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Abstract   

As a booming economy drives the need for more electricity, demands on freshwater for 

thermoelectric power generation also grow.  Facing limited freshwater resources, 

alternative dry cooling technologies such as air cooled condensers (ACCs) that reduce 

water consumption are becoming more prevalent.  However, the performance of ACCs 

dramatically decreases at ambient temperatures.  This project proposes a novel 

application of a Phase Change Material (PCM) based cooling system for supplementary 

cooling of ACCs. One of the engineering challenges that prevents the commercial 

application of latent thermal energy storage (LTES) systems is the lack of 

computationally efficient methods to model the transient nonlinear behavior of the 

system. In this dissertation, efficient modeling approaches for LTES systems are 

proposed at different scales for optimal design and operational research.  

 

 

 

 

 

 



2 

Chapter 1 Introduction 

 

As a booming economy drives the need for more electricity, demands on freshwater for 

thermoelectric power generation also grow.  However, freshwater is already limited in 

many locations and is becoming scarcer for a growing global population.  This constraint 

will affect future electricity generation.  Thus, alternative dry-cooling technologies, i.e., 

air-cooled-condensers (ACC’s) that reduce water consumption are needed. In particular, 

this dissertation focuses on systems with ACCs that employ a power generation loop of 

the kind illustrated in Figure 1.1.  However, the performance of ACCs is very sensitive to 

wind conditions and ambient temperatures [1].   ACCs become less effective when the 

ambient temperature is higher (See Figure 1.2).  Consequently, the existing ACCs may 

fail to condense all the steam. 

 
Figure 1.1 Schematic incorporation of the PCM based supplementary cooling system in a 

power generation loop [1] 
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Figure 1.2 ACC heat rejection under fluctuations of ambient temperatures [2] 

 

To address these challenges facing ACCs, a novel cooling concept that incorporates 

the use of phase change materials (PCMs) is proposed. The goal is to provide 

supplemental cooling when the ACC performance is limited.  ACC performance is most 

affected during hot summer daytimes.  During the night, temperatures can be more than 

10 ℃ lower than daytime temperatures, especially in relatively dry regions.  Thus the 

idea is to turn the night-time lower temperature into cooling energy that can be used for 

cooling during the daytime.  The proposed approach is to use a PCM reservoir to store 

the cooling resource (via freezing) during the night-time and to provide cooling energy 

(via melting) during the daytime.  Figure 1.1 shows a schematic incorporating the 

proposed PCM based supplemental cooling system in the power generation loop.  A 

conceptual sketch of the PCM Cooling Units in Figure 1.1 is shown in Figure 1.3.  The 

PCM candidate used for investigations in this dissertation is 𝐶𝑎𝐶𝑙2 ∙ 6𝐻2𝑂, which has a 

melting temperature that is relevant for the application of interest and also has a low cost.  

In addition 𝐶𝑎𝐶𝑙2 ∙ 6𝐻2𝑂 is nonflammable and nontoxic. 
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Figure 1.3 Conceptual sketch of the LTES cooling system [3] 

 

 

1.1 Design challenges of a LTES system and main aims of the dissertation 

Sensible thermal energy storage relies on temperature gradients that can be difficult 

to achieve.  Even if large temperature gradients can be obtained; large temperature 

variation can also be an obstacle during usage.  Latent thermal energy storage (LTES) 

systems based on PCMs have two obvious advantages over sensible thermal energy 

storage.  One is higher energy density, resulting in smaller equipment size and less 

investment cost.  The other is that PCM-based LTES systems release or absorb heat 

isothermally, resulting in efficient temperature management.  Despite these advantages, 

only a few commercial applications employ LTES due to several engineering challenges.  

One major problem is the lack of computationally efficient models to resolve the 

transient and nonlinear freezing behavior of a PCM-based LTES system. The low 

conductivity of PCMs is another engineering challenge preventing the commercial 

application of LTES systems.  To address the low conductivity of PCMs, typically finned 
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heat pipes are embedded in the PCM to increase the heat transfer performance and 

guarantee that all of the PCM can be solidified within the typical 10-hour window during 

the night-time. However, the finned heat pipes also present optimal design challenges of 

their own due to their increased cost, more complex geometries, and associated 

computational costs (See Figure 1.4).  

As a result, while the optimal design of finned PCM-based heat pipe structures is 

necessary to lower system cost, currently the available computational approaches for 

design and optimization are severely limited and mostly involve the solution of transient 

nonlinear systems of partial differential equations.  In many cases, parametric 

optimizations have been reported based on computational fluid dynamics (CFD) 

simulations [4-8].  In these cases, multiple simulations need to be carried out for 

variations of the design parameters of interest.  This is computationally expensive and 

can only guarantee near-optimal solutions.  Similarly, at the full-scale system-level, CFD 

models are the usual, computationally expensive, design tool [9].  However, a large scale 

system simulated in this way is often not useful for operational research (for example, to 

determine dynamic flow rate control).   Thermal network models were reported in [10, 

11] for full scale system simulation.  These models require solving large coupled systems 

of governing equations.  As a result, the computational efficiency of these models is not 

sufficient for operational research purposes. 
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Figure 1.4 Finned heat pipe structure and modelling challenges. On the left is a plot of the 

finned heat pipe. On the right is an image of a piece of solid PCM under melting 

conditions 

 

This dissertation is focused on developing efficient modeling methods for (i) the 

structural optimization of a PCM tank, and (ii) the full (large) scale model of a LTES 

system for operational research.  The main content of the dissertation can be divided 

into two parts that ultimately aim to provide a reliable full-scale PCM-LTES system level 

model and design tool for field applications.  The first part, which includes Chapter 2 - 4, 

is on the optimal sizing design of a finned heat pipe unit in a representative LTES system.  

The second part, Chapters 5-6, builds on and incorporates Chapters 2-4, in order to 

perform system-level modeling for operational research. Operational research includes 

the topics of (a) selecting parallel or in-series arrangements of the LTES units and (b) 

optimal heat transfer fluid (HTF) mass flow rate control.   Chapter 7 is a supplementary 

study related to Chapter 6. In Chapter 7, an experimentally validated analytical model of 

the melting behavior of a PCM is presented as an alternative module that can be 

incorporated in the full scale system-level model of Chapter 6.   The structure of the 
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dissertation is summarized in Figure 1.5 and the contribution of each chapter is 

highlighted below: 

 
Figure 1.5 Structure of the dissertation 

 

 Chapter 2 proposes an efficient modeling method for PCM solidification 

enhanced with multidimensional fins in rectangular coordinates.   

 Chapter 3 extends the methods in Chapter 2 to cylindrical coordinates and a 

benchmark optimization example is provided to illustrate the computational 

advantages the proposed model. 

 Chapter 4 further extends the modeling approach developed in Chapters 1-2 to 3-

D cylindrical coordinates.  The modified model is applied to the optimal design of 

a finned heat pipe unit for a representative LTES system. 

 Chapter 5 develops an explicit 1-D analytic solution for the problem of annular 

PCM solidification, which captures the transient nonlinear behavior.   
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 Chapter 6 applies the modeling method developed in Chapter 5 to build a 

numerical model for the tank structure (See Figure 1.2).  

 Chapter 7 introduces an experimentally validated analytical model to capture the 

sinking behavior of PCM during melting in a tube geometry.   This chapter serves 

as preliminary work identifying directions to increase the fidelity of the modeling 

approach in Chapter 6 (which is based on an assumption of conduction-dominated 

heat transfer in the finned heat pipe module).   

Verification for Chapters 2-7 is performed via comparison with computational fluid 

dynamics (CFD) simulations, energy balance checks, and experimental results where 

available. 
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Chapter 2  

 

Efficient modeling of phase change material 

solidification with multidimensional fins 

(Pan C., Hoenig S., Chen C. H., et al. Efficient modeling of phase change material 

solidification with multidimensional fins. International Journal of Heat and Mass 

Transfer, 2017, (115): 897-909.) 
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Abstract 

Phase Change Materials (PCMs) are gaining importance in energy storage applications.  

Many PCM are poor thermal conductors and thus can gain from the optimal use of 

appropriate fins.  Phase change process is inherently nonlinear in behavior due to the 

latent heat, thus simulations are usually based on finite difference or finite element 

approaches, which can be computationally inefficient for optimal design of latent energy 

storage systems.  A novel modeling approach called Layered Thermal Resistance (LTR) 

model is proposed for the first time in this paper for efficient PCM simulations in multi-

dimensions.  The LTR model can be coupled with multidimensional fins for PCM-fin 

structure optimal design.  Compared with CFD results, the results by the LTR model are 

high accurate in estimating the solidification time and the highlight is it has negligible 

simulation cost.  Moreover, accurate heat flux of a finned PCM system is also obtained.  

The LTR model represents the nonlinear solidification process in a finned latent energy 

storage structure with analytic equations, thus it has bright applications in PCM heat sink 

optimization with internal fins. 

 

Key words:  Latent energy storage, Efficient PCM modeling, PCM with internal fins, 

optimal fin design 
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Nomenclature 

 

𝑡𝐿𝑇𝑅 

𝑡𝐶𝐹𝐷 

𝑞 

𝑅(𝑖), 𝑅𝑖(𝑖), 𝑅𝑖𝑗(𝑖) 

𝑡(𝑖) 

𝑅𝑡 

𝐿𝑚 

𝐶𝑝𝑝𝑐𝑚 

𝑘𝑝𝑐𝑚 

𝜌𝑝𝑐𝑚 

∆𝑣𝑙(𝑖) 

𝑇𝑢𝑝𝑝𝑒𝑟 

𝑇𝑙𝑜𝑤𝑒𝑟 

𝐻, 𝐻𝑟𝑒𝑓 

𝑇𝑐𝑒𝑙𝑙 

𝑇𝑚     

𝑇𝑤    

𝑡𝑁𝑒𝑢    

휀    

𝑠    

 ∆s   

𝑁    

𝐴      

∆V   

𝑡𝑠   

 ∆𝑇    

 𝜑   

The exact PCM solidification temperature 

Cooling temperature at the boundary 

PCM solidification time for Neumann’s solution 

PCM solidification time estimated by the LTR model 

PCM solidification time estimated by the CFD model 

Percent error 

Distance of solidification front 

Thickness of each discrete layer for a 1-D PCM bar 

Number of discrete PCM layers 

Cross section area of a 1-D PCM bar 

Volume of each discrete layer for a 1-D PCM bar 

 Heat flux 

Thermal resistances for heat transfer to the PCM layer 𝑖 

Discrete solidification time for PCM layer 𝑖 

Total solidification time 

Total thermal resistance of a system 

Latent energy of PCM 

Heat capacity of PCM 

Conductivity of PCM 

Density of PCM 

Volume of each discrete layer for the 2-D and 3-D cases 

Upper PCM melting temperature 

Lower PCM melting temperature 

Specific PCM enthalpy and a referenced enthalpy value 

Temperature of a discrete element 

Driving temperature difference  

Liquid fraction of PCM 
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1 Introduction 

Abundant research has been devoted to thermal energy storage systems due to their 

important role in clean energy technologies and matching renewable energy to load 

patterns.  A good example is the mismatch between supply and demand of solar energy 

and thermal energy storage systems can play a major role.  ‘Cold storage’ produced at a 

lower costs during off peak hours of the day is a practical way to release utilities’ burden 

to produce enough electricity during high demand hours [1-2]. 

Many mature and industrial applications of thermal energy storage systems use 

sensible energy.  Phase Change Materials (PCMs) are receiving more attention due to 

their high-energy densities.  PCM can store or release energy at near isothermal 

𝑥, 𝑦, 𝑧 

𝛿 

 𝑎, 𝑏, 𝑐 

𝜇, 𝛾,  

𝛼      

ℎ   

𝐿    

𝑘𝑓𝑖𝑛   

𝑙     

 𝜂   

𝜉    

𝜓(0)      

𝑇𝑖𝑛𝑖   

Locations of solidification fronts in x, y, z directions 

Side lengths of a cuboid 

Side length ratios of a rectangle or a cuboid 

Resistance tuning factor value 

Thickness of fin 

Heat transfer coefficient in the PCM side 

Distance from the fin to the solidification front of PCM 

Conductivity of the fin 

Length of a 1-D fin 

Fin efficiency 

Parameter for fin efficiency calculation 

Dimensionless superheating parameter 

Initial temperature of the PCM domain 
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conditions that are thermodynamically superior [3].  The thermal reliability and stability 

of the PCMs was reviewed by Rathod [4].  However, the low conductivity of PCM 

materials is a barrier for many practical applications [3], especially for large scale 

systems.  Researchers are eager to resolve this issue by analyzing different heat transfer 

enhancement techniques, i.e., including high conductivity foams or metal matrices into 

the PCM [5], dispersing high conductivity particles in the PCM [6], or use 

microencapsulation of the PCM [7].  Work conducted by Lohrasbi [8-9] indicated that 

immersing innovative fin structures into PCM as a heat transfer enhancement technique is 

superior to nanoparticles dispersion.  Plenty of research has been conducted to study the 

PCM system with fin structures since they can be simple and compact [10-12].  

Sheikholeslami and Lohrasbi [13-15] studied the Nano-particle Enhanced PCM (NEPCM) 

and innovative fin structures in a combined way to increase the performance of the latent 

heat thermal energy storage system (LHTESS).  Corrosion between PCM (CaCl2 ∙ H2O) 

and fin container was recently reported by Ren [16]. 

Mathematical modelling plays important role for analyzing the performance of 

energy storage systems with PCMs.  Henry [17] reviewed major methods of 

mathematical modelling of solidification and melting.  An elegant Neumann’ solution is 

available for a one-dimensional semi-infinite region with simple initial and boundary 

conditions and constant thermal properties, as first presented by Stefan [18].  Many real 

world solidification problems are rarely one dimensional, and usually have complex 

initial and boundary conditions.  Thus computational fluid dynamics (CFD) is widely 

employed in modeling PCMs.  However, CFD is not always the efficient tool for optimal 

design of a LHTESS.  Optimizations have been often based on parametric studies through 
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simulations [10].  Multiple simulations need to be carried out for variations of the design 

parameters of interest.  More efficient modeling with high accuracy and smaller CPU 

time as discussed here can be immensely beneficial to the design and optimization of a 

LHTESS.  

Though many finite difference or finite element based methodologies have been 

developed for modeling PCM and PCM with heat transfer enhancement techniques, very 

few simple and efficient modeling techniques for simulation of PCM are in vogue.  

Efficient modeling of PCM freezing thus has room for improvement and useful 

applications.  An approximate analytical model is presented to model the solidification 

and solidification of a finned PCM in one and two dimensions [19-21].  A fast 1-D 

analytical model is proposed in [22] to simulate the behavior of a wallboard containing 

the PCM and good predication is achieved compared with CFD results.  In this paper an 

efficient modeling approach called call Layered Thermal Resistance (LTR) model is 

proposed for the first time to model the solidification process that is applicable for 2-D 

and 3-D geometries with fins.  The highlight of the method is its ease with which it can 

include extended fins.  That enables the method to be efficient and useful in optimization 

and design of a LHTESS with fins.  The model is conduction based, so it is suitable for 

the energy discharging process, as many studies have demonstrated that during 

solidification natural convection exits only in the very beginning and soon conduction 

dominates the whole process [23].  For many processes involving energy charging and 

discharging, the freezing is often the resistance dominated process, thus posing a harder 

design goal to achieve, i.e., solidify the PCM within required time period.  So an efficient 
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coupled PCM-fin modeling method has useful applications for optimal design during the 

freezing process when fins are to be used. 

The content of this paper is organized as follows.  In section 2, the efficient PCM 

modeling approach called Layered Solidification Front model shorthand noted as LTR 

model is described in 1-D, 2-D and 3-D and its performance is compared with CFD 

results.  In section 3, the construction of LTR models coupled with fins is given in 2-D 

and 3-D and their performance were tested against the CFD results.  Section 4 summaries 

the efficient PCM modeling technique and suggests further study to develop and improve 

the method. 

 

 

2. Layered Thermal Resistance model for PCM solidification 

This section introduces the construction of the Layered Thermal Resistance (LTR) 

models for PCM solidification in multiple dimensions including 1-D, 2-D and 3-D. 

2.1 1-D Layered Solidification Front Model for fast PCM modeling 

In this section the novel approach for efficient PCM solidification modeling in 1-D 

is developed and its results were compared to the Neumann’s solution.  The idea for the 

proposed LTR model is assuming that the liquid PCM is solidified layer by layer and the 

final solidification time is estimated by adding together the solidification times of all the 

discrete layers.  
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A 1-D semi-infinite PCM bar is shown in Figure 2.1.  Assuming its exact 

solidification temperature is 𝑇𝑚, cooled by constant Temperature 𝑇𝑤 at one end and has 

zero flux for the remaining sides.  The initial temperature of the bar everywhere is 

assumed to be 𝑇𝑚.  It should be noted that when the initial temperature equals to the 

solidification temperature, there is no heat loss at the solidification interface for a semi-

infinite bar, so the solidified distance given by the Neumann’s solution is equivalent to a 

fixed bar.  Thus given certain solidification time 𝑡𝑁𝑒𝑢, the solidification front 𝑠 can be 

estimated by Neumann’s solution [17].  Then the LTR model is applied to the 

solidification front 𝑠 to estimate its solidification time 𝑡𝐿𝑇𝑅.  The performance of the LTR 

model is evaluated by comparing the estimated solidification time to that was assigned to 

the Neumann’s solution.  Estimation accuracy in terms of percent error is defined as: 

 ε =
(𝑡𝐿𝑇𝑅−𝑡𝑁𝑒𝑢)

𝑡𝑁𝑒𝑢
× 100%.                                                                                              (2.1) 

To implement the LTR model, the solidification front 𝑠 is equally divided into 𝑁 − 1  

pieces, called layered solidification fronts.  The volume for each piece is ∆V .  The 

distance between the solidification front and cooling surface determines the thermal 

resistance to pass energy into the current layer, thus prescribing the magnitude of heat 

flux going into the layer.  The solidification time for each of the discrete layer is then 

determined through dividing the total energy in the discrete layer by its current heat flux.  

The final solidification time is estimated by adding those solidification times of all the 

discrete layers.  Eqns. (2.2-2.7) shows this process in 1-D.  The heat flux (2.5) is also 

obtained for the entire solidification process.  
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Figure 2.1 1-D PCM bar 

 

 

∆s =
𝑠

𝑁−1
,                                         (2.2)                    ∆V = ∆sA                                 (2.3) 

𝑅(𝑖) =
𝑖∆𝑠

𝐴𝑘𝑝𝑐𝑚
                                    (2.4)                    q(i) =

𝑇𝑚−𝑇𝑤

𝑅(𝑖)
                            (2.5) 

t(𝑖) =
∆V𝜌𝑝𝑐𝑚[𝐿𝑚+0.5𝐶𝑝𝑝𝑐𝑚(𝑇𝑤−𝑇𝑚)]

𝑞(𝑖)
   (2.6)                     𝑡𝑠 = ∑ 𝑡(𝑖)𝑁−1

𝑖=1 .                       (2.7) 

Given certain PCM properties which are used throughout this paper (see Table 2.1), 

different solidification times 𝑡𝑁𝑒𝑢  and driving temperature difference 𝑑𝑇 = 𝑇𝑚 − 𝑇𝑤 =

10℃, the Neumann’s solution [17] gives the distances of the solidification fronts.  The 

LTR model was used to estimate the solidification time to reach those fronts.  Table 2.2 

shows that the LTR model has high accuracy.  However, there is some constant 

overestimated error based on the LTR model.  This means there is some small default 

error within the model itself.  The most possible source for this constant deviation is that 

the average temperature difference 0.5(𝑇𝑚 − 𝑇𝑤)  is used to account for the sensible 

energy in Eqn. (2.6) for each of the discretized layer, and it may overestimate the sensible 

energy compared with Neumann’s solution.  Grids sensitivity analysis is given in Table 2. 

3. 𝑡𝑁𝑒𝑢 = 10ℎ𝑟𝑠 is the target solidification time to be achieved by the LTR model.  Table 

2.3 shows that more discrete layers will increase the accuracy of the LTR model, while 

insufficient number of layers will lead to large deviations.  

Table 2.1 Thermal properties of certain PCM used in this paper 

Density Conductivity Heat Capacity Latent Heat 

1600 kg/m
3
 0.5 W/(mK) 2000 J/(kgK) 120kJ/kg  
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Table 2.2 Performance of the LTR model 

Given solidification time 𝑡𝑁𝑒𝑢 (hrs)  1 3 5 7 10 

Solidification front distances by  

Neumann’s solution (cm) 

1.33 2.31 2.98 3.53 4.22 

𝑡𝐿𝑇𝑅 (hrs) 1.0285 3.085 5.142 7.199 10.285 

 ε  2.85% 2.85% 2.85% 2.85% 2.85% 

Table 2.3 Effect of number of discrete layers on the accuracy of the LTR model 

Number of  layers 9999 999 99 49 29 9 2 

 𝑡𝐿𝑇𝑅 10.275 10.285 10.378 10.484 10.629 11.416 15.411 

 ε 2.75% 2.85% 3.78% 4.84% 6.29% 14.16% 54.12% 

 

2.2 LTR Model for 2-D  

This section introduces the LTR model to 2-D PCM solidification modeling with 

constant cooling temperature at boundaries.  Extra tuning parameter has to be introduced 

to successfully apply the LTR model in 2-D.  Figure 2.2 shows the layered solidification 

fronts in a rectangle.  It is cooled on the two sides with constant temperature, and has 

zero heat flux at the other two sides.  The modeling approach is shown in Eqns. (2.8-

2.13), where a  is the thickness of the domain out of the paper.  Variables 𝑥 and 𝑦 denote 

the locations of the freezing front.  Two heat paths with the two thermal resistances 𝑅1 

and 𝑅2  are regarded to transfer heat to the freezing front.  And average temperature 

difference  0.5(𝑇𝑚 − 𝑇𝑤) is used to account for the sensible energy. 

 
Figure 2.2 Layered moving fronts for a rectangular PCM 
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 𝑅1(𝑖) =
𝑥(𝑖)

𝑎(𝑐−𝑦(𝑖))𝑘𝑝𝑐𝑚
                               (2.8)           𝑅2(𝑖) =

𝑦(𝑖)

𝑎(𝑏−𝑥(𝑖))𝑘𝑝𝑐𝑚
                 (2.9) 

  𝑅𝑡(𝑖) =
𝑅1(𝑖)𝑅2(𝑖)

𝑅1(𝑖)+𝑅2(𝑖)
                                   (2.10)         q(𝑖) =

𝑇𝑤−𝑇𝑚

𝑅𝑡(𝑖)
                            (2.11) 

 t(𝑖) =
∆𝑉𝑙(𝑖)𝜌𝑝𝑐𝑚[𝐿𝑚+0.5𝐶𝑝𝑝𝑐𝑚(𝑇𝑤−𝑇𝑚)]

𝑞(𝑖)
      (2.12)          𝑡𝑠 = ∑ 𝑡(𝑖)𝑁−1

𝑖=1 .                         (2.13) 

Computational Fluid Dynamics (CFD) simulation results are used to verify the LTR 

model.  The Solidification & Melting Model [24] which is based on the enthalpy-porosity 

method [25] is implemented in Fluent (commercial CFD software) to obtain the 

numerical solutions.  For the enthalpy-porosity method, three regions, solid, liquid, and 

mushy zones, are defined in the computational domain.  Given a PCM’s melting range 

(𝑇𝑙𝑜𝑤𝑒𝑟, 𝑇𝑢𝑝𝑝𝑒𝑟) and a cell temperature 𝑇𝑐𝑒𝑙𝑙 , a liquid fraction ranging from 0 to 1 is 

defined by eqn. (2-14) and is used to identify the three regions.   

      φ = {

   1,      𝑇𝑐𝑒𝑙𝑙 > 𝑇𝑢𝑝𝑝𝑒𝑟  
𝑇𝑐𝑒𝑙𝑙−𝑇𝑙𝑜𝑤𝑒𝑟

𝑇𝑢𝑝𝑝𝑒𝑟−𝑇𝑙𝑜𝑤𝑒𝑟
,      𝑇𝑙𝑜𝑤𝑒𝑟 ≤ 𝑇𝑐𝑒𝑙𝑙 ≤ 𝑇𝑢𝑝𝑝𝑒𝑟  

    0,     𝑇𝑐𝑒𝑙𝑙 > 𝑇𝑢𝑝𝑝𝑒𝑟  

                                                  (2-14) 

As the solidification process is conduction dominated [18], the continuity and momentum 

equations were turned off in the Fluent setup.  Thus energy balance is the main governing 

equation:  

 
𝜕

𝜕𝑡
(𝜌𝑝𝑐𝑚𝐻) = ∇ ∙ (𝑘𝑝𝑐𝑚∇𝑇)                                                                                      (2-15) 

where specific enthalpy 𝐻 is formulated according to enthalpy method [25], 

 𝐻 = 𝐻𝑟𝑒𝑓 + ∫ 𝐶𝑝𝑝𝑐𝑚𝑑𝑇 + 𝜑𝐿𝑝𝑐𝑚
𝑇

𝑇𝑟𝑒𝑓
.                                                                       (2-16)  

Validation of the solidification phenomenon by the enthalpy method [25] against the 

experimental data is available in Ismail’s work [26].  Figure 2.3 directly cited from [26] 
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shows good comparison of solidification fronts between the numerical and experimental 

results.  The 𝜓(0) in the figure is a dimensionless superheating parameter defined as 

ψ(0) =  (𝑇𝑖𝑛𝑖 − 𝑇𝑚) (𝑇𝑖𝑛𝑖 − 𝑇𝑤)⁄  to represent the system with different initial 

temperature, where 𝑇𝑖𝑛𝑖 is the initial temperature of the system.  It should be noted that 

The exact solidification temperature to the used in the LTR model is defined as 𝑇𝑚 =

1

2
(𝑇𝑙𝑜𝑤𝑒𝑟 + 𝑇𝑢𝑝𝑝𝑒𝑟). 

 
Figure 2.3 Comparison of numerical and experimental solidification fronts [26] 

 

For the simulations in this study, the total number of elements is 10,000-40,000 and the 

time step is 3-6 s depending on the size of the geometry.  Sensitivity studies were 

performed to confirm mesh and time-step independence of the results presented.  The 

energy equation was discretized using the Second Order Upwind scheme.  A pressure 

based solver with double-precision was chosen. The convergence was checked at every 2 

time steps with the scaled absolute residual of 10
-9

 was used for the energy equation.  
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Table 2.4 Rectangle shape with different length ratios 

c (cm) 0.1 0.3 0.5 1.0 2.0 3.0 4.0 

b (cm) 4.0 4.0 4.0 4.0 4.0 4.0 4.0 

Ratio c/b 0.025 0.075 0.125 0.25 0.5 0.75 1. 

 

Table 2.4 shows the rectangular PCM domain with different aspect ratios to be used 

to test the LTR model.  The ratios here range from 0.025 to 1.  It should be noted that an 

aspect ratio 0.025 can also represent the ratio 40.  The CFD results were treated as trusted 

reference to validate the LTR model.  From left plot in Figure 2.4, it can be seen that the 

LTR model overestimates the solidification time for the 10 cases by around 50% to 60% 

compared with the CFD results.  This means adjustment can be made to improve the 

accuracy of the LTR model.  The right plot in Figure 2.4 shows a nice curve can be fitted 

between the solidification time ratios 𝑡𝐶𝐹𝐷 𝑡𝐿𝑇𝑅⁄  of the two models and the aspect ratios 

𝑐 𝑏⁄  of a rectangle.  The solidification time ratio of the two models actually indicates how 

much thermal resistance was overestimated by the LTR model.  From this perspective, 

the ratio can be treated as a tuning parameter to adjust the total resistance in the LTR 

model.  The LTR model modified with a tuning factor is then called the tuned LTR 

model in the following context.   

A regression model was built by custom support vector regression (SVR) which is 

also available as MATLAB toolbox [27] to predict the resistance tuning factor for the 

LTR model.  Other curve fitting techniques can also be employed such as simple linear 

fitting or spline interpolation [28].  Generally, SVR has more generalization ability with a 

small training sample [29] which means higher predication accuracy than other methods.  

In Eqns. (2.17-2.19), the aspect ratio 𝜇 is the independent variable for the SVR model 𝑓1 

while 𝛼 is the output resistance tuning parameter (solidification time ratio of the LTR and 
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CFD models 𝑡𝐿𝑇𝑅 𝑡𝐶𝐹𝐷⁄ ), which is used to adjust the total resistance of the LTR model.  

The 7 cases’ data is used to train and build the SVR model 𝛼 = 𝑓1(𝜇).  Figure 2.5 shows 

the regression curve.  It is the reconstruction curve of the solidification time ratio versus 

aspect ratio of a rectangle.  What needed to be emphasized is that the aspect ratio is 

covered from 0.025 to 1, which can also represent a ratio range from 1 to 40, so this 

aspect ratio range includes a large number of rectangular shapes.  When estimating the 

solidification time of a new rectangle PCM, its aspect ratio should fall within this range.  

 
Figure 2.4 Solidification time estimated by LTR and CFD models 

 

α = 𝑓1(𝜇) ,   (2.17)               𝜇 =
𝑐

𝑏
 ,         (2.18)           𝑅𝑡(𝑖) = 𝛼

𝑅1(𝑖)𝑅2(𝑖)

𝑅1(𝑖)+𝑅2(𝑖)
                (2.19) 
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Figure 2.5 Regression curve of the tuning parameter for the tuned LTR model 

 

For the 7 cases simulated by the CFD method in Fluent, a solidification temperature 

range 𝑇𝑢𝑝𝑝𝑒𝑟 − 𝑇𝑙𝑜𝑤𝑒𝑟 = 2℃   is set, the initial temperature is 𝑇𝑢𝑝𝑝𝑒𝑟  everywhere, 

𝑇𝑢𝑝𝑝𝑒𝑟 − 𝑇𝑤 = 10℃ and the conductivity of the PCM is 𝑘𝑝𝑐𝑚 = 0.5 𝑊 𝑚𝐾⁄ .  In the LTR 

model the driving temperature difference ∆𝑇 = 𝑇𝑚 − 𝑇𝑤 = 9℃, as it is assumed that the 

exact freezing temperature is the mean temperature of the solidification temperature 

range.  For the tuned LTR model to be more flexible in use, it is desired that the 

resistance tuning curve is independent of boundary conditions and material properties.  

Ideally, 𝜕𝑓1 𝜕∆𝑇⁄ = 0 and  𝜕𝑓1 𝜕𝑘𝑝𝑐𝑚⁄ = 0.  Or at least the effect from those parameters 

on the accuracy of the tuned LTR model is negligibly small.  Nine new cases shown in 

Table 2.5 are considered to test the accuracy of the tuned LTR model.  The first 3 cases 

have different side lengths while keeping same driving temperature and PCM 

conductivity as the cases for building the resistance tuning curve.  Cases 4 -5 have 

different driving temperatures. Cases 6 and 7 have different PCM conductivities.  Case 8 

has both different driving temperature difference and PCM conductivity as the training 
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cases.  Case 9 has a much larger driving temperature difference than other cases.  

Additionally cases 4 to 9 both have different aspect ratios than the 7 training cases.  The 

CFD results are treated as the trustful reference to judge the tuned LTR model.  

Estimation error is defined as: 

  ε =
(𝑡𝐿𝑇𝑅−𝑡𝐶𝐹𝐷)

𝑡𝐶𝐹𝐷
× 100%.                                                                                          (2.20) 

The performance of the tuned LTR model is shown in Figure 2.6.  The accuracy is within 

10% error as compared to the CFD results.  It can be concluded that the resistance tuning 

curve is almost only depended on the aspect ratio of a rectangle.  Once the tuned LTR 

model is developed, it can be applied to new temperature boundaries, different species of 

PCM and for various rectangles as long as their aspect ratios falling in the range of the 

tuning curve.  

Grids independent study was performed and it was found that 30 and 150 discrete 

layers almost give same solidification time.  Generally, the final solidification time 

estimated by the tuned LTR model is quite robust to the number of the discrete layers.  

150 discrete layers are assigned to all the 7 training cases and the 9 predicting cases.  It 

should also be pointed out that the solidification time for a certain case in CFD is 

determined when the solid fraction of PCM reaches 99.9%.  Due to low PCM 

conductivity, there is a “tailing effect”, referring to the situation when almost 70% of the 

PCM can be solidified within half of the total solidification time, and at the final stage, a 

small amount of PCM takes a relatively long time to solidify.  The solidification time 

chosen at 99.9% liquid fraction could be 5% more than that chosen at 99.1%.  If a new 

solidification time is chosen based on different solidified percentage fraction, the 
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resistance tuning curve needs to be rebuilt accordingly.  And high prediction accuracy is 

still guaranteed.  The CPU time involved with the use of the tuned LTR model is trivial 

compared to a full CFD prediction and therein lies the benefit for optimal design 

procedures. 

Table 2. 5 New testing Cases 

Cases  #1 #2 #3 #4 #5 #6 #7 #8 #9 

T  ℃  10 10 10 20 7 10 10 20 50 

𝑘𝑝𝑐𝑚 W/(mK)  0.5 0.5 0.5 0.5 0.5 1 0.3 2.0 0.5 

c  cm  1 3 5 3 1 3 1 5 6 

b  cm 5 5 5 5 5 5 5 6 6 

 

 
Figure 2.6 Predictions of 9 2-D cases using the tuned LTR model 

 

2.3 LTR model for 3-D  

The methods and procedures described thus far for the tuned LTR model can be 

generalized to 3-D.  Figure 2.7 shows a cuboid PCM domain cooled at three surfaces 

with constant Temperature.  𝑎, 𝑏, 𝑐 are the three side lengths and 𝑥, 𝑦, 𝑧 are the locations 

of current solidification fronts along the Cartesian coordinates.  The cuboid geometry can 

be defined by two geometric aspect ratios μ = 𝑎 𝑏⁄  and γ = 𝑐 𝑏⁄ .  Consequently, the 
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resistance tuning parameter will be defined by a surface α = 𝑓2(𝜇, 𝛾).  To construct this 

tuning surface in the present example, 4 aspect ratios (0.1, 0.4, 0.7, 1) were assigned to 

𝜇, 𝛾.  Together there are 16 discrete samples, but due to symmetry, the distinct samples 

are 10.  Table 2.6 shows specific points that cover the lengths ratios from 0.1 to 1.  The 

Solidification & Melting model [24] In Fluent was used to obtain the numerical results.  

In the CFD model a solidification temperature range  𝑇𝑢𝑝𝑝𝑒𝑟 − 𝑇𝑙𝑜𝑤𝑒𝑟 = 1℃ was set, the 

initial temperature was 𝑇𝑢𝑝𝑝𝑒𝑟  everywhere and 𝑇𝑢𝑝𝑝𝑒𝑟 − 𝑇𝑤 = 10℃ . Eqns.(2.21-2.24) 

show the thermal resistances calculation procedures of the 3-D tuned LTR model, the 

heat flux and solidification calculations are same as the Eqns. (2.11-2.13) in Section 2.2.  

Figure 2.8 shows the solidification time surfaces of the 16 pointes estimated by CFD 

model and the LTR model without a resistance tuning factor.  There is obvious deviation 

in amplitude but the shape of the surfaces by the two models shares similarity.  This 

suggests that a resistance tuning surface can be constructed based on the solidification 

time ratios of the two models.  A custom support vector regression was applied to build 

the resistance tuning surface.  The two aspect ratios that cover the range (0.1, 1) are the 

input variables and the solidification time ratio 𝑡𝐶𝐹𝐷 𝑡𝐿𝑇𝑅⁄  between the LTR model 

without tuning and CFD mode is the output of the SVR model 𝑓2 .  As there are 16 

discrete points, the data set is much sparse compared with having 10 data points in the 

one dimensional case.  The regression parameter should indeed be optimized for the 

smallest possible overall predication error [29].  

Figure 2.9 shows the tuning surface by the custom SVR model.  Table 2.7 lists the 7 

testing cases.  Results presented in Figure 10 shows excellent prediction performance for 

the tuned LTR model in 3-D.  The prediction error is within 4% percentage, which is 
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better than the 2-D case.  A possible reason is a smaller solidification temperature range 

is used for the CFD cases.  Analysis of around 150 layered solidification fronts were 

included in the cases considered.  It also demonstrates that the resistance tuning surface 

and predictions are independent of boundary temperature and the PCM properties.  So 

this tuning surface is applicable to new cuboid shapes and other PCMs. 

 

 
3-D view 

 
Front face view 

 
Top face view 

Figure 2.7 3-D cubic PCM cooling from 3 faces with constant Temperature 

 

 𝑅1 =
𝑥

(𝑎−𝑧)(𝑐−𝑦)𝑘𝑝𝑐𝑚
                 (2.21)                       𝑅2 =

𝑧

(𝑎−𝑧)(𝑏−𝑥)𝑘𝑝𝑐𝑚
                (2.22) 

 𝑅2 =
𝑧

(𝑎−𝑧)(𝑏−𝑥)𝑘𝑝𝑐𝑚
                 (2.23)                        𝑅𝑡 = 𝛼

𝑅1𝑅2𝑅3

𝑅1+𝑅2+𝑅3
                     (2.24)   

 

Table 2.6 Cuboids with different side lengths ratios 

a (cm) 5 5 5 5 5 5 5 5 5 

b (cm) 0.5 2 3.5 5 2 3.5 5 3.5 5 

c (cm) 0.5 2 3.5 5 0.5 0.5 0.5 2 3.5 

b/a 0.1 0.4 0.7 1.0 0.4 0.7 1.0 0.7 1.0 

c/a 0.1 0.4 0.7 1.0 0.1 0.1 0.1 0.4 0.7 

 

Table 2.7 New cases for the tuned LTR model testing 

Dimensions(cm) (2,2,2) (8,8,8) (3,2,1) (7,4,2) (2,1,1) (7,7,3) (9,8,7) 

∆𝑇 ℃ 10 10 7 20 10 20 15 

𝑘𝑝𝑐𝑚 W/(mK) 0.5 0.5 0.5 0.5 0.3 1 3 
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Figure 2.8 Solidification times estimation by CFD and LTR models without tuning 

 
Figure 2.9 Resistance tuning surface by support vector regression 

 

 
Figure 2.10 Predictions of the 7 new cases by the tuned LTR model 
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Many PCM’s used for thermal energy storage are very poor thermal conductors thus 

posing impediments to energy transfer particularly during the energy retrieval 

(solidification) process.  Fins, embedded graphite and other methods were used overcome 

this obstacle.  Application of the tuned LTR model to a PCM domain containing fins 

would thus be a natural extension of the method.  The discharging process is more 

difficult to complete as it is conduction controlled [23], while the melting process can be 

much easier to complete due to the solid sinking phenomenon induced by density 

differences between the solid and liquid PCM phases [30].  Thus an efficient coupled fin-

PCM model based on conduction can prove to be critical and beneficial to the optimal 

design of an energy storage system with PCM.  In this section the tuned LTR model is 

applied for modeling PCM systems that include plate fins.  Note that in the following 

sections, the finned LTR model means the tuned LTR model that is coupled with fins. 

