search path of the algorithm—converges to second-
order stationarity with a complexity on par with the methods in Chapter 2 and [15].

3.2.1 First-order global convergence

Our goal in this subsection is to prove that the sequence of objective gradients vanishes.
We make the following assumption about the objective function, which is assumed to hold
throughout this section.
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Assumption 8. The objective function f : Rn → R is twice continuously differentiable
and bounded below by a scalar finf ∈ R on Rn.

We also make the following assumption related to the sequence of iterates.

Assumption 9. The gradient function g : Rn → Rn is Lipschitz continuous with Lipschitz
constant gLip ∈ R++ in an open convex set containing the sequences {xk} and {xk + sk}.
Furthermore, the gradient sequence {gk} has gk 6= 0 for all k ∈ N+ and is bounded in that
there exists a scalar constant gmax ∈ R++ such that ‖gk‖ ≤ gmax for all k ∈ N+.

It is worthwhile to note in passing that our complexity bounds for first- and second-
order stationarity remain true even if one were to consider the possibility that gk = 0
for some k ∈ N+, in which case one would have the algorithm terminate finitely or, if
Hk 6� 0, compute an improving direction of negative curvature for Hk. However, allowing
this possibility—which is typically unlikely ever to occur in practice—would only serve to
obscure certain aspects of our analysis. We refer the reader, e.g., to [15] (specifically, to
the discussions at the ends of §2.1, §4, and §5 in that work) for commentary about why
zero gradient values do not ruin complexity guarantees such as we present.

We begin with two lemmas each revealing an important consequence of Assumptions 8
and 9.

Lemma 25. For all k ∈ N+, it follows that sk 6= 0.

Proof. The result follows by combining that gk 6= 0 for all k ∈ N+ (see Assumption 9)
with (3.3c).

Lemma 26. The Hessian sequence {Hk} is bounded in norm in that there exists a scalar
constant Hmax ∈ R++ such that ‖Hk‖ ≤ Hmax for all k ∈ N+.

Proof. The result follows by Assumption 8, the Lipschitz continuity of g in Assumption 9,
and Lemma 1.2.2 in [54].

In our next lemma, we prove an upper bound for the regularization variable λk.

Lemma 27. For all k ∈ N+, the pair (sk,λk) satisfies

λk ≤ 2‖gk‖
‖sk‖

+ 3
2Hmax + κ1.
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Proof. Since (3.3a) ensures qk(sk)− fk ≤ 0, it follows with (3.3b) and Lemma 26 that

0 ≥ qk(sk)− fk = gTk sk + 1
2s
T
kHksk

≥ gTk sk + 1
2s
T
kHksk + sTk (gk + (Hk + λkI)sk)− κ1‖sk‖2

= 2gTk sk + 3
2s
T
kHksk + λk‖sk‖2 − κ1‖sk‖2

≥ −2‖gk‖‖sk‖ − 3
2Hmax‖sk‖2 + λk‖sk‖2 − κ1‖sk‖2.

After rearrangement and dividing by ‖sk‖2 6= 0 (see Lemma 25), the desired result follows.

Using Lemma 27, we now prove a lower bound for the reduction in qk yielded by sk.

Lemma 28. For all k ∈ N+, the step sk satisfies

fk − qk(sk) ≥
‖gk‖
6
√

2
min

{
‖gk‖

1 +Hmax
, ‖sk‖√

6

√
‖gk‖

2‖gk‖+ ‖sk‖(3
2Hmax + κ1)

}
.

Proof. If λk = 0, then by (3.3a) and Lemma 26 it follows that

fk − qk(sk) ≥
‖gk‖
6
√

2
min

{ ‖gk‖
1 + ‖Hk‖

, ‖sk‖
}
≥ ‖gk‖

6
√

2
min

{ ‖gk‖
1 +Hmax

, ‖sk‖
}

.

On the other hand, if λk > 0, then (3.3a), Lemma 26, and Lemma 27 imply that

fk − qk(sk) ≥
‖gk‖
6
√

2
min

 ‖gk‖
1 + ‖Hk‖

, 1√
6

√
‖gk‖‖sk‖

λk


≥ ‖gk‖

6
√

2
min

{
‖gk‖

1 +Hmax
, ‖sk‖√

6

√
‖gk‖

2‖gk‖+ ‖sk‖(3
2Hmax + κ1)

}
.

Combining the inequalities from these two cases, the desired result follows.

Going forward, for ease of reference, we respectively define sets of indices corresponding
to accepted and rejected steps throughout a run of the algorithm as

A := {k ∈ N+ : ρk ≥ η} and R := {k ∈ N+ : ρk < η}.

We now show that if the algorithm were only to compute rejected steps from some iteration
onward, then the sequence {λk/‖sk‖} diverges to infinity.
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Lemma 29. If k ∈ R for all sufficiently large k ∈ N+, then {λk/‖sk‖} → ∞.

Proof. Without loss of generality, assume that R = N+. We now prove that the condition
in Step 11 cannot be true more than once. Suppose, in iteration k̂ ∈ N+, Step 12 is
reached, which means that λk̂+1/‖sk̂+1‖ ≥ σ since (sk̂+1,λk̂+1) is required to be feasible
for Pk̂+1(σl

k+1,σu
k+1) in Step 5 where σl

k+1 ≥ σ. Therefore, the condition in Step 11 tests
false in iteration (k̂ + 1). Then, from Step 5, Step 14, and the fact that γ1 > 1, it follows
that {λk/‖sk‖} is monotonically increasing for all k ≥ k̂. Therefore, the condition in
Step 11 cannot test true for any k ≥ k̂ + 1. Now, to see that the sequence diverges,
notice from this fact, Step 5, and Step 14, it follows that for all k ≥ k̂ + 1 we have
λk+1/‖sk+1‖ ≥ γ1(λk/‖sk‖) where γ1 > 1. Thus, {λk/‖sk‖} → ∞, as claimed.

We now prove that if the gradients are bounded away from zero and the sequence of
ratios {λk/‖sk‖} diverges, then ρk ≥ η for all sufficiently large k ∈ N+, meaning that the
steps are accepted.

Lemma 30. Suppose that I ⊆ N+ is an infinite index set such that for ε ∈ R++ inde-
pendent of k, one finds that ‖gk‖ ≥ ε for all k ∈ I and {λk/‖sk‖}k∈I →∞. Then, for all
sufficiently large k ∈ I, it follows that ρk ≥ η, meaning k ∈ A.

Proof. From the Mean Value Theorem, there exists xk ∈ [xk,xk + sk] such that

qk(sk)− f(xk + sk) = (gk − g(xk))T sk + 1
2s
T
kHksk

≥ −‖gk − g(xk)‖‖sk‖ − 1
2‖Hk‖‖sk‖2. (3.5)

From this, Lemma 28, and Assumption 9, it follows that, for all k ∈ I,

fk − f(xk + sk) = fk − qk(sk) + qk(sk)− f(xk + sk)

≥ ‖gk‖
6
√

2
min

{
‖gk‖

1 +Hmax
, ‖sk‖√

6

√
‖gk‖

2‖gk‖+ ‖sk‖(3
2Hmax + κ1)

}
− (gLip + 1

2Hmax)‖sk‖2

≥ ε

6
√

2
min

{
ε

1 +Hmax
, ‖sk‖√

6

√
ε

2gmax + ‖sk‖(3
2Hmax + κ1)

}

− (gLip + 1
2Hmax)‖sk‖2.
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This shows that there exists a threshold sthresh > 0 such that

fk − f(xk + sk) ≥ η‖sk‖3 whenever k ∈ I and ‖sk‖ ≤ sthresh.

We now claim that {‖sk‖}k∈I → 0. To prove this claim, suppose by contradiction that
there exists an infinite subsequence Is ⊆ I and scalar εs ∈ R++ such that ‖sk‖ ≥ εs

for all k ∈ Is. It then follows from the boundedness of {‖gk‖} (see Assumption 9) and
Lemma 27 that {λk}k∈Is is bounded. This allows us to conclude that {λk/‖sk‖}k∈Is is
bounded, which contradicts the assumptions of the lemma. Thus, {‖sk‖}k∈I → 0. Hence,
there exists ks ∈ I such that for all k ∈ I with k ≥ ks one finds ‖sk‖ ≤ sthresh. Therefore,
for all k ∈ I with k ≥ ks, it follows that ρk ≥ η, as claimed.

Next, we prove that the algorithm produces infinitely many accepted steps.

Lemma 31. It holds that |A| =∞ and {sk}k∈A → 0.

Proof. To derive a contradiction, suppose that |A| <∞. This implies that there exists k0

such that, for all k ≥ k0, one has k ∈ R and (xk, gk,Hk) = (xk0 , gk0 ,Hk0). From this fact
and Assumption 9, it follows that ‖gk‖ ≥ ε for all k ≥ k0 for some ε ∈ R++. From the
fact that k ∈ R for all k ≥ k0 and Lemma 29, it follows that {λk/‖sk‖} → ∞. This fact
and ‖gk‖ ≥ ε for all k ≥ k0 imply that all the conditions of Lemma 30 are satisfied for
I := {k ∈ N+ : k ≥ k0}; therefore, Lemma 30 implies that for all sufficiently large k ∈ I,
one finds ρk ≥ η so that k ∈ A, a contradiction.

To complete the proof, notice that the objective function values are monotonically
decreasing. Combining this with the condition in Step 6, the fact that f is bounded below
by finf (see Assumption 8), and |A| =∞, one deduces that {sk}k∈A → 0, as claimed.

We now prove that there exists an infinite subsequence of iterates such that the se-
quence of gradients computed at those points converges to zero.

Lemma 32. It holds that
lim inf

k∈N+,k→∞
‖gk‖ = 0.

Proof. To derive a contradiction, suppose that lim infk∈N+,k→∞ ‖gk‖ > 0, which along
with the fact that gk+1 = gk for any k ∈ N+ \ A means lim infk∈A,k→∞ ‖gk‖ > 0. Thus,
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there exists ε ∈ R++ such that

‖gk‖ ≥ ε for all sufficiently large k ∈ A. (3.6)

Under (3.6), let us prove that {λk}k∈A →∞. To derive a contradiction, suppose there
exists an infinite Aλ ⊆ A such that λk ≤ λmax for some λmax ∈ R++. On the other hand,
by {sk}k∈A → 0 (see Lemma 31) and (3.3c), it follows that {gk + (Hk +λkI)sk}k∈Aλ → 0.
Combining the upper bound on {λk}k∈Aλ , the fact that {sk}k∈A → 0, and ‖Hk‖ ≤ Hmax

(see Lemma 26), it follows that {gk}k∈Aλ → 0, which violates (3.6). Therefore, {λk}k∈A →
∞.

Our next goal is to prove, still under (3.6), that k ∈ A for all sufficiently large k ∈ N+.
To prove this, our strategy is to show that the sets of iterations involving a rejected step
followed by an accepted step are finite. In particular, let us define the index sets

R1 := {k ∈ R : the condition in Step 11 tests true and (k + 1) ∈ A} and

R2 := {k ∈ R : the condition in Step 11 tests false and (k + 1) ∈ A}.

We aim to prove that these are finite. First, consider R1. To derive a contradiction,
suppose that |R1| = ∞. By definition, for all k ∈ R1, the condition in Step 11 tests
true, meaning (sk+1,λk+1) is found in Step 5 satisfying λk+1/‖sk+1‖ ≤ σ. On the other
hand, since (k + 1) ∈ A for all k ∈ R1, it follows from Lemma 31 that {sk+1}k∈R1 →
0. Combining the conclusions of these last two sentences shows that {λk+1}k∈R1 → 0.
However, this contradicts the conclusion of the previous paragraph, which showed that
{λk}k∈A → ∞. Hence, we may conclude that |R1| < ∞. Now consider R2. To derive a
contradiction, suppose that |R2| =∞. The fact that the condition in Step 11 tests false for
k ∈ R2 implies that (sk+1,λk+1) is found in Step 5 satisfying λk+1/‖sk+1‖ ≤ γ2λk/‖sk‖.
However, since {sk+1}k∈R2 → 0 (see Lemma 31) and {λk+1}k∈R2 →∞ (established in the
previous paragraph), it follows that {λk+1/‖sk+1‖}k∈R2 → ∞, which combined with the
previously established inequality λk+1/‖sk+1‖ ≤ γ2λk/‖sk‖ shows that {λk/‖sk‖}k∈R2 →
∞. Therefore, with (3.6), the conditions in Lemma 30 hold for I = R2, meaning that,
for all sufficiently large k ∈ R2, the inequality ρk ≥ η holds. This contradicts the fact
that R2 ⊆ R; hence, we conclude that R2 is finite. Since R1 and R2 are finite, it follows
from the logic of Algorithm 7 that either k ∈ A for all sufficiently large k or k ∈ R for all
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sufficiently large k. By Lemma 31, it follows that k ∈ A for all sufficiently large k.
Thus far, we have proved under (3.6) that {λk}k∈A →∞ and that k ∈ A for all large

k ∈ N+. From this latter fact, it follows that there exists kσ such that σu
k = σu

kσ
∈ R++

for all k ≥ kσ. In addition, from Step 5, it follows that for k ≥ kσ one finds λk/‖sk‖ ≤
σu
k = σu

kσ
<∞. However, this leads to a contradiction to the facts that {λk}k∈A →∞ and

{sk}k∈A → 0 (see Lemma 31). Overall, we have shown that (3.6) cannot be true, which
proves the desired result.

We close with our main global convergence result of this subsection, the proof of which
borrows much from that of Theorem 3.

Theorem 8. Under Assumptions 7, 8, and 9, it follows that

lim
k∈N+,k→∞

‖gk‖ = 0. (3.7)

Proof. For the purpose of reaching a contradiction, suppose that (3.7) does not hold.
Combining this with the fact that |A| = ∞ (see Lemma 31), it follows that there exists
an infinite subsequence {ti} ⊆ A (indexed over i ∈ N+) and a scalar ε > 0 such that, for
all i ∈ N+, one finds ‖gti‖ ≥ 2ε > 0. Also, the fact that |A| = ∞ and Lemma 32 imply
that there exists an infinite subsequence {`i} ⊆ A (indexed over i ∈ N+) such that, for all
i ∈ N+ and k ∈ N+ with ti ≤ k < `i, one finds

‖gk‖ ≥ ε and ‖g`i‖ < ε. (3.8)

Let us now restrict our attention to indices in the infinite index set

K := {k ∈ A : ti ≤ k < `i for some i ∈ N+}.

Observe from (3.8) that, for all k ∈ K, it follows that ‖gk‖ ≥ ε. Also, from the definition
of A,

fk − fk+1 ≥ η‖sk‖3 for all k ∈ K ⊆ A. (3.9)

Since {fk} is monotonically decreasing and bounded below, one finds that {fk} → f for
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some f ∈ R, which when combined with (3.9) shows that

lim
k∈K,k→∞

‖sk‖ = 0. (3.10)

Using this fact, Lemma 28, Assumption 9, and the Mean Value Theorem (as it is used in
the proof of Lemma 30 to yield (3.5)), it follows that for all sufficiently large k ∈ K one
has

fk − fk+1 = fk − qk(sk) + qk(sk)− f(xk + sk)

≥ ‖gk‖
6
√

2
min

{
‖gk‖

1 +Hmax
, ‖sk‖√

6

√
‖gk‖

2‖gk‖+ ‖sk‖(3
2Hmax + κ1)

}
− (gLip + 1

2Hmax)‖sk‖2

≥ ε

6
√

2
‖sk‖√

6

√
‖gk‖

2‖gk‖+ ‖sk‖(3
2Hmax + κ1)

− (gLip + 1
2Hmax)‖sk‖2.

It now follows from (3.8) and (3.10) that, as k →∞ over k ∈ K, the square root term in the
previous inequality converges to 1/

√
2. Since the second term in the previous inequality

is of order ‖sk‖2, the first term is of order ‖sk‖, and 1/
√

2 > 1/
√

3, one can thus conclude
that fk − fk+1 ≥ ε‖sk‖/36 for all sufficiently large k ∈ K. Consequently, it follows that
for all sufficiently large i ∈ N+ one finds

‖xti − x`i‖ ≤
`i−1∑

k∈K,k=ti
‖xk − xk+1‖

=
`i−1∑

k∈K,k=ti
‖sk‖ ≤

`i−1∑
k∈K,k=ti

36
ε (fk − fk+1) = 36

ε (fti − f`i).

Since {fti−f`i} → 0 (recall that {fk} → f monotonically) this implies that {‖xti−x`i‖} →
0, which, in turn, implies that {‖gti − g`i‖} → 0 because of the continuity of g. However,
this is a contradiction since, for any i ∈ N+, we have ‖gti − g`i‖ ≥ ε by the definitions of
{ti} and {`i}. Overall, we conclude that our initial supposition must be false, implying
that (3.7) holds.
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3.2.2 First-order complexity

Our next goal is to prove, with respect to a prescribed positive threshold, a worst-case
upper bound on the number of iterations required for our algorithm to reduce the norm
of the gradient below the threshold. In this subsection, along with Assumptions 7, 8, and
9, we add the following.

Assumption 10. The Hessian function H is Lipschitz continuous on a path defined by
the sequence of iterates and trial steps; in particular, it is Lipschitz continuous with a
scalar Lipschitz constant HLip > 0 on the set {xk + τsk : k ∈ N+, τ ∈ [0, 1]}.

We begin our analysis in this subsection by providing a lemma that shows that suc-
cessful steps always result if λk is sufficiently large relative to the size of the step.

Lemma 33. For any k ∈ N+, if the pair (sk,λk) satisfies

λk ≥ (HLip + κ2 + 2η)‖sk‖, (3.11)

then ρk ≥ η.

Proof. It follows from Assumption 10 and Taylor’s expansion with Lagrange remainder
that there exists xk on the line segment [xk,xk + sk] such that

qk(sk)− f(xk + sk) = 1
2s
T
k (Hk −H(xk))sk ≥ −1

2HLip‖sk‖3. (3.12)

Also, it follows from (3.3b) that

fk − qk(sk) = −gTk sk − 1
2s
T
kHksk

= −sTk (gk + (Hk + λkI)sk) + 1
2λk‖sk‖

2 + 1
2s
T
k (Hk + λkI)sk

≥ −1
2s
T
k (Hk + λkI)sk − 1

2κ2‖sk‖3 + 1
2λk‖sk‖

2 + 1
2s
T
k (Hk + λkI)sk

= −1
2κ2‖sk‖3 + 1

2λk‖sk‖
2.

(3.13)

From (3.12) and (3.13), it follows that

fk − f(xk + sk) = fk − qk(sk) + qk(sk)− f(xk + sk)

≥ 1
2λk‖sk‖

2 − 1
2κ2‖sk‖3 − 1

2HLip‖sk‖3,

which together with (3.11) implies that ρk ≥ η, as claimed.

80



We now prove that the sequence {σu
k} is bounded above.

Lemma 34. There exists a scalar constant σmax ∈ R++ such that, for all k ∈ N+,

σu
k ≤ σmax.

Proof. Consider any k ∈ N+. If sk is accepted (i.e., k ∈ A), then σu
k+1 ← σu

k . On the
other hand, if sk is rejected (i.e., k ∈ R), then it follows from Step 12 and Step 14 that
σu
k+1 ≤ max{σ, γ2λk/‖sk‖}. Moreover, since k ∈ R, meaning that ρk < η, it follows from

Lemma 33 that λk/‖sk‖ is bounded above by (HLip + κ2 + 2η). Thus, it follows that
σu
k+1 ≤ max{σ, γ2(HLip + κ2 + 2η)} for all k ∈ R. Overall, the desired result follows for

any σmax ≥ max{σ, γ2(HLip + κ2 + 2η)}.

We now establish a lower bound on the norm of any accepted trial step.

Lemma 35. For all k ∈ A, it follows that

‖sk‖ ≥
(

1
2HLip + 2σmax + κ3

)−1/2
‖gk+1‖1/2.

Proof. For all k ∈ A, it follows that

‖gk+1‖ ≤ ‖gk+1 − (gk + (Hk + λkI)sk)‖+ ‖gk + (Hk + λkI)sk‖

≤ ‖gk+1 − (gk +Hksk)‖+ λk‖sk‖+ ‖gk + (Hk + λkI)sk‖. (3.14)

By Taylor’s theorem and Assumption 10, the first term on the right-hand side of this
inequality satisfies

‖gk+1 − (gk +Hksk)‖ ≤
∥∥∥∥∫ 1

0
(H(xk + τsk)−Hk)skdτ

∥∥∥∥
≤
∫ 1

0
‖H(xk + τsk)−Hk‖dτ · ‖sk‖

≤
∫ 1

0
τdτ ·HLip‖sk‖2 = 1

2HLip‖sk‖2.
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Combining this with (3.14) and observing Step 5, (3.3c), and Lemma 34, it follows that

‖gk+1‖ ≤ 1
2HLip‖sk‖2 + 2 λk

‖sk‖
‖sk‖2 + κ3‖sk‖2

≤ 1
2HLip‖sk‖2 + 2σmax‖sk‖2 + κ3‖sk‖2,

which, after rearrangement, completes the proof.

We are now prepared to prove a worst-case upper bound on the total number of
accepted steps that may occur for iterations in which the norm of the gradient of the
objective is above a positive threshold.

Lemma 36. For any ε ∈ R++, the total number of elements in the index set

Kε := {k ∈ N+ : k ≥ 1, (k − 1) ∈ A, ‖gk‖ > ε}

is at most ⌊(
f0 − finf

η(1
2HLip + 2σmax + κ3)−3/2

)
ε−3/2

⌋
=: NA(ε) ≥ 0. (3.15)

Proof. The proof follows in a similar manner as that of Lemma 17. By Lemma 35, it
follows that, for all k ∈ Kε, one finds

fk−1 − fk ≥ η‖sk−1‖3

≥ η(1
2HLip + 2σmax + κ3)−3/2‖gk‖3/2

≥ η(1
2HLip + 2σmax + κ3)−3/2ε3/2.

In addition, it follows from Theorem 8 that |Kε| <∞. Hence, the reduction in f obtained
up to the largest index in Kε, call it kε, satisfies

f0 − fkε =
kε∑
k=1

(fk−1 − fk) ≥
∑
k∈Kε

(fk−1 − fk) ≥ |Kε|η(1
2HLip + 2σmax + κ3)−3/2ε3/2.

Rearranging this inequality to yield an upper bound for |Kε| and using the fact that
f0 − finf ≥ f0 − fkε , one obtains the desired result.

In order to prove a result similar to Lemma 36 for the total number of iterations with
‖gk‖ > ε, we require an upper bound on the total number of trial steps that may be
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rejected between accepted steps. To this end, let us define, for a given k̂ ∈ A ∪ {0}, the
iteration number and corresponding set

kA(k̂) := min{k ∈ A : k > k̂}

and I(k̂) := {k ∈ N+ : k̂ < k < kA(k̂)},

i.e, we let kA(k̂) be the smallest of all iteration numbers in A that is strictly larger than k̂,
and we let I(k̂) be the set of iteration numbers between k̂ and kA(k̂).

We now show that the number of rejected steps between the first iteration and the
first accepted step, or between consecutive accepted steps, is bounded above.

Lemma 37. For any k̂ ∈ A ∪ {0}, it follows that

|I(k̂)| ≤ 1 +
⌊ 1

log(γ1) log
(
σmax
σ

)⌋
=: NR ≥ 0.

Proof. The proof follows in a similar manner as for Lemma 21. First, the result holds
trivially if |I(k̂)| = 0. Thus, we may assume that |I(k̂)| ≥ 1. Since (k̂ + 1) ∈ R by
construction, it follows from Steps 11–14 and Step 5 that λk̂+2/‖sk̂+2‖ ≥ σ, which, due to
the lower bound on λk+1/‖sk+1‖ in Step 14 and Step 5, leads to

λkA(k̂) ≥ σ (γ1)kA(k̂)−k̂−2 ‖skA(k̂)‖.

Combining this with Step 5 and Lemma 34 shows that

σmax ≥ σu
kA(k̂) ≥ λkA(k̂)/‖skA(k̂)‖ ≥ σ (γ1)kA(k̂)−k̂−2 .

After rearrangement, it now follows that

kA(k̂)− k̂ − 2 ≤ 1
log(γ1) log

(
σmax
σ

)
.

The desired result follows from this inequality since |I(k̂)| = kA(k̂)− k̂ − 1.

