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Abstract 

Cancer is a significant health risk to people living in developed and developing countries, 

which continues to prove difficult to treat.  Common treatment options of cancers include 

surgical removal, radiation, and chemotherapies, which are often used in combination to 

improve the likelihood of successful treatment.  Such combinatory approaches towards 

treatment are often taken because each approach is not targeted enough to function 

perfectly on its own.  Being able to delivery therapeutic loads in a more targeted manner 

to sites of cancer has the capability of improving therapeutic efficiency and improving 

patient responses.  The development of improved therapeutic delivery vehicles and 

screening systems can help serve the goal of improved targeted therapeutic delivery.  The 

use of microfluidic devices for the study of therapeutic delivery has become popular over 

the past few decades because of the many benefits that they offer.  Specifically, 

microfluidic devices only require small volumes of therapeutics for testing, which is often 

ideal because of limited drug supply during screening.  Additionally, the high degree of 

control over channel geometries, ease of fabrication and low cost make microfluidic 

therapeutic testing devices well suited for higher throughput screening when run together 

in parallel.  The ability to generate shear flow within the microfluidic channels also offers 

a means of more closely mimicking vascular physiology and conditions that would be 

experienced during drug delivery in the human body.  Lastly, the use of microfluidic in 

therapeutic testing enables micro-scale data on characteristics such as binding, uptake, 

cellular permeability and others to be easily collected due to the transparent nature of the 

devices and ability to facilitate cell cultures.  As such, the focus of this dissertation is 

mainly based around the establishment of microfluidic systems capable of mimicking 
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cancerous environments and testing of various therapeutic vehicles and delivery methods 

targeted for cancer.  In brief, the dissertation demonstrates a few methods of establishing 

cancerous environments within microfluidic systems of increasing complexity, and how 

screening of various nanoparticle vehicles and therapeutics is performed. 

First, a single layer microfluidic device is developed to facilitate the growth of cancer 

monolayers for the screening of solid lipid nanoparticle drug delivery performance.  The 

device is designed to assist in identifying an optimal ratio of antibody to polymer chains 

exposed on the surface of the nanoparticles.  Improved targeting of nanoparticles to cancer 

cells is achieved by increasing target specific binding through addition of cancer antibody 

while reducing non-specific binding through addition of polymer chains on the 

nanoparticles surface.  Conditions for optimal targeting specifically to cancer cells were 

identified for nanoparticles with 37% of their surface area occupied by polyethelyene 

glycol (PEG).  The cancer cell targeting efficiency for the 37% coated nanoparticles was 

determined to be a maximum of 81% when a cancer specific antibody was used in 

conjunction on the nanoparticles surface. 

Next, to improve the physiological relevance of the microfluidic screening system, a bi-

layer setup was fabricated.  The nature of the bi-layer device is designed to facilitate the 

co-culture of cancer and endothelial cells (ECs) in different compartments while still 

permitting signaling and chemical interactions to occur between the two cell types.  The 

presence of ECs in the device is designed to mimic a blood vessel, as therapeutic delivery 

within the body relies heavily on the circulatory system from drug transport.  As such, 

understanding the mechanics of therapeutic delivery from mimicked vasculature to cancer 

is an important consideration.  Conditions in the bi-layer system influencing therapeutic 
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transport include endothelial permeability, therapeutic size, system flow rate, and treatment 

time.  Improved therapeutic delivery was achieved using smaller molecules, slower system 

flow rates, and when the EC monolayer was highly permeabilized.  Increased treatment 

times, resulted in less and less therapeutic transport from the mimicked vessel to the cancer 

environment as the EC monolayer regained confluency.  It was shown that the bi-layer 

microfluidic system functions to screen therapeutic delivery to a mimicked cancer 

environment under more physiologically relevant conditions. 

The next progression with the system was to test nanoparticle delivery and transport from 

the mimicked vessel to the cancer environment.  This was accomplished utilizing the same 

bi-layer microfluidic setup in conjunction with a range of nanoparticle shapes that were 

utilized to identify characteristics that facilitate the greatest degree of therapeutic delivery.  

Specifically, spherical, short rod and long rod/worm-like nanoparticles were tested for their 

ability to transport therapeutic loads to the cancer environment over the course of 5 day 

treatments.  Optimal nanoparticle shapes for each flow rate varied based on treatment time.  

Overall, nanoparticle drug delivery should be varied based on the degree of EC 

permeability which changes with time as the cancer environment is treated. 

Lastly, to improve the physiological relevance of cancer environments being used, a 

method for establishing and growing tumor spheroids within the microfluidic devices in an 

expedited fashion was developed.  The ability to perform therapeutic and nanoparticle 

carrier screening on tumor spheroids as opposed to cancer monolayers provides feedback 

on efficiency and performance which more closely mimics outcomes observed in animal 

and clinical testing.  In addition, the ability to form tumor spheroids in an expedited manner 

allows the screening process to be completed in a shorter period of time and with fewer 
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initial cells.  The use of convective driven nutrient flow is utilized to achieve such expedited 

cancer growth in a microfluidic system which also has the potential to facilitate therapeutic 

screening.  The system has been shown to function with adherent and non-adherent cell 

types where 1.5 to 4.5 times faster growth can be achieved.  The ability to cut tumor 

culturing times from 1 week to 3 days and reducing required cell counts from thousands to 

tens of cells has the potential to save lives in clinical settings when using patient derived 

samples. 
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Chapter 1:  Introduction 

1.1 Background and Motivation 

Throughout the world 14.1 million people suffer from cancers of various types as of 2012, 

with an estimated increase to around 21.3 million by 2030 [1]–[3].  The average survival 

rate after diagnosis varies based on cancer type and the stage at which the cancer is 

identified [2], [3].  Due to its large societal impact, research into prevention and treatment 

of cancers has been the major focus of time, funding and resources by many companies 

and government institutions [4], [5]. Improving the likelihood of patient survival requires 

early diagnosis along with rapid development and implementation of treatment plans [2], 

[3]. 

The most common treatment plans utilized are classified as excision [6], radiotherapy [7], 

and chemotherapy [8], or some combination of the three.  The first option of excision can 

function effectively if the cancer is in an early stage and has not yet begun to metastasize 

[9]. Later stages of cancer where metastasis may have begun to occur require the use of 

radiotherapy or chemotherapy. The wide use of chemotherapy for cancer treatment is the 

result of ample therapeutic options which can function on cancers from various tissue 

origins [7], [8], [10]–[12]. Chemotherapy development is a long and time-consuming 

process which overall has very low success rates.  In addition, the use of in vitro and in 

vivo screening is required to identify viable therapeutic candidates [13]–[15].  Such 

chemotherapeutics can often have adverse side effects on patients, which occurs when the 

therapeutic agent interacts with healthy tissues within the body [16]–[19].  In an attempt to 

mitigate this issue, the use of targeted delivery systems such as nanoparticles has been 
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employed to facilitate the treatment of cancers while limiting the occurrence and severity 

of side effects [16]–[21]. 

Nanoparticles have long been investigated for their use in therapeutic delivery [16]–[21].  

The ability to store therapeutics in the cores of nanoparticles provides a means of securely 

shielding healthy tissue from adverse side effects [16]–[21].  This feature coupled with the 

ability to modify the surface chemistry of nanoparticles with proteins, antibodies and 

polymer coatings allows for targeted delivery specifically to diseased sites within the body 

[1]–[16].   The ability to fine tune nanoparticle characteristics such as shape, size, surface 

composition, surface charge, and dug release mechanism make nanoparticles well suited 

for targeted therapeutic delivery [32], [33].  However, such fine-tuning of nanoparticle 

performance requires intensive testing and screening within vasculature and disease 

microenvironments [17], [29], [32]–[35].  Testing on such a scale purely in traditional in 

vitro and in vivo models makes regular and consistent progress difficult.  As such, more 

novel testing and screening systems are required such as microfluidic platforms [21]–[34]. 

Microfluidic platforms emerged and gained popularity in the past few decades.  

Microfluidics have found wide application in many fields including drug discovery, 

advanced cell growth, chemical synthesis, biomolecular analytics, environmental 

screening and many other [44], [50]–[54].  The use of microfluidics in many applications 

arises from their low costs to produce, small sample and reagent volume requirements, high 

degree of control over flow and geometry, ability to achieve concentration gradients, high 

throughput capabilities and relatively low waste [32], [38], [41].  All of these features make 

microfluidics ideal for drug screening applications, especially for cancer 

chemotherapeutics [47].  In particular, the requirement of small therapeutic sample sizes, 
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ability to facilitate 3D in vitro cancer growth and ability to facilitate high throughput 

screening make microfluidics well suited for tumor microenvironment therapeutic 

screening and analysis [14], [15].   

A wide range of organ-mimicking microfluidic systems have previously been developed 

for therapeutic screening [47], [49], [63]–[72], [55], [73]–[79], [56]–[62].  These organ-

mimicking microfluidic system have been termed organ-on-chip (OOC) systems and are 

designed to capture many of the key characteristics of the specific organ being mimicked 

which are relevant to the function and delivery of therapeutics [36], [48], [80], [81],[47], 

[49], [63]–[72], [55], [73]–[79], [56]–[62].  Introduction of OOC systems engineered to 

enhance the predictive capabilities of in vitro drug performance at an early stage, have 

attempted to reduce wasted resources and time on non-viable drug candidates [36], [47], 

[70], [80]–[84], [84], [85], [48], [49], [61], [65]–[69].  Recent advances in OOC systems 

have mainly focused on mimicking physiologically relevant conditions, experienced within 

the given organ, which influence drug delivery or performance in vivo [55], [58], [82]–

[84], [86], [59], [72], [73], [75]–[79].  The organs which often receive the most attention 

in this field include blood vessels, the lungs, the liver, and tumor environments [47], [49], 

[63]–[72], [55], [73]–[79], [56]–[62].  Specifically, focus is placed on tumor-on-chip 

devices and the improvements made for the devices utilized through the research of this 

dissertation. 

Tumor-on-chip systems are often designed to allow for the growth of tumor models in 

physiologically relevant manners while allowing for the assessment of various therapeutics 

to observe how effectively they are able to treat the developed cancerous model [62], [65], 

[87].  Many of the tumor-on-chip devices employ the use of 3D cell culturing techniques 
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to recreate the architecture and structural relations of solid tumors and neighboring tissues 

such as blood vessels [57],[47], [59], [60], [63], [88].  Such microfluidic models aim to 

provide a means of studying certain aspects of treating a cancerous region within a model 

which is simplified when compared to the in vivo environment [47], [61], [63], [64], [88], 

[89].   

There are many approaches adopted by tumor-on-chip devices to grow cancerous cells for 

various testing applications.  Both 2D and 3D models have been developed including, 

cancer cell sheets, multicellular spheroids, multicellular layers, and hollow fibers, with 

each offering various advantages and disadvantages [47], [61], [63], [64], [88], [89].  Two 

dimensional culturing limits the physiological relevance of certain microfluidic systems, 

however offers improved capabilities when considering direct cellular imaging [60].  Three 

dimensional growth systems are capable of more accurately recreating tumor architectures 

and cellular interactions, processes such as imaging and cell maintenance can be 

troublesome [47], [63], [88].  Examples of some three dimensional growth microfluidic 

devices involve the capture of cancer cells in isolated regions where 3D spheroid formation 

can occur over time or through the addition of various growth factors [47], [63], [88].  

Microfluidic devices developed by Wu et al, Hsiao et al, and Ong et al have utilized 

structures designed into the microfluidic devices to capture and retain cancer cells in order 

to facilitate three dimensional growth [47], [63], [88].  Such systems demonstrate spheroid 

heterogeneity which is a defining factor of most in vivo tumor cases while still allowing 

for media and therapeutic flow [47], [63], [88].  Flows of single or combinatory 

therapeutics can be introduced in order to test the effectiveness of treatments.  However, 

despite such capabilities, such models often lack additional biological barriers typically 
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encountered when delivery anti-cancer therapeutics in vivo [47], [63], [88].  Incorporation 

of associated surrounding tissues and vasculature would serve to improve the capabilities 

and predictive nature of such platforms.  It is of course recognized that doing so, often 

greatly increases the complexity of the system.  Despite this drawback, the current systems 

are capable of quantifying the therapeutic effect on cancerous cells by monitoring cell 

viability and death, 3D cellular morphology, and protein production (albumin and 4-MUG) 

[47], [63], [88].  

Improved capabilities of such tumor-on-chip microfluidic system would benefit from the 

addition of common biological barriers encountered during drug delivery to tumor sites in 

vivo such as vascular [47], [59].  In addition, the timeframes required to establish such 

system for optimized therapeutic analysis need to occur faster in order to facilitate 

expedited testing.  Current microfluidic system often require several days (5-7 days) to 

achieve tumor spheroids which are ready to be challenged with therapeutics [47], [61], 

[63], [64], [88], [89].  Achieving similar results in a more expedited fashion would open 

up the possibilities for use of the microfluidic systems in patient-specific applications 

where personalized therapeutic treatment options can be explored in order to quickly 

identify an optimal treatment plan.  Early treatment of many cancers in vivo in turn would 

lead to improved patient health and survival.  Likewise, the application of physiologically 

relevant pressure gradients within the microfluidic systems would better mimic the process 

of delivering therapeutics to cancer microenvironments in vivo.  As such, the microfluidic 

systems utilized in this dissertation were developed to incorporate many of these key 

factors and characteristics lacking in previous research efforts.  Specifically, the inclusion 

of flow, pressure differentials, mimicked vascular barriers in the form of endothelial 
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monolayers, 3D tumor culture, and expedited tumor growth were accomplished in OOC 

systems in order to improve the screening capabilities of microfluidics.  As such, all 

chapters in this dissertation utilize improved microfluidics for cancer related therapeutic 

screening applications, with the dissertation and outline to follow. 

1.2 Dissertation Layout 

Herein, the dissertation layout is organized following the roadmap described below. First, 

a single layer microfluidic platform is described and used for cancer targeted nanoparticle 

screening. To further improve the physiological relevance of the microfluidic platform, a 

bi-layer system is developed to facilitate blood vessel and cancer growth for drug delivery 

studies. Lastly, a method is developed for producing 3D tumor spheroids in an expedited 

manner for use in therapeutic screening as opposed to 2D monolayers of cancer cells. In 

detail, the layout is as follows.  

Chapter 1 briefly describes the background and main challenges faced in cancer therapeutic 

screening, with detailed introductions and motivations presented in each of the following 

chapters.  

Chapter 2 presents a single layer microfluidic platform that facilitates the growth of 

HCT116 monolayers for cancer targeted nanoparticle binding studies, and the results 

obtained using various nanoparticle compositions. 

Chapter 3 introduces a bi-layer microfluidic platform that facilitates the growth of an 

endothelial monolayer as a mimicked blood vessel and a monolayer of cancer cells.  The 
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assessment of endothelial permeability is conducted and delivery of therapeutics is 

demonstrated from the mimicked vessel to the mimicked cancer. 

Chapter 4 describes the use of the bi-layer microfluidic platform for assessing the delivery 

capacities of nanoparticle carriers of various shapes in order to achieve improved 

therapeutic delivery to cancerous microenvironments. 

Chapter 5 presents a microfluidic platform and method for the expedited growth of 3D 

tumor spheroids for use in therapeutic screening on established cell lines and patient 

derived cancers. 

Chapter 6 comprehensively summarizes the dissertation and presents directions for future 

work. 
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Chapter 2:  Assessment of PEGylated 

Cancer Targeting Solid Lipid 

Nanoparticles in a Microfluidic Device 

2.1 Introduction 

Treatment of diseases with specificity involves delivery of therapeutics strictly to disease 

sites while preventing therapeutic delivery to non-diseases sites [22], [23], [35], [90]–[94].  

Approaching the goal of disease treatment in this manner improves the efficiency with 

which therapeutics are utilized [22], [23], [35], [90], [91].  Besides being a more efficient 

use of therapeutic loads, the delivery of therapeutics to non-diseased regions often leads to 

side effects [27], [90], [95].  Many resulting side effects can often have undesirable 

influences and in some extreme cases can cause serious injury or even death [27], [90], 

[95].  In order to achieve the goals of targeted delivery specifically to diseased regions, the 

use of nanoparticles has been investigated for their ability to sequester therapeutic loads 

while allowing for surface functionalization with proteins and antibodies [25], [26], [28], 

[29].  However, such experimental forms of therapeutic delivery cannot be directly tested 

within human patients.  Instead laboratory based models are used as stand-ins for the 

human circulatory system in which therapeutic tests can be run [25], [26], [28], [29]. 

