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Abstract

There is a rising demand for multiple-cable controlled robots in stadiums or ware-

houses due to its low cost, longer operation time, and higher safety standards. In a

cluttered environment the cables can wrap around obstacles. Careful choice needs to

be made for the initial cable configurations to ensure that the workspace of the robot is

optimized. The presence of cables makes it imperative to consider the homotopy classes

of the cables both in the design and motion planning problems. In this thesis we study

the problem of workspace planning for multiple-cable controlled robots in an environ-

ment with polygonal obstacles. This goal of this thesis is to establish a relationship

between the workspace’s boundary and cable configurations of such robots, and solve

related optimization and motion planning problems. We first analyze the conditions

under which a configuration of a cable-controlled robot can be considered valid, then

discuss the relationship between cable configuration, the robot’s workspace and its mo-

tion state, and finally use graph search based motion planning in h-augmented graph

to perform workspace optimization and to compute optimal paths for the robot. We

demonstrated corresponding algorithms in simulations.∗

∗A partial of this thesis has been published in the same title as this thesis in the IEEE Robotics and
Automation Letters (RA-L, Volume: 3, Issue: 3, Page: 2600-2607, July 2018).
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Chapter 1

Introduction

1.1 Literature Review

Object manipulation is an important problem in robotics. Certainly conventional

approaches to manipulation using robot arms with grippers have received considerable

attention and are well understood [13]. In contrast, we are interested in the use of cable-

controlled robots to contact and manipulate objects. Despite the advances in mobile and

aerial robotics, there are various applications in which cable-controlled robots are better

suited. Cable-controlled robots have recently attracted interest for large workspace

manipulation tasks. The robotic system is controlled by varying-length cables, which are

anchored to fixed control points and driven by effectors (motors), provides more agility

(quickly move in large workspaces), greater reliability (less prone to environmental noise

such as wind gusts [30] since the robot is tethered), more payload capability [21], has less

onboard power consumption (since the actuation is done by the external cables [22]),

does not rely on onboard sensors for localization and control (thus works in GPS-denied

and featureless environments), and can be made in large-scale [1].

Robots attached to passive cables for locomotion, power supply and communication

have been extensively used for many real-world applications [23,24,31] including indus-

trial robotics (dock loading, construction, warehouse management), entertainment and

security. Additionally, they have even demonstrated critical capabilities for monitoring

terrestrial [18] and aquatic [16,28,29] environments. For such robots, the main challenge

is to avoid entanglement of the cable with obstacles and to ensure that the tether does
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not violate any geometric constraints [17, 19, 27, 32]. The use of cables to manipulate

objects in an environment has also been studied extensively [6, 12,14].

Active control of robots using cables, on the other hand, has gained relatively less

attention in robotics literature. Some actuation systems focusing on agility [34] and

accuracy [9] have been studied and others focused on controlling the robots’ pose (po-

sition and orientation) and wrench (force and torque) [10, 11]. The typical controllers

for such robots are designed for obstacle-free environments where the inverse-kinematics

problem can be solved in a closed form [25, 33]. However, since in some circumstances

the existence of obstacles could be inevitable, the problem of negotiating obstacles for a

cable-controlled robot and demands prompt solution in both initial cable configuration

and control point location. Because of the properties of cable that it can only pull but not

push and that it cannot penetrate obstacles, this problem requires significant additional

consideration. With the recent advent of topological path planning techniques [3,6,19],

it has become possible to compute optimal solutions to motion planning problems for

systems involving flexible cables by reasoning about topological classes (homotopy and

homology classes) of paths and cables in a cluttered configuration space. This thesis uses

these recent developments in the field of topological path planning to design algorithms

for cable-controlled robots in environments with polygonal obstacles.

1.2 Problem Statement and Motivation

Figure 1.1: A wire camera (Skycam, source: Wikimedia Commons)

We consider a planar environment cluttered by polygonal obstacles. This is a model

for robots that can be used to transport goods in a warehouse or to move overhead

3
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(c) An arbitrary combination
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neighboring control points do
not necessarily enclose a valid
workspace.

Figure 1.2: Same environment, different workspaces enclosed by shortest paths in some
homotopy classes.

cameras in a stadium (Figure 1.1)—attached and controlled by cables that are driven

by motors at the boundaries of the environment (roof or walls). The obstacles which

cables cannot penetrate would inevitably make some of the regions inaccessible to the

robot. The initial cable configuration of the system influences the shape and size of the

workspace (see the difference between Figure 1.2a and Figure 1.2b). It is thus important

to choose the best cable configurations of optimizing workspace’s area and ensuring

that the robot is able to reach the desired locations. We need a method to search for a

boundary of robot’s workspace corresponding to its initial cable configuration. A related

application is that of sea farming, where a net needs to be anchored at certain points

(the control points) on its boundary (the workspace’s boundary), ensuring that the net

does not get tangled with obstacles, such as boats or buoys, while maximizing the area

covered by the net (which is used for farming of marine species).

1.3 Outline of the Thesis

In this thesis, we start by presenting some of the preliminary backgrounds includ-

ing visibility graph, homotopy/homology class and h-augmented graph. Following that

we analyze the properties of the workspace of a multiple-cable controlled robot and its

boundary, and propose an algorithm for computing the boundary for which workspace’s

4



area is optimized or certain specific points fall within the workspace. Finally, we de-

scribe the algorithms for robot motion planning and cable velocity control and apply

these to several example applications. This thesis comes with a supplementary video

which contains simulations of valid workspace searching, point-to-point path planning

with cable controlling within the boundary, and path planning for multiple-task accom-

plishment. Besides the University’s official website for thesis/dissertation publication,

it can also be accessed here: https://youtu.be/4UWtTi-lkus.
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Chapter 2

Preliminaries

2.1 Construction of Visibility Graph

(a) Complete (b) Simplified

Figure 2.1: A visibility graph and its simplified version (green line segments are edges,
blue/red dots are vertices)

Consider a rectangular planar environment with polygonal obstacles. We establish

a visibility graph of the environment, G = (V, E), with vertices, v ∈ V, consisting of

the vertices at the corners of the polygonal obstacles, the control points (points on the

environment boundary at which the cables are attached to the robot), robot’s current

location (in context of workspace optimization) or the start and the end vertices of a

trajectory (in context of path planning), and the edges, {v→ v′} ∈ E , consisting of line

segments that connect vertices with direct line of sight. For every pair of vertices we

6



construct an edge if it neither penetrates any obstacles nor goes beyond the boundary

of the environment 2.1a. This method is easy and quite straightforward, but some

of the edges would be redundant. They would complicate the graph hence increase the

running time of algorithms. Therefore, in our tests, we use simplified visibility graphes to

decrease running time. That is, for edges, we only keep the common tangent lines of the

obstacles and the tangent line from control points (as well as robot’s location/start/end

point) to the obstacles. When dealing with the concave polygon, we select shortcuts as

edges between corners, omitting the vertices at cavity 2.1b. In the case of a concave

environment, we represent it as a convex environment with a set of convex obstacles

subtracted from it. We construct the tangents of the constructive obstacles, then delete

the vertices and edges outside the boundary of the original concave environment from

the visibility graph.