3.1 Coupled PCM Fin modeling in 2-D  

 
Figure 2.11 2-D coupled PCM fin sketch 

 

A rectangular PCM domain with a plate fin on one side as shown in Figure 2.11 was 

studied.  The PCM and the fin are cooled at the same end (the edge along the y-axis) with 

same constant temperature and the other boundaries have zero heat flux.  There are two 

heat paths for energy transfer to the PCM.  One path is through PCM with its thermal 
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resistance 𝑅1  and the other one is through the fin, passing through multiple thermal 

resistances 𝑅21, 𝑅22, 𝑅23.  𝑅1 is the same as Eqns. (2.8) in Section 2.2 and 𝑅23 is a new 

name to be used in current description but it has the same definition as Eqn.(2.9) in 

Section 2.2.  𝑅21 and 𝑅22 are defined as: 

𝑅21 =
𝑥

𝑎𝛿𝑘𝑓𝑖𝑛
 ,                      (3.1)                       𝑅22 =

𝛿

2𝑎(𝑏−𝑥)𝑘𝑓𝑖𝑛
 ,                               (3.2) 

where 𝑎 is the thickness of the rectangular PCM domain and fin in z direction and 𝑥 is the 

distance of the solidification front in 𝑥 direction.  𝑅21 is the resistance in the fin from the 

cooling source to the solidification front in x-axis direction.  The resistance in the fin for 

passing the heat from fin to the PCM is 𝑅22.  This resistance is rather small compared to 

the others and thus can be neglected.  Besides the fin resistances to be incorporated into 

the tuned LTR model, fin efficiency is also a key factor that must be considered.  The fin 

efficiency (3.3) was derived by solving the energy balance equation of the fin (presented 

in Appendix).  Thus the thermal resistance passing through the fin needs to be increased 

by 1 𝜂⁄ .  Eqn. (3.5) is the total resistance for the finned LTR model shown in Figure 10.  

The heat flux and solidification time calculations are the same as Eqns. (2.11-2.13) listed 

in Section 2.2. 

𝜂 =
𝑇(𝑥)−𝑇𝑚

𝑇𝑤−𝑇𝑚
= 𝑐𝑜𝑠ℎ(𝜉𝑥) − 𝑡𝑎𝑛ℎ(𝜉𝑏)𝑠𝑖𝑛ℎ(𝜉𝑥),                                                          (3.3) 

𝑅2 = 1 𝜂(𝑅21 + 𝑅22) + 𝑅23⁄ ,         (3.4)                 𝑅𝑡 = 𝛼(𝑅1𝑅2 𝑅1 + 𝑅2⁄ )               (3.5) 

To test the prediction capabilities of the finned LTR model, 4 different dimensions were 

considered as shown in Table 2.8.  Three fin thickness (2mm, 1mm, 0.5mm) and two 

types of fin material (aluminum, carbon steel) were also considered, so together there 
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were 24 testing cases.  The conductivity of the aluminum fin is 202.4 W/(mK)  and that 

of carbon steel is 50 W/(mK). 

Table 2.8 New cases for the finned LTR model testing 

Cases #1 #2 #3 #4 

a (cm) 1 1 1 5 

b (cm) 1 3 7 5 

 

Figure 2.12 shows the solidification time of all the cases predicted by the finned 

LTR model (denoted by solid lines) and by CFD model (denoted by circles).  Figure 2.12 

shows the prediction errors as defined in Section 2 Eqn. (2-18).  From left to right in 

sequence are the 4 cases; every three points represent the three fin thicknesses (0.5mm, 

1mm, 2.0mm).   For the aluminum fin cases with different thicknesses, the predication 

errors of all the cases are within 4% percentage.  For the carbon-steel fin cases, most of 

them have prediction errors within 5%, except for Case 3 with fin thickness 0.5 mm as 

shown in Figure 2.13.  Large prediction error occurs when the fin thickness is small, i.e. 

0.5mm.  It is possible that the fin’s low efficiency causes the large prediction error, so 

extra cases were tested to verify this assumption as shown in Table 2.9 and 2.10.  In the 

evaluation of fin efficiency, the heat transfer coefficient is an unknown variable and it is 

assumed to be the conductivity of PCM divided by the distance from the fin to the 

solidification front of PCM, ℎ = 𝑘𝑝𝑐𝑚 𝐿⁄ .  The distance L in the fin efficiency calculation 

(Eqn.3.3) in the finned LTR model changes with the locations of the solidification front 

and, but here it is set as 𝐿 = 1𝑐𝑚.  The length of the fin, fin thickness and fin material are 

the dependent variables for the calculation of the fin efficiency.  For the aluminum fin in 

Figure 2.14, when the fin efficiency is decreased to 0.2 either due to low fin thickness 

(comparison between #1 and #2), or the fin is too long (comparison between #3 and # 4), 
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the deviation in solidifying time estimation by the finned LTR model becomes large.  The 

same also happens for the carbon-steel fin cases as shown in Figure 2.15.  Thus it can be 

concluded that as long as the fin’ efficiency is not lower than a certain value, the finned 

LTR model will always give high accurate solidification time estimation. 

 
Figure 2.12 Predications of the testing cases by the 2-D Finned LTR model 

 

 
Figure 2.13 Predication errors by 2-D Finned LTR model 

(Every 3 consecutive points represent fin thickness 0.5mm, 1.0mm and 2.0mm) 

 

Table 2.9 Extra testing cases for aluminum fin 

Cases #1 #2 #3 #4 

a (cm) 10 10 10 10 

b (cm) 150 150 180 210 

Fin thickness(mm) 2 1 2 2 
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Table 2.10 Extra testing cases for carbon steel fin 

Cases #1 #2 #3 #4 

a (cm) 10 10 10 10 

b (cm) 70 70 80 110 

Fin thickness(mm) 2 0.5 2 2 

 

(In the parentheses (aspect ratio b/c, fin thickness (mm)) 

 
Figure 2.14 Solidification time prediction errors versus fin efficiency for aluminum fin 

 

(In the parentheses (aspect ratio b/c, fin thickness (mm)) 

 
Figure 2.15 Solidification time prediction errors vs. fin efficiency for carbon-steel fin 

 

For modeling PCM only, the heat flux during the solidification process was not 

considered, but for a finned PCM system it is an important parameter to study the 

performance of a fin.  Figure 2.16 shows the solidification fraction curves given by the 

finned LTR and CFD models and Figure 2.17 shows the heat flux curves through the 
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cooling surfaces including both the PCM and fin faces.  One case under comparison was 

Case 1 with 2mm thick aluminum fin and the other one was Case 4 with 0.5 mm thick 

carbon-steel fin.  Respectively the two cases represent short-time solidification and 

solidification in a long time period.  There is some discrepancy between the two 

solidification fraction curves predicted by the finned LTR and CFD models.  However, 

the curvature trend for the heat flux matches quite well for both of the two cases.  This 

implies that the finned LTR model also has a good ability to represent the heat flux 

dynamics during the entire solidification process.  Thus the finned LTR model will be a 

reliable model to be employed in efficient optimal design of a finned PCM system.  

 

 
Figure 2.16 Solidification curves comparison between the finned LTR and CFD models 

for the 2-D cases  

 

 
Figure 2.17 Heat flux curve comparison between the finned LTR and CFD models 
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3.2 Coupled PCM fin modeling in 3-D 

The methods described above can be applied for a more general three dimensional PCM 

domain with fins.  Figure 2.18 shows a cuboidal PCM wrapped by three plate fins.  The 

fins were considered to have same thickness.  And the system is cooled at the surface of 

the left plate fin; the remaining faces have zero heat flux.  Though conduction paths 

through the PCM and fins are infinite in nature, it is assumed there are three principal 

heat paths, each passing through one plate fin and PCM.  Based on Figure 2.18, the total 

thermal resistance for the heat path going through the left plate fin is 𝑅1 and 𝑅11 is the 

resistance of the left plate fin, 𝑅12is the resistance in the PCM for this heat path.  The 

total thermal resistance of the heat path going through the bottom plate fin is 𝑅2, and 

𝑅21is the resistance for the heat passing through the fin, 𝑅22is the resistance in PCM of 

this heat path.  Similarly 𝑅3 is the total resistance for heat going through the back-plate 

fin in the figure, its component resistances are 𝑅31 for the fin and 𝑅32 for the PCM.  It is 

assumed additionally that heat transfer in the fin only takes place along the length of the 

fin (say only along the 𝑥 direction), so the fin efficiency (3.3) in the 2-D case can also be 

applied in the plate fins for the 3-D case.  Then the heat flux, solidification time 

calculations are same as those (Eqns2.11-2.13) used in the LTR model without fins for 

the 2-D case.  (Note that the names of 𝑅𝑖𝑗 in Eqns.(3.6-3.14) may already appears in the 

previous sections, but they are redefined under current context.) 
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3-D View 

 
Front face view 

 
Top face view 

Figure 2.18 PCM wrapped in a 3-D plate fins 

 

𝑅11 = 𝛿 𝑐𝑎𝑘𝑓𝑖𝑛⁄     (3.6) 𝑅12 = 𝑥 (𝑎 − 𝑧)(𝑐 − 𝑦)𝑘𝑝𝑐𝑚⁄     (3.7)  𝑅1 = 𝑅11 + 𝑅12          (3.8) 

𝑅21 = 𝑥 𝑐𝛿𝑘𝑓𝑖𝑛⁄    (3.9) 𝑅22 = 𝑧 (𝑏 − 𝑥)(𝑐 − 𝑦)𝑘𝑝𝑐𝑚⁄    (3.10) 𝑅2 = 1 𝜂⁄ 𝑅21 + 𝑅22 (3.11) 

𝑅31 = 𝑥 𝑎𝛿𝑘𝑓𝑖𝑛⁄   (3.12  𝑅22 = 𝑦 (𝑏 − 𝑥)(𝑎 − 𝑧)𝑘𝑝𝑐𝑚⁄  (3.13)  𝑅3 = 1 𝜂⁄ 𝑅31 + 𝑅32 (3.14) 

Nine cases as listed in Table 2.11 were used to test the performance of the 3-D 

finned LTR model.  The geometries of the testing cases vary from a long bar shape (Case 

4) to a plate shape (Case 6).  Case 8 considers a different driving temperature difference 

and Case 9 considers a different PCM conductivity.  The fin material is aluminum and its 

thickness is 1mm.  CFD results were obtained by the Solidification & Melting model in 

Fluent [24].  The solidification time estimation is shown in Figure 2.19.  Most of the 

cases have an error within 5%, except for the plate shape case which has an error close to 

8%.  The performance is not as good as the 2-D situation.  The assumption that one-

dimensional conduction takes place in the fin is the most possible cause to enlarge the 

error.  The solidification fraction curves and the heat flux curves of Case 1 and Case 7 are 

shown in Figures 2.20 and 2.21.  There are some discrepancy between the two 

solidification fraction curves predicted by CFD and the finned LTR models.  However, 

the 3-D finned LTR model captures the trend of a heat flux curve very well for both of 

the cases.  The 3-D finned LTR model promises to be an efficient and reliable modeling 
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approach for a finned PCM system considered in Figure 2.18 with almost no simulation 

cost after the tuning surface is built.  

Table 2.11 Test cases for 3-D finned LTR model 

Cases #1 #2 #3 #4 #5 #6 #7 #8 #9 

(a, b, c)  
cm 

(2,2,2) (1,3,1) (1,5,1) (1,7,1) (5,1,5) (7,1,7) (6,6,6) (6,6,6) (6,6,6) 

T   ℃ 10 10 10 10 10 10 10 20 10 

𝑘𝑝𝑐𝑚  

𝑊 𝑚𝐾⁄  

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1.0 

 

 
Figure 2.19 Solidification time predictions by 3-D finned LTR model 

 

 
Figure 2.20 Solidification curve comparison between finned LTR and CFD models for 

the 3-D cases 
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Figure 2.21 Heat flux curve comparison between finned LTR and CFD models 

 

 

4. Conclusion  

An efficient method to predict PCM behavior in three dimensions that could include 

fins is described in this paper.  For most of the cases considered here results from the 

efficient LTR model compare well with those obtained using full scale transient three 

dimensional CFD methods.  The key to successfully building the LTR model is to define 

the correct ‘tuning curve /surface’ for the geometry and shape of interest.  The LTR 

model described here for Cartesian coordinates can readily be adapted for other complex 

geometries and coordinates such as cylindrical and/or curvilinear orthogonal coordinates.  

Then the tuning curve or surface will be dependent on the appropriate chosen ratios of 

independent parameters.  As the finned LTR model represents a PDE described nonlinear 

transient freezing process into algebraic equations, thus a well-tuned LTR model can 

become the back-bone of an extensive yet efficient and inexpensive optimal design of a 

system that uses PCM and fins. 
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Appendix  

Fin efficiency calculation 

The fin extended from the heat pipe is approximated by a 1D conduction bar. As shown 

in Figure 2.22, it has a constant temperature at one end and heat flux boundary condition 

on the PCM side; the other end and side have zero heat flux. Based on an energy balance 

of the bar, the fin efficiency is: 

 
Figure 2. 22  Geometry and boundary conditions for the 1-D bar efficiency calculation 
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where 𝐿 is the melting front distance away from the fin. The heat transfer coefficient at 

the PCM side is assumed to be the conductivity of the PCM divided by the melting front 

distance, ℎ = 𝑘𝑝𝑐𝑚 𝐿⁄ .  
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Chapter 3  

Efficient optimization of a longitudinal finned heat 

pipe structure for a latent thermal energy storage 

system 

(Pan C., Vermaak N., Romero C. Neti S., et al. Efficient optimization of a longitudinal 

finned heat pipe structure for a latent thermal energy storage system, Energy Conversion 

and Management 2017, (153): 93-105. ) 
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Abstract 

Phase Change Materials (PCMs) are gaining importance in energy storage applications.  

However, many PCMs are poor thermal conductors and thus can benefit from the optimal 

use of appropriate fins.  This work introduces a PCM-fin structure optimization 

framework.  Typically, the non-linear solidification process increases the complexity 

associated with solving the mathematical equations for the PCM-fin structure 

optimization problem, making it computationally expensive.  In this paper a modeling 

approach called Layered Thermal Resistance (LTR) model is extended and developed in 

2D cylindrical geometry in order to enable efficient PCM-fin structure optimization.  The 

finned LTR model represents the nonlinear transient solidification process by analytic 

equations.  This significantly reduces the computational cost associated with optimization.  

A finned heat pipe structure modeled by the finned LTR approach is optimized based on 

minimizing cost while meeting operational requirements.  The optimal results imply that 

thinner fins result in lower system cost and that there is a thickness limit for the fins to be 

economically welded on a heat pipe.  The finned LTR model also gives the optimal cost 

of material usage for a large scale latent thermal energy storage system in terms of dollars 

per kilowatt and it was found that the system cost is slightly lower by using carbon-steel 

as the construction material for the heat pipes and fins than by using Al 6061.  

 

Key words:  Latent energy storage, efficient PCM simulation, heat pipe embedded PCM, 

finned heat pipe, optimal design 
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Nomenclature 

𝑇ℎ𝑝 

𝑇𝑚 

𝑆1, 𝑆2 

𝑞(𝑖) 

𝑅1, 𝑅2 

𝑅1
∗ 

𝑅𝑡 

𝑅𝑓 

𝜂 

𝜉 

𝐿𝑚 

𝐶𝑝𝑝𝑐𝑚 

𝑘𝑝𝑐𝑚 

𝑘𝑓𝑖𝑛 

𝜌𝑝𝑐𝑚 

𝜌ℎ𝑝 

𝜌𝑓    

𝑡(𝑖) 

𝑡𝑠 

𝐷𝑟 (𝑖), 𝐿(𝑖) 

𝑐 

𝑑𝑉(𝑖) 

𝜃 

𝑓 

𝛼 

𝑡𝐿𝑇𝑅 

𝑡𝐶𝐹𝐷 

𝑡𝑜𝑝 

휀 

 

Heating temperature at the boundary 

PCM melting temperature 

Heat transfer area (Shrinking liquid-solid interface) 

Heat flux 

Thermal resistances for different heat paths 

Thermal resistance includes both the fin and PCM domains 

Total thermal resistance of a system 

Fin thermal resistance 

Fin efficiency 

Parameter for fin efficiency calculation 

Latent energy of PCM 

Heat capacity of PCM 

Conductivity of PCM 

Conductivity of fin 

Density of PCM 

Density of heat pipe material 

Density of fin material 

Discrete solidification time for PCM layers 

Total solidification time 

Locations of solid fronts 

Fin and PCM thickness 

Layered PCM volumes 

Half spacing angle of a cell between two longitudinal fins 

Resistance tuning surface in 2D 

Resistance tuning value 

PCM solidification time estimated by LTR model 

PCM solidification time estimated by CFD model 

Discharging time requirement 

Prediction discrepancy 
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𝑇𝑐𝑒𝑙𝑙 

𝑇𝑢𝑝𝑝𝑒𝑟 

𝑇𝑙𝑜𝑤𝑒𝑟 

𝜓(0) 

𝑇𝑖𝑛𝑖   

γ 

ℎ 

𝐺 

𝐶𝑝𝑐𝑚 

𝐶ℎ𝑝 

𝐶𝑓 

𝑀𝑝𝑐𝑚 

𝑀ℎ𝑝 

𝑀𝑓𝑖𝑛 

𝑉𝑝𝑐𝑚 

𝐻𝑝 

𝑁𝑝 

𝑤ℎ𝑝 

𝑟0 

𝑁𝑓 

𝑟1 = 𝑟0 + 𝑤ℎ𝑝 

𝑟2 

𝑤 

g 

Temperature of a discrete element 

Upper PCM melting temperature 

Lower PCM melting temperature 

Dimensionless superheating parameter 

Initial temperature of the PCM domain 

PCM liquid fraction 

Heat transfer coefficient on the PCM side 

Cooling load target 

Cost of PCM 

Cost of heat pipe 

Cost of the fin 

The amount of PCM to be used 

The amount of heat pipe material to be used 

The amount of fin material to be used 

Total PCM volume 

Height of each heat pipe 

Total number of heat pipes 

Wall thickness of the heat pipe 

Inner radius of the heat pipe 

Total number of fins welded to a heat pipe 

Outer radius of the heat pipe 

Radius of the longitudinal fin welded on the heat pipe 

Thickness of the longitudinal fin 

Cost equation 

 

 

1 Introduction 
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Increasing research is focused on thermal energy storage systems due to their 

important role in clean energy technologies and the need to match renewable energy to 

load patterns.  For example, thermal energy storage systems are needed to address the 

mismatch between the supply and demand of solar energy.  Providing “cold storage” 

produced at lower costs during off peak hours of the day, is a practical way to reduce 

utilities’ burden to produce enough electricity during high demand hours [1-2].  

Many mature and industrial applications of thermal energy storage systems use 

sensible energy.  Phase Change Materials (PCMs) are receiving more attention due to 

their high-energy densities.  PCM can store or release energy at near isothermal 

conditions that are thermodynamically superior.  However, the low conductivity of PCM 

materials is a barrier for many practical applications, especially for large scale systems.  

Researchers are eager to resolve this issue by employing different heat transfer 

enhancement techniques, i.e., including high conductivity foams or metal matrices into 

the PCM [3], dispersing high conductivity particles in the PCM [4], or using 

microencapsulation of the PCM [5].  Extensive research has been conducted to study the 

shell and tube systems with fins in the PCM since they can be simple and compact. [6-12].  

    Embedding Heat Pipes (HPs) between the PCM and the Heat Transfer Fluid (HTF) is 

also an approach that attracts a lot of research.  Faghri [13, 14] patented methods to 

embed HPs into PCM to enhance the performance of thermal energy storage systems and 

heat exchangers.  Horbaniuc et al. [15] analytically modeled the solidification of PCM 

within a longitudinally finned HP storage system.  Liu et al. [16] experimentally studied a 

circumferentially-finned HP heat exchanger with latent heat storage similar to that of 

Horbaniuc et al.  Shabgard et al. [17] developed a thermal network model for a HP 
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embedded latent thermal energy storage (LTES) unit.  The same authors also used a 

thermal network model to analyze a LTES system with embedded HPs and cascading 

PCMs [18].  Christopher et al. [19] defined the HP effectiveness and experimentally 

investigated a LTES system utilizing HPs or fins.  Nithyanandam [20] developed a 

thermal resistance network model of a shell and tube LTES with embedded HPs and 

parametric studies of the influence of the heat pipe.  The same authors [21] also created a 

transient three-dimensional computational model for the system to guide design efforts.  

Nithyanandam [22] also provided numerical simulations to illustrate their methodology 

for design and optimization of the shell and tube LTES with embedded HPs for required 

storage costs.  Sharifi [23] considered three operational modes (charging, discharging and 

simultaneous charging and discharging) of a vertical cylindrical enclosure PCM unit with 

concentric HPs at its center.  Naghavi [24] experimentally investigated a solar water 

heater system with a latent heat storage tank embedded with HPs.  Tiari [25-27] 

numerically studied the finned HP-assisted LTES unit in 2D and 3D.  Almsater [28] used 

finned heat pipes to enhance heat transfer performance in concentrating solar thermal 

power applications. 

Although a lot of researchers have numerically and experimentally studied finned 

HP-assisted LTES systems, limited research has been focused on the optimization of a 

finned HP, i.e. optimizing the length and number of fins.  In terms of optimization 

methods, Veelken [29] used combined numerical modeling and a genetic algorithm to 

find optimal fin positions on a contact surface with non-uniform heat loads.  Pizzolato[30] 

employed a topology optimization framework to find the optimal spatial layout of high 

conductivity material within PCMs.  Lohrasbi [31-32] proposed to use a response surface 
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method (RSM) which requires establishing a relationship between the design variables of 

interest and the objective function.  By estimating the effects of each parameter on the 

objective function, it provides a more efficient approach for parametric studies.  RSM has 

also been applied to optimize a microchannel heat sink [52].  The use of central 

composite design (CCD) in microchannel heat sink optimization is also studied in [53].  

In many cases, optimizations have often been based on parametric studies through 

simulations [33-37].  Multiple simulations need to be carried out for variations of the 

design parameters of interest.  Due to the transient nonlinear behavior of PCM 

solidification or melting, the process is computationally expensive and can only 

guarantee near-optimal solutions.  In this paper, an analytical Layered Thermal 

Resistance (LTR) model [38] is extended for the first time, to a 2D cylindrical geometry 

to support the efficient optimization of PCM-fin energy storage structures.  The LTR 

model describes the nonlinear transient solidification process with algebraic equations, 

thus significantly reducing the computational complexity of the optimization problem.  

Moreover, most of the previous optimization analyses of the fin-PCM structure [31-37] 

are based on improving heat flux and increasing fin efficiency.  In this paper, the focus is 

instead on directly optimizing system cost while the role of heat flux is indirectly 

addressed by setting the discharging time requirement.  The LTR model can be used to 

easily incorporate this objective function and constraint in the optimization framework.  

With this framework, a more relevant engineering comparison among different fin 

configurations becomes possible.  This novel modeling approach has wide applications 

for the optimal design of latent energy storage systems with fins.  In this paper, the LTR 

mode is used for the first time to find the optimal dimensions of a finned heat pipe. 
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The content of this paper is organized as follows. In section 2, the LTR model for a 2D 

cylindrical geometry is developed. Section 3 introduces coupling fins to the LTR model.  

In section 4, the finned LTR model is employed to solve the finned HP optimization 

problem followed by a discussion of the results. Section 6 presents the conclusions.  

 

 

2 Layered Thermal Resistance model in 2-D cylindrical coordinates 

The Layered Thermal Resistance (LTR) model was first proposed in [38] for 

rectangular and cuboidal geometries; it is based on a thermal resistance network analysis 

[17, 20, 22].  In this section a new extension to PCM solidification with constant cooling 

temperatures at the boundaries in a cylindrical coordinate system is developed in order to 

represent tube-shell configurations.  Figure 3.1 shows the geometry of interest, which is 

cooled at the two sides with constant temperature boundary conditions and has zero heat 

flux at the remaining two sides.  The key component of the LTR model is the assumption 

that the liquid PCM is solidified in a layer by layer manner and that the final 

solidification time is estimated by adding together the solidification times of all of the 

discrete layers.  In Figure 1, the dotted lines schematically represent successive solid 

front layers.  Each discrete layer represents a new annulus section, which has the same 

angle 𝜃  and radial ratio 
𝑟1

𝑟2
 as the original PCM shape, but in a shrinking manner to 

represent the solidification behavior.  The modeling approach is given in Eqns. (2.1-2.6).  

Variables 𝐿(𝑖) and 𝐷𝑟(𝑖) designate the evolving location of the solidification front.  A 

detailed calculation of 𝐿(𝑖) and 𝐷𝑟(𝑖) can be found in Appendix A.  A small depth (5mm 
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into the page) of the 2D PCM domain is used to calculate the heat transfer areas 𝑆1(𝑖) and 

𝑆2(𝑖), and at the same time a 2D geometry is used for analysis. There are two heat paths 

to the solidification front, represented by two thermal resistances, 𝑅1 and 𝑅2.  An average 

temperature difference 0.5(𝑇ℎ𝑝 − 𝑇𝑚) is used to account for the sensible energy, where 

𝑇ℎ𝑝 is the cooling temperature and 𝑇𝑚 is the melting temperature of the PCM.  

 
Figure 3.1 Geometry 

 

  𝑅1(𝑖) =
𝐿(𝑖)

𝑆1(𝑖)𝑘𝑝𝑐𝑚
,                                      (2.1)              𝑅2(𝑖) =

𝐷𝑟(𝑖)

𝑆2(𝑖)𝑘𝑝𝑐𝑚
,                 (2.2) 

  𝑅𝑡(𝑖) =
𝑅1(𝑖)𝑅2(𝑖)

𝑅1(𝑖)+𝑅2(𝑖)
,                                    (2.3)              q(𝑖) =

𝑇ℎ𝑝−𝑇𝑚

𝑅𝑡(𝑖)
,                      (2.4) 

  t(𝑖) =
𝑑𝑉(𝑖)𝜌𝑝𝑐𝑚[𝐿𝑝𝑐𝑚+0.5𝐶𝑝(𝑇ℎ𝑝−𝑇𝑚)]

𝑞(𝑖)
,         (2.5)               𝑡𝑠 = ∑ 𝑡(𝑖)𝑁−1

𝑖=1 .                    (2.6) 

 

Table 3.1 Annulus sector with different radii and angle 

 r1 (cm) 2.54 2.54 2.54 2.54 2.54 2.54 0.254 

r2 (cm) 5.08 6.35 7.62 10.16 12.7 17.78 2.286 

 

 

θ(°) 

 

10 A11 A12 A13 A14 A15 A16 A17 

30 A21 A22 A23 A24 A25 A26 A27 

45 A31 A32 A33 A34 A35 A36 A37 

60 A41- A42 A43 A44 A45 A46 A47 

90 A51 A52 A53 A54 A55 A56 A57 

(′Aij′, i = 1: 5, j = 1: 7 represents a case number) 
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Thirty-five different testing cases are given in Table 3.1 of the annulus sector PCM 

domain. The cases have 5 different angles θ and 7 radial ratios 
𝑟2

𝑟1
. The angle 𝜃 covers a 

range from 10° to 90°.  The ratio 
𝑟2

𝑟1
 ranges from 2.0 to 9.0; a ratio of 2.0 represents a case 

where a minimal compactness factor (CF) of 75% is set for the heat pipe PCM system 

with no fins.  The CF of a PCM storage system is defined as the ratio of the volume of 

PCM to the volume of the whole system.  The traditional PCM encapsulated in spheres 

can reduce the storage density by 50% [39], while tubes in PCM tank arrangements can 

achieve CFs of over 90% [40].  

The Solidification & Melting Model in Fluent (commercial computational fluid 

dynamics (CFD) software) [41], which is based on the enthalpy-porosity method [42], is 

used to obtain the numerical solutions to verify the LTR model.  For the enthalpy-

porosity method, three regions, solid, liquid, and mushy zones, are defined in the 

computational domain.  Given a PCM’s melting range (𝑇𝑙𝑜𝑤𝑒𝑟, 𝑇𝑢𝑝𝑝𝑒𝑟)   and a cell 

temperature 𝑇𝑐𝑒𝑙𝑙, a liquid fraction ranging from 0 to 1 is defined by eqn. (2-7) and is 

used to identify the three regions.  The exact melting temperature used in the LTR model 

is defined as 𝑇𝑚 =
1

2
(𝑇𝑙𝑜𝑤𝑒𝑟 + 𝑇𝑢𝑝𝑝𝑒𝑟) .  As the solidification process is conduction 

dominated [43], the momentum equations were turned off in the Fluent setup.  Thus 

energy balance (See Eqn.2-8) is the main governing equation. 

γ = {

   1,      𝑇𝑐𝑒𝑙𝑙 > 𝑇𝑢𝑝𝑝𝑒𝑟  
𝑇𝑐𝑒𝑙𝑙−𝑇𝑙𝑜𝑤𝑒𝑟

𝑇𝑢𝑝𝑝𝑒𝑟−𝑇𝑙𝑜𝑤𝑒𝑟
,      𝑇𝑙𝑜𝑤𝑒𝑟 ≤ 𝑇𝑐𝑒𝑙𝑙 ≤ 𝑇𝑢𝑝𝑝𝑒𝑟 

    0,     𝑇𝑐𝑒𝑙𝑙 > 𝑇𝑢𝑝𝑝𝑒𝑟  

                                                           (2-7)       

𝜕

𝜕𝑡
(𝜌𝑝𝑐𝑚𝐻) = ∇ ∙ (𝑘𝑝𝑐𝑚∇𝑇),                                                                                        (2-8) 
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where specific enthalpy 𝐻 is formulated according to the enthalpy method [42], 

 𝐻 = 𝐻𝑟𝑒𝑓 + ∫ 𝐶𝑝𝑝𝑐𝑚𝑑𝑇 + 𝛾𝐿𝑚
𝑇

𝑇𝑟𝑒𝑓
                                                                              (2-9) 

Validation of the solidification phenomenon predicted by the method [42] compared to 

experimental data is available in Ismail’s work [44].  Figure 3.2, reproduced from [44], 

shows good agreement in the comparison of solidification fronts between the numerical 

and experimental results.  The 𝜓(0)  in the figure is a dimensionless superheating 

parameter defined as ψ(0) =  (𝑇𝑖𝑛𝑖 − 𝑇𝑚) (𝑇𝑖𝑛𝑖 − 𝑇𝑤)⁄  to represent the system with 

different initial temperature, where 𝑇𝑖𝑛𝑖 is the initial temperature of the system. 

 
Figure 3.2 Comparison of numerical and experimental solidification fronts [44] 

 

For the CFD simulations in the present study, the total number of elements used was 

20,000-40,000 depending on the size of the geometry and the time step was around 3-6 s. 

Sensitivity studies were performed to confirm mesh and time-step independence of the 

results presented.  The energy equation was discretized using the Second Order Upwind 



56 

scheme.  A pressure based solver with double-precision was chosen. The convergence 

was checked at every 2 time steps with a scaled absolute residual of 10
-9

 that was used for 

the energy equation.  

The CFD results are treated as a trusted reference to verify the LTR model.  Figure 

3.3 displays the solidification time estimates found by CFD (a) and the LTR model (b) 

for the ramp of θ and 
𝑟2

𝑟1
 explored in the testing cases (Table 3.1).  Figure 3.3 (c) shows a 

comparison of the solidification times 𝑡𝐶𝐹𝐷 𝑡𝐿𝑇𝑅⁄ .  It reveals that the LTR model 

significantly overestimates the solidification time but the two models share similar 

solidification-time surfaces (See Figure 3.3 (a) and 3.3 (b)).  The solidification time ratio 

between the two models (Figure 3.3 (c)) actually indicates how much the thermal 

resistance is overestimated by the LTR model.  It suggests that a resistance ‘tuning 

surface’ can be created based on the solidification time ratios of the two models.  Thus an 

extra tuning factor is introduced in order to reliably use the LTR model.  As the annulus 

sector has two geometric variables, the radial ratio 
r2

r1
 and 𝜃 that define the shape and the 

resistance tuning factor will be defined by a surface α = 𝑓2 (
𝑟2

𝑟1
, 𝜃).  A custom support 

vector regression (SVR) method [45] was used to establish the resistance tuning surface.  

Other interesting applications of regression models in engineering applications can be 

found in [51].  The 35 cases in Table 3.1 are used as the training samples for the SVR 

model.  The solidification time ratio between the CFD model and the LTR model without 

tuning 𝑡𝐶𝐹𝐷 𝑡𝐿𝑇𝑅⁄  is the output of the regression analysis.  After a suitable model 

parameter is chosen for the SVR [45], the time-ratio surface of Figure 3.3 (c) is 

reconstructed in Figure 3.4.  Once the regression tuning surface is identified, it is 
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employed to predict a tuning factor given a new pair of 
𝑟2

𝑟1
 and 𝜃, and to adjust the total 

resistance of the LTR model as shown in Eqns. (2.10-2.11) 

α = 𝑓2 (
𝑟2

𝑟1
, 𝜃),                          (2.10)                𝑅𝑡(𝑖) = 𝛼

𝑅1(𝑖)𝑅2(𝑖)

𝑅1(𝑖)+𝑅2(𝑖)
                          (2.11) 

 

 
Figure 3.3 Solidification time estimated by CFD and LTR models without using tuning 

factors 

 

 
Figure 3.4 Resistance tuning surface by support vector regression (SVR) 
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Table 3.2 Twelve new testing cases for the LTR model modified with a tuning factor 

Descrip

tion 
Same 𝑑𝑇and 

𝑘𝑝𝑐𝑚as the tuning 

surface varies 

Smaller 𝑘𝑝𝑐𝑚; 

vary 𝑑𝑇; 

vary dimensions; 

Larger 𝑘𝑝𝑐𝑚; 

vary 𝑑𝑇; 

vary dimensions; 

Everything is the 

same as Cases 9-

11 

; except 𝑘𝑝𝑐𝑚 

Cases 1 2 3 4 5 6 7 8 9 10 11 12 

r1 (cm) 1.27 5.08 5.08 3.81 3.81 3.81 3.81 3.81 3.81 3.81 3.81 3.81 

r2 (cm) 4.44

5 

21.3

36 

30.4

8 

12.1

92 

12.5

73 

8.76

3 

13.7

16 

14.1

45 

10.2

87 

13.7

16 

14.1

45 

10.2

87 

r1/r2 3.5 4.2 6.0 3.2 3.3 2.3 3.6 4.5 2.7 3.6 4.5 2.7 

θ(°) 45 80 20 35 85 18 70 8 20 70 8 20 

dT (℃) 10 10 10 15 30 8 15 8 5 15 8 5 

𝑘𝑝𝑐𝑚 

W
/(mK) 

1.0 1.0 1.0 0.5 0.5 0.5 2.0 2.0 2.0 1.0 1.0 1.0 

𝛼 0.39

26 

0.45

28 

0.45

10 

0.39

17 

0.43

27 

0.38

56 

0.41

87 

0.47

01 

0.40

03 

0.41

87 

0.47

01 

0.40

03 

 

Table 3.2 gives additional cases that are used to test the accuracy of the LTR model 

modified with the resistance tuning factor.  The first 3 cases have different radial ratios 
𝑟2

𝑟1
 

and angles θ while keeping the same driving temperature and PCM conductivity as the 

cases in Table 3.1. (Cases in Table 3.1 are used for building the resistance tuning surface.)  

Cases 4-6 have different driving temperatures with a lower PCM conductivity.  Cases 7-9 

have different driving temperatures and a higher PCM conductivity.  Cases 10-12 have 

exactly the same geometries and driving temperature differences as Cases 7-9, but they 

have a different PCM conductivity.  It should be noted that the PCM conductivity is the 

only PCM material property varied because it not only affects heat transfer within the 

PCM domain, but it also is the only PCM property parameter that affects the fin 

efficiency calculation when coupling the fins to a PCM domain (See Eqn. B.3 in 

Appendix B).  By considering different PCM conductivities, we are thus further verifying 

the method of coupling fins, which is important in terms of finding the optimal 
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configuration of a finned heat pipe.  Once again we treat CFD simulation results as the 

trusted reference in comparison to the LTR model that is now modified with a resistance 

tuning factor.  Estimation accuracy in terms of percent error is defined as,  

 ε =
(𝑡𝐿𝑇𝑅−𝑡𝐶𝐹𝐷)

𝑡𝐶𝐹𝐷
× 100%.                                                                                            (2.12) 

The performance of the LTR model is shown in Figure 3.5.  Overall, the tuned LTR 

model accuracy is quite good, within 5.0% compared to the CFD results.  Cases 7-9 and 

10-12 have almost the same error pattern.  The results suggest that the PCM conductivity 

has almost no effect on the performance of the tuned LTR model.   Different driving 

temperatures also have negligible effect on the performance of the model.  The tuning 

surface is almost only dependent on geometry.  Consequently, once a resistance tuning 

surface is constructed based on a prescribed driving temperature and PCM conductivity, 

it can also be applied to cases with new driving temperature differences and PCM 

conductivities.  Thus the resistance tuning surface provides flexibility for different 

applications.   
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Figure 3.5 (a) Predictions of the 14 cases using LTR model with the tuning factor 

and (b) percent error between the CFD and LTR results 

 

 

3 Coupled PCM Fin modeling based on tuned LTR Model  

Many PCMs used for thermal energy storage are very poor thermal conductors, 

which is detrimental for energy transfer.  This is particularly so during the energy 

retrieval (solidification) process which is conduction dominated [43].  Thus in this paper, 

the finned heat pipe structure shown in Figure 6 is studied to enhance the heat transfer 

performance within the PCM.  In this section, a finned LTR model is constructed which 

is used for the optimal design of the dimensions of the finned heat pipe structure based on 

the solidification process.  As the discharging process is conduction controlled [43], the 

fin-PCM structure optimization based on a conduction model is of interest.  Given the 

costs of heat pipes and fins, the optimal dimensions  (𝑟1, 𝑟2, 𝑤, 𝜃) are determined for an 

objective of minimum system cost while ensuring that the PCM meets a given 

solidification time requirement. 
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Figure 3.6 Finned annular sector 

 

In the finned heat pipe structure (Figure 3.6), it is assumed that the heat pipe wall (𝑟1 

is the outer radius of the heat pipe) maintains a constant temperature 𝑇ℎ𝑝   and the 

remaining boundaries have zero heat flux.  There are two heat paths for cooling energy 

transfer to the PCM.  One path is through the PCM with its thermal resistance 𝑅2 and the 

other one is through the fin with thermal resistance 𝑅𝑓 and the PCM with resistance 𝑅1.  