Such testing is often conducted within microfluidic system models in order to facilitate 

controlled and reproducible testing [24], [45], [96].  In addition, the use of microfluidics 

often facilitates direct imaging of the system in an easier manner and requires smaller 

quantities of experimental drug carriers for testing when compared to animal models [97], 
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[98].  Through the application of microfluidics, nanoparticle testing is possible, with aims 

of achieving targeted therapeutic delivery.  The use of target specific antibodies has been 

heavily investigated to achieve the goal of targeted nanoparticle delivery to disease sites 

[30], [31], [99]–[102].  However, while specific binding to targeted antigens can be 

increased through the use of antibody coated nanoparticles, the ability to actively prevent 

non-specific binding to non-diseased regions is required [99], [103]–[105].  Many 

approaches to minimize non-specific binding of therapeutic carriers are documented in 

literature, with emphasis typically placed on alterations to nanoparticle surface chemistry 

and charge [30], [99], [103]–[105]. 

One particular approach utilized to reduce non-specific binding has been demonstrated 

through the use of chain polymer coatings on the outer surfaces of particles [103]–[108].  

Specifically, the use of polyethylene glycol (PEG) has shown promising results in literature 

to help reduce unwanted binding [103], [104], [106], [108].  Previous studies have also 

shown that the presence of PEG and target specific antibodies can function to improve 

target specific binding and absorbance [109]–[111].  Examples include the use of PEG 

linkers with antibodies targeted for prostate-specific membrane antigen on the surface of 

quantum dots, which functioned to improve the delivery of the quantum dots to cancerous 

cells in in vitro and in vivo experiments [110].  Besides improved target specific binding, 

the inclusion of PEG and target antibodies of the surface of nanoparticles have been shown 

to improve the circulation time of the particles in in vivo experiments run in mice [109], 

[111].  Specifically, the presence of PEG on the surface of gold nanoparticles was 

demonstrated to elongate the circulation time of the nanoparticles in blood plasma for over 

8 days compared to less than one day for non-coated gold nanoparticles [109], [111].  
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Lastly, the coating of PEG onto the surface of silica nanoparticles was shown to reduce 

aggregation by increasing the shear plane because of steric hindrance-based stabilization 

[103].  Such reduced aggregation of nanoparticles in turn assists in reduced clearance from 

the blood plasma in vivo.  However, despite all of this work there has been little research 

designed to investigate how to balance the effects of antigen specific binding achieved with 

antibodies and the inhibition of non-specific binding achieved with the application of PEG. 

In this study, we utilize a microfluidic platform that is capable of accommodating cancer 

cell growth.  In conjunction with the microfluidic system, solid lipid nanoparticles (SLNP) 

are utilized to investigate the influence of various coating ratios of specific antibody (anti-

EpCAM) and PEG on the ability to deliver therapeutics to cancerous cells in a targeted 

manner.  The application of the microfluidic system developed in this study for 

investigating the kinetics of SLNP binding to cancer cells provides a means of controlling 

the shear forces applied on the particles which is difficult to finely control in traditional 

experimental setups such as static culture dishes or well plates.  In addition, the system 

provides a cell and non-cell coated surfaces within the same channel that in turn can 

provide control (non-cell coated) and experimental (cell coated) conditions for 

simultaneous testing and data collection.  Through this work, a suitable range of PEG and 

anti-EpCAM surface coatings are identified which enhance the ability of the SLNPs to 

deliver therapeutic payloads in a targeted manner while minimizing unwanted non-specific 

delivery. 
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2.2 Experimental 

2.2.1 Materials 

The media used for HCT116 cells was Dulbecco’s Modified Eagle’s Medium (DMEM, 

Life Technology), with 10% fetal bovine serum (FBS, Invitrogen) and 1% Antibiotic & 

Antimycotic (ThermoFisher). CellTracker Green was used to fluorescently label cells 

(ThermoFisher). Microfluidic molds were digitally cut from printable gold foil sheet 

(Silhouette) with Silhouette SD digital cutter (Silhouette). Microfluidic devices were 

produced from Sylgard 184 polydimethylsiloxane (PDMS) (Dow Corning) and microscope 

cover glass slides (FisherBrand). SLNPs were produced that contained PEG and anti-

EpCAM (diameter 150-200 nm, pyrromethene 567A (Sigma-Aldrich), PEG-12 carnauba 

(Sigma-Aldrich), Anti-EpCAM (Life Technology), and carnauba wax (Sigma-Aldrich)).  

Syringe pumps were used for nanoparticle flow tests (Harvard Apparatus). All other 

reagents not mentioned were used directly without purifying. 

2.2.2 Microfluidic device design, fabrication and assembly 

Microfluidic devices were fabricated using PDMS and channel molds that were digitally 

cut into the shape indicated in Fig 2.1(A).  The PDMS channels were replicated from the 

mold in a casting process with a bake at 80⁰C for 12 hours.  The devices were fabricated 

using straight channels that were assembled into single layer devices as depicted in Fig 

2.1(B).  The PDMS pieces received inlet and outlet ports with a biopsy punch and were 

bound to glass slides with a plasma treatment of both surfaces for 5 minutes followed by a 

bake at 80⁰C for 30 minutes to set the bond.  The fully assembled devices were visually 
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inspected and run through an autoclave cycle at 125⁰C for 30 minutes to sterilize prior to 

receiving cells. 

 

Figure 2.1 Microfluidic device design and function.  (A) Microfluidic channel design. (B) 

Microfluidic device produced with contrast dye flown in channels. (C) Representative 

fluorescence image of HCT116 cells growing within a device. Scale bar: 250μm (D) 

Device schema of particle suspension flow tests. (E) Microfluidic channel schema showing 

which surface of the device facilitates growth of the HCT116 monolayer and which 

surfaces are exposed PDMS. 

2.2.3 Solid lipid nanoparticle fabrication 

SLNP fabrication was accomplished through a low-pressure melt-emulsify-chill process.  

The incorporation of yellow carnauba wax from the Copernicia prunifera palm tree(Koster 

Keunen, Watertown, CT), PEG-12 yellow carnauba wax (Koster Keunen, Watertown, CT), 

and Pyrromethene 567A (emission wavelength 546nm, Exciton, Dayton, OH) into the 

SLNPs was accomplished via dispersion into a high temperature aqueous emulsifier 

solution under controlled shear conditions.  A cooling step is then performed in order to 

stabilize the SLNPs.  The resulting SLNP have the oil-soluble fluorescent dye encapsulated 

A 
B C 

D 
E 

HCT116 Monolayer 

Flow Direction 

PDMS Channel 

Wall 

PDMS Channel 

Wall 

PDMS Channel 

Wall 
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within the particles. After filtration, the average SLNP diameter for each batch was 

measured via dynamic light scattering.  Average SLNP diameters were determined to be 

between 150 to 200nm for each batch made throughout the course of experimental testing 

using dynamic light scattering as observed in Fig 2.2.  The SLNP composition and 

production process are proprietary information of Particle Sciences, Inc. (Bethlehem, PA). 

 

Figure 2.2 Dynamic light scattering analysis of solid lipid nanoparticles.  DLS data 

indicates average SLNP diameters between 150-200nm. 

2.2.4 Cell growth and staining 

Human colorectal cancer cell line, HCT116, was used as a model cancer in this work. 

Cultured in 5% CO2 and at 37 °C, HCT116 cells were incubated with DMEM 

supplemented with 10% FBS and 1% Antibiotic & Antimycotic. The medium was changed 

every 2 days. When the cells reached 80-90% confluency, they were subcultured and 

0.05% Trypsin - 0.53 mM EDTA was used for cell detachment. Once the cells were 

collected and the microfluidic device was sterilized, 20 µL of cell suspension was injected 

and allowed to sit statically under incubated conditions to facilitate cell adhesion within 
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the channel.  After 4 hours, PBS was injected into the devices at a flow rate of 200 μL/h to 

remove any unbound cells. The HCT116 cells were exposed to continuous culture media 

flow for 4-5 days at a rate of 200 μL/h until fully confluent HCT116 monolayers were 

formed as seen in Fig. 2.1(C).  The confluent monolayers were stained with Cell Tracker 

GreenTM
 for fluorescence visualization. The stain was produced according to the 

manufacture’s recommendation at a concentration of 10μM and incubated with the cells 

for 15 minutes prior to starting SLNP flow tests. 

2.2.5 Establishing shear rate 

The effect of fluid shear on the growth of cells, delivery of fresh nutrients, and particle 

binding studies was established using syringe pumps (PHD 2000, Harvard Apparatus). The 

equation governing[112] the shear rate established in each of the channels is as follows:  

𝑆ℎ𝑒𝑎𝑟 𝑅𝑎𝑡𝑒 = (
6𝑄

𝑊∗𝐻2)(1 +
𝐻

𝑊
)(𝑓∗)(

𝐻

𝑊
), where Q is the established flow rate within the 

given channel, W is the channel width,  H is the channel height, and f* is a geometrical 

factor based on channel dimensions which for the microfluidic devices used is 0.7946.  The 

width and height dimensions for the channels utilized in this study were 500 micrometers 

and 100 micrometers, respectively.  In order to stay within a physiologically relevant 

range[113]–[115], the shear rates established within the channels for the particle binging 

studies were held between 200 sec-1 and 1600 sec-1.  A table showing the tested shear rates 

and subsequent flow rate, flow durations and total flow volumes can be observed below in 

Table 2.1. 
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Table 2.1 Flow testing parameters utilized for various non-specific and specific binding 

tests. 

Non-Specific Binding Tests 

Shear Rate (s-1) Flow rate (μL/hr) Flow Duration (hr) Total Volume (μL) 

200 

800 

1600 

776.7 

3106.7 

6213.4 

~1.29 

~0.32 

~0.16 

1000 

1000 

1000 

 

Specific Binding Tests 

Shear Rate (s-1) Flow rate (μL/hr) Flow Duration (hr) Total Volume (μL) 

200 

800 

1600 

776.7 

3106.7 

6213.4 

~0.39 

~0.10 

~0.05 

300 

300 

300 

2.2.6 PEG surface area coverage calculations 

In order to better understand the influence of the PEG incorporated into the SLNPs, the 

percentage of the SLNP covered by PEG was determined for each amount of PEG used for 

testing.  The calculations for the surface area coverage was carried out as follows[116], 

[117]: 

𝑅𝑓 = 𝑏𝑒𝑥𝑝 × 𝑁𝑔𝑙𝑦𝑐𝑜𝑙

3
5      (𝐹𝑙𝑜𝑟𝑦 𝑟𝑎𝑑𝑖𝑢𝑠 𝑝𝑒𝑟 𝑃𝐸𝐺 𝑐ℎ𝑎𝑖𝑛 (𝑛𝑚)) 

𝑆𝐴𝑃𝐸𝐺 =  
𝜋 × 𝑅𝑓

2

4
     (𝑛𝑚2 𝑝𝑒𝑟 𝑃𝐸𝐺 𝑐ℎ𝑎𝑖𝑛) 

𝑆𝐴% =
𝑉% × 𝑉𝑝

𝑆𝐴𝑆𝐿𝑁𝑃
     (% 𝑜𝑓 𝑆𝐿𝑁𝑃 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑐𝑜𝑚𝑝𝑟𝑖𝑠𝑒𝑑 𝑜𝑓 𝑃𝐸𝐺 − 𝐶𝑎𝑟𝑛𝑎𝑢𝑏𝑎) 

𝑁𝑃𝐸𝐺 = 𝑆𝐴𝑆𝐿𝑁𝑃 ×
𝑆𝐴%

100%
     (# 𝑃𝐸𝐺 𝑐ℎ𝑎𝑖𝑛𝑠 𝑜𝑛 𝑆𝐿𝑁𝑃 𝑠𝑢𝑟𝑓𝑎𝑐𝑒) 
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𝑆𝐴𝐶𝑃𝐸𝐺 = (
(𝟑) × (𝟓)

𝑆𝐴𝑆𝐿𝑁𝑃
) × 100%     (%) 

Where Nglycol is the average number of ethylene glycol units per PEG chain (12-20 ethylene 

glycol units per chain (avg: 16 units)), bexp is the unit length of one ethylene glycol unit 

(=0.1nm), Rf is the Flory radius of a single PEG chain on the surface of a SLNP, SAPEG is 

the surface area of the SLNP occupied by a single PEG chain, SA% is the percentage of the 

SLNP surface comprised of PEG-Carnauba units, V% is the volume percentage of PEG-

Carnauba units mixed into each SLNP (values reported from Particle Sciences as indicated 

in Table 2), Vp is the volume of a SLNP (calculated as volume of a sphere with diameter 

of 169.5nm), SASLNP is the total surface area of a SLNP, NPEG is the total number of PEG 

chains present on the surface of the SLNPs, and SACPEG is the total percentage of the SLNP 

surface covered by PEG chains. 

Table 2.2 The range of volume percentage of PEG-Carnauba units in each SLNP 

formulation (first column), reported by Particle Sciences.  Corresponding range of surface 

area percentages covered by PEG on the SLNPs tested (second column). + denotes PEG 

surface coating percentages tested in first round.  * denotes refined range of percentages 

used in second round of testing. 

VOLUME % OF PEG-

CARNAUBA UNITS IN 

SLNPS (V%) 

RANGE OF SLNP SURFACE AREA 

PERCENTAGES COVERED BY PEG 

0% 0% + * 

0.2% 1% + 

1% 6% + * 

2% 12% + * 

6% 37% * 

12% 74% * 

20%                     124% + * (indicated as 100%‡) 
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2.2.7 Non-specific SLNP binding 

Each of the bare SLNPs was flown through single layer microfluidic devices at varying 

shear rates.  A range of PEG surface coating percentages were tested which included: 0, 1, 

6, 12, and 100%‡ as noted in Table 2.2 above.  As noted above in Table 2.1, the shear rates 

utilized were 200s-1, 800s-1, and 1600s-1.  Particle flows were established using a syringe 

pump for a pre-determined period of time.  The total number of particles flown in each test 

was held constant by varying the duration of the flow to shorter and shorter timeframes as 

the shear rate utilized increased.  This was done to ensure normalized testing conditions 

across all setups.  At the completion of each flow, PBS (1X, Sigma-Aldrich) buffer was 

flown through the channels to wash away any unbound particles prior to confocal imaging.  

After washing, confocal scans were made across the entire internal surface of each channel 

to collect fluorescence intensity data.  The scans were then loaded into FIGI (ImageJ)[118], 

and reconstructed back into a bulk 3D image.  Final image processing was carried out to 

determine the fluorescence intensity of particles bound to the inner walls and cell 

monolayer of each channel.  Comparisons were then made across varying PEG percentages 

and shear rates as can be seen in Fig 2.3. 
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Figure 2.3 Non-specific binding of bare SLNPs at various shear rates.  (A) Normalized 

SLNP binding with HCT116 cell monolayers.  (B) Normalized SLNP binding without 

cells. 

2.2.8 Antibody specific SLNP binding 

Each of the antibody coated SLNPs was flown through single layer microfluidic devices at 

varying shear rates.  A range of PEG surface coating percentages was tested which 

included: 0, 1, 6, 12, and 100%‡ as noted in Table 2.2 above.  As noted above in Table 2.1, 

the shear rates utilized were 200s-1, 800s-1, and 1600s-1.  Particle flows were established 

using a syringe pump for a pre-determined period of time.  The total number of particles 

flown in each test was held constant by varying the duration of the flow to shorter and 

shorter timeframes as the shear rate utilized increased.  This was done to ensure normalized 

testing conditions across all setups.  At the completion of each flow, PBS (1X, Sigma-

Aldrich) buffer was flown through the channels to wash away any unbound particles prior 

to confocal imaging.  After washing, confocal scans were made across the entire internal 

surface of each channel to collect fluorescence intensity data.  The scans were then loaded 

into FIGI (ImageJ)[118], and reconstructed back into a bulk 3D image.  Final image 

processing was carried out to determine the fluorescence intensity of particles bound to the 

inner walls and cell monolayer of each channel.  Comparisons were then made across 

A B 
‡ ‡ 
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varying PEG percentages and shear rates in order to identify a more refined range of PEG 

percentages to investigate.  

2.2.9 Statistical analysis 

Statistical analysis of all obtained results was run utilizing IBM’s SPSS statistical software 

package (IBM Corp.).  All of the figures have significant differences indicated above 

elements within the plots.  One way ANOVA tests were run for each data set with 

confidence levels of 95% held throughout all plots.  All analyses were carried out under 

conditions of Tukey equal variances assumed, along with tests of homogeneity of variance 

further verified by both Brown-Forsythe and Welch analyses. Significant differences 

between 0% PEG and all other experimental PEG percentages indicated by “ * “, with 

confidence level of 95%.  Significant differences indicated in Fig 2.6(D), are between the 

average anti-EpCAM values and the average of the bare and IgG values which are denoted 

by “* “, noting that all differences are given at a confidence level of 95%. 