Although the simplified graph has some advantages for most of time, when meet-

ing some complicated non-convex obstacle configuration, it would be very hard to find

common tangent lines. In cases as shown in Figure 2.2, it is preferable to use the com-

plete graph. We carefully consider the graph for searching algorithms based on the

configuration of obstacles and that of the environment.

2.2 Brief Introduction of Homotopy and Homology Classes

Definition 1 (Homotopy classes [3, 15]) Two trajectories τ1, τ2 connecting the same

start and end points, vs, vg ∈ X respectively, are homotopic or belong to the same

homotopy class iff one can be continuously deformed into the other without intersecting

any obstacle.

Formally, in a topological space X, if τ1 : [0, 1] → X, τ2 : [0, 1] → X represent two

trajectories such that τ1(0) = τ2(0) = vs and τ1(1) = τ2(1) = vg, τ1 and τ2 are homotopic

iff there exists a continuous map η : [0, 1] × [0, 1] → X such that η(α, 0) = τ1(α),

η(α, 1) = τ2(α) ∀α ∈ [0, 1], and η(0, β) = vs, η(1, β) = vg ∀β ∈ [0, 1]. Alternatively, in

the notation of Hatcher [2], τ1 and τ2 are homotopic iff the closed curve τ1 t τ2 belongs

to the trivial class of the first homotopy group (or fundamental group) of X, denoted by

π1(X). That is, τ1 t τ2 = 0 ∈ π1(X).

7



(a) A complicated environment (b) Its complete visibility graph

(c) One of possible cable configurations (d) The corresponding workspace

Figure 2.2: A complicated environment that is not suited for simplified visibility graph

A set of all homotopically equivalent trajectories constitute a homotopy class. We

denote the homotopy class of a path τ as [τ ].

Definition 2 (Homology classes [3]) Two trajectories τ1 and τ2 connecting the same

start and end points, vs and vg respectively, are homologous or belong to the same

homology class iff τ1 together with τ2 (the later with opposite orientation) forms the

complete boundary of a 2-dimensional manifold not containing/intersecting any of the

obstacles.

Formally, in the notation of Hatcher [2], τ1 and τ2 are homologous iff τ1 t −τ2

belongs to the trivial class of the first homology group of X, denoted by H1(X). That is,

[τ1 t −τ2] = 0 ∈ H1(X).

A set of all homologously equivalent trajectories constitute a homology class.

8



Examples are shown in Figure 2.3 accordingly.

(a) τ1 is homotopic to τ2 since there is a continu-
ous sequence of trajectories representing deforma-
tion of one into the other. τ3 belongs to a different
homotopy class since it cannot be continuously de-
formed into any of the other two.

(b) τ1 is homologous to τ2 since there exists an
area A (shaded region) such that τ1 t −τ2 is the
boundary of A. τ3 belongs to a different homology
class since such an area does not exist between τ3
and any of the other two trajectories.

Figure 2.3: Illustration of homotopy and homology equivalences. In this example τ1 and
τ2 are both homotopic and homologous

2.3 Fundamental Group

At first, introduce the definition of group in mathematics. A group is a set, G,

together with an operation • (called the group operator of G) that combines any two

elements a and b to form another element, denoted a•b or ab. To qualify as a group, the

set and operation, (G, •), must satisfy four requirements known as the group axioms [26]:

1. Closure: ∀a, b ∈ G, the result of the operation, a • b, is also in G.

2. Associativity: ∀a, b, c ∈ G, (a • b) • c = a • (b • c).

3. Identity element: There exists an element e ∈ G such that, for every element a ∈ G,

the equation e • a = a • e = a holds. Such an element is unique, and thus one speaks

of the identity element.

4. Inverse element: For each a ∈ G, there exists an element b ∈ G, commonly denoted

a−1 (or −a, if the operation is denoted “+”), such that a • b = b • a = e, where e is

the identity element.

The result of an operation may depend on the order of the operands. In other words, the

result of combining element a with element b need not yield the same result as combining

9



element b with element a; the equation a • b = b • a may not always be true. Groups for

which the commutativity equation a • b = b • a always holds are called abelian groups.

The fundamental group or the first homotopy group of a topological space, X, de-

noted as π1(X), is the set of all homotopy classes of oriented closed loops based at

certain points(trajectories with vs = vg = v0) in X with a group structure imposed on

the set as follows:

1. The identity element is the class of loops that can be contracted to the point v0 (null

homotopic);

2. The inverse of a homotopy class, [τ ], is the homotopy class of loops constituting of

the same loops as in [τ ], but with reversed orientation, and is denoted as [−τ ] or

[τ ]−1;

3. The group operation of two classes [τ1] and [τ2] is the class of loops that are obtained

by concatenating a trajectory in [τ1] with a trajectory in [τ2] (the class of loop τ(t) =
τ1(2t), t ≤ t ≤ 1

2

τ2(2t− 1),
1

2
≤ t ≤ 1

). The fundamental group is in general a non-abelian group.

Fundamental groups of space X = R2 − O and its subspaces X0, X1, X2 are shown in

Figure 2.4, where the subspace X0 = X −
⋃2
i=1 ri and Xi = X −

⋃2
i=1,i 6=j rj , i 6= 0.

2.4 Free Group and Free Product of Groups

A free group over a set of letters/symbols, is the group whose elements consists

of all expressions (words) constructed out of the letters in the set and their formal

inverses, with identity element being the empty word, and the group operation being

word concatenation (with any letter juxtaposed with its inverse reducing to the identity)

[26]. The fundamental group is a free group.

Given two groups, G and H, the free product of the groups is the group of words

that can be constructed with all the elements of the groups as the letters. It is thus

written as G ∗H = {g1h1g2h2 . . . |gi ∈ G, hi ∈ H}.

For example, it can be shown using the generalized van-Kampen’s theorem [5] that

the fundamental group π1(X) is a free product of fundamental groups of subspaces, that

10
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[τ0] [τ1]

[τ3]

v0

[τ2]

(d)

Figure 2.4: Fundamental group of space X with two representative points in it and that
of its subspaces X0, X1, X2 (partial homotopy classes shown)

is, π1(X) ' π1(X0) ∗ π1(X1) ∗ π1(X2) ∗ · · · ∗ π1(Xn) ' ∗ni=1Z, a free product of n copies

of Z. Thus the fundamental group satisfies the group axiom of Closure as well. An

element of free product is shown in Figure 2.5.