We are now prepared to prove our main complexity result of this subsection.

Theorem 9. Under Assumptions 7, 8, 9, and 10, for a scalar ε ∈ R++, the total number
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of elements in the index set {k ∈ N+ : ‖gk‖ > ε} is at most

N(ε) := 1 +NRNA(ε), (3.16)

where NA(ε) and NR are defined in Lemmas 36 and 37, respectively. Consequently, for
any ε ∈ R++, it follows that N(ε) = O(ε−3/2) for all ε ∈ (0, ε].

Proof. Without loss of generality, we may assume that at least one iteration is performed.
Lemma 36 guarantees that the total number of elements in the index set {k ∈ A : k ≥
1, ‖gk‖ > ε} is at most NA(ε), where, immediately prior to each of the corresponding
accepted steps, Lemma 37 guarantees that at most NR trial steps are rejected. Accounting
for the first iteration, the desired result follows.

3.2.3 Second-order global convergence and complexity

Our goal in this subsection is to prove results showing that, in some sense, the algorithm
converges to second-order stationarity and does so with a worst-case iteration complexity
on par with the method in [15] and the one proposed in Chapter 2. In particular, our
results show that if the algorithm computes each search direction to satisfy a curvature
condition over a subspace, then second-order stationarity is reached in a manner that
depends on the subspaces.

In this subsection, we make the following additional assumption about the subproblem
solver.

Assumption 11. For all k ∈ N+, let Lk ⊆ Rn denote a subspace with an orthonormal
basis formed from the columns of a matrix Rk. The step sk satisfies

ξ(RTkHkRk) ≥ −κ4‖sk‖ (3.17)

for some κ4 ∈ R+, where ξ(RTkHkRk) indicates the smallest eigenvalue of RTkHkRk.

This assumption is reasonable, e.g., in cases when sk is computed by solving problem 3.1
with the component s restricted to a subspace of Rn. We refer the reader to Theorem 17
for a proof of this fact, which also reveals that this assumption is congruous with Assump-
tion 7.

Under this assumption, we have the following second-order convergence result.
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Theorem 10. Suppose Assumptions 7, 8, 9, 10, and 11 hold. It follows that

lim inf
k∈A,k→∞

ξ(RTkHkRk) ≥ 0.

Proof. The result follows from (3.17) since {sk}k∈A → 0 (see Lemma 31).

As a consequence of Theorem 10, if the sequence {Rk}k∈A tends toward full-dimensionality
as k →∞, then any limit point x∗ of {xk} must have H(x∗) � 0.

Our next goal is to prove a worst-case iteration complexity result for achieving second-
order stationarity in a sense similar to that in Theorem 10. Toward this end, we first
prove the following lemma, which is similar to Lemma 36.

Lemma 38. For any ε ∈ R++, the total number of elements in the index set

Kε,ξ := {k ∈ N+ : k ≥ 1, (k − 1) ∈ A, ξ(RTkHkRk) < −ε}

is at most ⌊(
f0 − finf

ηκ−3
4

)
ε−3
⌋

=: NA,ξ(ε) ≥ 0. (3.18)

Proof. Under Assumption 11, it follows that, for all k ∈ Kε,ξ, one finds

fk−1 − fk ≥ η‖sk−1‖3 ≥ η
(
−ξ(RTkHkRk)

κ4

)3

≥ ηκ−3
4 ε3.

It follows from this inequality, the fact that f is monotonically decreasing over the sequence
of iterates, and Assumption 8 that

f0 − finf ≥
∑

k∈Kε,ξ

(fk−1 − fk) ≥ |Kε,ξ|ηκ−3
4 ε3.

Rearranging this inequality to yield an upper bound for |Kε,ξ| gives the result.

We close with the following second-order complexity result.

Theorem 11. Under Assumptions 7, 8, 9, 10, and 11, for any pair of scalars (ε1, ε2) ∈
R++ × R++, the number of elements in the index set

{k ∈ N+ : ‖gk‖ > ε1 ∨ ξ(RTkHkRk) < −ε2}
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is at most
N(ε1, ε2) := 1 +NRmax{NA(ε1),NA,ξ(ε2)}, (3.19)

where NA(·), NR, and NA,ξ(·) are defined in Lemmas 36, 37, and 38, respectively. Con-
sequently, for any pair of scalars (ε1, ε2) ∈ R++ × R++, it follows that

N(ε1, ε2) = O(max{ε−3/2
1 , ε−3

2 }) for all (ε1, ε2) ∈ (0, ε1]× (0, ε2].

Proof. The proof follows in a similar manner as that of Theorem 9 by additionally incor-
porating the bound proved in Lemma 38.

3.3 Algorithm Instances

Algorithm 7 is a broad framework containing, amongst other algorithms, arc and trace.
Indeed, the proposed framework and its supporting analyses cover a wide range of algo-
rithms as long as the pairs in the sequence {(sk,λk)} satisfy Assumption 7.

In this section, we show that arc and trace are special cases of our proposed frame-
work in that the steps these algorithms accept would also be acceptable for our framework,
and that the procedures followed by these methods after a step is rejected are consistent
with our framework. We then introduce an instance of our frameowork that is new to
the literature. (If desired for the guarantees in §3.2.3, one could also mind whether the
elements in the sequence {(sk,λk)} satisfy Assumption 11. However, for brevity in this
section, let us suppose that one is interested only in Assumption 7.)

3.3.1 ARC as a special case

The arc method, which was inspired by the work in [45] and [56], was first proposed
and analyzed in [14, 15]. In these papers, various sets of step computation conditions
are considered involving exact and inexact subproblem solutions yielding different types
of convergence and worst-case complexity guarantees. For our purposes here, we consider
the more recent variant of arc stated and analyzed as “arp” with p = 2 in [8]. (For ease
of comparison, we consider this algorithm when their regularization parameter update—
see Step 4 in their algorithm—uses η1 = η2. Our algorithm is easily extended to employ
a two-tier acceptance condition, involving two thresholds η1 and η2, as is used in [8] and
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[14, 15].)
Suppose that a trial step sk is computed by this version of arc. In particular, let

us make the reasonable assumption that the subproblem for which sk is an approximate
solution is defined by some regularization value σk ∈ [σl

k,σu
k ] (with σl

k ≥ σmin since arc
ensures that σk ≥ σmin ∈ R++ for all k ∈ N) and that this subproblem is minimized over a
subspace Lk such that gk ∈ Lk (see Appendix B.2). As is shown using a similar argument
as in the proof of our Theorem 17(b), one can show under these conditions that (sk,λk)
with λk = σk‖sk‖ satisfies (3.3a). In addition, considering the algorithm statement in [8],
but using our notation, one is required to have

gTk sk + 1
2s
T
kHksk + λk‖sk‖2 < 0 and ‖gk + (Hk + λkI)sk‖ ≤ θ‖sk‖2 for some θ ∈ R++.

It is easily seen that (sk,λk) satisfying these conditions also satisfies (3.3b)–(3.3c) for any
(κ1,κ2,κ3) such that κ1 ≥ 1

2Hmax and κ3 ≥ θ. Overall, we have shown that a trial step
sk computed by this version of arc satisfies Assumption 7, meaning that it satisfies the
condition in Step 5 in Algorithm 7. If this trial step is accepted by arc, then this means
that fk − f(xk + sk) ≥ η1(fk − qk(sk)). Along with [8, Lemma 2.1], this implies that
fk − f(xk + sk) ≥ 1

3ησk‖sk‖
3, meaning that ρk ≥ 1

3η1σmin. Hence, this trial step would
also be accepted in Algorithm 7 under the assumption that η ∈ (0, 1

3η1σmin].
Finally, if a trial step is rejected in this version of arc, then σk+1 is set to a pos-

itive multiple of σk. This is consistent with the procedure after a step rejection in Al-
gorithm 7, where it is clear that, with appropriate parameter choices, one would find
σk+1 ∈ [σl

k+1,σu
k+1].

3.3.2 TRACE as a special case

trace is proposed and analyzed in Chapter 2. Our goal in this subsection is to show that,
with certain parameter settings, a trial step that is computed and accepted by trace could
also be the one that is computed and accepted by Algorithm 7, and that the procedures
for rejecting a step in trace are consistent with those in Algorithm 7. Amongst other
procedures, trace involves dynamic updates for two sequences, {δk} and {∆k}. The
elements of {δk} are the trust region radii while {∆k} is a monotonically nondecreasing
sequence of upper bounds for the trust region radii; consequently, ‖sk‖ ≤ δk ≤ ∆k with
∆k+1 ≥ ∆k for all k ∈ N. For simplicity, let us assume that the trial steps computed
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in trace satisfy ‖sk‖ < ∆k for all k ∈ N. This is a fair assumption since, as shown in
Lemma 10, the manner in which {∆k} is set ensures that ‖sk‖ = ∆k only a finite number
of times in any run.

In trace, during iteration k ∈ N, a trust region radius δk ∈ R++ is given and a
trial step sk and regularization value λk are computed satisfying the standard trust region
subproblem optimality conditions

gk + (Hk + λkI)sk = 0, Hk + λkI � 0, and λk(δk − ‖sk‖) = 0,

where (λk, δk − ‖sk‖) ≥ 0. By the first of these conditions, the pair (sk,λk) clearly
satisfies (3.3b)–(3.3c). In addition, one can use standard trust region theory, in particular
related to Cauchy decrease (see [23] or [57]), to show that the pair also satisfies (3.3a).
Overall, assuming that the pair (σl

k,σu
k ) is set such that λk/‖sk‖ ∈ [σl

k,σu
k ], it follows

that Assumption 7 is satisfied, meaning that trace offers the condition in Step 5 in
Algorithm 7. If the trial step sk is subsequently accepted by trace, then it would also be
accepted by Algorithm 7 since both algorithms use the same step acceptance condition.

Now suppose that a trial step is not accepted in trace. This can occur in two
circumstances. It can occur if ρk ≥ η while λk > σk‖sk‖, in which case the trust region
radius is expanded and a new subproblem is solved. By the proof of Lemma 6, the
solution of this new subproblem yields (in iteration k + 1 in trace) the relationship
that λk+1/‖sk+1‖ ≤ σk+1 = σk. Hence, under the same assumption as above that the
pair (σl

k,σu
k ) is set such that λk/‖sk‖ ∈ [σl

k,σu
k ], this shows that the procedure in trace

involving an expansion of the trust region radius and the computation of the subsequent
trial step yields a trial step that would be offered in a single iteration in Algorithm 7. The
other circumstance in which a trial step is rejected in trace is when ρk < η, in which case
the trust region radius is contracted. In this case, one can see that the outcome of the
contract subroutine in trace is consistent with Steps 11–14 of Algorithm 7 in the sense
that the solution of the subsequent subproblem in trace will have λk+1/‖sk+1‖ ∈ [σ,σ]
(if λk < σ‖sk‖) or λk+1/‖sk+1‖ within a range defined by positive multiples of λk/‖sk‖;
see Lemmas 14 and 20.
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3.3.3 A hybrid algorithm

The primary distinguishing feature of our algorithm instance is the manner in which we
compute the pair (sk,λk) in Step 5 of Algorithm 7. Our newly proposed hybrid algorithm
considers two cases.

Case 1: σl
k > 0. In this case, we find a pair (sk,λk) by solving problem (B.3) over a sequence

of increasingly higher dimensional Krylov subspaces as described in [14] until (3.3)
and (3.17) are satisfied. The reason we know that (3.3) and (3.17) will eventually
be satisfied can be seen as follows. Solving problem (B.3) over a Krylov subspace is
equivalent to solving problem (B.7) with an appropriate choice of Rk as a basis for
that Krylov subspace, then setting sk = Rkvk. Then, it follows from Theorem 16(i)
that solving (B.7) is equivalent to solving (B.6), which in turn is equivalent to
solving (B.5) in the sense that if (vk,λk,βl

k,βu
k ,βn

k ) is a first-order primal-dual so-
lution of problem (B.6), then (sk,λk,βl

k,βu
k ,βn

k ) with sk = Rkvk is a solution of
problem (B.5). Finally, we need only note from Theorem 17 that solutions to prob-
lem (B.5) satisfy (3.3a) for all Krylov subspaces Lk (recall that gk is contained in all
Krylov subspaces), (3.3b) for all Krylov subspaces, (3.3c) if the Krylov subspace Lk
includes enough of the space (in the worst case, Lk = Rn), and (3.17) for all Krylov
subspaces.

Case 2: σl
k = 0. In this case, we begin by applying the linear CG method in an attempt to

solve the linear system Hks = −gk, which iteratively solves

min
s∈Rn

qk(s) (3.20)

over a sequence of expanding Krylov subspaces. One of two outcomes is possible.
First, the CG algorithm may ultimately identify a vector sk such that (sk,λk) with
λk = 0 satisfies (3.3) and (3.17). Second, the CG algorithm may never identify a
vector sk such that (sk,λk) with λk = 0 satisfies (3.3) and (3.17). Indeed, this might
occur if CG encounters a direction of negative curvature—in which case we terminate
CG immediately—or if CG solves (3.20) accurately or reaches an iteration limit, and
yet at least one condition in (3.3)/(3.17) is not satisfied. In such a case, we choose
to reset σl

k ∈ (0,σu
k ], then solve problem (B.3) over a sequence of expanding Krylov

subspaces as described in Case 1. In this manner, we are guaranteed to identify a
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pair (sk,λk) satisfying (3.3) and (3.17) as required.

3.4 Implementation and Numerical Results

We implemented two algorithms in MATLAB, one following the strategy in §3.3.3 and, for
comparison purposes, one following the arc algorithm in [15] with ideas from [8]. We refer
to our implementation of the former as iR Newton, for inexact Regularized Newton, and
to our implementation of the latter as iARC, for inexact arc. In this section, we describe
our approach for computing the pairs {(sk,λk)} in iR Newton and iARC, as well as other
implementation details, and discuss the results of numerical experiments on a standard
set of nonlinear optimization test problems.

3.4.1 Implementation details

Let us begin by noting that the implemented algorithms terminate in iteration k ∈ N+ if

‖gk‖∞ ≤ 10−6 max{‖g0‖∞, 1}.

We chose not to employ a termination test based on a second-order stationarity condition.
Correspondingly, neither of the algorithms check a second-order condition when computing
a trial step; e.g., in iR Newton, we are satisfied with a step satisfying (3.3) and do not
check (3.17). In addition, for practical purposes, we set an maximum iteration limit of
106, a time limit of four hours, and a minimum step norm limit of 10−20. For reference,
the input parameter values we used are given in Table 3.1. We chose these values as ones
that worked well on our test set for both implemented algorithms.

Table 3.1: Input parameters for iARC and iR Newton

η1 1.0e-16 γ0 2.0e-01 κ1 1.0e+00 σ 1.0e-10
η2 1.0e-01 γ1 1.0e+01 κ2 1.0e+00 σ 1.0e+20

γ2 2.0e+02 κ3 1.0e+00
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For both implemented algorithms, we employ a sequence {σk} that is updated dynam-
ically. In iARC, this sequence is handled as described in [15], namely,

σk+1 ←



max{σ, γ0σk} if fk−f(xk+sk)
fk−ck(sk;σk) ≥ η2

σk if fk−f(xk+sk)
fk−ck(sk;σk) ∈ [η1, η2)

γ1σk if fk−f(xk+sk)
fk−ck(sk;σk) < η1

The value σk is used in defining ck(·;σk) (recall (3.4)) that is minimized approximately
to compute the trial step sk for all k ∈ N+. In particular, the implementation iteratively
constructs Krylov subspaces of increasing dimension using the Lanczos process, where for
each subspace we employ the RQS function from the GALAHAD software library (see [39] and
[41]) to minimize ck(·;σk) over the subspace. If the subspace is full-dimensional or the
resulting step sk satisfies

‖gk + (Hk + σk‖sk‖I)sk‖ ≤ κ3‖sk‖2, (3.21)

then it is used as the trial step. Otherwise, the process continues with a larger subspace.
We remark that condition (3.21) is more restrictive than our condition (3.3c), but we use
it since it is one that has been proposed for cubic regularization methods; e.g., see (2.13)
in [8].

One could employ more sophisticated techniques for setting the elements of the se-
quence {σk} in iARC that attempt to reduce the number of rejected steps; e.g., see [42].
Such improvements might aid iR Newton as well. However, for simplicity and to avoid
the need for additional parameter tuning, we did not include such enhancements in our
implemented algorithms.

As for iR Newton, for consistency between the two implementations, we do not explic-
itly compute the sequence {λk}, but rather employ {σl

k‖sk‖} in its place. For example,
whenever an acceptable step is computed with σl

k = 0, then, as described in Case 2 in
§3.3.3, we effectively use λk = 0. On the other hand, when σl

k > 0, we employ the same
iterative approach as used for iARC to compute the trial step sk as an approximate mini-
mizer of ck(·;σl

k), where in place of λk in (3.3) we employ σl
k‖sk‖. Then, in either case, in

the remainder of iteration k ∈ N+, specifically for setting σl
k+1 and σu

k+1, we use σl
k‖sk‖
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in place of λk in Steps 11 and 14. We also define an auxiliary sequence {σk} using the
update

σk+1 ←



max {σ, γ0σk} if ρk ≥ η1 and σl
k > 0

σk if σl
k = 0

min {γ1σk,σ} if ρk < η1 and σl
k > 0.

This update is similar to the one employed for iARC with the added assurance that {σk} ⊂
[σ,σ]. The elements of this sequence are used in two circumstances. First, if, as described
in Case 2 in §3.3.3, CG fails to produce a trial step sk satisfying (3.3) (with λk = 0), then
we reset σl

k ← σk and revert to the same scheme as above to compute the trial step when
σl
k > 0. Second, if a step is rejected and σl

k < σ (equivalently, λk < σ‖sk‖2 as in Step 12
in Algorithm 7), then we set σl

k+1 ← σk+1. Lastly, we note that if CG ever performs n
iterations and the resulting solution (due to numerical error) does not satisfy (3.3) and no
negative curvature is detected, then the resulting approximate solution sk is used as the
trial step.

3.4.2 Results on the CUTEst test set

We employed our implemented algorithms, iARC and iR Newton, to solve unconstrained
problems in the CUTEst test set; see [43]. Among 171 unconstrained problems in the set,
one (FLETCBV2) was removed since the algorithms terminated at the initial point, five
(ARGLINC, DECONVU, FLETCHBV, INDEFM, and POWER) were removed due to a function eval-
uation error or our memory limitation of 8GB, and nine (EIGENBLS, EIGENCLS, FMINSURF,
NONMSQRT, SBRYBND, SCURLY10, SCURLY20, SCURLY30, and SSCOSINE) were removed since
neither algorithm terminated within our time limit. In addition, four were removed since
neither of the algorithms terminated successfully: for HIELOW, iARC reached our maximum
iteration limit; for CURLY20 and SCOSINE, iARC reached the time limit; for INDEF, iARC

terminated due to a subproblem solver error; and for all of these four problems, iR Newton

terminated due to our minimum step norm limit. The remaining set consisted of 152 test
problems with number of variables ranging from 2 to 100,000. For additional details on
the problems used and their sizes, see Appendix B.3.

To compare the performance of the implemented algorithms, we generated performance
profiles for the number of iterations and number of Hessian-vector products required before
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termination. These are shown in Figure 3.1. A performance profile graph of an algorithm
at point α shows the fraction of the test set for which the algorithm is able to solve within
a factor of 2α of the best algorithm for the given measure; see [32]. When generating the
profiles, we did not include three of the test problems—CURLY10, CURLY30, and MODBEALE—
on which iARC was unsuccessful while iR Newton was successful. (In particular, iARC

reached the time limit for all problems.) We feel that this gives a fairer comparison with
respect to the problems on which both algorithms were successful.

As seen in Figure 3.1, the algorithms performed relatively comparably when it came
to the number of iterations required, though clearly iR Newton had an edge in terms of
requiring fewer iterations on various problems. The difference in terms of numbers of
Hessian-vector products required was more drastic, and indeed we point to this as the
main measure of improved performance for iR Newton versus iARC. One reason for this
discrepancy is that iR Newton required fewer iterations on some problems. However, more
significantly, the difference was due in part to iR Newton’s ability to employ and accept
inexact Newton steps (with λk = 0) on many iterations. This is due to the fact that, in CG,
one is able to compute the Hessian-vector product Hksk, needed to check the termination
conditions for the computation of sk, by taking a linear combination of Hessian-vector
products already computed in CG; i.e., if {pk,i} are the search directions computed in CG
such that sk =

∑
i αk,ipk,i, then CG involves computing Hkpk,i for each i and can compute

Hksk =
∑
i αk,i(Hkpk,i). By contrast, one is unable to retrieve this product via a linear

combination when the step is computed from the minimization of a cubic function, as is
needed in iARC and in iR Newton whenever σl

k > 0. Overall, we claim that the primary
strength of iR Newton as compared to iARC is its ability to employ inexact Newton steps.

For further details of our numerical results, see Appendix B.3. In these results, we also
indicate the number of tridiagonal factorizations required; at least one is needed involving
a tridiagonal matrix of size m×m every time an algorithm solves a cubic subproblem over
an m-dimensional subspace.
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Figure 3.1: Performance profiles for iARC and iR Newton.
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Chapter 4

Complexity Analysis of a Trust
Funnel Algorithm for Equality
Constrained Optimization

The purpose of this chapter1 is to propose a new method for solving equality constrained
nonlinear optimization problems. As is well known, such problems are important through-
out science and engineering, arising in areas such as network flow optimization [48, 58],
optimal allocation with resource constraints [24, 49], maximum likelihood estimations
with constraints [47], and optimization with constraints defined by partial differential
equations [4, 9, 59].

The algorithm proposed in this chapter can be considered a next step in the design of
practical algorithms for equality constrained optimization with good worst-case iteration
complexity properties. Ours is also a two-phase approach, but is closer to the SQP-type
methods representing the state-of-the-art for solving equality constrained problems. In
particular, the first phase of our proposed approach follows a trust funnel methodology
that locates an ε-feasible point in O(ε−3/2) iterations while also attempting to yield im-
provements in the objective function. Borrowing ideas from the trust region method known
as trace (see Chapter 2), we prove that our method attains the same worst-case iteration
complexity bounds as those offered by [6, 19].

1A paper containing the original material of this chapter was published in 2018. Please refer to [29].
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Organization In the rest of this section, we introduce notation used throughout this
chapter and cover preliminary material on equality constrained nonlinear optimization.
In §4.2, we motivate and describe our proposed “phase 1” method for locating an ε-
feasible point while also attempting to reduce the objective function. An analysis of the
convergence and worst-case iteration complexity of this phase 1 method is presented in
§4.3. Strategies and convergence/complexity guarantees for “phase 2” are given in §4.4.
Numerical results are given in §4.5.

Notation A vector with all elements equal to 1 is denoted as e and an identity matrix
is denoted as I, where, in each case, the size of the quantity is determined by the context
in which it appears. With real symmetric matrices A and B, let A � (�) B indicate
that A−B is positive definite (semidefinite); e.g., A � (�) 0 indicates that A is positive
definite (semidefinite). Given vectors {u, v} ⊂ RN , let u ⊥ v mean that uivi = 0 for all
i ∈ {1, 2, . . . ,N}. Let ‖x‖ denote the `2-norm of x.

4.1 Preliminaries

Given an objective function f : RN → R and constraint function c : RN → RM , we study
the equality constrained optimization problem

min
x∈RN

f(x) s.t. c(x) = 0. (4.1)

At the outset, let us state the following assumption about the problem functions.

Assumption 12. The functions f and c are twice continuously differentiable.

In light of Assumption 12, we define g : RN → RN as the gradient function of f , i.e.,
g := ∇f , and define J : RN → RM×N as the Jacobian function of c, i.e., J := ∇cT . The
function ci : RN → R denotes the ith element of the function c.

Our proposed algorithm follows a local search strategy that merely aims to compute a
first-order stationary point for problem (4.1). Defining the Lagrangian L : RN ×RM → R
as given by L(x, y) = f(x)+yT c(x), a first-order stationary point (x, y) is one that satisfies
0 = ∇xL(x, y) ≡ g(x) + J(x)T y and 0 = ∇yL(x, y) ≡ c(x).

Our proposed technique for solving problem (4.1) is iterative, generating, amongst
other quantities, a sequence of iterates {xk} indexed by k ∈ N. For ease of exposition, we
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also apply an iteration index subscript for function and other quantities corresponding to
the kth iteration; e.g., we write fk to denote f(xk).