2.3 Results and Discussion 

2.3.1 Microfluidic device production 

Single layer microfluidic devices were produced using PDMS and glass slides.  

Sterilization of the devices was achieved via use of an autoclave.  Cell growth was 

successfully achieved under negligible shear rates to ensure that media exchange 

continuously occurred while limiting the influence of the shear on the cancer cells growth.  

Fig 2.1 depicts a channel design schema (A), produced device with contrast dye for 

imaging purposes (B), a representative fluorescence image of HCT116 cells growing 
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within a channel of one device (C), and a device schema of particle suspension flow tests 

(D). 

2.3.2 Solid lipid nanoparticle characterization 

The solid lipid nanoparticles were validated to have an average diameter of between 150 

to 200nm via dynamic light scattering for the experimental flow tests performed as seen in 

Fig 2.2.  The SLNPs were determined to have uniform spherical shapes by Particle 

Sciences. 

2.3.3 HCT116 growth and staining 

HCT116 cancer cells were successfully grown within the channels under a low shear rate 

(50/sec) in order to facilitate constant media exchange.  The cell growth achieved was 

considered confluent, with 90% or more of the channel surface being covered by cells.  All 

devices reached confluency around 5 days of growth under low shear flow.  Representative 

brightfield images of HCT116 cultures which were considered to be confluent can be 

observed in Fig 2.4(A).  Subsequent cell staining was performed with Cell Tracker Green 

as seen in Fig 2.4(B).  Use of the Cell Tracker Green allowed for differentiation between 

cells, SLNPs non-specifically bound to surfaces other than cells, and SLNPs specifically 

bound to cells within the channels.  Differentiation between the various signal colors 

recorded from the confocal scans is important to ensure that later quantification of 

specifically and non-specifically bound particles is performed properly to ensure accurate 

results. 
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Figure 2.4 Representative brightfield and fluorescence images of HCT116 cultures within 

microfluidic devices. (A) Brightfield images of HCT116 cells. (B) Fluorescence images of 

stained HCT116 cells with Cell Tracker Green.  All scale bars: 250μm. 

2.3.4 Non-specific SLNP binding 

Rounds of non-specific SLNP were run using “bare” nanoparticles only coated in a range 

of PEG surface coating percentages (bare SLNPs) in order to establish baseline values for 

SLNP binding and to investigate if the presence or absence of cells grown in the devices 

have strong influence on binding.  The percentages used were: 0, 1, 6, 12, and 100%‡ and 

three different shear rates of 200, 800, and 1600 sec-1 were tested to understand how bare 

SLNP binding performed.  Refer to the “PEG Surface Area Coverage Calculations” portion 

of the Methods section and Table 2.2 for details on how the calculations were carried out. 

The PEG surface coating percentage indicated as 100%‡ was actually calculated as 124%, 

however, the theoretical maximum can only 100% of the SLNPs surface.  As such, the 

reported values measure is set to 100%‡, with the assumption that the calculated value of 

124% indicates that some of the PEG from the SLNP remains incorporated in the volume 

of the particle as opposed to being all fully exposed on the particle’s surface.  The same 

notation of 100%‡ is used in the later antibody specific binding section and has the same 

meaning.  The total range of PEG surface coating percentages was dictated by the amount 

A 

B 
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of PEG which could be incorporated into the lipid mixture used to produce the SLNPs, 

which ranged from no PEG to 20% PEG by volume.  The initial PEG surface coating 

percentages chosen for the non-specific and first round of antibody specific testing focused 

on the lower end of the total range as a result of preliminary trials run under static 

conditions.  Subsequent refinements were made to the percentages chosen for the second 

round of antibody specific testing in order to better focus in on the range of PEG surface 

coating percentages which facilitated the greatest degree of binding to cells. The shear rate 

values used for the non-specific and first round of antibody specific tests were chosen to 

test SLNP binding under a range of controlled shear forces to understand how such forces 

influence nanoparticle adhesion.  Subsequent refinements were made to the shear rate used 

in the second round of antibody specific testing, where the larger two shear rates were 

dropped.  Overall, a trend was observed that the total amount of SLNP binding reduced as 

the PEG coating percentage was increased as seen in Fig 2.3.  Additionally, it was observed 

that increasing the shear rate established during the binding tests resulted in lower amounts 

of SLNP binding.  Lastly, it was observed that non-specific binding of the PEG coated 

SLNPs occurred approximately equally when run through PDMS devices containing no 

cells and PDMS devices containing a HCT116 monolayer grown on the bottom of the 

channel.  The lack of difference in binding between devices with and without HCT116 

cells indicates that the mechanism of non-specific binding is not influenced by the presence 

or absence of cells, instead is more heavily influenced by the absorption of serum proteins 

as indicated in literature[119]–[123].  Fig 2.3 depicts the non-specific SLNP binding results 

in microfluidic devices with and without HCT116 cells at various shear rates and PEG 

surface coating percentages.  
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2.3.5 Influence of shear rate on SLNP binding 

In order to assess the influence of shear rate on SLNP binding, SLNP suspension binding 

flow tests were carried out at various shear rates of 200, 800, and 1600 sec-1 as seen in Fig 

2.5(A).  The PEG surface area coating percentages used were the result of preliminary 

findings from binding tests run under static conditions, where better performance was 

observed in the lower end of the total range.  Overall, improved SLNP binding was 

observed under conditions of 200/sec shear, followed by 800/sec and 1600/sec, 

respectively.  The rationale behind these observations is that under lower shear stresses, 

the SLNPs are better able to bind and remain adhered to the cell coated and exposed PDMS 

surfaces within the channels, as is apparent in Fig 2.5(A,B&D).  Under conditions of 

200/sec shear, the PEG percentage which facilitated the greatest ratio of cell binding was 

the 12% PEG test case as observed in Fig 2.5(B).  Representative fluorescent confocal 

scans compressed into single images are shown in Fig 2.5(C) for the 200/sec shear rate 

tests.  From these images lower PEG percentages result in increased red fluorescence 

signal.  The red signal is the result of SLNPs which have non-specifically bound to surfaces 

within the channel which are not cells, across all shear rates tested.  When lower shear rate 

values and higher PEG percentages of 12% and 100%‡ are used very little red signal is 

observed, instead a yellow-green signal is dominant which occurs when the red signal of 

the SLNPs mixes with the green signal from the cells.  The production of the yellow-green 

signal is the result of SLNPs being bound directly to the surfaces of the cells being grown 

within the channels. 
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Figure 2.5 Normalized antibody specific binding under various shear rates and PEG 

percentages.  Data shown as sum of means ± S.D. (n=5 independent microfluidic devices) 

for each testing condition.  (A) Normalized fluorescence intensities of (specifically and 

non-specifically) bound SLNPs under various shear and PEG percentage conditions.  (B) 

Normalized percentages of specifically bound (colocalized) SLNPs to total SLNP binding 

under various shear and PEG percentages. (C) Representative compressed fluorescence 

confocal images with SLNPs of varying PEG percentages at 200/sec shear rate.  Scale bars 

are all 50μm in length (D) Normalized total fluorescence intensity of all bound SLNPs for 
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given shear rates and PEG percentages. (E) Normalized percentages of cell bound SLNPs 

vs. surface area occupied by PEG, indicating the largest ratios and the large gap between 

12% and 100%‡ test cases which was later filled in with additional testing in the following 

section. 

Under conditions of 800/sec shear, more SLNP binding was observed when compared to 

the 1600/sec test cases with the 12% PEG percentage producing the greatest cell bound 

ratio as indicated in Fig 2.5(B).  Likewise, when considering the 1600/sec shear test cases, 

the PEG percentage which produced the greatest cell bound ratio was the 12% test cases.  

Overall trends observed for binding of the SLNPs show that lower shear rate values 

resulted in greater quantities of SLNPs binding within the channels.  In addition, when 

considering the total amount of SLNP binding, the 0% PEG tests showed the greatest 

amount of total binding as observed in Fig 2.5(D).  Lastly, it is noted that a general trend 

exists in the amount of cell specific binding, where an increase is observed from the 0% 

test cases up to a maximum at the 12.36% tests cases.  Continuing to increase the PEG 

surface area percentage to 100%‡ shows a decrease in cell specific binding.  As such, the 

following round of antibody specific testing includes the addition of two extra PEG surface 

area percentages, namely 37% and 74%.  Additionally, based on the results of this section 

the shear rate of 200/sec was chosen to use for the remainder of the experimental work 

because it resulted in the greatest amount of SLNP binding when compared to the larger 

two shear rates tested. 
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2.3.6 Influence of PEG surface coating percentage on antibody 

specific SLNP binding 
 

Based on the results received from the shear rate binding studies, all of the following 

experimental work was carried out at a shear rate of 200sec-1 that provided data showing 

the greatest degree of change in binding based on PEG surface coating percentages.  In 

addition to refining the shear rates used in the second round of antibody specific testing, 

the PEG surface coating percentage range was also adjusted.  Based on results from the 

first round of antibody specific testing, the 1% samples were dropped and two additional 

percentages were added between the 12% and 100%‡ samples, namely the 37% and 74% 

samples.  The justification for the addition of the 37% and 74% samples was to focus in on 

the range which facilitated the greatest degree of binding to cells.  The following data in 

Fig 2.6 depict normalized fluorecence intensities of bound (specific and non-specific) 

SLNPs within the microfluidic channel containing confluent monolayers of HCT116s.  

Three different SLNP conditions were tested including, bare SLNPs, IgG coated SLNPs 

and anti-EpCAM coated SLNPs to represent, bare, non-specific and specific binding 

conditions, respectively.   
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Figure 2.6 Normalized fluorescence intensities of bound SLNPs at various PEG surface 

area coverage percentages.  Data shown as sum of means ± S.D. (n=3 independent 

microfluidic devices) for each testing condition.  (A) Normalized fluorescence intensities 

of (cell and channel) bound bare SLNPs for various PEG surface area occupation 

percentages.  (B) Normalized fluorescence intensities of (cell and channel) bound IgG 

SLNPs for various PEG surface area occupation percentages.  (C) Normalized fluorescence 

intensities of (cell and channel) bound anti-EpCAM SLNPs for various PEG surface area 

occupation percentages. One way ANOVA statistical analysis between 0% and all other 

experimental conditions with statistical significance indicated by * in plot at p≤0.05.  (D) 

Normalized fluorescence intensities of cell bound SLNPs as percentages of the total 

fluorescence intensity of bound SLNPs for various PEG surface area occupation 

percentages.  One way ANOVA statistical analysis between Ab and control test cases with 

statistical significance indicated by * in plot at p≤0.05.  (E) Normalized difference between 

Ab-specific and non-specific SLNPs bound to cells for various PEG surface area 

occupation percentages.  One way ANOVA statistical analysis between 0% and all other 

experimental conditions with statistical significance indicated by * in plot at p≤0.05.  The 

largest percentage of SLNP surface area occupied by PEG is calculated to be greater than 

100% at a value of 124%.  For practical purposes, this percentage is reported as 100% 

throughout the publication and indicated by ‡ in order to signify that the reported value is 

adjusted. 

Fig 2.6(A) depicts the fluorescenc intensity of bare SLNPs bound within the microfludic 

devices.  The bare SLNPs only have PEG on the surface, with the IgG SLNPs have PEG 

* 
‡ 
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‡ ‡ ‡ 

* * * 

* 
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and IgG, and the Ab-specific SLNPs had PEG and anti-EpCAM on the surface.  Fig 2.6(B) 

depicts the FI of bound IgG SLNPs at various PEG surface area occupation percentages.  

Fig 2.6(C) shows the FI of bound anti-EpCAM SLNPS at various PEG surface area 

occupation percentages.  The binding indicated in Figs 2.6(A-C) are separated into SLNPs 

bound to cells and those bound non-specifically elsewhere within the channel.  Fig 2.6(D) 

depcits the cell bound FI of each SLNP type as a percentage of the total FI measured within 

the devices.  Viewing the data in this manner helps to clearly identify which SLNP type 

and PEG% produced the greatest ratio of SLNPs bound to cells within the devices.  Lastly, 

Fig 2.6(E) shows the relative difference between the average cell bound percentage of the 

bare and IgG SLNP tests at each PEG% and the average cell bound percentage for the anti-

EpCAM tests at each PEG%.  Viewing the data in this manner allows for the visualization 

of how the antibody specific mediated SLNP binding outperfomred the non-specific 

binding tests (bare and IgG) over the range of PEG%s tested.  Overall, the data below 

indicate that the SLNPs coated with anti-EpCAM and which had 37% of their total surface 

area covered by PEG produced the greatest amount of targeted delivery specifically to the 

HCT116 cancer cells.  Refer to Figs 2.7 - 2.9 to see representative images of the various 

SLNP types bound to HCT116 cells at various PEG surface area coverage percentages.  In 

Figs 2.7-2.9, particle aggregation is observed during the binding process which is likely 

due in part to the carnauba wax which makes up the majority of the SLNPs.  Exposure of 

the wax to an aqueous environment in turn causes the SLNPs to aggregate toegther within 

the microfluidic channels when the hydrohpobic particles encounter each other during the 

process of bidning to the cell monolayers.  The aggregation during the binding process is 

most prevelant for the SLNPs with the least amount of PEG surface coatings, because ore 
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of the carnauba wax core of the particles is exposed.  The presence of PEG on the surface 

of the SLNPs finctions to shiled the hydrophobic core of the particles and results in less 

aggreation during the binding process within the channels.  Aggrigation of the SLNPs is 

prevented prior to the binding event within the channel through the use of detergents.  

When intorduced into the microfluidic channels, the detergent is rapidly diluted icnreasing 

the likelihood of SLNP self-association during the flow based binding.  The use of 

additional detergent when introducing the SLNPs into the devices could be used to prevent 

this issue, however, it would need to be ensured that the presence of added detergent would 

not negatively influence the cellular monolayer in the devices. 

 

Figure 2.7 Representative fluorescence image taken from confocal scan of HCT116 

(green) and bare SLNPs (red).  (A) 100%‡ PEG coverage.  (B) 74% PEG coverage.  (C) 

37% PEG coverage.  (D) 12% PEG coverage.  (E) 6% PEG coverage.  (F) 0% PEG 

coverage.  HCT116 stained with Cell Tracker GreenTM.  SLNPs produce red fluorescence 

signal.  When SLNPs bind to cell surface, green and red signal mix to produce yellow 

signal. 
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Figure 2.8 Representative fluorescence image taken from confocal scan of HCT116 

(green) and IgG SLNPs (red).  (A) 100%‡ PEG coverage.  (B) 74% PEG coverage.  (C) 

37% PEG coverage.  (D) 12% PEG coverage.  (E) 6% PEG coverage.  (F) 0% PEG 

coverage.  HCT116 stained with Cell Tracker GreenTM.  SLNPs produce red fluorescence 

signal.  When SLNPs bind to cell surface, green and red signal mix to produce yellow 

signal. 

 

Figure 2.9 Representative fluorescence image taken from confocal scan of HCT116 

(green) and anti-EpCAM SLNPs (red).  (A) 100%‡ PEG coverage.  (B) 74% PEG coverage.  

(C) 37% PEG coverage.  (D) 12% PEG coverage.  (E) 6% PEG coverage.  (F) 0% PEG 

coverage.  HCT116 stained with Cell Tracker GreenTM.  SLNPs produce red fluorescence 

signal.  When SLNPs bind to cell surface, green and red signal mix to produce yellow 

signal. 

2.4 Conclusions 

The goal of this study was to provide insight into improving therapeutic delivery via SLNPs 

through the application of antibody specific disease targeting combined with PEG mediated 

reductions in non-specific delivery. 
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Single layer microfluidic systems were produced which were capable of sustaining 

HCT116 cancer cell growth to fully confluent conditions under a range of shear rates.  

Initial binding tests were performed in devices with and without HCT116 cells verified that 

the presence or absence of cells within the channels did not significantly impact the degree 

of SLNP binding observed.  This observation agrees with literature findings which indicate 

that the major factor influencing non-specific nanoparticle binding is the absorption of 

proteins on the surface of the nanoparticles[119]–[123].  The initial shear rates tested were 

200, 800, and 1600sec-1, with the goal of identifying the influence of shear on the binding 

of SLNPs within the system.  It was determined that higher shear rates led to lower amounts 

of SLNP binding as has been demonstrated in previous work[57], [124].  In addition to 

testing different shear rates, a range of PEG coating percentages were tested for SLNPs 

which also contained anti-EpCAM on their surfaces.  The initial range of PEG coating 

percentages was: 0, 1, 6, 12, and 100%‡ which were decided upon as a result of preliminary 

studies conducted under static conditions at Particle Sciences®.  From the initial range of 

PEG coating percentages, the largest amount of targeted delivery occurred for the 12% test 

case.  Overall, a general trend was observed where targeted delivery was very low for the 

0% tests with an observed increase as the coating percentage increased to 12%, followed 

by a drop as the percentage was increased to 100%‡.  From the initial data, a more refined 

range of PEG surface coating percentages was chosen in order to identify improved SLNP 

compositions which would perform even better. 