On the other hand, the first homology group of X, from where the homology sig-

natures generate, denoted by H1(X), is a cartesian product of first homology groups

of subspaces, i.e. H1(X) ' H1(X0) × H1(X1) × H1(X2) × · · · × H1(Xn) ' ×ni=1Z, a

cartesian product of n copies of Z.

2.5 h-signature and H-signature

Assuming that all obstacles and ends of trajectories are fixed, h-signature and H-

signature (homotopy and homology invariants) are respectively the presentations of

homotopy and homology classes of trajectories —they are two functions that map from
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free product of π1(X0), π1(X1) and π1(X2) shown in Figure 2.4, that is, [τ0] ∈ π1(X) =
π1(X0)∗π1(X1)∗π1(X2). [τ0] is a concatenation of two homotopy classes [τ0] = [τ1]◦ [τ2],
where [τ1] ∈ π1(X1) and [τ2] ∈ π1(X2). So is [τ ′0] ∈ π1(X), a concatenation of [τ2] ∈
π1(X2) and [τ3] ∈ π1(X1)

homotopy and homology classes to “word” and to “vector”. Two trajectories connecting

the same start and end points have the same h- (or H-) signatures iff they are in the

same homotopy (or homology) class [8].

Function h(·) is for denoting the h-signature of a trajectory. We use representative

points (inside the obstacles), ζi, and the non-intersecting rays ri emanating from the

representative points for constructing h-signatures. We form a word by tracing τ , and

consecutively placing the letters of the rays that it crosses, with a superscript of ‘+1’

if the crossing is from right to left, and ‘-1’ if the crossing is from left to right. The

word thus formed is written as h(τ), and h(τ) = h([τ ]), [τ ] ∈ π1(X). For example,

in Figure 2.6a, if τ first crosses rb right to left then ra from right to left as well, the

h-signature is ‘ba’(short for ‘b+1a+1’); if τ first crosses ra left to right then rb from left

to right too, the h-signature is ‘a−1b−1’. If in an h-signature ‘a−1’ appears next to ‘a’,

indicating that the trajectory crosses ra followed by crossing back, these two letters can

cancel each other, like the trajectory never crosses ra. We use simplified h-signatures.

For instance, in Figure 2.6a the empty h-signature of the upper curve was simplified
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from the initial ‘baa−1b−1’ to ‘bb−1’, then from ‘bb−1’ to ‘ ’(empty). The h-signature is

internally non-commutative. The direction of a curve is important, for the same path

in reverse direction will result in an inverse h-signature where both the order of letters

and superscripts of letters are opposite [6]. If a curve is a closed loop and it encloses no

representative points (obstacles), it is null homotopic with an empty h-signature. More

examples are shown in Figure 2.6a.

Likewise, H(·) is a function for denoting the H-signature of a trajectory. H-signature

is a vector, the ith element of which has the simple interpretation of counting the num-

ber of times the curve, τ , intersects the ray emanating from ζi (see Figure 2.6b). In

particular, define #iτ = (Number of times τ crosses the ray ri emanating from ζi from

left to right) − (Number of times τ crosses the ray ri emanating from ζi from right to

left). Then, H(τ) = [#1τ,#2τ, . . . ,#nτ ]ᵀ [6].

For instance, 3 obstacles in the environment, if the H-signature of a trajectory τ

is H(τ) = [1, 0, 1]ᵀ, it shows that after all τ cross ray r1 once and r3 once from left to

right, not crossing r2. If τ is a closed loop, H(τ) = [1, 0, 1]ᵀ shows that ζ1 and ζ3 are

inside the loop and ζ2 is outside.

There is a conversion from h-signature to H-signature. It interchanges the letters

in h-signature, putting the same letters together and, if there are more than one of

a certain letter, merge them by summing up the superscripts, then take the opposite

value. E.g. 2 obstacles in the environment, h(τ) =“b−1abab” could be firstly converted

into “aab−1bb”, then into [(1 + 1)a, (−1 + 1 + 1)b], finally into H(τ) = [−2a,−1b].

2.6 The h-signature Augmented Graph

In order to keep track of the homotopy invariants, we define an h-augmented graph [3],

Gh = (Vh, Eh), based on a visibility graph, G = (V, E), such that a vertex in Gh contains

the additional information of the h-signature of the trajectory leading from a start ver-

tex vs up to this vertex besides its coordinate. A transition from vertex (v, h) to vertex

(v′, h′) means that the h-signature, h′, is a concatenation of h and the h-signature of

trajectory from v to v′.

1.
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Figure 2.6: h- and H-signatures of different trajectories connecting two same points in
a space with two obstacles

Vh =


(v, h)

∣∣∣∣∣∣∣∣∣∣∣
v ∈ V, and,

h = h(fivsv) for some trajectories from

the start vertex vs to this vertex v


2. An edge {(v, h)→ (v′, h′)} is in Eh for (v, h) ∈ Vh and (v′, h′) ∈ Vh, iff (v→ v′) ∈ E ,

and, h′ = h ◦ h(v→ v′), where, “◦” is a concatenate operator.

3. The cost associated with an edge {(v, h)→ (v′, h′)} ∈ Eh is the same as that associ-

ated with edge {v→ v′} ∈ E .

The h-augmented graph is unbounded. Its vertices are generated on-the-fly and as

required during the execution of Dijkstra’s/A* search on the graph, which we describe

later.

2.7 Dijkstra ’s and A* Search Algorithm

In 1959, Edsger W. Dijkstra proposed an algorithm, which is called Dijkstra’s algo-

rithm, for finding the shortest paths between a start vertex s and a goal vertex g in a

graph G. The algorithm contains a set E of “explored” vertices u for which we have

determined a shortest-path distance d(u) from the start vertex s; this is the “explored”

part of graph [20]. The algorithm explores one vertex in the graph at each step (an

example shown in Figure 2.7).
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1. Initially E = ∅ (Figure 2.7a).

2. Set all vertices v ∈ G− E with d(v) = +∞, and d(s) = 0. Select the start vertex s

as current vertex u (Figure 2.7b).

3. For the current vertex u, consider all of its neighboring vertices v ∈ G−E connected

to u with single edge e = {u→ v} and update all their tentative distances d(u) + le

through vertex u, where le is the length of the edge e. Compare the tentative distances

with the current distance and assign the smaller one. For example, in Figure 2.7d

if the vertex a is marked with a distance d(a) = 2, and the edge connecting it with

a neighbor c has length le={a→c} = 1, then the distance from s to c via a will be

d(c) = 2 + 1 = 3. If c was previously marked with a distance (in Figure 2.7c it is

5) which is greater than 3, then change it to 3. If the previous value is less than or

equal to the newly calculated one, keep the previous one (vertex b in Figure 2.7d).

4. When we are done calculating tentative distances of all of the neighbors of the current

vertex u, add u to E. Vertex in set E will never be checked again.