Resistances 𝑅1 and 𝑅2 are the same as those defined in the LTR model with no fins in 

section 2 (Eqns. 2.1-2.2). 𝑅𝑓 is defined as: 

 𝑅𝑓 = 𝐷𝑟(𝑖) 𝑐𝑤𝑘𝑓𝑖𝑛⁄  ,                                                                                                    (3.1) 

where c is the depth of the fin and PCM, which is set as 5mm in all of the simulations in 

this paper; 𝐷𝑟(𝑖) is the distance to the solidification front in the radial direction.  Besides 

the fin resistances to be incorporated into the tuned LTR model, fin efficiency is also a 

key factor that must be considered.  The fin efficiency 𝜂  eqn. (3.2) is derived by solving 

the energy balance equation of the fin (presented in Appendix B). More studies regarding 

fin efficiency analysis are available in [49, 50].  The thermal resistance passing through 

the fin will need to be increased by 1 𝜂⁄  to account for the fin efficiency.  Eqn. (3.3) is the 
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total resistance for the finned LTR model shown in Figure 3.6.  The heat flux and 

solidification time calculations are the same as those listed in the first version of the LTR 

model with a tuning factor in section 2 Eqns. (2.4-2.6). 

𝜂 =
𝑇(𝑥)−𝑇𝑚

𝑇𝑤−𝑇𝑚
= 𝑐𝑜𝑠ℎ(𝜉𝑥) − 𝑡𝑎𝑛ℎ(𝜉𝑏)𝑠𝑖𝑛ℎ(𝜉𝑥),                                                          (3.2) 

 𝑅1
∗ = 𝑅𝑓 + 1 𝜂𝑅1⁄                                                                                                          (3.3) 

𝑅𝑡 = 𝛼(𝑅1
∗𝑅2 𝑅1

∗ + 𝑅2⁄ )                                                                                                 (3.4) 

To test the prediction capabilities of the finned LTR model, 8 cases are considered 

in Table 3.3.  The first 4 cases are repeated with a different PCM conductivity which is 

denoted by the asterisk symbol (i.e., case #1* is exactly the same as case #1 except the 

𝑘𝑝𝑐𝑚 is different).  Three fin thicknesses (0.5mm, 1mm, 2.0mm) and two types of fin 

material (aluminum alloy 6061 and carbon steel) are also considered.  The conductivity 

of the aluminum alloy fin is 170 W/(mK), and that of the carbon steel is 45 W/(mK). 

Table 3.3 Additional test cases for the Finned LTR model with tuning factor. 

  #1   #2 #3 #4 #1* #2* #3* #4* 

r1 (cm) 2.54 2.54 2.54 2.54 2.54 2.54 2.54 2.54 

r2 (cm) 5.334 6.858 9.652 15.24 5.334 6.858 9.652 15.24 

θ(°) 80 50 20 10 80 50 20 10 

𝑘𝑝𝑐𝑚 W/(mK) 1.0 1.0 1.0 1.0 0.5 0.5 0.5 0.5 

𝛼 tuning factor 0.3005 0.3783 0.4203 0.4801 0.3005 0.3783 0.4203 0.4801 

(Cases 1-4 are repeated with different 𝑘𝑝𝑐𝑚 denoted by the asterisk symbol) 

 

Figure 3.7 shows the solidification time errors as defined in Section 2 Eqn. (2.12) 

for both the aluminum fins (Figure 3.7(a)) and the carbon-steel fins (Figure 3.7 (b)).  The 

three points between the dotted vertical line dividers represent the three fin thicknesses 

(0.5mm, 1mm, 2.0mm) tried, respectively, for a single case in Table 3.3.  For example 
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the first data point for case 1 corresponds to a 0.5mm fin thickness.  For all of the 

aluminum fin cases with different thicknesses, the percent errors are within 10%.  For the 

carbon-steel fins, larger percent error occurs when the fin thickness is 0.5mm.  The 

reason is that when the fin efficiency drops to below a certain low value, the finned LTR 

model will tend to overestimate the solidification time.  More detailed analysis of the 

limitations of the finned LTR model for rectangular and cuboidal systems is given in [38].  

For the remaining cases, percent errors are close to 15%.  The cases with lower PCM 

conductivity have relatively smaller percent errors.  Figure 3.7 also shows the trend that 

larger fin thicknesses have smaller percent errors.  Both lower PCM conductivity and 

larger fin thickness contribute to higher fin efficiency.  Thus it can be concluded that the 

finned LTR model has better performance in cases where there is high fin efficiency.  

Discussion of how the solidification time errors will affect the optimal solutions will be 

given in the next section. 

 
Figure 3.7 Percent errors between CFD and LTR solidification time predictions for all of 

the cases in Table 3.3. There are 3 data points for each case considered representing 

different fin thicknesses. 
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The heat flux during the solidification process is an important parameter to consider 

when evaluating the dynamic performance of a fin.  Figure 3.8 shows the heat flux 

variation through the HP wall including both the PCM and fin face for two test cases.  

One case examined is #1 (Table 3.3) with a 2mm thick Al6061 fin and a 1.0 W/(mk) 

PCM conductivity, the other case is #4* (Table 3.3) with a 0.5 mm thick Al 6061 fin and 

0.5 W/(m*k) PCM conductivity.  The two cases represent a system with a short 

solidification time (#1) and a long solidification time (#4*) from Table 3.3.  There is 

some discrepancy between the two heat flux curves predicted by the finned LTR and 

CFD models for both of the cases.  However, the trend for the heat fluxes match well.  

This implies that the finned LTR model also has a good ability to represent the heat flux 

dynamics during the entire solidification process.  Thus it is found that the performance 

of the finned LTR model is acceptable and ready to be used for finned PCM system 

design and optimization. 

 
Figure 3.8 Heat flux comparisons between CFD and the finned LTR model 
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4 Optimal dimensions of a single unit of a HP-LTES system 

 

 
A HP-LTES system 

 
A single heat pipe-fin unit 

Figure 3.9 (a) Sketch of heat pipes embedded in a latent energy storage system and (b) 

representative analysis domain 

 

For optimization purposes, we consider a latent thermal energy storage (HP-LTES) 

system with embedded heat pipes as shown in Figure 3.9 (a).  Figure 3.9 (b) shows an 

idealization of a single HP unit with fins.  Note that cylindrical analysis and radial 

symmetry is always chosen as a convenient analysis domain to reduce computational 

costs.  In addition the shell-tube configuration is often a popular geometry for study. With 

the costs of manufacturing heat pipes (𝐶ℎ𝑝) and welding fins (𝐶𝑓𝑖𝑛) converted to dollars 

per kilogram ($/kg), the design problem of determining what proportions of heat pipe and 

fin material to use in the analysis domain is of interest.  𝐶ℎ𝑝 𝐶𝑓𝑖𝑛⁄  is defined as the cost 

ratio.  The objective is system cost minimization while ensuring that the system meets a 

given cooling time requirement.  The detailed dimensions that need to be optimized are 

shown in Figure 3.6 in Section 2.  Figure 3.6 represents a symmetrical sector cut in 

Figure 3.9 (b) denoted by the dotted lines. 

(a) (b) 
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The optimal design of a PCM-HP and fin structure is a typical PDE-constrained 

optimization problem.  The PDEs describing the process need to be discretized in both 

time and space and thus the problem becomes a large scale optimization problem.  In 

previous literature studies [33-37], optimization has often been based on parametric 

studies through simulations.  Extensive simulation results are needed to find an optimal 

trend for the design parameters.  The process is also computationally expensive and can 

only guarantee near-optimal solutions.  The LTR model addresses these drawbacks by 

representing the nonlinear transient process with simple algebraic equations, thus 

reducing computational costs associated with the optimization problem.  Formulation (4-

1) is the optimal structure design problem where the finned LTR model is constrained to 

ensure the system will meet a given solidification time requirement.  Note that the 

subscripts PCM and fin refer to material properties.  The design variables are the same as 

those described in Figure 3.6 from Section 2. 
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Given a certain cooling load and also the required time window 𝑡𝑜𝑝to solidify the 

PCM, the derivation of the cost equation, g, to minimize the equipment investment is 

presented in Appendix C. The variables 𝑟1, 𝑟2,𝑤, 𝜃  specify the dimensions of a single HP-

fin unit.  The angle 𝜃 will determine the number of fins to be used.  Formulation (4-1) is 
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a nonlinear constrained optimization problem and ‘fmincon’ (a gradient based method) 

and ‘ga’ (Genetic Algorithm (GA)) within the MATLAB optimization toolbox were 

employed to solve the problem [46, 47].   

GA methods are supposed to find the global minimum, while Gradient Based 

Methods can only guarantee local minima.  However, when applying these methods to 

the current problem, it was found that the gradient based method performed better than 

the GA approach as shown in Figure 3.10. Consequently, all of the following optimal 

solutions reported were founding by ‘fmincon’.  Table 3.4 shows the optimal dimensions 

that minimized system cost (𝑔∗) while meeting the 8-hour solidification requirement.  

Each result was found for a given cost ratio 𝐶ℎ𝑝 𝐶𝑓𝑖𝑛⁄ .  In Table 3.4, 𝑔∗ is the optimal 

value of the objective function g(𝑥) whose derivation is presented in Appendix C.  For a 

specific design case, after the optimal dimensions were obtained in Table 3.4, we further 

evaluated them by running CFD simulations in Fluent following the procedure outlined in 

Section 2.  The predicted solidification times are shown in Figure 3.11.  It can be seen 

that all the predicted solidification times are very close to 8 hours, which was set as the 

cooling time requirement in the optimization formulation.  The error is within 0.5% in 

terms of the solidification fraction.  The finned LTR model for the carbon-steel fin cases 

has errors that can reach more than 10% (see Figure 3.7) in terms of solidification time.  

This is mainly because of the “tailing” effect.  The tailing effect refers to the situation 

when almost 70% of the PCM can be solidified within half of the total solidification time, 

and at the final stage, a small amount of PCM takes a relatively long time to solidify.  

Thus errors in terms of the solidification time are greatly diminished once it is 

represented by solid fraction.  This phenomenon shows that despite the fact that the 
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finned LTR model can have solidification time errors around 20%, it still performs well 

for optimal PCM fin structure design applications. 

Table 3.4 Optimal dimensions for different cost ratios 

𝐶ℎ𝑝 𝐶𝑓𝑖𝑛⁄  𝑟1(cm)  𝑟2(cm) w (mm) 𝜃 (°) g* 

0.7 1.27 5.3317 0.5 46.336 0.680 

1.0 1.27 5.9406 0.5 33.909 0.814 

2.0 1.27 6.9095 0.5 22.959 1.151 

3.0 1.27 7.3218 0.5 18.281 1.430 

4.0 1.27 7.7640 0.5 15.110 1.674 

(Carbon-steel fin with 𝑘𝑝𝑐𝑚 =0.5 W/(mK); top=8hrs) 

 

 
Figure 3.10 Optimal objective value 

 

 
Figure 3.11 CFD verifications of the cases with optimal dimensions in Table 3.4 
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Figure 3.12 shows the optimal dimensions for 3 optimization cases with different 

discharging time (8/10hrs) and PCM conductivity (0.5 or 1.0 W/mK).  Results in Figure 

3.12 (a) shows that when the system has 8-hours discharging time and the PCM 

conductivity is the lower 0.5 W/(mK) value, the system has the largest cost.   Comparing 

the two cases with 10-hours discharging time but different PCM conductivities, it is seen 

that the lower PCM conductivity also increases cost.  This follows intuition that the 

harder it is for the PCM to be solidified, the higher the cost of the system will be.  Note 

that the optimal 𝑟1and 𝑤 (Figure 3.12 (b) and (d)) are always at their lower bounds as 

specified in the constraints of the optimization formulation Eqns. (4.2).  The optimal 

radius 𝑟2 (Fig. 3.12 (b)) increases with increasing cost ratio and the optimal angle (Fig. 

3.12 (c)) decreases with increasing cost ratio.  This follows intuition that when 

manufacturing a heat pipe is more expensive than welding fins on it, then the distance 

between two heat pipes should be increased and more fins should be welded to achieve 

an optimal portion of HPs and fins to be used.  Figure 3.13 shows the comparison 

between the aluminum-alloy HP-fin system and carbon-steel HP-fin system. When the 

cost ratio is less than 1.5, the system is made cheaper by using carbon steel.  The 

aluminum fin system tends to have a larger radius for a single HP-fin unit.  Figure 3.14 

shows optimal results by setting different lower boundary values 𝑤𝑙 for the thickness of 

the fin 𝑤 in the constraint (Eqn.4-2). Figure 3.14 (a) shows that, overall, thinner fins will 

result in lower system cost.  Figure 3.14 (d) shows the optimal fin thickness is always 

located at its lower limit.  Figure 3.14 (c) shows that the optimal angle 𝜃  reaches 

90°when the optimal fin thickness 𝑖𝑠 2mm and when the cost ratio is less than or equal to 
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1.  Due to the symmetry of the geometry in Figure3.6, the number of fins welded on a 

heat pipe can be approximated by the angle 𝜃, 

𝑁𝑓 = int(
360

2𝜃
),                                                                                                                (4-3) 

where ‘int’ is used to get an integer number.  Consequently 90° corresponds to an optimal 

fin number of 2.  Moreover the constraint for angle 𝜃 in the optimization formulation (4-2) 

shows 90° is the limit of the angle 𝜃.  If the domain of the angle 𝜃 was extended, then the 

optimal angle could be larger than 90°.  An angle larger than 90° may indicate no fins 

should be used.  Thus when the fin thickness reaches a certain value (2mm for the current 

case study), a smaller number of fins or no fins should be used.  The conclusion is that 

there is a thickness limit for the fins to be economically welded on a heat pipe and the 

economic value is reached when fins can be as thin as possible for the finned HP-PCM 

system.  
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Figure 3.12 Optimal results for different operational times and PCM conductivities 

 

 
Figure 3.13 Optimal results comparison between Al 6061 fin and carbon-steel fin 
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Figure 3.14 Effects of fin thickness on the optimal results 
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Figure 3.15 Cost sensitivity analyses with respect to driving temperature difference and 

fin materials 
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5. Conclusions  

An efficient Phase Change Material (PCM) solidification modeling approach for 2D 

cylindrical geometries is presented that accurately predicts the freezing time to solidify 

all the PCM in the domain.  Based on verification with CFD analysis it is shown that this 

finned Layered Thermal Resistance (LTR) model also estimates heat flux quite 

accurately.  Cost minimizations under operational requirement constraints are performed 

for optimal design determination.  Using the finned LTR model, the optimal dimensions 

of a finned Heat Pipe (HP) unit structure of a Latent Thermal Energy Storage (LTES) can 

be efficiently determined.  The optimal results imply that thinner fins result in lower 

system costs.  In addition, there is a thickness limit for the fins to be economically welded 

on a heat pipe.  In the current study, under the conditions that the manufacturing cost of 

the heat pipe is equal to or less than that of installing fins, the thickness limit of the fin is 

2mm.  Moreover, for a full scale HP-LTES system, under the assumptions that each HP 

has identical source temperature and there is no temperature drop along the length of the 

HP, the estimated system cost by using carbon-steel is slightly lower than by using Al 

6061.  
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Appendix  

A. Discretized 𝑫𝒓(𝒊) and 𝑳(𝐢) 

 
(a) 

 
(b) 

Figure 3.16  Schematic of annular sector for analysis domain 

The discretization strategy is that each new unsolidified PCM area (the dotted line) 

maintains the same annulus sector as the original shape of the PCM. This strategy allows 

the PCM to solidify according to a shrinking behavior.  So for each new annulus 

sector,θ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 𝑟2𝑖 𝑟1𝑖 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡⁄ ; and for all the shrinking annulus sectors, 𝑟2𝑖 is 

always located at its original position while the location for each 𝑟1𝑖 is 𝑟1𝑖
𝑝
 =𝑟2 − (𝑟2𝑖 −

𝑟1𝑖) . Thus the melting front distance 𝑟 can be calculated as 𝐷𝑟(𝑖) = 𝑟1𝑖
𝑝 − 𝑟1. 𝐿 is an arc 

length but is approximated here.  As shown in Figure 3.16 (b), assuming there are N
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shrinking annulus sectors (including the original one) simply represented by a series of 

triangles, then 𝐿𝑖 = 𝐴𝑠𝑖𝑛(𝜃)
𝑖𝑟2

𝑁−1
, where is a geometric factor to account for the use of a 

line segment to represent an arc.  It is found that  A = 𝜋 2⁄  gives good agreement for the 

finned LTR model. 

 

B. Fin efficiency calculation 

The fin extended from the heat pipe is approximated by a 1D conduction bar.  As shown 

in Figure 3.17, it has a constant temperature at one end and heat flux boundary condition 

on the PCM side; the other end and side have zero heat flux. Based on an energy balance 

of the bar, the fin efficiency is: 

 
Figure 3.17 Geometry and boundary conditions for the 1D bar efficiency calculation 



82 

,    0    0      (B.1)

,         ( )                                                   (B.2)

,           ,               (c: 

x x
x x x c x x x c

x fin c pcm

pcm

dQ dQ
Q Q Q x Q Q x x Q

dx dx

dT
Q k A Q hS T T

dx

k
A cw S c x h

           

   

   
L

，

1

2

2

2

Thickness of the fin)           (B.3)

( ) 0,    assuming ( )                (B.4)

0,       ,        0                      (B.5)

fin pcm pcm

pcm

hp pcmx r
x rfin m

d dT
k A hS T T T x T

dx dx

kd
T T

dx k wd x



 
 




 
      
 


    



  

2

2 1= ,                                                                                 (B.6)

cosh( ) tanh( )sinh( )                                             (B.7)

( )

pcm

fin

hp m

m

w

k
l r r

k w

T T x l x

T x T

T



   



 

  






L

 cosh( ) tanh( )sinh( )                                         (B.8)
m

x l x
T

   

 

where 𝐿 is the melting front distance away from the fin calculated in Appendix A. The 

heat transfer coefficient at the PCM side is assumed to be the conductivity of the PCM 

divided by the melting front distance, h = 𝑘𝑝𝑐𝑚 𝐿⁄ . As 𝐿 will affect the fin efficiency, a 

reasonable layered discretization strategy to calculate 𝐿 is important for the successful 

performance of the tuned LTR model coupled with fins. However for pure PCM domain 

modeling, 𝐿 is not that important, because the tuning surface will correct for the effect of 

𝐿. 

 

C. Cost Function of a finned HP-LTES system 

There are two main assumptions to derive the cost function of a full scale HP-LTES 

system shown in Figure 9(a).  One is that there is negligible temperature drop along the 

length of a heat pipe, so that the system can be modeled by a 2D geometry. The other one 
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is that each heat pipe has the same temperature boundary conditions, so that all of the 

HP-fin units are identical.  

𝑉𝑝𝑐𝑚 =
𝐺𝑡𝑜𝑝

𝐿𝑝𝑐𝑚𝜌𝑝𝑐𝑚
                                                                                                              (C.1)    

𝑉𝑢𝑛𝑖𝑡 𝑝𝑐𝑚 = 𝜋(𝑟2
2 − 𝑟1

2)𝐻𝑝 − 𝑁𝑓𝑤𝑓(𝑟2 − 𝑟1)𝐻𝑝                                                             (C.2) 

𝑁𝑝 = int (
𝑉𝑝𝑐𝑚

𝑉𝑢𝑛𝑖𝑡 𝑝𝑐𝑚
)                                                                                                        (C.3) 

𝑉ℎ𝑝 = 𝑁𝑝[𝜋(𝑟1
2 − 𝑟0

2)𝐻𝑝]                                                                                               (C.4) 

𝑉𝑓𝑖𝑛 = 𝑁𝑝𝑁𝑓𝑤(𝑟2 − 𝑟1)𝐻𝑝                                                                                              (C.5) 

𝐶 = 𝐶𝑝𝑐𝑚𝑀𝑝𝑐𝑚 + 𝐶ℎ𝑝𝑀ℎ𝑝 + 𝐶𝑓𝑀𝑓       

  = 𝐶𝑝𝑐𝑚
𝐺𝑡𝑜𝑝

𝐿𝑝𝑐𝑚
+ 𝐶ℎ𝑝𝑁𝑝𝜌ℎ𝑝[𝜋(𝑟1

2 − 𝑟0
2)𝐻𝑝] + 𝐶𝑓𝑁𝑝𝜌𝑓𝑁𝑓𝑤(𝑟2 − 𝑟1)𝐻𝑝 

  = 𝐶𝑝𝑐𝑚
𝐺𝑡𝑜𝑝

𝐿𝑝𝑐𝑚
+ int (

𝐺𝑡𝑜𝑝

𝐿𝑝𝑐𝑚𝜌𝑝𝑐𝑚

𝜋(𝑟2
2−𝑟1

2)𝐻𝑝−𝑁𝑓𝑤𝑓(𝑟2−𝑟1)𝐻𝑝
) {𝐶ℎ𝑝𝜌ℎ𝑝[𝜋(𝑟1

2 − 𝑟0
2)𝐻𝑝] +

 𝐶𝑓𝜌𝑓𝑁𝑓𝑤(𝑟2 − 𝑟1)𝐻𝑝} 

=

𝐶𝑝𝑐𝑚
𝐺𝑡𝑜𝑝

𝐿𝑝𝑐𝑚
+ int (

𝐺𝑡𝑜𝑝

𝐿𝑝𝑐𝑚𝜌𝑝𝑐𝑚[𝜋(𝑟2
2−𝑟1

2)−𝑁𝑓𝑤𝑓(𝑟2−𝑟1)]
) {𝐶ℎ𝑝𝜌ℎ𝑝𝜋(𝑟1

2 − 𝑟0
2) +  𝐶𝑓𝜌𝑓𝑁𝑓𝑤(𝑟2 −

𝑟1)}                                                                                                                             (C.6) 

  In Eqn. (C.6) the integer value by the operation int() is approximated by its real value:   

  ≈ 𝐶𝑝𝑐𝑚
𝐺𝑡𝑜𝑝

𝐿𝑝𝑐𝑚
+

𝐺𝑡𝑜𝑝[𝐶ℎ𝑝𝜌ℎ𝑝𝜋(𝑟1
2−𝑟0

2)+𝐶𝑓𝜌𝑓𝑁𝑓𝑤(𝑟2−𝑟1)]

𝐿𝑝𝑐𝑚𝜌𝑝𝑐𝑚[𝜋(𝑟2
2−𝑟1

2)−𝑁𝑓𝑤(𝑟2−𝑟1)]
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  =
𝐶𝑝𝑐𝑚𝐺𝑡𝑜𝑝

𝐿𝑝𝑐𝑚
(1 +

𝐶ℎ𝑝𝜌ℎ𝑝𝜋(𝑟1
2−𝑟0

2)+𝐶𝑓𝜌𝑓𝑁𝑓𝑤(𝑟2−𝑟1)

𝐶𝑝𝑐𝑚𝜌𝑝𝑐𝑚[𝜋(𝑟2
2−𝑟1

2)−𝑁𝑓𝑤(𝑟2−𝑟1)]
)                                                          (C.7) 

  In Eqn. (C.7) 𝑁𝑓 = 𝑖𝑛𝑡 (
2𝜋

2𝜃
), and it is approximated as 𝑁𝑓 ≈

𝜋

𝜃
 

  ≈  
𝐶𝑝𝑐𝑚𝐺𝑡𝑜𝑝

𝐿𝑝𝑐𝑚
(1 +

𝐶ℎ𝑝𝜌ℎ𝑝𝜋(𝑟1
2−𝑟0

2)+𝐶𝑓𝜌𝑓
𝜋

𝜃
𝑤(𝑟2−𝑟1)

𝐶𝑝𝑐𝑚𝜌𝑝𝑐𝑚[𝜋(𝑟2
2−𝑟1

2)−
𝜋

𝜃
𝑤(𝑟2−𝑟1)]

) 

  =
𝐶𝑝𝑐𝑚𝐺𝑡𝑜𝑝

𝐿𝑝𝑐𝑚
(1 +

𝐶ℎ𝑝𝜌ℎ𝑝𝜃(𝑟1
2−𝑟0

2)+𝐶𝑓𝜌𝑓𝑤(𝑟2−𝑟1)

𝐶𝑝𝑐𝑚𝜌𝑝𝑐𝑚[𝜃(𝑟2
2−𝑟1

2)−𝑤(𝑟2−𝑟1)]
)                                                              (C.8) 

g(𝑟1, 𝑟2, 𝑤, 𝜃) =
𝐶ℎ𝑝𝜌ℎ𝑝𝜃(𝑟1

2−𝑟0
2)+𝐶𝑓𝜌𝑓𝑤(𝑟2−𝑟1)

𝐶𝑝𝑐𝑚𝜌𝑝𝑐𝑚[𝜃(𝑟2
2−𝑟1

2)−𝑤(𝑟2−𝑟1)]
                                                                  (C.9) 

 In the derivation of the cost equation g(𝑟1, 𝑟2, 𝑤, 𝜃), in Eqns. (C.7) and (C.8) an integer 

value is approximated by a real value in order to simplify the final objective expression. 

This simplification has little impact on the optimal solutions. In Eqn. (C.8), only the 

second term is dependent on the design variables(𝑟1, 𝑟2, 𝑤, 𝜃), so (C.9) becomes the final 

cost equation to be used in the optimization formulation, which is the cost ratio between 

the heat pipe with fin and PCM material. A smaller ratio value means smaller overall 

system cost. 
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Chapter 4  

Cost estimation and sensitivity analysis of a latent 

thermal energy storage system for supplementary 

cooling of air cooled condensers  

(Pan C., Vermaak N., Romero C., Neti S., et al. Cost estimation and sensitivity analysis of 

a latent thermal energy storage system for supplementary cooling of air cooled 

condensers. Applied Energy, 2018, (224): 52-68.) 
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Abstract 

As a booming economy drives the need for more electricity, demands on freshwater for 

thermoelectric power generation also grow.  Facing the limited freshwater resources, 

alternative dry cooling technologies that reduce water consumption are becoming more 

prevalent.  However, the performance of air cooled condensers (ACCs) is seriously 

deteriorated at ambient temperature.  To address this challenge, a novel application of a 

Phase Change Material (PCM) based cooling system for supplementary cooling of ACCs 

is proposed.  In order to evaluate the system cost, a solidification modeling approach 

called a Layered Thermal Resistance (LTR) model is extended to 3D in cylindrical 

coordinates for the first time.  The LTR model efficiently estimates the behavior of a 

finned heat pipe module for the PCM-based cooling system.  In the present work, a new 

nonlinear optimization problem is formulated, based on the LTR model, to estimate 

system cost and conduct sensitivity analysis.  Overall, it is found that the material cost of 

the finned heat pipe-assisted PCM tank is around 30 $/kW for a 10-hour solidification 

time requirement, which is a promising cost for the system to be accepted in the market.  

Based on the sensitivity analyses, it is found that the latent energy of the PCM has first-

order impact on the system cost.  

 

Key words:  Air cooled condensers, latent energy storage, efficient PCM simulation, 

finned heat pipe embedded PCM, cost optimal design 
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Nomenclature 

𝐴 

C 

𝐶𝑝 

𝑑𝑇 

𝐷, 𝐸, 𝐻 

𝐺 

ℎ 

𝐻𝑃 

𝑘 

𝐾 

𝐿 

𝑀 

𝑁 

𝑞 

𝑟0 

𝑟1 

𝑟2 

𝑅 

𝑆 

𝑡 

𝑇 

𝑢 

∆𝑉 

𝑉 

𝑤 

 

Greek symbols 

𝛼 

𝜃 

𝜌 

Geometric factor 

Cost of materials  

Heat capacity of PCM 

Driving temperature difference 

Locations of 3D discrete solid fronts 

Cooling load target 

Height of the longitudinal fin between two circular fins 

Height of a single heat pipe 

Conductivity 

Number of discrete layers 

Latent energy 

Material mass 

Quantity 

Heat flux 

Inner radius of the heat pipe 

Outer radius of the heat pipe 

Radius of the longitudinal fin welded on the heat pipe 

Thermal resistance 

Heat transfer area (Shrinking liquid-solid interface) 

Solidification time 

Temperature 

Heat transfer coefficient within the PCM 

Layered PCM volumes 

Total material volume 

Fin or heat pipe thickness 

 

 

Resistance tuning parameter 

Half angle between two neighboring longitudinal fins 

Density 



88 

휀 

𝛾 

𝜂 

𝜎 

 

Subscript 

1,2,3 

𝑐 

cell 

𝐶𝐹𝐷 

𝑓 

ℎ𝑝 

ℎ𝑝_𝑝𝑐𝑚 

𝑙 

𝑙𝑜𝑤𝑒𝑟 

𝐿𝑇𝑅 

𝑚 

𝑜𝑝 

𝑝𝑐𝑚 

𝑠 

𝑡𝑜𝑡𝑎𝑙 

𝑢𝑝𝑝𝑒𝑟 

 

Superscript  

𝑖 

* 

Prediction discrepancy 

PCM liquid fraction 

Fin efficiency 

Thickness out of the paper 

 

 

Three heat flow paths within a 3D bulk PCM 

Circular fin 

A discrete element cell 

Computational Fluid Dynamics model  

Both longitudinal and circular fins 

Heat pipe 

PCM volume of a single heat pipe 

Longitudinal fin 

Lower PCM melting temperature 

Layered thermal resistance model 

PCM melting temperature 

Required solidification time 

Phase change material 

Bulk PCM solidification time 

Total thermal resistance 

Upper PCM melting temperature 

 

 

Discrete index 

Thermal resistance incorporated with fin and fin efficiency 

 

 

1 Introduction 
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Phase Change Materials (PCMs) have received increasing attention in the 

application of thermal energy storage systems due to their high-energy densities [1].  

There are many research studies focused on using PCMs for cooling applications.  

Among them, popular applications include passive cooling for building envelopes using 

lower temperature PCMs [2-3].  A comprehensive review of PCM based cooling 

technologies that enhance the efficiency of photovoltaic power systems can be found in 

Chandel et. al [4].  Zhao [5] studied a PCM based internal cooling system for a 

cylindrical Li-ion battery pack.  Arshad [6] investigated the thermal performance of 

PCM-based pin-finned heat sinks for electronic cooling.  Ibrahim [7] experimentally 

tested a solar absorption cooling system assisted with ice storage.  Ice storage for air 

conditioning in buildings has already been successfully implemented in several 

applications.  In addition to electricity bill savings, cold energy produced and stored at 

lower costs during off-peak hours of the day can reduce the burden to produce enough 

electricity during high demand hours [8].  Researchers are continually working on further 

optimization of the ice storage-based air conditioning systems [9-10].  Luo [11] further 

reported that a large-scale ice-thermal storage system can be used as a smart load for fast 

voltage control and demand-side management in power systems with intermittent 

renewable power.  

In this paper, an innovative application of a PCM-based cooling system (see Fig.4.1) 

for supplemental cooling/cool storage of air cooled condensers (ACCs) in power plants is 

proposed for the first time.  The system does not involve the dissipation of water to the 

atmosphere and enables power plants to maintain their high efficiency even in hot 

seasons.  As a booming economy drives the need for more electricity, demands on 
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freshwater for thermoelectric power generation also grow.  However, freshwater is 

limited and is becoming more valuable for our growing global population.  This 

constraint will affect future electricity generation.  Thus, alternative dry-cooling 

technologies that reduce water consumption are needed.  However, the performance of 

air-cooled condensers (ACC’s) is very sensitive to wind conditions and is not optimal at 

ambient temperatures [12].  That is ACCs become less effective when ambient 

temperature is higher (see Fig. 4.2).  Consequently, the existing ACCs may fail to 

condense all the steam (direct) or sufficiently cool the process coolant water (indirect).   

 
Figure 4.1 The concept design for the PCM cooling units 
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Figure 4.2 ACC heat rejection under fluctuations of ambient temperatures [12] 

 

To address these challenges confronted by ACCs, a novel cooling concept by 

incorporating the use of PCMs is proposed in this paper for the purpose of supplementary 

cooling when the ACC’s performance is deteriorated.  The ACC’s performance is most 

affected during hot summer daytimes.  During the night, temperatures can be more than 

10 ℃ lower than daytime, especially in relatively dry regions.  Thus the idea is to turn the 

night-time lower temperature into cooling energy that can be used for cooling during 

daytime.  The proposed approach is to use a PCM reservoir to store the cooling resource 

(freezing) during night-time and to provide cooling energy (melting) during the daytime.  

A suitable PCM candidate under investigation is 𝐶𝑎𝐶𝑙2 ∙ 6𝐻2𝑂 , which has a melting 

temperature that is relevant for the application of interest and also has a low cost.  In 

addition 𝐶𝑎𝐶𝑙2 ∙ 6𝐻2𝑂 is nonflammable and nontoxic.  The long-term reversible phase 

change behavior of this PCM that can be achieved by small compositional changes was 

reported by Carlsson [13].  A primary corrosion study about this PCM with container and 

fin materials has been reported by Ren [14].   
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     Fig.4.3 shows the schematic of incorporating the proposed PCM based supplementary 

cooling system in a power generation loop.  The number of individual ACC cells required 

for a given size plant is a compromise between the capital cost and efficiency penalty.  

With effective cool storage and the shifting of energy rejection to more amenable lower 

ambient temperatures at night-time, the number of ACC cells required can be reduced 

without sacrificing the efficiency of a power plant.  While the use of cool storage reduces 

the number of ACC cells required and their associated capital cost, the total system cost 

must not exceed the cost of the replaced ACC cells that provide equivalent cooling 

capacity.  For typical conditions, the current ACC capital cost is approximated as 50 

$/kW.  However, on extremely hot days, the cooling capacity of each ACC cell is 

significantly reduced (i.e. from 12 MW to 4 MW).  To accommodate the heat load with 

reduced cooling capacity, more ACC cells are required, resulting in a cost increase to 

about $150 /kW plus the significant increase in footprint and operational and 

maintenance costs.  Thus, to be able to market this PCM-based cooling system, the 

overall design goal of the capital cost of the system is set to be less than 150 $/kW.   

 
Figure 4.3 Schematic of the incorporation of the PCM based supplementary cooling 

system in the power generation loop 
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Fig.4.1 shows the concept design of the PCM based cooling units.  A more detailed 

structure of the cooling unit is presented in the next section.  Modeling plays an essential 

role in designing PCM cooling systems in the initial stages.  To evaluate the economic 

feasibility of this solution, cost estimation is the first vital step.  The low conductivity of 

PCM materials is a major barrier for many practical applications.  In order to freeze the 

PCM during the night with limited available driving temperature differences, heat pipes 

and fin structures have to be employed.  The fins and heat pipes are much more expensive 

than the PCM.  The system cost is dictated by the optimal usage of these features. 

There is limited literature presenting the cost analysis of a PCM-based thermal 

energy storage system. Most studies published are all within the field of the concentrating 

solar power (CSP) plant [15-19].  Robak [15] employed a thermal resistance network 

model to study a heat pipe assisted latent thermal energy storage system (LTESS) for 

CSP, which was reported to reduce the capital cost by 15% compared to that of a CSP 

with a sensible thermal storage system.  The finned tube, which is an essential component 

of the latent heat storage module, was reported as an important evaluation parameter to 

minimize the investment cost in Hübner’s study [17]. 

To estimate the cost of the proposed PCM-based cooling system, the optimal 

structure of the embedded finned heat pipes is the key determining factor.  Due to the 

transient nonlinear nature of the PCM solidification process, the optimal design of the 

embedded finned heat pipes is a typical partial differential equation (PDE)-constrained 

nonlinear optimization problem.  Previous optimizations of such systems have often been 

based on parametric studies [20-22], which are usually computationally expensive.  Thus 

a novel modeling method called the Layered Thermal Resistance (LTR) model was 
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recently developed by Pan et al [23-24].  In this paper, the LTR model is extended, for the 

first time, to a 3D cylindrical geometry to support the efficient optimization of a finned 

heat pipe system.  With a 3D model, both the circular fins and longitudinal fins attached 

to a heat pipe can be considered.  The LTR model represents the nonlinear transient PCM 

solidification process with simple algebraic equations, thus reducing computational costs 

associated with the optimization problem.  By employing the LTR modeling technique, 

sensitivity analyses of different parameters on the overall system cost can be efficiently 

evaluated, providing useful guidelines for design.  

The content of this paper is organized as follows.  In section 2, the nonlinear 

optimization formulation for optimal design and cost estimation is introduced.  In section 

3, the LTR model for a 3D cylindrical geometry is developed.  Section 4 presents the 

optimal results and the sensitivity analyses of the parameters of interest.  Section 5 

summarizes the conclusions. 

 

 

2. Cost minimization for a finned heat pipe assisted latent thermal 

energy storage system  

This section presents the nonlinear programming formulation of cost minimization 

design for a finned heat pipe-assisted LTESS.  The solidification process is more difficult 

to complete than the melting process, as it is conduction controlled [25].  For this reason, 

convection is not considered.  Many researchers have proposed to use finned heat pipes 

to enhance the heat transfer performance of a LTESS [26-29].  In this paper, the finned 

heat pipe embedded LTESS under study is shown in Fig. 4.4.  The air-side fins which 
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appear in Fig. 4.1 will be studied in future work.  The focus of this paper is to solidify the 

PCM during the night, so an assumption being made is that the air side fins provide each 

heat pipe with the same temperature boundaries at the top of the heat pipe (Fig. 4.4).  

Also to allow PCM expansion during melting, there is a reserved air gap between the 

bottom of a plate fin and the PCM under the plate fin (Fig. 4.4).  Due to the relatively 

very low conductivity of air, it is assumed that there is no heat transfer at the bottom of 

the plate fin.  In order to employ radial symmetry to simplify the analysis and reduce 

computational cost, it is assumed that a single finned heat pipe shown in Fig. 4.5 (a) is the 

assembling unit for the whole LTESS.  Thus the horizontal plate fins are represented by 

circular fins attached to a heat pipe.  It is also assumed that there is negligible 

temperature drop along the length of the heat pipe so that the model domain can be 

further simplified to focus on a single circular fin (from a circular fin to the air gap).  