The refined range for the second half of the study included two additional PEG coating 

percentages between 12% and 100%‡.  Specifically, the new range which was tested 

included: 0, 6, 12, 37, 74, and 100%‡.  In addition to testing over an adjusted coating 
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percentage range, three different SLNP protein coatings were tested.  Namely, bare, IgG 

coated, and anti-EpCAM coated SLNPs were tested at all six of the PEG coating 

percentages listed above.  The bare SLNPs tested only contained PEG on their surfaces at 

the specific percentages listed above and were used as control cases in order to identify if 

the addition of antibodies onto the surface of the SLNPs had any influence on binding.  The 

IgG SLNPs tested contained the PEG percentages listed above in addition to IgG which 

were used as secondary control cases to identify if the addition of non-specific antibodies 

onto the SLNPs had any influence on binding.  Lastly, the anti-EpCAM SLNPs were tested 

to identify the influence of a target antibody on SLNP binding to the HCT116 cells.  

Overall, similar levels of SLNP binding were observed between the two control cases (bare 

and IgG) and an increased level of total binding was observed for the anti-EpCAM cases.  

Across all three protein types and all PEG coating percentages tested, the amount of SLNP 

binding to cells was lower than the amount of binding to the exposed PDMS channel walls.  

However, this was expected because only one surface within the channels was coated with 

a monolayer of cells while the other three surfaces were bare PDMS.  When comparing the 

targeted performance of each protein coating type, the anti-EpCAM SLNPs produced the 

greatest cell bound ratios as expected across all PEG coating percentages tested. 

When considering the updated range of PEG coating percentages tested, the SLNPs coated 

with 37% PEG on their surfaces showed the greatest amount of targeted delivery across all 

three protein coating types tested.  It should also be noted that while displaying a slightly 

lower degree of targeted delivery, the 74% PEG coated SLNPs also performed well.  Given 

the trend observed in Fig 2.6(D), a local theoretical maximum may possibly exist between 

the 37% and 74% test cases, however the improvement to targeted delivery is expected to 
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be minimal.  Additionally, the drop in the percentage of SLNP binding to cells within the 

devices as the PEG surface coating percentage increases, leads to the assumption that 

addition of too much PEG onto the surface of the SLNPs can lead to over-crowding and 

hindrance of the anti-EpCAM present.  As such, a careful balance exists between the 

antibody and PEG present on the surface of the SLNPs where enough PEG must be added 

to reduce non-specific binding as much as possible without interfering with the function of 

the targeted antibody. 

Overall, the developed microfluidic system and SLNP therapeutic carriers have shown that 

improved targeted delivery of nanoparticles to diseased cancerous cells can be facilitated 

through the application of a target specific antibody and PEG surface coating.  From this 

work an understanding between the balance of antibody specific targeted binding and 

inhibition of non-specific binding via PEG has been developed.  In addition, a range of 

antibody and PEG ratios have been tested to identify a local condition which facilitates 

improved targeted delivery.  Using such an approach may serve to better reduce the non-

specific adhesion of such SLNPs while still providing a means of targeted delivery to sites 

of cancerous tissues.  In order to further improve the physiological relevance of the 

microfluidic system, the inclusion of vascular endothelium is desired.  Inclusion of an 

endothelial barrier provides a means of studying therapeutic delivery from mimicked 

vasculature to regions of cancerous tissue.  As such, the following chapter demonstrates 

the use of a bi-layer microfluidic system capable of facilitating a monolayer of endothelial 

cells and cancer cell growth simultaneously. 
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Chapter 3:   Biomimetic microfluidic 

platform for the quantification of 

transient endothelial monolayer 

permeability and therapeutic 

transport under mimicked cancerous 

conditions 

3.1 Introduction 

As mentioned in Chapter 2, the incorporation of a mimicked blood vessel is required to 

improve the physiological relevance of the microfluidic systems when studying therapeutic 

delivery to cancer.  The presence of diseased regions near vasculature can lead to states of 

increased endothelial monolayer permeability [78], [125]–[128].  These increases in 

vasculature permeability are often the result of vascular permeabilizing agent production 

and excretion from diseased regions, such as cancerous regions [78], [125], [127], [128].  

In the case of cancerous regions, tumor benefits from increased vascular permeability 

include improved supply of nutrients and removal of cellular waste products as well as 

access to the vascular system allowing for easy metastasis [129]–[131]. 

In order to combat such diseased conditions, therapeutic delivery via the vascular system 

is often utilized [130]–[134].  However, this approach for delivering drugs can be difficult 

due to varying degrees of endothelial permeability and differences in pressure between the 

vasculature and the diseased site [129], [132], [133], [135]–[138].  For the case of cancer, 

fluctuations in capillary level endothelial permeability occur as cancerous cells are killed 
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off by anti-cancer drugs, resulting in an overall decrease in the production of vascular 

permeabilizing agents [139], [140].  In turn this allows for the vasculature to begin to repair 

and reduce permeability [139], [140].  As further cancerous cells are targeted and killed, 

the degree of vascular permeability further reduces, in turn reducing the overall free 

transport of anti-cancer therapeutics [139], [140].   

In addition to fluctuations in endothelial permeability, the occurrence of pressure 

differentials between blood vessels and diseased sites can also greatly influence therapeutic 

delivery [136]–[138].  Situations when vascular pressure is lower than that of the diseased 

region causes added difficulty when attempting to deliver therapeutics [133], [136]–[138].  

Examples from literature where interstitial fluid pressure is greater than vascular pressure 

leads to difficulties in delivering therapeutics to solid tumor sites and inflamed pulpal cells 

[141], [142].  As such understanding how differences in pressures and flow rates can 

influence the transport and delivery of therapeutics is beneficial for disease treatment.   

In order to better understand the role of the endothelial barrier and the effect of cancerous 

cells on the transport of therapeutics to diseased regions, a bi-layer microfluidic device has 

been fabricated which allows for the co-culture of healthy endothelial cells with a 

secondary cell type [56], [58].  This is achieved while also providing a means of control 

over the pressures generated in both layers of the device.  Throughout the following work, 

physiologically relevant flow conditions are established in the mimicked vasculature while 

cancerous cells are used to create a tumor microenvironment.  Presence of the cancerous 

cells provides the system with permeabilizing agents which act to modulate endothelial 

confluency.  The application of flow induced pressures and the application of therapeutics 

provides insight into optimal treatment options for patient specific disease conditions. 
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As in any model, the physiological relevance of specific parameters varies. For example, a 

rather unconventional approach has been utilized to manipulate pressures within the system 

in a controlled manner. The pros and contras of this and other features of the model are 

carefully evaluated in the Discussion with consideration given to the data provided by the 

model. 

Overall, this work has been geared around better understanding how the transient nature of 

the endothelial barrier, presence of flow derived pressures, and variations in system 

conditions influence the transport and delivery of therapeutics.  Through this work we aim 

to quantify tumor cell induced permeability of microvessels within a mimetic microfluidic 

system.  In addition, we aim to quantify the temporal effect of therapeutics on the measured 

microvessel permeability throughout time-course treatments. 

3.2 Experimental 

3.2.1 Materials 

The media used for HCT116 cells was Dulbecco’s Modified Eagle’s Medium (DMEM, 

Life Technology), with 10% fetal bovine serum (FBS, Invitrogen) and 1% Antibiotic & 

Antimycotic (ThermoFisher). The media used for BAOEC cells was Dulbecco’s Modified 

Eagle’s Medium (DMEM, Life Technology), with 10% heat inactivated fetal bovine serum 

(FBS, Invitrogen) and 1% Antibiotic & Antimycotic (ThermoFisher). Procine gelatin 

(0.5%, Sigma-Aldrich) was used to facilitate adhesion of BAOEC within devices.  

CellTracker Green was used to fluorescently label cells (ThermoFisher). Microfluidic 

molds were digitally cut from printable gold foil sheet (Silhouette) with Silhouette SD 

digital cutter (Silhouette). Microfluidic devices were produced from Sylgard 184 
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polydimethylsiloxane (PDMS) (Dow Corning), Nuclepore polycarbonate semi-permeable 

membranes with 800nm pore diameter (Whatman), and microscope cover glass slides 

(FisherBrand). Syringe pumps were used for nanoparticle flow tests (Harvard Apparatus). 

Paclitaxel (LC Laboratories, Prod. No: P-9600 Lot: ASM-118) and doxorubicin (LC 

Laboratories, Prod. No: D-4000 Lot: DXR-110) were used as anti-cancer therapeutics. 

FITC, FITC-Dextran 4kDa, and FITC-Dextran 70kDa (Sigma-Aldrich) were used to 

visualize transport from vessel to cancer.  All other reagents not mentioned were used 

directly without purifying. 

3.2.2 Microfluidic device design, fabrication and assembly 

Microfluidic devices were fabricated using polydimethylsiloxane (PDMS) (SYLGARD 

184, Dow Corning) and assembled into a bi-layer device as depicted in Fig 3.1.  The 

devices were fabricated using two separate pieces of PDMS with channels molded into 

them and a polycarbonate semi-permeable membrane (Whatman Cyclopore, Sigma-

Aldrich).  The semi-permeable membrane is adhered to both pieces of PDMS and 

sandwiched between the overlapping regions of the channels.  The regions where the 

channels in both pieces of PDMS overlap facilitates transport from one channel into the 

other through the pores in the semi-permeable membrane.  As a result, the pores of the 

membrane act to dictate the maximum size of materials which can be transferred.  In order 

to only allow for culturing media and small chemical components to pass from one channel 

to the other while restricting the transport of cells, a membrane with an average pore size 

of one micrometer was chosen.  Because cells are not capable of passing through the 

membrane, a co-culture setup is achievable by growing bovine aortic endothelial cells 

(BAOECs) on the top surface of the membrane within the apical channel, while human 
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colorectal cancer cells (HCT116s) are grown on the bottom surface of the lower channel 

termed the basal channel as depicted in Fig 3.2. 

 

Figure 3.1 Device schema depicting culturing setup and experimental conditions for dye 

and therapeutic transport to cancer region in basal channel. (A) Bi-layer microfluidic 

device setup with apical and basal channel separated by semi-permeable membrane.  A 

BAOEC endothelial monolayer is grown on the surface of the semi-permeable membrane 

and a HCT116 cancer monolayer is grown in the basal channel.  Cytokines and growth 

factors released by the HCT116s influence the permeability of the BAOEC monolayer.  (B) 

Device setup depicting therapeutic and dye transport across the permeabilized BAOEC 

monolayer and semi-permeable membrane in order to function on the HCT116s present in 

the basal channel.  (C) Image of bi-layer device showing apical and basal channel along 

with respective inlets and outlets 
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Figure 3.2 Device schema depicting culturing setup and testing conditions. (A) Basic 

setup.  (B) BAOEC monolayer grown in apical channel.  (C) BAOEC monolayer grown to 

confluency under shear flow.  (D) HCT116s introduced into basal channel.  (E) HCT116s 

grown under shear flow.  (F) HCT116s growing in basal channel release cytokines and 

permeabilizing agents making BAOEC monolayer highly permeable.  (G) Dye and 

therapeutics flown in apical channel transport across BAOEC layer and semi-permeable 

membrane.  (H) Transported therapeutic functions on HCT116s.  (I) HCT116s are killed 

off and washed away down-stream in channel.  (J) Media shear flow is continued in apical 

and basal channel as BAOEC monolayer regains confluency. 

3.2.3 Cell growth on device 

After fabrication of the microfluidic devices, both the apical and basal channels were filled 

with a 0.5% porcine gelatin (PG) (0.5%, Sigma-Aldrich) solution and incubated for 30 

minutes at 37⁰C and 5% CO2.  After incubation, the PG is removed and replaced with 

BAOEC (Cell Applications, San Diego, CA) suspension in the apical channel and 

incubated for 12 hours to allow for cell adhesion to the top side of the semi-permeable 

membrane.  After 12 hours, all remaining cell suspension is washed away by establishing 

media (DMEM(1x) + GlutaMAX – I (gibco, life technologies), 10% HI-FBS (Sigma-

Aldrich), 1% Penn/Strep Antibiotic(1X) (Gibco, life Technologies)) flow within the 

channel using sterile tubing, syringe and syringe pump (PHD 2000, Harvard Apparatus).  

The flow rate established within the channel is kept low for purposes of media exchange 

and aligning the BAOECs to flow.  These flow based incubation conditions are held 

constant typically for 3 to 4 days until the endothelial monolayer on the semi-permeable 

membrane reaches confluency.  Upon achieving a confluent BAOEC monolayer in the 

apical channel, HCT116s (ATCC, Manassas, VA) are introduced into the basal channel 

and allowed to settle and adhere to the bottom of the basal channel for 24 to 48 hours.  

HCT116 cells are introduced into the devices in order to permeabilize BAOEC monolayers 

similar to conditions found in various cancerous disease states.  Once the HCT116 cells 
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have properly adhered, a flow rate equivalent to that established in the apical channel is 

setup in the basal channel using a secondary syringe pump.  Both the BAOEC and HCT116 

cells are grown within the bi-layer device under these flow conditions within an incubator 

until experimental proceedings begin. 

3.2.4 Establishing shear rate 

The effect of fluid shear on the growth of cells and transport of compounds from channel 

to channel is established using syringe pumps (PHD 2000, Harvard Apparatus).  The 

syringe pumps allow for control over the flow rates established in both channels of the 

device.  By altering the flow rate within the channels, we are able to specifically set and 

control the shear rate imparted on the cells growing within each channel and any other 

materials introduced into the channel along with the flowing media.  The equation 

governing [112] the shear rate established in each of the channels is as follows:  

𝑆ℎ𝑒𝑎𝑟 𝑅𝑎𝑡𝑒 = (
6𝑄

𝑊∗𝐻2)(1 +
𝐻

𝑊
)(𝑓∗)(

𝐻

𝑊
) , where Q is the established flow rate within the 

given channel, W is the channel width,  H is the channel height, and f* is a geometrical 

factor based on channel dimensions which for the microfluidic devices used is 0.7946.  The 

width and height dimensions for the channels utilized in this study were 500 micrometers 

and 100 micrometers, respectively.  In order to stay within a physiologically relevant range 

[113]–[115], the shear rate in the apical channel containing the BAOECs was held at 200 

sec-1 which is at the lower end of range typically experienced within the arterioles of the 

body.  The shear rate established within the basal channel containing HCT116s was held 

constant with the shear in the apical channel to prevent any convective flux between 

channels when not desired.  While initially culturing cells within both channels, the shear 



46 
 

rate was typically set around 50 sec-1 as a means of simply refreshing media exposed to the 

cells for continued growth while not imparting drastically high shear.  It should be noted 

that both equal and differing shear rates were established in the channels depending on if a 

pressure difference across the semi-permeable membrane was desired.  

3.2.5 Establishing pressures within the channels 

In order to simulate the effect of pressures within the system, the relative shear rates 

established in the channels were varied to achieve desired average channel pressures.  In 

order to prevent the establishment of a pressure differential across the semi-permeable 

membrane, the shear rates established in both the apical and basal channel were maintained 

at equal values.  The governing equation [143] used to relate the established shear rates in 

each channel with the average pressure difference across the membrane is as follows: 

𝑃∆ =

12𝜇1𝐿1𝑄1

𝑊1𝐻1
3

1 − (
192𝐻1

𝜋5𝑊1
) (tanh (

𝜋𝑊1

2𝐻1
))

2
−

12𝜇2𝐿2𝑄2

𝑊2𝐻2
3

1 − (
192𝐻2

𝜋5𝑊2
) (tanh (

𝜋𝑊2

2𝐻2
))

2
 

where μ1 and μ2 are the viscosity of the fluid in the apical and basal channels respectively, 

L1 and L2 are the overall length of the apical and basal channel respectively, Q1 and Q2 are 

the flow rates established in the apical and basal channels respectively, W1 and W2 are the 

widths of the apical and basal channels and H1 and H2 are the heights of the apical and 

basal channels, respectively.  The above equation calculates the average pressure generated 

in the apical channel and subtracts from it, the average pressure generated in the basal 

channel.  In this case, when 𝑃∆ is equal to zero, it indicates that the average pressures in 
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both the apical and basal channels are the same, allowing for the determination of the flow 

rates required to achieve the balance of apical and basal channel pressures. 