4.2 Phase 1: Obtaining Approximate Feasibility

The goal of phase 1 is to obtain an iterate that is (approximately) feasible. This can, of
course, be accomplished by employing an algorithm that focuses exclusively on minimizing
a measure of constraint violation. However, we find this idea to be unsatisfactory since
such an approach would entirely ignore the objective function. Alternatively, in this
section, we present a trust funnel algorithm with good complexity properties for obtaining
(approximate) feasibility that attempts to simultaneously reduce the objective f .

4.2.1 Step computation

Similar to other trust funnel algorithms [27, 38], our algorithm employs a step-decomposition
approach wherein each trial step is composed of a normal step aimed at reducing constraint
violation (i.e., infeasibility) and a tangential step aimed at reducing the objective function.
The algorithm then uses computed information, such as the reductions that the trial step
yields in models of the constraint violation and objective function, to determine which of
two types of criteria should be used for accepting or rejecting the trial step. To ensure
that sufficient priority is given to obtaining (approximate) feasibility, an upper bound on
a constraint violation measure is initialized, maintained, and subsequently driven toward
zero as improvements toward feasibility are obtained. The algorithm might also nullify
the tangential component of a trial step, even after it is computed, if it is deemed too
harmful in the algorithm’s pursuit toward (approximate) feasibility.

4.2.1.1 Normal step

The purpose of the normal step is to reduce infeasibility. The measure of infeasibility that
we employ is v : RN → R defined by

v(x) = 1
2‖c(x)‖2. (4.2)
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At an iterate xk, the normal step nk is defined as a minimizer of a second-order Taylor
series approximation of v at xk subject to a trust region constraint, i.e.,

nk ∈ arg min
n∈RN

mv
k(n) s.t. ‖n‖ ≤ δvk , (4.3)

where the scalar δvk ∈ (0,∞) is the trust region radius and the model of the constraint
violation measure at xk is mv

k : RN → R defined by

mv
k(n) = vk + gvk

Tn+ 1
2n

THv
kn with gvk := ∇v(xk) = JTk ck, (4.4)

and Hv
k := ∇2v(xk) = JTk Jk +

M∑
i=1

ci(xk)∇2ci(xk). (4.5)

For any (xk, δvk) ∈ RN×R+, a globally optimal solution to (4.3) exists [23, Corollary 7.2.2]
and nk has a corresponding dual variable λvk ∈ R+ such that

gvk + (Hv
k + λvkI)nk = 0, (4.6a)

Hv
k + λvkI � 0, (4.6b)

and 0 ≤ λvk ⊥ (δvk − ‖nk‖) ≥ 0. (4.6c)

In a standard trust region strategy, a trust region radius is given at the beginning of
an iteration, which explicitly affects the solution of the subproblem. Indeed, for ease of
exposition and analysis, our method is stated in this manner. However, for the purposes
of implementation, one might recognize that our method could, in some circumstances—
specifically, after any time the normal step trust region radius is contracted—compute a
normal step as a solution of (4.3) where the radius is defined implicitly by a given dual
variable λvk. In particular, given λvk ∈ [0,∞) that is strictly larger than the negative of the
leftmost eigenvalue of Hv

k , one could compute nk from

Qvk(λvk) : min
n∈RN

vk + gvk
Tn+ 1

2n
T (Hv

k + λvkI)n. (4.7)

The unique solution to (4.7), call it nk(λvk), is the solution of the nonsingular linear system
(Hv

k + λvkI)n = −gvk, and is the global solution of (4.3) for δvk = ‖nk(λvk)‖.
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4.2.1.2 Tangential step

The purpose of the tangential step is to reduce the objective function. Specifically, when
requested by the algorithm, the tangential step tk is defined as a minimizer of a quadratic
model of the objective function in the null space of the constraint Jacobian subject to a
trust region constraint, i.e.,

tk ∈ arg min
t∈RN

mf
k(nk + t) s.t. Jkt = 0 and ‖nk + t‖ ≤ δsk, (4.8)

where δsk ∈ (0,∞) is a trust region radius and, with some symmetric Hk ∈ RN×N , the
objective function model mf

k : RN → R is defined by

mf
k(s) = fk + gTk s+ 1

2s
THks. (4.9)

Following other trust funnel strategies, one desires δsk to be set such that the trust region
describes the area in which the models of the constraint violation and objective function are
accurate. In particular, with a trust region radius δfk ∈ (0,∞) for the objective function,
our algorithm employs, for some scalar κδ ∈ (1,∞), the value

δsk := min{κδδvk , δfk}. (4.10)

Due to this choice of trust region radius, it is deemed not worthwhile to compute a
nonzero tangential step if the feasible region of (4.8) is small. Specifically, our algorithm
only computes a nonzero tk when ‖nk‖ ≤ κnδ

s
k for some κn ∈ (0, 1). In addition, it only

makes sense to compute a tangential step when reasonable progress in reducing f in the
null space of Jk can be expected. To predict the potential progress, we define

gpk := ZkZ
T
k (gk +Hknk), (4.11)

where the columns of Zk form an orthonormal basis for Null(Jk). If ‖gpk‖ < κp‖gvk‖ for
some κp ∈ (0,∞), then computing a tangential step is not worthwhile and we simply set
the primal-dual solution (estimate) for (4.8) to zero.

For any (xk, δsk,Hk) ∈ RN×R+×RN×N , a globally optimal solution to (4.8) exists [23,
Corollary 7.2.2] and tk has corresponding dual variables yfk ∈ RM and λfk ∈ R+ (for the
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null space and trust region constraints, respectively) such thatHk + λfkI JTk

Jk 0

tk
yfk

 = −

gk + (Hk + λfkI)nk
0

 , (4.12a)

ZTk HkZk + λfkI � 0, (4.12b)

and 0 ≤ λfk ⊥ (δsk − ‖nk + tk‖) ≥ 0. (4.12c)

Similarly as for the normal step computation, an implementation of our algorithm could
compute tk not as a solution of (4.8) for a given δsk, but as a solution of a regularized
subproblem for a given dual variable for the trust region constraint. Specifically, for
λfk ∈ [0,∞) that is strictly larger than the negative of the leftmost eigenvalue of ZTk HkZk,
one could solve the following subproblem for the tangential step:

Qfk(λfk) : min
t∈RN

(gk + (Hk + λfkI)nk)T t+ 1
2 t
T (Hk + λfkI)t s.t. Jkt = 0. (4.13)

The unique solution tk(λfk) of (4.13) is a global solution of (4.8) for δsk = ‖nk + tk(λfk)‖.
There are situations in which our algorithm discards a computed tangential step after

one is computed, i.e., situations when the algorithm resets tk ← 0. Specifically, this occurs
when any of the following conditions fails to hold:

mv
k(0)−mv

k(nk + tk) ≥ κvm (mv
k(0)−mv

k(nk)) for some κvm ∈ (0, 1); (4.14a)

‖nk + tk‖ ≥ κntn‖nk‖ for some κntn ∈ (0, 1); (4.14b)

‖Hv
k tk‖ ≤ κht‖nk + tk‖2 for some κht ∈ (0,∞). (4.14c)

The first of these conditions requires that the reduction in the constraint violation model
for the full step sk := nk + tk is sufficiently large with respect to that obtained by the
normal step; the second requires that the full step is sufficiently large in norm compared to
the normal step; and the third requires that the action of the tangential step on the Hessian
of the constraint violation model is not too large compared to the squared norm of the full
step. It is worthwhile to mention that all of these conditions are satisfied automatically
when Hv

k = JTk Jk (recall (4.5)), which occurs, e.g., when c is affine. However, since this
does not hold in general, our algorithm requires these conditions explicitly, or else resets
the tangential step to zero (which satisfies (4.14)).
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4.2.2 Step acceptance

After computing a normal step nk and potentially a tangential step tk, the algorithm
determines whether to accept the full step sk := nk + tk. The strategy that it employs is
based on first using the obtained reductions in the models of constraint violation and the
objective, as well as other related quantities, to determine what should be the main goal
of the iteration: reducing constraint violation or the objective function. Since the primary
goal of phase 1 is to obtain (approximate) feasibility, the algorithm has a preference toward
reducing constraint violation unless the potential reduction in the objective function is
particularly compelling. Specifically, if the following conditions hold, indicating good
potential progress in reducing the objective, then the algorithm performs an F-iteration
(see §4.2.2.1):

tk 6= 0 with ‖tk‖ ≥ κst‖sk‖ for some κst ∈ (0, 1), (4.15a)

mf
k(0)−mf

k(sk) ≥ κfm(mf
k(nk)−mf

k(sk)), for some κfm ∈ (0, 1), (4.15b)

v(xk + sk) ≤ vmax
k − κρ‖sk‖3 for some κρ ∈ (0, 1), (4.15c)

nTk tk ≥ −1
2κntt‖tk‖

2 for some κntt ∈ (0, 1), (4.15d)

λvk ≤ σvk‖nk‖ and (4.15e)∥∥∥(Hk −∇2f(xk))sk
∥∥∥ ≤ κhs‖sk‖2 for some κhs ∈ (0,∞). (4.15f)

Conditions (4.15a)–(4.15c) are similar to those employed in other trust funnel algorithms,
except that (4.15a) and (4.15c) are stronger (than the common, weaker requirements that
tk 6= 0 and v(xk + sk) ≤ vmax

k ). Employed here is a scalar sequence {vmax
k } updated

dynamically by the algorithm that represents an upper bound on constraint violation; for
this sequence, the algorithm ensures (see Lemma 42) that vk ≤ vmax

k and vmax
k+1 ≤ vmax

k for
all k ∈ N. Condition (4.15d) ensures that, for an F-iteration, the inner product between
the normal and tangential steps is not too negative (or else the tangential step might undo
too much of the progress toward feasibility offered by the normal step). Finally, conditions
(4.15e) and (4.15f) are essential for achieving good complexity properties, requiring that
any F-iteration involves a normal step that is sufficiently large compared to the Lagrange
multiplier for the trust region constraint and that the action of the full step on Hk does
not differ too much from its action on ∇2f(xk). If any condition in (4.15) does not hold,
then a V-iteration is perfomed (see §4.2.2.2).
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Viewing (4.15f), it is worthwhile to reflect on the choice of Hk in the algorithm. With
the attainment of optimality (not only feasibility) in mind, standard practice would suggest
that it is desirable to choose Hk as the Hessian of the Lagrangian of problem (4.1) for
some multiplier vector yk ∈ RM . This multiplier vector could be obtained, e.g., as the
QP multipliers from some previous iteration or least squares multipliers using current
derivative information. For our purposes of obtaining good complexity properties for
phase 1, we do not require a particular choice of Hk, but this discussion and (4.15f) do
offer some guidance. Specifically, one might choose Hk as an approximation of the Hessian
of the Lagrangian, potentially with the magnitude of the multiplier vector restricted in
such a way that, after the full step is computed, the action of it on Hk will not differ too
much with its action on ∇2f(xk). This is more reasonable to do when it is known that
the set of optimal multipliers is bounded (which is true, e.g., under various constraint
qualifications). In any case, setting Hk to ∇f2(xk) is at least one valid choice as far as
our analysis is concerned.

4.2.2.1 F-iteration

If (4.15) holds, then we determine that the kth iteration is an F-iteration. In this case,
we begin by calculating the quantity

ρfk ← (fk − f(xk + sk))/‖sk‖3, (4.16)

which measures decrease in f . Using this quantity, acceptance or rejection of the step and
the rules for updating the trust region radius are similar as in Algorithm 6. As for the
trust funnel radius, rather than the update in [38, Algorithm 2.1], we require a modified
update; in particular, we use, for some {κv1,κv2} ⊂ (0, 1),

vmax
k+1 ← min{max{κv1v

max
k , vmax

k − κρ‖sk‖3}, vk+1 + κv2(vmax
k − vk+1)}. (4.17)

4.2.2.2 V-iteration

When any one of the conditions in (4.15) does not hold, the kth iteration is a V-iteration,
during which the main focus is to decrease the measure of infeasibility v. In this case, we
calculate

ρvk ← (v(xk)− v(xk + sk))/‖sk‖3, (4.18)
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which provides a measure of the decrease in constraint violation. The rules for accepting
or rejecting the trial step and for updating the trust region radius are the same as those
in Algorithm 6. One addition is that during a successful V-iteration, the trust funnel
radius is updated, using the same constants as in (4.17), as

vmax
k+1 ← min{max{κv1v

max
k , vk+1 + κv2(vk − vk+1)}, vk+1 + κv2(vmax

k − vk+1)}. (4.19)

4.2.3 Algorithm statement

Our complete algorithm for finding an (approximately) feasible point can now be stated
as Algorithm 8 on page 104, which in turn calls the F-iteration subroutine stated as
Algorithm 9 on page 105 and the V-iteration subroutine stated as Algorithm 10 on
page 106.

4.3 Convergence and Complexity Analyses for Phase 1

The analyses that we present require the following assumption related to the iterate se-
quence.

Assumption 13. The sequence of iterates {xk} is contained in a compact set. In addition,
the sequence {‖Hk‖} is bounded over k ∈ N.

Our analysis makes extensive use of the following mutually exclusive and exhaustive
subsets of the iteration index sequence generated by Algorithm 8:

I := {k ∈ N : ‖gvk‖ > ε},

F := {k ∈ I : iteration k is an F-iteration},

and V := {k ∈ I : iteration k is a V-iteration}.

It will also be convenient to define the index set of iterations for which tangential steps
are computed and not reset to zero by our method:

It := {k ∈ I : tk 6= 0 when Step 7 of Algorithm 8 is reached}

= {k ∈ I : Step 22 of Algorithm 8 is reached and all conditions in (4.14) hold}.
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Algorithm 8 Trust Funnel Algorithm for Phase 1

Require: {κn,κvm,κntn,κρ,κfm,κst,κntt,κv1,κv2, γc} ⊂ (0, 1),
{κp,κht,κhs, ε,σ} ⊂ (0,∞), {κδ, γe, γλ} ∈ (1,∞), and σ ∈ [σ,∞);
F-iteration (Algorithm 9, page 105) and V-iteration (Algorithm 10, page 106)

1: procedure Trust Funnel
2: choose x0 ∈ RN , vmax

0 ∈ [max{1, v0},∞), and σv0 ∈ [σ,σ]
3: choose {δv0 , ∆v

0, δf0 } ⊂ (0,∞) such that δv0 ≤ ∆v
0

4: for k ∈ N do
5: if ‖gvk‖ ≤ ε then return xk
6: (nk, tk,λvk,λfk)← Compute Steps(xk, δvk , δsk)
7: set sk ← nk + tk
8: set σvk ← Compute Sigma(nk,λvk,σvk−1, ρvk−1)
9: if (4.15) is satisfied then

10: set ρfk by (4.16)
11: (xk+1, vmax

k+1, δfk+1)← F-iteration(xk,nk, sk, vmax
k , δfk ,λfk , ρfk)

12: set δvk+1 ← δvk , ∆v
k+1 ← ∆v

k, and ρvk ←∞
13: else
14: set ρvk by (4.18)
15: (xk+1, vmax

k+1, δvk+1, ∆v
k+1)← V-iteration(xk,nk, sk, vmax

k , δvk , ∆v
k,λvk,σvk , ρvk)

16: set δfk+1 ← δfk and ρfk ←∞

17: procedure Compute Steps(xk, δvk , δsk)
18: set (nk,λvk) as a primal-dual solution to (4.3)
19: set (tk,λfk)← (0, 0)
20: if ‖nk‖ ≤ κnδsk and ‖gpk‖ ≥ κp‖gvk‖ then
21: set (tk, yfk ,λfk) as a primal-dual solution to (4.8)
22: if any condition in (4.14) fails to hold then set (tk,λfk)← (0, 0)
23: return (nk, tk,λvk,λfk)

24: procedure Compute Sigma(nk,λvk,σvk−1, ρvk−1)
25: if iteration (k − 1) was an F-iteration then
26: set σvk ← σvk−1
27: else
28: if ρvk−1 < κρ then set σvk ← max{σvk−1,λvk/‖nk‖} else set σvk ← σvk−1

29: return σvk

4.3.1 Convergence analysis for phase 1

The goal of our convergence analysis is to prove that Algorithm 8 terminates finitely, i.e.,
|I| < ∞. Our analysis to prove this fact requires a refined examination of the subsets F
and V of I. For these purposes, we define disjoint subsets of F as Sf := {k ∈ F : ρfk ≥ κρ}
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Algorithm 9 F-iteration subroutine

1: procedure F-iteration(xk,nk, sk, vmax
k , δfk ,λfk , ρfk)

2: if ρfk ≥ κρ then [accept step]
3: set xk+1 ← xk + sk
4: set vmax

k+1 according to (4.17)
5: set δfk+1 ← max{δfk , γe‖sk‖}
6: else (i.e., if ρfk < κρ) [contract trust region]
7: set xk+1 ← xk
8: set vmax

k+1 ← vmax
k

9: set δfk+1 ← F-contract(nk, sk, δfk ,λfk)
10: return (xk+1, vmax

k+1, δfk+1)

11: procedure F-contract(nk, sk, δfk ,λfk)
12: if λfk < σ‖sk‖ then
13: set λf > λfk so the solution t(λf ) of Qfk(λf ) yields σ ≤ λf/‖nk + t(λf )‖
14: return δfk+1 ← ‖nk + t(λf )‖
15: else (i.e., if λfk ≥ σ‖sk‖)
16: return δfk+1 ← γc‖sk‖

and Cf := {k ∈ F : ρfk < κρ}, and disjoint subsets of V as

Sv := {k ∈ V : ρvk ≥ κρ and either λvk ≤ σvk‖nk‖ or ‖nk‖ = ∆v
k},

Cv := {k ∈ V : ρvk < κρ} and Ev := {k ∈ V : k /∈ Sv ∪ Cv}.

We further partition the set Sv into the subsets Sv∆ := {k ∈ Sv : ‖nk‖ = ∆v
k} and

Svσ := {k ∈ Sv : k /∈ Sv∆}. Finally, for convenience, we also define the unions S := {k ∈
I : k ∈ Sf ∪ Sv} and C := {k ∈ I : k ∈ Cf ∪ Cv}. Due to the updates for the primal
iterate and/or trust region radii, we refer to iterations with indices in S as successful, with
indices in C as contractions, and with indices in Ev as expansions.

Basic relationships between all of these sets are summarized in our first lemma.

Lemma 39. The following relationships hold:

(i) F ∩ V = ∅ and F ∪ V = I;

(ii) Sf ∩ Cf = ∅ and Sf ∪ Cf = F ;

(iii) Sv, Cv, and Ev are mutually disjoint and Sv ∪ Cv ∪ Ev = V; and

(iv) if k ∈ I \ It, then k ∈ V.
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Algorithm 10 V-iteration subroutine

1: procedure V-iteration(xk,nk, sk, vmax
k , δvk , ∆v

k,λvk,σvk , ρvk)
2: if ρvk ≥ κρ and either λvk ≤ σvk‖nk‖ or ‖nk‖ = ∆v

k then [accept step]
3: set xk+1 ← xk + sk
4: set vmax

k+1 according to (4.19)
5: set ∆v

k+1 ← max{∆v
k, γe‖nk‖}

6: set δvk+1 ← min{∆v
k+1, max{δvk , γe‖nk‖}}

7: else if ρvk < κρ then [contract trust region]
8: set xk+1 ← xk
9: set vmax

k+1 ← vmax
k

10: set ∆v
k+1 ← ∆v

k

11: set δvk+1 ← V-contract(nk, sk, δvk ,λvk)
12: else (i.e., if ρvk ≥ κρ, λvk > σvk‖nk‖, and ‖nk‖ < ∆v

k) [expand trust region]
13: set xk+1 ← xk
14: set vmax

k+1 ← vmax
k

15: set ∆v
k+1 ← ∆v

k

16: set δvk+1 ← min{∆v
k+1,λvk/σvk}

17: return (xk+1, vmax
k+1, δvk+1, ∆v

k+1)

18: procedure V-contract(nk, sk, δvk ,λvk)
19: if λvk < σ‖nk‖ then
20: set λ̂v ← λvk + (σ‖gvk‖)1/2

21: set λv ← λ̂v

22: set n(λv) as the solution of Qvk(λv)
23: if λv/‖n(λv)‖ ≤ σ then
24: return δvk+1 ← ‖n(λv)‖
25: else
26: set λv ∈ (λvk, λ̂v) so the solution n(λv) of Qvk(λv) yields σ ≤ λv/‖n(λv)‖ ≤ σ
27: return δvk+1 ← ‖n(λv)‖
28: else (i.e., if λvk ≥ σ‖nk‖)
29: set λv ← γλλ

v
k

30: set n(λv) as the solution of Qvk(λv)
31: if ‖n(λv)‖ ≥ γc‖nk‖ then
32: return δvk+1 ← ‖n(λv)‖
33: else
34: return δvk+1 ← γc‖nk‖

Proof. The fact that F ∩ V = ∅ follows from the two cases resulting from the conditional
statement in Step 9 of Algorithm 8. The rest of part (i), part (ii), and part (iii) follow from
the definitions of the relevant sets. Part (iv) can be seen to hold as follows. If k ∈ I \ It,
then tk = 0 so that (4.15a) does not hold. It now follows from the logic in Algorithm 8
that k ∈ V as claimed.
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The results in the next lemma are consequences of Assumptions 12 and 13.

Lemma 40. The following hold:

(i) there exists θfc ∈ (1,∞) so max{‖gk‖, ‖ck‖, ‖Jk‖, ‖Hv
k‖} ≤ θfc for all k ∈ I;

(ii) ‖gvk‖ ≡ ‖JTk ck‖ ≤ θfc‖ck‖ for all k ∈ I; and

(iii) gv : RN → RN defined by gv(x) = J(x)T c(x) (recall (4.4)) is Lipschitz continuous
with Lipschitz constant gvLip > 0 over an open set containing {xk}.

Proof. Part (i) follows from Assumptions 12 and 13. Part (ii) follows since, by the Cauchy–
Schwarz inequality, ‖JTk ck‖ ≤ ‖Jk‖‖ck‖ ≤ θfc‖ck‖. Part (iii) follows since the first deriva-
tive of gv is uniformly bounded under Assumptions 12 and 13.

We now summarize properties associated with the normal and tangential steps.

Lemma 41. The following hold for all k ∈ I:

(i) nk 6= 0 and sk 6= 0; and

(ii) in Step 7 of Algorithm 8, the vector tk satisfies (4.14).

Proof. We first prove part (i). Since k ∈ I, it follows that ‖gvk‖ > ε, which combined
with (4.6a) implies that nk 6= 0, as claimed. Now, in order to derive a contradiction,
suppose that 0 = sk = nk + tk, which means that −tk = nk 6= 0. From gvk 6= 0 and (4.6a),
it follows that (Hv

k + λvkI)nk = −gvk 6= 0, which gives

nTk (Hv
k + λvkI)nk = −nTk gvk = −nTk JTk ck = −(Jknk)T ck = 0, (4.20)

where the last equality follows from nk = −tk and Jktk = 0 (see (4.12a)). It now follows
from (4.20), symmetry of Hv

k + λvkI, and (4.6b) that 0 = (Hv
k + λvkI)nk = −gvk, which is a

contradiction. This completes the proof of part (i).
To prove part (ii), first observe that the conditions in (4.14) are trivially satisfied if

tk = 0. On the other hand, if Step 7 is reached with tk 6= 0, then Step 22 must have been
reached, at which point it must have been determined that all of the conditions in (4.14)
held true (or else tk would have been reset to the zero vector).

Next, we show that {vmax
k } is a monotonically decreasing bound for {vk}.
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Lemma 42. For all k ∈ I, it follows that vk ≤ vmax
k and 0 < vmax

k+1 ≤ vmax
k .

Proof. The result holds trivially if I = ∅. Thus, let us assume that I 6= ∅, which ensures
that 0 ∈ I. Let us now use induction to prove the first inequality, as well as positivity of
vmax
k for all k ∈ I. From the initialization in Algorithm 8, it follows that v0 ≤ vmax

0 and
vmax

0 > 0. Now, to complete the induction step, let us assume that vk ≤ vmax
k and vmax

k > 0
for some k ∈ I, then consider three cases.