Typically there is a small temperature gradient along the length of a heat pipe and 

neglecting this small temperature gradient is appropriate for the overall optimal design 

and cost analysis.  Also due to mirror symmetry, only half of the section between two 

neighboring longitudinal fins needs to be modeled.  Thus Fig. 4.5 (b) shows the resulting 

model PCM domain of interest, which is defined at the extremities by longitudinal and 

circular fins and the air gap.  More detailed dimensions of the modeling domain are 

shown in Fig. 4.6. 
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Figure 4.4 Schematic of a heat pipe-assisted LTESS (front view) 

 

 
Figure 4.5 (a) Schematic of a 3D finned heat pipe; (b) A symmetry section of a PCM cell 
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Top view (Mirror symmetry 

between two longitudinal fins) 

 
Side view (From one circular fin to 

 the air gap) 

 Figure 4.6 Detail dimensions of a symmetrical section of a half PCM cell 

 

By incorporating heat pipes and fins into the PCM, the cost of the system in terms of 

dollars per kilowatt will inevitably be increased.  A reliable estimation of system cost 

plays a very important role in evaluating the economic feasibility of any proposed 

system.  In this paper, nonlinear programming is employed to find the optimal finned heat 

pipe geometries (Figs. 4.5 (a) & 4.6) that will result in minimum system cost.  Eqn. (2.1) 

shows the constrained nonlinear optimization formulation of the design problem for 

finned heat pipe-assisted LTESS.  As it is assumed that the whole LTESS system is 

composed of multiple identical finned heat pipes, the design variables are the dimensions 

of a single finned heat pipe, as shown in Fig. 4.6.  The thickness of the heat pipe, 𝑤ℎ𝑝 is 

fixed and a typical value 𝑤ℎ𝑝 = 1 16⁄  inch = 1.588 mm is used. 
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𝑚𝑖𝑛

𝑟1, 𝑟2, ℎ, 𝜃, 𝑤𝑙,𝑤𝑐
𝑔(𝑟1, 𝑟2, ℎ, 𝜃, 𝑤𝑙,𝑤𝑐)    

                                                 𝑡𝑜𝑝 = 𝑓𝐿𝑇𝑅(𝑟1, 𝑟2, ℎ, 𝜃, 𝑤𝑙,𝑤𝑐, 𝑃𝐶𝑀, 𝑓𝑖𝑛) 

                                                 0.5 cm ≤ 𝑟1 ≤ 4 cm 

                                                 2 ≤
𝑟2

𝑟1
≤ 20 

                         s. t.                1 ≤
ℎ

𝑟2
≤ 10                                                              (2.1) 

                                                 10° ≤ 𝜃 ≤ 90° 

                                                 0.5 mm ≤ 𝑤𝑙, 𝑤𝑐 ≤ 3 mm 

 

The variables 𝑟1, 𝑟2, ℎ, 𝜃, 𝑤𝑙,𝑤𝑐  specify the dimensions of the finned modeling 

domain.  The angle 𝜃  determines the number of longitudinal fins to be used, 𝑁𝑙 =

int(360 2𝜃⁄ ) ; where ‘int’ is used to get an integer number.  Consequently 90° 

corresponds to an optimal longitudinal fin number of 2.  As 90°is also the upper limit, it 

may also indicate that the optimizer suggests the use of no longitudinal fins.  The 

constraints on the ratios 
𝑟2

𝑟1
 and 

ℎ

𝑟2
 are determined by the 𝑓𝐿𝑇𝑅  model set up.  In the 

following, Section 3 introduces the construction and verification of the LTR model 𝑓𝐿𝑇𝑅.  

Section 4 presents the objective function and also optimal cost analysis.  Derivation of 

the cost function 𝑔(𝑟1, 𝑟2, ℎ, 𝜃, 𝑤𝑙,𝑤𝑐) is given in Appendix A.   

 

 

3 Layered Thermal Resistance model in 3D cylindrical coordinates 

The Layered Thermal Resistance (LTR) model was first proposed in [23] for 

rectangular and cuboidal geometries and was also extended to 2D cylindrical coordinates 

in [24].  In this paper, the LTR model for PCM solidification is extended to 3D 
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cylindrical geometries to model a new PCM domain indicated in Fig. 4.6.  The domain is 

bordered by circular and longitudinal fins and the heat pipe.  Figs. 4.7(a) & 4.7(b) show 

the schematic application of the LTR model to the 3D cylindrical PCM domain.  The key 

component of the LTR model is the assumption that the liquid PCM is solidified in a 

layer by layer manner and that the final solidification time is estimated by adding 

together the solidification times of all of the discrete layers.  The dotted lines in Fig. 

4.7(a) & 4.7(b) represent successive solid fronts.  The discrete layer in Figs. 4.7(a) 

represents a new annulus section from the top view, which has the same angle 𝜃 and 

radial ratio 
𝑟1

𝑟2
 as the original PCM shape, but in a shrinking manner to represent the 

solidification behavior.  The height of the liquid PCM is also shrinking, and is depicted in 

Fig. 4.7(b).  Variables 𝐷𝑖, 𝐸𝑖and 𝐻𝑖 designate the evolving location of the solidification 

front.  A detailed calculation of these parameters can be found in Appendix B.  The 

cylindrical PCM domain is cooled at three surfaces and while the liquid PCM domain is 

shrinking due to solidification, the heat transfer surface areas (for cooling energy going 

into the liquid PCM denoted as 𝑆1
𝑖 , 𝑆2

𝑖 , and 𝑆3
𝑖 ) are also shrinking.  There are three heat 

paths to the solidification front, represented by three thermal resistances, 𝑅1, 𝑅2 and 𝑅3.  

The modeling approach is given in Eqns. (3.1-3.7).  An average temperature difference 

0.5(𝑇ℎ𝑝 − 𝑇𝑚)  is used to account for the sensible energy, where 𝑇ℎ𝑝  is the cooling 

temperature and 𝑇𝑚 is the melting temperature of the PCM.  
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(a)  Top view 

 
(b)  Side view 

 
Figure 4.7 Sketch of the annular geometry with dimensions and boundary conditions 

 

 𝑅1
𝑖 =

𝐸𝑖

𝑆1
𝑖 𝑘𝑝𝑐𝑚

,                                     (3.1)      𝑅2
𝑖 =

𝐷𝑖

𝑆2
𝑖 𝑘𝑝𝑐𝑚

,             (3.2)    𝑅3
𝑖 =

𝐻𝑖

𝑆3
𝑖 𝑘𝑝𝑐𝑚

      (3.3) 

𝑅𝑡𝑜𝑡𝑎𝑙
𝑖 =

𝑅1
𝑖 𝑅2

𝑖 𝑅3
𝑖

𝑅1
𝑖 𝑅2

𝑖 +𝑅1
𝑖 𝑅3

𝑖 +𝑅2
𝑖 𝑅3

𝑖 ,                 (3.4)      𝑞𝑖 =
𝑇ℎ𝑝−𝑇𝑚

𝑅𝑡𝑜𝑡𝑎𝑙
𝑖 ,             (3.5) 

𝑡𝑖 =
∆𝑉𝑖𝜌𝑝𝑐𝑚[𝐿𝑝𝑐𝑚+0.5𝐶𝑝(𝑇ℎ𝑝−𝑇𝑚)]

𝑞𝑖 ,    (3.6)      𝑡𝑠 = ∑ 𝑡𝑖𝐾−1
𝑖=1 .           (3.7) 

Table 4.1 Annulus sector with different radii, angles and heights 

𝑟1 (cm) 1.0 1.0 1.0 1.0 1.0 0.5 0.1 

𝑟2 (cm) 2.0 3.0 4.0 6.0 9.0 7.0 2.0 

𝑟2 𝑟1⁄  2.0 3.0 4.0 6.0 9.0 14.0 20.0 

θ (°) 10 30 60 90 -- -- -- 

ℎ 𝑟2⁄  2.0 4.0 7.0 10.0 -- -- -- 

 

Table 4.2 PCM properties used in the simulations 

PCM 𝜌𝑝𝑐𝑚 𝑘𝑝𝑐𝑚 𝐶𝑝 𝐿𝑝𝑐𝑚 𝑇𝑚 

𝐶𝑎𝐶𝑙2 ∙ 6𝐻2𝑂 1538 kg/m
3
 1.09 W/(mK) 2145 J/(kgK) 170 kJ/kg 29.5 ℃ 

 

Table 4.1 shows 7 radial ratios 
𝑟2

𝑟1
  , 4 angles 𝜃 and 4 height-to-radius ratios 

ℎ

𝑟2
 for a 

3D annulus sector PCM domain.  With a combination (7 × 4 × 4) of the three variables 

𝑟2

𝑟1
, 𝜃, and ℎ 𝑟2⁄ , there are a total of 112 cases.  The angle 𝜃 covers a range from 10° to 
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90°.  The ℎ 𝑟2⁄  includes a ratio range from 2.0 to 10.0.  The ratio 
𝑟2

𝑟1
 ranges from 2.0 to 

20.0; where a ratio of 2.0 represents a case where a minimal compactness factor (CF) of 

75% is set for the heat pipe PCM system with no fins.  The CF of a PCM storage system 

is defined as the ratio of the volume of PCM to the volume of the whole system.  The 

traditional PCM encapsulated in spheres can reduce the storage density by 50% [30], 

while tubes in PCM tank arrangements can achieve CFs of over 90% [31].  Table 4.2 

shows the PCM properties used in the simulations. 

The Solidification & Melting Model in Fluent (commercial computational fluid 

dynamics (CFD) software) [32], which is based on the enthalpy-porosity method [33], is 

used to obtain numerical solutions to verify the LTR model.  For the enthalpy-porosity 

method, three regions, solid, liquid, and mushy zones, are defined in the computational 

domain.  Given a PCM’s melting range  ,lower upperT T  and a cell temperature 𝑇𝑐𝑒𝑙𝑙, a liquid 

fraction ranging from 0 to 1 is defined by Eqn. (3.8) and is used to identify the three 

regions.  The exact melting temperature used in the LTR model is defined as 𝑇𝑚 =

1

2
(𝑇𝑙𝑜𝑤𝑒𝑟 + 𝑇𝑢𝑝𝑝𝑒𝑟).  As the solidification process is conduction dominated [25], the 

continuity and momentum equations were turned off in the Fluent setup.  Validation of 

the solidification phenomenon predicted by the enthalpy-porosity method [32] compared 

to experimental data is available in Ismail’s work [33].  

 γ = {

   1,      𝑇𝑐𝑒𝑙𝑙 > 𝑇𝑢𝑝𝑝𝑒𝑟  
𝑇𝑐𝑒𝑙𝑙−𝑇𝑙𝑜𝑤𝑒𝑟

𝑇𝑢𝑝𝑝𝑒𝑟−𝑇𝑙𝑜𝑤𝑒𝑟
,      𝑇𝑙𝑜𝑤𝑒𝑟 ≤ 𝑇𝑐𝑒𝑙𝑙 ≤ 𝑇𝑢𝑝𝑝𝑒𝑟 

    0,     𝑇𝑐𝑒𝑙𝑙 > 𝑇𝑢𝑝𝑝𝑒𝑟  

                                                                 (3.8)     

 
For the CFD simulations corresponding to the cases in Table 4.1, the total number of 

elements used was 10,000-100,000 and the time step was 3-6 s, depending on the size of 
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the geometry. Sensitivity studies were performed to confirm mesh and time-step 

independence of the results presented.  The energy equation was discretized using the 

Second Order Upwind scheme.  A pressure based solver with double-precision was 

chosen. The convergence was checked at every 1 time steps with a scaled absolute 

residual of 10
-9

 that was used for the energy equation.  

The CFD results are treated as a trusted reference to verify the LTR model.  Fig.8 

displays the solidification time ratio 𝑡𝐶𝐹𝐷 𝑡𝐿𝑇𝑅⁄  surfaces found by comparison of the CFD 

and the LTR models for the variations of 𝜃 and 
𝑟2

𝑟1
 at 4 different 

ℎ

𝑟2
 ratios (Table 4.1).  The 

solidification time ratio between the two models (Fig. 4.8) actually indicates how much 

the thermal resistance is overestimated by the LTR model.  Thus a geometrically-

dependent ratio is introduced as a ‘tuning factor’ for the LTR model, which is used to 

adjust the total thermal resistance as shown in Eqn. (3.9).  The tuning factor is dependent 

on three geometric variables: the radial ratio 
r2

r1
, 𝜃, and 

ℎ

𝑟2
.  Thus a correlation between the 

tuning factor and the three geometric variables needs to be built, as shown in Eqn. (3.10).  

A custom support vector regression (SVR) method [35] was used to establish the 

correlation.  The 112 cases in Table 4.1 are used as the database to build the SVR model. 

Fig. 4.9 shows the tuning factor at 
ℎ

𝑟2
= 5 for varying 

r2

r1
 and 𝜃, determined through the 

SVR model.  The SVR model is also employed to predict a tuning factor given a new set 

of geometries, 
𝑟2

𝑟1
, 𝜃, and 

ℎ

𝑟2
 and it is used to adjust the total resistance of the LTR model as 

shown in Eqn. (3.9).  It should be noted that in the following sections, whenever the LTR 

model is mentioned, it refers to the LTR model with a tuning factor. 

 𝑅𝑡𝑜𝑡𝑎𝑙
𝑖 = 𝛼

𝑅1
𝑖 𝑅2

𝑖 𝑅3
𝑖

𝑅1
𝑖 𝑅2

𝑖 +𝑅1
𝑖 𝑅3

𝑖 +𝑅2
𝑖 𝑅3

𝑖                  (3.9)                        α = 𝑓 (
𝑟2

𝑟1
, 𝜃,

ℎ

𝑟2
)                      (3.10) 
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Figure 4.8 Solidification time ratio surfaces determined by CFD and LTR models without 

using tuning factors 

 

Table 4.3 Testing cases for the LTR model  

Cases #1 #2 #3 #4 #5 #6 #7 #8 

𝑟1 (cm) 2. 2. 2. 2.5 2.5 1.5 0.3 0.4 

𝑟2(cm) 5. 10. 14. 20. 12.5 15 4.5 7.2 

ℎ (cm) 10. 30 126 100. 100. 90. 18 36 

θ (°) 80. 40 20 50 70 15 45 85 

𝑑𝑇 (℃) 10. 10. 10. 20. 7. 15. 20. 30. 

𝑘𝑝𝑐𝑚 (W mK⁄ ) 1.09 1.09 1.09 2.0 2.0 0.5 0.5 2.0 

𝐿𝑝𝑐𝑚 (kJ kg⁄ ) 170 140 200 170 170 140 120 200 

𝛼 = 𝑓 (
𝑟2

𝑟1
, 𝜃,

ℎ

𝑟2
)  0.29 

 

0.36 0.44 0.37 0.37 0.47 0.34 0.38 
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Figure 4.9 Resistance tuning surface by support vector regression (SVR)  

 

Table 4.3 gives additional cases that are used to test the accuracy of the LTR 

model.  All of the testing cases in Table 4.3 have new dimensions compared to Table 

4.1.  Except for Case 1, the other cases also have different driving temperatures, PCM 

conductivity and latent energies compared to those of the original cases in Table 4.1, 

which were used to construct the tuning factor.  Once again we treat CFD simulation 

results as the trusted reference in comparison to the LTR model.  Estimation accuracy in 

terms of percent error is defined as: 

 ε =
(𝑡𝐿𝑇𝑅−𝑡𝐶𝐹𝐷)

𝑡𝐶𝐹𝐷
× 100%.                                                                                             (3.11) 

The performance of the LTR model is shown in Fig. 4.10.  Overall, the tuned LTR 

model accuracy is quite good, within 10% compared to the CFD results.   The results 

suggest that modifications of the PCM properties and driving temperature differences 

have almost no effect on the performance of the LTR model.  The tuning factor is almost 
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only dependent on the geometry.  It should be noted that the effect of the PCM density 

and heat capacity on the LTR model is not explicitly considered.  However, the PCM 

conductivity can indirectly represent the effects of density and heat capacity.  Together 

the three parameters define the thermal diffusivity 
𝑘𝑝𝑐𝑚

𝜌𝑝𝑐𝑚𝐶𝑝
, which is a dimensionless 

number that controls the behavior of the heat transfer process.  Consequently, once a 

tuning factor is identified based on a prescribed driving temperature and a certain kind of 

PCM, it can also be applied to cases with new driving temperature differences and new 

PCMs.  In this way the resistance tuning factor allows for flexibility for different 

applications.    

 
Figure 4.10 (a) Predictions of the 8 testing cases by the LTR model 

and (b) Percent error between the CFD and LTR results 

 

In this section, the model developed above is modified by attaching fins to the 3D 

cylindrical PCM domain.  In this way, a 3D finned LTR model is developed that is 

capable of modeling the finned PCM structure shown in Fig. 4.5.  The finned LTR model 

can then be efficiently used in the optimal design problem (Eqn. 2.1).  The longitudinal 

and circular fins attached to the PCM domain shown in Fig. 4.5 are also shown in Fig. 

4.6.  It is assumed that the heat pipe wall (𝑟1 is the outer radius of the heat pipe) maintains 
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a constant temperature 𝑇ℎ𝑝 and the remaining boundaries have zero heat flux.  

 

 
Top view 

 
Side view 

Figure 4.11 Sketch of the finned annular sector 

 

Conceptually it is assumed that there are three heat paths for cooling energy transfer 

to the PCM.  One is through the heat pipe wall, one is through the longitudinal fin and the 

last is through the circular fin.  The resistance of the heat pipe wall can be neglected.  It is 

assumed that the heat transfer within both the longitudinal and circular fins happens 

along one direction.  In addition, it is assumed that the lengths of the fins that are used to 

calculate the thermal resistances are varying parameters, which are the distances of the 

solidification front to the heat pipe wall (Eqns. 3.12 & 3.13): 

 𝑅𝑙
𝑖 =

𝐸𝑖

𝑤𝑙(ℎ−𝐻𝑖)𝑘𝑓
 ,                   (3.12)                 𝑅𝑐

𝑖 =
𝑙𝑛(𝐷𝑖 𝑟1⁄ )

2𝜋𝑤𝑐𝑘𝑓
                                     (3.13) 

Resistances 𝑅1 , 𝑅2  𝑅3  within the solid PCM (representing the paths that the cooling 

energy can take to reach the solidification front) are the same as those defined in the LTR 

model with no fins (Eqns. 3.1-3.3).  

Besides the fin resistances, the fin efficiency is also a key factor that must be 

considered when coupling fins to the PCM domain.  The derivations of fin efficiencies 𝜂𝑙, 

𝜂𝑐 for the longitudinal and circular fins, are respectively presented in Appendix C.  The 
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entire length of the fin is used for the fin efficiency calculation; the exact efficiencies 𝜂𝑙, 

𝜂𝑐 to be used for the coupling are obtained at the locations of the solidification fronts.  

The thermal resistance passing through these fins needs to be increased by 
1

𝜂𝑙
 and 

1

𝜂𝑐
, 

respectively, to account for the fin efficiency.  Eqn. (3.14) is the thermal resistance for the 

heat passing through the longitudinal fin to the solidification front. Eqn. (3.15) is the 

thermal resistance for the heat passing through the circular fin to the solidification front.  

Eqn. (3.16) shows the total thermal resistance of the system shown in Fig. 4.11.  The heat 

flux and solidification time calculations are the same as Eqns. (3.5-3.7). 

𝑅1
∗ = 𝑅𝑙 +

1

𝜂𝑙
𝑅1                           (3.14)            𝑅3

∗ = 𝑅𝑐 +
1

𝜂𝑐
𝑅3                                 (3.15) 

𝑅𝑡𝑜𝑡𝑎𝑙 = 𝛼
𝑅1

∗𝑅2𝑅3
∗

𝑅1
∗𝑅2+𝑅2𝑅3

∗+𝑅1
∗𝑅3

∗                                                                                            (3.16) 

To test the prediction capabilities of the finned LTR model, 2 geometries with different 

PCM properties are considered in Table 4.4.  For each of the geometries, three fin 

thicknesses (0.5 mm, 1.0 mm, 2.0 mm) and two types of fin material, aluminum alloy 

6061 (Al-6061) and carbon steel (CS) are also considered.  The conductivity of the 

aluminum alloy fin is 170 W/(mK), and that of the carbon steel is 50 W/(mK). 

Table 4.4 Additional test cases for the Finned LTR model with tuning factor 

Cases #1 #2 

𝑟1  (cm) 4 0.5 

𝑟2 (cm) 12 8 

ℎ (cm)   96 40 

𝜃 (°) 15 35 

𝐿𝑝𝑐𝑚 (kJ kg⁄ ) 150 180 

𝑘𝑝𝑐𝑚 (W mK⁄ ) 1.0 1.5 

dT (℃) 10 20 

𝛼 (tuning factor) 0.33 0.31 
 

Figure 4.12 shows the solidification times and percentage errors (Eqn. (3.11)) for all 
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the cases.  Most of the cases have a percentage error within 15%, except for Case #1*, 

with a carbon-steel material and 0.5mm fin thickness. Note that the’*’ denotes all same 

parameters as #1 and #2, except the fin material is CS.  The reason is that when the fin 

efficiency drops to below a certain low value, the finned LTR model will tend to 

overestimate the solidification time.  More detailed analysis of the limitations of the 

finned LTR model can be found in [23].  It can also be seen that the aluminum alloy fins 

perform better than the carbon-steel fins.  Overall the accuracy is acceptable and further 

discussion of how the solidification time errors will affect the optimal solutions will be 

given in the next section. 

(‘#1, #2 denotes Al-6061 fins and #1*, #2* denotes CS fins;  Every three consecutive 

points represent three different fin thicknesses, 0.5 mm, 1. mm, 2. mm.) 

 
Figure 4.12 Solidification times and percent errors by the CFD and finned LTR models.   

 

 

4 Sensitivity analyses of system parameters on the minimal cost of the 

finned HP-LTES system 

This section introduces the cost function, the optimal dimensions of the HP-LTES 
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system (See Fig. 4.4), and cost sensitivity analysis for a set of variables (See Table 4.5).  

For the sensitivity analysis, when one variable is altered, the others take the base values.  

Material and manufacturing cost compose the main investment cost of the HP-LTES 

system.  As the manufacturing cost is an uncertain variable, it is assumed that the system 

cost is based on the material cost times a manufacturing factor, i.e. 2.0.  Thus the cost 

function in the optimal design analysis depends only on material usage.  The detailed 

derivation of the cost function is presented in Appendix A.   

Table 4.5 Parameters for Sensitivity Analysis 

Parameters Base case values 

Driving temperature difference,  𝑑𝑇 10 (℃) 

Required solidification time, 𝑡𝑜𝑝 10 (hrs) 

PCM conductivity, 𝑘𝑝𝑐𝑚 1.0 (W mK⁄ ) 

PCM latent energy, 𝐿𝑝𝑐𝑚 170 (kJ kg⁄ ) 

Heat pipe radius, 𝑟1 1.0 (cm) 

Minimal fin thickness, 𝑤𝑓𝑚𝑖𝑛
 0.5 (mm) 

 

The optimal design goal is to use the least amount of heat pipes and fins to freeze a 

given amount of PCM within the required solidification time 𝑡𝑜𝑝.  This is formulated as a 

nonlinear programming problem in Section 2, Eqn. (2.1).  With the LTR model (𝑓𝐿𝑇𝑅) as 

the system constraint, and the cost function presented in Appendix A, the optimal design 

variables 𝑟1, 𝑟2, ℎ, 𝜃, 𝑤𝑙,𝑤𝑐  can be found by solving Eqn. (2.1).  As it is a nonlinear 

constrained optimization problem, ‘fmincon’ (a gradient based method) within the 

MATLAB optimization toolbox was employed to solve the problem [36].   

Table 4. 6 Optimal dimensions for different solidification times 

𝑡𝑜𝑝 (hrs) 𝑟1 (cm)  𝑟2 (cm) h (cm) 𝜃 (º) 𝑤𝑙 (mm) 𝑤𝑐 (mm) 

5 1.0 6.01 60.06 38.60 0.5 0.5 

6 1.0 6.31 63.05 40.76 0.5 0.5 

8 1.0 6.84 68.38 43.98 0.5 0.5 

10 1.0 7.31 73.07 46.30 0.5 0.5 

𝑓𝑖𝑛 ∶ 𝐴𝑙 6061 ;   𝑘𝑝𝑐𝑚 = 1.0 W mK⁄ ;   𝐿𝑝𝑐𝑚 = 170 kJ kg⁄ ; 
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Table 4.6 shows optimal dimensions under 4 different required solidification times 

𝑡𝑜𝑝 .  To further verify the optimal results, the set of optimal dimensions 

(𝑟1, 𝑟2, ℎ, 𝜃, 𝑤𝑙,𝑤𝑐) in Table 4.6 were evaluated by running CFD simulations in Fluent 

following the procedure outlined in Section 3.  The predicted solidification curves of the 

4 cases are shown in Fig. 4.13.  It can be seen that all of the CFD solidification times are 

almost equal to the 𝑡𝑜𝑝 specified by the optimization formulation, Eqn. (2.1).  The finned 

LTR model for the Al-6061 fin cases has errors that can reach more than 10% (see Fig. 

4.12) in terms of solidification time.  However, if the errors are instead calculated in 

terms of solid fraction under a specified 𝑡𝑜𝑝 , the error almost diminishes to an 

insignificant value (<0.5%).  This is mainly because of the “tailing” effect.  The tailing 

effect refers to the situation when almost 70% of the PCM can be solidified within half of 

the total solidification time, and at the final stage, a small amount of PCM takes a 

relatively long time to solidify.  Thus, error in terms of the solid fraction is greatly 

diminished.  This phenomenon verifies the reliability of the finned LTR model for 

optimal PCM fin structure design applications. 
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Figure 4.13 CFD verifications of the cases with optimal dimensions in Table 4.6 

 

It should be noted that the heat pipe radius 𝑟1  was treated as a parameter for 

sensitivity analysis because the optimal 𝑟1  is always at the lower boundary of the 

constraint specified on 𝑟1 in Eqn. (2.1).  By varying the lower boundary of 𝑟1, it becomes 

a sensitivity parameter for the analysis.  The same situation occurs for the thicknesses of 

both the longitudinal and circular fins.  Their optimal values are always equal to their 

lower prescribed bounds.  Thus, the lower bound thickness 𝑤𝑓𝑚𝑖𝑛
 for both of the two fins 

was treated as a sensitivity parameter for analysis.  

The minimal cost and optimal dimensions under the varying parameters (See Table 

4.5) are shown in Figs. 4.14-4.19.  Subfigure (a) in those figures shows the minimized 

cost under the varying parameter of interest; subfigures (b), (c) and (d) in Fig. 4.14-4.19 

show the corresponding optimal 𝑟2 𝑟1⁄ , ℎ 𝑟2⁄  and 𝜃.  In Fig. 4.20, the x-axis represents the 

varying range of the parameters in Table 4.6 divided by their respective base values; and 

the y-axis represents all of the minimized costs using the varying parameters divided by 

the minimized cost under the base parameter values.  Fig. 4.20 clearly shows that the 
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latent energy of the PCM (𝐿𝑝𝑐𝑚) has the first-order sensitive effect on the system cost; 

the driving temperature difference (𝑑𝑇), the required solidification time (𝑡𝑜𝑝), the PCM 

conductivity (𝑘𝑝𝑐𝑚) and the thickness of the fins (𝑤𝑓𝑚𝑖𝑛
) have second-order sensitivity 

effect; the radius of the heat pipe (𝑟1) has the smallest sensitivity effect.  The sensitivity 

results of the fin thickness also suggest that the fins attached to a heat pipe should be as 

thin as possible in order to lower the system cost.  When the fin thickness is equal to or 

larger than 1.5 mm, the optimal 𝜃 reaches the upper boundary 90°, which implies that at 

most 2 longitudinal fins should be used to achieve optimal cost (or no longitudinal fins).  

As a result, it can be concluded that there is a thickness limit for the fins to be 

economically welded on a heat pipe. 

All of the optimal ℎ 𝑟2⁄  shown in subfigures (c) of Figs. 4.14-4.19 reach the upper 

limit set as 10:1 in the optimization formulation Eqn. (2.1), except for the case of varying 

heat pipe radius (Fig .4.18c).  For the optimal ℎ 𝑟2⁄  ratio points that are less than 10, their 

𝑟2 𝑟1⁄  values are smaller, i.e. less than 5 (Fig. 4.18b).  Thus, it appears that when 𝑟2 𝑟1⁄  is 

larger than a certain value, i.e. 5, the longitudinal fin is more economical than the circular 

fin.  To further confirm this result, comparison to a previously reported 2D model with 

only longitudinal fins [24] is made.  The boundary conditions and material properties for 

the two models are all the same as the base values in Table 4.6.  Fig. 4.21 shows the cost 

comparison between attaching only longitudinal (2D) fins on a heat pipe and attaching 

both circular and longitudinal (3D) fins.  The results show that at larger heat pipe radii, 

which also means smaller  𝑟2 𝑟1⁄  ratio (see Fig.4.18 (b), (c)), the combination of circular 

and longitudinal fins can achieve some economic benefit over using only longitudinal 

fins.  However, the benefit is small.  The overall conclusion is that the longitudinal fins 
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are not better for cost-effective performance than the circular fins.  Moreover, for a 

vertically arranged annular pipe with circular fins, it has been elsewhere reported that, 

due to the solid sinking phenomenon, circular fins can be very efficient in promoting the 

melting process [37].  

 
Figure 4.14 Sensitivity analysis of driving temperature difference and optimal dimensions 

 

5.0 8.0 11.0 14.0 17.0 20.0
25

30

35

40

45

50

dT (C)

O
p
ti
m

a
l 
c
o
s
t 

($
/k

W
)

(a) Sensitivity of dT

5.0 8.0 11.0 14.0 17.0 20.0
4

6

8

10

dT (C)

r 2
/ 

r 1

(b) Optimal r
2
 / r

1

5.0 8.0 11.0 14.0 17.0 20.0
9

9.5

10

10.5

11

dT (C)

h
/r

2

(c) Optimal h/r
2

5.0 8.0 11.0 14.0 17.0 20.0
20

40

60

80

dT (C)


 (
 )

(d) Optimal  



114 

 
Figure 4.15 Sensitivity analysis of the solidification time and optimal dimensions 

 

 
Figure 4.16 Sensitivity analysis of PCM conductivity and optimal dimensions 
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Figure 4.17 Sensitivity analysis of PCM latent energy and optimal dimensions 

 

 
Figure 4.18 Sensitivity analysis of heat pipe radius and optimal dimensions 
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Figure 4.19 Sensitivity analysis of minimum fin thickness and optimal dimensions 

 

 
Figure 4.20 Cost sensitivity comparison of the 6 parameters in Table 4.6 
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Figure 4.21 Cost comparison between using only longitudinal (2D) fins and using 

combined longitudinal and circular (3D) fins  

 

 

5. Conclusions  
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the system cost; the driving temperature difference, the PCM conductivity, the required 

solidification time and the fin thickness all have second-order impact on the system cost.  

The sensitivity analysis suggests that the fins attached to a heat pipe should be as thin as 

possible in order to lower system cost.  Based on the optimal dimensions of the attached 

circular and longitudinal fins, it can also be concluded that the longitudinal and circular 

fins attached to a heat pipe have similar performance in terms of cost effectiveness.  Thus 

the final decision on which type of fins should be attached to a heat pipe may be better 

decided based on their associated manufacturing costs, which is not explicitly accounted 

for in this paper.   
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Appendix  

A. Cost Function of a finned heat pipe assisted LTESS 

There are two main assumptions to derive the cost function of a full scale heat 

finned heat pipe assisted LTESS shown in Figs. 5(a) & 6.  One is that there is negligible 

temperature drop along the length of a heat pipe, so that each unit has same boundary 

conditions. The other one is that each heat pipe has the same temperature boundary 

conditions at the air side fins, so that all of the finned heat pipe units are identical.  

𝑉𝑝𝑐𝑚 =
𝐺𝑡𝑜𝑝

𝐿𝑝𝑐𝑚𝜌𝑝𝑐𝑚
                                                                                                                    (A.1) 

𝑁𝑐 = 𝑖𝑛𝑡 (
𝐻𝑃

ℎ+𝑤𝑐
)                                                                                                                (A.2) 

𝑉ℎ𝑝_𝑝𝑐𝑚 = 𝑁𝑐(𝜋(𝑟2
2 − 𝑟1

2)ℎ − 𝑁𝑙𝑤𝑙(𝑟2 − 𝑟1)ℎ)                                                                  (A.3) 

𝑁ℎ𝑝 = int (
𝑉𝑝𝑐𝑚

𝑉ℎ𝑝_𝑝𝑐𝑚
)                                                                                                                  (A.4) 

𝑉ℎ𝑝 = 𝑁ℎ𝑝[𝜋(𝑟1
2 − 𝑟0

2)𝐻𝑃]                                                                                              (A.5) 

𝑉𝑓 = 𝑁ℎ𝑝𝑁𝑐(𝑁𝑙𝑤𝑙(𝑟2 − 𝑟1)ℎ + 𝜋(𝑟2
2 − 𝑟1

2)𝑤𝑐)                                                                  (A.6) 

𝐶 = 𝐶𝑝𝑐𝑚𝑀𝑝𝑐𝑚 + 𝐶ℎ𝑝𝑀ℎ𝑝 + 𝐶𝑓𝑀𝑓 

  = 𝐶𝑝𝑐𝑚
𝐺𝑡𝑜𝑝

𝐿𝑝𝑐𝑚
+ 𝐶ℎ𝑝𝑁ℎ𝑝𝜌ℎ𝑝[𝜋(𝑟1

2 − 𝑟0
2)𝐻𝑃] + 

          𝐶𝑓𝜌𝑓𝑁ℎ𝑝𝑁𝑐(𝑁𝑙𝑤𝑙(𝑟2 − 𝑟1)ℎ + 𝜋(𝑟2
2 − 𝑟1

2)𝑤𝑐)                                                          (A.7) 

  𝐶 = 𝐶𝑝𝑐𝑚
𝐺𝑡𝑜𝑝

𝐿𝑝𝑐𝑚
+ int (

𝐺𝑡𝑜𝑝

 𝜌𝑝𝑐𝑚𝐿𝑝𝑐𝑚

𝑁𝑐(𝜋(𝑟2
2−𝑟1

2)ℎ−𝑁𝑙𝑤𝑙(𝑟2−𝑟1)ℎ)
) {𝐶ℎ𝑝𝜌ℎ𝑝[𝜋(𝑟1

2 − 𝑟0
2)𝐻𝑃] +

 𝐶𝑓𝜌𝑓𝑁𝑐(𝑁𝑙𝑤𝑙(𝑟2 − 𝑟1)ℎ + 𝜋(𝑟2
2 − 𝑟1

2)𝑤𝑐)}                                                                        (A.8) 
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𝐶 = 𝐶𝑝𝑐𝑚
𝐺𝑡𝑜𝑝

𝐿𝑝𝑐𝑚
+  

𝐺𝑡𝑜𝑝{𝐶ℎ𝑝𝜌ℎ𝑝𝜋(𝑟1
2−𝑟0

2)(ℎ+𝑤𝑐)+𝐶𝑓𝜌𝑓(𝑁𝑙𝑤𝑙(𝑟2−𝑟1)ℎ+𝜋(𝑟2
2−𝑟1

2)𝑤𝑐)}

𝐿𝑝𝑐𝑚𝜌𝑝𝑐𝑚(𝜋(𝑟2
2−𝑟1

2)ℎ−𝑁𝑙𝑤𝑙(𝑟2−𝑟1)ℎ)
                (A.9) 

To derive Eqn.A.9, the integer value obtained by the operation int () in Eqn. A.8 is 

approximated by its real value. 

𝐶 =
𝐶𝑝𝑐𝑚𝐺𝑡𝑜𝑝

𝐿𝑝𝑐𝑚
(1 +

𝐶ℎ𝑝𝜌ℎ𝑝𝜋(𝑟1
2−𝑟0

2)(ℎ+𝑤𝑐)+𝐶𝑓𝜌𝑓(𝑁𝑙𝑤𝑙(𝑟2−𝑟1)ℎ+𝜋(𝑟2
2−𝑟1

2)𝑤𝑐)

𝐶𝑝𝑐𝑚𝜌𝑝𝑐𝑚(𝜋(𝑟2
2−𝑟1

2)ℎ−𝑁𝑙𝑤𝑙(𝑟2−𝑟1)ℎ)
)                     (A.10) 

In Eqn. (A.8), 𝑁𝑙 = 𝑖𝑛𝑡 (
2𝜋

2𝜃
), and it is approximated as 𝑁𝑙 ≈

𝜋

𝜃
.  Thus 

  𝐶 ≈  
𝐶𝑝𝑐𝑚𝐺𝑡𝑜𝑝

𝐿𝑝𝑐𝑚
(1 +

𝐶ℎ𝑝𝜌ℎ𝑝𝜋(𝑟1
2−𝑟0

2)(ℎ+𝑤𝑐)+𝐶𝑓𝜌𝑓(
𝜋

𝜃
𝑤𝑙(𝑟2−𝑟1)ℎ+𝜋(𝑟2

2−𝑟1
2)𝑤𝑐)

𝐶𝑝𝑐𝑚𝜌𝑝𝑐𝑚(𝜋(𝑟2
2−𝑟1

2)ℎ−
𝜋

𝜃
𝑤𝑙(𝑟2−𝑟1)ℎ)

) 

  =
𝐶𝑝𝑐𝑚𝐺𝑡𝑜𝑝

𝐿𝑝𝑐𝑚
(1 +

𝐶ℎ𝑝𝜌ℎ𝑝𝜃(𝑟1
2−𝑟0

2)(ℎ+𝑤𝑐)+𝐶𝑓𝜌𝑓(𝑤𝑙(𝑟2−𝑟1)ℎ+𝜃(𝑟2
2−𝑟1

2)𝑤𝑐)

𝐶𝑝𝑐𝑚𝜌𝑝𝑐𝑚(𝜃(𝑟2
2−𝑟1

2)ℎ−𝑤𝑙(𝑟2−𝑟1)ℎ)
)                         (A.11) 

g(ℎ, 𝑟1, 𝑟2, 𝑤𝑙, 𝑤𝑐, 𝜃) =
𝐶ℎ𝑝𝜌ℎ𝑝𝜃(𝑟1

2−𝑟0
2)(ℎ+𝑤𝑐)+𝐶𝑓𝜌𝑓(𝑤𝑙(𝑟2−𝑟1)ℎ+𝜃(𝑟2

2−𝑟1
2)𝑤𝑐)

𝐶𝑝𝑐𝑚𝜌𝑝𝑐𝑚(𝜃(𝑟2
2−𝑟1

2)ℎ−𝑤𝑙(𝑟2−𝑟1)ℎ)
                  (A.12) 

 

During the derivation of the cost equation g(ℎ, 𝑟1, 𝑟2, 𝑤𝑙, 𝑤𝑐, 𝜃) in Eqns. A.8, A.9 and 

A.10, an integer value is approximated by a real value in order to simplify the final 

objective expression. This simplification has little impact on the optimal solutions. In 

Eqn. A.11, only the second term is dependent on the design variables(ℎ, 𝑟1, 𝑟2, 𝑤𝑙, 𝑤𝑐, 𝜃), 

so Eqn. A.12 becomes the final cost equation to be used in the optimization formulation, 

which is the cost ratio between the heat pipe with fins and the PCM material.  A smaller 

ratio value indicates smaller overall system cost. The prices of the PCM and the fin and 

heat pipe materials used in the optimization are shown in Table 4.7.  