3.2.6 Cell imaging and confluency measurements 

Cells grown on devices were imaged utilizing standard fluorescence imaging microscopy 

(Olympus IX70, Hamamatsu C9300, Plan Fluor 10x & 20x, NA: 0.3, RI: 1). For 

fluorescence imaging, the plasma membranes of the cultured cells were stained with Cell 

Tracker Green TM (10μM, Thermo Fisher Scientific) plasma membrane stain to identify the 

outer most boundaries of the cells occupying the culturing area.  This method of cell plasma 

membrane (PM) staining allows for the quantification of the area specifically covered by 

cells within the viewing area of the various fluorescence microscopes.  Images taken via 

conventional fluorescence microscopy were utilized to determine the overall cellular 

monolayer confluency.  These measurements were carried out using the FIGI (ImageJ) 

software suite [118][144] and the collected image.  The imaging technique was used to 

obtain the average degree of monolayer confluency as well as to quantify the area occupied 

by gaps between cells.  The analysis for the cell coverage measurements were taken once 

the cells had reached confluency within the apical channel of the device just before 

HCT116s were introduced into the basal channel.  A second measurement of all devices 

was taken at 24 to 48 hours after introduction of HCT116s into the basal channel.  Lastly, 

final measurements for each device were taken 12, 24, 48, 72, 96, and 120 hours after 

introduction of anti-cancer therapeutics into the device.  Image acquisition software 

utilized includes HCImage Live (Hamamatsu Photonics) for standard fluorescence 

imaging and NIS-Elements (Nikon) for acquisition of confocal images. 
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3.2.7 Anti-cancer therapeutics 

In order to study how particle transport is influenced by variations in endothelial monolayer 

permeability, BAOECs were exposed to HCT116s.  Treatment of the microfluidic system 

with the anti-cancer therapeutics, Paclitaxel and Doxorubicin, allowed for varying degrees 

of BAOEC permeability within the diseased state setup.  The working concentrations for 

both Paclitaxel and Doxorubicin were 5ng/mL for all experimental testing.  Paclitaxel and 

Doxorubicin functioned to eliminate cancer cells and were chosen due to their wide use, 

high degree of documentation for in vitro and in vivo data, and relatively inexpensive cost.  

The anti-cancer therapeutics were introduced into the apical channel of the devices in order 

to mimic an intravenous administration.  For time-course studies, the anti-cancer 

therapeutics were continuously introduced into the system via the apical channel over the 

entire course of 120 hours.  Any therapeutic introduced into the microfluidic system was 

subjected to the shear established within the device in order to mimic the situation or blood 

flow within the body.  Therapeutics which successfully transitioned from the apical channel 

through the semi-permeable membrane into the basal channel were able to act on the 

HCT116s present.  Interaction of the anti-cancer drugs with the HCT116s resulted in the 

death of affected cells, which in turn were washed away downstream and eventually out of 

the device into the waste media collection containers.  As such, the HCT116 cells which 

were killed off and washed away could no longer contribute to the secretion of 

permeabilizing agents.  Lastly, in order to ensure that the presence of the anti-cancer 

therapeutics caused HCT116 cell death, microfluidic devices containing only HCT116s 

were subjected to either of the two therapeutics, with cell death verified via cell staining 

and fluorescence microscopy before and after treatment, as seen in Fig 3.3.  Chemical 
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authentication and validation data for the Paclitaxel and Doxorubicin utilized in this work 

were provided by LC Laboratories (Paclitaxel - Prod. No: P-9600 Lot: ASM-118) 

(Doxorubicin – Prod. No: D-4000 Lot: DXR-110). 
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Figure 3.3 Representative fluorescence images of HCT116 monolayers grown under flow 

in the basal channel of the microfluidic devices with BAOEC in the apical channel before 

and after 72 hours of treatment with Paclitaxel or Doxorubicin.  Cells in all images were 

stained with Cell Tracker GreenTM. (A)  Confluent HCT116 monolayer prior to 

introduction of Paclitaxel in the apical channel.  (B)  HCT116 cells after treatment with 

Paclitaxel for 72 hours from the apical channel.  (C)  Confluent HCT116 monolayer prior 

to introduction of Doxorubicin in the apical channel.  (D)  HCT116 cells after treatment 

with Doxorubicin for 72 hours from the apical channel.  Red arrows in the fluorescent 

images indicate the direction of flow within the channels.  All scale bars are 100 μm in 

length. 

Interaction of the anti-cancer therapeutics with BAOECs and subsequent EC cellular 

responses were investigated by establishing endothelial monolayers within the microfluidic 

devices without the presence of any cancer cells.  Therapeutic solutions were prepared at 

the same concentrations as described previously.  Therapeutic conditioned media was 

(A) 

(B) 

(C) 

(D) 
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flown through the devices and the BAOECs were stained with Cell Tracker Green in order 

to facilitate fluorescent imaging.  Therapeutic solution flows were established for 120 hours 

with cell images collected every 24 hours.  The resulting images were collected for cell 

count and EC monolayer permeability measurements.  Relative comparisons were made 

between values measured prior to therapeutic flows (0 hours) and all other measured time 

points. 

3.2.8 Dye cross-vasculature equal pressure transport studies 

Dye transport was achieved by flowing dye into the bi-layer channel via syringe pump.  In 

order to quantify the degree of transport for each test case, the outlet flow of both the apical 

and basal channels was collected separately and distributed into well plates.  The 

fluorescence intensities of the flow-through were measured via plate reader with excitation 

at 490nm and emission read at 525nm.  The dyes utilized in the study include FITC at a 

working concentration of 0.625mg/mL, FITC-Dextran 4kDa at a working concentration of 

5mg/mL, and FITC-Dextran 70kDa at a working concentration of 5mg/mL.  The working 

concentrations for each dye were chosen so that a sufficient fluorescence intensity signal 

was obtained from the experimental testing for measurement purposes.  The basal outlet 

contained dye which successfully transported across the semi-permeable membrane, and 

dye exiting out of the apical outlet were collected and measured to ensure that the total dye 

concentration introduced into the devices was accounted for at both of the outlets. 

The transport studies were carried out under three device conditions as follows, cell-free 

devices, devices with only a BAOEC confluent monolayer, and diseased devices 

containing a monolayer of BAOECs in the apical channel and a monolayer of HCT116s in 
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the basal channel which were then subjected to a time-course therapeutic treatment.  The 

second and third device conditions established allowed for studies on the ability of dyes to 

transport under varying degrees of BAOEC permeability.  All rounds of transport studies 

were carried out with flow established in the apical and basal channels.  In order to mimic 

the various pressure conditions experienced within the vasculature, the first rounds of 

testing were carried out so that no pressure difference was established across the semi-

permeable membrane.  The pressures established in both the apical and basal channels for 

these studies were 632.8, 4832.4, and 17431.2 Pa, which were established in addition to 

the physiologically normal pressure of 10666 Pa (80mmHg).  Cell-free device studies did 

not utilize any cell culturing within the channels prior to introduction of particle 

suspensions.  Devices run with BAOEC confluent monolayers were established 3 to 4 days 

prior to dye flows to ensure that a highly confluent monolayer was present in the apical 

channel over the semi-permeable membrane.  Lastly, the diseased state devices, were 

prepared 6 to 8 days in advance of dye flows.  3 to 4 days were spent growing a confluent 

apical BAOEC monolayer and the remaining days were spent producing a cancer cell 

monolayer in the basal channel.  The transport studies were carried out under adjusted 

timeframes to ensure that the same amount of dye introduced into each device was the same 

regardless of the pressure being used.  One final note for the diseased state devices, was 

the later introduction of an anti-cancer therapeutic to influence the cancer cells in the basal 

channel and the confluency of the BAOEC monolayer in the apical channel.  The degree 

of dye transport was documented throughout a time-course treatment with Paclitaxel and 

Doxorubicin to understand how the BAOEC monolayer integrity influenced the dye 
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transport capabilities.  Experimental schema for this testing can be observed in Fig 3.2 and 

Fig 3.4. 

 

Figure 3.4 Device schema depicting flow conditions for permeability testing.  (A) Basic 

setup.  (B) No net pressure across membrane. 

3.2.9 Statistical analysis 

Statistical analysis of all obtained results was run utilizing IBM’s SPSS statistical software 

package (IBM Corp.).  All of the figures have significant differences indicated above 

elements within the plots.  One way ANOVA tests were run for each data set with 

confidence levels of 95% held throughout all plots.  All analyses were carried out under 

conditions of Tukey equal variances assumed, along with tests of homogeneity of variance 

further verified by both Brown-Forsythe and Welch analyses.  Based on the obtained 

statistical results, all bar graphs contain grouped pairs between groups and within groups 

indicating statistically significant differences between means indicated by “ * ”.  For all 
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line plots, statistically significant differences in means are compared against the baseline 

tests for the spherically shaped particles.  Significance between both the short rod particle 

and long rod particle values are indicated by “ * “.  Significant differences between means 

for short rod and long rod particles are indicated by “ ** “, noting that all differences are 

given at a confidence level of 95%. Within group F values and degrees of freedom for each 

plot are noted in their respective legends.  Sample sizes for all experimental testing were 

determined by performing estimation for multiple-sample one-way ANOVA pairwise 

comparison based on piolet studies utilizing the standard sample size approximation of: 

𝑛𝑖𝑗 =
2(𝑧

𝑎

2𝜏
+𝑧𝛽)2𝜎2

𝜀𝑖𝑗
2 .  All statistical comparisons are run under assumptions of equal variance 

between groups.  This assumption is verified via the Levene’s Test where all p values must 

be greater than 0.05 in order to verify the equal variance assumption across groups.  All 

data sets presented in this work pass the Levene’s Test with p values greater than 0.05. 

3.3 Results and Discussion 

3.3.1 Microfluidic device production 

Bi-layer microfluidic devices were produced and sterilized using an autoclave in order to 

permit culturing of both bovine aortic endothelial cells (BAOECs) and human colorectal 

cancer cells (HCT116s).  Device integrity was suitable to allow for the flow of media, dyes 

and therapeutics without leakage through the use of syringe pumps.  A device schema can 

be observed in Fig 3.1 that depicts the device layout and locations within the device where 

the BAOEC and HCT116 cells are grown for experimental testing.  Full schemas depicting 

all device setups and testing conditions can be observed in Fig 3.2 and Fig 3.4.  

Physiologically relevant factors such as the presence of HCT116 cancer cells in close 
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proximity to the vasculature and the natural production/excretion of permeabilizing agents 

were possible utilizing the microfluidic setup [128], [145]–[147].  However, it is 

recognized that for some factors, especially the oncotic pressures, the total range and 

method utilized to achieve the desired goals are not physiologically relevant or accurate 

[142], [145], [147].  For this study a wide range of pressures, including extremes, were 

coupled with the use of shear derived pressure on the side of the cancerous region.  Such 

experimental conditions were established in order testing the total capabilities of the system 

while providing the greatest amount of control over the system as a whole.  The use of 

more physiologically relevant pressure ranges and use of protein concentration gradients 

to drive the pressure differences in the system would be more realistic [142], [148], [149].  

3.3.2 Cell confluency measurements 

Cell confluency was measured using a plasma membrane stain, fluorescence imaging and 

confocal microscopy throughout time-course treatments with anti-cancer therapeutics.  

From the scans and images collected, the degree of cell monolayer coverage was measured 

as the area covered by cells expressed as a percentage of the whole viewing area.  When 

only BAOECs were cultured within the devices the cell coverage was determined to be 

97.5%.  However, when HCT116s were introduced and grown in the basal channel, the 

degree of cell monolayer confluency dropped to 67.8%.  Subsequent treatment of the 

diseased condition resulted in a steady increase in cell area coverage over the course of 120 

hours, back to similar conditions prior to introduction of the HCT116s.  These changes in 

cell area coverage throughout Paclitaxel (Fig 3.5(A)) and Doxorubicin (Fig 3.5(B)) 

treatment can be seen in Fig 3.5. 
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Figure 3.5 Normalized percentage of BAOEC monolayer permeability under various 

culturing conditions.  Data shown as sum of means ± S.D. (n=5 independent microfluidic 

devices) for each image collection method.  (A) Percentage of confluent BAOEC 

monolayer intact without HCT116s, with HCT116s, after treatment with Paclitaxel, and 

after treatment with Doxorubicin for 24 hours, measured as a percentage of the entire 

imaging field, collected via standard fluorescent microscopy.  One way ANOVA statistical 

analysis with statistical significance indicated by * brackets in plot at p≤0.05. Sample 

collection was carried out from 5 independent devices (biological replicates). All statistical 

tests have been justified as appropriate.   (B) Percentage of intercellular gap coverage 

without HCT116s, with HCT116s, after treatment with Paclitaxel, and after treatment with 

Doxorubicin, measured as a percentage of the entire imaging field, collected via fluorescent 

confocal microscopy.  One way ANOVA statistical analysis with statistical significance 

indicated by * brackets in plot at p≤0.05. Sample collection was carried out from 5 

independent devices (biological replicates). All statistical tests have been justified as 

appropriate.  (C) Representative fluorescent image of highly confluent BAOEC monolayer 

prior to introduction of HCT116s into the device.  Cells in image were stained with Cell 

Tracker Green and red arrow indicates direction of flow within the channel. (D) 

Representative fluorescent image of permeabilized BAOEC monolayer after introduction 

of HCT116s into the device.  Cells in image were stained with Cell Tracker Green and red 
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arrow indicates direction of flow within the channel.  Both red scale bars are 50μm in 

length. 

Complementary data were collected from confocal scans where conditions without 

HCT116s grown in the devices resulted in a low gap coverage of 2.8%.  However, when 

HCT116s were introduced into the channels, the gap coverage increased to 37.9% as can 

be seen in Fig 3.6.  Both testing conditions and methods of data collection produced similar 

results indicating that the technique for quantifying the degree of BAOEC monolayer 

permeability functions well. 

 

Figure 3.6 BAOEC monolayer permeability under various device conditions and 

therapeutic treatment times. (A) Percentage of intercellular gaps present within the viewing 

field throughout the time-course Paclitaxel treatment.  One way ANOVA statistical 

analysis with statistical significance indicated by * brackets in plot at p≤0.05. Sample 

collection was carried out from 5 independent devices (biological replicates). All statistical 

tests have been justified as appropriate.  (B) Percentage of intercellular gaps present within 

the viewing filed throughout the time-course Doxorubicin treatment.  One way ANOVA 

statistical analysis with statistical significance indicated by * brackets in plot at p≤0.05. 

Sample collection was carried out from 5 independent devices (biological replicates). All 

statistical tests have been justified as appropriate. 
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Figure 3.7 Representative fluorescent images of BAOEC monolayers grown in bi-layer 

microfluidic devices under various culturing conditions stained with Cell Tracker Green 

plasma membrane dye. (A left), BAOEC monolayer before introduction of HCT116s and 

Paclitaxel.  (A right),  BAOEC monolayer before introduction of HCT116s and 

Doxorubicin.  (B left), BAOEC monolayer after introduction of HCT116s for 24 hours and 

before introduction of Paclitaxel.  (B right), BAOEC monolayer after introduction of 

HCT116s for 24 hours and before introduction of Doxorubicin.  (C left), BAOEC 

monolayer after introduction of HCT116s for 24 hours followed by flow of Paclitaxel for 

48 hours.  (C right), BAOEC monolayer after introduction of HCT116s for 24 hours 

Paclitaxel Doxorubicin 

A 

B 
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followed by flow of Doxorubicin for 48 hours.  Red arrows indicate direction of flow 

established within device.  All red scale bars are 50μm in length. 

Representative images of typical results experienced under conditions when only BAOECs 

were grown in the device, as well as typical results experienced under conditions when 

BAOECs and HCT116s were grown in the device can be seen in Fig 3.5(C) and (D), 

respectively, along with Fig 3.7.  Fig 3.5(C) clearly shows a highly confluent monolayer 

of BAOECs aligned with the direction of flow indicated by the red arrow.  Dark spots 

between cells indicate that gaps are present in very low numbers and are small in size.  

Conversely, Fig 3.5(D) shows sparsely spaced BAOECs with large dark gaps present 

between individual cells.  In addition to standard fluorescence microscopy, representative 

confocal scans of highly permeabilized BAOEC monolayers were obtained and can be 

observed in Fig 3.8.  Verification of the effect of paclitaxel and doxorubicin on the HCT116 

cancer cells utilized in the study can be observed in Fig 3.3, where application of either 

anti-cancer drug resulted in HCT116 death over time.  Additionally, the effect of paclitaxel 

and doxorubicin on BAOECs was verified over time.  BAOECs were grown within 

microfluidic channels and subjected to culture media shear flow (200sec-1) containing anti-

cancer therapeutics.  The concentrations of the therapeutics used and the durations of the 

flow tests were held constant with all other testing.  The presence of the anti-cancer 

therapeutics was shown to influence the survival and confluency of BAOECs grown within 

microfluidic devices.  Treatment of the BAOECs occurred over the course of 120 hours 

without the presence of any cancer cells in order to quantify the effect of the therapeutics 

on endothelial cells.  The resulting data indicated a slight increase in cell count over the 

first 24 hours of treatment with the therapeutics.  Further treatment of the ECs with 

therapeutics over the full 120 hours resulted in slight reductions of the cell counts.  ECs 
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treated over the same 120 hour timeframe with standard culture media displayed improved 

growth which slowed over time as the ECs become more and more confluent within the 

devices.  Likewise, when analyzing the coverage area of the EC monolayers as percentages 

over the time-course treatments, an initial increase was observed over the first 24 hours 

followed by a reduction in the percentage of the area covered.  The data and representative 

images relating to the BAOECs response to anti-cancer therapeutics can be observed in Fig 

3.9. 