5. If the goal vertex g has been added to E (when planning a complete traversal) or if

the smallest tentative distance among the vertices in G− E is infinity (occurs when

there is no connection between the start vertex and remaining unexplored vertices),

then stop. The algorithm has finished (Figure 2.7h).

6. Otherwise, select the unexplored vertex v ∈ G−E that has the smallest d(v), set it

as the new ”current vertex”, and go back to step 3.

When planning a route, it is actually not necessary to wait until all the neighbors of

goal vertex are “explored” as above: the algorithm can stop once the goal vertex has the

smallest tentative distance in G−E (and thus could be selected as the next “current”).

It is simple to produce the s − g path corresponding to the distances found by

Dijkstra’s algorithm. As each node v is added to the set E, we simply record the edge

{u→ v} on which it last updates the value d(v). The path Pg is implicitly represented

by these edges: if {v→ g} is the edge we have stored for g, then Pg is just (recursively)

the path Pv followed by the single edge {v → g}. In other words, to construct Pg, we
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(a) Initial graph G, no vertex
has been checked, E = ∅.
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(b) Mark the start vertex s’s
tentative distance as 0, others’
initials as +∞.
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(c) Check s’s all neighbors, ver-
tex a, b and c, update their
tentative distances and then
put s into E.
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(d) Vertex a has the smallest
value in G − E. Hence check
a’s neighbors, b, c, d and g,
update c, d and g’s tentative
distances and then put a into
E.
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(e) Vertex c has the smallest
value in G−E. Hence check c’s
neighbors, b, d and g, update
b and d’s tentative distances
and then put c into E.
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(f) Vertex b has the smallest
value in G−E. Hence check b’s
neighbors, d, update d’s ten-
tative distance and then put b
into E.
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(g) Vertex d has the smallest
value in G−E. Hence check d’s
neighbors, g, update g’s ten-
tative distance and then put d
into E.
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(h) The goal vertex g is the
only vertex in G − E, having
no unexplored neighbor. Put g
into E. Algorithm stops.
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(i) Reconstruct the shortest
path in green from s via a, c,
b, d to g.

Figure 2.7: An example of implementation of Dijkstra’s algorithm, given lengths of
all edges. Orange vertices are in the explored set E. The current vertex and edges
connecting it to its to-be-explored neighbors in each picture are colored in purple. Edges
that last update tentative distances are colored in green.

simply start at g; follow the edge we have stored for g in the reverse direction to v;

then follow the edge we have stored for v in the reverse direction to its predecessor; and

so on until we reach s. Note that s must be reached, since our backward walk from v
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visits nodes that were added to E earlier and earlier (green path in Figure 2.7i).

A* algorithm is an extension of Dijkstra’s algorithm. A* achieves better perfor-

mance by using heuristics to guide its search. It is an informed search algorithm, or a

best-first search, meaning that it solves problems by searching among all possible paths

to the goal vertex g for the one that incurs the smallest cost, and among these paths it

first considers the ones that appear to lead most quickly to the goal. It is formulated in

terms of weighted graphs: starting from the start vertex of a graph, it constructs a tree

of paths starting from that vertex, expanding paths one step at a time, until one of its

paths ends at the predetermined goal vertex.

At each iteration of its main loop, A* needs to determine which of its partial paths to

expand into one or more longer paths. It does so based on an estimate of the cost (total

weight) still to go to the goal vertex. Specifically, A* selects the path that minimizes

f(v) = d(v) + h(v)

where v is the last vertex on the path, d(v) is the cost of the path from the start vertex

s to v, and h(v) is a heuristic that estimates the cost of the cheapest path from v to g.

The heuristic is problem-specific. For the algorithm to find the actual shortest path, the

heuristic function must be admissible, meaning that it never overestimates the actual

cost to get to the nearest goal vertex. Different from Dijkstra’s algorithm’s step 6 above,

in A* it should be:

“6. Otherwise, select the unexplored vertex v ∈ G − E that has the smallest f(v) =

d(v) + h(v), set it as the new ”current vertex”, and go back to step 3.”

Typical implementations of A* use a priority queue to perform the repeated selection

of minimum (estimated) cost vertices to expand. This priority queue is known as the

open set or fringe. At each step of the algorithm, the vertex v with the lowest f(v) value

is removed from the queue, the f and d values of its neighbors are updated accordingly,

and these neighbors are added to the queue. The algorithm continues until a goal vertex

has a lower f value than any vertex in the queue (or until the queue is empty). The f

value of the goal is then the length of the shortest path, since h at the goal is zero in an
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admissible heuristic.

The algorithm described so far gives us only the length of the shortest path. To find

the actual sequence of steps, the algorithm can be easily revised so that each vertex on

the path keeps track of its predecessor. After this algorithm is run, the ending node will

point to its predecessor, and so on, until some node’s predecessor is the start vertex.

As an example, when searching for the shortest route on a map, h might represent the

straight-line distance to the goal, since that is physically the smallest possible distance

between any two vertices.
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Chapter 3

Algorithm Design for Workspace

Computation

In this section, we describe some specific features, properties and algorithms related

to the cable configurations and the workspace of the cable-driven robot. These include

the topological properties of workspace’s boundary and algorithms for obtaining all valid

workspaces from given obstacle configurations.

3.1 Definition of Workspace’s Boundary

The configurations of a cable-robot system in which the robot is capable of moving

in any direction are called an interior point (Figure 3.1a). On the contrary, a boundary

point is a configuration where the robot can move only in some specific directions.

These directions can constitute a half plane (Figure 3.1b) or more generally union of

cones (Figure 3.1d). All the boundary points constitute a boundary of the workspace.

3.2 Force Analysis

The physical constraints of the cable is that there can only be tension but no pressure

acting on each cable and that net force on the robot must be zero to make it stays at a

certain position (see Figure 3.1a), denoted as 0 =
∑
i
Fiêi, i = 1, 2, . . . , n, where Fi ≥ 0

is a non-negative scalar of tension, êi is a unit vector of the direction in which the ith
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cable points at the location of the robot and n is the number of cables. When the robot

is maneuverable, not all of the cables can be slack, that is,
∑
i
Fi 6= 0. To make the net

force zero with some taut cables, there must exist at least two of them and they must lie

in different half-planes to counteract each other. If all cables are pointing in the same

half-plane, the robot cannot go any further towards the other half-plane (Figure 3.1b

and 3.1c). We call this case the boundary state in the open area.

F
a

F
b

Robot

Control Point

Cable

F
c

F
d

all calbes in
different half-planes
no matter
how we divide it

(a) Interior state

F
a

F
b

Robot

Control Point

Cable

180°

all calbes in
the same half-plane

(b) Boundary state in open area

Robot

Control Point

Cable

Obstacle

Obstacle

180°

all cables in the
same half-plane

all cables also
in another
same half-plane

180°

(c) A special boundary state in open area

Robot

Control Point

Cable
Obstacle

(d) Boundary state touching an obstacle

Figure 3.1: Robot states and cable configuration

3.3 Boundary State

There are two kinds of boundary states.
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3.3.1 In the Open Area

If êi of all taut cables span a one-dimensional line, it is a boundary state and the

robot is located at the boundary of the workspace (see Figure 3.1b and 3.1c).