Table 4.7  Cost of materials 

Materials  PCM (𝐶𝑎𝐶𝑙2 ∙ 6𝐻2𝑂) Al-6061 Carbon-steel 

Cost ($ kg⁄ )   0.1 2.0 0.5 

 

B. Discretized 𝑫𝒊, 𝑳𝒊and 𝑯𝒊 
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(a) Top view 

 
(b)  Side view 

 
(c) Simplified top view 

Figure 4.22 Schematic discretization of a 3D annular sector domain 

 

The discretization strategy is that each new unsolidified PCM area (the dotted line) 

maintains the same annulus sector shape as the original shape of the PCM.  This strategy 

allows for the PCM to solidify in a self-similar shrinking manner.  It is assumed that there 
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are 𝐾 shrinking annulus sectors (including the original one).  So for each new annulus 

sector,𝜃 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡,  𝑟2
𝑖 𝑟1

𝑖 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡⁄ ; and for all the shrinking annulus sectors, 𝑟2
𝑖 is 

always located at its original position 𝑟2 while the location for each 𝑟1
𝑖 is 𝑟1

𝑝,𝑖
 =𝑟2 − (𝑟2

𝑖 −

𝑟1
𝑖) .  Thus the solidification front distance 𝐷𝑖 can be calculated as 𝐷𝑖 = 𝑟1

𝑝,𝑖 − 𝑟1 (Figure 

4.22 (a)).  The discretized solidification front along the height is 𝐻𝑖 =
ℎ

𝐾−1
𝑖 (Figure 4.22 

(b)). 𝐸𝑖  is an arc length but is approximated here.  As shown in Figure 4.22 (c), the N

shrinking annulus sectors are simply represented by a series of triangles, then 𝐸𝑖 =

𝐴𝑠𝑖𝑛(𝜃)
𝑖𝑟2

𝐾−1
, where 𝐴 is a geometric factor to account for the use of a line segment to 

represent an arc.  It is found that 𝐴 = √
𝜋

2
 gives good agreement for the finned LTR 

model. 

 

C. Fin efficiency calculation 

(a) Longitudinal fin 

The fin extended from the heat pipe is approximated by a 1D conduction bar. 

As shown in Figure 4.23, it has a constant temperature at one end and a heat flux 

boundary condition on the PCM side; the other end and side have zero heat flux. 

Based on an energy balance of the bar, following is the fin efficiency calculation: 
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Figure 4.23 Geometry and boundary conditions for the 1D bar efficiency calculation 

 

Energy balance on a small discrete element (∆x):   

𝑄𝑐 +
𝑑𝑄𝑥

𝑑𝑥
∆𝑥 = 0,                                                                                                           C. a1 

where 𝑄𝑥 = −𝑘𝑓𝐴
𝑑𝑇

𝑑𝑥
, 𝑄𝑐 = 𝑢𝑝𝑐𝑚𝑆(𝑇 − 𝑇𝑝𝑐𝑚), 𝐴 = 𝜎𝑤𝑙 , 𝑆 = 𝜎∆𝑥,  𝑢𝑝𝑐𝑚 = 𝑘𝑝𝑐𝑚 𝐸⁄ .  So,  

 
𝑑

𝑑𝑥
(−𝑘𝑓𝐴

𝑑𝑇

𝑑𝑥
) + 𝑢𝑝𝑐𝑚𝑆(𝑇 − 𝑇𝑝𝑐𝑚) = 0.                                                                     C. a2  

Assuming 𝜃 = 𝑇(𝑥) − 𝑇𝑝𝑐𝑚,  

 
𝑑2𝜃

𝑑𝑥2 −
𝑘𝑝𝑐𝑚

𝑘𝑓𝑤𝑙𝐸
𝜃 = 0.                                                                                                       C. a3 

With the boundary conditions,𝜃|𝑥=0 = 𝑇ℎ𝑝 − 𝑇𝑝𝑐𝑚, 
𝜕𝜃

𝜕𝑥
|

𝑥=𝑟2−𝑟1

= 0, and  𝜉2 =
𝑘𝑝𝑐𝑚

𝑘𝑓𝑤𝑙𝐸
, the 

solution can be obtained as: 

 θ = (𝑇ℎ𝑝 − 𝑇𝑚)(𝑐𝑜𝑠ℎ(𝜉𝑥) − 𝑡𝑎𝑛ℎ(𝜉𝑥)𝑠𝑖𝑛ℎ(𝜉𝑥)).                                                    C. a4  

Then the fin efficiency is: 

𝜂 =
𝑇(𝑥)−𝑇𝑝𝑐𝑚

𝑇ℎ𝑝−𝑇𝑚
= 𝑐𝑜𝑠ℎ(𝜉𝑥) − 𝑡𝑎𝑛ℎ(𝜉𝑥)𝑠𝑖𝑛ℎ(𝜉𝑥),                                                       C. a5 

where 𝐸 is the melting front distance away from the fin calculated in Appendix A. The 

heat transfer coefficient at the PCM side is assumed to be the conductivity of the PCM 

divided by the melting front distance,  𝑢𝑝𝑐𝑚 = 𝑘𝑝𝑐𝑚 𝐸⁄ .  As 𝐸  will affect the fin 
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efficiency, a reasonable layered discretization strategy to calculate 𝐸 is important for the 

successful performance of the tuned LTR model coupled with fins. However for pure 

PCM domain modeling, 𝐸 is not that important, because the tuning surface will correct 

for the effect of 𝐸. 

 

(b) Circular fin 

The fin extended from the heat pipe is approximated by a 1D conduction bar. As 

shown in Figure 4.24, it has a constant temperature at one end and heat flux boundary 

condition on the PCM side; the other end and side have zero heat flux. Based on an 

energy balance of the bar, the fin efficiency is: 

 
(a) Side view 

 
(b) Top view 

Figure 4.24 Circular fin 

 

𝑄𝑟 = 𝑄𝑟+∆𝑟 + 𝑄 𝑐                                                                                                          C. b1 

𝑄𝑟+∆𝑟 = 𝑄𝑟 +
𝑑𝑄𝑟

𝑑𝑟
∆𝑟                                                                                                            C. b2 

𝑑𝑄𝑟

𝑑𝑟
∆𝑟 + 𝑄𝑐=0                                                                                                                                            C. b3 

𝑄𝑟 = −𝑘𝑓2𝜋𝑟𝑤𝑐
dT   

𝑑𝑟
                                                                                                                               C. b4 

𝑄𝑐 = 𝑢𝑝𝑐𝑚2𝜋𝑟∆𝑟(𝑇 − 𝑇𝑚)                                                                                                                  C. b5 

𝑑

𝑑𝑟
(−𝑘𝑓2𝜋𝑟𝑤𝑐

dT   

𝑑𝑟
) ∆𝑟 + 𝑢𝑝𝑐𝑚2𝜋𝑟∆𝑟(𝑇 − 𝑇𝑚) = 0                                                                C. b6 
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Introduce 𝜃 = (𝑇 − 𝑇𝑚), then Eqn. C.b6 becomes: 

𝑟
𝑑2𝜃

𝑑𝑟2 +
𝑑𝜃

𝑑𝑟
−

𝑢𝑝𝑐𝑚

𝑘𝑓𝑤𝑐
𝑟𝜃 = 0                                                                                                     C. b7 

Set 𝑠 = √
𝑢𝑝𝑐𝑚

𝑘𝑓𝑤𝑐
𝑟, then Eqn. C. b7 converts to, 

𝑠2 𝑑2𝜃

𝑑𝑠2
+ 𝑠

𝑑𝜃

𝑑𝑠
− 𝑠2𝜃=0                                                                                                                             C. b8 

C.b8 is Modified Bessel’s equation of zero order; its solution is given by 

𝜃 = 𝐶1𝐼𝑣(𝑠) + 𝐶2𝐾𝑣.                                                                                                                               C. b9 

𝑇(𝑟) − 𝑇𝑝𝑐𝑚 = 𝐶1𝐼𝑣 (√
𝑢𝑝𝑐𝑚

𝑘𝑓𝑤𝑐
𝑟) + 𝐶2𝐾𝑣 (√

𝑢𝑝𝑐𝑚

𝑘𝑓𝑤𝑐
𝑟),                                                                C.b10 

where 𝐼𝑣(𝑠) is the modified Bessel function of the first kind; 𝐾𝑣(𝑠) is the modified Bessel 

function of the second kind. 𝐶1  and 𝐶2  are determined by the boundary conditions, 

𝑇|𝑟=𝑟1
= 𝑇ℎ𝑝 and 

𝜕𝑇

𝜕𝑟
|𝑟=𝑟2

= 0 
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Chapter 5  

 

Cost optimal design and sensitivity analysis of a 

shell and tube latent thermal energy storage 

system constrained by operational 

requirements 

(Pan C., Vermaak N., Romero C., Neti S., et al. Cost optimal design and sensitivity 

analysis of a shell and tube latent thermal energy storage system constrained by 

operational requirements. Applied Energy, under review.) 
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Abstract 

Shell and tube heat exchanger-based latent thermal energy storage (LTES) systems are 

promising configurations being considered for various thermal energy management 

applications.  Due to their nonlinear and transient behavior, it is computationally 

expensive to optimize their design.  LTES design optimizations are often based on 

parametric studies, which neglect the interaction between design variables in this 

complex system, resulting in unrealistic performance enhancements.  In this paper, a 

general efficient modeling procedure for a shell and tube heat exchanger-based LTES unit 

is proposed. It is based on an explicit analytic solution for 1-D solidification in an annular 

geometry that is also developed in this paper.  With this efficient computational 

procedure, a nonlinear programming formulation for cost optimization design of a shell 

and tube unit for the LTES system under operational constraints is presented.  One of the 

main findings of the sensitivity analysis performed is that larger storage effectiveness is 

provided by smaller optimal heat transfer fluid (HTF) velocity in a single tube.  The 

implication is that for a given heating/cooling load, more tubes are needed to handle a 

fixed amount of HTF mass flowrate, resulting in relatively higher storage capacity 

investment costs.  This could indicate that the common practice of setting storage 

effectiveness as an optimization target is misleading.  Other findings related to optimal 

PCM conductivity, HTF velocities, component geometry, and system costs are reported 

and discussed. 

Key words: Shell and tube heat exchanger, Latent thermal energy storage, Analytic 

solidification solutions, Cost optimal design, Nonlinear programming 

 
*: Corresponding author 
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Nomenclature 

𝑇𝑚 

𝑇𝑤 

𝑥 

𝑊 

∆x 

𝐿𝑝𝑐𝑚 

𝑘𝑝𝑐𝑚 

𝐶𝑝𝑚 

𝜌𝑝𝑐𝑚 

휀𝑟 

휀𝑐 

𝑞1,2 

A 

𝑟0 

𝑟 

𝑟𝑤 

∆𝑟 

𝑍 

𝛼 

𝜌𝑓 

𝐶𝑝𝑓 

𝜇𝑓 

𝑘𝑓 

𝑇𝑓 

𝑇𝑖
𝑓,𝑘

 

𝑇𝑝𝑐𝑚 

𝑇0 

𝐿 

∆𝑧 

PCM melting temperature, ℃ 

Cooling temperature at the boundary, ℃ 

Moving solidification front, m 

Length of 1-D PCM bar, m 

Incremental length step, m 

Latent energy of PCM, kJ kg⁄  

PCM Conductivity, W mK⁄  

PCM specific heat, J kgK⁄  

PCM density, kg m3⁄  

Fraction factor for sensible energy for rectangular geometry 

Fraction factor for sensible energy for cylindrical geometry 

Heat fluxes, W 

Section surface area for the 1-D PCM bar, 𝑚2 

Inner radius of an annulus,m 

Moving solidification front in annular geometry, m 

Outer radius of the annular cylinder PCM, m 

Incremental length step along the radial direction, m 

The axis length of the annular cylinder PCM, m 

Ratio of solidification fronts between two coordinate systems 

Density of the HTF, kg m3⁄  

Heat capacity of the HTF, J kgK⁄  

Viscosity of the HTF, Pa ∙ s 

Conductivity of the HTF, W mK⁄  

Temperature profile of the HTF in the tube, ℃ 

HTF tube temperature at a discrete point and time step, ℃ 

Temperature profile in the cylinder PCM, ℃ 

Interface temperature between the tube and the cylinder PCM, ℃ 

Total length of the tube, m 

Incremental length step along the tube, m 
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𝑇𝑖𝑛 

𝑇𝑜𝑢𝑡 

𝑢𝑓 

𝑅𝑝𝑐𝑚
𝑖  

𝑅𝑓 

η 

𝑄𝑚 

Yrs 

𝐶𝑜𝑝 

𝐶𝑒 

𝐶𝑡𝑢𝑏𝑒 

𝐶𝑝𝑐𝑚 

𝑡𝑜𝑝 

∆𝑃 

Ω𝑝 

𝑃𝑠 

Inlet temperature of the HTF, ℃ 

Output temperature of the HTF, ℃ 

HTF velocity of the HTF in the tube, m s⁄  

Thermal resistance within the cylinder PCM, K W⁄  

Thermal resistance within the HTF, K W⁄  

Latent energy storage effectiveness 

Mass flowrate of the HTF, kg s⁄  

Total equipment lifetime, years 

Operational cost, $ 𝑦𝑟⁄  

Price of electricity, $ kWhr⁄  

Cost of tube material, $ 𝑘𝑔⁄  

Cost of PCM material, $ 𝑘𝑔⁄  

Hours of operation per day, hrs 

Pressure drop,  Pa 

Pump efficiency 

Energy storage capacity cost, $ kWh⁄  

 

 

1.  Introduction 

Phase change materials (PCM) are receiving greater research attention as their high 

energy density during phase changes is a desired property for many thermal energy 

storage applications [1-3].  A shell and tube latent thermal energy storage (LTES) unit is 

one of the most popular configurations for study and application [4-13], as it is simple, 

compact and commercially available.  Gasia et al. [8] experimentally tested the influence 

of the addition of fins and the use of two different heat transfer fluids in four different 

shell and tube heat exchanger-based LTES systems.  Riahi et al. [9] numerically 
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investigated the performance of parallel and counter flow configurations of a shell and 

tube heat exchanger-based LTES system both in vertical and horizontal orientations.  

Kousha et al. [10] experimentally studied the performance of a shell and tube based 

LTES system subjected to inclination angle variations.  Parsazadeh et al. [11] presented a 

numerical and statistical study of the heat transfer and energy storage performance of a 

vertical shell and tube LTES unit with CuO-water nanofluid in the tube and CuO 

nanoparticle enhanced PCM in the shell.  Seddegh et al. [12] experimentally compared 

the heat transfer performance between cylindrical and conical vertical shell and tube 

based LTES systems.  Riahi et al. [13] numerically studied characteristics and behaviors 

of LTES systems with plate fins multiple shell and tube configurations, including counter 

flow and parallel flow in vertical and horizontal orientations.  The capital cost of shell 

and tube LTES for concentrating solar power applications was evaluated by Bai et al. 

[14]. 

Many studies have been conducted to improve the performance of a shell and tube 

LTES unit.  Among them, the energy storage effectiveness is a popular parameter to be 

used to optimize the design of a LTES system to maximize the use of the thermal storage 

media [15-19].  Pirasaci and Goswami [19] employed the effective of the storage as the 

design criterion to study the influence of various parameters of a shell and tube model on 

direct steam generation power plants.  Khan et al. [20] conducted parametric 

investigations to identify the enhancement in melting rate and thermal storage capacity of 

a novel geometrical configuration of a shell and tube LTES system through numerical 

study.  Khan et al. [21] performed experiments to study the influence of operational 

conditions such as the inlet temperature and volume flowrate of heat transfer fluid (HTF) 
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on the thermal behavior of a LTES system.  Niyas et al. [22] optimized the number of 

embedded tubes and fins on the tubes based on various performance parameters such as 

charging/discharging time, energy storage/discharge rate and melt fraction through 

numerical analysis.  A group of optimal fin parameters was recommended by Yang et al. 

[23] by numerically investigating an annular finned shell and tube LTES unit.  Tehrani et 

al. [24] optimized the geometric parameters of a shell and tube LTES system to achieve 

the highest amount of total stored/delivered energy with a minimum heat transfer surface 

area for a concentrated solar power plant application. In their study, a cost varying 

between 27 and 170 $/kWh was estimated for the optimized design. Often the 

optimizations to improve the performance of a shell and tube LTES are based on 

parametric studies [15-24], which neglect the interaction effects between design variables, 

making the findings suboptimal.   

There are very limited research studies directly tackling the optimization of a shell 

and tube unit for minimal cost.  Raud et al. [25] presented an optimal design approach for 

shell and tube or tube and fin containment vessels minimizing cost subject to geometric 

and performance constraints.  Optimal results showed that a 𝑁𝑎2𝐶𝑂3 based PCM that has 

20% higher conductivity than that of the 𝑁𝑎2𝑆𝑂3 based PCM can lower system costs 

even though 𝑁𝑎2𝐶𝑂3 based PCMs are more than double the cost of 𝑁𝑎2𝑆𝑂3 based ones.  

However, when relatively cheap aluminum fins were deployed, the thermal conductivity 

benefit of the 𝑁𝑎2𝐶𝑂3  based PCM is reduced, and the cheaper priced 𝑁𝑎2𝑆𝑂3  based 

PCM results in lower system cost. 

Although direct optimal design approaches for minimal cost are rare in the literature 

for shell and tube LTES systems, there are many studies optimizing storage effectiveness, 
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charging/discharging time, or charging/discharging rate. However optimizing for these 

parameters will not necessary guarantee minimum system cost.  For large scale LTES 

systems, it is of first priority to design the system to meet the operational requirements, 

i.e. total heating or cooling loads and targeted heating or cooling temperature, and system 

cost (including operational cost) must also be considered.  Thus this paper proposes a 

nonlinear programming (NLP) formulation that directly finds the cost optimal 

configurations of a shell and tube unit and HTF flow rate simultaneously under given 

operational requirements. 

     One factor that complicates the mathematical optimization of a LTES system is its 

nonlinear and transient behaviors, which are typically computationally expensive to 

simulate.  In order to facilitate NLP optimization of a shell and tube LTES system, first 

an efficient modelling method for a shell and tube unit is proposed in this paper.  The 

advantage of the proposed simplified modeling method is that it does not involve solving 

systems of equations and therefore it has negligible computational cost.  The modelling 

approach relies on a newly developed explicit analytic solution for solidification in 1-D 

annular geometries.  To the best of the authors’ knowledge, this is the first explicit 

solution of this kind available for annular geometries. 

The content of this paper is organized as follows.  In section 2, an explicit analytic 

solution for 1-D solidification in cylindrical coordinates is developed.  Section 3 

introduces the efficient modeling approach for a shell and tube LTES unit.  Section 4 

presents the NLP of a shell and tube LTES system and discussion of the results. 
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2.  Explicit analytic solutions for 1-D solidification 

The phase change phenomenon is a particular kind of moving boundary problem for 

a partial differential equation (PDE).  By imposing the phase change temperature as the 

initial temperature, it was first solved analytically by Stefan [26].  The solution is in 

implicit form, as with a new boundary temperature, a nonlinear transcendental equation 

has to be solved.  Neumann [27] extended Stefan’s solution by considering an initial 

temperature that is not equal to the phase change temperature. However, these solutions 

cannot be directly/efficiently used as building module to construct a fast mathematical 

model for a shell and tube LTES, because the temperature input for the analytical 

solutions is a varying variable during the transient evolvement of the system, and thus at 

each time step a nonlinear equation is needed to be solved, which is computationally not 

trivial. To address this, an equivalent but explicit form of Stefan’s solution is developed 

below.  

 

2.1 Explicit analytic solution in rectangular coordinates 

 
Figure 5.1 Sketch of 1-D PCM bar with constant temperature boundary 

 

Fig. 5.1 shows a 1-D PCM bar with constant cooling temperature,𝑇𝑤, at the left end 

while the right end is assumed to have zero heat flux.  The proposed analytic solution is 
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obtained based on a physical description of the heat transfer process that the cooling 

energy flowing into the PCM bar through the boundary is equal to the energy change 

happening within it.  The energy flow rate passing through the solid PCM to reach a 

small length of PCM ∆𝑥 away from the cooling source with a distance 𝑥 is determined by 

Fourier’s Law (eqn. 2.1).  At the same time, the energy going into the small portion of 

PCM,∆𝑥, causes the PCM to be solidified.  Eqn. 2.2 shows the rate of energy change 

within the small portion of the PCM.  It includes the latent energy,𝐿𝑝𝑐𝑚, and sensible 

energy,휀𝑟𝐶𝑝𝑚(𝑇𝑚 − 𝑇𝑤); where 휀𝑟  is introduced to adjust the contribution of sensible 

energy as the temperature gradient is an unknown factor.  휀𝑟 would be equal to 1 if the 

temperature was equal to the boundary temperature everywhere within the solidified 

PCM section 𝑥.  Later 휀𝑟 will be determined by an empirical study.  Because the PCM 

bar is initialized at the exact phase change temperature 𝑇𝑚, there is no energy loss to the 

unsolidified PCM section.  Thus 𝑞1 = 𝑞2, and the energy balance equation is established 

as eqn. (2.3).  

𝑞1 =  A𝑘𝑝𝑐𝑚
𝑇𝑚−𝑇𝑤

𝑥
,                                                                                                        (2.1) 

𝑞2 =
𝜌𝑝𝑐𝑚𝐴∆𝑥(𝐿𝑝𝑐𝑚+ 𝑟𝐶𝑝𝑚(𝑇𝑚−𝑇𝑤))

∆𝑡
 ,                                                                                (2.2) 

A𝑘𝑝𝑐𝑚
𝑇𝑚−𝑇𝑤

𝑥
=

𝜌𝑝𝑐𝑚𝐴∆𝑥(𝐿𝑝𝑐𝑚+ 𝑟𝐶𝑝𝑚(𝑇𝑚−𝑇𝑤))

∆𝑡
 .                                                               (2.3) 

Evaluating eqn. (2.3) in the limit ∆𝑥 → 0, ∆𝑡 → 0 and after reorganizing, a differential 

equation is obtained:  

 𝜌𝑝𝑐𝑚 (𝐿𝑝𝑐𝑚 + 휀𝑟𝐶𝑝(𝑇𝑚 − 𝑇𝑤)) 𝑥𝑑𝑥 = 𝑘𝑝𝑐𝑚(𝑇𝑚 − 𝑇𝑤)𝑑𝑡                                          (2.4) 
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With the initial condition 𝑥(0) = 0, an explicit expression of the moving solidification 

front is obtained by solving eqn. (2.4): 

 𝑥 = √
2𝑘𝑝𝑐𝑚(𝑇𝑚−𝑇𝑤)𝑡

𝜌𝑝𝑐𝑚(𝐿𝑝𝑐𝑚+ 𝑟𝐶𝑝𝑚(𝑇𝑚−𝑇𝑤))
                                                                                    (2.5) 

Table 5.1 Representative thermal properties of PCM 

Density 𝜌𝑝𝑐𝑚 Conductivity 𝑘𝑝𝑐𝑚 Heat Capacity 𝐶𝑝𝑚 Latent Heat 𝐿𝑝𝑐𝑚 

1600 kg/m
3
 1.0 W/(mK) 2000 J/(kgK) 170 kJ/kg  

 

2.2 Comparison of new explicit analytic solution with Stefan’s solution 

Given the representative PCM properties which are used throughout this paper 

(Table 5.1), the new explicit solution is compared to the classic Stefan’s solution.  It is 

found that the new analytic solutions proposed in this paper are equivalent to the classic 

solutions for Stefan’s problem as it is assumed that the initial temperature in a finite bar 

uniformly equals the solidification temperature 𝑇(𝑥, 0) = 𝑇𝑚.  This assumption enables 

one to develop simplified analytic solutions for 1-D solidification in both rectangular and 

cylindrical coordinates with a finite length. 

The driving temperature difference is defined as ∆𝑇 = 𝑇𝑚 − 𝑇𝑤 .  And the Stefan 

Number (St) is defined as: 

St =
𝐶𝑝𝑚(𝑇𝑚−𝑇𝑤)

𝐿𝑝𝑐𝑚
 .                                                                                                             (2.6) 

Both Fig. 5.2 (a) and (b) show that 휀𝑟 = 0.3 gives a perfect match between the new 

analytic solution and the classic Stefan’s solution.  It can be concluded that 휀𝑟 = 0.3 is 

always applicable for the 1-D bar solidification problem with different St values.  Thus 
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휀𝑟 = 0.3  is used throughout the paper to account for the sensible energy during the 

solidification analysis for the 1-D PCM bar.   

 

Figure 5.2 Comparison between the new explicit analytic solution and the classic Stefan’s 

solution 

 

2.2 Explicit analytic solution in cylindrical coordinates 

To the best of the authors’ knowledge, currently there are no explicit analytic 

solutions for annular solidification available in the literature.  In this section, an analytic 

solution for 1-D PCM solidification for an annular shape is derived (Fig. 5.3), first in 

implicit and then explicit forms.  The annular PCM is cooled at the inner radius with a 

constant temperature 𝑇𝑤 and has zero heat flux at the outer radius.  It is assumed that the 

initial temperature uniformly equals the solidification temperature T(𝑥, 0) = 𝑇𝑚.   
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Figure 5.3 Sketch of 1-D annular PCM solidification 

 

The derivation is the same as the 1-D bar case.  Eqn. 2.7 shows that the energy flow 

rate passing through the solid PCM with a radial distance 𝑟 equals the rate of energy 

change for the liquid PCM with a small annular distance ∆𝑟:  

𝑇𝑚−𝑇𝑤
𝑙𝑛(𝑟 𝑟0⁄ )

2𝜋𝑍𝑘𝑝𝑐𝑚

=
𝜌𝑝𝑐𝑚(𝜋(𝑟+∆𝑟)2−𝜋𝑟2)𝑍(𝐿𝑝𝑐𝑚+ 𝑐𝐶𝑝𝑚(𝑇𝑚−𝑇𝑤))

∆𝑡
,                                                       (2.7) 

where 𝑍 is the axial length of the annulus; and an unknown factor 휀𝑐  is introduced to 

adjust the sensible energy 휀𝑐𝐶𝑝𝑚(𝑇𝑚 − 𝑇𝑤).  Taking the limit ∆𝑟 → 0, ∆𝑡 → 0, eqn. 2.7 

can be simplified: 

 𝑟𝑙𝑛(𝑟 𝑟0⁄ )
𝑑𝑟

𝑑𝑡
=

𝑘𝑝𝑐𝑚(𝑇𝑚−𝑇𝑤)

𝜌𝑙(𝐿𝑝𝑐𝑚+ 𝑐𝐶𝑝𝑚(𝑇𝑚−𝑇𝑤))
.                                                                           (2.8) 

Integrating eqn. 2.8 with the initial condition 𝑟(0) = 𝑟0 , an implicit solution for the 

moving solid front 𝑟 can be obtained: 

1

2
𝑟2𝑙𝑛 (

𝑟

𝑟0
) −

1

4
(𝑟2 − 𝑟0

2) =
𝑘𝑝𝑐𝑚(𝑇𝑚−𝑇𝑤)𝑡

𝜌𝑝𝑐𝑚(𝐿𝑝𝑐𝑚+ 𝑐𝐶𝑝𝑚(𝑇𝑚−𝑇𝑤))
.                                                    (2.9) 
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To verify the analytic solution and obtain a suitable value for 휀𝑐, this problem was 

also solved numerically.  The numerical solution is based on the enthalpy-porosity 

method [28].  Experimental validation of the simulation of the solidification phenomenon 

using the enthalpy method is available in Ismail’s work [29]. 

Figs. 5.4-5.6 show comparisons of the analytic solutions and the numerical solutions 

with varying driving temperature differences, PCM conductivities and latent energy.  For 

the current annular geometry, with 휀𝑐 = 0.23 , there is a perfect match between the 

analytic solutions and the numerical ones.  Here 휀𝑐 has a different value compared to 휀𝑟 

for the 1-D bar case, because the different geometry results in a different temperature 

gradient for the sensible energy.  Typically, a value in the range [0.2,0.25] works equally 

well for the analytic solution.  The factors 휀𝑟  and 휀𝑐   are quite robust for the analytic 

solution. 

 
Figure 5.4 Moving solidification front under varying driving temperature differences 
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Figure 5.5 Moving solidification fronts with different PCM conductivities  

 

 
Figure 5.6 Moving solidification fronts with different PCM latent energy  
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Eqn. 2.9 gives an implicit expression for the moving solidification front of the 1-D 

annular shape.  For application, often an explicit solution for the moving solidification 

front is desired, thus in this section, an explicit expression is developed.  With the same 

material properties and boundary conditions, the different behaviors of the moving 

solidification front for the 1-D PCM bar and the 1-D annular PCM are essentially caused 

by geometrical effects.  Thus the idea is to find a geometric factor to adjust the 

solidification behavior of the 1-D PCM bar, so that it can be used to represent the 

solidification behavior of the 1-D annular PCM.   

To construct such a geometric factor, a geometric ratio between the moving 

solidification fronts of the 1-D PCM bar and annular PCM is introduced: 

α =
𝑟−𝑟0

𝑥
,                                                                                                                       (2.10) 

where 𝑟 is the moving solidification front for the annular PCM (eqn.2.9), 𝑥 is the moving 

solidification front for the 1-D PCM bar (see eqn. 2.5) and 𝑟0 is the inner radius of the 

annulus.  To investigate the behavior of the ratio α, variations of 4 parameters in Table 

5.2 were considered.  When one parameter varies within the given range, the other 

parameters are fixed at the baseline values.  Fig. 5.7 shows the curves of the geometric 

factor α as a function of the moving solidification front of the 1-D PCM bar 𝑥.  It is 

found that under the variations of the 4 different parameters, all of the curves almost 

overlap with each other for the same inner radius 𝑟0.  This confirms the assumption that 

the different behaviors of the moving solidification fronts in the two coordinate systems 

is only due to geometric effects.  So it can be concluded that a correlation for the 

geometric factor α = 𝛼(𝑥, 𝑟0) can be constructed based on the moving solidification front 
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of the 1-D PCM bar and inner radius of an annular cylinder.  According to eqn. 2.10, an 

explicit expression for the moving solidification front can be obtained: 

𝑟(𝑡) = α(𝑥(𝑡), 𝑟0)𝑥(𝑡) + 𝑟0,                                                                                        (2.11) 

where 𝑥(𝑡) is calculated from eqn. 2.5.  

Table 5.2 Parameters used to determine the geometric ratio α 

Parameters Solidification time 

 𝑡𝑠 

Temperature 

difference 

 ∆𝑇 = 𝑇𝑚 − 𝑇𝑤 

PCM  

conductivity 

𝑘pcm 

Latent energy  

 𝐿𝑝𝑐𝑚 

Range (0.01 − 50) hrs (1 − 40) ℃ 
(0.01 − 4. ) 

W

mK
 (60 − 300)

kJ

kg
 

Baseline 

value 
10 hrs 20 ℃ 

1.0 
W

mK
 170 

kJ

kg
 

 

 

Figure 5.7 Moving solidification front ratios between 1-D bar PCM and annular PCM 

under varying parameter values 
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 To construct the geometric factor 𝛼, a bivariate cubic tensor-product spline [30] 

was determined.  The derivation and the resulting explicit expression for α = 𝑓𝑠(𝑥, 𝑟0) are 

presented in Appendix A.  Table 5.3 shows 3 test cases for the explicit formulation, 

eqn.2.11.  Fig. 5.8 shows excellent agreement between the explicit solution and the 

implicit solution.  Thus an explicit analytic solution for the moving solidification front of 

an annular geometry is obtained. 

Table 5.3 Test cases for the explicit annular moving solidification front solution 

Case 𝑟0 (cm) 𝑘𝑝𝑐𝑚(W mk⁄ )  𝐿𝑝𝑐𝑚 (kJ/kg) dT (℃)  

#1 2.0 2.0 200 30 

#2 3.0 1.5 150 15 

#3 4.0 0.5 100 10 

 

 
Figure 5.8 Comparison between the explicit and implicit solutions for the annular moving 

solidification front based on the 3 test cases in Table 5.3. 

 

 

3. Efficient simulation procedure for a shell and tube LTES unit 
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The physical module of a shell and tube latent heat storage exchanger consists of a 

tube surrounded by a PCM cylinder (Fig. 5.9).  A heat transfer fluid (HTF) flows through 

the inner tube and exchanges heat with the PCM.  For a mathematical description of the 

process, the following assumptions are made: (1) the HTF is incompressible and viscous 

dissipation is negligible; (2) the HTF is radially uniform; (3) heat transfer in the PCM is 

conduction controlled; (4) the outer wall of the PCM is adiabatic; (5) PCM properties are 

constant; (6) the tube wall thickness is neglected, thus no thermal resistance of the wall is 

considered; (7) conduction in the HTF along the length of the tube is neglected. 