 

Figure 3.8 Representative fluorescent confocal images of BAOEC monolayers grown in 

bi-layer microfluidic devices under various culturing conditions.  (A)  BAOEC monolayer 

after introduction of HCT116s for 24 hours and before introduction of Paclitaxel.  (B)  

BAOEC monolayer after introduction of HCT116s for 24 hours and before introduction of 

Doxorubicin.  Red arrows indicate direction of flow established within device.  Scale bars: 

200 micrometers. 

 

(A) 

(B) 
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Figure 3.9 BAOEC monolayers subjected to anti-cancer therapeutic flows. (A-F)  

Representative images of BAOEC monolayers after being subjected to Doxorubicin for 0 
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(A) 24 (B) 48 (C) 72 (D) 96 (E) and 120 hours (F).  Red arrows indicate direction of flow.  

Scale bars: 100 micrometers. (G)  BAOEC cell counts after exposure to anti-cancer 

therapeutics for various durations. One way ANOVA statistical analysis with statistical 

significance indicated by * in plot at p≤0.05. Sample collection was carried out from 5 

independent devices (biological replicates). All statistical tests have been justified as 

appropriate. (H) Percentage of BAOEC monolayer intact throughout Doxorubicin 

treatment time-course. (I) Percentage of BAOEC monolayer intact throughout Paclitaxel 

treatment time-course. One way ANOVA statistical analysis with statistical significance 

indicated by * brackets in plot at p≤0.05. Sample collection was carried out from 5 

independent devices (biological replicates). All statistical tests have been justified as 

appropriate. 

3.3.3 Dye transport under equal flow rates and pressures 

Bi-layer microfluidic devices were utilized to track dye transport from the apical channel 

into the basal channel under various experimental conditions.  The specific dyes used in 

these studies were FITC, FITC-Dextran 4kDa, and FITC-Dextran 70kDa, chosen for their 

increasing size and molecular weight in order to mimic various small and large molecule 

therapeutic candidates.  Additionally channel flow rates of 9190, 70150, and 253050 μL/hr 

which correspond to average channel pressures of 632.8, 4832.4, and 17431.2 Pascals (Pa), 

respectively, were chosen to investigate the influence of a wide range of flow/pressure on 

therapeutic transport.  The following figures contained in Fig 3.10 plot out the normalized 

dye transport averaged across all testing conditions, using the confluent BAOEC 

monolayer testing conditions as a baseline (set equal to 1).  All of the dye transport data 

collected has additionally been normalized to account for any loss of dye due to binding 

with channel walls or cells.   
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Figure 3.10 Averaged and normalized dye transport based on solute size, established 

pressure, and device condition for equal pressure tests. Data shown as sum of means ± S.D. 

(n=15 independent microfluidic devices) for each image collection method.  (A) Overall 

degree of dye transport based on dye size, averaged over all established channel pressures 

and device conditions tested.  Statistical significance of p<0.05 indicated by *.  (B) Overall 

degree of dye transport based on established channel flow rates, averaged over all dye sizes 

and device conditions tested.  Statistical significance of p<0.05 indicated by *.  (C) Overall 

degree of dye transport based on device condition, averaged over all dye sizes and 

established channel pressures tested. Statistical significance of p<0.05 indicated by *.  

Schema of typical device conditions depicted for each step of the time-course treatment 

data. 

Fig 3.10(A) depicts the averaged dye transport achieved based on varying dye sizes.  The 

data points represented in the figure are the average values from all tests run at various 

Across 
Across 

Across 
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pressures and under various device conditions.  The figure shows that on average, across 

all other testing conditions, the smallest FITC dye underwent the greatest degree of 

transport across the EC monolayer.  Subsequently, the FITC-Dextran 4kDa and FITC-

Dextran 70kDa dyes underwent less transport respectively.  This trend based on dye size 

was observed for equal pressure testing due to diffusion which acts as the main driving 

factor for transport when no pressure gradient exists across the membrane.  The amount of 

dye in each flow test was held constant and due to its small size, the FITC dye was able to 

undergo the greatest diffusion and subsequent transport when compared to the two larger 

dyes.  Next, we turn our focus onto the influence of established pressures on the overall 

transport observed. 

Fig 3.10(B) depicts the averaged and normalized dye transport achieved under various 

pressures established within the channels.  It should be noted that no pressure gradient 

exists across the semi-permeable membranes in this work.  As such, the pressures within 

both the apical and basal channels are changed equally to ensure no flow driven transport 

of dye occurs.  When comparing the degree of dye transport it is shown that the lowest 

pressure established resulted in the greatest amount of dye transport across all dye sizes 

and device conditions.  Generally, the trend shows that increasing pressures within the 

channels results in lower transport regardless of dye size.  The reason why this trend is 

observed is again due to the fact that the total amount of dye introduced during each test 

was held constant.  As such, the total duration of the higher pressure flows was shorter 

when compared to the lower pressure tests due to the manner in which pressure is 

established in each channel.  The shorter period of flow for the higher pressure cases results 

in less time for the dyes to undergo diffusion which ultimately results in less overall 
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transport.  If all established pressures for each dye test were given equal flow durations 

through the channels, the observed difference in transport would not be present, as 

demonstrated in Fig 3.11.  Lastly for the equal pressure tests, the degree of dye transport 

achieved under various device conditions was examined. 

 

Figure 3.11 Normalized dye transport under various equal pressures for FITC, FITC-

Dextran 4kDa, and FITC-Dextran 70kDa dyes flown through bi-layer microfluidic devices.  

Data shown as sum of means ± S.D. (n=5 independent microfluidic devices).  Dye transport 

over various equal pressure conditions. One way ANOVA statistical analysis with 

statistical significance indicated by * in plot at p≤0.05 between baseline FITC dye tests and 

other dye sizes. Sample collection was carried out from 5 independent devices (biological 

replicates). All statistical tests have been justified as appropriate. 

Fig 3.10(C) depicts the normalized transport achieved under various device conditions 

which has been averaged for all dye sizes run and all pressures tested within the devices 

under equal pressure conditions.  From the figure it is observed that a large degree of 

transport occurs when no cells are present within the devices, as expected.  Subsequent 

addition of an EC monolayer resulted in a drastic reduction of overall transport regardless 
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of dye size.  Later addition of cancer cells into the basal channel of the devices resulted in 

an increase in overall transport on average by a factor of around 6.  After the addition of 

cancer cells, treatment with either paclitaxel or doxorubicin over the course of 120 hours 

showed a slow drop in the amount of total transport.  After a full 120 hours of treatment, 

the observed dye transport was reduced to conditions experienced with a confluent 

monolayer of ECs prior to the introduction of cancerous cells.  Fig 3.10(C) contains a 

representative schema for each condition of the devices throughout the establishment of an 

EC monolayer, establishment of a cancerous region, and subsequent time-course treatment 

with therapeutics.  It should be noted for Fig 3.10(C) that no statistically significant 

difference existed between the overall transport observed during the time-course treatments 

with paclitaxel and doxorubicin. 

Lastly, it should be noted that cell-free device conditions without cells were run in order to 

verify that the resistance of the membrane incorperated into the microfluidic system was 

in the same order of magnitude as values reported in literature for in vivo tumors [150]–

[153], and to function as benchmark testing cases.  Additionally, breakdowns of specific 

data for before averages were calculated across features such as dye size, pressure, or 

device condition can be seen in Fig 3.12 through Fig 3.14. 
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Figure 3.12 Normalized ratio of basal solute concentration to stock solute concentration 

under various equal pressures across the membrane for FITC, FITC-Dextran 4kDa, and 

FITC-Dextran 70kDa dyes flown through bi-layer microfluidic devices of different 

conditions.  Pressures shown are in addition to physiologically normal pressure value of 

10666Pa.  Data shown as sum of means ± S.D. (n=5 independent microfluidic devices) 

over duration of measurement collection. (A)  Bare bi-layer microfluidic devices.  One way 

ANOVA statistical analysis with statistical significance indicated by * in plot at p≤0.05 

between baseline FITC dye tests and other dye sizes. Sample collection was carried out 

from 5 independent devices (biological replicates). All statistical tests have been justified 

as appropriate. (B) Bi-layer microfluidic devices containing only an apical BAOEC 

monolayer.  One way ANOVA statistical analysis with statistical significance indicated by 

* in plot at p≤0.05 between baseline FITC dye tests and other dye sizes. Sample collection 

was carried out from 5 independent devices (biological replicates). All statistical tests have 

been justified as appropriate.  (C) Bi-layer microfluidic devices containing an apical 

BAOEC monolayer and basal HCT116 monolayer.  One way ANOVA statistical analysis 
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with statistical significance indicated by * in plot at p≤0.05 between baseline FITC dye 

tests and other dye sizes. Sample collection was carried out from 5 independent devices 

(biological replicates). All statistical tests have been justified as appropriate.  Theoretical 

values for dye transport under conditions of bare microfluidic devices are plotted for (A) 

through (C) as a guide for comparative purposes between plots. (D) Plot comparison for 

effect flow rate established within microfluidic channel on the pressure change established 

along the length of the device.  p<0.05 by one way ANOVA tests for dye concentration 

data compared between dye sizes at various pressure differentials. 
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Figure 3.13  Normalized ratio of basal solute concentration to stock solute concentration 

under various equal pressures across the membrane for FITC, FITC-Dextran 4kDa, and 

FITC-Dextran 70kDa dyes flown through bi-layer microfluidic devices with BAOEC 

monolayer in apical channel and HCT116 monolayer in basal channel at various time 

points post-treatment with anti-cancer therapeutics.  Data shown as sum of means ± S.D. 

(n=5 independent microfluidic devices) over duration of measurement collection.  (A)  Dye 

transport after 12 hours of treatment with Paclitaxel.  (B) Dye transport after 24 hours of 

treatment with Paclitaxel.  (C) Dye transport after 48 hours of treatment with Paclitaxel.  

(D) Dye transport after 72 hours of treatment with Paclitaxel.  (E) Dye transport after 96 

hours of treatment with Paclitaxel.  (F) Dye transport after 120 hours of treatment with 

Paclitaxel.  (G) Dye transport after 12 hours of treatment with Doxorubicin.  (H) Dye 

transport after 24 hours of treatment with Doxorubicin. (I) Dye transport after 48 hours of 

treatment with Doxorubicin.  (J) Dye transport after 72 hours of treatment with 

Doxorubicin.  (K) Dye transport after 96 hours of treatment with Doxorubicin.  (L) Dye 

transport after 120 hours of treatment with Doxorubicin.  For all testing conditions and 

plots above, one way ANOVA statistical analysis with statistical significance indicated by 

*  in plots at p≤0.05 between baseline FITC dye tests and other dye sizes. Sample 

collections were carried out from 5 independent devices (biological replicates) for each 

test. All statistical tests have been justified as appropriate. 
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Figure 3.14 Normalized ratio of basal solute concentration to stock solute concentration 

time-course under various device conditions and equal pressure across (632.8 Pa + 10666 

Pa) the membrane for FITC, FITC-Dextran 4kDa, and FITC-Dextran 70kDa dyes flown 

through bi-layer microfluidic devices.  Data shown as sum of means ± S.D. (n=5 

independent microfluidic devices) over duration of measurement collection. (A)  Dye 

transport with eventual treatment with Paclitaxel. One way ANOVA statistical analysis 

with statistical significance indicated by * in plot at p≤0.05 between baseline FITC dye 

tests and other dye sizes. Sample collection was carried out from 5 independent devices 

(biological replicates). All statistical tests have been justified as appropriate. (B)  Dye 

transport with eventual treatment with Doxorubicin.  One way ANOVA statistical analysis 

with statistical significance indicated by * in plot at p≤0.05 between baseline FITC dye 

tests and other dye sizes. Sample collection was carried out from 5 independent devices 

(biological replicates). All statistical tests have been justified as appropriate. 
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3.4 Conclusions 

From this work, a platform for studying transport phenomenon in a bi-layer microfluidic 

device is offered which allows for co-culturing of a variety of cell types.  The overall goal 

of the study was to demonstrate the influences of factors, such as the presence of cancerous 

cells and established pressures, on the transport of dyes and therapeutic agents in a 

mimicked blood vessel.  The system has also been shown to allow for physiologically 

relevant flow in the apical channel mimicking microvasculature blood flow and shear.  

While some portions of the system are held to physiologically relevant conditions, there 

are several features which are tested over wider ranges for the sake of testing the systems 

capabilities.  The total range, magnitude, and method of generating oncotic pressure in this 

work are examples of conditions not strictly held to physiologically relevant values.  

Studying the responsiveness of the system over a wider range of values provided 

verification that the system is capable of being applied to different disease conditions 

beyond the scope of cancer microenvironments.  Additionally, the unrealistic approach of 

controlling pressure differences between channels via shear flow allows for more precise 

regulation when compared to physiological oncotic pressure controlled mainly by protein 

concentration gradients [142], [145], [147], while also providing a means of maintaining a 

constant therapeutic flux.  The use of bovine endothelial cells as opposed to human derived 

endothelial cells in this work introduces the possibility of variations in observed results 

stemming from interspecies differences in EC responses to human cancer cell cytokines, 

inflammatory agents, antibody interactions and therapeutic agents [154]–[156].  In order 

to facilitate more reliable data collection, future uses of the developed microfluidic system 

will incorporate the use of human derived endothelial cells such as human umbilical vein 
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endothelial cells (HUVECs).  Facilitating the future growth of human derived endothelial 

cells will require improvements to our microfluidic device performance and functionality 

in order to ensure that healthy and confluent cultures of human endothelial cells can be 

grown.  As a final note, the use of a semi-permeable membrane within the bi-layer 

microfluidic model also introduces a physical barrier which is not found in vivo and as such 

introduces an added resistance to the transport of dye and therapeutic molecules.  Ideally, 

such a microfluidic model would be capable of growing a self-supported tubular vessel 

comprised of human derived endothelial cells, in turn preventing any added resistance to 

the transport of materials across the device.  As such, it should be noted that the observed 

permeability measurements are lower than what would be expected in vivo.  This occurs 

because transport within the boundary of any gaps formed between endothelial cells should 

occur in an unrestricted manner, however, the presence of the semi-permeable membrane 

restricts the total free area in the cell monolayer gap resulting in a higher resistance and 

overall reduced transport.  Future improvements of the techniques utilized to produce 

microvasculature within the bi-layer microfluidic system will allow for these issues to be 

resolved in order to better mimic conditions experienced in vivo.   

The microfluidic system has been shown to allow for the monitoring of EC permeability 

and confluency which can be varied based on conditions established within the system.  

Use of serum-conditioned culture media as opposed to whole blood facilitated ease of use 

related to data collection and imaging without interference of blood cells, while still 

providing many of the proteins and small molecule components found in blood plasma.   

Specifically, the ability to quantify EC monolayer coverage when isolated, exposed to 

cancerous cells and throughout the anti-cancer treatment process has been demonstrated.  
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EC coverage was shown to be maximized when only ECs were grown within the apical 

channel covering nearly 100% of the entire channel.  However, upon introduction of 

HCT116s, the EC coverage dropped to around 65% coverage.  The initial EC coverage 

near 100% was achieved because no cytokines or permeabilizing agents were present 

within the devices.  Later introduction of HCT116s into the basal channels resulted in the 

release of cytokines and permeabilizing agents into the system.  As such, the diffusion and 

transport of the cytokines/permeabilizing agents to the apical channel resulted in a high 

degree of EC permeability.  Subsequent treatment of the system with either paclitaxel or 

doxorubicin over 120 hours resulted in the slow recovery of the EC coverage back to 

conditions of nearly 100% coverage.  Treatment with either anti-cancer drug, assisted in 

the recovery of EC confluency by functioning to kill off the HCT116s growing within the 

system.  As HCT116s were killed off by therapeutics, the production and excretion of 

cytokines/permeabilizing agents was reduced in turn allowing for EC recovery.  It should 

be noted that the usage of endothelial cells within the microfluidic system was carried out 

in the form of cell monolayers as opposed to tubular structures.  The subsequent use of EC 

monolayers in turn is recognized to have the potential to influence the performance of the 

system by altering the regulation of cell-cell and cell-matrix adhesion characteristics based 

on matrix dimensionality (2D vs. 3D) [157].  In addition, it is recognized that the use of 

endothelial cell monolayers, limits the functionality of the microfluidic system due to the 

rapid loss of tissue-related functions which impairs the predictive capabilities of the system 

as a whole [158].  The use of a three dimensional growth system to form endothelial tubes 

is preferred in order to better mimic EC responses to permeabilizing agents and shear while 

ensuring that no impairment of the systems predictive capabilities occurs.  As such three 
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dimensional tissue growth of endothelial cells into tubular structures will be adopted for 

future studies involving studies of vasculature. 