3.3.2 Touching an Obstacle

When the robot driven by cables touches an obstacle, the robot is in touching-

obstacle boundary state and the obstacle’s edge or corner that is touched is a part of

boundary of the workspace, where the net force of cables may not be zero, shown in

Figure 3.1d.

3.4 Shortest Paths and Boundary

Lemma: The workspace’s boundary curve connecting a pair of neighboring control

points is the shortest path in the same homotopy class connecting that pair (by “neigh-

boring” we refer to adjacent control points encountered as we trace the boundary of the

environment).

Sketch of Proof: When in boundary state, if we remove all slack cables, the robot’s

position and taut cables will keep stable. We can regard the pair of taut cables as a

whole which is also taut, going from one control point to a neighboring one though

the robot which can be regarded as a mass point on that whole cable. This whole taut

cable is the shortest path in current homotopy class connecting those two control points,

shown as blue curves in Figure 1.2a and 1.2b.

Hence, when the robot touches any obstacle and the net force of cables may not

be zero (especially at the corner of obstacle), the robot is still on the boundary of its

workspace because it is still on the shortest path between control points.

3.5 Boundary’s Features

When the robot is at an interior point, we can move the robot along arbitrary

trajectories inside the boundary. As the robot is moving toward a part of boundary, a

pair of neighboring cables can deform continuously into that part of boundary, without
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interfering with any obstacle, shown in Figure 1.2a and 1.2b. This deformation from the

initial configuration into a part of boundary holds for any pair, which indicates that all

cables pairs can deform into a complete and closed-loop boundary. Since no obstacles

are crossed during this deformation, there must be no obstacles inside the boundary.

Just for comparison, Figure 1.2c shows an invalid boundary, even if it is made of shortest

paths.

Proposition 1 The closed-loop formed by the boundary of a workspace is null homo-

topic (i.e. its h-signature is ‘empty’ word), stated in Section 2.5.

3.6 Shortest Paths Searching

After constructing the visibility graph, we use Dijkstra’s search in the h-augmented

graph to get the shortest paths with various h-signatures. We construct n threads for

multi-threading search, Ti, where i = 1, 2, . . . , n and n is the number of control points.

Each thread contains Dijkstra’s search returning paths connecting a pair of neighboring

control points which are indexed along clockwise or anticlockwise direction. For example,

T1 is for paths connecting control point c1 and c2, namely T2 for c2 and c3, . . . , Tn

for cn and c1, as shown in Figure 1.2a. We insert the output τ into n corresponding

sets of shortest paths, Pi = {τi1, τi2, . . . }. These n threads keep searching till the length

of boundary (consist of n paths, one from each set) must exceed a limit L we properly

preset.

Since there are only n control points, the indices of control points in Algorithm 1

can run from 1 to n, thus in Line 3, if i = n, then by i+ 1th we refer to 1st control point

(i.e.: we take the modulo with respect to n with shift of 1). Hereafter whenever we refer

to i+ 1 for a control point index, we assume this convention. The paths returned from

the Dijkstra’s search are in an order from least cost to higher cost. Thus the 1st path,

τi1, in every thread’s outcome is of the least cost. In Line 4-7, where the function C(·)

is the cost of some trajectory, the length l is the sum of the cost of the latest path in the

current thread and those of the 1st paths from other threads, a possible least boundary

cost for this latest outcome. If li is greater than L, indicating all subsequent outcomes of

the current thread must form a boundary that has a length greater than L, thus we stop
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Algorithm 1 Shortest path searching in the ith thread Ti

Input: The h-augmented graph, Gh = {Vh, Eh}; the set of control points for start
vertices and goal vertices, C = {c1, c2, . . . , cn}; a limit of boundary cost L.

Output: Set of shortest paths in different homotopy classes, Pi = {τi1, τi2, . . . }; set of
h-signatures of paths, Hi = {hi1, hi2, . . . }.

1: k ← 1
2: loop
3: τik ← a shortest path, in the kth homotopy class connecting {ci, ‘ ’} and {ci+1, h}

for some h
4: li ← C(τik) +

∑
j
C(τj1), j = 1, 2, . . . , n, j 6= i

5: if (li > L) then
6: break loop
7: end if
8: Insert τik into Pi
9: hik ← h(τik)

10: Insert hik into Hi
11: k ← k + 1
12: end loop

this thread. In Line 10, h-signatures of all shortest paths in different homotopy classes

are stored in the set Hi for later boundary validation. Here we introduce a function P

for later use to get a part of the boundary such that P (vs,vg, h
i
g) returns the shortest

path from {vs, ‘ ’} to {vg, hig}.

3.7 Valid Boundary Construction

After we finished searching in all threads, we need to find out all proper combina-

tions that have an empty concatenation of the h-signatures. Algorithm 2 retrieves one

path’s h-signature at a time from each h-signature set Hi, n h-signatures in total, to

check whether their full concatenation is empty in Line 6 and 7. If so, we store the

whole boundary, ω, into the set of all boundaries, W, shown in Line 11. Although the

complexity of the algorithm rises exponentially with the number of control points or the

size of set Hi, we have limited number of control points and the upper bound of the

length of cables during the search hence make it computationally feasible.
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Algorithm 2 Getting valid closed boundary

Input: Set of shortest paths in different homotopy classes, Pi = {τi1, τi2, . . . }; set of
h-signatures, Hi = {hi1, hi2, . . . }, where hij = h(τij);

Output: Set of valid closed boundary, W;
1: m← 1
2: for all h1i in H1 do
3: for all h2j in H2 do
4: . . .
5: for all hnk in Hn do
6: q ← h1i ◦ h2j ◦ · · · ◦ hnk
7: if q = ‘ ’ then
8: if (any of τ1i, τ2j , . . . , τnk self-tangles) then
9: continue loop

10: end if
11: Insert ωm = {τ1i, τ2j , . . . , τnk} into W
12: m← m+ 1
13: end if
14: end for
15: . . .
16: end for
17: end for

3.8 Area Computation

Every boundary is made up of a few vertices, ω = {v1,v2, . . . ,vn}, where vertex,

vi = {xi, yi}, is either a control point or a vertex of the polygon obstacles. We use the

following formula to compute the area of the workspace:

A(ω) =
1

2
|(x1y2 − y1x2) + (x2y3 − y2x3) + · · ·+ (xny1 − ynx1)| .