 
Figure 5.9 A shell and tube latent energy storage unit 

 

Based on the above assumptions, the governing equation for energy transfer of the 

HTF in the tube is: 

 𝜌𝑓𝐶𝑝𝑓 (
𝜕𝑇𝑓

𝜕𝑡
+ 𝑢

𝜕𝑇𝑓

𝜕𝑧
) =

2ℎ𝑓

𝑟0
(𝑇0 − 𝑇𝑓),                                                                           (3.1) 

and the energy balance within the PCM is: 

 𝜌𝑙
𝜕𝐻

𝜕𝑡
=

1

𝑟

𝜕

𝜕𝑟
(𝑘𝑠𝑟

𝜕𝑇𝑝𝑐𝑚

𝜕𝑟
) +

𝜕

𝑧
(𝑘𝑠

𝜕𝑇𝑝𝑐𝑚

𝜕𝑧
),                                                                        (3.2) 

where the enthalpy 𝐻 is defined in Eqn.2.23, and ℎ𝑓 is the heat transfer coefficient within 

the HTF.  The calculation of ℎ𝑓 is available in many heat transfer text books [31].  The 
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tube wall temperature is  𝑇0 = 𝑇𝑝𝑐𝑚|𝑟=𝑟0
, which acts as the interface temperature 

boundary between the HTF in the tube and the PCM cylinder.  The initial conditions are: 

𝑇𝑓(0, 𝑧) = 𝑇𝑚, 𝑇𝑝𝑐𝑚(0, 𝑟, 𝑧) = 𝑇𝑚, 𝑓𝑜𝑟  𝑟0 ≤  𝑟 ≤ 𝑟𝑤, 0 ≤ 𝑧 ≤ 𝐿,                             (3.3) 

and the boundary conditions are: 

 
𝜕𝑇𝑝𝑐𝑚

𝜕𝑧
|

𝑧=0
= 0,   

𝜕𝑇𝑝𝑐𝑚

𝜕𝑧
|

𝑧=𝐿
= 0,       𝑓𝑜𝑟  𝑟0 ≤ 𝑟 ≤ 𝑟1;                                                   (3.4) 

 
𝜕𝑇𝑝𝑐𝑚

𝜕𝑟
|

𝑟=𝑟1

= 0,                                    𝑓𝑜𝑟 0 ≤ 𝑧 ≤ 𝐿;                                                      (3.5) 

 𝑇𝑓|
𝑧=0

= 𝑇𝑖𝑛,
𝜕𝑇𝑓

𝜕𝑧
|

𝑧=𝐿
= 0,              𝑓𝑜𝑟  0 ≤ 𝑟 ≤ 𝑟0.                                                     (3.6)  

The interface condition between the HTF and the PCM cylinder is: 

 ℎ𝑓(𝑇𝑓 − 𝑇𝑝𝑐𝑚|𝑟=𝑟0
) = −𝑘𝑝𝑐𝑚

𝜕𝑇𝑝𝑐𝑚

𝜕𝑟
|

𝑟=𝑟0

,   𝑓𝑜𝑟  0 ≤ 𝑧 ≤ 𝐿.                                       (3.7) 

The system can be solved by the finite element method.  Due to the nonlinear 

behavior of the latent energy of the PCM, at each discretized time step, a nonlinear 

system of equations needs to be solved.  In this section, by employing the explicit 

solution of the moving solidification front (Eqn. 2.11), an efficient numerical approach, 

which does not require the solution of any systems of equations for the modeling of a 

shell and tube LTES unit (Fig. 5.9), is proposed.   
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Figure 5.10 Thermal resistance scheme of element 𝑖 based on Fig. 5.9 

 

Fig. 5.10 shows a thermal resistance scheme of an element 𝑖 from Fig. 5.9 for the 

development of an efficient modeling approach.  It is assumed that the process is based 

on solidification, so that the explicit solution (eqn. 2.11) can be employed here (as the 

solidification is conduction controlled [32]).  Thus the thermal resistance within the PCM 

for cooling energy from the tube to reach the solidification front,𝑟, is: 

 𝑅𝑝𝑐𝑚
𝑖 (𝑡) =

𝑙𝑛(𝑟𝑖(𝑡) 𝑟0⁄ )

2𝜋∆𝑧𝑘𝑠
.                                                                                                     (3.8) 

A constraint should be set here that: 

when 𝑟 > 𝑟1, 𝑅𝑝𝑐𝑚
𝑖 (𝑡) = ∞ 𝑎𝑛𝑑 𝑟(𝑡) = 𝑟1.                                                                  (3.9) 

This can be implemented either by an ‘if’ condition statement, or by employing a logistic 

function to combine eqns. 3.8 and 3.9 in one expression:  

𝑅𝑝𝑐𝑚
𝑖 (𝑡) =

𝑙𝑛(𝑟𝑖(𝑡) 𝑟0⁄ )

2𝜋∆𝑧𝑘𝑠
+

200

1+𝑒−500(𝑟𝑖(𝑡)−𝑟1).                                                                        (3.10)  
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This expression is recommended for the optimization process. The thermal resistance 

within the HTF is: 

 𝑅𝑓 =
1

2𝜋𝑟0∆𝑧ℎ𝑓
.                                                                                                               (3.11) 

With 𝑁 + 1 discrete points along the length of the tube, a finite discrete form of the 

energy balance equation for element 𝑖 (2 ≤ 𝑖 ≤ 𝑁 + 1) (Fig. 5.10) is:  

 
𝑑𝑇𝑖

𝑓

𝑑𝑡
+ 𝑢 (

𝑇𝑖
𝑓

−𝑇𝑖−1
𝑓

∆𝑧
) =

2𝜋𝑟0ℎ𝑓

𝜌𝑓𝐶𝑝𝑓𝜋𝑟0
2 (𝑇0 −

1

2
(𝑇𝑖

𝑓
+ 𝑇𝑖−1

𝑓
)).                                                   (3.12) 

By applying the thermal resistance concept, the thermal resistance within the PCM can be 

directly incorporated into eqn. 3.12: 

 ∆𝑧
𝑑𝑇𝑖

𝑓

𝑑𝑡
+ 𝑢(𝑇𝑖

𝑓
− 𝑇𝑖−1

𝑓
) =

1

𝜌𝑓𝐶𝑝𝑓𝜋𝑟0
2

(𝑇𝑚−
1

2
(𝑇𝑖

𝑓
+𝑇𝑖−1

𝑓
))

𝑅𝑓+𝑅𝑝𝑐𝑚
𝑖−1 (𝑡)

.                                                    (3.13) 

The thermal resistance within the PCM, 𝑅𝑝𝑐𝑚
𝑖 (𝑡) = 𝑓(𝑟𝑖), is a function of the moving 

solidification front 𝑟 , while 𝑟 = 𝑔(𝑇0, 𝑟0, 𝑡)  is a function of time and the boundary 

temperature condition (Eqn. 2.11).  The interface temperature,𝑇0, is determined by the 

thermal resistance network, and it can be expressed as: 

𝑇0
𝑖−1 =

0.5(𝑇𝑖
𝑓

+𝑇𝑖−1
𝑓

)𝑅𝑝𝑐𝑚
𝑖−1 (𝑡)+𝑅𝑓𝑇𝑚

𝑅𝑝𝑐𝑚
𝑖−1 (𝑡)+𝑅𝑓

.                                                                                    (3.14) 

Implementing an implicit scheme for eqn. 3.11, it becomes: 

∆𝑧
𝑇𝑖

𝑓,𝑘+1
−𝑇𝑖

𝑓,𝑘

∆𝑡
+ 𝑢(𝑇𝑖

𝑓,𝑘+1
− 𝑇𝑖−1

𝑓,𝑘+1
) =

1

𝜌𝑓𝐶𝑝𝑓𝜋𝑟0
2

(𝑇𝑚−0.5(𝑇𝑖
𝑓,𝑘+1

+𝑇𝑖−1
𝑓,𝑘+1

))

𝑅𝑓+𝑅𝑝𝑐𝑚
𝑖−1 (𝑡𝑘)

.                      (3.15)  

Setting 𝛹(𝑡𝑘, 𝑖) =
1

𝜌𝑓𝐶𝑝𝑓𝜋𝑟0
2 ∙

1

𝑅𝑓+𝑅𝑝𝑐𝑚
𝑖−1 (𝑡𝑘)

, and rearranging Eqn. 3.15, the overall 

calculation procedure is shown as follows, (which does not involve solving any systems 

of equations):  
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First, initialize the temperature profile in the tube 

 𝑇𝑖
𝑓,1

= 𝑇𝑖𝑛, 𝑇0
𝑖−1,1 = 𝑇𝑖𝑛, 1 ≤ i ≪ N + 1; 

then  𝑓𝑜𝑟     1 ≤ k ≤ K 

          𝑇1
𝑓,𝑘+1

= 𝑇𝑖𝑛,   

 𝑓𝑜𝑟  2 ≤ i ≤ N + 1 

     𝑟𝑖−1
𝑘 = 𝑔(𝑇0

𝑖−1,𝑘, 𝑟0, 𝑡𝑘) 

     𝑖𝑓      𝑟𝑖−1
𝑘 > 𝑟1 

          𝑟𝑖−1
𝑘 = 𝑟1; 

          𝑅𝑝𝑐𝑚
𝑖−1 (𝑡𝑘) = 𝑒9; 

     𝑒𝑙𝑠𝑒 

        𝑅𝑝𝑐𝑚
𝑖−1 (𝑡𝑘) = 𝑓(𝑟𝑖−1(𝑘)); 

          𝑒𝑛𝑑 

   Ψ(𝑡𝑘 , 𝑖) =
1

𝜌𝑓𝐶𝑝𝑓𝜋𝑟0
2 ∙

1

𝑅𝑓+𝑅𝑝𝑐𝑚
𝑖−1 (𝑡𝑘)

; 

          𝑇𝑖
𝑓,𝑘+1

=
1

∆𝑧

∆𝑡
+𝑢+

1

2
𝛹(𝑡𝑘,𝑖)

[𝛹(𝑡𝑘, 𝑖)𝑇𝑚 +
∆𝑧

∆𝑡
𝑇𝑖

𝑓,𝑘
+ (𝑢 −

1

2
𝛹(𝑡𝑘, 𝑖)) 𝑇𝑖−1

𝑓,𝑘+1
]; 

          𝑇0
𝑖−1,𝑘+1 =

0.5(𝑇𝑖
𝑓,𝑘+1

+𝑇𝑖−1
𝑓,𝑘+1

)𝑅𝑝𝑐𝑚
𝑖−1 (𝑡𝑘+1)+𝑅𝑓𝑇𝑚

𝑅𝑝𝑐𝑚
𝑖−1 (𝑡𝑘+1)+𝑅𝑓

; 

  𝑒𝑛𝑑 

 𝑒𝑛𝑑 

 

The above calculation procedure can be called a simplified shell and tube LTES unit 

model.  In contrast, the finite element approach in [33] can be called a coupled finite 

element (FE) model.  Verification of the simplified model presented here is achieved by 

comparing results to that of the coupled FE model previously described in [33].  It is 

assumed that water is used as the heat transfer fluid (HTF).  The properties of water used 

are shown in Table 5.4.  The PCM properties are available in Table 5.1.  Two cases with 

varying inlet mass flow rates, temperatures and tube radii and lengths that are listed in 
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Table 5.5 were used to test the performance of the proposed simplified model.  The other 

information needed for the simulations is also shown in Table 5.5.   

 

Table 5.4 Properties of water 

Density 𝜌𝑓 Conductivity 𝑘𝑓  Heat Capacity 𝐶𝑝𝑓 Viscosity 𝜇𝑓 

988.2 (kg m3⁄ ) 0.59846 (W mK⁄ ) 4184.1 (J kgK⁄ ) 1.0016e
-3

 (Pa ∙ s) 

 

Table 5.5 Test cases for the simplified shell and tube LTES unit model 

Case Inlet mass flowrate 

𝑄𝑚(kg s⁄ ) 

Tube radius 

𝑟0 (cm) 

Inlet HTF  

Temperature (℃) 

Tube length 

L (m) 

#1 0.001 1  10 1.0 

#2 0.01 3 0 2.0 

Outer radius of the cylinder PCM surrounding the tube 𝑟𝑤 = 10 cm; 

Simulation time: 10 hrs. 

 

First, grid and time step independence studies were performed for the coupled FE 

model based on Case 1 in Table 5.5.  The code for the coupled FE method is 

implemented in MATLAB.  In Fig. 5.11, N is the number of grid elements along the 

length of the tube; M is the number of grid elements along the radial direction assigned to 

the cylinder PCM domain; K is the total number of time steps for the 10-hour simulation 

period.  It can be seen that in order to capture the transient peak temperature well, a fine 

grid is needed along the radial direction for the cylinder PCM domain.  It was found that 

a suitable total number of steps is around 3600.  It costs about 1 hour to run a simulation 

with N=200, M=150 and K=3600 on a desktop with an Intel(R) Core™ i7-2600 processer 

(CPU: 3.4GHz).  Depending on the size of the problem and also the efficiency of the 

coding, the computational cost typically ranges from minutes up to more than 1 hour. 
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Figure 5.11 Grid and time step independence studies for the fully coupled shell and tube 

LTES unit model 
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Figure 5.12 Grid and time step independence studies for the simplified shell and tube 

LTES unit model 
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Fig. 5.13 shows the outlet temperatures of the two cases for a 10-hour period 

simulation.  It shows that the simplified model has overall a very good agreement with 

the coupled FE model, although there is a small deviation for both of the cases studied 

(less than around 7%).  Fig. 5.14 indicates a possible source for the difference: it shows 

that the solidification fronts of the two cases with the two modeling approaches are also 

slightly different.  One possible reason is that heat transfer happens in 2-D within the 

PCM domain for the coupled FE model while for the simplified model, heat transfer is 

assumed to occur in 1-D.  Nevertheless, such small differences are acceptable for system 

level analysis.  Considering the negligible simulation time, the proposed simplified 

modeling approach for a shell and tube LTES unit would be very useful for optimal 

design and operational research.  From Fig. 5.14, it can be seen that the solidification 

front of Case 2 has a much smaller slope than that of Case 1.  The implication is that the 

PCM in Case 2 is being used more effectively.  Thus, optimal configurational design and 

operational research is needed to improve the performance of a LTES system, and at the 

same time to lower the system cost.  Furthermore, the proposed modeling method may 

provide efficient modeling for a large scale LTES system.  A complex large scale LTES 

system can be described as an assembly of identical modules, and the overall behavior of 

the system can be simulated in an interactive way.  The key is to build an efficient 

characteristic model for a single module, i.e., the proposed analytic approach for the 

solidification front. 
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Figure 5.13 Performance of the simplified shell and tube LTES unit model 

 

 
Figure 5.14 Solidification fronts in the radial direction along the tube after a 10-hour 

simulation  
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material and operational cost is presented (Eqn. 4.1).  There are four design variables: the 

tube radius 𝑟0, the outer PCM radius 𝑟1, the tube length 𝐿 and the HTF velocity in the 

tube 𝑢𝑓.  The operational parameter 𝑢𝑓 plays an important role. It not only can affect the 

operational cost but also influence the investment. For example, for a given storage 

capacity, a small 𝑢𝑓 requires more tubes to handle a fixed amount of HTF mass flowrate.  

The derivation of the cost function 𝐶(⋯ ) which includes the investment and operational 

costs is presented in Appendix B.  The function 𝐹(⋯ )  represents the efficient 

computational approach presented in Section 3.  The output 𝑇𝑁
𝑓,𝐾

 of 𝐹  is the HTF 

temperature of the last element in the tube at its final operation time 𝑡𝑜𝑝.  During the 

whole operational time, it could be required by the application that the output temperature 

should always be larger than 𝑇𝑜𝑢𝑡.  Thus, the output temperature of the LTES should 

meet this constraint at its final operation time, 𝑇𝑁
𝑓,𝐾

= 𝑇𝑜𝑢𝑡.  Some upper and lower limits 

of the design variables are also given in the formulation (Eqn. 4.1).  As it is a nonlinear 

constrained optimization problem, ‘fmincon’ (a gradient based method) within the 

MATLAB optimization toolbox was employed to solve the problem [35].  The time cost 

of the optimization varies from several minutes to an hour (given the computing power 

outlined in SECTION 3).  The problem has multiple local minima, thus it is 

recommended to test several initial conditions before choosing the final optimal one.  
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𝑚𝑖𝑛

𝑢𝑓 , 𝑟0, 𝑟1, 𝐿, 𝐶(𝑢𝑓 , 𝑟0, 𝑟1, 𝐿, 𝑡𝑜𝑝, 𝑇𝑖𝑛, 𝑇𝑚) 

                                                          𝑇𝑁
𝑓,𝐾

= 𝐹(𝑢𝑓 , 𝑟0, 𝑟1, 𝐿, 𝑡𝑜𝑝, 𝑇𝑖𝑛, 𝑇𝑚)                  

𝑇𝑁
𝑓,𝐾

= 𝑇𝑜𝑢𝑡          

s. t.        1.0 cm ≤ 𝑟0 ≤ 3.0 cm 

                                                       5 cm ≤ 𝑟1 ≤ 8 cm                                             (4.1) 

 0.5 m ≤ 𝐿 ≤ 3  m 

                       0.0001 m s⁄ ≤ 𝑢𝑓 ≤ 0.01 m s⁄  

A sensitivity analysis of the six system parameters on the optimal results is given in 

Table 5.6.  When one variable is altered, the others are fixed at the baseline values.  The 

PCM properties being used are shown in Table 5.1 and the properties of the HTF are 

available in Table 5.4.  The optimal design trend under variation of the system variables 

is of interest in this paper.  

Table 5.6 Parameters for Sensitivity Analysis 

Parameters Baseline case values 

Total HTF mass flowrate,  𝑄𝑚 5 (kg s⁄ ) 

Required operational time, 𝑡𝑜𝑝 6 (hrs) 

Effectiveness, ϵ  0.5 

PCM conductivity, 𝑘𝑝𝑐𝑚 1.0 (W mK⁄ ) 

PCM latent energy, 𝐿𝑝𝑐𝑚 170 (kJ kg⁄ ) 

Lower bound of the tube radius, 𝑟0
𝑙 1.0 (cm) 

Lower bound of the tube length, 𝐿𝑙 0.5 (m) 

 

Effectiveness is defined as [15],   

𝜂 =
𝑇𝑜𝑢𝑡−𝑇𝑖𝑛

𝑇𝑝𝑐𝑚−𝑇𝑖𝑛
.                                                                                                                    (4.2) 

Given the HTF inlet temperature 𝑇𝑖𝑛 and a certain PCM, the effectiveness of the LTES 

can be specified by the output temperature of the HTF.  In contrast to previous studies 



157 

[15-19], this parameter is not a design goal but is instead an important system parameter 

under investigation in this paper. It is preferred as a system parameter because the inlet 

and outlet temperatures are usually determined by the application, and the choice of a 

PCM from a group of suitable candidates will finally determine the effectiveness. Based 

on the optimal results, it is found that the optimal tube length is always located at its 

lower bound, thus the lower bound of the tube length is also considered as a system 

variable for the sensitivity analysis.   

Figs. 5.15-5.20 show the optimal results under the variation of a system variable.  In 

each figure, subplot (a) is the optimal 𝑢𝑓, (b) is the optimal radial ratio 𝑟1 𝑟0⁄  between the 

outer radius of the cylindrical PCM and the tube, (c) is the optimized yearly investment 

and operational cost 𝐶𝑡𝑜𝑡𝑎𝑙 and (d) is the optimized energy storage capacity cost 𝑃𝑠, which 

is defined as  

𝑃𝑠 =
𝑦𝑒𝑎𝑟𝑙𝑦 𝑐𝑜𝑠𝑡

𝑦𝑒𝑎𝑟𝑙𝑦 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑒𝑑 𝑒𝑛𝑒𝑟𝑔𝑦
=

𝐶𝑡𝑜𝑡𝑎𝑙

365𝑄𝑚𝐶𝑝𝑓(𝑇𝑜𝑢𝑡−𝑇𝑖𝑛)𝑡𝑜𝑝
.                                                     (4.3) 

The yearly cost 𝐶𝑡𝑜𝑡𝑎𝑙  is presented in Appendix B. 𝑄𝑚  is the total HTF mass 

flowrate.  It is assumed that the LTES operates once a day.  The yearly cost may not be 

able to be used for fair comparison due to variation of the heating/cooling capacity, thus 

the energy storage capacity cost is introduced.  Different heating/cooling capacities due 

to variation of a system variable are marked on subplots (c). 

From Fig. 5.15, it can be seen that the yearly investment and operational cost of the 

LTES system scales up linearly with respect to the HTF mass flowrate.  The energy 

storage capacity cost is independent of the HTF mass flowrate.  Fig. 5.16 shows the 

sensitivity analyses of the effectiveness.  The optimal HTF velocity is highly dependent 
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on the effectiveness. Higher effectiveness results in a smaller optimal velocity.  Its effect 

on the optimal radii is relatively small.  The energy storage capacity cost shows lower 

effectiveness is more economic than a system with a higher effectiveness. This also 

suggests that direct cost optimization is more appropriate than setting effectiveness as an 

optimization target as is done in references [15-19].  In terms of the competiveness of a 

LTES system, higher effectiveness is usually achieved at a lower HTF velocity, which 

means more tubes are required for a given heating or cooling load.  Thus higher 

effectiveness could result in larger system volume and higher capacity cost.  Fig. 5.17 

shows the sensitivity results of the heating/cooling operational time.  The operational 

time does not affect the optimal HTF velocity as much as its effect on the optimal radial 

ratio.  Longer operational times require larger radial ratios and have lower energy storage 

capacity costs.  

Figs. 5.18-5.20 have the same heating/cooling load.  Either the yearly cost or the 

capacity cost can reveal the economic effect of the variable under consideration.  Smaller 

PCM conductivity requires smaller HTF velocity and smaller radial ratio to achieve 

optimal cost.  Smaller PCM latent energy requires larger optimal radial ratio while its 

effect on the optimal HTF velocity is small.  The length of the tube almost has no 

influence at all on the system cost and optimal radial ratio.  But a longer tube allows for 

larger HTF velocity.  

Figs. 5.18-5.19 also show that both higher PCM conductivity and larger latent 

energy can result in lower system cost.  The melting temperature of the PCM also 

influences the effectiveness, thus sensitivity comparisons of the three variables: PCM 

melting temperature, conductivity and latent energy on the sensitivity of energy storage 
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capacity cost is shown in Fig. 5.21.  It can be seen that the effectiveness has a first-order 

sensitivity effect, followed by the latent energy and then conductivity.  This finding could 

provide some guidance when selecting a PCM from a group of suitable candidates.  

 

Figure 5.15 Optimal results under varying HTF mass flowrate 
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Figure 5.16 Optimal results under varying effectiveness 

 

 
Figure 5.17 Optimal results under varying operational time 
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Figure 5.18 Optimal results under varying PCM conductivity 

 

 
Figure 5.19 Optimal results under varying PCM latent energy 
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Figure 5.20 Optimal results under varying minimal tube length 

 

 
Figure 5.21 Sensitivity comparison of energy storage capacity cost 
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In this paper, new explicit analytic solutions for 1-D solidification in both 

rectangular and cylindrical coordinates are developed.  To the best of the authors’ 

knowledge, no explicit solutions of this kind for an annular geometry are currently 

available. These solutions are incorporated in an efficient simplified numerical procedure 

for a shell and tube heat exchanger based LTES unit model.  The simplified model is 

shown to have good agreement with existing finite element (FE) approaches from the 

literature.  The advantage of the proposed simplified approach is its computational 

efficiency and this is exploited in a new nonlinear programming formulation for the cost 

optimization design of a shell and tube unit for LTES systems under prescribed 

operational constraints. One of the main findings from the sensitivity analysis presented 

is that the effectiveness has a first-order sensitivity effect, followed by the latent energy 

and conductivity. The findings provide guidance for selecting a PCM and LTES optimal 

design.  
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Appendix A 

Explicit expression of the geometric factor  

If 𝑔  is a function of 𝑥 , and ℎ  is a function of 𝑦 , then their tensor-product is 

𝑓(𝑥, 𝑦) = 𝑔(𝑥)ℎ(𝑦).  To express 𝑔(𝑥)ℎ(𝑦) in terms of polynomial spline functions, it is 

assumed 𝑥 ∈ (𝑥𝑙 , 𝑥𝑢) , 𝑦 ∈ (𝑦𝑙, 𝑦𝑢) , and there are 𝐽 + 1  monotonically increasing 

sequence knots 𝑥1, ⋯ 𝑥𝑖, ⋯ 𝑥𝐽+1, 𝑖 = 1: 𝐽 + 1 in the space of 𝑥 and  𝐾 + 1 monotonically 

increasing sequence knots 𝑦1, ⋯ 𝑦𝑗, ⋯ 𝑦𝐽+1, 𝑗 = 1: 𝐾 + 1  in the space of 𝑦  (typically, 

𝑥1 = 𝑥𝑙 , 𝑥𝐽+1 = 𝑥𝑢,  𝑦1 = 𝑦𝑙,  𝑦𝐾+1 = 𝑦𝑢 ).  These knots are called breaks.   

For the variable 𝑥, the polynomial form basis functions of order 𝑀 at the breaks 𝑥𝑖 are: 

[(𝑥 − 𝑥𝑖)
𝑀−1, ⋯ , (𝑥 − 𝑥𝑖)𝑗−1, ⋯ , (𝑥 − 𝑥𝑖)1−1], 𝑖 = 1: 𝐽, 𝑗 = 1: 𝑀,                                A.1 

which can be represented as a vector 𝝋𝑖(𝑥) of length 𝑀.  (It should be noted that here all 

the vectors mentioned are row vectors, and 𝝋𝑖
𝑇(𝑥) indicates a column vector.) 

https://www.mathworks.com/help/curvefit/spapi.html
https://www.mathworks.com/help/optim/ug/fmincon.html
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For the variable 𝑦, the polynomial form basis functions of order 𝑁 at the breaks 𝑦𝑖 

are,    

 [(𝑦 − 𝑦𝑖)
𝑁−1, ⋯ , (𝑦 − 𝑦𝑖)

𝑗−1, ⋯ , (𝑦 − 𝑦𝑖)
1−1], 𝑖 = 1: 𝐾, 𝑗 = 1: 𝑁,                              A.2 

which can be represented as a vector 𝝓𝑖(𝑦) of length 𝑁.  Within one block defined as 

𝑥𝑖 ≪ 𝑥 < 𝑥𝑖+1, 𝑦𝑗 ≪ 𝑦 < 𝑦𝑗+1, 𝑖 = 1: 𝐽, 𝑗 = 1: 𝐾, the tensor product of 𝑔(𝑥)ℎ(𝑦) can be 

expressed as: 

𝑔(𝑥)ℎ(𝑦) = 𝝋𝑖(𝑥)𝐶𝑖𝑗𝝓𝑖
𝑇(𝑦),                                                                                         A.3 

where 𝐶𝑖𝑗 is a coefficient matrix of dimension 𝑀 × 𝑁.  Thus for all the 𝐽 × 𝐾 blocks, the 

tensor-product spline of 𝑔(𝑥)ℎ(𝑦) can be expressed as: 

𝑔(𝑥)ℎ(𝑦) = 𝚿(𝑥)𝚺𝚽(𝑦),                                                                                               A.4 

where 𝚿(𝑥) = [𝝋1(𝑥), ⋯ , 𝝋𝐽(𝑥)], 𝚽(𝑦) = [𝝓1(𝑦), ⋯ , 𝝓𝐾(𝑦)]𝑇, and  

𝚺 = [
𝑪𝟏𝟏 ⋯ 𝑪𝟏𝑲

⋮ ⋱ ⋮
𝑪𝑱𝟏 ⋯ 𝑪𝑱𝑲

]. 

The MATLAB toolbox provides multiple imbedded functions to work with 

multivariable tensor-product splines.  Here, an explicit equation for the tensor-product 

spline of the current problem is given, which is not directly provided by the spline 

toolbox.  The embedded function that can be used is ‘spapi’ [34].  By varying the 

solidification time, the moving solidification front x for a 1-D PCM bar, and the implicit 

moving solidification front r for an annular cylinder can be calculated by eqn. 2.5 and 

eqn. 2.9, respectively.  Then the geometric factor α can be calculated using eqn. 2.10.  
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For different inner radii 𝑟0  of an annular cylinder, different geometric factors can be 

obtained at the same location x.  Table 5.7 shows the geometric factors under different x 

and 𝑟0, which is the required input data for ‘spapi’.  

Table 5.7 Geometric factors under different combinations of (𝑥, 𝑟0) 

α x(1)=0cm x(2)=1.5724cm x(3)=3.8516cm x(4)=8.613cm x(5)=15.724cm 

r0=1cm 1.0 0.8653 0.7863 0.7120 0.6593 

r0=2cm 1.0 0.9156 0.8484 0.7760 0.7203 

r0=5cm 1.0 0.9624 0.9179 0.8587 0.8058 

 

Assume α = 𝑓(𝑥, 𝑟0) = 𝑔(𝑥)ℎ(𝑟0).  The order of the polynomial for the univariate 

splines 𝑔(𝑥) and ℎ(𝑟0) is 3.  The breaks for 𝑥 are [0, 0.02712, 0.062321, 0.157243] (with 

units of m) and for 𝑟0 are [1, 5] (with units of cm).  Thus there are 3 block coefficient 

matrices,  

 𝑪11 = [
15.5390 −97.4093 152.3088
−0.7970 5.2868 −10.9625

0 0 1.0
]                                                                 A.5 

 𝑪21 = [
−0.5682 0.5549 18.3427
0.0458 0.0033 −2.7012

−0.0102 0.0717 0.8147
]                                                                         A.6 

  𝑪31 = [
0.0684 −0.8329 5.6381
0.0058 0.0423 −1.4098

−0.0093 0.0725 0.7424
]                                                                     A.7 

The basis functions for 𝑔(𝑥) are:  

 𝝋𝟏(𝑥) = [(𝑥 − 0)2, (𝑥 − 0)1, 1],                                                                                   A.8 

 𝝋𝟐(𝑥) = [(𝑥 − 0.02712)2, (𝑥 − 0.02712)1, 1],                                                            A.9 

 𝝋𝟑(𝑥) = [(𝑥 − 0.062321)2, (𝑥 − 0.062321)1, 1].                                                     A.10 
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The basis function for ℎ(𝑟0) is: 

 𝝓𝟏(𝑟0) = [(𝑟0 − 1)2, (𝑟0 − 1)1, 1].                                                                              A.11 

According to eqn. A4, the final form is:  

𝛼 = 𝑓(𝑥, 𝑟0) = {

𝝋𝟏(𝑥)𝑪11𝝓1
𝑇(𝑟0) 0 ≤ 𝑥 < 0.02712;     1 ≤ 𝑟0 ≤ 5

𝝋𝟐(𝑥)𝑪21𝝓1
𝑇(𝑟0)   0.02712 ≤ 𝑥 < 0.062321;   1 ≤ 𝑟0 ≤ 5

𝝋𝟑(𝑥)𝑪31𝝓1
𝑇(𝑟0)   0.062321 ≤ 𝑥 ≤ 0.157243;  1 ≤ 𝑟0 ≤ 5

.       A.12 

 

Appendix B 

Cost function of a shell and tube LTES  

The total energy load requirement of a LTES can be expressed as: 

G = 𝑄𝑚𝐶𝑝(𝑇𝑜𝑢𝑡 − 𝑇𝑖𝑛),                                                                                                    B.1 

where 𝑄𝑚 is the total HTF mass flowrate, 𝑇𝑖𝑛 is the inlet HTF temperature and 𝑇𝑜𝑢𝑡 is the 

outlet temperature, which could be specified by the application, i.e., minimal superheated 

steam temperature for efficient turbine power generation in a concentrated solar power 

plant [19].  Assume HTF flow velocity is uniform in each tube and equals 𝑢𝑓, thus the 

mass flow rate is, 𝑞𝑚 = 𝜌𝑓𝜋𝑟0
2𝑢𝑓.  The total number of tubes needed is 𝑁 =

𝑄𝑚

𝑞𝑚
.  

Assume the tubes, PCM and a large cylindrical container that encapsulates the tubes 

and PCM compose the main material cost of the shell and tube LTES.  A factor 𝐶0 =

1.25 is introduced to account for the manufacturing cost.  Thus yearly investment cost 

𝐶𝑖𝑛𝑣 of a shell and tube LTES is: 
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𝐶𝑖𝑛𝑣 =
1

𝑌𝑟𝑠
𝐶0[𝐶𝑡𝑢𝑏𝑒(𝑁𝑚𝑡𝑢𝑏𝑒 + 𝑚𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟) + 𝐶𝑝𝑐𝑚𝑁𝑚𝑝𝑐𝑚],                                        B.2 

where 𝑌𝑟𝑠 is the operational years of life time of the equipment. 

The radius of the container 𝑟𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 is approximated as the addition of all of the 

radii of the PCM solidification fronts 𝑟1  around each tube, 𝑟𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 = 𝑁𝑟1 .  This 

approximation is often employed [19, 25] to study the optimal geometry of a shell and 

tube unit, which is representative of the whole LTES.  Thus a more detailed expression of 

A.2 can be written: 

𝐶𝑖𝑛𝑣 =
1

𝑌𝑟𝑠
𝐶0𝐿{𝐶𝑡𝑢𝑏𝑒𝑁𝜌𝑡𝑢𝑏𝑒𝜋((𝑟0 + 𝑤𝑡)2 − 𝑟0

2) + 𝐶𝑡𝑢𝑏𝑒𝜌𝑡𝑢𝑏𝑒𝜋[(𝑁𝑟1 + 𝑤𝑐)2 −

  (𝑁𝑟1)2] + 𝐶𝑝𝑐𝑚𝜌𝑝𝑐𝑚𝑁𝜋(𝑟1
2 − 𝑟0

2)},                                                                             B. 3 

where 𝑤𝑡 is the thickness of the tube and 𝑤𝑐 is the thickness of the container.  

The yearly pumping cost 𝐶𝑜𝑝 can be calculated as:  

𝐶𝑜𝑝 = 365𝑡𝑜𝑝𝐶𝑒
∆𝑃𝑁𝜋𝑟0

2𝑢𝑓

1000Ω𝑝
,                                                                                              B.4 

where 𝐶𝑒 is the cost of the electricity, 𝑡𝑜𝑝 is the operational hours each day, and Ω𝑝 is the 

pump efficiency.  Thus total yearly cost, which is the objective function for the NLP 

formulation for optimal design is: 

 𝐶𝑡𝑜𝑡𝑎𝑙 = 𝐶𝑖𝑛𝑣+𝐶𝑜𝑝.                                                                                                         B. 5 

The parameter values needed are shown in Table 5.8. 

 

 



172 

Table 5.8 Parameter values used in the optimization cost function 

𝐶0 1.25 Ω𝑝 0.75 

𝐶𝑒 0.2,  $ kWh⁄  𝑤𝑡 1/16, inch 

𝐶𝑡𝑢𝑏𝑒 2.0,  $ kg⁄  𝑤𝑐 1/8,  inch 

𝐶𝑝𝑐𝑚 0.75,  $ kg⁄  Yrs 30,   years 
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Chapter 6  

 

 

A discrete time dynamical model for 

operational research involving a large scale 

latent thermal energy storage system 

(Pan C., Vermaak N., Romero C., Neti S., et al. A discrete-time dynamical model for a 

large scale latent thermal energy storage system and its operational research.  Submitted 

to Energy Conversion and Management.) 
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Abstract 
One of the engineering challenges that prevents the commercial application of latent 

thermal energy storage (LTES) systems is the lack of computationally efficient methods 

to model the transient and nonlinear behavior of the system for design and operational 

research. In this paper, an efficient discrete time dynamical model for a large scale LTES 

system is proposed.  Its application for operational research is successfully demonstrated 

by several examples. For example, given three identical LTES units, it is found that 

controlled variable distribution of the heat transfer fluid (HTF) to three parallel units is 

preferred to meet design requirements for output temperatures with longer operational 

time windows than operation in either series or parallel with equal distribution of the 

HTF into the three units.  

 

 

Key words: Large-scale latent thermal energy storage system, dynamical modeling, 

operational research, phase change materials 
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Nomenclature 

𝑇𝑚 

𝑇ℎ𝑝 

𝑇𝑤 

𝑇𝑖𝑛𝑡 

𝑇 

𝑟1 

𝑟2 

ℎ0 

ℎ𝑔 

𝑤𝑓𝑖𝑛 

𝑟 

ℎ 

𝑅 

𝑅1 

𝑅2 

𝑅𝑡 

𝑊 

𝐻 

𝑌 

𝑍 

𝜌 

𝐶𝑝 

𝑘𝑓 

𝑘𝑝𝑐𝑚 

𝐿 

𝜇 

ℎ𝑓 

ℎℎ𝑝 

𝑁𝑥 

𝑁𝑦 

Phase change material (PCM) melting temperature 

Heat pipe inner temperature 

Heat pipe wall temperature 

Interface temperature heat transfer fluid (HTF) and the heat pipe 

Temperature 

Radius of heat pipe 

Outer radius of the annular plate fin 

PCM height on each circular plate 

Air gap between the PCM and the circular fin 

Thickness of bottom circular fin 

Melting front along radial direction 

Melting front along the vertical direction 

Thermal resistance 

Thermal resistance within the PCM along the radial direction 

Thermal resistance within the PCM along the vertical direction 

Total thermal resistance 

Width of the tank LTES system 

Height of the tank LTES system 

Height of the HTF channel 

Length of the HTF channel or the tank LTES system 

Density 

Heat capacity 

Conductivity of HTF 

Conductivity of PCM 

Latent energy 

Viscosity 

Convective heat transfer coefficient in the HTF channel  

Effective convective heat transfer coefficient of a heat pipe 

Number of heat pipes in a row perpendicular to the flow direction 

Number of circular plate fins along the height of a heat pipe 
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𝑁𝑧 

∆ 

𝑉 

𝑞𝑓 

𝑄 

 

Superscripts 

𝑖 

𝑘 

𝑖𝑛 

 

Subscripts 

𝑝𝑐𝑚 

𝑓 

ℎ𝑝 

𝑓𝑖𝑛 

Number of heat pipe rows along the flow direction 

Incremental step change 

PCM volume 

Mass flow rate of the HTF 

Accumulated energy in the HTF 

 

 

Discrete location 

Discrete time step 

Inlet conditions of HTF 

 

 

Phase change material 

Heat transfer fluid (HTF) 

Heat pipe 

Bottom circular fin 

 

 

1.  Introduction 

Latent thermal energy storage (LTES) systems based on phase change materials 

(PCM) have two obvious advantages over sensible thermal energy storage.  One is higher 

energy density, resulting in smaller equipment size and less investment cost.  The other is 

that PCM-based LTES release or absorb heat isothermally, resulting in efficient 

temperature management. Despite these advantages, only a few commercial applications 

employ LTES due to several engineering challenges.  One major problem is the lack of 

computationally efficient models for the transient and nonlinear behavior of a LTES 

system. The low conductivity of PCMs is another engineering challenge preventing 
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commercial applications of LTES systems. These and other challenges for LTES systems 

affect their ability to be integrated into applications like solar heating or heat pump 

systems.  At present, LTES systems are mainly studied in the literature for optimal 

storage and performance design [1-5].  These studies are often based on computational 

fluid dynamics (CFD), which leads to time-consuming computationally expensive 

simulations.  As application processes with energy storage are inherently transient [6], i.e., 

solar thermal systems, building heating ventilation and air condition (HVAC) systems,  

operational strategies for effective dynamic heat management are needed [7].  

The inherent nonlinearity and transient charging or discharging of a LTES system 

further complicates the formulation of a control problem.  A dynamical model for 

advanced control (such as model predictive control) or operational research is rare in the 

literature [8-12].  A control oriented dynamical model for a LTES unit coupled with a 

solar thermal collector and a backup electric heater was developed by Serale et al. [8] for 

space heating.  A mixed logic-dynamical approach was introduced to regulate the system 

with intrinsic nonlinearities.  With the aim to efficiently model the non-linear operational 

characteristics of a LTES system, Ghani et al. [9] built a dynamic model by using a 

Layered Digital Dynamical Neural type network which was trained with experimental 

data obtained from a latent heat exchanger.  Luu et al. [10] proposed integrating a latent 

heat system into a domestic solar water heater to eliminate the traditional water tank.  A 

dynamical model for process operation analysis was developed and validated against 

experimental data.  To monitor safe operation of lithium-ion battery packs coupled with 

phase change composites for passive cooling, Salameh et al. [11] developed a state-space 

dynamical model to estimate the melt fraction of the stored latent cooling energy in the 
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system.  Barz et al. [12] developed a nonlinear state observer based on a physical 2D 

dynamical model to reconstruct transient spatial temperature fields inside the storage and 

estimate the stored energy and the state of charge.  

To offset the low conductivity of PCMs, heat pipes are often embedded in PCMs to 

increase the heat transfer performance for applications [13-19.]  A heat pipe assisted 

LTES system is a convenient configuration for large scale applications, i.e., the 

concentrating solar power field [13, 14].  Most studies of a heat pipe assisted LTES 

system have been numerically or experimentally focused on a single pipe unit [15-19].  

Limited literature is available on modeling and design at the level of a whole system for a 

large scale LTES system.  A thermal network model was developed by Shabgard et al. 

[13] to predict the performance of a LTES system with cascaded PCMs based on exergy 

analysis.  A dynamic numerical model based on a thermal resistance network was 

developed by Nithyanandam & Pitchumani [14] to study the influence of design and 

operating parameters on the charge and discharge performance of a large scale LTES 

system.  

It is crucial to estimate how long the system can continue to supply or store latent 

energy at a given heat flow for a large scale LTES system. Moreover, optimal operational 

strategies could result in substantial investment savings for a large scale system. In order 

to use the modeling approaches currently available for large scale LTES systems to 

perform this kind of operational research, the thermal network models developed in [13, 

14] require solving large coupled system of governing equations. As a result, the 

computational efficiency of these models is not sufficient for operational research 

purposes. That is why the studies outlined above [8-12] only involve small scale LTES 
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systems. Indeed dynamical models of large scale LTES systems for operational research 

have not been widely studied in the literature. To address this research need, in this paper, 

an efficient discrete time dynamical model for a heat pipe assisted large scale LTES 

system is developed.  Its verification and successful application for operational studies is 

demonstrated by several examples. 

The content of this paper is organized as follows.  In section 2, a discrete time 

dynamical model for a single annular finned heat-pipe enhanced PCM module is 

constructed.  In section 3, the module developed in Section 2 is employed to create a 

discrete time dynamical model for a full large scale LTES system. In section 4 the 

discrete time dynamical model is used for operational research. Section 5 summarizes the 

conclusions. 