Case 1: k ∈ Sf . When k ∈ Sf , let us consider the two possibilities based on the
procedure for setting vmax

k+1 stated in (4.17). If (4.17) sets vmax
k+1 = vk+1 + κv2(vmax

k − vk+1),
then the fact that k ∈ Sf ⊆ F , (4.15c), and Lemma 41(i) imply that

vmax
k+1 = vk+1 + κv2(vmax

k − vk+1) ≥ vk+1 + κv2κρ‖sk‖3 > vk+1 ≥ 0.

On the other hand, if (4.17) sets vmax
k+1 = max{κv1v

max
k , vmax

k − κρ‖sk‖3}, then using the
induction hypothesis, the fact that k ∈ Sf ⊆ F , and (4.15c), it follows that

vmax
k+1 ≥ κv1v

max
k > 0 and vmax

k+1 ≥ vmax
k − κρ‖sk‖3 ≥ vk+1 ≥ 0.

This case is complete since, in each scenario, vmax
k+1 ≥ vk+1 and vmax

k+1 > 0.
Case 2: k ∈ Sv. When k ∈ Sv, let us consider the two possibilities based on the

procedure for setting vmax
k+1 stated in (4.19). If (4.19) sets vmax

k+1 = vk+1 + κv2(vmax
k − vk+1),

then it follows from the induction hypothesis and the fact that ρvk ≥ κρ for k ∈ Sv (which,
in particular, implies that vk+1 < vk for k ∈ Sv) that

vmax
k+1 = vk+1 + κv2(vmax

k − vk+1) ≥ vk+1 + κv2(vk − vk+1) > vk+1 ≥ 0.

On the other hand, if (4.19) sets vmax
k+1 = max{κv1v

max
k , vk+1 + κv2(vk − vk+1)}, then the

induction hypothesis and the fact that vk+1 < vk for k ∈ Sv implies that

vmax
k+1 ≥ κv1v

max
k > 0 and vmax

k+1 ≥ vk+1 + κv2(vk − vk+1) > vk+1 ≥ 0.

This case is complete since, in each scenario, vmax
k+1 ≥ vk+1 and vmax

k+1 > 0.
Case 3: k /∈ Sf ∪ Sv. When k /∈ Sf ∪ Sv, it follows that k ∈ C ∪ Ev, which may be

combined with the induction hypothesis and the updating procedures for xk and vmax
k in

Algorithms 9 and 10 to deduce that 0 < vmax
k = vmax

k+1 and vk+1 = vk ≤ vmax
k = vmax

k+1.
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Combining the conclusions of the three cases above, it follows by induction that the
first inequality of the lemma holds true and vmax

k > 0 for all k ∈ I.
Let us now prove that vmax

k+1 ≤ vmax
k for all k ∈ I, again by considering three cases.

First, if k ∈ Sf , then vmax
k+1 is set using (4.17) such that

vmax
k+1 ≤ max{κv1v

max
k , vmax

k − κρ‖sk‖3} < vmax
k ,

where the strict inequality follows by κv1 ∈ (0, 1) and Lemma 41(i). Second, if k ∈ Sv, then
vk+1 < vk ≤ vmax

k , where we have used the proved fact that vk ≤ vmax
k ; thus, vmax

k −vk+1 > 0.
Then, since vmax

k+1 is set using (4.19), it follows that

vmax
k − vmax

k+1 ≥ vmax
k − vk+1 − κv2(vmax

k − vk+1) = (1− κv2)(vmax
k − vk+1) > 0.

Third, if k /∈ Sf ∪ Sv, then, by construction in Algorithms 9 and 10, vmax
k+1 = vmax

k .

Our next lemma gives a lower bound for the decrease in the trust funnel radius.

Lemma 43. If k ∈ S, then vmax
k − vmax

k+1 ≥ κρ(1− κv2)‖sk‖3.

Proof. If k ∈ Sf , then vmax
k+1 is set using (4.17). In this case,

vmax
k − vmax

k+1 ≥ vmax
k − vk+1 − κv2(vmax

k − vk+1)

= (1− κv2)(vmax
k − vk+1) ≥ κρ(1− κv2)‖sk‖3,

where the last inequality follows from (4.15c) (since k ∈ Sf ⊆ F). If k ∈ Sv, then vmax
k+1 is

set using (4.19). In this case, by Lemma 42 and the fact that ρvk ≥ κρ for k ∈ Sv,

vmax
k − vmax

k+1 ≥ vmax
k − vk+1 − κv2(vmax

k − vk+1)

= (1− κv2)(vmax
k − vk+1) ≥ (1− κv2)(vk − vk+1) ≥ κρ(1− κv2)‖sk‖3,

which completes the proof.

Subsequently in our analysis, it will be convenient to consider an alternative formula-
tion of problem (4.8) that arises from an orthogonal decomposition of the normal step nk
into its projection onto the range space of JTk , call it nRk , and its projection onto the null
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space of Jk, call it nNk . Specifically, considering

tNk ∈ arg min
tN∈RN

mf
k(nRk + tN ) s.t. Jkt

N = 0 and ‖tN‖ ≤
√

(δsk)2 − ‖nRk ‖2, (4.21)

we can recover the solution of (4.8) as tk ← tNk − nNk . Similarly, for any λfk ∈ [0,∞) that
is strictly greater than the left-most eigenvalue of ZTk HkZk, let us define

Q̄fk(λfk) : min
tN∈RN

(gk +Hkn
R
k )T tN + 1

2(tN )T (Hk + λfkI)tN s.t. Jkt
N = 0. (4.22)

In the next lemma, we formally establish the equivalence between problems (4.21) and (4.8),
as well as between problems (4.22) and (4.13).

Lemma 44. For all k ∈ I, the following problem equivalences hold:

(i) if ‖nk‖ ≤ δsk, then problems (4.21) and (4.8) are equivalent in that (tNk ,λNk ) is part
of a primal-dual solution of problem (4.21) if and only if (tk,λfk) = (tNk −nNk ,λNk ) is
part of a primal-dual solution of problem (4.8); and

(ii) if ZTk HkZk + λfkI � 0, then problems (4.22) and (4.13) are equivalent in that tNk
solves problem (4.22) if and only if tk = tNk − nNk solves problem (4.13).

Proof. To prove part (i), first note that ‖nk‖ ≤ δsk ensures that problems (4.21) and (4.8)
are feasible. Then, by Jkt

N = 0 in (4.21), the vector nRk ∈ Range(JTk ) is orthogonal
with any feasible solution of (4.21), meaning that the trust region constraint in (4.21) is
equivalent to ‖nRk + tN‖ ≤ δsk. Thus, as (4.12) are the optimality conditions of (4.8), the
optimality conditions of problem (4.21) (with this modified trust region constraint) are
that there exists (tNk , yNk ,λNk ) ∈ RN × RM × R such that

Hk + λNk I JTk

Jk 0

tNk
yNk

 = −

gk + (Hk + λNk I)nRk
0

 , (4.23a)

ZTk HkZk + λNk I � 0, (4.23b)

and λNk ⊥ (δsk − ‖nRk + tNk ‖) ≥ 0. (4.23c)

From equivalence of the systems (4.23) and (4.12), it is clear that (tNk , yNk ,λNk ) is a
primal-dual solution of (4.21) (with the modified trust region constraint) if and only
if (tk, yfk ,λfk) = (tNk − nNk , yNk ,λNk ) is a primal-dual solution of (4.8). This proves part (i).
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Part (ii) follows in a similar manner from the orthogonal decomposition nk = nNk + nRk

and the fact that JktN = 0 in (4.22) ensures that tNk ∈ Null(Jk).

The next lemma reveals important properties of the tangential step. In particular, it
shows that the procedure for performing a contraction of the trust region radius in an
F-iteration that results in a rejected step is well-defined.

Lemma 45. If k ∈ Cf and the condition in Step 12 of Algorithm 9 tests true, then there
exists λf > λfk such that σ ≤ λf/‖nk + t(λf )‖, where t(λf ) solves Qfk(λf ).

Proof. Since the condition in Step 12 of Algorithm 9 is assumed to test true, it fol-
lows that λfk < σ‖sk‖. Second, letting t(λf ) denote the solution of Qfk(λf ), it follows
by Lemma 44(ii) that limλf→∞ ‖nk + t(λf )‖ = ‖nRk ‖, meaning that limλf→∞ λ

f/‖nk +
t(λf )‖ = ∞. It follows from these observations and standard theory for trust region
methods [23, Chapter 7] that the result is true.

The next lemma reveals properties of the normal step trust region radii along with
some additional observations about the sequences {∆v

k}, {λvk}, and {σvk}.

Lemma 46. The following hold:

(i) if k ∈ Cv, then 0 < δvk+1 < δvk and λvk+1 ≥ λvk;

(ii) if k ∈ I, then δvk ≤ ∆v
k ≤ ∆v

k+1;

(iii) if k ∈ Sv ∪ Ev, then δvk+1 ≥ δvk; and

(iv) if k ∈ F , then δvk+1 = δvk and σvk+1 = σvk.

Proof. The proof of part (i) follows as that of Lemma 3. In particular, since the V-contract
procedure follows exactly that of contract in Algorithm 6, it follows that any call of
V-contract results in a contraction of the trust region radius for the normal subproblem
and non-decrease of the corresponding dual variable.

For part (ii), the result is trivial if I = ∅. Thus, let us assume that I 6= ∅, which
ensures that 0 ∈ I. We now first prove δvk ≤ ∆v

k for all k ∈ I using induction. By the
initialization procedure of Algorithm 8, it follows that δv0 ≤ ∆v

0. Hence, let us proceed
by assuming that δvk ≤ ∆v

k for some k ∈ I. If k ∈ Sv, then Step 6 of Algorithm 10
shows that δvk+1 ≤ ∆v

k+1. If k ∈ Ev, then Step 16 of Algorithm 10 gives δvk+1 ≤ ∆v
k+1.
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If k ∈ Cv, then part (i), Step 10 of Algorithm 10, and the induction hypothesis yield
δvk+1 < δvk ≤ ∆v

k = ∆v
k+1. Lastly, if k ∈ F , then Step 12 of Algorithm 8 and the inductive

hypothesis give δvk+1 = δvk ≤ ∆v
k = ∆v

k+1. The induction step has now been completed
since we have overall proved that δvk+1 ≤ ∆v

k+1, which means that we have proved the first
inequality in part (ii). To prove ∆v

k ≤ ∆v
k+1, consider two cases. If k ∈ Sv, then Step 5

of Algorithm 10 gives ∆v
k+1 ≥ ∆v

k. Otherwise, if k /∈ Sv, then according to Step 12 of
Algorithm 8 and Steps 10 and 15 of Algorithm 10, it follows that ∆v

k+1 = ∆v
k. Combining

both cases, the proof of part (ii) is now complete.
For part (iii), first observe from part (ii) and Step 6 of Algorithm 10 that if k ∈ Sv,

then δvk+1 = min{∆v
k+1, max{δvk , γe‖nk‖}} ≥ δvk . On the other hand, if k ∈ Ev, then the

conditions that must hold true for Step 12 of Algorithm 10 to be reached ensure that
λvk > 0, meaning that ‖nk‖ = δvk (see (4.6c)). From this and the fact that the conditions in
Step 12 of Algorithm 10 must hold true, it follows that λvk/σvk > ‖nk‖ = δvk and ‖nk‖ < ∆v

k.
Combining these observations with ∆v

k+1 = ∆v
k for k ∈ Ev (see Step 15 of Algorithm 10)

it follows from Step 16 of Algorithm 10 that δvk+1 > ‖nk‖ = δvk .
Finally, part (iv) follows from Steps 12 and 26 of Algorithm 8.

The next result reveals similar properties for the other radii and {λfk}.

Lemma 47. The following hold:

(i) if k ∈ Cf , then δfk+1 < δfk and if, in addition, (k + 1) ∈ It, then λfk+1 ≥ λ
f
k ;

(ii) if k ∈ Sf , then δfk+1 ≥ δ
f
k and δsk+1 ≥ δsk; and

(iii) if k ∈ V, then δfk+1 = δfk .

Proof. For part (i), notice that δfk+1 is set in Step 9 of Algorithm 9 and that (xk+1, δvk+1)←
(xk, δvk) and nk+1 = nk for all k ∈ Cf . Let us proceed by considering two cases depending
on the condition in Step 12 of Algorithm 9.

Case 1: λfk < σ‖sk‖. In this case, δfk+1 is set in Step 14 of Algorithm 9, which
from Step 13 of Algorithm 9 and Lemma 45 implies that λf > λfk . Combining this
with Lemma 44 and standard theory for trust region methods leads to the fact that the
solution tN (λf ) of Q̄fk(λf ) satisfies ‖tN (λf )‖ < ‖tNk ‖. Thus, δfk+1 = ‖nk + t(λf )‖ =
‖nRk + tN (λf )‖ < ‖nRk + tNk ‖ = ‖sk‖ ≤ δfk , where the last inequality comes from (4.10).
If, in addition, (k + 1) ∈ It so that a nonzero tangential step is computed and not reset
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to zero, it follows that λfk+1 = λf . This establishes the last conclusion of part (i) for this
case since it has already been shown above that λf > λfk .

Case 2: λfk ≥ σ‖sk‖. In this case, δfk+1 is set in Step 16 of Algorithm 9 and, from (4.10)
and γc ∈ (0, 1), it follows that δfk+1 = γc‖sk‖ ≤ γcδ

f
k < δfk . Consequently, from Step 12

of Algorithm 8 and (4.10), one finds that δsk+1 ≤ δsk. It then follows from Lemma 44 and
standard trust region theory that if (k + 1) ∈ It, then λfk+1 ≥ λ

f
k .

To prove part (ii), notice that for k ∈ Sf it follows by Step 5 of Algorithm 9 that
δfk+1 = max{δfk , γe‖sk‖}, so δfk+1 ≥ δfk . From this, Step 12 of Algorithm 8, and (4.10) it
follows that δsk+1 ≥ δsk. These conclusions complete the proof of part (ii).

Finally, part (iii) follows from Step 16 of Algorithm 8.

Next, we show that after a V-iteration with either a contraction or an expansion of
the trust region radius, the subsequent iteration cannot result in an expansion.

Lemma 48. If k ∈ Cv ∪ Ev, then (k + 1) ∈ F ∪ Sv ∪ Cv.

Proof. If (k + 1) ∈ F , then there is nothing left to prove. Otherwise, if (k + 1) ∈ V, then
the proof follows using the same logic as for Lemma 6, which shows that one of three
cases holds: (i) k ∈ Cv, which yields λvk+1 ≤ σvk+1‖nk+1‖, so (k + 1) /∈ Ev; (ii) k ∈ Ev and
∆v
k ≥ λvk/σ

v
k, which also yields λvk+1 ≤ σvk+1‖nk+1‖, so (k + 1) /∈ Ev; or (iii) k ∈ Ev and

∆v
k < λvk/σ

v
k, which implies (k + 1) ∈ Sv ∪ Cv, so (k + 1) /∈ Ev.

Our goal now is to expand upon the conclusions of Lemma 48. To do this, it will be
convenient to define the first index in a given index set following an earlier index k ∈ I in
that index set (or the initial index 0). In particular, let us define

kS(k) := min{k ∈ S : k > k} and kS∪V(k) := min{k ∈ S ∪ V : k > k}

along with the associated sets

IS(k) := {k ∈ I : k < k < kS(k)} and IS∪V(k) := {k ∈ I : k < k < kS∪V(k)}.

The following lemma shows one important property related to these quantities.

Lemma 49. For all k ∈ S ∪ {0}, it follows that |Ev ∩ IS(k)| ≤ 1.
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Proof. In order to derive a contradiction, suppose that there exists k ∈ S ∪ {0} such that
|Ev ∩ IS(k)| > 1, which means that one can choose kS1 and kS3 as the first two distinct
indices in Ev ∩ IS(k); in particular,

{kS1 , kS3} ⊆ Ev ∩ IS(k) and k < kS1 < kS3 < kS(k).

By Lemma 48 and the fact that kS1 ∈ Ev, it follows that {kS1 + 1, . . . , kS3 − 1} 6= ∅. Let
us proceed by considering two cases, deriving a contradiction in each case.

Case 1: V ∩{kS1 + 1, . . . , kS3−1} = ∅. In this case, by the definitions of kS1 , kS3 , and
IS(k), it follows that {kS1 + 1, . . . kS3 − 1} ⊆ Cf . Then, since δvk+1 = δvk and σvk+1 = σvk for
all k ∈ Cf ⊆ F , it follows that δvkS3

= δvkS1+1 and σvkS3
= σvkS1+1. In particular, using the

fact that δvkS3
= δvkS1+1, it follows along with the fact that xk+1 = xk for all k /∈ S that

‖nkS3
‖ = ‖nkS1+1‖ and λvkS3

= λvkS1+1. Now, since (kS1 + 1) ∈ Cf , it follows with Step 9
of Algorithm 8 and (4.15e) that

λvkS3
/‖nkS3

‖ = λvkS1+1/‖nkS1+1‖ ≤ σvkS1+1 = σvkS3
,

which implies that kS3 /∈ Ev, a contradiction.
Case 2: V ∩{kS1 + 1, . . . , kS3−1} 6= ∅. In this case, by the definitions of kS1 , kS3 , and

IS(k), it follows that {kS1 + 1, . . . , kS3 − 1} ⊆ Cf ∪ Cv. In addition, by the condition of
this case, it also follows that there exists a greatest index kS2 ∈ Cv ∩{kS1 +1, . . . , kS3−1}.
In particular, for the index kS2 ∈ Cv, it follows that kS1 + 1 ≤ kS2 ≤ kS3 − 1 and
{kS2 + 1, . . . , kS3 − 1} ⊆ Cf . By kS2 ∈ Cv and Lemma 48, it follows that kS2 + 1 /∈ Ev;
hence, since kS3 ∈ Ev, it follows that {kS2 + 1, . . . , kS3 − 1} 6= ∅. We may now apply the
same argument as for Case 1, but with kS1 replaced by kS2 , to arrive at the contradictory
conclusion that kS3 /∈ Ev, completing the proof.

The next lemma reveals lower bounds for the norms of the normal and full steps.

Lemma 50. For all k ∈ I, the following hold:

(i) ‖nk‖ ≥ min {δvk , ‖gvk‖/‖Hv
k‖} > 0 and

(ii) ‖sk‖ ≥ κntn min {δvk , ‖gvk‖/‖Hv
k‖} > 0.

Proof. The proof of part (i) follows as that for Lemma 1. Part (ii) follows from part (i)
and (4.14b), the latter of which holds because of Lemma 41(ii).
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We now provide a lower bound for the decrease in the model of infeasibility.

Lemma 51. For all k ∈ I, the quantities nk, λvk, and sk satisfy

vk −mv
k(nk) = 1

2n
T
k (Hv

k + λvkI)nk + 1
2λ

v
k‖nk‖2 > 0, (4.24a)

vk −mv
k(sk) ≥ κvm(1

2n
T
k (Hv

k + λvkI)nk + 1
2λ

v
k‖nk‖2) > 0, and (4.24b)

vk −mv
k(sk) ≥ 1

2κvm‖g
v
k‖min {δvk , ‖gvk‖/‖Hv

k‖} > 0. (4.24c)

Proof. The proof of (4.24a) follows as for that of Lemma 2 and the fact that ‖gvk‖ > ε,
which holds since k ∈ I. The inequalities in (4.24b) follow from (4.24a) and (4.14a),
the latter of which holds because of Lemma 41(ii). To prove (4.24c), first observe from
standard trust region theory (e.g., see [23, Theorem 6.3.1]) that

vk −mv
k(nk) ≥ 1

2‖g
v
k‖min {δvk , ‖gvk‖/‖Hv

k‖} > 0. (4.25)

By combining (4.25) and (4.14a) (which holds by Lemma 41(ii)), one obtains (4.24c).

The next lemma reveals that if the dual variable for the normal step trust region is
beyond a certain threshold, then the trust region constraint must be active and the step
will either be an F-iteration or a successful V-iteration.

Lemma 52. For all k ∈ I, if the trial step sk and the dual variable λvk satisfy

λvk ≥ κ2
δ(2gvLip + θfc + 2κρ‖sk‖)/κvm, (4.26)

then ‖nk‖ = δvk and ρvk ≥ κρ.

Proof. For all k ∈ I, it follows from the definition of mv
k and the Mean Value Theorem

that there exists a point x̄k ∈ RN on the line segment [xk,xk + sk] such that

mv
k(sk)− v(xk + sk) = (gvk − gv(x̄k))

T sk + 1
2s
T
kH

v
ksk

≥ −‖gvk − gv(x̄k)‖‖sk‖ − 1
2‖H

v
k‖‖sk‖2. (4.27)

By (4.26) and (4.6c), it follows that ‖nk‖ = δvk . Combining this fact with (4.27), (4.24b),
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(4.6b), Lemma 40, (4.26), and the fact that ‖sk‖ ≤ δsk ≤ κδδvk = κδ‖nk‖, one obtains

vk − v(xk + sk) = vk −mv
k(sk) +mv

k(sk)− v(xk + sk)

≥ 1
2κvmλ

v
k‖nk‖2 − ‖gvk − gv(x̄k)‖‖sk‖ − 1

2‖H
v
k‖‖sk‖2

≥ (1
2κvmκ

−2
δ λvk − gvLip − 1

2θfc)‖sk‖
2 ≥ κρ‖sk‖3,

which, by Steps 12 and 14 in Algorithm 8 and (4.18), completes the proof.

Recall that our main goal in this section is to prove that |I| < ∞. Ultimately, this
result is attained by deriving contradictions under the assumption that |I| = ∞. For
example, if |I| = ∞ and the iterations corresponding to all sufficiently large k ∈ I
involve contractions of a trust region radius, then the following lemma helps to lead to
contradictions in subsequent results. In particular, it reveals that, under these conditions,
a corresponding dual variable tends to infinity.

Lemma 53. The following hold:

(i) If k /∈ S for all large k ∈ I and |Cv| =∞, then {δvk} → 0 and {λvk} → ∞.

(ii) If k ∈ Cf for all large k ∈ I, then {δfk} → 0 and {λfk} → ∞.

Proof. By Lemma 46, Lemma 49, and the fact that k /∈ S for all large k ∈ I, the proof of
part (i) follows as that of Lemma 8.

To prove part (ii), let us assume, without loss of generality, that k ∈ Cf for all k ∈ I.
It then follows that k ∈ It for all k ∈ I, since otherwise it would follow that tk ← 0, which
by (4.15a) means k ∈ V, a contradiction to k ∈ Cf . Thus,

k ∈ Cf ∩ It for all k ∈ I. (4.28)

Next, we claim that the condition in Step 12 of Algorithm 9 can hold true for at most
one iteration. If it never holds true, then there is nothing left to prove. Otherwise, let
kc ∈ I be the first index for which the condition holds true. The structure of Algorithm 9
(see Step 13) and (4.28) then ensure that λfkc+1/‖skc+1‖ ≥ σ. From Lemma 47(i), one
may conclude that {λfk/‖sk‖} is nondecreasing. From this, it follows that the condition
in Step 12 of Algorithm 9 will never be true for any k > kc. Thus, we may now pro-
ceed, without loss of generality, under the assumption that the condition in Step 12 of
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Algorithm 9 always tests false. This means that δfk+1 is set in Step 16 of Algorithm 9 for
all k ∈ I, yielding δfk+1 ← γc‖sk‖ ≤ γcδ

f
k , where the last inequality comes from (4.10).

Therefore, {δfk} → 0 for all k ∈ I, and consequently {λfk} → ∞.

We now show that the sequences {∆v
k} and {nk} are bounded above.

Lemma 54. There exists a scalar ∆v
max ∈ (0,∞) such that ∆v

k = ∆v
max for all sufficiently

large k ∈ I. In addition, |Sv∆| < ∞ and there exists a scalar nmax ∈ (0,∞) such that
‖nk‖ ≤ nmax for all k ∈ I.

Proof. First, in order to derive a contradiction, assume that there is no ∆v
max such that

∆v
k = ∆v

max for all sufficiently large k ∈ I. This, in turn, means that Step 5 of Algorithm 10
is reached infinitely often, meaning that |Sv| = ∞. For all k ∈ Sv ⊆ S, it follows
from Lemma 43 that vmax

k − vmax
k+1 ≥ κρ(1 − κv2)‖sk‖3. Now, using the monotonicity

of {vmax
k } and the fact that vmax

k ≥ 0 (see Lemma 42), one may conclude that {vmax
k }

converges; therefore {sk}k∈Sv → 0. From this fact, Lemma 41(ii), and (4.14b) it follows
that {nk}k∈Sv → 0. Thus, there exists an iteration index kv∆ such that for all k ∈ Sv with
k ≥ kv∆, one finds γe‖nk‖ < ∆v

0 ≤ ∆v
k, where the last inequality follows from Lemma 46(ii).