In addition to observing the influence of the therapeutics on the cancer cells, flow tests 

were run in devices containing only ECs using therapeutic conditioned media.  The 

resulting data showed initial increases in EC cell counts and confluency over the first 24 

hours.  Continued treatment showed slight decreases in cell counts and confluency as a 

result of the therapeutics presence.  The exposure of ECs to therapeutics slowed their 

normal growth as apparent when comparing the growth curves of cells treated with 

standard media and those treated with therapeutic conditions media as seen in Fig 3.9.  The 

slow of EC growth and slight reduction in cell counts agrees well with previous findings 

in literature and is known to occur as a result of the manner in which the two therapeutics 

function to cause cell death [159]–[162].  In addition, only slight variations in EC 

confluency were noted as a result of being exposed to the therapeutics.  The variations 

which were observed can be attributed to the combination of fluctuations in cell counts and 

changes in EC morphology.  The scale of fluctuation in EC permeability resulting from the 

therapeutics alone was relatively low when compared to the fluctuations observed when 

cancer cells were present in the system.  As such, the major focus of the work was geared 

around permeability induced by the presence of the HCT116 cancer cells.  Overall, this 

work has shown that the system is able to function as a suitable method for observing 

cellular scale changes in EC confluency and permeability resulting from the presence of 

cancer cells and anti-cancer therapeutics.  It should be noted that measurements of EC 

permeability were carried out with direct cell imaging measurements and indirectly via dye 

transport studies.  The observed gaps which formed between ECs as a result of being 
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exposed to cancerous cytokines and permeabilizing agents are what facilitated the apical 

to basal transport of the dyes used.  The presence of a semi-permeable membrane in the 

microfluidic system was required to function as a physical substrate onto which ECs could 

anchor, which also serves to introduce a small amount of resistance to fully unrestricted 

dye transport.  However, decisions on the pore size and density for the membranes was 

chosen to reduce the unavoidable transport resistance as much as possible.  As such, this 

study focuses on quantifying the influence of factors such as cytokines/permeabilizing 

agents (resulting from cancerous disease conditions), pressure differentials, and shear flow 

on the observed permeability of the vascular endothelium to variously sized dye molecules.  

Beyond the scope of monitoring EC monolayer integrity, the system was shown to be 

capable of performing therapeutic/tracer delivery studies which will be discussed next.  

Leveraging the ability to dictate precise pressures within both channels of the devices, a 

variety of equal pressure cases were tested to observe the effect of pressure/flow rate on 

therapeutic delivery.  Given that the pressures established in each channel can be controlled 

independently, we chose to investigate the effects of various equal pressure test cases on 

therapeutic transport.  In addition to the use of equal pressures, a range of dye sizes and 

device conditions were established in order to further understand how transport if 

influenced. 

When considering the influence of solute size on transport, the maximum amount of 

transport observed occurred for FITC, followed by FITC-Dextran 4kDa, and FITC-Dextran 

70kDa, respectively.  This trend in transport is observed due to the dye molecules various 

sizes.  The smallest FITC dye underwent the greatest transport because it is more freely 

able to diffuse through the system.  The larger dyes take longer times to diffuse around in 
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the system and as such, they undergo less transport over the same time-period.  The large 

influence of dye size on the observed transport is credited to the fact that under equal 

pressure conditions, the main factors driving transport are the natural diffusion of the dyes 

and the concentration gradients which exist across the semi-permeable membrane.  Since 

size plays a large role in dye diffusion, a large difference in transport is observed between 

the three dyes.  In addition to dye size, the established pressures within the channels also 

largely influences transport. 

The wide range of equal pressures tested resulted in differing degrees of transport.  Given 

the resulting transport trend, it was observed that increasing the pressure within the system 

while still maintaining equal pressures on both halves of the device, resulted in reduced 

transport of dyes regardless of size.  This trend was observed due to the fact that the total 

volume of dye suspension introduced into each device was held constant.  As such, the 

increased pressures being generated by increased flow rates, resulted in less time for the 

dye molecules to diffuse while in the system.  If the duration of flow for each pressure case 

was held constant instead of the total volume, then no difference in transport between 

established channel pressures would be expected, as verified via cell-free device testing 

data in Fig 3.11.  Moving beyond the scope of established channel pressures, studies were 

conducted to identify the influence of system conditions on the transport of therapeutics. 

From this section of the study, a range of system conditions were established including 

cell-free, EC confluent, EC and HCT116 diseased devices and the subsequent application 

of time-course therapeutic treatments.  The greatest degree of dye transport was observed 

under device conditions containing no cells (cell-free) which agreed well with the predicted 

theoretical model based on the Kedem-Katchalsky transport equations [163] (see Fig 
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3.12(A)).  Later establishment of an EC monolayer within the apical channel resulted in 

greatly reduced transport due to the formation of a confluent monolayer.  The overall 

transport was reduced due to coverage of the pores present in the semi-permeable 

membrane by the ECs.  Instead of being able to transport across the semi-permeable 

membrane, the dyes introduced into the apical channel were forced to exit the system from 

the apical channel outlet.  These observed results agree well with trends published in 

similar studies utilizing microfluidic system to study endothelial permeability to tumor 

cells [164]. 

Further addition of HCT116s resulted in the partial recovery of transport within the system.  

The observed partial transport recovery is the result of cytokines and permeabilizing 

agents, released by the newly added HCT116s, functioning to permeabilize the EC 

monolayer.  The formation of large gaps between ECs in the apical channel allowed for the 

exposure of pores in the membrane which in turn allowed for increased dye and therapeutic 

transport.  Again, the observed results agree with previous literature findings using 

metastatic cancer cell lines, tumor conditioned media containing excreted 

cytokines/permeabilizing agents, and similar dye molecules [164].  Moving beyond the 

diseased state of the system, the application of anti-cancer therapeutics was investigated in 

order to verify that the system as a whole responds to the presence of therapeutic agents. 

Paclitaxel and Doxorubicin were utilized to treat the cancerous regions of the devices in 

order to observe the recovery process of the EC monolayers.  Subsequent treatment of the 

system with either of the therapeutics over the course of 120 hours resulted in the recovery 

of the EC monolayers as measured directly with imaging (see Fig 3.5) and indirectly via 

dye transport measurements.  The observed increase in cancerous cell death upon treatment 
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with either paclitaxel or doxorubicin agrees with other literature studies [165]–[168].  

Additionally, the observed reduction in EC permeability during treatment with either of the 

anti-cancer therapeutics agrees with trends observed in literature [79], [128], [169], [170].  

Time-course treatments were only run over the course of 120 hours because the EC 

permeability and dye transport were able to recover back to conditions similar to those 

experienced prior to the introduction of cancerous cells.  Additionally, there exist other in 

vivo based tumor studies which have been run over the course of five to seven days, making 

the choice of 120 hours of treatment in our model suitable [134], [171]–[173].   

Introduction of therapeutics into the apical channel along with dye molecules was 

performed in order to observe if the amount of transported dye would be influenced by the 

treatment of the diseased cancerous environment.  Transport of the anti-cancer therapeutics 

across the membrane functioned to slowly kill off the HCT116s present in the basal channel 

of the devices.  In turn the death of HCTs reduced the amount and degree of 

cytokine/permeabilizing agent secretion.  The EC monolayers were shown to recover over 

the 120 hour treatment process as a result of HCT116 cell death.  These results confirmed 

that the system was functioning to facilitate therapeutic transport across the EC monolayer 

and semi-permeable membrane.  The observed changes in dye transport resulting from 

therapeutic treatment serve as an indirect technique for quantitatively analyzing the degree 

of EC permeability.  Additionally, an understanding of how therapeutic treatments 

influence cancerous and endothelial cells can be gained through the use of the developed 

microfluidic system.  As noted previously, the direct influence of the therapeutics on EC 

permeability have been quantified and should be given consideration when choosing 

potential anti-cancer therapeutic treatments for patients.  
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Overall, the developed microfluidic system has been shown to allow for the establishment 

of EC monolayers which are responsive to their local environment while also facilitating 

physiologically relevant flows in the apical channel.  The additional ability to grow 

secondary cell types, such as cancerous cells, in close proximity to the mimicked blood 

vessel provides the opportunity to study interactions and responses between the chosen cell 

types.  Further, the ability to precisely control and regulate pressures within each channel 

provides opportunities to study various disease conditions such as tumor 

microenvironments.  In this work, we have utilized endothelial and tumor cells to establish 

a simplified tumor microenvironment in order to study endothelial responses to cancerous 

cells/anti-cancer therapeutics, the therapeutic delivery process in a mimicked vessel, and 

the responsiveness of HCT116 cells to treatment with paclitaxel and doxorubicin.  It should 

be noted that this approach does not consider all conditions experienced in an in vivo tumor 

microenvironment.  Furthermore, it is noted that certain parameters and conditions 

established within the system do not always fall within physiologically relevant ranges.  

The use of values outside of physiologically relevant ranges were performed for the sake 

of testing the system’s functionality for potential work outside the scope of mimicking 

tumor microenvironments.  Further advancements in the screening capabilities of the bi-

layer microfluidic system required the analysis of nanoparticle therapeutic carriers as 

opposed to dye and free therapeutic molecules.  As such, the next chapter demonstrates the 

functionality of the microfluidic system for analysis of nanoparticles of various shapes in 

order to achieve improved therapeutic delivery. 
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Chapter 4:  The shape effect on 

polymer nanoparticle transport in a 

blood vessel 

 

4.1 Introduction 

Within biological models, the transportation and delivery of cellular building blocks, 

waste, and other materials is required in order to sustain life which in turn requires energy 

[174]–[178].  Biological models such as vesicle, virion, and DNA transport/translocation 

have adapted various techniques to accomplish transport tasks while expending as little 

energy as possible [179]–[181].  This invaluable evolutionary fine-tuning was turned 

toward when attempting to maximize the transport and delivery of therapeutics stored 

within nanoparticle carriers based on their shape.  In order to compare various nanoparticle 

designs, a suitable biological model must be chosen which replicates many of the factors 

encountered within the system.  A model mimicking microvasculature must be used which 

contains many characteristics of the biological model while not becoming overly 

complicated and difficult to sustain.  Previous attempts in literature to mimic vasculature 

for the sake of nanoparticle analysis have been oversimplified with subpar results [46], 

[182]–[185]. 

Current techniques for investigating nanoparticle transport utilize living in vivo models 

which show targeting efficiency around or below 10% based on the amount of 

nanoparticles introduced into the system [186]–[188].  Such low efficiency of delivery to 
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targeted sites is often due to particle shapes which are not suitable for delivering maximized 

drug loads while enhancing characteristics required for migration across biological 

barriers.  Despite the poor efficiencies achieved in the past using synthetic designs, we turn 

to nature in order to overcome the challenge of nanoparticle transport across biological 

barriers.  Specifically, vesicle and viral transport have adopted rod and filament-like carrier 

shapes in order to maximize the amount or volume of material being passed across a 

membrane while limiting the energy required to do so [176], [189]–[191].  Additionally, 

previously reported characteristics such as longer circulation times in vivo and lower rates 

of accumulation for larger sized filamentous particles in organs such as the liver, lungs and 

spleen are beneficial when delivering therapeutic loads [185], [189], [192], [193]. As such, 

the application of long filamentous nanoparticle carriers towards the goal of therapeutic 

delivery is of interest.  Previous attempts in literature to design filamentous nanoparticles 

have occurred, however there has not yet been any systematic study towards the 

improvement of such delivery vehicles [185], [189], [192], [193]. 

In turn, this study investigates the effectiveness of spherical, short rod, and long rod 

particles in a variety of conditions experienced by nanoparticle carriers in vivo.  The goal 

of this study is to identify which nanoparticle shape is able to most efficiently deliver 

therapeutics and to see if the evolutionary preference of long filamentous rods is ideal for 

the application of therapeutic delivery to diseased conditions. A range of in vitro based 

microfluidic experimental setups are utilized to mimic certain aspects of vasculature 

important for understanding the effectiveness of each nanoparticle shape towards 

maximizing therapeutic delivery, as seen in Fig 4.1.  The developed microfluidic model 

serves as a biomimetic blood vessel testing platform which provides novel insight into 
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nanoparticle performance by allowing for the direct quantification of various factors 

influencing transport.  Factors such as nanoparticle binding, endothelial permeability, flow, 

and pressure conditions are all capable of being precisely measured and locally controlled 

which in turn allows for a more systematic study of nanoparticle transport efficiency.  This 

novel approach to quantify nanoparticle transport performance allows for the maximization 

and enhancement of therapeutic delivery crucial for maintaining relatively low therapeutic 

loads which are safe for patients.  From this work, we demonstrate the capabilities of the 

developed microfluidic system to quantify the influence of key factors on nanoparticle 

transport while drawing conclusions on which particle shape tested is most ideal for the 

therapeutic delivery process compared to the solution offered over time by biological 

evolution.  We believe this to be the first work to quantitatively study the effect of particle 

shape on key factors influencing transport efficiency such as nanoparticle distribution, 

binding, degree of vascular permeability, along with controlled flow and pressure 

conditions in a mimetic platform mimicking the vascular system. 

 

Figure 4.1 Microfluidic device design and channel orientation. (A) Image of bi-layer 

device showing apical and basal channel along with respective inlets and outlets.  (B) 

Schematic depicting EC growth on semi-permeable membrane and nanoparticle 

suspension introduction and transport through intracellular gaps. 
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4.2 Experimental 

4.2.1 Materials 

The media used for HCT116 cells is Dulbecco’s Modified Eagle’s Medium (DMEM, Life 

Technology), with 10% fetal bovine serum (FBS, Invitrogen) and 1% Antibiotic & 

Antimycotic (ThermoFisher). The media used for BAOEC cells is Dulbecco’s Modified 

Eagle’s Medium (DMEM, Life Technology), with 10% heat inactivated fetal bovine serum 

(FBS, Invitrogen) and 1% Antibiotic & Antimycotic (ThermoFisher). Procine gelatin 

(0.5%, Sigma-Aldrich) used to facilitate adhesion of BAOEC within devices.  CellTracker 

Orange used to fluorescently label cells (ThermoFisher). Microfluidic molds digitally cut 

from printable gold foil sheet (Silhouette) with Silhouette SD digital cutter (Silhouette). 

Microfluidic devices produced from Sylgard 184 polydimethylsiloxane (PDMS) (Dow 

Corning), Nuclepore polycarbonate semi-permeable membranes with 800nm pore 

diameter (Whatman), and microscope cover glass slides (FisherBrand). Syringe pump used 

for nanoparticle flow tests (Harvard Apparatus). Paclitaxel (LC Laboratories, Prod. No: P-

9600 Lot: ASM-118) used as anti-cancer therapeutics. Nanoparticles used in work were 

made from monomethoxy ploy(ethylene glycol)-block-poly(ε-caprolactone) (Sigma 

Aldrich), Nile red fluorescent dye (Sigma Aldrich), tetrahydrofuran (Sigma Aldrich) and 

sodium chloride (Sigma Aldrich).  All other reagents not mentioned were used directly 

without purifying.  

4.2.2 Microfluidic device fabrication 

Microfluidic devices were fabricated using polydimethylsiloxane (PDMS) (SYLGARD 

184, Dow Corning) and assembled into a bi-layer device as observed in Fig 4.1.  The 
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devices were fabricated using two separate pieces of PDMS with channel molded into them 

and a polycarbonate semi-permeable membrane (Whatman Cyclopore, Sigma-Aldrich).  