 

 

2.  A discrete-time dynamical model for an annular finned PCM module  

A heat pipe assisted large scale LTES system is shown in Fig. 6.1.  Heat pipes are 

embedded in the PCM tank and connected to a heat transfer fluid (HTF) channel. A 

possible application of such a system is reported in [20].  Annular fins are attached to a 

single heat pipe as shown in Fig. 6.2.  Finned heat pipe structures are necessary to 

enhance the heat transfer performance of the LTES system due to the low thermal 

conductivity of PCM.  For a heat pipe, it is reasonable to assume that there is no 

temperature drop along its length [21], so the transient PCM behavior of a single annular 

fin extended from the tube (See Fig. 6.3) can be used to represent a whole tube.  
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Figure 6.1 Sketch of a large scale LTES system with embedded heat pipes 

 

 
Figure 6.2 Cross-sectional schematic of a single heat pipe unit with annular fins 

 

 
Figure 6.3 Sketch of annular finned PCM unit of a heat pipe 

 



181 

Although temperature drop in a heat pipe can be neglected,  in the following 

description, a thermal resistance of a heat pipe ( 𝑅ℎ𝑝 ) is nevertheless introduced to 

generalize the mathematical model, so that it can be applied to the situation when the heat 

pipe is replaced by a tube with heat transfer fluid (HTF) going through it. Thus an inner 

heat pipe temperature 𝑇ℎ𝑝 and heat pipe wall temperature 𝑇𝑤 are also introduced. Based 

on the concept of thermal resistance networks for heat flow, the heat coming from the 

heat pipe into the PCM can be written as: 

 
𝑇ℎ𝑝−𝑇𝑤

𝑅ℎ𝑝
=

𝑇𝑤−𝑇𝑚

𝑅1
+

𝑇𝑤−𝑇𝑚

𝑅𝑓𝑖𝑛+𝑅2
                                                                           (2-1) 

As a result, the wall temperature of the heat pipe is:  

𝑇𝑤 =
𝑅1(𝑅𝑓𝑖𝑛+𝑅2)𝑇ℎ𝑝+𝑅ℎ𝑝(𝑅𝑓𝑖𝑛+𝑅2)𝑇𝑚+𝑅1𝑅ℎ𝑝𝑇𝑚

𝑅1(𝑅𝑓𝑖𝑛+𝑅2)+𝑅𝑡𝑢𝑏𝑒(𝑅𝑓𝑖𝑛+𝑅2)+𝑅1𝑅ℎ𝑝
                                                      (2-2) 

The total thermal resistance from the heat pipe to the moving fronts of the PCM can be 

written as: 

                 𝑅𝑡 = 𝑅ℎ𝑝 +
𝑅1+𝑅2+𝑅𝑓𝑖𝑛

𝑅1(𝑅𝑓𝑖𝑛+𝑅2)
,                                                                  (2-3) 

which, because this depends on the moving fronts of the PCM, it is a transient variable.  

In the radial direction, the heat flow into the PCM within a small time window ∆𝑡 is 

equal to the latent energy change happening in a small radial distance ∆𝑟, thus an energy 

balance equation can be written as: 

𝑇𝑤−𝑇𝑚

𝑅1
=

𝜌𝑝𝑐𝑚2𝜋𝑟𝑘−1∆𝑟𝑘ℎ𝑘−1𝐿𝑝𝑐𝑚

∆𝑡𝑘
.                                                                            (2-4) 

Consequently, the marching melt front at the time 𝑘 is: 

∆𝑟𝑘 =
(𝑇𝑤−𝑇𝑚)∆𝑡𝑘

𝑅1𝜌𝑝𝑐𝑚2𝜋𝑟𝑘−1ℎ𝑘−1𝐿𝑝𝑐𝑚
                                                                                   (2-5) 
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The distance of the melting front away from the heat pipe wall along the radial direction 

is updated as: 

𝑟𝑘 = 𝑟𝑘−1 + ∆𝑟𝑘                                                                                                       (2-6) 

Similarly, along the vertical direction, the energy balance equation is:  

𝑇𝑤−𝑇𝑚

𝑅𝑓𝑖𝑛+𝑅2
=

∆𝑚𝐿𝑝𝑐𝑚

∆𝑡𝑘
=

𝜌𝑝𝑐𝑚𝜋(𝑟2
2−(𝑟𝑘)

2
)∆ℎ𝑘𝐿𝑝𝑐𝑚

∆𝑡𝑘
.                                                       (2-7) 

Thus, the incremental melt front along the vertical direction at the time 𝑘  with the 

updated melt front 𝑟𝑘can be obtained as:  

∆ℎ𝑘 =
(𝑇𝑤−𝑇𝑚)∆𝑡𝑘

(𝑅𝑓𝑖𝑛+𝑅2)𝜌𝑝𝑐𝑚𝜋(𝑟2
2−(𝑟𝑘)

2
)𝐿𝑝𝑐𝑚

.                                                                     (2-8) 

The distance of the melting front away from the annular fin along the vertical direction is 

updated as: 

ℎ𝑘 = ℎ𝑘−1 + ∆ℎ𝑘 .                                                                                                          (2-9) 

Generally, this discrete time dynamical (DTD) model can be written as: 

[ℎ𝑘, 𝑟𝑘, 𝑅𝑡
𝑘] = 𝐹(𝑇𝑓

𝑘, ∆𝑡𝑘).                                                                                           (2-10) 

The following lists the calculations of the thermal resistances. The thermal resistances 

within the PCM are updated according to the moving fronts ℎ𝑘 ,𝑟𝑘 , and they can be 

expressed as:  

 𝑅1
𝑘 =

𝑙𝑜𝑔(𝑟𝑘 𝑟1⁄ )

2𝜋(ℎ0−ℎ𝑘)
                                                                                                             (2-11) 

 𝑅2
𝑘 =

ℎ𝑘

𝜋[(𝑟2)2−(𝑟𝑘)
2

]𝑘𝑝𝑐𝑚

    .                                                                                            (2-12) 

The thermal resistance of the fin is:   

 𝑅𝑓𝑖𝑛 =
𝑙𝑜𝑔(𝑟2 𝑟1⁄ )

2𝜋𝑤𝑓𝑖𝑛𝑘𝑓
  .                                                                                                         (2-13) 
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The thermal resistance in the heat pipe includes the wall conduction resistance and 

effective convection heat transfer resistance:  

𝑅ℎ𝑝 =
1

2𝜋𝑟1(𝑤𝑓+ℎ0)ℎℎ𝑝
+

𝑙𝑜𝑔(𝑟1 (𝑟2−𝑤𝑡)⁄ )

2𝜋(𝑤𝑓+ℎ0)𝑘𝑓
,                                                                       (2-14) 

where ℎℎ𝑝 is the effective heat transfer coefficient of the heat pipe and 𝑤𝑡 is the tube wall 

thickness.  

For a set of 8 testing cases (Table 6.1), numerical computational fluid dynamics 

solutions were found using the Solidification & Melting Model within the commercially 

software FLUENT (Available in Ansys 16.0).  A detailed Fluent model description, as 

well as mesh and time-step independence studies that are very close to the current 

numerical cases can be found in [20].  The numerical results of the testing cases (Table 

6.1) are used to verify the applicability of the DTD model outlined in Section 2, which 

was coded in MATLAB.  

Note that the first 4 test cases have different geometries but the same boundary 

conditions, while the last 4 cases have different boundary conditions, fin thicknesses and 

properties.  Fig. 6.4 shows the comparison between the DTD model (noted as ‘DTD.’) 

and the numerical results by Fluent (‘num.’) for the 8 testing cases.  Overall, the DTD 

model agrees very well with the transient freezing curve determined by the Fluent 

simulations (within 15 % for the worst case in terms of final freezing time).   

For comparison of the testing cases, the ratio 
ℎ0

𝑟1
 is a quantity that gives an indication 

of the dominant cooling mechanism. This is because when the ratio 
ℎ0

𝑟1
 is large enough, 

the cooling from the inner tube wall dominates, while cooling effects from the bottom 

become negligible. The ratio 
ℎ0

𝑟1
 of cases #2 and #3 is 12 and 20 which suggests high ratio 
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values. Based on the DTD model and fluent results Figure 6.4(a) shows that their 

corresponding liquid fraction curves are almost identical, this is expected because as the 

outer radius for # 2 & 3 is the same, the two cases have almost identical freezing 

behavior.   In the testing cases, the minimum 
ℎ0

𝑟1
 is 0.5 (cases # 1 & 4).  Thus it can be 

concluded that the DTD model is applicable for conditions where the dimension 
ℎ0

𝑟1
≥

0.5.  Also based on the testing cases, a confident working range for the ratio 
𝑟2

𝑟1
 of the 

DTD model is 4 ≤
𝑟2

𝑟1
≤ 12.   The lower bound may not have to be specified, because 

when 
𝑟2

𝑟1
 is small, heat transfer from the tube wall dominates, and under such conditions, it 

was shown by cases #2 & 3 that the DTD model has good performance.  Cases # 5-8 

have the same dimensions, but different boundary conditions, fin thicknesses and 

properties.  Through the comparisons, it can be seen that the DTD model can also 

perform quite well under variations of those parameters (with only a maximum of 6% 

difference exhibited in terms of final freezing time).  Thus besides its dynamical 

performance tracking, the DTD model can also be used for optimal dimensional design of 

LTES systems (Fig. 6.1) with embedded annular finned heat pipes. 

Table 6.1 Test cases 

Cases 𝑟1 (cm) 𝑟2 (cm) ℎ0 (cm) 𝑤𝑓𝑖𝑛 (mm) ℎℎ𝑝 dT Fin 

#1 0.5 2.0 0.25 0.5 350 10 Steel 

#2 0.5 2.0 6.0 0.5 350 10 Steel 

#3 0.5 2.0 10.0 0.5 350 10 Steel 

#4 0.5 6.0 0.25 0.5 350 10 Steel 

#5 0.5 3.0 2.0 0.25 350 20 Steel 

#6 0.5 3.0 2.0 1.0 150 10 Steel 

#7 0.5 3.0 2.0 0.5 500 5 Steel 

#8 0.5 3.0 2.0 0.25 350 10 Al 
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Figure 6.4 Testing cases used in verifying the DTD model against numerical Fluent 

simulations 

 

 

3. Coupled model (PCM and HTF) of the large-scale LTES system 

A heat transfer fluid (HTF) flows through the rectangular channel exchanging heat 

with the PCM.  For a mathematical description of the process, the following assumptions 

are made: (1) the HTF is incompressible and viscous dissipation is negligible; (2) the 

HTF is uniform over the cross sectional area; (3) heat transfer along the HTF flow 

direction is negligible; (4) heat transfer in the PCM is conduction controlled; (5) the outer 

wall of the PCM is adiabatic; (6) PCM properties are constant; (7) the channel wall 

thickness is neglected, thus no thermal resistance of the wall is considered; (8) the heat 
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pipes pass through the PCM tank and almost reach the bottom of the HTF channel. 

 
Figure 6.5 A shell and tube latent energy storage unit   

 

Within the channel, heat transfer takes place not only between the HTF and the 

immersed section of the heat pipes in the channel, but also between the upper contact 

surface of the channel and the PCM tank.  However, within a single annular finned 

module, there is an air gap between two neighboring modules; this gap is reserved for 

PCM expansion (See Fig. 6.2). This air gap also poses a large thermal barrier for heat 

transfer from a lower annular finned PCM to an upper unit through the bottom of the 

annular fin. Besides the very bottom annular finned PCM that can be heated by the upper 

channel surface, the remaining units are almost all heated by the heat pipes.  Thus it is 

justified to assume that the HTF only transfers heat through the immersed section of the 

heat pipes within the channel. Based on the above assumptions, the governing equation 

for energy transfer of the HTF in the tube is: 

 𝜌𝑓𝐶𝑝𝑓𝑌𝑊∆𝑍 (
𝜕𝑇𝑓

𝜕𝑡
+ 𝑢

𝜕𝑇𝑓

𝜕𝑧
) = 2𝜋𝑟1𝑌𝑁𝑥ℎ𝑓(𝑇𝑖𝑛𝑡 − 𝑇𝑓),                                               (3-1) 

where ℎ𝑓  is the heat transfer coefficient based on correlation equations for cross flow 

[22] ; 𝑁𝑥 is the number of heat pipes in a row perpendicular to the flow direction; ∆𝑍 is 

the discrete distance accounting for the number of rows of heat pipes.  𝑇𝑖𝑛𝑡 acts as the 

interface temperature between the HTF in the channel and the heat pipe. 
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In the following, by employing the time-discrete dynamical (DTD) module developed in 

Section 2, an efficient numerical approach that does not require the solution of any 

systems of equations for the modeling of the large scale LTES system (Fig. 6.1), is 

proposed.  

 
Figure 6.6 Thermal resistance scheme of element 𝑖 based on Fig. 6.5 

  

Fig. 6.6 shows a discrete unit composed of a single heat pipe.  Multiple heat pipes 

along the flow direction can also be grouped as one discrete unit for the large scale LTES 

system shown in Fig. 6.1.  The following analysis is based on a one-row heat pipe unit 

(which also applies to a discrete unit along the HTF flow direction composed of multiple 

rows of heat pipes).  The thermal resistance of the 𝑖𝑡ℎ  discrete unit depends on the 

moving freezing fronts of 𝑟𝑖,𝑘, ℎ𝑖,𝑘 at time k and is written as: 

[ℎ𝑖,𝑘, 𝑟𝑖,𝑘, 𝑅𝑡
𝑖,𝑘] = 𝐹(𝑇𝑖𝑛𝑡

𝑖,𝑘, ∆𝑡𝑘).                                                                                      (3-2) 

Between each time interval, the volume of PCM turning from liquid to solid can be 

calculated as:  

𝑉𝑖,𝑘 = 𝜋(𝑟2
2 − 𝑟1

2)ℎ𝑘 + 𝜋 ((𝑟𝑖,𝑘)
2

− 𝑟1
2) (ℎ0 − ℎ𝑘);                                                    (3-3) 

𝑉𝑖,𝑘−1 = 𝜋(𝑟2
2 − 𝑟1

2)ℎ𝑘−1 + 𝜋 ((𝑟𝑖,𝑘−1)
2

− 𝑟1
2) (ℎ0 − ℎ𝑘−1);                                      (3-4) 



188 

∆𝑉𝑖,𝑘 = 𝑉𝑖,𝑘 − 𝑉𝑖,𝑘−1.                                                                                                   (3-5) 

The latent energy transfer associated with this volume change transfers to the HTF 

channel; an energy balance equation for a discrete unit with one row of heat pipes 

perpendicular to the flow direction can be written as:  

2𝜋𝑟1𝑌𝑁𝑥ℎ𝑓(𝑇𝑖𝑛𝑡
𝑖,𝑘+1 − 𝑇𝑓

𝑖,𝑘+1) =
𝜌𝑝𝑐𝑚𝐿𝑝𝑐𝑚∆𝑉𝑖,𝑘

∆𝑡
 .                                                             (3-6) 

Then the energy balance equation in the HTF channel can also be written as:  

  𝜌𝑓𝐶𝑝𝑓𝑌𝑊∆𝑍 (
𝜕𝑇𝑓

𝜕𝑡
+ 𝑢

𝜕𝑇𝑓

𝜕𝑧
) =

𝜌𝑝𝑐𝑚𝐿𝑝𝑐𝑚∆𝑉𝑖,𝑘

∆𝑡
.                                                               (3-7) 

Assume 𝑁𝑦  is the total number of annular plate fins along the height of a heat pipe.  

Implementing an implicit scheme and using a finite difference approach for the partial 

differential terms, eqn. (3-7) becomes: 

𝜌𝑓𝐶𝑝𝑓𝑌𝑊∆𝑍 (
𝑇𝑓

𝑖,𝑘+1−𝑇𝑓
𝑖,𝑘

∆𝑡
+ 𝑢

𝑇𝑓
𝑖,𝑘+1−𝑇𝑓

𝑖−1,𝑘+1

∆𝑍
) = 𝑁𝑥𝑁𝑦

𝜌𝑝𝑐𝑚𝐿𝑝𝑐𝑚∆𝑉𝑖,𝑘

∆𝑡
.                              (3-8) 

Setting 𝛹(𝑡𝑘, 𝑖) =
𝑁𝑥𝑁𝑦

𝜌𝑓𝐶𝑝𝑓𝑌𝑊
∙

𝜌𝑝𝑐𝑚𝐿𝑝𝑐𝑚∆𝑉𝑖,𝑘

∆𝑡
,  the temperature in the HTF can be updated as:  

𝑇𝑓
𝑖,𝑘+1 =

1

∆𝑧 ∆𝑡+𝑢⁄
(𝛹(𝑡𝑘 , 𝑖) +

∆𝑧

∆𝑡
 𝑇𝑓

𝑖,𝑘 + 𝑢𝑇𝑓
𝑖−1,𝑘+1).                                                     (3-9) 

The interface temperature can be updated based on eqn. (3-6), and it can be written as: 

𝑇𝑖𝑛𝑡
𝑖,𝑘+1 =

𝑇𝑚+2𝜋𝑟1𝑌ℎ𝑓𝑅𝑡
𝑖,𝑘𝑇𝑓

𝑖,𝑘+1

1+2𝜋𝑟1𝑌ℎ𝑓𝑅𝑡
𝑖,𝑘 .                                                                                (3-10) 

Due to the sizing limitations of an annular finned unit, in the simulation when either ℎ𝑖,𝑘 

or 𝑟𝑖,𝑘 reaches the boundary first, a constraint is set as: 

when ℎ𝑖,𝑘 ≥ ℎ0, 𝑜𝑟 𝑟𝑖,𝑘 ≥ 𝑟2 𝑅𝑡
𝑖,𝑘 = ∞ .                                                                     (3.11) 

The overall calculation procedure is shown as following, (which it should be emphasized 

again that it does not involve solving any systems of equations):  
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First, initialize the temperature profile in the tube 

 𝑇𝑓
𝑖,1 = 𝑇𝑖𝑛, 𝑇𝑖𝑛𝑡

𝑖,1 = 𝑇𝑚, 1 ≤ i ≤ 𝑁𝑧; 

     for  k = 1: K 

        [ℎ𝑖,𝑘, 𝑟𝑖,𝑘, 𝑅𝑡
𝑖,𝑘] = 𝐹(𝑇𝑖𝑛𝑡

𝑖,𝑘, ∆𝑡𝑘)    

     𝑖𝑓      ℎ𝑖.𝑘 ≥ ℎ0  or  𝑟𝑖.𝑘 ≥ 𝑟2   

          𝑅𝑡
𝑖,𝑘 = 𝑒15; 

          𝑒𝑛𝑑 

         𝑇𝑓
1,𝑘 = 𝑇𝑖𝑛; 

         𝛹(𝑡𝑘 , 𝑖) =
𝑁𝑥𝑁𝑦

𝜌𝑓𝐶𝑝𝑓𝑌𝑊
∙

𝜌𝑝𝑐𝑚𝐿𝑝𝑐𝑚∆𝑉𝑖,𝑘

∆𝑡
; 

𝑇𝑓
𝑖,𝑘+1 =

1

∆𝑧 ∆𝑡+𝑢⁄
(𝛹(𝑡𝑘 , 𝑖) +

∆𝑧

∆𝑡
 𝑇𝑓

𝑖,𝑘 + 𝑢𝑇𝑓
𝑖−1,𝑘+1);    

  𝑇𝑖𝑛𝑡
𝑖,𝑘+1 =

𝑇𝑚+2𝜋𝑟1𝑌ℎ𝑓𝑅𝑡
𝑖,𝑘𝑇𝑓

𝑖,𝑘+1

1+2𝜋𝑟1𝑌ℎ𝑓𝑅𝑡
𝑖,𝑘      

  𝑒𝑛𝑑 

 

A first verification of this large scale LTES model can be performed via an energy 

balance between the HTF and the PCM in the tank. Testing cases with three different 

HTF channel length (𝑍) (Fig. 6.1) were considered. The detailed dimensions of the cases 

are listed in Table 6.2 and it is assumed that (i) the HTF is water (properties shown in 

Table 6.3) (ii) the HTF mass flowrate is 10 (𝑘𝑔 𝑠⁄ ) and (iii) the inlet temperature is 

0 (℃).  The PCM properties used are shown in Table 6.4.   Fig. 6.7 shows the output 

temperature profiles of the HTF going through three different channel lengths.  Longer 

channels result in longer dwell time for the HTF, leading to higher output temperatures.  

The accumulated energy of the HTF is calculated as: 

𝑄 = ∑ 𝑞𝑓𝐶𝑝𝑓(𝑇𝑓
𝑁,𝑘 − 𝑇𝑓

𝑖𝑛)𝐾
𝑘=1 ∆𝑡,                                                                               (3.12) 
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where 𝑞𝑓 is HTF inlet mass flowrate and 𝑇𝑓
𝑖𝑛 is its inlet temperature. It can be seen from 

Fig. 6.8 that for the three cases, the total amount of latent energy within the PCM is 

balanced with the total amount of energy carried away by the HTF.  Thus the modeling 

procedure for such a large-scale LTES system is a reliable approximation for preliminary 

operational design purposes. Moreover an exact similar modelling approach was applied 

to a shell and tube LTES unit that was verified by comparing the results to a finite 

difference based solution [22].  

Table 6.2 Geometries for energy balance testing 
𝑟1(𝑐𝑚) 𝑟2(𝑐𝑚) ℎ0(𝑐𝑚) ℎ𝑔(𝑐𝑚) 𝑤𝑓𝑖𝑛(𝑚𝑚) 𝑊( m) 𝐻(m) 𝑌(m) Z (𝑚) 

0.4 4 2 0.15 0.5 2 1.26 0.3 10,20,30 

 

Table 6.3 Properties of water  

Density 𝜌𝑓 Conductivity 𝑘𝑓  Heat Capacity 𝐶𝑝𝑓 Viscosity 𝜇𝑓 

988.2 (kg m3⁄ ) 0.59846 (W mK⁄ ) 4184.1 (J kgK⁄ ) 1.0016e
-3

 (Pa ∙ s) 

 

Table 6.4 Representative thermal properties of PCM  

Density 𝜌𝑝𝑐𝑚 Conductivity 𝑘𝑝𝑐𝑚  Melting Temperature 𝑇𝑚 Latent Heat 𝐿𝑝𝑐𝑚 

1538 (kg m3⁄ ) 1.0 (W mK⁄ ) 45 (℃) 170 kJ/kg 
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Figure 6.7 Outlet temperature of the HTF 

 

 
Figure 6.8 Accumulated energy within the HTF 

 

 

4. Results and discussion for operational research of a large scale LTES 
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system  

 For a large scale LTES system, operational strategies could be vital for cost savings.  

Thus the dynamical model developed in Sections 2-3 is employed to explore possible 

operational strategies for more efficient use of the stored energy in a LTES system.   

According to Section 3, a general DTD model for the large-scale LTES system (See Fig. 

6.1) can be represented as:  

𝑇𝑓
𝑜𝑢𝑡(𝑡𝑘) = 𝐺(𝑞𝑓(𝑡𝑘), 𝑇𝑓

𝑖𝑛),                                                                                          (4.1) 

where 𝑇𝑓
𝑜𝑢𝑡 is the output temperature of the HTF, 𝑞𝑓 is the inlet HTF mass flowrate with 

a constant inlet temperature 𝑇𝑓
𝑖𝑛.  The specific geometries of a single circular finned heat 

pipe are listed in Table 6.2 (the length of the channel is assumed to be 10 m). The 

material properties of the HTF and the PCM are shown in Tables 6.3 and 6.4, 

respectively.  

 

4.1 Study finding variable mass flow rate profiles under a temperature constraint 

For a real application, the HTF is often required to be heated to a desired 

temperature.  Based on Fig. 6.7, it can be seen that the length of the channel should be 

optimally determined so that a required operational temperature can be obtained.  Fig. 6.7 

also indicates that the output HTF temperature could decrease quickly and fail to meet the 

target temperature when there is not sufficient latent energy in the LTES system.  

Nevertheless, there still could be a substantial amount of unused stored latent energy in 

the large-scale system.  To make more efficient use of this stored latent energy, one 

solution is to reduce the flowrate of the HTF, thus its dwell time in the LTES system can 

be prolonged and its output temperature may still reach the target temperature.  Under 
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such conditions, the DTD model (eqn. 4.1) can conveniently be employed to find such a 

desired flowrate profile.  The deviation of the output temperature of the HTF from the 

design point 𝑇𝑑  should be as small as possible at each time step. A corresponding 

optimization problem can be formulated as (eqn.4.2): 

  
𝑚𝑖𝑛

𝑞𝑓(𝑡𝑘) (𝑇𝑓
𝑜𝑢𝑡(𝑡𝑘) − 𝑇𝑑)

2
 

                                     s. t.             𝑇𝑓
𝑜𝑢𝑡(𝑡𝑘) = 𝐺[𝑞𝑓

𝑖𝑛, 𝑇𝑓
𝑖𝑛]                                      (4.2) 

                                                       0 ≤ 𝑞𝑓(𝑡𝑘) ≤ 4 

The design temperature is set at 20℃.  Fig. 6.9 shows the controlled inlet HTF mass 

flowrate profile with its output temperature profile determined by the design algorithm.  

Initially the inlet HTF mass flowrate is set at 3𝑘𝑔 𝑠⁄ .  After the output temperature 

increases to the maximum allowable temperature, a control strategy is implemented (red 

section of the curves in Fig. 6.9).  At the beginning there is sufficient latent energy in the 

LTES system, so the inlet mass flowrate reaches its upper bound.  When the remaining 

stored energy in the system cannot maintain the output temperature at the design point 

with the upper-bound mass flowrate, a decreasing mass flowrate is found at each discrete 

time window to satisfy the temperature constraint. 
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Figure 6.9 Profiles of the HTF output temperature and inlet mass flowrate 

 

4.2 Study of configuration effects on temperature profiles for prescribed HTF mass 

flowrate  

While the above results illustrate the utility of the approach for output temperature 

control of a LTES unit with greater flexibility, there are also many applications for which 

the mass flowrate of the HTF is fixed.  In that case, a single controlled decreasing 

flowrate profile is impractical.  Addressing this issue, the configuration of several parallel 

units of the LTES system (Fig. 6.1) is considered.  Fig. 6.10 shows three units arranged in 

series and also in parallel.  Assuming that there is a fixed HTF mass flowrate 9 𝑘𝑔 𝑠⁄  with 

0℃ inlet temperature going through the LTES system in series or equally distributed to 

the parallel units at 3 𝑘𝑔 𝑠⁄  each.  Fig. 6.11 shows the temperature profiles obtained in 

each of the two operational configurations.  If the required operational temperature is 

20℃, operation in parallel has obvious advantages over operation in series. That is, with 
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which in turn means cost savings (by building a smaller LTES system to meet the 

operational time window requirement).  

 
(a) Arrangement in series 

 
(b) Parallel arrangement and mixing 

Figure 6.10 Schematic of operational designs 

 

 

 
Figure 6.11 Temperature profiles of in series and parallel operational configurations for a 

prescribed heating load 

 

In addition, the flowrate control problem (eqn. 4.2) indicates that there could be 

other efficient flowrate distribution strategies that could increase the operational time 

0 1 2 3 4 5 6
0

5

10

15

20

25

30

35

Time (hrs)

T
e
m

p
e
ra

tu
re

 (
 
C

)

Temperature profiles

 

 

In series

Equal parallel distribution



196 

window for the same LTES system.  Thus a controlled distribution of a fixed mass 

flowrate HTF into three parallel LTES units is proposed as eqn. 4.3.  The target function 

is the sum of the square of the mass flowrate going into each LTES unit.  In the 

constraints, the design temperature is specified as the ideal mixing temperature of the 

flows coming from the three units.  By assigning different weight values,𝐶1, 𝐶2, 𝐶3, the 

operational priority of each unit can be determined.  In the following simulations, a set of 

values used for 𝐶1, 𝐶2, 𝐶3, are 10, 500 and 1000, respectively.  Such a set of weights 

ensures that, at the beginning, more mass flowrate will be distributed to the first unit and 

when there is not enough latent energy left in the first unit to meet the required design 

temperature, more mass flowrate is distributed to the second and then to the third.  By 

such a means of controlled variable distribution, more latent energy in the first and 

second unit can be used.  

𝑚𝑖𝑛
𝑞𝑓

1, 𝑞𝑓
2, 𝑞𝑓

3 𝐶1(𝑞𝑓
1)

2
+ 𝐶2(𝑞𝑓

2)
2

+ 𝐶3(𝑞𝑓
3)

2
  

                                            𝑇𝑓
1(𝑡𝑓) = 𝐺(𝑞𝑓

1, 𝑇𝑓
𝑖𝑛) 

                                            𝑇𝑓
2(𝑡𝑓) = 𝐺(𝑞𝑓

2, 𝑇𝑓
𝑖𝑛) 

                                            𝑇𝑓
3(𝑡𝑓) = 𝐺(𝑞𝑓

3, 𝑇𝑓
𝑖𝑛)                                                         (4.3) 

                             s. t.         𝑞𝑓 = 𝑞𝑓
1 + 𝑞𝑓

2 + 𝑞𝑓
3                        

                                           𝑞𝑓
1𝑇𝑓

1(𝑡𝑓)+𝑞𝑓
2𝑇𝑓

2(𝑡𝑓)+𝑇𝑓
3(𝑡𝑓)𝑞𝑓

3=𝑞𝑓𝑇𝑓
𝑜𝑢𝑡(𝑡𝑓) 

                                           𝑇𝑓
𝑜𝑢𝑡(𝑡𝑓) = 𝑇𝑑 

 

Fig. 6.12 shows the output temperature profiles of each unit due to the controlled 

mass flowrate distribution and the temperature profile after assumed ideal mixing.  After 

the initial period, the mixing temperature meets the design temperature requirement until 

there is no longer sufficient latent energy left in all of the three units.  Figure 6.13 shows 



197 

a fixed mass flowrate HTF being distributed into three identical units.  It can be seen that, 

at the beginning, more flowrate is distributed through the first unit which is forced by the 

weighting effect in the target function.  As intended, when there is not enough latent 

energy remaining, the flowrates going through the 2
nd

 and 3
rd

 units increase.  

 
Figure 6.12 Output temperatue profiles of each unit due to the controlled distribution of 

the mass flowrate 

 

 
Figure 6.13 Controlled mass flowrate distribution through each unit 
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Fig. 6.14 shows the output temperature profiles corresponding to the three 

operational strategies. When the design temperature is 16 ℃ , the operational time 

window determined by the controlled distribution scheme, can be extended much longer 

than the other two approaches for a LTES system with the same total stored latent energy.  

When the design temperature is 22 ℃ , the advantage of the controlled operation 

decreases.  This is because the output temperature is limited by the length of a LTES 

system (Fig. 6.1) for HTFs with a fixed mass flowrate.  Here, the effectiveness of a LTES 

system is introduced which is defined as [24, 25]: 

ε =
𝑇𝑓

𝑜𝑢𝑡−𝑇𝑓
𝑖𝑛

𝑇𝑚−𝑇𝑓
𝑖𝑛 ,                                                                                                                   (4.4) 

where 𝑇𝑚 is the melting temperature of the PCM.  Given a fixed length of a LTES system 

(Fig. 6.1), and the melting temperature of the PCM, the output temperature defines the 

effectiveness of a LTES system which is also influenced by the HTF mass flowrate.  

From Fig. 6.15(a) it can be seen that with small effectiveness, the operational time 

window can be increased by more than 26% compared to the parallel operational 

configuration. Similarly, the operational window can be increased by more than 46% 

compared to the in-series operational configuration.  However, this advantage also 

decreases with the increase of the effectiveness.  When the effectiveness is over 0.5, in 

series operation out-performs the other two options.  This is because the length of a LTES 

has reached a prescribed limit to meet the design output temperature for a certain mass 

flowrate HTF.  To increase the effectiveness, the mass flow rate of the HTF should be 

reduced.  Fig. 6.15(b) shows the operational time windows in the higher effectiveness 

range due to reduced inlet mass flowrate of the HTF.  It still shows that the controlled 

distribution has longer operational time windows for a given design temperature 
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compared to the other operational configurations for the same sized LTES system.  

However, the effectiveness is not the decisive factor in determining the performance of 

the controlled distribution operation. When the controlled distribution cannot compete 

with the series operation, the implication is that the design temperature reaches a limit 

under the current sized LTES system with a given HTF mass flow rate. 

 
Figure 6.14 Comparison of output temperature profiles for different operational strategies 
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Figure 6.15 Operational time windows under varying effectiveness 

 

 

4. Conclusions 

In this paper, an efficient discrete time dynamical (DTD) model for a large scale 

LTES system is proposed.  The LTES system is a bulky tank with embedded circular 

finned heat pipes to enhance the heat transfer performance. The dynamical model was 
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state of charging or discharging, optimal control of mass flow rate of the heat transfer 
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the dynamical model. These included (i) equal distribution of the heat transfer fluid 
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controlled variable distribution of the HTF to three parallel LTES units.  It was found that 

for a given size of a LTES system, controlled variable distribution of the HTF can operate 
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operational configurations. Thus for a prescribed heating time window, smaller sized 

LTES systems can be used for investment savings. 
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Chapter 7  

 

Experimental, numerical and analytic study of 

unconstrained melting in a vertical cylinder 

with a focus on mushy region effects 

(Pan, C., Charles, J., Vermaak, N., Romero, C., Neti S., et al. Experimental, numerical 

and analytic study of unconstrained melting in a vertical cylinder with a focus on mushy 

region effects.  International Journal of Heat and Mass Transfer, 124, p.1015-1024, 2018. 
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Abstract 

The enthalpy-porosity method is widely used in solving solid-liquid phase change 

problems that involve convection in the melt; however the influence of the required 

mushy zone parameter on the melting process has been largely overlooked.  In this paper, 

further investigation of the mushy zone parameter is presented. The enthalpy-porosity 

method is the default model in Fluent for melting simulations.  A comprehensive 

discussion of previously reported mushy zone parameter values is presented with a 

comparison to numerical and experimental results. In this paper, based on experimental 

validations of melting times, it is found that mushy zone parameters can be optimized 

based on relevant driving temperature differences.  And despite the fact that the model 

cannot capture bulk solid sinking behaviors, numerical solid sinking behaviors by Fluent 

are still widely reported in the literature.  Explanations and supporting numerical analysis 

are given for this seeming contradiction.  Finally, an analytic solution for unconstrained 

sinking with the incorporation of the mushy zone concept is developed.  With the 

introduction of a tuning parameter to modify the viscosity of the mushy region in the 

bottom liquid layer, good agreement between the analytical model and experimental 

results is achieved.  A linear correlation for the tuning parameter based on driving 

temperature differences is given.  

 

Key words: enthalpy-porosity method, mushy zone constant, unconstrained melting 
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Nomenclature 

𝑆 

𝐶 

�⃗� 

D 

𝑤𝑠 

𝑤𝑏 

𝑠𝑡𝑑 

𝑑𝑇 

𝐻 

𝑅 

ℎ 

𝑟 

𝑇 

𝑢(𝑟) 

𝑃(𝑟) 

z 

𝑀 

𝑔 

𝐿𝑓 

𝐿𝑒 

𝐶𝑝 

𝑘 

𝑋 

𝑉 

𝑡 

𝑥 

𝑦 

Greek letters 

∈ 

A source term to modify the moment equation 

Mushy zone parameter 

Velocity field, m s⁄  

Diameter of the cylinder, cm 

Thickness of the cylinder bottle wall, mm 

Thickness of the cylinder bottle bottom, mm 

Standard deviation, s 

Driving temperature difference, ℃ 

Height, m 

Radius of solid PCM for the analytic solution, m 

Remaining height of solid PCM during analytic melting, m 

Shrinking radius of the solid PCM, m 

Temperature, ℃ 

Flow velocity in the bottom liquid layer, m s⁄  

Pressure distribution in the bottom liquid layer, Pa 

Height variable, m 

Tuning parameter for the viscosity in the mushy zone liquid layer 

Acceleration due to gravity,  m s2⁄  

Latent thermal energy of PCM, J kg⁄  

Virtual latent thermal energy of PCM, J kg⁄  

Heat capacity of PCM, J kgK⁄  

Conductivity of PCM, W mK⁄  

Liquid fraction of PCM 

Volume, m3 

Time, min 

Width of a drawn vector box, cm 

Height of a drawn vector box, cm 

 

A small number to prevent division by zero 
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𝜌 

𝜇 

𝛿 

α 

Subscripts 

𝑙 

𝑠 

𝑖 

𝑚 

𝑤 

𝑐 

𝑝𝑐𝑚 

Density of PCM, kg m3⁄  

Viscosity, Pa ∙ s 

Bottom liquid thickness, 𝑚 

Liquid volume fraction of PCM 

 

Liquid state 

Solid state 

Initial 

Melting 

Wall 

Cylinder  

Phase change material 

 

 

1.  Introduction 

The enthalpy-porosity method [1], which is based on fixed grids, is the most popular 

modeling method for solid-liquid phase change problems that involve convection in the 

melt.  It is the default method employed in the commercial computational fluid dynamics 

(CFD) code ANSYS Fluent.  The enthalpy-porosity technique treats the mushy region 

(partially solidified region) as a porous medium.  The porosity is set equal to the liquid 

fraction of the region.  The fully solidified region has zero porosity and the phase change 

material (PCM) velocity approaches zero.  To capture the mushy zone behavior, a source 

term is used to modify the momentum equation in the mushy region.  The source term 

has the form [2]: 

 𝑆 = 𝐶
(1−𝛼)2

(𝛼3+𝜖)
�⃗�,                                                                                                              (1.1) 

where ϵ is a small number (0.001) to prevent division by zero, 𝛼  is the PCM liquid 
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volume fraction, �⃗� is velocity field and 𝐶 is the mushy zone parameter.  In the liquid 

region (𝛼 = 1), the source term has a zero value and the momentum equation describes 

the actual fluid velocities.  In the mushy zone region, the moment equation approximates 

the Darcy law.  A small 𝐶 allows for significant flow and a large value suppresses the 

fluid velocities.  In the solid region (𝛼 = 0) , the parameter 𝐶  effectively forces the 

velocities to zero.  However, when 𝐶 is too small, i.e. 𝐶 = 102, the solid PCM is treated 

like a highly viscous fluid.  When 𝐶  is too large, i.e. 𝐶 = 108 , the solid remains 

suspended in the liquid contrary to experimental findings that demonstrate the sinking of 

the solid PCM [3].  It is clear that the default enthalpy-porosity method within ANSYS 

Fluent [2] is incapable of modeling the bulk solid sinking behavior. 