From this and Steps 5, 10, and 15 of Algorithm 10, it follows that ∆v
k+1 ← ∆v

k for all
k ≥ kv∆, a contradiction. The proof of the second part of the lemma follows as in that for
Lemma 10.

In the next lemma, a uniform lower bound on {δvk} is provided.

Lemma 55. There exists a scalar δvmin ∈ (0,∞) such that δvk ≥ δvmin for all k ∈ I.

Proof. If |Cv| <∞, then the result follows from Lemma 46(iii)–(iv). Thus, let us proceed
under the assumption that |Cv| = ∞. As in the beginning of the proof of Lemma 52,
it follows that (4.27) holds. Then, using (4.27), (4.24c), Lemma 40(i), Lemma 40(iii),
‖gvk‖ > ε for k ∈ I, and ‖sk‖ ≤ δsk ≤ κδδvk , it follows that

vk − v(xk + sk) = vk −mv
k(sk) +mv

k(sk)− v(xk + sk)

≥ 1
2κvmεmin {δvk , ε/θfc} − (gvLip + 1

2θfc)κ
2
δ(δvk)2.

Considering these inequalities and ‖sk‖ ≤ δsk ≤ κδδ
v
k , it must hold that ρvk ≥ κρ for any
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k ∈ I as long as δvk ∈ (0, ε/θfc] is sufficiently small such that

1
2κvmεδ

v
k − (gvLip + 1

2θfc)κ
2
δ(δvk)2 ≥ κρκ3

δ(δvk)3 ≥ κρ‖sk‖3.

This fact implies the existence of a positive threshold δvthresh ∈ (0, ε/θfc] such that, for
any k ∈ I with δvk ∈ (0, δvthresh), one finds ρvk ≥ κρ. Along with the fact that ρvk < κρ if
and only if k ∈ Cv (see Step 2, 7, and 12 of Algorithm 10 and Step 12 of Algorithm 8), it
follows that

δvk ≥ δvthresh for all k ∈ Cv. (4.29)

Since the normal step subproblem trust region radius is only decreased when k ∈ Cv, we
will complete the proof by showing a lower bound on δvk+1 when k ∈ Cv.

Suppose that k ∈ Cv. If Step 24 of Algorithm 10 is reached, then

δvk+1 ← ‖n(λv)‖ ≥ λv/σ = (λvk + (σ‖gvk‖)1/2)/σ ≥ (σ‖gvk‖)1/2/σ ≥ (σε)1/2/σ,

where the last inequality follows since k ∈ I means ‖gvk‖ ≥ ε. If Step 27 is reached,
then the algorithm chooses λv ∈ (λvk, λ̂v) to find n(λv) that solves Qvk(λv) such that
σ ≤ λv/‖n(λv)‖ ≤ σ. For this case and the cases when Step 32 or 34 is reached, the
existence of δvmin ∈ (0,∞) such that δvk+1 ≥ δvmin for all k ∈ Cv follows in the same manner
as in the proof of Lemma 11. Combining these facts with (4.29) and Lemma 46(iii)–(iv),
the proof is complete.

The next result shows that there are finitely many successful iterations.

Lemma 56. The following hold: |Sv| <∞ and |Sf | <∞.

Proof. Lemma 55, ‖gvk‖ > ε for all k ∈ I, Lemma 50(i), and Lemma 40(i) imply the
existence of nmin ∈ (0,∞) such that ‖nk‖ ≥ nmin for all k ∈ I, i.e.,

‖gvk‖ > ε and ‖nk‖ ≥ nmin > 0 for all k ∈ I. (4.30)

In order to reach a contradiction to the first desired conclusion, suppose that |Sv| = ∞.
For any k ∈ Sv, it follows from Lemma 43, Lemma 41(ii), and (4.14b) that

vmax
k − vmax

k+1 ≥ κρ(1− κv2)‖sk‖3 ≥ κρ(1− κv2)κ3
ntn‖nk‖3. (4.31)
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By Lemma 42, 0 < vmax
k+1 ≤ vmax

k for all k ∈ I, meaning that {vmax
k − vmax

k+1} → 0, which
together with (4.31) shows that {‖nk‖}k∈Sv → 0, contradicting (4.30). This proves that
|Sv| < ∞. Now, in order to reach a contradiction to the second desired conclusion,
suppose that |Sf | = ∞. Since |Sv| < ∞, we can assume without loss of generality that
S = Sf . This means that the sequence {fk} is monotonically nonincreasing. Combining
this with the fact that {fk} is bounded below under Assumptions 12 and 13, it follows
that {fk} → flow for some flow ∈ (−∞,∞) and {fk − fk+1} → 0. Using these facts, the
inequality ρfk ≥ κρ for all k ∈ Sf , and |Sf | = ∞, it follows that {κρ‖sk‖3}k∈Sf ≤ {fk −
fk+1}k∈Sf → 0, which gives {‖sk‖}k∈Sf → 0. This, in turn, implies that {‖nk‖}k∈Sf → 0
because of Lemma 41(ii) and (4.14b), which contradicts (4.30). Hence, |Sf | <∞.

We are now prepared to prove that Algorithm 8 terminates finitely.

Theorem 12. Algorithm 8 terminates finitely, i.e., |I| <∞.

Proof. Suppose by contradiction that |I| =∞. Let us consider two cases.
Case 1: |V| =∞. Since |S| <∞, it follows that |V \Sv| = |Cv∪Ev| =∞, which along

with Lemma 49 implies that |Ev| <∞ while |Cv| =∞. It now follows from Lemma 53(i)
that {δvk} → 0, which contradicts Lemma 55.

Case 2: |V| <∞. For this case, we may assume without loss of generality that F = I.
This implies with Lemma 41(i) that δvk = δv0 and nk = n0 6= 0 for all k ∈ I. It also implies
from Step 9 of Algorithm 8 that (4.15) holds for all k ∈ I; in particular, from (4.15a) it
means that tk 6= 0 for all k ∈ I. Now, from |V| < ∞, |S| < ∞, and Lemma 53(ii), it
follows that {δfk} → 0, which by (4.10) yields {δsk} → 0. It then follows from Step 20 of
Algorithm 8 and F = I that {nk} → 0, which contradicts our previous conclusion that
nk = n0 6= 0 for all k ∈ I.

4.3.2 Complexity analysis for phase 1

Our goal in this subsection is to prove an upper bound on the total number of iterations
required until phase 1 terminates, i.e., until the algorithm reaches k ∈ N such that ‖gvk‖ ≤
ε. To prove such a bound, we require the following additional assumption.

Assumption 14. The Hessian functions Hv(x) := ∇2v(x) and ∇2f(x) are Lipschitz
continuous with constants Hv

Lip ∈ (0,∞) and HLip ∈ (0,∞), respectively, on a path defined
by the sequence of iterates and trial steps computed in the algorithm.
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Our first result in this subsection can be seen as a similar conclusion to that given by
Lemma 52, but with this additional assumption in hand.

Lemma 57. For all k ∈ I, if the trial step sk and dual variable λvk satisfy

λvk ≥ κ2
δκ
−1
vm(Hv

Lip + 2κρ)‖sk‖, (4.32)

then ‖nk‖ = δvk and ρvk ≥ κρ.

Proof. For all k ∈ I, there exists xk on the line segment [xk,xk + sk] such that

mv
k(sk)− v(xk + sk) = 1

2s
T
k (Hv

k −Hv(xk)) sk ≥ −1
2H

v
Lip‖sk‖3. (4.33)

From this, (4.24b), and (4.6b), one deduces that

v(xk)− v(xk + sk) ≥ 1
2κvmλ

v
k‖nk‖2 − 1

2H
v
Lip‖sk‖3.

From Lemma 41(i), (4.32), and (4.6c), it follows that ‖nk‖ = δvk , which along with (4.10)
means that ‖sk‖ ≤ δsk ≤ κδδvk = κδ‖nk‖, so, from above,

v(xk)− v(xk + sk) ≥ 1
2κvmκ

−2
δ λvk‖sk‖2 − 1

2H
v
Lip‖sk‖3. (4.34)

From here, by Steps 12 and 14 of Algorithm 8 and under (4.32), the result follows.

The next lemma reveals upper and lower bounds for an important ratio that will hold
during the iteration immediately following a V-iteration contraction.

Lemma 58. For all k ∈ Cv, it follows that

σ ≤ λvk+1/‖nk+1‖ ≤ max
{
σ, γλγ−1

c λvk/‖nk‖
}

. (4.35)

Proof. The result follows using the same logic as the proof of Lemma 14.

Now, we prove that the sequence {σvk} is bounded.

Lemma 59. There exists σvmax ∈ (0,∞) such that σvk ≤ σvmax for all k ∈ I.

Proof. If k /∈ Cv, then Steps 26 and 28 of Algorithm 8 give σvk+1 ← σvk. Otherwise, if
k ∈ Cv, meaning that ρvk < κρ, then there are two cases to consider. If k ∈ Cv and
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λvk < σ‖nk‖, then, by Steps 23–27 of Algorithm 10, Step 28 of Algorithm 8, and the fact
that λvk+1 = λv and nk+1 = n(λv), where (n(λv,λv) are computed either in Steps 21–22
or Step 26 of Algorithm 10, it follows that σvk+1 ≤ max{σvk,σ}. Finally, if k ∈ Cv and
λvk ≥ σ‖nk‖, then with Lemma 57 one has λvk < κ2

δκ
−1
vm(Hv

Lip+2κρ)‖sk‖. From the fact that
λvk ≥ σ‖nk‖, Lemma 41(i), (4.6c), and (4.10), it follows that ‖sk‖ ≤ δsk ≤ κδδ

v
k = κδ‖nk‖.

Hence, by Step 28 of Algorithm 8 and Lemma 58, one finds

σvk+1 ← max
{
σvk,λvk+1/‖nk+1‖

}
≤ max

{
σvk,σ, γλγ−1

c κ3
δκ
−1
vm(Hv

Lip + 2κρ)
}

.

Combining the results of these cases gives the desired conclusion.

We now give a lower-bound for the norm of some types of successful steps.

Lemma 60. For all k ∈ Svσ ∪ Sf , the accepted step sk satisfies

‖sk‖ ≥ (Hv
Lip + κht + σvmax/κ

2
ntn)−1/2‖gvk+1‖1/2. (4.36)

Proof. Let k ∈ Svσ ∪ Sf . It follows from (4.6a), the Mean Value Theorem, the fact that
sk = nk + tk, Assumption 14, Lemma 41(ii), and (4.14c) that

‖gvk+1‖ = ‖gvk+1 − gvk − (Hv
k + Iλvk)nk‖ ≤ (Hv

Lip + κht)‖sk‖2 + λvk‖nk‖2/‖nk‖. (4.37)

From Step 2 of Algorithm 10 (if k ∈ Svσ) and (4.15e) (if k ∈ Sf ), one finds λvk/‖nk‖ ≤ σvk.
Combining this with (4.37), Lemma 41(ii), (4.14b), and Lemma 59, it follows that

‖gvk+1‖ ≤ Hv
Lip‖sk‖2 + κht‖sk‖2 + σvk‖nk‖2 ≤ (Hv

Lip + κht + σvmax/κ
2
ntn)‖sk‖2,

which gives the desired result.

We now give an iteration complexity result for a subset of successful iterations.

Lemma 61. For any ε ∈ (0,∞), the total number of elements in

K(ε) := {k ∈ I : k ≥ 0 and (k − 1) ∈ Svσ ∪ Sf}
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is at most⌊(
vmax

0
κρ(1− κv2)(Hv

Lip + κht + σvmax/κ
2
ntn)−3/2

)
ε−3/2

⌋
=: Kσ(ε) ≥ 0. (4.38)

Proof. From Lemma 43 and Lemma 60, it follows that, for all k ∈ K(ε) ⊆ I,

vmax
k−1 − vmax

k ≥ κρ(1− κv2)‖sk−1‖3

≥ κρ(1− κv2)(Hv
Lip + κht + σvmax/κ

2
ntn)−3/2ε3/2.

In addition, since |K(ε)| < ∞ follows by Theorem 12, the reduction in vmax
k obtained up

to the largest index in K(ε), call it k(ε), satisfies

vmax
0 − vmax

k(ε) =
kε∑
k=1

(vmax
k−1 − vmax

k ) ≥
∑

k∈K(ε)
(vmax
k−1 − vmax

k )

≥ |K(ε)|κρ(1− κv2)(Hv
Lip + κht + σvmax/κ

2
ntn)−3/2ε3/2.

Rearranging this inequality to yield an upper bound for |K(ε)| and using the fact that
vmax
k ≥ 0 for all k ∈ I (see Lemma 42), the desired result follows.

In order to bound the total number of successful iterations in I, we also need an upper
bound for the cardinality of Sv∆. This is the subject of our next lemma.

Lemma 62. The cardinality of the set Sv∆ is bounded above by

⌊
vmax

0
κρκ3

ntn(1− κv2)(∆v
0)3

⌋
:= Kv

∆ ≥ 0. (4.39)

Proof. For all k ∈ Sv∆ ⊆ S, it follows from Lemma 43, Lemma 41(ii), (4.14b), and
Lemma 46(ii) that the decrease in the trust funnel radius satisfies

vmax
k − vmax

k+1 ≥ κρ(1− κv2)‖sk‖3 ≥ κρκ3
ntn(1− κv2)‖nk‖3

= κρκ
3
ntn(1− κv2)(∆v

k)
3 ≥ κρκ3

ntn(1− κv2)(∆v
0)3.

Now, using the fact that {vmax
k } is bounded below by zero (see Lemma 42), one finds

vmax
0 ≥

∑
k∈Sv∆

(vmax
k − vmax

k+1) ≥ |Sv∆|κρκ3
ntn(1− κv2)(∆v

0)3,
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which gives the desired result.

Having now provided upper bounds for the numbers of successful iterations, we need
to bound the number of unsuccessful iterations in I. To this end, first we prove that a
critical ratio increases by at least a constant factor after an iteration in Cv.

Lemma 63. If k ∈ Cv and λvk ≥ σ‖nk‖, then λvk+1
‖nk+1‖ ≥ min

{
γλ, 1

γc

}
λvk
‖nk‖ .

Proof. The proof follows the same logic as in Lemma 20.

We are now able to provide an upper bound on the number of unsuccessful iterations
in Cv that may occur between any two successful iterations.

Lemma 64. If k ∈ S ∪ {0}, then

|Cv ∩ IS(k)| ≤ 1 +
⌊

1
log(min{γλ, γ−1

c })
log

(
σvmax
σ

)⌋
=: Kv

C ≥ 0. (4.40)

Proof. The result holds trivially if |Cv ∩ IS(k)| = 0. Thus, we may proceed under the
assumption that |Cv ∩ IS(k)| ≥ 1. Let kCv be the smallest element in Cv ∩ IS(k). It then
follows from Lemma 46(i)-(ii), Lemma 48, and Step 12 of Algorithm 8 that for all k ∈ I
satisfying kCv + 1 ≤ k ≤ kS(k) we have

‖nk‖ ≤ δvk ≤ δvkCv+1 < δvkCv
≤ ∆v

kCv
≤ ∆v

kS(k),

which for k = kS(k) means that kS(k) ∈ Sf ∪ Svσ. From Lemma 58, it follows that
λvkCv+1 ≥ σ‖nkCv+1‖, which by kS(k) ∈ Sf ∪ Svσ, Lemma 59, Lemma 63, (4.15e), Step 2 of
Algorithm 10, and the fact that (nk+1,λvk+1) = (nk,λvk) for any k ∈ Cf means

σvmax ≥ σvkS(k) ≥ λ
v
kS(k)/‖nkS(k)‖ ≥

(
min

{
γλ, γ−1

c

})|Cv∩IS(k)|−1
σ,

from which the desired result follows.

For our ultimate complexity result, the main component that remains to prove is a
bound on the number of unsuccessful iterations in Cf between any two successful iterations.
To this end, we first need some preliminary results pertaining to the trial step and related
quantities during an F-iteration. Our first such result pertains to the change in the
objective function model yielded by the tangential step.
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Lemma 65. For any k ∈ I, the vectors nk and tk and dual variable λfk satisfy

mf
k(nk)−mf

k(nk + tk) = 1
2 t
T
k (Hk + λfkI)tk + 1

2λ
f
k‖tk‖

2 + λfkn
T
k tk. (4.41)

Proof. If k /∈ It so that tk = 0 and λfk = 0 (by the Compute Steps subroutine in
Algorithm 8), then (4.41) trivially holds. Thus, for the remainder of the proof, let us
assume that k ∈ It. It now follows from the definition of mf

k that

mf
k(nk)−mf

k(nk + tk) = − (gk +Hknk)T tk − 1
2 t
T
kHktk

= − (gk + (Hk + λfkI)nk + (Hk + λfkI)tk + JTk y
f
k )T tk

+ 1
2 t
T
k (Hk + λfkI)tk + 1

2λ
f
k‖tk‖

2 + λfkn
T
k tk + (yfk )

T
Jktk

= 1
2 t
T
k (Hk + λfkI)tk + 1

2λ
f
k‖tk‖

2 + λfkn
T
k tk,

where the last equality follows from (4.12a).

The next lemma reveals that, for an F-iteration, if the dual variable for the tangential
step trust region constraint is large enough, then the trust region constraint is active and
the iteration will be successful.

Lemma 66. For all k ∈ F , if the trial step sk and the dual variable λfk satisfy

λfk ≥ (κfmκ2
st(1− κntt))−1(κhs +HLip + 2κρ)‖sk‖, (4.42)

then ‖sk‖ = δsk and ρfk ≥ κρ.

Proof. Observe from (4.42) and Lemma 41(i) that λfk > 0, which along with (4.12c) proves
that ‖sk‖ = δsk. Next, since k ∈ F , it must mean that (4.15) is satisfied. It then follows
from (4.15b), Lemma 65, (4.12), (4.15d), and (4.15a) that

mf
k(0)−mf

k(sk) ≥ κfm(mf
k(nk)−mf

k(sk))

= κfm(1
2 t
T
k (Hk + λfkI)tk + 1

2λ
f
k‖tk‖

2 + λfkn
T
k tk)

≥ κfm(1
2 −

1
2κntt)λ

f
k‖tk‖

2 ≥ 1
2κfmκ

2
st(1− κntt)λ

f
k‖sk‖

2. (4.43)

Next, the Mean Value Theorem gives the existence of an x ∈ [xk,xk + sk] such that
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f(xk + sk) = fk + gTk sk + 1
2s
T
k∇2f(x)sk, which with (4.15f) and Assumption 14 gives

mf
k(sk)− f(xk + sk)

= fk + gTk sk + 1
2s
T
kHksk − fk − gTk sk − 1

2s
T
k∇2f(x)sk

= 1
2s
T
k

(
Hk −∇2f(xk)

)
sk + 1

2s
T
k

(
∇2f(xk)−∇2f(x)

)
sk

≥ − 1
2

∥∥∥(Hk −∇2f(xk)
)
sk
∥∥∥ ‖sk‖ − 1

2

∥∥∥(∇2f(xk)−∇2f(x)
)
sk
∥∥∥ ‖sk‖

≥ − 1
2 (κhs +HLip) ‖sk‖3.

Finally, combining the previous inequality, fk = mf
k(0), and (4.43), one finds

fk − f(xk + sk) = fk −mf
k(sk) +mf

k(sk)− f(xk + sk)

≥ 1
2κfmκ

2
st(1− κntt)λ

f
k‖sk‖

2 − 1
2(κhs +HLip)‖sk‖3,

which combined with (4.42) shows that ρfk ≥ κρ as desired.

We now show that a critical ratio increases by at least a constant factor after any
unsuccessful F-iteration followed by an iteration in which a nonzero tangential step is
computed and not reset to zero.

Lemma 67. If k ∈ Cf , λfk ≥ σ‖sk‖, and (k + 1) ∈ It, then λf
k+1

‖sk+1‖ ≥
λf
k

γc‖sk‖ .

Proof. With Lemma 41(i), it follows that λfk ≥ σ‖sk‖ > 0, meaning that ‖sk‖ = δsk.
In addition, since k ∈ Cf , one finds that the condition in Step 12 of Algorithm 9 tests
false in iteration k. Hence, Step 16 of Algorithm 9 is reached, meaning, with (4.10), that
δfk+1 = γc‖sk‖ ≤ γcκδδ

v
k . Then, from the facts that γc < 1 and δvk+1 ← δvk (see Step 12

of Algorithm 8), it follows that δfk+1 ≤ κδδvk+1. Consequently, again with (4.10), it follows
that ‖sk+1‖ = δsk+1 = δfk+1 = γc‖sk‖. Combining this with the fact that Lemma 47(i)
yields λfk+1 ≥ λ

f
k , the result follows.

Lemma 68. If k ∈ Cf and (k + 1) ∈ It, then σ ≤ λfk+1/‖sk+1‖.

Proof. Since k ∈ Cf , there are two cases to consider.
Case 1: Step 14 of Algorithm 9 is reached. In this case, it follows that ‖sk+1‖ =

δfk+1 = ‖nk + t(λf )‖ with (t(λf ),λf ) computed in Step 13 of Algorithm 9. Together with
the fact that (k + 1) ∈ It, it follows that λfk+1/‖sk+1‖ = λf/‖nk + t(λf )‖ ≥ σ.
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Case 2: Step 14 of Algorithm 9 is not reached. This only happens if the condition in
Step 12 of Algorithm 9 tested false, meaning that λfk/‖sk‖ ≥ σ. Hence, from Lemma 67,
it follows that λfk+1/‖sk+1‖ ≥ λfk/γc‖sk‖, which by the facts that γc < 1 and λfk/‖sk‖ ≥ σ
gives the desired result.

Next, we provide a bound on the number of iterations in Cf that may occur before the
first or between consecutive iterations in the set S ∪ V.

Lemma 69. If k ∈ S ∪ V ∪ {0}, then

|IS∪V(k)| ≤ 2 +
⌊

1
log(γ−1

c )
log

(
κhs +HLip + 2κρ
σκfmκ

2
st(1− κntt)

)⌋
=: Kf

C ≥ 0. (4.44)

Proof. Let k ∈ S∪V∪{0}. Then, IS∪V(k) ⊆ Cf . The result follows trivially if |IS∪V(k)| ≤
1. Therefore, for the remainder of the proof, let us assume that |IS∪V(k)| ≥ 2. It follows
from Lemma 68, k+ 1 ∈ Cf , and k+ 2 ∈ Cf ⊆ F (meaning that tk+2 6= 0 and (k+ 2) ∈ It)
that σ ≤ λf

k+2/‖sk+2‖. Combining this inequality with Lemma 66, Lemma 67, the fact
that and (kS∪V(k)− 1) ∈ Cf to get

σ

( 1
γc

)(kS∪V (k)−1)−(k+2)
≤

λf
kS∪V (k)−1

‖skS∪V (k)−1‖
≤
(
κhs +HLip + 2κρ
κfmκ

2
st(1− κntt)

)
.

The desired result now follows since |IS∪V(k)| = kS∪V(k)− k − 1.

We have now arrived at our complexity result for phase 1.

Theorem 13. For a scalar ε ∈ (0,∞), the cardinality of I is at most

K(ε) := 1 + (Kσ(ε) +Kv
∆)(Kv

C + 1)Kf
C , (4.45)

where Kσ(ε), Kv
∆, Kv

C , and Kf
C are defined in Lemmas 61, 62, 64, and 69, respectively.

Consequently, for any ε̄ ∈ (0,∞), it follows that K(ε) = O(ε−3/2) for all ε ∈ (0, ε̄).

Proof. Without loss of generality, let us assume that at least one iteration is performed.
Then, Lemmas 61 and 62 guarantee that at most Kσ(ε) + Kv

∆ successful iterations are
included in I. In addition, Lemmas 49, 64, and 69 guarantee that, before each successful
iteration, there can be at most (Kv

C + 1)Kf
C unsuccessful iterations. Also accounting for

the first iteration, the desired result follows.
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Building on this theorem, one may now apply the analysis in [19, §3.1–3.2] to arrive
at the following corollary involving practical termination conditions for phase 1.