3.9 Computing Workspace’s Boundary and Area from Ini-

tial Cable Configuration

The methods described hereafter were implemented in C++ and Discrete Optimal

Search Library (DOSL) [4]. In the following sections below we mostly use 200 × 200

environment with two convex and one concave polygon as obstacles, and four control

points placed at each corner of the environment. Some variant environments were also

used.

If we have the initial cable configuration, we are able to compute the corresponding
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(a) Input: initial cable configuration and
robot, control points and obstacles

(b) Output: closed boundary and the
area: 16200

Figure 3.2: The workspace from given cable configuration

workspace. The cable bi is given in form of vertices in visibility graph, going from

the robot to the ith control point. We need goal h-signatures hig of pairs of cables for

searching for corresponding boundaries. We concatenate the inverse of the ith cable’s

h-signature with the i + 1th cable’s, hig = (h(bi))
−1 ◦ h(bi+1), where superscript “−1”

indicates inverse operation explained in Section 2.5.

Use function P (ci, ci+1, h
i
g) to get all corresponding shortest paths, then concatenate

them into a closed boundary ω. For we have shown that cables can deform continuously

into a closed boundary, no need to check the concatenation of goal h-signatures. In the

end compute the area of this boundary, A(ω). Examples are shown in Figure 2.2 and

3.2.

3.10 Maximization of Workspace Covering Multiple Task

Points

If we expect the robot to perform multiple tasks at static points in the environ-

ment, we should choose an appropriate initial cable configuration which can generate a

workspace covering all task points. For this kind of problem, we need to use H-signature

(homology signature) to check if all the task points are inside the workspace. If the com-

ponents in the H-signature of boundary corresponding to task points are non-zero, that

vertex is inside the boundary. If we get an H-signature that does not have any zero

component, all task points are enclosed. Additionally, the task points which are right on
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(a) Input: case 1 (b) Output: only one valid boundary when L =
1000

(c) Input: case 2 (d) Output: only one valid boundary when L =
900

Figure 3.3: Planning of workspace that covers multiple task points. Task points in
purple, control points in red. In each case there is one task point right on the boundary
of the workspace.

the boundary of the workspace are reachable too. They can also be counted as covered

by the workspace. After getting all workspaces that satisfy the criteria and the areas of

them, the algorithm returns the one that has the largest area. A case is shown in Figure

3.3.
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3.11 Maximization of Expected Workspace’s Area in an

Environment with Moving Obstacle

In real-world scenarios, despite fixed control points, there could be moving obsta-

cles. Although uncertain about the future locations of the obstacles, if we have prior

knowledge of probabilities associated with different configurations of obstacles in the en-

vironment, we can choose a cable configuration with the max expectation of workspace’s

area.

3.11.1 Boundaries Change upon Obstacle Reconfiguration

If the current workspace’s boundary is ωm, the mth one in setW we previously estab-

lished, when the obstacles move from current configuration to the jth potential config-

uration, ωm deforms as well into a new boundary ωjm , where ωm = {τm1, τm2, . . . , τmn}

and ωjm = {τ jm1, τ
j
m2, . . . , τ

j
mn} (for example, the initial configuration of Figure 3.5a de-

forms into Figures 3.5b, 3.5c and 3.5d when the obstacles move). Because control points

do not move and cables do not intersect obstacles, τmk has the same start and end ver-

tices as τ jmk and is homotopic to τ jmk, where τmk ∈ ωm, τ jmk ∈ ω
j
m, and k = 1, 2, . . . , n.

Based on the homotopy invariants, we are able to search for τ jmk,

τ jmk = P (ck, ck+1, Rj(h(τmk))) (3.1)

thus the new boundary in the jth obstacle configuration is

ωjm = Pj(ωm) =

τ
∣∣∣∣∣∣∣
τ = P (ck, ck+1, Rj(h(τmk))),

where τmk ∈ ωm, k = 1, 2, . . . , n

 (3.2)

where function Rj(·) is for revising the h-signature of the jth potential configuration.

We use Rj(h(τmk)) instead of h(τmk) because sometimes h(τ jmk) = h(τmk) may not hold

(Figure 3.4). The motion of obstacles could be so significant that the rays emanating

from obstacles interchange of their coordinates. As a result, although τ jmk and τmk

belong to the same homotopy class, the h-signatures of them in terms of crossing rays

may be different. Hence we need to revise h-signatures.
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Figure 3.4: h-signature revision

3.11.2 Revision of h-signatures

We revise h-signatures depending on how the obstacles move. Assume that when we

are calculating the h-signatures, there will not be any overlap or intersecting between the

rays of obstacles, and between rays and control points. The revision applies in four steps:

add/remove, interchange, insert and simplify. The following is an example of revision

triggered by the representative point ζα crossing the ray of the representative point ζβ

from left to right, namely, the trajectory along which ζα moves has an h-signature of

‘β−1’, shown in Figure 3.4.

Add/remove When the representative point ζα’s ray rα moves from the left of the

end vertex of one path to its right, we add a corresponding letter ‘α’ at the back of

the path’s h-signature, like τ1 in Figure 3.4. Likewise, if it is the start vertex that

any representative point’s ray crosses, add/remove that letter at the front of path’s

h-signature.

Interchange In the h-signature of the path, when ‘α’ is next to ‘β’, we interchange po-

sitions of ‘α’ and ‘β’, like τ2 in Figure 3.4. Likewise, if ‘α−1’ is next to ‘β−1’, interchange

positions of ‘α−1’ and ‘β−1’.
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(a) Current configuration, area: 16200, max
cable length sum: 1138.39

(b) Potential configuration 1, p1 = 0.5, area:
10250, max cable length sum: 2155.56

(c) Potential configuration 2, p2 = 0.3, area:
11400, max cable length sum: 1241.1

(d) Potential configuration 3, p3 = 0.2, area:
9450, max cable length sum: 1364.59

Figure 3.5: Boundary of Figure 3.2b changes in potential configurations, expectation:
10435, max cable length sum: 2155.56

Insert pair If ‘α’ or ‘α−1’ appears alone (its previous and next letters are not ‘β’ or

‘β−1’), insert ‘β−1’ into its left and ‘β’ into its right, like τ3 in Figure 3.4.

Simplify Check if a letter and its inverse appear side-by-side. If so, cancel both of

them. Keep checking until there is no such a case.

On the other way around, when representative point ζα crossed rβ’s right to left,

going along ‘β’, do “add/remove”, “interchange” and “simplify” in the same way de-

scribed above; but when coming to “insert pair”, if there is a lone ‘α’ or ‘α−1’, we insert

‘β’ into its left and ‘β−1’ into its right.