The influence and treatment of the mushy zone parameter on melting processes 

within the enthalpy-porosity method has been largely overlooked, despite the fact that the 

method is widely employed.  Kumar and Krishna [4] numerically studied melting in a 2-

D rectangular cavity by using the CFD code ANSYS Fluent 16.0.  It was observed that 

the mushy zone constant had significant influence on the thermohydraulics of the melt 

PCM.  As a result, the melt fraction curve depends sensitively on the mushy zone 

parameter.  

Assis et al. [5] studied melting in a spherical shell both experimentally and 

numerically.  It was found that 𝐶 = 105 showed solid sinking behavior in the simulations 

and fitted well to the experimental results.  A commercial PCM, RT27, was used in his 

study and its viscosity is around 0.0035 Pa ∙ s [6].  Hosseinizadeh et al. [7] also studied 

unconstrained melting in a spherical shell using n-octadecane, whose viscosity is 0.0039 

Pa ∙ s.  It was also confirmed that 𝐶 = 105 gave good agreement between the numerical 
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and experimental results.  Dari et al. [8] numerically studied unconstrained melting in a 

rectangular enclosure.  With the mushy zone parameter 𝐶 set at 𝐶 = 105, solid sinking 

behaviors were observed. After Assis’s work [5], many researchers [8-13] mentioned 

using a value of  𝐶 = 105 for the mushy zone parameter when modeling PCM melting 

processes by the enthalpy-porosity method [1].   

Mushy zone constants with some other values have also been reported in the 

literature. Tiari et al. [14] reported that with a mushy zone value 𝐶 = 2.5 × 106  the 

numerical results showed good agreement with previous experimental works.  The PCM 

used in Tiari’s work [14] is 𝐾𝑁𝑂3, whose viscosity is 0.00259 Pa ∙ s.  Elbahjaoui and 

Qarnia [15] numerically studied melting of a paraffin wax (P116) dispersed with 𝐴𝑙2𝑂3 

nanoparticles in a rectangular storage unit.  The viscosity of P116 is 0.0013 Pa ∙ s.  A 

mushy zone value 𝐶 = 1.6 × 106 was used, which was reported to have good agreement 

with experimental results in the literature.   

However, with these parameter values, disagreement between numerical and 

experimental results was also reported in the literature.  Shmueli et al. [16] simulated 

PCM (RT27) melting in a vertical cylindrical tube, which was insulated at the bottom and 

exposed to air at the top and heated at the tube wall.  The effect of the mushy zone 

parameter 𝐶 on the simulation results was investigated.  It was found that with 𝐶 = 105, 

the resulting melting time by the simulation was about 2.5 times shorter than the 

experimentally measured time under the same conditions.  A concern should be raised 

because the discrepancy could not be overcome by any changes of the mushy zone 

parameter and also material properties (such as the density and viscosity of the liquid 

phase) [16].  What’s more disturbing is that in Assis’s work looking at the spherical 
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geometry [5], with the same PCM (RT27), good agreement between the numerical and 

experimental results was reported. 

Thus a further look into the two cases is necessary.  The most obvious differences 

between the cases are the geometry and the boundary conditions.  For both of the cases, 

the PCM would sink towards the bottom of the container during the experiments, which 

will effectively reduce the thermal resistance between the solid PCM and the bottoms of 

the containers.  However, for the vertical cylinder case [16], the bottom was insulated, so 

the solid sinking phenomenon would have small contribution to heat transfer 

enhancement.  While for the sphere case [5], it was heated around the spherical shell, so 

the solid sinking phenomenon accelerated the melting process as demonstrated by the 

experimental melting patterns [5].  It can be argued that with the mushy zone parameter 

set to 𝐶 = 105 , the source term (Eqn. 1.1) generates suitable level of convection 

enhanced heat transfer in the liquid PCM, which agrees with the experiment.  However, 

for the vertical cylinder case [16], one presumed conclusion is that the source term---with 

any value of the mushy zone parameter--- always creates more convection in the liquid 

PCM than the real experimental situation when the solid sinking has a small role in 

enhancing the heat transfer.   

Moreover, it is mentioned that the melting model in Fluent does not have the 

mechanism to model solid sinking.  Ghasemi and Molki [17] numerically studied 

unconstrained melting in square cavities by a fixed-grid enthalpy formulation.  In their 

work, to account for solid sinking, besides the natural convection source term in the 

momentum equation, the bulk solid sinking induced convection was expressed as a 

separate source term, which captures the sinking of the solid phase.  It was found that 
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when the sinking source term was set to zero, natural convection can also cause the solid 

to sink as the convection in the liquid phase can exert a downward shearing force on the 

solid.  The two sources terms can achieve similar PCM melting patterns.  However, 

studies [5, 7, 8] without such a source term also demonstrated that with a suitable mushy 

zone parameter value, solid sinking patterns were observed by numerical analysis.  Thus 

a suitable mushy zone parameter value is needed to match the numerical results by Fluent 

with the experimental ones [5, 7].  This further concludes that the mushy zone parameter 

plays a vital role in modeling PCM melting by the enthalpy-porosity method [1].  It needs 

to be calibrated by experimental results for reliable numerical analysis.  

From above discussions, further study on the mushy zone parameter is needed.  In 

this paper, an experimental study of PCM melting in a vertical cylinder that is heated in a 

water bath is carried out.  The PCM used in this paper is Calcium Chloride hexahydrate 

(𝐶𝑎𝐶𝑙2 ∙ 6𝐻2𝑂), whose viscosity is 0.01 Pa ∙ s, which is much larger than that of paraffin.  

Then numerical simulations with different values of the mushy zone parameter are 

compared to the experimental results.  On the one hand, this study is used to confirm 

whether the numerical solution can match the experimental results when heat transfer is 

enhanced by the solid sinking behavior.  On the other hand, it is desired to find a suitable 

mushy zone parameter value, which can be applied to PCM melting in a vertical 

cylindrical geometry with solid sinking phenomenon, as in the previous studies [5, 7] that 

were based on a spherical geometry.    Furthermore, whether the numerical model can 

capture the sinking phenomenon is discussed by comparing the numerical results with the 

experimental ones.   

Finally, as the numerical method is incapable of modeling the sinking phenomenon, 
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a modified analytic solution based on the bulk solid sinking phenomenon was developed.  

During earlier works, Moore and Bayazitoglu [20] studied contact melting of a PCM 

within a spherical enclosure.  Their mathematical model was confirmed by experimental 

evidence.  The contact melting process of solid materials on circular and rectangular 

heated plates was analyzed by Webb and Viskanta [21].  Chen et al. [22] developed an 

analytic solution for close-contact melting in a vertical tube with isothermal heating both 

at the side wall and the bottom.  Close-contact melting of a PCM inside a heated 

rectangular capsule was also analytically studied by Chen. et al [23].  Yoo [24] 

analytically studied unsteady close-contact melting on a plate and showed that initially 

the melt height is far from constant.  Kozak, et al. [25] studied close-contact melting in 

vertical annular enclosures both numerically and analytically.  Rozenfeld et al. [26] 

studied close-contact melting in a horizontal cylindrical enclosure with longitudinal plate 

fins. More recently, Zhao et al. [27] theoretically and experimentally studied close-

contact melting in a rectangular cavity at different tilt angles.  In this paper, considering 

the analytic model by Chen et al. [22] tends to under predict the melting time, a tuning 

parameter that can effectively controls the thickness of the bottom liquid layer is 

introduced in the development of the solution.  With this tuning parameter, the analytical 

solution achieves good agreement with the experimental results.  

The content of this paper is organized as follows.  In section 2, the experimental 

setup is introduced.  In section 3, numerical studies by Fluent are performed along with 

the determination of the mushy zone parameters to match the experimental results.  

Section 4 presents a new analytic solution.  Section 5 summarizes the conclusions. 
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2.  Experimental setup and results 

In this paper, Calcium Chloride hexahydrate (𝐶𝑎𝐶𝑙2 ∙ 6𝐻2𝑂)  was used for the 

experimental study of unconstrained melting.  The properties of 𝐶𝑎𝐶𝑙2 ∙ 6𝐻2𝑂 are given 

in Table 7.1.  Figure 7.1 shows the schematic of the experimental setup.  It primarily 

consists of a controllable water bath, a GoPro camera, a light and a glass tube containing 

the PCM.  During the experiment, the PCM tube is vertically suspended in the water bath.  

The GoPro is set to acquire a photo every 10 seconds, which allows the final melting time 

of one sample to be recorded.  Before the experiment, the sample was immersed in a 

separate water bath overnight with its temperature held at 24℃.  This temperature will be 

the initial temperature to be used in the numerical analyses. 

 
Figure 7.1 Schematic diagram of the experimental setup 
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Two samples (10g & 20g) were used to record the melting time.  The height values in 

Table 7.1 are calculated based on the two weights and inner tube diameter.  Multiple 

samples were prepared with the same weight.  In addition, melting tests of these samples 

were repeated under three different driving temperature differences (10℃, 15℃ and 20℃).  

Table 7.4 shows the melting times, along with mean values and standard deviations (𝑠𝑡𝑑) 

of the two sample weights under the three temperature differences.  Figure 7.3 shows the 

melting patterns of one case at different times.  It can be seen that the solid shrinking 

happened much faster along the height than in the radial direction, which clearly 

demonstrate solid sinking can efficiently promote melting.  Figure 7.4 summarizes the 

experimental results.  

 

 
Figure 7.2 Computational domain of the tube 

 

Table 7.1 Samples 
Cases 𝐻𝑝𝑐𝑚 (cm) 

#1 (10g) 1.6237 

#2 (20g) 3.2474 

 

Table 7.2 Tube dimensions 
𝐻𝑐  9.5  (cm) 

D 2.258(cm) 

𝑤𝑠 1.08 (mm) 

𝑤𝑏  1.0 (mm) 

 

Table 7.3 Tube properties 
Density 2235(𝑘𝑔 𝑚3⁄ ) 

Thermal 

conductivity 
1.1 (𝑊 𝑚𝐾⁄ ) 

Specific heat 800 (𝐽 𝑘𝑔𝐾⁄ ) 
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Table 7.4 Melting time for multiple samples under different temperature differences 
Cases dT(℃) 

 

Melting times (s)   

1 2 3 4 5 6 mean 𝑠𝑡𝑑 

#1 10.0  680 700 710 680 610 660 673.33 35.59 

#2 1140 1080 1080 1030 990 1000 1053.33 57.15 

 

#1 15.0  440 450 480 500 510 520 483.33 32.65 

#2 690 700 720 730 740 780 726.67 32.04 

 

#1 20.0 360 360 330 320 330 350 341.67 17.22 

#2 510 550 530 550 560 490 531.67 27.14 

 

 
1 minutes 

 
2 minutes 

 
3 minutes 

 
4 minutes 

 
6 minutes 

 
8 minutes 

Figure 7.3 Melting patterns under 20℃ temperature differences for Case # 2 
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Figure 7.4 Mean melting times & standard deviations of two sample weights under three 

temperature differences.  

 

 

3.  Numerical study and discussions 

       Numerical studies were carried out using the commercial software ANSYS 

16.0\Fluent.  The computational domain of the model is shown in Figure 2, along with its 

dimensions in Tables 7.1 & 7.2.  The ‘volume-of-fluid’ (VOF) model is used to describe 

the PCM-air system in the Fluent software.  The VOF model treats two or more fluids as 

non-interpenetrating phases.  To simulate the melting process, Fluent uses an enthalpy-

porosity formulation by Voller et al. [2, 18].  Extensive descriptions of the numerical 

models can be found in the literature [5, 20].  Thus mathematical description is omitted in 

this paper.  

Figure 7.2 in Section 2 shows the computational domain to be simulated in Fluent. 

Constant temperature was applied to both the bottom and the side wall of the cylinder.  

The top of the cylinder is closed and is adiabatic.  Properties of 𝐶𝑎𝐶𝑙2 ∙ 6𝐻2𝑂 used in the 
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simulations are shown in Table 7.5.  The melting temperature range is (301 K − 303 K).  

In the numerical simulations, as the difference of the specific heats of the solid and liquid 

phases is small, an average value 2145 J kgK⁄  is used, which makes it easier to be 

implemented in the analytic solution. Piecewise linear functions were used for both the 

density and thermal conductivity (Table 7.6).  

Table 7.5 Thermophysical properties of 𝐶𝑎𝐶𝑙2 ∙ 6𝐻2𝑂 

Properties Values 

Melting temperature 29 (℃) 

Density (solid/liquid) 1706/1538 (kg m3⁄ ) 

Thermal Conductivity (solid/liquid) 1.09/0.546 (W mK⁄ ) 

Specific heat (solid/liquid) 2060/2230 (J kgK⁄ ) 

Latent heat  170 (kJ kg⁄ ) 

Dynamic viscosity 0.01 Pa ∙ s 

Coefficient of thermal expansion 0.0005 K−1 

 

Table 7.6  Properties used in the simulations 

Temperature (K) 301 302 303 

Density (𝑘𝑔 𝑚3⁄ ) 1706 1622 1538 

Conductivity (𝑊 𝑚𝐾⁄ ) 1.09 0.818 0.546 

 

In the setting of the numerical model in Fluent, an explicit scheme was chosen for 

the volume fractions of air and PCM and a sharp interface between them was selected; 

the cutoff criterion is 1 × 10−7 and the Courant number is set to 0.25.  The SIMPLE 

algorithm was used and second order upwind spatial discretization was chosen for both 

the momentum and energy equations.  A quadrilateral grid structure was used for the 

mesh.  According to the mesh and time step independence study shown in Figure 7.5, an 

element size 0.2mm and a time step of 0.01s were chosen for all the following numerical 

simulations.  
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Figure 7.5 Mesh and time step independence study 

 

To estimate the melt fraction throughout the melting process, images from the 

GoPro were imported into CorelDraw.  CorelDraw is a vector-based design software 

package.  Since the frames were taken at 10 second intervals, the time for each frame 

could be easily determined.  After importing the images into CorelDraw, the images were 

scaled to the correct dimensions using the outside diameter of the bottle.  Once scaled, a 

vector box was drawn over the solid portion of the PCM.  The volume of this solid 

portion was calculated as 𝑉𝑠 = (
𝑥

2
)

2

𝜋𝑦, where x is the width of the drawn box and y is 

the height of the same box.  At t = 0, 𝑉𝑠 is assumed to be equal to 1.  All 𝑉𝑠 values for t > 

0 are referenced to 𝑉𝑠 (t=0).  Three repeated experimental data sets were used to estimate 

the liquid fraction during the melting for each case as shown in Figures 7.6 & 7.7.  The 

consistency of the liquid fractions for the same case by this method is acceptable.  

Figures 7.6 & 7.7 show liquid fraction curves of Case #1 with different values of 

the mushy zone constant under 10℃  and 20℃  driving temperature differences, 

respectively.  It was found that for 𝑑𝑇 = 10℃ a mushy zone constant C = 38 × 105 
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gives the best agreement with the experimental points.  For 𝑑𝑇 = 20℃, an optimal 

mushy zone constant is C = 7.5 × 105.  It seems that for different driving temperature 

differences, a different mushy zone constant is needed to match the numerical melting 

time with the experiment.  This situation is further confirmed in Figure 7.8.  For 

𝑑𝑇 = 15℃, an optimal mushy zone constant is C = 18 × 105.  It can be seen that under 

the same driving temperature difference, with the same mushy zone constant, the 

numerical melting time for Case #2, which has a different mass of PCM and a different 

height-to-radius ratio than Case #1, shows good agreement with the experiments.  Thus, 

it can be concluded that an optimal mushy zone constant is needed based on driving 

temperature difference when using Fluent to simulate melting.  However, as indicated 

by Figure 7.9, there is no strong linear relationship between the driving temperature 

difference and the mushy zone constant that is suggested by the experiments.  A possible 

reason for this is that the differences in temperature gradients results in different 

magnitudes of natural convection, which affects the heat transfer performance in the 

liquid phase.  Calibration with experiment is necessary to find a suitable mushy zone 

parameter value.   

As a reminder, Shmueli [16] who also studied melting in a vertical cylindrical tube 

reported that no match can be found between the experimental and the numerical results 

for any value of the mushy zone parameter.  The main difference is that with no bottom 

surface heating in Shmueli’s [16] experiment, no heat transfer was promoted by the 

solid sinking phenomenon.  Because of this, melting in the experiment happened much 

slower than the melting model in Fluent can predicted.  When solid sinking promotes 

melting in the experiment, a match between the experiment and the numerical model 
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was found with the optimal value of the mushy zone constant reported in [5, 7]. 

 
Figure 7.6 Mushy zone constant study for Case 1 with 10℃ driving temperature 

difference 

 

 
Figure 7.7 Mushy zone constant study for Case 1 with 20℃ driving temperature 

difference 
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Figure 7.8 Numerical and experimental melting times comparisons   

 

 
Figure 7.9 Relationship between the driving temperature difference and verified mushy 

constant value 
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Figure 7.10 Numerical and experimental melting patterns comparisons 

 

Figure 7.10 shows the numerical and experimental melting patterns.  In terms of the 
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solid fraction, the numerical and the experimental results show the same trend with time.  

No bulk solid sinking phenomenon is shown in the numerical fraction contours.  

However, the temperature contours seem to exhibit some sinking phenomenon.  It is clear 

that the melting model in Fluent does not have the mechanism to capture the bulk solid 

downward movement.  Nevertheless, in the mushy zone, due to the density difference, 

natural convection drives the heavier mushy components (partial solid) downward.  Thus, 

relatively lower temperature at the bottom of the tube (blue ‘tailing’ temperature contour) 

is observed through the melting process.  This behavior to some degree mimics the 

contact melting phenomenon, as the incompletely melted solids fall down to the bottom, 

although there is no differentiation between the solid and the liquid in the numerical 

approach. This may also explain the numerical sinking phenomenon reported in the 

literature [5, 7, 8] when using Fluent.  

Furthermore, as the mushy zone parameter 𝐶 controls the intensity of convection, 

especially in the mushy zone, 𝐶  can affect the ‘sinking’ of the mushy components 

through natural convection, when the bottom surface is heated.  This can be the reason 

that for each driving temperature difference, an optimal 𝐶 is needed so that the numerical 

melting rate will be comparable to the experiment.  However, when the bottom surface is 

insulated (no solid sinking to promote melting), the tuning of 𝐶 is of no use due to the 

much slower melting process in the experiment [16].  When the bottom is heated, a good 

match can be achieved with a proper 𝐶 value [5, 7].  There are two probable reasons for 

the 𝐶 values reported in this paper to be different from those in the literature [5, 7]: one is 

the different viscosity, the other may be the differences in the bottom shape (flat versus 

curved).  With a spherical bottom, heat transfer enhancement by solid sinking is more 
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effective than the cylindrical shape in the current paper, resulting in a smaller mushy zone 

parameter (𝐶 = 105) for the numerical model to match the experiment.  

 

 

4.  A modified analytic solution for unconstrained melting in a tube 

The analytic solution proposed here for melting in a tube is based on contact melting 

analysis [20-24].  When PCM melts, a thin fluid layer with thickness 𝛿 is formed between 

the solid PCM and the bottom heating surface (Figure 7.11).  The heavier solid PCM 

tends to squeeze out the liquid and so 𝛿 remains thin.  It is assumed that the process is 

quasi-steady, which means at every moment the weight of the solid is balanced by the 

pressure in the liquid film.  Other assumptions include: 1) the temperature of the solid 

remains at the initial temperature; 2) heat transfer is dominated by conduction in the 

liquid film; 3) the liquid film has uniform thickness; 4) the flow in the liquid film is 

primarily parallel to the solid surface and driven by pressure gradients; 5) the inertia 

terms in the governing equations are neglected.  

Based on these assumptions, Chen et al. [21] developed an analytic solution for 

close contact melting in a vertical tube with isothermal heating both at the side wall and 

the bottom.  However, these assumptions are only valid when the solid phase is much 

denser than the liquid.  It was found that the analytical model by Chen et al. [21] always 

tends to under predict the melting time.  One most probable cause is the air voids in the 

solid PCM (observable during the experiments) that may significantly lower the melting 

rate.  The analytic model does not include the thickness of the glass tube and the heat 

transfer coefficient between the water and the tube, which slightly underestimates the 
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thermal resistance.  The other possible cause is that the PCM (𝐶𝑎𝐶𝑙2 ∙ 6𝐻2𝑂) used in the 

experiment is of 98% purity.  A sharp melting front may not be highly valid.  Some 

transitional mushy zone could exist in the bottom liquid layer.  Aiming at these situations 

that cannot be completely in accordance with the analytic model, a tuning parameter that 

can effectively adjust the thickness of the melt layer is introduced into the analytic 

solution.  In this section, an analytic solution with a tuning parameter to adjust the 

thickness of the liquid layer is developed and its validation with experimental results is 

presented.  

 
Figure 7.11 Schematic of unconstrained melting 

 

Figure 7.11 shows the schematic of unconstrained melting in a cylinder.  Assuming 

that the initial temperature is 𝑇𝑖 everywhere, the PCM melting temperature is 𝑇𝑚 and the 

cylinder is heated at the sides and the bottom with constant temperature 𝑇𝑤.  The top 

boundary has zero heat flux.   

First, a force balance acting on the solid PCM is considered.  The momentum 

equation for the molten liquid layer at the bottom of the cylinder is: 
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𝑑𝑃

𝑑𝑟
= 𝜇

𝜕2𝑢(𝑟)

𝜕𝑧2
 .                                                                                                                (3.1) 

With boundary conditions: 𝑢(𝑟)|𝑧=0 = 0 & 𝑢(𝑟)|𝑧=𝛿 = 0, its velocity is: 

 𝑢(𝑟) =
1

2𝜇

𝑑𝑃

𝑑𝑟
(𝑧2 − 𝛿𝑧).                                                                                                (3.2) 

Mass balance equation at the bottom liquid layer can be written as: 

𝜌𝑙2𝜋𝑟 ∫ 𝑢(𝑟)
𝛿

0
dz = −𝜌𝑠

𝑑ℎ

𝑑𝑡
𝜋𝑟2.                                                                                     (3.3) 

Integrating Eqn. (3.3) with respect to z, the pressure gradient is found to be:  

𝑑𝑃

𝑑𝑟
=

6𝜇

𝛿3

𝜌𝑠

𝜌𝑙

𝑑ℎ

𝑑𝑡
𝑟.                                                                                                                 (3.4) 

The pressure gradient in the bottom melt layer plays an important role.  Its force balance 

with the solid PCM will determine the thickness of the melt layer.  When considering that 

there is a transitional region (mushy zone) during melting, the velocity given by Eqn. (3.2) 

may no longer be valid.  The existence of the mushy region will increase the flow 

resistance.  Thus a tuning parameter can be introduced here to adjust the viscosity of the 

melt layer to mimic the extra flow resistance.  The modified pressure gradient in the melt 

layer becomes: 

 𝑑𝑃

𝑑𝑟
=

6𝑀𝜇

𝛿3

𝜌𝑠

𝜌𝑙

𝑑ℎ

𝑑𝑡
                                                                                                                  (3.5) 

where 𝑀 is the tuning parameter.  Letting 𝛷 =
6𝑀𝜇

𝛿3

𝜌𝑠

𝜌𝑙

𝑑ℎ

𝑑𝑡
, and integrating Eqn. (3.5) from 

0 to r with respect to 𝑟:                                                                                                                                                       

P(𝑟) =
𝛷

2
𝑟2 + 𝑃(0).                                                                                                       (3.6) 

The balance forces acting on the solid PCM can be described as:  

∫ 2𝜋𝑟𝑃(𝑟)
𝑟

0
𝑑𝑟 = 𝑔(𝜌𝑠 − 𝜌𝑙)𝜋𝑟2ℎ                                                                                  (3.7) 

Assuming 𝑃(0) = 0, Eqn. (3.7) becomes:  
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∫ 𝑟𝛷
𝑟

0
𝑟2𝑑𝑟 = 𝑔(𝜌𝑠 − 𝜌𝑙)𝑟2ℎ.                                                                                        (3.8) 

Solving Eqn. (3.8) gives:  

ℎ =
𝛷𝑟2

4𝑔(𝜌𝑠−𝜌𝑙)
.                                                                                                                   (3.9) 

Second, in terms of energy balance, a linear temperature distribution within the 

liquid layer is assumed:  

𝑇 =
𝑇𝑚−𝑇𝑤

𝛿
z + 𝑇𝑤,                                                                                                       (3.10) 

which gives: 

𝑑𝑇

𝑑𝑧
|

𝑧=𝛿
=

𝑇𝑚−𝑇𝑤

𝛿
,                                                                                                           (3.11) 

To account for the sensible energy, an ‘effective’ latent heat capacity, 𝐿𝑒, is defined as: 

𝐿𝑒 = 𝐿𝑓 + 𝐶𝑝𝑠(𝑇𝑚 − 𝑇𝑖) + 0.5𝐶𝑝𝑙(𝑇𝑤 − 𝑇𝑚).                                                            (3.12) 

The first term is the latent energy of the PCM, the second term is the sensible energy for 

the PCM temperature to increase from its initial value to the melting point and the third 

term accounts for the sensible energy in the liquid PCM, where the factor 0.5 is used to 

approximate the temperature gradient within the liquid PCM.  The local energy balance at 

the bottom solid PCM interface yields:  

−𝑘𝑙
𝑑𝑇

𝑑𝑧
|

𝑧=𝛿
= −𝜌𝑠

𝑑ℎ

𝑑𝑡
𝐿𝑒.                                                                                               (3.13) 

With Eqn. (3.11), the melt layer thickness can be obtained as: 

 𝛿 =
𝑘𝑙(𝑇𝑤−𝑇𝑚)

−𝜌𝑠
𝑑ℎ

𝑑𝑡
𝐿𝑒

.                                                                                                               (3.14)  

Substituting Eqn. (3.14) and the expression for 𝛷 into Eqn. (3.9), a differential equation 

for the time dependent solid PCM height ℎ is obtained: 

ℎ = 6𝑀𝜇
𝜌𝑠

𝜌𝑙

(𝜌𝑠𝐿𝑓)
3

4𝑔(𝜌𝑠−𝜌𝑙)𝑘𝑙
3(𝑇𝑤−𝑇𝑚)3 𝑟2 (

𝑑ℎ

𝑑𝑡
)

4

.                                                                    (3.15) 
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Let 𝛩 = 6𝑀𝜇
𝜌𝑠

𝜌𝑙

(𝜌𝑠𝐿𝑓)
3

4𝑔(𝜌𝑠−𝜌𝑙)𝑘𝑙
3(𝑇𝑤−𝑇𝑚)3, and Eqn. (3.15) is simplified as:  

ℎ = 𝑟2𝛩 (
𝑑ℎ

𝑑𝑡
)

4

.                                                                                                            (3.16) 

Solving this differential equation by integration: 

∫ −(ℎ)−1 4⁄ 𝑑ℎ
ℎ

𝐻𝑖
= ∫ (𝑟2𝛩)−1 4⁄ 𝑑𝑡

𝑡

0
.                                                                             (3.17) 

The final expression for the shrinking solid PCM height is:  

ℎ =
3

4
(

4

3
(𝐻𝑖)

3 4⁄ − ∫ (𝑟2𝛩)−1 4⁄ 𝑑𝑡
𝑡

0
)

4 3⁄

                                                                       (3.18) 

For melting through the side wall of the vertical tube, it is assumed that no 

convection in the melt is considered.  Hence, heat transfer is based on pure conduction.  

The energy balance equation can be written as followings:  

𝜌𝑠𝐿𝑓(𝑅𝑖 − 𝑟)
𝑑𝑟

𝑑𝑡
= −

𝑘𝑙(𝑇𝑚−𝑇𝑤)

𝑙𝑛((𝑅𝑖−𝑟) 𝑅𝑖⁄ )
                                                                                 (3.19) 

Solving the equation by integration, an implicit form for the 𝑟 (shrinking radius of the 

solid PCM) is obtained:  

(𝑅𝑖 − 𝑟)2 (2𝑙𝑛 (
𝑅𝑖−𝑟

𝑅𝑖
) − 1) =

4𝑘𝑙(𝑇𝑤−𝑇𝑚)𝑡

𝜌𝑠𝐿𝑓
.                                                                 (3.20) 

The analytic solution is obtained by solving Eqns. (3.20) & (3.18) in discrete time space.  

At each time step, 𝑟 is calculated using Eqn. (3.20) and is updated in Eqn. (3.18) to 

calculate ℎ.  Finally, the liquid fraction is calculated as following: 

𝑋 =
𝜋𝑅𝑖

2𝐻𝑖−𝜋𝑟2ℎ

𝜋𝑅𝑖
2𝐻𝑖

.                                                                                                         (3.21) 
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Figure 7.12 Effect of the tuning parameter on the bottom liquid thickness 

 

Figure 7.12 shows the effects of the tuning paramter 𝑀  on the bottom liquid 

thickness (δ).  Figure 7.12(a) shows that for the same case 𝑀 can effectly control the 

thickness of 𝛿.  𝛿 increases rapidly when all of the solid PCM is almost melted.  Overall, 

a larger 𝑀 tends to result in a thicker 𝛿.  Figure 7.12(b) shows that for the same value 𝑀 

and the same 𝑑𝑇, when the solid PCM has a higher height (#2), 𝛿 is smaller, which is 

consistent with physical intuition.  The square dot points in Figure 7.13 are the melting 

times estimated by the analtyic solutions for the cases investigated in the experiments.  It 

can be seen that for a given drivng temperaure, the experimental results for the two 
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different geometries (#1 & #2) match the analytic solutions very well, with the same 

tuning parameter.  The optimal tuning parameter has a strict linear relationship with the 

driving temperature differences ( 𝑀 = 150  for 𝑑𝑇 = 10℃ ; 𝑀 = 100  for 𝑑𝑇 = 15℃ ; 

𝑀 = 50  for 𝑑𝑇 = 20℃).  Within this temperature range, a linear correlation for the 

tuning parameter based on driving temperature differences is given as: 

𝑀(𝑑𝑇) = 50 − 10(𝑑𝑇 − 20),   10℃ ≤  𝑑𝑇 ≤ 20℃ ,                                                (3.22) 

Finally, Figure 7.14 presents a comparison of the melting curves between the 

experimental, the analytic and the numerical results.  The experimental time- dependent 

liquid fraction curves for the two driving temperature differences were obtained based on 

the mean values of the three sets of data of each case as shown in Figures 7.6 & 7.7.  The 

numerical curves have a good agreement with the experimental ones.  Especially for the 

larger 𝑑𝑇 case, there is a perfect match.   Although the analytic curves match with the 

experimental ones in terms of the final melting time, there is deviation during the middle 

of the melting process.    The analytic solution gives faster melting at the beginning, 

while the experimental melting curve shows more linearity.  Thus improvement of the 

analytic solution is still required for future studies. 



232 

 
Figure 7.13 Comparison of the melting times predicted by the analytic solution with the 

experimental results  

 

 
Figure 7.14 Comparison of melting curves from the analytic and numerical solutions 
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equation for the enthalpy-porosity method is given more insight and discussion.  In 

particular, the seeming contradiction that although, the enthalpy-porosity method in 

Fluent cannot model bulk solid sinking behavior, numerical solid sink behaviors are still 

reported in the literature.  One possible explanation is that convection in the liquid phase 

can exert a downward shearing force on the solid.  The other explanation is that within 

the mushy region, incompletely melted solids sink to the bottom by natural convection, 

which mimics the contact melting and enhances heat transfer.  Moreover, in this paper, 

experiments demonstrating the melting of Ca𝐶𝑙2 ∙ 6𝐻2𝑂 in a vertical tube submerged in a 

water bath are conducted and used to calibrate numerical models.  It is proposed for the 

first time in this paper that it is necessary to optimize the mushy zone parameter based on 

relevant driving temperature differences in order to achieve good agreement between 

numerical melting times and experimental ones.  Finally, an analytic solution for 

unconstrained melting in a vertical tube with a tuning parameter to modify the viscosity 

of the mushy region was developed.  A linear correlation for the tuning parameter based 

on driving temperature differences is given and experimentally validated.  
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Chapter 8 Conclusions and Recommendations 

A modeling and optimization framework that allows for both the detailed structural 

design of a finned heat pipe imbedded LTES system and the full-scale efficient 

simulation of the system with applications for operational research related to optimal 

flow path determination and sizing estimation has been developed. The key contributions 

and conclusions follow.   

    There are three main contributions from the dissertation in the area of modeling PCM-

based heat exchangers.  The first contribution is the idea and methodology of combining 

data-driven and physics-based models to develop a mathematical model for the efficient 

cost optimal design of finned PCM systems. The combined modeling approach (i) 

requires less sampling data (which is computationally expensive to obtain from a LTES 

unit with embedded fins) than that usually required by a full data-driven model to achieve 

high prediction accuracy and (ii) leverages the data-driven model schemes to reduce 

model complexity and avoid the difficulties of developing mathematical models based 

solely on the governing transient nonlinear partial differential equations for the physical 

problem.  For finned PCM systems, results from Chapters 3 and 4 show that the proposed 

model can be efficiently used for the optimal design of multidimensional fins [1, 2].  

With the proposed model, global sensitivity analysis is straightforward to carry out and 

provides estimates of how different parameters, such as system geometric dimensions as 

well as PCM and fin properties can affect the optimal unit cost [1].  

The second contribution is the proposed modeling verification approach for these 

complex full-scale systems where (i) appropriate experimental measurements for 

validation purposes are prohibitively costly and/or unavailable, and (ii) even numerical 
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simulation approaches via CFD are computationally too expensive. For example, 

considering an embedded 3D finned heat pipe structure in a PCM cooling storage tank, 

fully coupled finite element modelling approaches are quite challenging to implement in 

terms of mesh generation and computational power and times.  Moreover, such a 

simulation-based model is not suitable for the purposes of design optimization and 

operational studies.  In contrast, the proposed iterative coupling method between the 

PCM behavior and the heat transfer process in the HTF channel, overcomes these 

difficulties by employing a strategy of modularization. In Chapter 6, a model in analytic 

form for a finned heat pipe supported PCM unit was developed (verified by comparison 

with CFD simulations) and was applied as a module to the full-scale system analysis [3].    

     Chapter 5 applies the same modeling approach in Chapter 6 to a shell-and-tube PCM-

based heat exchanger unit for its convenient verification with traditional finite element 

approach (which in this case is tractable due to the simple geometry of the shell-and-tube 

PCM-based heat exchanger unit). In the shell-and-tube unit analysis, each module 

employs an analytic solution for PCM solidification in 1D annular coordinates.  Thus 

Chapter 5 not only reports an efficient modeling approach for the optimal design of a 

shell-and-tube PCM-based heat exchanger, but also serves as an example for how 

verification for the more complicated geometry in Chapter 6 can be addressed. With this 

verification approach, it was shown that the total energy balance between the HTF and 

the PCM tank was very well matched for the complex system.  

     The experimentally validated analytic solution for unconstrained melting in a tube 

outlined in Chapter 7 constitutes the third contribution.  This model captures the solid 

sinking behavior during the melting process that PCMs exhibit, which it was found is 
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critical to include because when a solid sinks to the bottom of the container, the thermal 

resistance is greatly reduced and enhances the melting process.  This contribution has 

implications for the PCM-based CFD modeling and simulation community.  The Melting 

& Solidification model in ANASYS Fluent, which is widely used to study the behavior of 

PCMs under heating or cooling conditions, is based on the enthalpy-porosity method.  

For this enthalpy-porosity method, there is a critical parameter called the mushy zone 

parameter that is commonly overlooked and applied without suitable consideration of 

issues related to experimental validation.  Through a combination of experimental studies 

and numerical simulations using the default Melting & Solidification model in Fluent, it 

was confirmed that the mushy zone parameter values are dependent on driving 

temperature differences which was the first report of this finding [4].  Moreover, different 

values of this parameter have been reported in the literature for a same PCM and in 

similar physical models.  It was determined that this contradiction comes from a 

particular limitation of the default enthalpy-porosity method in Fluent: Fluent does not 

have a mechanism to capture the solid sinking behavior during the melting process that 

PCMs exhibit [4].  However, it was also determined that a suitable mushy zone parameter 

can, to some degree, approximate the effects of the solid sinking behavior without its 

explicit inclusion.  This emphasizes the importance of determining a suitable mushy zone 

parameter value when the popular numerical enthalpy-porosity models in CFD 

simulations are employed.  

8.1 Future Work 

Future work should concentrate on refining the proposed system level modeling 

approaches in order to create a reliable design software for practical applications.  As the 
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representative power generation system analyzed in this dissertation is for condensing 

steam applications, an additional verified condensing steam model in the HTF channel is 

required to predict the heat absorbing performance of the PCM storage tank during the 

melting process.  Currently the modeling component of the PCM tank was established 

and its interaction with water as the HTF was simulated. With the addition of a verified 

condensing steam model, optimal sizing of the PCM storage tank could be achieved for 

prescribed amounts of steam cooling loads during the daytime.  Furthermore, sensitivity 

analyses for some of the model parameters, on the estimated sizing could be studied to 

increase the utility of results from the modified modeling design framework.  As there are 

large uncertainties associated with important parameters in the proposed modeling 

approach (i.e., heat transfer coefficient for condensing steam, thermal resistances in the 

heat pipe, and PCM melting rates, etc.) sensitivity analysis is necessary and vital.  Lastly 

at the system-level, operational research studies focused on the optimal distribution of 

steam in the PCM storage tanks under unknown steam loads should be studied and could 

result in smaller sizing and cost savings.  Related to the steam cooling load, the steam 

mass flow rate, in reality, would probably not be constant (as is assumed throughout 

Chapters 5-6) due to temperature variations during the daytime.  For example, the hottest 

daytime temperature may occur around 2:00 p.m., resulting in the largest amount of 

uncondensed steam coming from the air-cooled condensers in a power plant.  Most 

probably, the steam mass flow rate would be similar to a Gaussian distribution with some 

associated uncertainty during the daytime.   

Finally, at the modular level, Chapter 7 has introduced a way to develop an 

experimentally validated analytic model that captures the sinking behavior during PCM 
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melting in a tube.  However, a similar model must be developed and experimentally 

validated for PCM melting in an annular tube and a non-isothermal heated base 

(representing the circular fin extended from the heated tube). Only then can the module 

be finally incorporated into the system level modeling in Chapter 6, to further enhance 

the fidelity and utility of the developed framework.   
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