Corollary 1. Let (εfeas, εinf ) ∈ (0, 1) × (0, 1) be given constants. Then, the number of
iterations required until either

‖ck‖ ≤ εfeas (4.46a)

or ‖JTk ck‖ ≤ εinf‖ck‖ (4.46b)

is satisfied, is at most O(max{ε−1/2
feas , ε−3/2

inf }).

Proof. The result follows in the same manner as [19, Th. 3.2]. In particular, the only
property of the phase 1 algorithm needed for the proof in [19] is that reductions in v for
successful steps are at least a fraction of ‖gvk‖3/2. The same holds for our algorithm with
respect to {vmax

k }, as shown by Lemmas 43 and 60.

If the constraint Jacobians encountered by the algorithm are not rank deficient (and
do not tend toward rank deficiency), then the following corollary gives a similar result as
that above, but for an infeasibility measure. This occurs, e.g., if all iterates and all limit
points of the algorithm are points at which the linear independence constraint qualification
(LICQ) is satisfied.

Corollary 2. Suppose that, for all k ∈ N, the constraint Jacobian Jk has full row rank
with singular values bounded below by ζmin ∈ (0,∞). Then, for ε ∈ (0,∞), the cardinality
of Ic := {k ∈ N : ‖ck‖ > ε/ζmin}, is at most K(ε) defined in (4.45). Consequently, for
any ε̄ ∈ (0,∞), the cardinality of Ic is O(ε−3/2) for all ε ∈ (0, ε̄).

Proof. Under the stated conditions, ‖gvk‖ ≡ ‖JTk ck‖ ≥ ζmin‖ck‖ for all k ∈ I. Thus, since
‖gvk‖ ≤ ε implies ‖ck‖ ≤ ε/ζmin, the result follows from Theorem 13.

4.4 Phase 2: Obtaining Optimality

A complete algorithm for solving problem (4.1) proceeds as follows. The phase 1 method,
Algorithm 8, is run until either an approximate feasible point or approximate infeasible
stationary point is found, i.e., for some (εfeas, εinf ) ∈ (0, 1) × (0, 1), the method is run
until (4.46) holds for some k ∈ N. If phase 1 terminates with (4.46a) failing to hold and
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(4.46b) holding, then the entire algorithm is terminated with a declaration of having found
an infeasible (approximately) stationary point. Otherwise, if (4.46a) holds, then a phase
2 method is run that maintains at least εfeas-feasibility while seeking optimality.

There are various options for phase 2. For example, respecting the current state-of-the-
art nonlinear optimization methods, one can run a trust funnel method such as that in [38].
One can even run such a method with the initial trust funnel radius for v(x) = 1

2‖c(x)‖2

set at 1
2ε

2
feas so that εfeas-feasibility will be maintained as optimality is sought. We do

not claim worst-case iteration complexity guarantees for such a method, though empirical
evidence suggests that it would perform well. If c is affine, then one could run a method,
such as the arc method from [14, 15] (see also the previous work in [45, 56, 61]) or the
trace method from Chapter 2, where steps toward reducing the objective are restricted
to the null space of the constraint Jacobian. For such a reduced-space method, εfeas-
feasibility will be maintained while the analyses in [14, 15] and Chapter 2 guarantee that
the number of iterations required to reduce the norm of the reduced gradient below a
given tolerance εopt ∈ (0,∞) is at most O(ε−3/2

opt ). With ε = εopt = εfeas, this gives an
overall (phase 1 + phase 2) complexity of O(ε−3/2).

More interesting for our purposes are phase 2 approaches designed with an eye toward
attaining good complexity properties. To achieve this, one can run the objective-target-
following approach stated as [19, Alg. 4.1, Phase 2] or as [6, Alg. 2.1, Phase 2]. These
approaches apply an unconstrained optimization algorithm to minimize the residual Φ :
RN × R → R defined by Φ(x, t) = 1

2‖r(x, t)‖2 where r : RN × R → R has

r(x, t) = (c(x), f(x)− t). (4.47)

Updated dynamically by the algorithm, the parameter t may be viewed as a target value
for reducing the objective function value.

Our goal here is to show that a phase 2 method can be built upon the trace method
from Chapter 2 yielding the same worst-case complexity properties as the arc-based
method in [19]. For our algorithm and analysis of it, we assume the following.

Assumption 15. The initial objective value for phase 2, namely, f0, is bounded above
independently from εfeas. For all x ∈ RN with ‖c(x)‖ ≤ εfeas ∈ (0,∞), the objective f is
bounded below by fmin ∈ R. The functions f and c and their first and second derivatives
are Lipschitz continuous on the path defined by all phase 2 iterates.

128



Our phase 2 algorithm is stated as Algorithm 11. We refer the reader to [19] for further
details on the design of the algorithm and to Chapter 2 for further details on trace. In
short, in iteration k ∈ N, the subsequent iterate xk+1 is computed to reduce Φ(·, tk) while
the subsequent target tk+1 is chosen to ensure the relationships in the following lemma
(whose proof follows that of [19, Lemma 4.1]).

Algorithm 11 trace Algorithm for Phase 2

Require: termination tolerance ε ∈ (0,∞) and x0 ∈ RN with ‖c0‖ ≤ εfeas ∈ (0, 1)

1: procedure trace phase 2
2: set t0 ← f0 −

√
ε2feas − ‖c0‖2

3: for k ∈ N do
4: perform one iteration of trace toward minimizing Φ(x, tk) to compute sk
5: if sk is an acceptable step then
6: set xk+1 ← xk + sk (and other quantities following trace)
7: if r(xk+1, tk) 6= 0 and ‖∇xΦ(xk+1, tk)‖ ≤ ε‖r(xk+1, tk)‖ then
8: terminate
9: else

10: set tk+1 ← f(xk+1)−
√
‖r(xk, tk)‖2 − ‖r(xk+1, tk)‖2 + (f(xk+1)− tk)2

11: else
12: set xk+1 ← xk (and other quantities following trace)
13: set tk+1 ← tk

Lemma 70. Let εfeas ∈ (0, 1) be given. For all k ∈ N, it follows that

tk+1 ≤ tk, (4.48a)

0 ≤ f(xk)− tk ≤ εfeas, (4.48b)

‖r(xk, tk)‖ = εfeas, (4.48c)

and ‖c(xk)‖ ≤ εfeas. (4.48d)

Proof. Note that, in trace, the objective function is monotonically nonincreasing; see
(2.5) and Step 5 in Algorithm 6. Hence, each acceptable step sk computed in Algorithm 11
yields Φ(xk+1, tk) ≤ Φ(xk, tk), from which it follows that the value for tk+1 in Step 10 is
well-defined. Then, since all definitions and procedures in Algorithm 11 that yield (4.48)
are exactly the same as in [19, Alg. 4.1], a proof for the inequalities in (4.48) is given by
the proof of [19, Lemma 4.1].
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In the next lemma, we recall a critical result from Chapter 2, arguing that it remains
true for Algorithm 11 under our assumptions about the problem functions.

Lemma 71. Let {σk} be generated as in trace. (See Algorithm 6.) Then, there exists a
scalar constant σmax ∈ (0,∞) such that σk ≤ σmax for all k ∈ N.

Proof. The result follows similarly as Lemma 15. Here, similar to [19, §5], it is important
to note that Assumption 15 ensures that Φ and its first and second derivatives are globally
Lipschitz continuous on a path defined by the phase 2 iterates. This ensures that results of
the kind given as Lemmas 13 and 14 hold true, which are necessary for proving Lemma 15
(for bounding {σk} above by a σmax ∈ (0,∞)).

We now argue that the number of iterations taken for any fixed value of the target for
the objective function is bounded above by a positive constant.

Lemma 72. The number of iterations required before the first accepted step or between
two successive accepted steps with a fixed target is bounded above by

Kt := 2 +
⌊

1
log(min{γλ, γ−1

c })
log

(
σmax
σ

)⌋
,

where the constants γλ ∈ (0,∞), γc ∈ (0, 1), are σ ∈ (0,∞) are parameters used by trace
(see Algorithm 6) that are independent of k and satisfy σ ≤ σmax.

Proof. The properties of trace corresponding to so-called contraction and expansion
iterations all hold for Algorithm 11 for sequences of iterations in which a target value
is held fixed. Therefore, the result follows by Lemmas 19 and 21, which combined show
that the maximum number of iterations of interest is equal to the maximum number of
contractions that may occur plus one.

The next lemma merely states a fundamental property of trace.

Lemma 73. Let HΦ ∈ (0,∞) be the Lipschitz constant for the Hessian function of Φ
along the path of phase 2 iterates and let η ∈ (0, 1) be the acceptance constant from
trace. Then, for xk+1 following an accepted step sk, it follows that

Φ(xk, tk)− Φ(xk+1, tk) ≥ η(HΦ + σmax)−3/2‖∇xΦ(xk+1, tk)‖3/2.
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Proof. With Lemma 71 and adapting the conclusion of Lemma 16, the result follows as
in the beginning of the proof of Lemma 17.

The preceding lemma allows us to prove the following useful result.

Lemma 74. For xk+1 following an accepted step sk yielding

‖∇xΦ(xk+1, tk)‖ > ε‖r(xk+1, tk)‖, (4.49)

it follows that ‖r(xk, tk)‖ − ‖r(xk+1, tk)‖ ≥ κt min{ε3/2ε1/2feas, εfeas}, where β ∈ (0, 1) is
any fixed problem-independent constant, ω := η(HΦ + σmax)−3/2 ∈ (0,∞) is the constant
appearing in Lemma 73, and κt := min{ωβ3/2, 1− β}.

Proof. Along with the result of Lemma 73, it follows that

‖r(xk, tk)‖2 − ‖r(xk+1, tk)‖2 ≥ 2ω‖∇xΦ(xk+1, tk)‖3/2

= 2ω
(‖∇xΦ(xk+1, tk)‖
‖r(xk+1, tk)‖

)3/2
‖r(xk+1, tk)‖3/2

≥ 2ωε3/2‖r(xk+1, tk)‖3/2.

Then, if ‖r(xk+1, tk)‖ > β‖r(xk, tk)‖, it follows with (4.48c) that

‖r(xk, tk)‖2 − ‖r(xk+1, tk)‖2 ≥ 2ωε3/2β3/2‖r(xk, tk)‖3/2 = 2ωε3/2β3/2ε
3/2
feas, (4.50)

from which it follows along with ‖r(xk+1, tk)‖ ≤ ‖r(xk, tk)‖ that

‖r(xk, tk)‖ − ‖r(xk+1, tk)‖ = ‖r(xk, tk)‖
2 − ‖r(xk+1, tk)‖2

‖r(xk, tk)‖+ ‖r(xk+1, tk)‖

≥ ‖r(xk, tk)‖
2 − ‖r(xk+1, tk)‖2

2‖r(xk, tk)‖

= ‖r(xk, tk)‖
2 − ‖r(xk+1, tk)‖2

2εfeas
≥ ωε3/2β3/2ε

1/2
feas.

On the other hand, if ‖r(xk+1, tk)‖ ≤ β‖r(xk, tk)‖, then using (4.48c) it follows that

‖r(xk, tk)‖ − ‖r(xk+1, tk)‖ ≥ (1− β)‖r(xk, tk)‖ = (1− β)εfeas.

Combining the results of both cases, the desired conclusion follows.
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We next prove a lower bound on the decrease of the target value.

Lemma 75. Suppose that the termination tolerance is set so that ε ≤ ε
1/3
feas. Then, for

xk+1 following an accepted step sk such that the termination conditions in Step 7 are not
satisfied, it follows that, with κt ∈ (0, 1) defined as in Lemma 74,

tk − tk+1 ≥ κtε3/2ε
1/2
feas. (4.51)

Proof. A proof follows similarly to that of [19, Lem. 5.3]. In particular, if the reason
that the termination conditions in Step 7 are not satisfied is because (4.49) holds, then
Lemma 74 and the fact that ε ≤ ε1/3feas imply that

‖r(xk, tk)‖ − ‖r(xk+1, tk)‖ ≥ κt min{ε3/2ε1/2feas, εfeas} ≥ κtε
3/2ε

1/2
feas.

On the other hand, if the condition in Step 7 is not satisfied because ‖r(xk+1, tk)‖ = 0, it
follows from (4.48c), κt ∈ (0, 1), and ε ≤ ε

1/3
feas that ‖r(xk, tk)‖ − ‖r(xk+1, tk)‖ = εfeas ≥

κtε
3/2ε

1/2
feas. Combining these two cases, (4.47), and (4.48c), one finds that

(f(xk+1)− tk)2 + ‖c(xk+1)‖2 = ‖r(xk+1, tk)‖2 ≤ (εfeas − κtε3/2ε
1/2
feas)

2.

Now, from Step 10 of Algorithm 11, (4.47), and (4.48c), it follows that

tk − tk+1 = −(f(xk+1)− tk) +
√
‖r(xk, tk)‖2 − ‖r(xk+1, tk)‖2 + (f(xk+1)− tk)2

= −(f(xk+1)− tk) +
√
‖r(xk, tk)‖2 − ‖c(xk+1)‖2

= −(f(xk+1)− tk) +
√
ε2feas − ‖c(xk+1)‖2.

Overall, it follows that [19, Lemma 5.2] can be applied (with “f” = f(xk+1) − tk, “c”
= ‖c(xk+1)‖, “ε” = εfeas, and “τ” = εfeas − κtε3/2ε

1/2
feas) to obtain the result.

We now show that if the termination condition in Step 7 of Algorithm 11 is never
satisfied, then the algorithm takes infinitely many accepted steps.

Lemma 76. If Algorithm 11 does not terminate finitely, then it takes infinitely many
accepted steps.

Proof. To derive a contradiction, suppose that the number of accepted steps is finite.
Then, since it does not terminate finitely, there exists k ∈ N such that sk is not acceptable
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for all k ≥ k. Therefore, by the construction of the algorithm, it follows that tk = tk for
all k ≥ k. This means that the algorithm proceeds as if the trace algorithm (Alg. 6) is
being employed to minimize Φ(·, tk), from which it follows by Lemmas 6, 7, and 8 that, for
some sufficiently large k ≥ k, an acceptable step sk will be computed. This contradiction
completes the proof.

Before proceeding, let us discuss the situation in which the termination conditions in
Step 7 of Algorithm 11 are satisfied. This discussion, originally presented in [19], justifies
the use of these termination conditions.

Suppose ‖r(xk+1, tk)‖ 6= 0 and ‖∇xΦ(xk+1, tk)‖ ≤ ε‖r(xk+1, tk)‖. If fk+1 = tk,
then these mean that ‖ck+1‖ 6= 0 and ‖∇xΦ(xk+1, tk)‖ ≤ ε‖ck+1‖, which along with
∇xΦ(xk+1, tk) = JTk+1ck+1 + (fk+1 − tk)gk+1 would imply that ‖JTk+1ck+1‖ ≤ ε‖ck+1‖.
That is, under these conditions, xk+1 is an approximate first-order stationary point for
minimizing ‖c‖. If fk+1 6= tk, then the satisfied termination conditions imply that
‖JTk+1ck+1 + (fk+1 − tk)gk+1‖/‖r(xk+1, tk)‖ ≤ ε. By dividing the numerator and denomi-
nator of the left-hand side by f(xk+1)− tk > 0 (recall (4.48b)), defining

y(xk+1, tk) := c(xk+1)/(f(xk+1)− tk) ∈ RM , (4.52)

and substituting y(xk+1, tk) back into the inequality, one finds that

‖JTk+1y(xk+1, tk) + gk+1‖/‖(y(xk+1, tk), 1)‖ ≤ ε. (4.53)

As argued in [19], one may use a perturbation argument to say that (xk+1, y(xk+1, tk))
satisfying the relative KKT error conditions (4.53) and ‖ck+1‖ ≤ εfeas corresponds to a
first-order stationary point for problem (4.1). Specifically, consider x = x∗ + δx and y =
y∗+δy where (x∗, y∗) is a primal-dual pair satisfying the KKT conditions for problem (4.1).
Then, a first-order Taylor expansion of J(x∗)T y∗ + g(x∗) to estimate its value at (x, y)
yields the estimate (∇2f(x∗)+

∑M
i=1[yi]∗∇2ci(x∗))δx+J(x∗)T δy. The presence of the dual

variable y∗ in this estimate confirms that the magnitude of the dual variable should not
be ignored in a relative KKT error condition such as (4.53).

We now prove our worst-case iteration complexity result for phase 2.

Theorem 14. Suppose that the termination tolerances are set so that ε ≤ ε
1/3
feas with

εfeas ∈ (0, 1). Then, Algorithm 11 requires at most O(ε−3/2ε
−1/2
feas ) iterations until the
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termination condition in Step 7 is satisfied, at which point either

‖JTk+1y(xk+1, tk) + gk+1‖/‖(y(xk+1, tk), 1)‖ ≤ ε and ‖ck+1‖ ≤ εfeas (4.54a)

or ‖JTk+1ck+1‖/‖ck+1‖ ≤ ε and ‖ck+1‖ ≤ εfeas (4.54b)

is satisfied, with y(xk+1, tk) defined in (4.52).

Proof. Recall that if the termination condition in Step 7 is satisfied for some k ∈ N, then,
by the arguments prior to the lemma, either (4.54a) or (4.54b) will be satisfied. Thus, we
aim to show an upper bound on the number of iterations required by the algorithm until
the termination condition in Step 7 is satisfied.

Without loss of generality, let us suppose that the algorithm performs at least one
iteration. Then, we claim that there exists some k ∈ N such that the termination con-
dition does not hold for (xk, tk−1), but does hold for (xk+1, tk). To see this, suppose for
contradiction that the termination condition is never satisfied. Then, by Lemma 75, it
follows that for all k ∈ N such that sk is acceptable one finds that (4.51) holds. This,
along with Lemma 76, implies that {tk} ↘ −∞. However, this along with (4.48b) implies
that {fk} ↘ −∞, which contradicts Assumption 15.

Now, since the termination condition is satisfied at (xk+1, tk), but not in the iteration
before, it follows that sk must be an acceptable step. Hence, from Assumption 15, (4.48b),
Lemma 75, Step 2, it follows that

fmin≤fk≤ tk + εfeas≤ t0 −KAκtε3/2ε
1/2
feas + εfeas≤f(x0)−KAκtε3/2ε1/2feas + εfeas,

where KA is the number of accepted steps prior to iteration (k + 1). Rearranging and
since εfeas ∈ (0, 1), one finds that KA ≤

⌈
(f0 + εfeas − fmin + 1)/(κtε3/2ε1/2feas)

⌉
. From this

and Lemma 72, the desired result follows.

This should be viewed in two ways. First, if ε = ε
2/3
feas, then the overall complexity

is O(ε−3/2
feas ), though of course this corresponds to a looser tolerance on the relative KKT

error than on feasibility. Second, if ε = εfeas (so that the two tolerances are equal), then
the overall complexity is O(ε−2

feas).
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4.5 Numerical Experiments

Our goal now is to demonstrate that instead of having a phase 1 method that solely seeks
(approximate) feasibility (such as in [6, 19]), it is beneficial to employ a phase 1 method
that also attempts to reduce the objective. To show this, a Matlab implementation of
our phase 1 (Algorithm 8) plus a phase 2 has been written. The implementation has two
modes: one following Algorithm 8 and one employing the same procedures except that the
tangential step tk is set to zero for all k ∈ N so that all iterations are V-iterations. We
refer to the former implementation as TF and the latter as TF-V-only. For phase 2 for
both methods, we implemented a trust funnel method based on that proposed in [38] with
the modification that the normal step computation is never skipped. The initial value of
vmax
k for phase 2 is the final value obtained from phase 1; note that this means that phase

2 does not necessarily maintain (near) feasibility as would Algorithm 11. In both phases 1
and 2, subproblems are solved to high accuracy using a Matlab implementation of the
trust region subproblem solver described as [23, Alg. 7.3.4], which goes back to the work
in [52]. However, if a step is rejected and a contraction is performed, then, when possible,
rather than solve a trust region subproblem, we compute steps by solving linear systems
(to solve Qvk(·) and/or Qfk(·) for a given dual variable). The fact that the normal step
computation is never skipped and the subproblems are always solved to high accuracy
allows our implementation to ignore so-called “y-iterations” [38].

Phase 1 in each implementation terminates in iteration k ∈ N if either

‖ck‖∞ ≤ 10−6 max{‖c0‖∞, 1} or

 ‖JTk ck‖∞ ≤ 10−9 max{‖JT0 c0‖∞, 1}

and ‖ck‖∞ > 10−3 max{‖c0‖∞, 1}.
(4.55)

Phase 2 terminates in iteration k ∈ N if the second condition in (4.55) holds or if both
the first condition in (4.55) holds and, with yk computed as least squares multipliers for
all k ∈ N, one finds ‖gk + JTk yk‖∞ ≤ 10−9 max{‖g0 + JT0 y0‖∞, 1}. Input parameters used
in the code are stated in Table 4.1. The only values that do not appear are κρ and γc.
For κρ, for simplicity we employed this in both (4.15c) and (4.17), as well as in the step
acceptance conditions in Step 2 in Algorithm 9 and Step 2 in Algorithm 10. However,
it turns out that our analysis can be adapted to handle different values in these places.
Along these lines, our code uses κρ = 10−12 in (4.15c) and (4.17), but uses κρ = 10−8
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in the step acceptance conditions. For γc, our code uses 0.5 in Algorithm 9 and 10−2 in
Algorithm 10, where again our analysis can be extended to allow using different constants
in these places. We chose these constant values since they worked well for both algorithms
in our tests. For all k ∈ N, we set Hk as the Hessian of the Lagrangian, which is set using
least squares multipliers.

Table 4.1: Input parameters for TF and TF-V-only.

κn 9e-01 κst 1e-12 κp 1e-06 κδ 1e+02
κvm 1e-12 κntt 1-(2e-12) κht 1e+20 γe 2e+00
κntn 1e-12 κv1 9e-01 κhs 1e+20 γλ 2e+00
κfm 1e-12 κv2 9e-01 σ 1e-12 σ 1e+20

We ran TF and TF-V-only to solve the equality constrained problems in the CUTEst

test set [43]. In particular, we ran our experiments on a machine with 8GB of memory
and set a time limit of four hours. Among 190 such problems, we removed 78 that had
a constant (or null) objective, 17 for which phase 1 of both algorithms terminated im-
mediately at the initial point due to the first condition in (4.55), one for which phase 1
of both algorithms terminated immediately at the initial point due to the second condi-
tion in (4.55), 26 for which both algorithms had insufficient memory, 19 on which both
algorithms exceeded our time limit, and 8 problems for which both algorithms failed (due
to different combinations of the reasons above, namely, memory limit, time limit, etc.).
In addition, one problem was removed because TF found a relative stationary point but
TF-V-only failed due to a subproblem solver error, and two were removed because TF-
V-only found relative stationary points but TF failed because of our memory limit. The
remaining set consisted of 38 problems.

The results we obtained are provided in Table 4.2. For each problem, we indi-
cate the number of variables (n), number of equality constraints (m), number of V-
iterations (#V), number of F-iterations (#F), objective function value at the end of
phase 1 (f), and dual infeasibility value at the end of phase 1 (‖g + JT y‖). We write INF

to indicate that an algorithm did not run phase 2 due to the fact that phase 1 ended with
an infeasible stationary point (i.e., the second condition in (4.55) was satisfied). The re-
sults illustrate that, within a comparable number of iterations, TF typically yields better
final points from phase 1. This can be seen in the fact that the objective at the end of
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phase 1, dual infeasibility at the end of phase 1, and the number of iterations required
in phase 2 are all typically smaller for TF than they are for TF-V-only. Note that for
some problems, such as BT1, TF only performs V-iterations in phase 1, yet yields a
better final point than does TF-V-only; this occurs since the phase 1 iterations in TF
may involve nonzero tangential steps.

Table 4.2: Numerical results for TF and TF-V-only.