A representative point may cross multiple rays. Thus we have to decompose the

crossing into several stages of coordinates interchanges, then revise h-signatures stage
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(a) Current configuration, area: 19300, max
cable length sum: 1435.66

(b) Potential configuration 1, p1 = 0.5, area:
19300, max cable length sum: 1488.13

(c) Potential configuration 2, p2 = 0.3, area:
20100, max cable length sum: 1374.21

(d) Potential configuration 3, p3 = 0.2, area:
22925, max cable length sum: 1283.95

Figure 3.6: A boundary with max expectation (20265) in an environment with moving
obstacles, max cable length sum: 1488.13

by stage till reaching the final configuration. E.g. in Figure 3.6, we can split the trans-

formation from Figure 3.6a to 3.6b into two stages: firstly ζα going along a trajectory

‘β−1’, secondly ζα going along ‘γ−1’; transformation from Figure 3.6a to 3.6b in two

stages: ζβ going along ‘γ−1’, then ζα going along ‘γ−1’; transformation from Figure 3.6a

to 3.6d in one stage: ζβ going along ‘α’. Here we use the boundary in Figure 3.2b as

a current configuration to illustrate how h-signatures are revised for potential config-

urations, shown in TABLE 3.1, and how the boundary changes accordingly in Figure

3.5.

3.11.3 Expectation Computation

The probability of the ith potential configuration is denoted as pi, i = 1, 2, . . . , ρ,

where ρ is the number of potential configurations and
∑ρ

i=1 pi = 1. The area expectation
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Table 3.1: Stage-by-stage h-signature revision for paths in Figure 3.5

Configuration Stage fic1c2 fic2c3 fic3c4 fic4c1
Current N/A α α−1β−1γ−1 γβγ−1 γ

Potential 1
1 β−1αβ β−1α−1γ−1 γβγ−1 γ
2 β−1γ−1αγβ β−1γ−1α−1 γβγ−1 γ

Potential 2
1 α α−1γ−1β−1 β* γ
2 γ−1αγ γ−1α−1β−1 β γ

Potential 3 1 α β−1α−1γ−1 γαβα−1γ−1 γ

* Initially it was ‘βγγ−1’ before simplification.

of the mth valid boundary, ωm = {τm1, τm2, . . . , τmn} ∈ W, is

E(ωm) =

ρ∑
j=1

A(Pj(ωm))pj ,

where function Pj(ωm) is defined by Equation (3.2) in Section 3.11.1. Next we can

choose a valid boundary with the max expectation from set W.

3.11.4 Maximum Cable Length Computation

In order to ensure that cables are long enough for all potential configurations, we

need to know the maximum length of each cable. Since the workspace is a polygon that

must have convex vertices at control points, the max length from the ith control point

is used when it reaches one of the other control points. In a particular obstacle and

workspace configuration, that is

max{C(ficic1), C(ficic2), ..., C(‡cici−1), C(‡cici+1), ..., C(·�cicn−1), C(ficicn)},

where ficicj is the shortest path between the ith and the jth control points inside the

workspace. To get the goal h-signatures for searching, we concatenate the h-signatures

tracing the boundary from the ith control point to the jth in clockwise or counter-

clockwise direction. For instance, if j > i, the shortest path between ci and cj isficicj = P (ci, cj , h(τi) ◦ h(τi+1) ◦ · · · ◦ h(τj−1)). In Figure 3.5 and Figure 3.6, the sum of

four maximum cable lengths were calculated for each configuration.
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Chapter 4

Algorithm Design for Robot Path

Planning within Workspace

We move a robot from one point to another by controlling the motors to change

the cables’ lengths at each one’s desired speed. The cable control algorithm has the

following inputs:

(1) h-augmented graph of environment;

(2) coordinate of start and goal vertices, vs and vg;

(3) coordinate of control points (xic, y
i
c);

(4) initial cable configuration bi;

(5) desired robot speed vr;

and outputs:

(1) shortest trajectory from the start vertex to the end vertex;

(2) velocities of each cable vic over time;

where i = 1, 2, . . . , n.
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4.1 h-signature of Shortest Trajectory within Boundary

A correct h-signature can ensure the path search outcome is within the workspace’s

boundary. If vs and vg are both on the boundary, we can directly obtain the h-signature

when tracing the boundary from vs to vg, since this part of the boundary can continu-

ously deform into (homotopic to) the desired shortest path. If any of them is inside the

boundary, we can use alternative vertices —points (v′s and v′g) on the boundary adja-

cently above vs and vg, shown in Figure 4.1. flvsvg inside the boundary can continuously

deform into ‰�vsv′sv
′
gvg partially on the boundary—they are in the identical homotopy

class:

h(flvsvg) = h(‰�vsv′sv
′
gvg) = h(flvsv′s) + h(flv′sv′g) + h(flv′gvg).

Since path flvsv′s and flv′gvg are vertical, they do not cross any rays, having empty h-

signatures. Hence,

h(flvsvg) = h(flv′sv′g).
The shortest path from vs to vg is flvsvg = P (vs,vg, h(flv′sv′g)). Besides, we can use v′′s

and v′′g (below vs and vg, respectively) instead. In addition, we can apply this method

for obtaining cables’ new h-signatures while the robot is moving, by replacing vs with

vr (the robot’s location) and vg with ci. The cable trajectory from the robot vr to

control point ci is fivrci = P (vr, ci, h(fiv′rci)).
4.2 Cable Velocity

The cable velocity is the projection of the robot’s velocity in the cable’s direction.

Denote coordinates of the ith control point and that of the robot as (xic, y
i
c) and (xr, yr),

and the speed of robot as (vxr , v
y
r ). The velocity of cable attached to the ith control point

is

vic =
(xic − xr)vxr + (yic − yr)v

y
r√

(xic − xr)2 + (yic − yr)2
.

where vic is a scalar and its positive direction is from the robot to the ith control point, and

robot coordinates (xr, yr) are integrals of its velocity over time plus start coordinates.
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Figure 4.1: Shortest path searching within the workspace by using alternative vertices
(v′s, v′′s , v′g, v′′g) at the boundary instead of start and goal vertices (vs, vg) to get the
goal h-signature.

Sometimes the cable may go around an obstacle, which makes it no longer straight.