TF TF-V-only
Phase 1 Phase 2 Phase 1 Phase 2

Problem n m #V #F f ‖g + JT y‖ #V #F #V f ‖g + JT y‖ #V #F
BT1 2 1 4 0 -8.02e-01 +4.79e-01 0 139 4 -8.00e-01 +7.04e-01 7 137
BT10 2 2 10 0 -1.00e+00 +5.39e-04 1 0 10 -1.00e+00 +6.74e-05 1 0
BT11 5 3 6 1 +8.25e-01 +4.84e-03 2 0 1 +4.55e+04 +2.57e+04 16 36
BT12 5 3 46 6 +6.57e+00 +2.06e-01 6 11 16 +3.34e+01 +4.15e+00 4 8
BT2 3 1 22 8 +1.45e+03 +3.30e+02 3 12 20 +6.14e+04 +1.82e+04 0 40
BT3 5 3 1 0 +4.09e+00 +6.43e+02 1 0 1 +1.01e+05 +8.89e+02 0 1
BT4 3 2 1 0 -1.86e+01 +9.77e+00 20 11 1 -1.86e+01 +9.77e+00 20 11
BT5 3 2 13 6 +9.67e+02 +4.75e+00 4 74 8 +9.62e+02 +7.38e-01 5 1
BT6 5 2 11 45 +2.77e-01 +4.64e-02 1 0 14 +5.81e+02 +4.50e+02 5 59
BT7 5 3 15 6 +1.31e+01 +5.57e+00 5 1 12 +1.81e+01 +1.02e+01 19 28
BT8 5 2 22 2 +1.00e+00 +4.29e-04 0 1 10 +2.00e+00 +2.00e+00 1 97
BT9 4 2 11 1 -1.00e+00 +8.56e-05 1 0 10 -9.69e-01 +2.26e-01 5 1
BYRDSPHR 3 2 29 2 -4.68e+00 +1.28e-05 0 0 19 -5.00e-01 +1.00e+00 16 5
CHAIN 800 401 9 0 +5.12e+00 +2.35e-04 3 20 9 +5.12e+00 +2.35e-04 3 20
FLT 2 2 15 4 +2.68e+10 +3.28e+05 0 13 19 +2.68e+10 +3.28e+05 0 17
GENHS28 10 8 1 0 +9.27e-01 +5.83e+01 0 0 1 +2.49e+03 +1.11e+02 0 1
HS100LNP 7 2 16 2 +6.89e+02 +1.74e+01 3 39 5 +7.17e+02 +1.97e+01 13 51
HS111LNP 10 3 9 1 -4.78e+01 +4.91e-06 2 0 10 -4.62e+01 +7.49e-01 10 1
HS27 3 1 2 0 +8.77e+01 +2.03e+02 3 5 1 +2.54e+01 +1.41e+02 11 34
GENHS28 10 8 1 0 +9.27e-01 +5.83e+01 0 0 1 +2.49e+03 +1.11e+02 0 1
HS39 4 2 11 1 -1.00e+00 +8.56e-05 1 0 10 -9.69e-01 +2.26e-01 5 1
HS40 4 3 4 0 -2.50e-01 +1.95e-06 0 0 3 -2.49e-01 +3.35e-02 2 1
HS42 4 2 4 1 +1.39e+01 +3.94e-04 1 0 1 +1.50e+01 +2.00e+00 3 1
HS52 5 3 1 0 +5.33e+00 +1.90e+02 1 0 1 +8.65e+03 +3.86e+02 0 1
HS6 2 1 1 0 +4.84e+00 +1.56e+00 32 136 1 +4.84e+00 +1.56e+00 32 136
HS61 3 2 1 0 -5.88e+01 +2.40e+01 INF INF 1 -5.88e+01 +2.40e+01 INF INF
HS7 2 1 7 1 -2.35e-01 +1.18e+00 7 2 8 +3.79e-01 +1.07e+00 5 2
HS77 5 2 13 30 +2.42e-01 +1.26e-02 0 0 17 +5.52e+02 +4.54e+02 3 11
HS78 5 3 6 0 -2.92e+00 +3.65e-04 1 0 10 -1.79e+00 +1.77e+00 2 30
HS79 5 3 13 21 +7.88e-02 +5.51e-02 0 2 10 +9.70e+01 +1.21e+02 0 24
LINCONT 249 419 1 0 +0.00e+00 +0.00e+00 INF INF 1 +0.00e+00 +0.00e+00 INF INF
LUKVLE1 10000 9998 7 5 +7.87e-01 +4.18e-04 0 0 19 +1.09e+09 +4.53e+07 0 238
LUKVLE3 10000 2 9 7 +2.50e+00 +8.24e-01 0 5 12 +8.68e+06 +5.85e+05 0 79
MARATOS 2 1 4 0 -1.00e+00 +8.59e-05 1 0 3 -9.96e-01 +9.02e-02 2 1
MWRIGHT 5 3 17 6 +2.31e+01 +5.78e-05 1 0 7 +5.07e+01 +1.04e+01 12 20
OPTCTRL3 4499 3000 1 9 +3.51e+01 +1.83e+01 0 15 4 +1.15e+05 +4.57e+03 1 21
OPTCTRL6 4499 3000 1 9 +3.51e+01 +1.83e+01 0 15 4 +1.15e+05 +4.57e+03 1 21
ORTHREGB 27 6 10 13 +1.79e-04 +2.71e+06 0 31 10 +2.73e+00 +1.60e+00 0 10
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Chapter 5

Conclusion and Future Work

In this dissertation, we tried to fill the gap between the theoretical guarantees of trust
region based methods and their superior practical performance. Through carefully de-
signed modifications within a trust region framework, we showed that one of the most
popular and effective algorithms in the nonlinear optimization literature can also achieve
ideal theoretical behavior as well, namely, optimal iteration complexity guarantees. By
proposing an intentionally general inexact regularized Newton framework, we suggested
that a carefully generalized Newton’s method would be able to achieve the “optimal” com-
plexity bounds and perform well in practice. Last but not least, our proposed trust funnel
algorithm reveals the tremendous opportunity in designing practical algorithms with im-
proved complexity bounds by combining new methods and incorporating them within a
powerful framework such as sequential quadratic programming (SQP).

In Chapter 2, we have proposed a trust region algorithm for solving nonconvex smooth
optimization problems. The important features of the algorithm are that it maintains the
global and fast local convergence guarantees of a traditional trust region algorithm, but
also ensures that the norm of the gradient of the objective will be reduced below a pre-
scribed scalar constant ε ∈ (0,∞) after at most O(ε−3/2) function evaluations, gradient
evaluations, or iterations. This improves upon the worst-case complexity bound for a tra-
ditional trust region algorithm, and matches that of the recently proposed arc algorithm,
which is optimal under certain conditions [16]. This complexity bound for arc is known
to be sharp, and we expect that this is also the case for trace. Although we have not
done it in this proposal, the sharpness of this bound could be shown by verifying that
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trace fits within the general algorithmic framework considered in [16].
For simplicity in revealing the salient features of our algorithm and its theoretical

properties, we have assumed that the algorithm uses exact first- and second-order deriva-
tive information, and that each iteration involves computing a globally optimal solution
of a trust region subproblem. These requirements must often be relaxed when solving
large-scale problems.

In Chapter 3, we have proposed a general framework for solving smooth nonconvex
optimization problems and proceeded to prove worst-case iteration complexity bounds for
it. Our framework is flexible enough to cover a wide range of popular algorithms, an
achievement made possible by the use of generic conditions that each trial step is required
to satisfy. The use of such conditions allows for the calculation of inexact Newton steps,
for example by performing minimization over expanding Krylov subspaces. Although we
have presented a particular instance of our framework motivated by subproblem (3.1),
additional instances can easily be derived by applying other optimization strategies for
solving (3.1). Numerical experiments with an instance of our algorithm showed that it
can lead to improved performance on a broad test set as compared to an implementation
of a straightforward cubic regularization approach.

In Chapter 4, an algorithm has been proposed for solving equality constrained opti-
mization problems. Based on trust funnel [38] and trust region ideas from Chapter 2,
the algorithm represents a next step toward the design of practical methods for solving
constrained optimization problems that offer strong worst-case iteration complexity prop-
erties. In particular, the algorithm involves two phases, the first seeking (approximate)
feasibility and the second seeking optimality, where a key contribution is the fact that
improvement in the objective function is sought in both phases.

5.1 Future Work

Our work proposes a new path in designing practical algorithms with good theoretical
guarantees. In this dissertation, we have taken a few steps up this new path. However,
the road is wide open and there are exciting opportunities ahead waiting for adventurous
explorers. In this section, a few of them are discussed.
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Stochastic and randomized second-order algorithms for nonconvex opti-
mization

In the entirety of this dissertation, the function value and its first and second derivatives
were assumed to be deterministic. In many real-world applications, however, this assump-
tion seems restrictive. For example, the objective and/or models of it might be stochastic
functions. Recently, the worst-case iteration complexity of first- and second-order trust
region algorithms [44] and a cubic regularization method [12] have been studied. One
may consider to analyze the worst-case performance of an algorithm in the iR Newton

framework. Such methods can be employed in solving empirical risk minimization (ERM)
problems, arising in almost all machine learning applications. A general representation of
ERM, known as the finite sum problem, is defined as

min
x∈Rn

F (x) := 1
m

m∑
i=1

fi(x), (5.1)

where, in machine learning (ML) applications, F is the average empirical loss function, n
is the number of features, m is the number of sample points, and fi (i ∈ {1, . . . ,m}) is a
composition of a loss and a prediction function associated with the i-th sample point.

In many ML applications, n and m are very large, which make the exact computation
of the derivatives difficult. In some cases, storing the Hessian matrix may even be physi-
cally impossible. In such cases, many randomized algorithms mostly based on stochastic
gradient descent (SGD) have been proposed. One may refer to [10] for a review of methods
for solving (5.1). Recently, a randomized trust region algorithm and a randomized cubic
regularization algorithm with complexity O(ε−3/2) have been proposed [62].

To design a stochastic algorithm with improved worst-case complexity, the analysis or
even the structure of the iR Newton framework proposed in Chapter 3 needs to be revised.
The algorithm must be able to deal with partial gradient and Hessian information. In
addition, the fact that n is large in most ML applications demands a Hessian matrix-free
algorithm, in which second-order information is only used in the form of Hessian-vector
products.
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The use of higher-order models

Can one improve the worst-case performance of our algorithms by using higher-order
models of objective? This question has motivated new theoretical studies to improve
the performance of existing algorithms. It has been shown that the worst-case iteration
complexity O(ε−(p+1)/p) can be obtained for some algorithms that employ p-th order
Taylor models plus (p+1)-th order regularization terms; e.g., see [7, 8, 21, 22]. (While the
theoretical behavior of these algorithms has been explored in these papers, the practical
performance of such algorithms has been to be explored.) Therefore, a natural extension of
this work can be considered by exploring the same possibility for our proposed algorithms.

Efficient implementation of the proposed algorithms

Our preliminary implementations of the proposed algorithms and the numerical experi-
ments showed that these algorithms perform well in practice at least on the CUTEr and
CUTEst test sets. One can possibly improve the performance of the algorithms by employ-
ing more sophisticated methods in updating the parameters especially after a rejected step
(similar to the procedure proposed in [42] for the arc algorithm), better use of memory
and other computational resources.

One-phase algorithm for constrained optimization

In Chapter 4, we proposed a two-phase algorithm with improved iteration complexity
which in both phases observes the objective value and the constraint violation. The pro-
posed algorithm was shown to perform well in practice compared to a two-phase algorithm
which only considers the constraint violation in the first phase. The SQP algorithm, on the
other hand, is a single phase algorithm which considers to improve the objective function
and the constraint violation simultaneously. Globally convergent variants of SQP, although
suffering from lack of theoretical complexity bounds, perform well in practice and are con-
sidered as the state-of-the-art algorithms for constrained optimization. As mentioned, the
algorithm proposed in Chapter 4 is the first step toward designing a practical—possibly
single phase—algorithm with improved complexity bounds. Such an algorithm will be able
to locate an approximate KKT point in a single phase procedure with improved theoretical
worst-case iteration complexity.
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Algorithms for general constrained nonconvex optimization

The algorithm proposed in Chapter 4 is designed to find a relative KKT point for equality
constrained nonconvex optimization. In real-world problems, the constraints often contain
inequalities. It is of course possible to add slack variables with proper sign to convert
the inequality constraint to an equality constraint and use the proposed algorithm along
with a proper projection procedure to solve the resulting problem. However, designing
an algorithm with the desired worst-case complexity able to find an approximate KKT
point for a generally constrained optimization might be an interesting direction for further
investigation. One may first consider the case when the feasible region is a convex set.
In this case, trace with steps projected onto the feasible region seems a viable option.
More general cases, however, require further studies.
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Appendix A

Subproblem Solver for TRACE

The trace algorithm follows the framework of a trust region algorithm in which, in each
iteration, a subproblem with a quadratic objective and a trust region constraint is solved
to optimality and all other steps are explicit computations involving the iterate and related
sequences. The only exception is Step 13 in which a new trust region radius is computed
via the contract subroutine. In this appendix, we outline a practical procedure entailing
the main computational components of contract, revealing that it can be implemented
in such a way that each iteration of trace need not be more computational expensive
than similar implementations of those in a traditional trust region algorithm or arc.

Suppose that Steps 3 and 19 are implemented using a traditional approach of applying
Newton’s method to solve a secular equation of the form φk(λ) = 0, where, for a given
λ ≥ max{0,−ξk,1} (where, as in the proof of Lemma 11, we define ξk,1 as the leftmost
eigenvalue of Hk), the vector sk(λ) is defined as a solution of the linear system (2.2) and

φk(λ) = ‖sk(λ)‖−1
2 − δ

−1
k . (A.1)

A practical implementation of such an approach involves the initialization and update
of an interval of uncertainty, say [λ,λ], in which the dual variable λk corresponding to
a solution sk = sk(λk) of Qk is known to lie [52]. In particular, for a given estimate
λ ∈ [λ,λ], a factorization of (Hk+λI) is computed (or at least attempted), yielding a trial
solution sk(λ) and a corresponding derivative of φk for the application of a (safeguarded)
Newton iteration.

In the context of such a strategy for the implementation of Steps 3 and 19, most
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of the computations involved in the contract subroutine can be considered as part of
the initialization process for such a Newton iteration, if not a replacement for the entire
Newton iteration. For example, if Step 33 is reached, then the computation of (λ, s)
in Steps 33–34 are exactly those that would be performed in such a Newton iteration
with an initial solution estimate of λ ← γλλk. If Step 36 is reached, then the solution
(sk+1,λk+1) of Qk+1 in Step 19 is yielded by this computation and a Newton solve of a
secular equation is not required; otherwise, if Step 38 is reached, then one could employ
λ← λ in the Newton iteration for solving Qk+1 in Step 19. Overall, if Step 33 is reached,
then the computations in contract combined with Step 19 are no more expensive than
the subproblem solve in a traditional trust region algorithm, and may be significantly
cheaper in cases when Step 36 is reached.

The situation is similar when Step 25 is reached. In particular, if the pair (λ, s) com-
puted in Steps 25–26 result in Step 28 being reached, then the pair (sk+1,λk+1) required in
Step 19 is available without having to run an expensive Newton iteration to solve a secular
equation, meaning that computational expense is saved in our mechanism for setting δk+1

implicitly via our choice of the dual variable λk+1. On the other hand, if Step 30 is reached,
then the algorithm requests a value λ ∈ (λk, λ̂) such that σ ≤ λ/‖sk(λ)‖2 ≤ σ. A variety
of techniques could be employed for finding such a λ, but perhaps the most direct is to
consider a technique such as [14, Algorithm 6.1] in which a cubic regularization subprob-
lem is solved using a (safeguarded) Newton iteration applied to solve a secular equation
similar to (A.1). It should be noted, however, that while [14, Algorithm 6.1] attempts to
solve λ/‖sk(λ)‖2 = σ for some given σ > 0, the computation in Step 30 merely requires
σ ≤ λ/‖sk(λ)‖2 ≤ σ, meaning that one could, say, choose σ = (σ + σ)/2, but terminate
the Newton iteration as soon as λ/‖sk(λ)‖2 is computed in the (potentially very large)
interval [σ,σ]. Clearly, such a computation is no more expensive than [14, Algorithm 6.1].

Finally, it is worthwhile to note that since the contract subroutine desires the com-
putation of a trust region radius such that the new corresponding dual variable satisfies
λk+1 > λk ≥ max{0,−ξk,1}, it follows that, after a contraction, the subproblem Qk+1 will
not involve the well known “hard case” in the context of solving a trust region subproblem.
(We remark that this avoidance of the “hard case” does not necessarily occur if one were
to perform a contraction merely by setting the trust region radius as a fraction of the
norm of the trial step, as is typically done in other trust region methods.)
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Appendix B

Subproblem Solution Properties
and Numerical Results for
iR Newton

B.1 Subproblem Solution Properties

In this appendix, we explore properties of any first-order stationary solution of problem
Pk(σl

k,σu
k ) defined as (3.1). Let us define a Lagrangian function for (3.1) as

L(s,λ,βl,βu,βn) = fk + gTk s+ 1
2s
T (Hk + λI)s

− βl

2 (λ2 − (σl
k)2‖s‖2) + βu

2 (λ2 − (σu
k )2‖s‖2)− βnλ,

where (βl,βu) ∈ R+ × R+ are the dual variables associated with the left-hand and right-
hand constraints on λ, respectively, and βn ∈ R+ is the dual variable associated with the
nonnegativity constraint on λ. The tuple (sk,λk,βl

k,βu
k ,βn

k ) is a first-order primal-dual
stationary solution of Pk(σl

k,σu
k ) if it satisfies the following conditions:

gk + (Hk + λkI)sk + βl
k(σl

k)2sk − βu
k (σu

k )2sk = 0, (B.1a)
1
2‖sk‖

2 − λk(βl
k − βu

k )− βn
k = 0, (B.1b)

0 ≤ βl
k ⊥ (λ2

k − (σl
k)2‖sk‖2) ≥ 0, (B.1c)

0 ≤ βu
k ⊥ (λ2

k − (σu
k )2‖sk‖2) ≤ 0, and (B.1d)
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0 ≤ βn
k ⊥ λk ≥ 0. (B.1e)

We make the following assumption throughout this appendix.

Assumption 16. The vector gk is nonzero.

Under this assumption, the following lemma is a simple consequence of (B.1a).

Lemma 77. Any solution of (3.1) has sk 6= 0.

We now establish conditions that must hold depending on the value of σl
k ∈ R+.

Lemma 78. The following hold true for any solution of (B.1).

(i) If σl
k > 0, then λk > 0, βn

k = 0, βl
k > 0, and λk = σl

k‖sk‖.

(ii) If σl
k = 0, then λk = 0.

Proof. Consider part (i). For the sake of deriving a contradiction, suppose σl
k > 0 and λk =

0. These, along with Lemma 77, imply that 0 = λ2
k < (σl

k)2‖sk‖2, which contradicts (B.1c).
Hence, λk > 0, as claimed. Then, it follows from (B.1e) that βn

k = 0, as claimed. Next,
observe that from (B.1b), Lemma 77, βn

k = 0, λk > 0, and (βl
k,βu

k ) ≥ 0, it follows that
βl
k > 0, as claimed. This, along with (B.1c), implies that λ2

k = (σl
k)2‖sk‖2. This implies

that λk = ±(σl
k)‖sk‖, which combined with λk ∈ R+ means that λk = σl

k‖sk‖, as claimed.
Now consider part (ii). For the sake of deriving a contradiction, suppose that σl

k = 0
and λk > 0. Then, it follows from (B.1e) that βn

k = 0. Moreover, combining σl
k = 0 and

λk > 0, it follows from (B.1c) that βl
k = 0. It now follows from βl

k = 0, βn
k = 0, and (B.1b)

that
1
2‖sk‖

2 = −λkβu
k ≤ 0, (B.2)

where the inequality follows from λk > 0 and βu
k ≥ 0. This contradicts Lemma 77.

Our main result is the following. In part (i) with σl
k > 0, we show that solving (3.1)

is equivalent to solving what may be referred to as an arc subproblem [14]. In part (ii)
with σl

k = 0, we show that it is equivalent to minimizing a quadratic, if a minimizer exists.

Theorem 15. The following hold true.
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(i) Suppose σl
k > 0. Then, (3.1) has a solution (sk,λk), which can be obtained as

sk ∈ arg min
s∈Rn

(fk + gTk s+ 1
2s
THks+ 1

2σ
l
k‖s‖3), (B.3)

then setting λk = σl
k‖sk‖ > 0.

(ii) If σl
k = 0, then a solution of problem (3.1) exists if and only if Hk � 0 and gTk u = 0

for all u ∈ Null(Hk). In such cases, computing a solution (sk,λk) of problem (3.1)
is equivalent to computing a solution sk of problem (3.20) and setting λk = 0.

Proof. Consider part (i). Since σl
k > 0, it follows from Lemma 78 that problem (3.1) is

equivalent to
min

(s,λ)∈Rn×R+

fk + gTk s+ 1
2s
T (Hk + λI)s

s.t. σl
k‖s‖ = λ,

(B.4)

where, by Lemma 77, it follows that the solution has λk > 0, as desired. Substituting the
constraint of (B.4) into the objective of (B.4), one finds that solving it is equivalent to
solving (B.3) for sk, then setting λk = σl

k‖sk‖, as claimed. Since σl
k > 0, a minimizer of

problem (B.3) exists because it involves the minimization of a coercive function.
Now consider part (ii). Since σl

k = 0, it follows from Lemma 78 that λk = 0, meaning
that problem (3.1) is equivalent to (3.20). This problem has a solution if and only if the
objective is bounded below, which is the case if and only if Hk � 0 and gTk u = 0 for all
u ∈ Null(Hk).

B.2 Subproblem Solution Properties Over Subspaces

In this appendix, we explore properties of any first-order stationary solution (when one
exists) of problem Pk(σl

k,σu
k ) defined as (3.1) when the search space for s is restricted to

a subspace of Rn. Specifically, for some m-dimensional subspace Lk ⊆ Rn, consider the
problem

min
(s,λ)∈Lk×R+

fk + gTk s+ 1
2s
T (Hk + λI)s

s.t. (σl
k)2‖s‖2 ≤ λ2 ≤ (σu

k )2‖s‖2.
(B.5)
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Given an orthogonal basis Rk for Lk, a solution of (B.5) can be obtained from that of

min
(v,λ)∈Rm×R+

fk + gTk Rkv + 1
2(Rkv)T (Hk + λI)Rkv

s.t. (σl
k)2‖v‖2 ≤ λ2 ≤ (σu

k )2‖v‖2.
(B.6)

Specifically, if (vk,λk,βl
k,βu

k ,βn
k ) is a first-order primal-dual solution of problem (B.6),

then the tuple (sk,λk,βl
k,βu

k ,βn
k ) with sk = Rkvk is such a solution of problem (B.5).

In Appendix B.1, we proved properties of a solution (if one exists) of a problem of the
form (B.6). Let us now translate the results of that appendix to the present setting, for
which we require the following assumption on the reduced gradient RTk gk.

Assumption 17. The vector RTk gk is nonzero.

Lemma 79. Any solution of (B.6) has vk 6= 0.

Lemma 80. The following hold for any first-order primal-dual solution of (B.5).

(i) If σl
k > 0, then λk > 0, βn

k = 0, βl
k > 0, and λk = σl

k‖vk‖.

(ii) If σl
k = 0, then λk = 0.

Theorem 16. The following hold true.

(i) Suppose σl
k > 0. Then, (B.6) has a solution (vk,λk), which can be obtained as

vk ∈ arg min
v∈Rm

(fk + gTk Rkv + 1
2v

TRTkHkRkv + 1
2σ

l
k‖v‖3), (B.7)

then setting λk = σl
k‖vk‖ > 0.

(ii) If σl
k = 0, then a solution of (B.6) exists if and only if RTkHkRk � 0 and gTk Rku = 0

for all u ∈ Null(RTkHkRk). In such cases, computing a solution (vk,λk) of prob-
lem (B.6) is equivalent to computing a solution vk of

min
v∈Rm

fk + gTk Rkv + 1
2v

TRTkHkRkv (B.8)

and setting λk = 0.

Considering problem (B.7), we obtain the following result from [14, Lemma 3.2].
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Lemma 81. If σl
k > 0, then vk from (B.7) satisfies

gTk Rkvk + vTk R
T
kHkRkvk + 3

2σ
l
k‖vk‖3 = 0 (B.9a)

vTk R
T
kHkRkvk + 3

2σ
l
k‖vk‖3 ≥ 0 (B.9b)

RTkHkRk + 3
2σ

l
k‖vk‖I � 0. (B.9c)

We now show that, under certain reasonable assumptions, solutions of the primal-dual
reduced-space subproblem (B.5) satisfy the conditions required by Assumptions 7 and 11.