Instead we use a temporary control point which is at the nearest turn of cables to the

robot. Thus we search for a new cable configuration based on the robot’s position. We

compute the h-signature from robot’s alternative vertex v′r to each control point along

the boundary in a same direction. In the test shown in Figure 4.2, we got h(flv′rc3) first,

and then got h(flv′rc4), h(flv′rc1) and h(flv′rc2).
4.3 Path Planing for Multi-task Accomplishment

Suppose the cable-controlled robot needs to execute M unordered tasks, each de-

scribed as static points in the workspace, before it arrives at the goal vertex. We need

to solve the traveling salesman problem—find the shortest trajectory that goes through

these static task points. One way to accomplish this is to construct a task indicator

augmented graph and search in it [7]. A task indicator is a string of M binary digits,

denoted by β, in which each bit is a flag or indicator of whether the corresponding task

has been completed. For example, if there are 4 tasks to be finished, ‘0101’ means that

the 1st and the 3rd task is finished while others are not. The robot must set off at the

start vertex with β = 0000 and arrive at goal vertex with β = 1111. The task indicator
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(a) Input: case 1 (b) Output

(c) Input: case 2 (d) Output

Figure 4.2: Two examples of goal-directed path planning within the workspace. Path is
colored in green. Alternative points at the boundary in black.

augmented graph Gt = (Vt, Et) is defined as

1. Vt = {(v, β)|v ∈ V, β ∈ Y}

2. An edge {(v, β) → (v′, β′)} = P (v,v′, h(„�(v)′(v′)′)) is in Et for (v, β) ∈ Vt and

(v′, β′) ∈ Vt, (v)′ and (v′)′ being alternative vertices of v and v′ respectively, iff one

of the followings holds

(a) The edge {(v, β)→ (v′, β′)} ∈ E , and v′ /∈ {τl| the lth bit of β is 0}, and β = β′

(b) The edge {(v, β) → (v′, β′)} ∈ E , and v′ ∈ {τl| the lth bit of β is 0}, with

v′ = τλ, and β → β′ ∈ Y such that the λth bit of β′ is 1.
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Figure 4.3: The task graph Y showing the possible transitions of the task indicator, β,
for 4 tasks.

3. The cost associated with an edge {(v, β)→(v′, β′)} is the same as that associated

with edge {v→v′} ∈ E .

In the example of Figure 4.4 we place 12 task points inside the workspace, the start

vertex in the middle overlapping the end vertex. We find the workspace first then build

the t-augmented graph to find the shortest path that visits all the task points.
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(a) Input: case 1 (b) Output

(c) Input: case 2 (d) Output

Figure 4.4: Using t-augmented graph for multi-task planning within the workspace in a
non-convex environment. The robot returns to the start node after finishing all 12 tasks
along the green shortest trajectory in each case.
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Chapter 5

Conclusion and Discussions

In this thesis, we have studied problems related to workspace and motion planing

for cable-control robot in a cluttered environment, and established the topological re-

lationship between the boundary of robot’s workspace and the cable configuration, and

introduced some novel and efficient methods for addressing these problems, using the h-

signature augmented graph. We have presented some algorithms for workspace planning

and trajectory planning based on these methods. Particularly, we have developed sev-

eral applications in computation of boundary of workspace, maximization of workspace

covering multiple given task points, and maximization of expected workspace’s area with

moving obstacles. We have also introduced some methods for trajectory planning and

cable controlling of the robot within the workspace. Additionally, we have demonstrated

them through simulations in environments with both static and stochastic dynamic ob-

stacles. The following problems are within the scope of future research.

1. Given the configuration of obstacles and the boundary of the environment,

optimizing control points’ locations for maximized area.

Since we have been able to optimize the cable configuration with the control points

being fixed, the only thing in design problems left is the optimization of control points’

locations which is as important as the configuration of cables. A straightforward way

is to compute the area while moving the control points from corner to corner on the

boundary of the environment, but it could be very expensive if there are multiple

control points and a couple of possible cable configurations. We need to find a
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more efficient algorithm to solve this problem which may or may not use topological

methods.

2. Extension of this planning problem to a full 3-D workspace and environ-

ment with columns or other kinds of obstacles.

In practical situations, the robots may need to move in a 3-D environment with more

complicated obstacle configurations. We will be starting with definitions of homology

and homotopy in 3-D environment, then analyzing forces and looking for any possible

properties of workspace’s boundary.

3. Multiple cable-controlled robots planning and collaboration to manipulate

objects in a 2-D/3-D workspace.

There could be multiple cable-controlled robots collaborating to finish a task. Their

workspace may need to overlap for passing an object or manipulating an object to-

gether and in that case the cables may tangle together. We will design algorithms to

keep each robot maneuverable and manage its workspace, ensuring the accomplish-

ment of the tasks.

4. Workspace planning of cable robots with gravity or other field forces as

one form of locomotion in a 3-D workspace.

This can be regarded as a variant of the first problem. When the robot is in a

gravitational/magnetic/electric field, we can use that field force as a cable pulling

the robot in a desired direction (downward for gravity). The difference is that the

field force can act wherever the robot is, which will enlarge the robot’s workspace.

5. Practical problems in applications.

In this thesis we have studied the planning problems for a cable-controlled robot

mostly from a theoretical standpoint. We have not explicitly considered some of the

implementational problems such as control error, environmental noise, cable elastic-

ity and friction. Most of these can be accounted for by carefully designing feedback

controllers for cable length control. In future research we will thus take such prac-

tical details into consideration and design more elaborate controllers for real-world

implementations.
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Besides theses applications, we believe that there will be more theoretical and imple-

mentational endeavors that can be undertaken as part of future research.
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Appendix:

List of Symbols and Notations

(In order of appearance)

v a vertex in a graph

vs the start vertex

vg the goal vertex

G a visibility graph

V the set of vertices in G

ci the ith control point

{v→ v′} an edge from v to v′

E the set of edges in G

X a topological space

τ a trajectory (with orientation)

−τ or τ−1 an inverse of a trajectory (the same curve with reversed orientation)

X a topological space

× Cartesian product

η : A→ B mapping η from A to B

t trajectory concatenation

π1(X) the first homotopy group of X

H1(X) the first homology group of X

[τ ] a homotopy class the trajectory τ is in

∗ free product
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Z the set of integers

' isomorphism

h(τ) a function returning the homotopy signature of τ

H(τ) a function returning the homology signature of τ

ζi the ith representative point

ri the ith ray (emanating from ζi)

Gh an homotopy signature augmented graph

Vh the set of vertices in Gh

Eh the set of edges in Gh

h an h-signature

ṽv′ a trajectory from v to v′ inside the workspace if not specified

◦ h-signature concatenation

n the number of control points

Ti the ith searching thread

Pi the ith set of shortest paths returned from Ti

τij the jth shortest path in Pi

L a preset limit of perimeter of workspace

C the set of control points

Hi the set of h-signatures of paths returned from Ti

hij the jth h-signature in Hi (corresponding to τij)

C(τ) a function returning the length of τ

P (v,v′, h) a function returning a shortest path from v to v′ with an h-signature of h

ω a closed loop (boundary) constituted of a set of trajectories

W a set of boundaries (closed loops)

A(ω) a function returning the area enclosed by ω

h−1 an inverse of h (letters in reversed order with opposite superscripts)

Ri(h) a function returning the revised h-signature of h for the ith potential

obstacle configuration

Pi(ω) a function returning a new boundary deformed from ω for the ith potential

obstacle configuration
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pi the probability of the ith potential obstacle configuration

Y a task graph

Gt a task indicator augmented graph

Vt the set of vertices in Gt

Et the set of edges in Gt
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