Theorem 17. The following hold true.

(a) Any solution of problem (B.5) satisfies (3.3b).

(b) Any solution of problem (B.5) satisfies (3.3a) provided gk ∈ Lk.

(c) Any solution of problem (B.5) satisfies (3.3c) provided Lk = Rn.

(d) Any solution of problem (B.5) satisfies (3.17) for any κ4 ≥ 3
2 supk∈N+

{σl
k}.

Proof. Any first-order primal-dual solution (sk,λk,βl
k,βu

k ,βn
k ) of problem (B.5) corre-

sponds to such a solution (vk,λk,βl
k,βu

k ,βn
k ) of problem (B.6) where sk = Rkvk. Hence,

throughout this proof, for any solution vector sk for problem (B.5), we may let sk = Rkvk

where vk satisfies the properties in Lemmas 79–81.
First, suppose σl

k > 0, which by Theorem 16(i) implies that problem (B.5) has a
solution. Then, it follows from (B.9a), sk = Rkvk, and Lemma 80(i) that

0 = gTk sk + sTkHksk + 3
2σ

l
k‖sk‖3 = gTk sk + sTkHksk + 3

2λk‖sk‖
2,

which means that
sTk (gk + (Hk + λkI)sk) = −1

2λk‖sk‖
2. (B.10)

Meanwhile, from (B.9b), sk = Rkvk, and Lemma 80(i), it follows that

0 ≤ sTkHksk + 3
2σ

l
k‖sk‖3 = sTkHksk + 3

2λk‖sk‖
2 = sTk (Hk + λkI)sk + 1

2λk‖sk‖
2,

which means that
− 1

4λk‖sk‖
2 ≤ 1

2s
T
k (Hk + λkI)sk. (B.11)
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It follows from (B.10), (B.11), λk > 0 (by Lemma 80(i)), and (κ1,κ2) ∈ R++ × R++ that

sTk (gk + (Hk + λkI)sk) = −1
2λk‖sk‖

2 ≤ min{1
2κ1‖sk‖2, 1

2s
T
k (Hk + λkI)sk − 1

4λk‖sk‖
2}

≤ min{1
2κ1‖sk‖2, 1

2s
T
k (Hk + λkI)sk + 1

2κ2‖s‖3},

which implies (3.3b). This establishes that part (a) is true. Now consider part (b). From
Theorem 16, [14, Lemma 2.1], and sk = Rkvk, it follows that

fk − qk(sk)− 1
2σ

l
k‖sk‖3 ≥

‖RTk gk‖
6
√

2
min

{
‖RTk gk‖

1 + ‖RTkHkRk‖
, 1√

6

√
‖RTk gk‖
σl
k

}
.

Since, under assumption, gk ∈ Lk so that gk = Rky for some y ∈ Rm, it follows that

‖RTk gk‖ = ‖RTkRky‖ = ‖y‖ = ‖Rky‖ = ‖gk‖.

Combining this with ‖RTkHkRk‖ ≤ ‖Hk‖ and the previous displayed inequality shows

fk − qk(sk)− 1
2σ

l
k‖sk‖3 ≥

‖gk‖
6
√

2
min

{
‖gk‖

1 + ‖Hk‖
, 1√

6

√
‖gk‖
σl
k

}
.

This may now be combined with Theorem 16 (specifically λk = σl
k‖sk‖ > 0) to obtain

fk − qk(sk) ≥ fk − qk(sk)− 1
2σ

l
k‖sk‖3 ≥

‖gk‖
6
√

2
min

 ‖gk‖
1 + ‖Hk‖

, 1√
6

√
‖gk‖‖sk‖

λk

 ,

which means that (sk,λk) satisfies (3.3a), proving part (b). Now consider part (c). It
follows from Theorem 15(i) and the optimality conditions for problem (B.3) that

0 = gk +Hksk + 3
2σ

l
k‖sk‖sk = gk +Hksk + 3

2λksk = gk + (Hk + λkI)sk + 1
2λksk.

This and the fact that κ3 > 0 imply that

‖gk + (Hk + λkI)sk‖ = 1
2λk‖sk‖ ≤ λk‖sk‖+ κ3‖sk‖2,

which completes the proof of part (c). Finally, consider part (d). From (B.9c), the fact
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that ‖sk‖ = ‖vk‖, and κ4 ≥ 3
2 supk∈N+

{σl
k}, it follows that

ξ(RTkHkRk) ≥ −3
2σ

l
k‖sk‖ ≥ −κ4‖sk‖,

as desired to prove part (d).
Now suppose that σl

k = 0. From Theorem 16(ii), a solution of problem (B.5) exists
if and only if RTkHkRk � 0 and gTk Rku = 0 for all u ∈ Null(RTkHkRk). If this is not the
case, then there is nothing left to prove; hence, let us assume that these conditions hold.
From these conditions, Theorem 16(ii), the optimality conditions of problem (B.8), the
fact that λk = 0, and sk = Rkvk, it follows that

gTk sk + sTkHksk = 0 and sTkHksk ≥ 0.

This shows that (3.3b) holds, proving part (a) for this case. Next, since vk is given by
the solution of problem (B.8), it follows that the reduction in the objective yielded by vk
is at least as large as the reduction obtained by minimizing the objective over the span
of −RTk gk. Hence, from standard theory on Cauchy decrease (see [23] or [57]), one can
conclude that

fk − qk(sk) ≥
‖RTk gk‖

2 min
{

‖RTk gk‖
1 + ‖RTkHkRk‖

, ‖sk‖
}

.

Thus, using the arguments in the previous paragraph under the assumption that gk ∈ Lk,
one is led to the conclusion that (3.3a) holds, which proves part (b) for this case. Next,
when Lk = Rn, the optimality conditions for problem (B.8) imply that gk + Hksk = 0,
which, since λk = 0, implies that (3.3c) holds, proving part (c). Finally, since RTkHkRk �
0, it follows that (3.17) holds, proving part (d).

B.3 Detailed Numerical Results

Further details of the results of our numerical experiments are shown in Table B.1. In
the table, #Var indicates the number of variables, #Iter indicates the number of itera-
tions required (with %Newton indicating the percentage that were inexact Newton steps
with λk = 0), #Acc indicates the number of accepted steps (again with %Newton indicat-
ing the percentage that were inexact Newton steps), #Hv-prod indicates the number of
Hessian-vector products required, and #T-fact indicates the number of tridiagonal matrix
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factorizations required.

Table B.1: Numerical results for iARC and iR Newton.

Prob #Var Alg #Iter (%Newton) #Acc (%Newton) #Hv-prod #T-fact

AKIVA 2 iARC 5 5 15 20
iR Newton 5 (%100) 5 (%100) 10 0

ALLINITU 4 iARC 11 8 56 61
iR Newton 8 (%50) 6 (%67) 25 21

ARGLINA 200 iARC 3 3 6 3
iR Newton 1 (%100) 1 (%100) 1 0

ARGLINB 200 iARC 2 2 4 2
iR Newton 1 (%100) 1 (%100) 1 0

ARWHEAD 5000 iARC 4 4 10 6
iR Newton 4 (%100) 4 (%100) 5 0

BARD 3 iARC 11 8 50 52
iR Newton 11 (%91) 10 (%90) 28 6

BDQRTIC 5000 iARC 9 9 34 33
iR Newton 9 (%100) 9 (%100) 17 0

BEALE 2 iARC 11 8 33 47
iR Newton 12 (%42) 8 (%62) 29 29

BIGGS6 6 iARC 457 383 3446 3679
iR Newton 419 (%96) 406 (%97) 1557 183

BOX 10000 iARC 3 3 14 12
iR Newton 4 (%75) 3 (%67) 9 4

BOX3 3 iARC 7 7 30 32
iR Newton 7 (%100) 7 (%100) 16 0

BOXPOWER 20000 iARC 3 3 10 9
iR Newton 7 (%100) 7 (%100) 13 0

BRKMCC 2 iARC 2 2 6 7
iR Newton 2 (%100) 2 (%100) 4 0

BROWNAL 200 iARC 2 2 6 4
iR Newton 1 (%100) 1 (%100) 1 0

BROWNBS 2 iARC 53 38 142 191
iR Newton 5 (%80) 5 (%80) 11 5

BROWNDEN 4 iARC 8 8 35 35
iR Newton 9 (%100) 9 (%100) 20 0

BROYDN7D 5000 iARC 472 279 7202 12598
iR Newton 812 (%29) 346 (%2) 5033 10022

BRYBND 5000 iARC 19 10 240 367
iR Newton 17 (%53) 11 (%82) 206 81

CHAINWOO 4000 iARC 81 57 798 942
iR Newton 70 (%81) 59 (%88) 409 185

CHNROSNB 50 iARC 64 40 1126 1456
iR Newton 53 (%75) 40 (%82) 499 294

CHNRSNBM 50 iARC 96 58 1708 2320
iR Newton 101 (%58) 59 (%59) 899 960

CLIFF 2 iARC 14 14 28 14
iR Newton 14 (%100) 14 (%100) 14 0

COSINE 10000 iARC 12 7 108 140
iR Newton 11 (%55) 7 (%71) 45 29

CRAGGLVY 5000 iARC 30 30 228 208
iR Newton 31 (%100) 31 (%100) 108 0

CUBE 2 iARC 42 27 126 170
iR Newton 35 (%69) 25 (%76) 72 51

CURLY10 10000 iARC --- --- --- ---
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Table B.1 -- continued from previous page
Prob #Var Alg #Iter (%Newton) #Acc (%Newton) #Hv-prod #T-fact

iR Newton 328 (%95) 318 (%97) 271881 19957

CURLY30 10000 iARC --- --- --- ---
iR Newton 87 (%83) 77 (%91) 125639 630

DENSCHNA 2 iARC 5 5 15 15
iR Newton 5 (%100) 5 (%100) 10 0

DENSCHNB 2 iARC 7 6 20 22
iR Newton 7 (%71) 5 (%80) 12 8

DENSCHNC 2 iARC 13 9 38 46
iR Newton 11 (%82) 9 (%89) 21 8

DENSCHND 3 iARC 61 57 206 172
iR Newton 44 (%86) 40 (%95) 82 27

DENSCHNE 3 iARC 24 15 68 62
iR Newton 21 (%52) 16 (%69) 41 58

DENSCHNF 2 iARC 5 5 15 15
iR Newton 5 (%100) 5 (%100) 10 0

DIXMAANA 3000 iARC 6 6 14 8
iR Newton 6 (%100) 6 (%100) 7 0

DIXMAANB 3000 iARC 7 7 16 9
iR Newton 7 (%100) 7 (%100) 8 0

DIXMAANC 3000 iARC 8 8 18 9
iR Newton 8 (%100) 8 (%100) 9 0

DIXMAAND 3000 iARC 9 9 20 10
iR Newton 9 (%100) 9 (%100) 10 0

DIXMAANE 3000 iARC 59 59 670 622
iR Newton 60 (%100) 60 (%100) 331 0

DIXMAANF 3000 iARC 38 37 510 487
iR Newton 37 (%100) 37 (%100) 249 0

DIXMAANG 3000 iARC 39 39 532 514
iR Newton 40 (%100) 40 (%100) 288 0

DIXMAANH 3000 iARC 41 41 448 421
iR Newton 41 (%100) 41 (%100) 224 0

DIXMAANI 3000 iARC 193 193 3456 3464
iR Newton 249 (%100) 249 (%100) 2814 0

DIXMAANJ 3000 iARC 34 34 324 296
iR Newton 34 (%100) 34 (%100) 162 0

DIXMAANK 3000 iARC 30 30 248 225
iR Newton 30 (%100) 30 (%100) 124 0

DIXMAANL 3000 iARC 29 29 180 148
iR Newton 29 (%100) 29 (%100) 90 0

DIXMAANM 3000 iARC 375 375 10902 11542
iR Newton 398 (%100) 398 (%100) 6126 0

DIXMAANN 3000 iARC 82 82 1368 1358
iR Newton 87 (%100) 87 (%100) 789 0

DIXMAANO 3000 iARC 63 63 908 893
iR Newton 59 (%100) 59 (%100) 371 0

DIXMAANP 3000 iARC 51 51 476 432
iR Newton 51 (%100) 51 (%100) 238 0

DIXON3DQ 10000 iARC 2257 2256 143968 164858
iR Newton 2476 (%100) 2476 (%100) 81042 0

DJTL 2 iARC 215 120 642 866
iR Newton 204 (%32) 81 (%5) 404 512

DQDRTIC 5000 iARC 6 6 34 32
iR Newton 4 (%100) 4 (%100) 10 0

DQRTIC 5000 iARC 15 15 30 15
iR Newton 11 (%100) 11 (%100) 11 0

EDENSCH 2000 iARC 15 15 44 25
iR Newton 15 (%100) 15 (%100) 22 0

160



Table B.1 -- continued from previous page
Prob #Var Alg #Iter (%Newton) #Acc (%Newton) #Hv-prod #T-fact

EG2 1000 iARC 3 3 6 3
iR Newton 3 (%100) 3 (%100) 3 0

EIGENALS 2550 iARC 179 134 15548 20388
iR Newton 173 (%84) 150 (%89) 7871 1999

ENGVAL1 5000 iARC 9 9 64 54
iR Newton 9 (%100) 9 (%100) 32 0

ENGVAL2 3 iARC 21 15 100 139
iR Newton 21 (%57) 15 (%80) 56 34

ERRINROS 50 iARC 131 122 1202 1106
iR Newton 108 (%94) 103 (%97) 504 37

ERRINRSM 50 iARC 404 396 6566 7225
iR Newton 167 (%98) 163 (%99) 1154 27

EXPFIT 2 iARC 14 9 42 62
iR Newton 11 (%27) 6 (%50) 26 38

EXTROSNB 1000 iARC 179 107 2978 3586
iR Newton 185 (%62) 114 (%64) 1576 1553

FLETBV3M 5000 iARC 41 34 86 43
iR Newton 56 (%43) 32 (%41) 65 32

FLETCHCR 1000 iARC 2437 1450 66056 90373
iR Newton 2187 (%66) 1438 (%69) 29012 23819

FMINSRF2 5625 iARC 875 567 6528 7378
iR Newton 905 (%50) 448 (%40) 2666 1989

FREUROTH 5000 iARC 17 11 102 120
iR Newton 18 (%39) 10 (%60) 51 35

GENHUMPS 5000 iARC 14931 11710 477824 1724919
iR Newton 3567 (%2) 2077 (%1) 25952 85744

GENROSE 500 iARC 593 350 24494 54811
iR Newton 690 (%19) 341 (%4) 11862 30583

GROWTHLS 3 iARC 8 8 32 32
iR Newton 8 (%100) 8 (%100) 16 0

GULF 3 iARC 46 31 196 249
iR Newton 40 (%62) 29 (%62) 101 78

HAIRY 2 iARC 28 15 84 133
iR Newton 19 (%21) 10 (%40) 45 64

HATFLDD 3 iARC 23 19 108 140
iR Newton 23 (%65) 18 (%78) 64 33

HATFLDE 3 iARC 23 18 112 153
iR Newton 24 (%62) 18 (%83) 69 45

HATFLDFL 3 iARC 851 711 4255 5134
iR Newton 1127 (%84) 961 (%85) 3429 1313

HEART6LS 6 iARC 1502 895 15002 27063
iR Newton 1071 (%52) 620 (%51) 5164 6637

HEART8LS 8 iARC 115 69 1407 2400
iR Newton 186 (%31) 97 (%23) 1178 2185

HELIX 3 iARC 11 7 52 72
iR Newton 15 (%33) 9 (%44) 48 57

HILBERTA 2 iARC 5 5 12 9
iR Newton 3 (%100) 3 (%100) 4 0

HILBERTB 10 iARC 4 4 16 12
iR Newton 3 (%100) 3 (%100) 6 0

HIMMELBB 2 iARC 10 6 26 36
iR Newton 11 (%27) 6 (%33) 20 27

HIMMELBF 4 iARC 53 36 310 408
iR Newton 70 (%71) 62 (%77) 244 185

HIMMELBG 2 iARC 7 6 21 25
iR Newton 7 (%57) 6 (%67) 13 3

HIMMELBH 2 iARC 5 4 13 12
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Table B.1 -- continued from previous page
Prob #Var Alg #Iter (%Newton) #Acc (%Newton) #Hv-prod #T-fact

iR Newton 6 (%67) 4 (%75) 7 2

HUMPS 2 iARC 125 80 370 655
iR Newton 89 (%13) 49 (%10) 218 291

HYDC20LS 99 iARC 11 9 402 539
iR Newton 11 (%73) 9 (%89) 215 165

JENSMP 2 iARC 8 8 24 26
iR Newton 8 (%100) 8 (%100) 16 0

JIMACK 3549 iARC 54 54 36564 45769
iR Newton 52 (%100) 52 (%100) 16267 0

KOWOSB 4 iARC 20 20 114 121
iR Newton 18 (%94) 18 (%94) 55 4

LIARWHD 5000 iARC 12 12 46 45
iR Newton 11 (%100) 11 (%100) 21 0

LOGHAIRY 2 iARC 167 116 390 414
iR Newton 326 (%39) 233 (%49) 542 460

MANCINO 100 iARC 6 6 14 8
iR Newton 4 (%100) 4 (%100) 5 0

MARATOSB 2 iARC 3 3 7 5
iR Newton 3 (%100) 3 (%100) 4 0

MEXHAT 2 iARC 11 11 33 43
iR Newton 11 (%100) 11 (%100) 22 0

MEYER3 3 iARC 12 12 48 51
iR Newton 16 (%75) 15 (%73) 38 20

MODBEALE 20000 iARC --- --- --- ---
iR Newton 3317 (%99) 3304 (%100) 65293 351

MOREBV 5000 iARC 4 4 1102 2064
iR Newton 1 (%100) 1 (%100) 401 0

MSQRTALS 1024 iARC 39 33 9830 12602
iR Newton 44 (%73) 36 (%83) 4743 149

MSQRTBLS 1024 iARC 32 26 5822 7090
iR Newton 39 (%69) 31 (%81) 3131 156

NCB20 5010 iARC 106 70 2888 4664
iR Newton 65 (%32) 43 (%42) 688 614

NCB20B 5000 iARC 29 18 4286 9958
iR Newton 38 (%47) 19 (%42) 3297 8386

NONCVXU2 5000 iARC 10302 10302 20604 10302
iR Newton 11094 (%100) 11094 (%100) 11094 0

NONCVXUN 5000 iARC 23771 23771 47542 23771
iR Newton 20913 (%100) 20913 (%100) 20913 0

NONDIA 5000 iARC 2 2 4 2
iR Newton 2 (%100) 2 (%100) 2 0

NONDQUAR 5000 iARC 45 37 156 126
iR Newton 38 (%95) 36 (%97) 70 2

OSBORNEA 5 iARC 36 28 289 412
iR Newton 21 (%43) 12 (%67) 75 73

OSBORNEB 11 iARC 25 19 396 539
iR Newton 28 (%75) 23 (%78) 225 105

OSCIGRAD 100000 iARC 13 10 190 220
iR Newton 15 (%40) 9 (%56) 92 61

OSCIPATH 10 iARC 222974 131997 4233806 5617938
iR Newton 227426 (%59) 134306 (%59) 2273151 2521354

PALMER1C 8 iARC 161 161 482 362
iR Newton 74 (%100) 74 (%100) 145 0

PALMER1D 7 iARC 1069 1069 3586 2567
iR Newton 196 (%100) 196 (%100) 379 0

PALMER2C 8 iARC 109 109 326 245
iR Newton 76 (%100) 76 (%100) 147 0
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Table B.1 -- continued from previous page
Prob #Var Alg #Iter (%Newton) #Acc (%Newton) #Hv-prod #T-fact

PALMER3C 8 iARC 64 64 252 201
iR Newton 36 (%100) 36 (%100) 69 0

PALMER4C 8 iARC 27 27 102 84
iR Newton 90 (%100) 90 (%100) 177 0

PALMER5C 6 iARC 9 9 22 13
iR Newton 10 (%100) 10 (%100) 13 0

PALMER6C 8 iARC 238 238 870 654
iR Newton 252 (%100) 252 (%100) 503 0

PALMER7C 8 iARC 65 65 196 143
iR Newton 65 (%100) 65 (%100) 120 0

PALMER8C 8 iARC 76 76 300 229
iR Newton 90 (%100) 90 (%100) 174 0

PARKCH 15 iARC 31 22 478 685
iR Newton 33 (%61) 23 (%74) 270 209

PENALTY1 1000 iARC 14 14 28 14
iR Newton 12 (%100) 12 (%100) 12 0

PENALTY2 200 iARC 22 22 314 319
iR Newton 22 (%100) 22 (%100) 157 0

PENALTY3 200 iARC 24 20 168 161
iR Newton 25 (%60) 18 (%72) 90 44

POWELLSG 5000 iARC 17 17 98 91
iR Newton 17 (%100) 17 (%100) 49 0

QUARTC 5000 iARC 15 15 30 15
iR Newton 11 (%100) 11 (%100) 11 0

ROSENBR 2 iARC 29 20 87 116
iR Newton 32 (%62) 20 (%70) 64 51

S308 2 iARC 12 9 36 41
iR Newton 10 (%80) 8 (%88) 20 8

SCHMVETT 5000 iARC 5 5 142 166
iR Newton 6 (%100) 6 (%100) 89 0

SENSORS 100 iARC 17 12 146 263
iR Newton 21 (%19) 12 (%33) 66 85

SINEVAL 2 iARC 66 42 194 256
iR Newton 63 (%63) 41 (%68) 123 81

SINQUAD 5000 iARC 16 11 64 63
iR Newton 15 (%33) 9 (%44) 32 26

SISSER 2 iARC 12 12 24 12
iR Newton 12 (%100) 12 (%100) 12 0

SNAIL 2 iARC 103 63 290 364
iR Newton 107 (%55) 63 (%56) 203 182

SPARSINE 5000 iARC 153 143 15246 18485
iR Newton 188 (%88) 174 (%94) 10745 183

SPARSQUR 10000 iARC 15 15 64 49
iR Newton 15 (%100) 15 (%100) 32 0

SPMSRTLS 4999 iARC 17 15 582 761
iR Newton 17 (%76) 15 (%87) 275 4

SROSENBR 5000 iARC 9 7 36 35
iR Newton 10 (%70) 7 (%86) 20 12

SSBRYBND 5000 iARC 75 45 77075 177454
iR Newton 39 (%38) 23 (%52) 22010 11269

STRATEC 10 iARC 74 65 886 1069
iR Newton 67 (%90) 61 (%95) 413 87

TESTQUAD 5000 iARC 162 162 16908 19812
iR Newton 163 (%100) 163 (%100) 8271 0

TOINTGOR 50 iARC 11 11 234 275
iR Newton 11 (%100) 11 (%100) 117 0

TOINTGSS 5000 iARC 4 4 14 10
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Table B.1 -- continued from previous page
Prob #Var Alg #Iter (%Newton) #Acc (%Newton) #Hv-prod #T-fact

iR Newton 3 (%100) 3 (%100) 7 0

TOINTPSP 50 iARC 35 22 254 335
iR Newton 41 (%49) 20 (%40) 156 66

TOINTQOR 50 iARC 7 7 104 103
iR Newton 7 (%100) 7 (%100) 52 0

TQUARTIC 5000 iARC 11 11 44 50
iR Newton 1 (%100) 1 (%100) 2 0

TRIDIA 5000 iARC 16 16 2128 2630
iR Newton 17 (%100) 17 (%100) 1310 0

VARDIM 200 iARC 12 12 24 12
iR Newton 12 (%100) 12 (%100) 12 0

VAREIGVL 50 iARC 5 5 42 38
iR Newton 5 (%100) 5 (%100) 21 0

VIBRBEAM 8 iARC 70 41 644 1131
iR Newton 39 (%31) 25 (%48) 183 226

WATSON 12 iARC 14 14 174 214
iR Newton 14 (%100) 14 (%100) 88 0

WOODS 4000 iARC 15 15 40 26
iR Newton 172 (%87) 157 (%92) 404 144

YFITU 3 iARC 54 38 270 348
iR Newton 55 (%65) 39 (%64) 172 130

ZANGWIL2 2 iARC 3 3 6 3
iR Newton 1 (%100) 1 (%100) 1 0
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