The semi-permeable membrane is adhered to both pieces of PDMS and sandwiched 

between the overlapping regions of the channels.  The regions where the channels in both 

pieces of PDMS overlap facilitates transport from one channel into the other through the 

pores in the semi-permeable membrane.  As a result, the pores of the membrane act to 

dictate the maximum size of materials which can be transferred.  In order to only allow for 

culturing media and small chemical components to pass from one channel to the other 

while restricting the transport of cells, a membrane with pore size of one micrometer has 

been chosen.  Because cells are not capable of passing through the membrane, a co-culture 

setup is achievable by growing bovine aortic endothelial cells (BAOECs) on the top surface 

of the membrane within the apical channel, while human colorectal cancer cells (HCT116s) 

are grown on the bottom surface of the lower channel termed the basal channel.  Additional 

devices were prepared which consisted of single channels adhered to glass slides.  These 

devices were used for particle distribution and binding studies where a bi-layer setup was 

not required.  Sterilization of the microfluidic devices was carried out by running the fully 

assembled devices through the autoclave at 134⁰C for one hour.  The choice of PDMS and 

polycarbonate as materials for the fabrication of the devices was made in order to prevent 

any cytotoxic effect on the endothelial or cancer cells.  Both PDMS and polycarbonate 

have been shown to have little cytotoxic effect on cells when properly cured and sterilized 

[194]–[198].  It is for this reason that both materials are often popular choices when 

fabricating microfluidic system designed to study the cytotoxic effect of other chemical 

compound and materials, especially in therapeutic delivery applications [194]–[198]. 
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4.2.3 Nanoparticle fabrication 

The fabrication process of monomethoxy poly(ethylene glycol)-block-poly(ε-

caprolactone) (mPEG-PCL, Mw=1.25 kDa) copolymer nanoparticles with spherical and 

rod-like shapes was performed as follows. In brief, mPEG-PCL freeze-dried powder (10 

mg) and fluorescent dye Nile red were dissolved in 5 mL tetrahydrofuran (THF). Later, 10 

mL of deionized water was added dropwise to the mixture with stirring. After the 

evaporation of the organic solvent, the final solution was transferred to a dialysis bag 

(MWCO 1000) and submerged in distilled water for 2 days to remove the unloaded dye. 

Thus, the spherical nanoparticles were obtained. The fabrication process of the rod-like 

nanoparticles was similar with that mentioned above. The only difference was that the 

deionized water was replaced by sodium chloride (NaCl) solution. The length of the 

nanoparticles was changed by varying the concentration of NaCl solution.  Similarly to the 

PDMS and polycarbonate used to produce the microfluidic devices, the mPEG-PCL is also 

known to be non-cytotoxic.  A large body of literature exists supporting the choice of the 

mPEG-PCL as a safe and non-toxic material from therapeutic delivery via micelles [113], 

[199]–[201]. 

4.2.4 Cell growth on device 

After fabrication of the microfluidic devices, both the apical and basal channels were filled 

with a 0.5% porcine gelatin (PG) (0.5%, Sigma-Aldrich) solution and incubated for 30 

minutes at 37⁰C and 5% CO2.  After incubation, the PG is removed and replaced with 

BAOEC (Cell Applications, San Diego, CA) suspension in the apical channel and 
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incubated for 12 hours to allow for cell adhesion to the top side of the semi-permeable 

membrane.  After 12 hours, all remaining cell suspension is flown away by establishing 

media (DMEM(1x) + GlutaMAX – I (gibco, life technologies), 10% HI-FBS (Sigma-

Aldrich), 1% Penn/Strep Antibiotic(1X) (gibco, life technologies)) flow within the channel 

using sterile tubing, syringe and syringe pump (PHD 2000, Harvard Apparatus).  The flow 

rate established within the channel is kept low for purposes of media exchange and aligning 

the BAOECs to flow.  These flow based incubation conditions are held constant typically 

for 3 to 4 days until the endothelial monolayer on the semi-permeable membrane reaches 

confluency.  Upon achieving a confluent BAOEC monolayer in the apical channel, 

HCT116s (ATCC, Manassas, VA) are flown into the basal channel and allowed to settle 

and adhere to the bottom of the basal channel for 24 to 48 hours.  HCT116 cells are 

introduced into the devices in order to permeabilize BAOEC monolayers similar to 

conditions found in various cancerous disease states.  Once the HCT116 cells have properly 

adhered, a flow rate equivalent to that established in the apical channel is setup in the basal 

channel using a secondary syringe pump.  Both the BAOEC and HCT116 cells are grown 

within the bi-layer device under these flow conditions within an incubator for the remainder 

of the experimental proceedings. 

4.2.5 Establishing shear rate 

The effect of fluid shear on the growth of cells and transport of compounds from channel 

to channel is established using syringe pumps (PHD 2000, Harvard Apparatus).  The 

syringe pumps allow for control over the flow rates established in both channels of the 

device.  By altering the flow rate within the channels, we are able to specifically set and 
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control the shear rate imparted on the cells growing within each channel and any other 

materials introduced into the channel along with the flowing media.  The equation 

governing the shear rate established in each of the channels is as follows: 𝑆ℎ𝑒𝑎𝑟 𝑅𝑎𝑡𝑒 =

(
6𝑄

𝑊∗𝐻2)(1 +
𝐻

𝑊
)(𝑓∗)(

𝐻

𝑊
), where Q is the established flow rate within the given channel, W 

is the channel width, H is the channel height, and f* is a geometrical factor based on channel 

dimensions which for the microfluidic devices used is 0.7946 [112].  The width and height 

dimensions for the channels utilized in this study were 500 micrometers and 100 

micrometers, respectively.  In order to stay within a physiologically relevant range, the 

shear rate in the apical channel containing the BAOECs was held at 200 sec-1 which is at 

the lower end of range typically experienced within the arterioles of the body [113]–[115].  

The shear rate established within the basal channel containing HCT116s was held constant 

with the shear in the apical channel to prevent any convective flux between channels when 

not desired.  While initially culturing cells within both channels, the shear rate was 

typically set around 50 sec-1 as a means of simply refreshing media exposed to the cells for 

continued growth while not imparting drastically high shear.  It should be noted that equal 

shear rates were established in both the apical and basal channels in order to prevent the 

formation of a pressure gradient across the semi-permeable membrane.  As a final note, the 

use of channel dimensions defined above, resulted from several factors which required 

consideration.  Namely, the desire to work within the length scale of smaller human 

vasculature, ease of endothelial and cancer cell growth, ease of microfluidic device 

production and long-term device stability factored into the decision of the final channel 

dimensions.  Ideally, producing microfluidic devices on the length scale of less than or 

equal to 100 micrometers would be more realistic for mimicking human microvasculature 
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[202]–[204].  However, the production of photoresist features on silicon wafers at such a 

small size is difficult and is not conducive for several round of PDMS casting to form 

channels.  In order to better facilitate the growth of both endothelial and cancer cells, the 

use of wider channels was opted for in order to enlarge the total volume of media contained 

within the channels at any given point in time.  This factor is especially important once a 

confluent monolayer of endothelial cells is formed within the channels and cancer cell 

seeding is attempted.  In order to allow the cancer cells enough time to settle and anchor to 

the surface of the basal channel, the media flow within the devices must be halted 

otherwise, the cancer cells would wash away down-stream.  This period of static incubation 

can last anywhere from 12 to 24 hours, during which time, the nutrients contained within 

the channel are limited.  If the channel dimensions are made too small, the amount of media 

contained within the channels would not be sufficient to sustain both cell types unit normal 

media flow can be re-established.  As a final consideration, larger channel dimensions were 

chosen in order to help keep the resistance of the overall system low.  Use of small channel 

dimensions would have resulted in a very large resistance to the flow of media established 

with syringe pumps.  Having large resistance in the system leads to increased pressures 

within the devices which in turn result in leakage and rupturing of the bi-layer 

microfluidics.  In order to avoid such conditions, the use of a wider channel geometry 

allows for the resistance of the system to be maintained at a reasonable level to allow for 

the experimental proceedings. 
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4.2.6 Cell imaging and confluency measurements 

Cells grown on devices were imaged utilizing standard fluorescence imaging microscopy 

(Olympus IX70, Hamamatsu C9300, Plan Fluor 10x & 20x, NA: 0.3, RI: 1).  For 

fluorescence imaging, the plasma membranes of the cultured cells were stained with 

CellMaskTM Orange (2.5μg/mL, Invitrogen) plasma membrane stain to identify the outer 

most boundaries of the cells occupying the culturing area.  This method of cell plasma 

membrane (PM) staining allows for the quantification of the area specifically covered by 

cells within the viewing area of the various fluorescence microscopes.  Images taken via 

conventional fluorescence microscopy were utilized to determine the overall cellular 

monolayer confluency.  These measurements were carried out using the FIGI (ImageJ) 

software suite and the collected image.  The imaging technique was used to obtain the 

average degree of monolayer confluency as well as to quantify the area occupied by gaps 

between cells [118], [144].  The analysis for the cell coverage measurements were taken 

once the cells had reached confluency within the apical channel of the device just before 

HCT116s were introduced into the basal channel.  A second measurement of all devices 

was taken at 72 to 96 hours after introduction of HCT116s into the basal channel.  Lastly, 

final measurements for each device were taken 12, 24, 48, 72, 96, and 120 hours after 

introduction of anti-cancer therapeutics into the device.  Image acquisition software 

utilized includes HCImage Live (Hamamatsu Photonics) for standard fluorescence 

imaging and NIS-Elements (Nikon) for acquisition of confocal images.  
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4.2.7 Anti-cancer therapeutics 

In order to study how particle transport is influenced by variations in endothelial monolayer 

permeability, BAOECs were exposed to HCT116s.  Treatment of the microfluidic system 

with the anti-cancer therapeutic, Paclitaxel, allowed for varying degrees of BAOEC 

permeability within the diseased state setup.  Paclitaxel functioned to eliminate cancer cells 

and was chosen due to its wide use, high degree of documentation for in vitro and in vivo 

data, and relatively inexpensive cost.  This anti-cancer therapeutic was introduced into the 

apical channel of the device in order to mimic an intravenous administration.  Any 

therapeutic introduced into the microfluidic system was subjected to the shear established 

within the device in order to mimic the situation or blood flow within the body.  

Therapeutic which successfully transitioned from the apical channel through the semi-

permeable membrane into the basal channel were able to act on the HCT116s present.  

Interaction of the anti-cancer drug with the HCT116s resulted in the death of affected cells, 

which in turn were washed away downstream and eventually out of the device into the 

waste media collection containers.  As such, the HCT116 cells which were killed off and 

washed away could no longer contribute to the secretion of permeabilizing agents.  Lastly, 

in order to ensure that the presence of the anti-cancer therapeutic in the apical channel 

interacting with the BAOECs did not result in the death of healthy BAOEC cells, a high 

dose of the therapeutic agent was statically incubated with BAOECs prior to the cells 

reaching confluence in order to determine if the presence of the drug would severely inhibit 

cell proliferation or cause severe cell death.  Chemical authentication and validation data 

of the Paclitaxel utilized in this work was provided by LC Laboratories (Prod. No: P-9600 

Lot: ASM-118). 
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4.2.8 Particle distribution studies 

Particle location within the vessel can influence the likelihood of interaction with the 

endothelial layer of the vessels.  In order to understand how well the particles interact with 

the vascular wall, their distributions under flow conditions was studied.  For these studies, 

particles of each shape were flown through single layer microfluidic devices at varying 

shear rates.  The shear rates chosen were 200s-1, 800s-1, and 1600s-1, which fall within the 

physiologically relevant range for humans [113]–[115].  In addition to altering shear, test 

conditions were run with 25% RBCs (Innovative Research, Inc., single donor human 

RBCs, type O+) and without RBCs.  During each flow, fine resolution confocal scans 

(Nikon C2plus, Plan Fluor 10x & 20x, NA: 0.3, RI: 1) were captured at various points 

along the channel.  The step size utilized for these scans was 50 nm/step, and each scan 

was made over the entire cross-section of the microfluidic channel.  Image data collected 

from the confocal microscope was then imported into FIGI (ImageJ) and the fluorescence 

intensity of each scanned layer was calculated and normalized [144].  Plotting the measured 

fluorescence intensities and layer data allows for the distribution of each particle shape to 

be visualized under the specific flow conditions established during the time of each scan.  

Comparisons could then be made based on changes in particle shape, established shear rate, 

and blood conditions. 

4.2.9 Particle binding studies 

The next important step in the therapeutic delivery process is achieving nanoparticle 

adhesion to the inner wall of the human vasculature.  As such the influence of particle 

shape, blood conditions, and shear rate on particle binding were investigated.  All binding 
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studies were conducted under non-specific conditions, as the particles utilized had no 

antibody coating.  Due to the non-specific binding regime utilized, the binding studies were 

conducted in microfluidic devices which did not contain cells.  The absence of cells within 

the devices also allowed for improved imaging.  Each particle was flown through single 

layer microfluidic devices at varying shear rates as well as varying blood conditions.  As 

noted above, the shear rates utilized were 200s-1, 800s-1, and 1600s-1, and the blood 

conditions utilized were no RBCs and 25% RBCs.  Particle flows were established using a 

syringe pump for an established period of time.  The total number of particles flown in 

each test were held constant by varying the duration of the flow to shorter and shorter 

timeframes as the shear rate utilized increased.  This was done to ensure normalized testing 

conditions across all setups.  At the completion of each flow, PBS (1X, Sigma-Aldrich) 

buffer was flown through the channels to wash away any unbound particles prior to 

confocal imaging.  After washing, confocal scans were made across the entire internal 

surface of each channel to collect fluorescence intensity data.  The scans were then loaded 

into FIGI (ImageJ), and reconstructed back into a bulk 3D image [144].  Final image 

processing was carried out to determine the fluorescence intensity of particles bound to the 

inner walls of each channel.  Comparisons were then made across varying particle shape, 

shear rate and blood condition.  Finally, for comparative purposes, static binding cases 

were run, where particle solutions were introduced into the channel and statically incubated 

for 1 hour prior to rinsing and imaging. 
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4.2.10 Particle cross-vasculature transport studies 

In order to identify the ability of each particle to undergo transport across a semi-permeable 

membrane, a bi-layer setup for the microfluidic devices was utilized.  Particle transport 

was achieved by flowing particles into the bi-layer channel via syringe pump.  In order to 

quantify, the degree of transport for each test case, the outlets of both the apical and basal 

channels was collected and measured.  The basal outlet contained particles which 

successfully transported across the semi-permeable membrane, and particles exiting out of 

the apical outlet were collected and measured to ensure that the total particle concentration 

introduced into the devices was accounted for at both of the outlets. 

The transport studies were carried out under three device conditions as follows, bare 

devices, devices with only a BAOEC confluent monolayer, and diseased devices 

containing a monolayer of BAOECs in the apical channel and a monolayer of HCT116s in 

the basal channel.  The second and third device conditions established allowed for studies 

on the ability of particles to transport under varying degrees of BAOEC permeability. 

All transport studies were carried out with flow established in the apical and basal channels.  

In order to best determine the effect of particle shape on the transport process, all tests were 

run so that no pressure difference was established across the semi-permeable membrane.  

The pressures established in both the apical and basal channels for these studies were 632.8, 

4832.4, and 17431.2 Pa.  Bare device studies did not utilize any cell culturing within the 

channels prior to introduction of particle suspensions.  Devices run with BAOEC confluent 

monolayers were established 3 to 4 days prior to particle suspension flows to ensure that a 

highly confluent monolayer was present in the apical channel over the semi-permeable 
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membrane.  Lastly, the diseased state devices, were prepared 6 to 8 days in advance of 

particle suspension flows.  3 to 4 days were spent growing a confluent apical BAOEC 

monolayer and the remaining days were spent producing a cancer cell monolayer in the 

basal channel.  As with the binding studies, the transport studies were carried out under 

adjusted timeframes to ensure that the same number of particles were introduced into each 

devices regardless of the pressure being used.  One final note for the diseased state devices, 

was the later introduction of an anti-cancer therapeutic to influence the cancer cells in the 

basal channel and the confluency of the BAOEC monolayer in the apical channel.  The 

degree of particle transport was documented throughout a time-course treatment with the 

Paclitaxel to understand how the BAOEC monolayer integrity influenced the particle 

transport capabilities. 

4.2.11 Statistical analysis 

Statistical analysis of all obtained results was run utilizing IBM’s SPSS statistical software 

package (IBM Corp.).  All of the figures have significant differences indicated above 

elements within the plots.  One way ANOVA tests were run for each data set with 

confidence levels of 95% held throughout all plots.  All analyses were carried out under 

conditions of Tukey equal variances assumed, along with tests of homogeneity of variance 

further verified by both Brown-Forsythe and Welch analyses.  Based on the obtained 

statistical results, all bar graphs contain grouped pairs between groups and within groups 

indicating statistically significant differences between means indicated by “ * ”.  For all 

line plots, statistically significant differences in means are compared against the baseline 

tests for the spherically shaped particles.  Significance between both the short rod particle 
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and long rod particle values are indicated by “ * “.  Significant differences between means 

for short rod and long rod particles are indicated by “ ** “, noting that all differences are 

given at a confidence level of 95%. Within group F values and degrees of freedom for each 

plot are noted in their respective legends.  Sample sizes for all experimental testing were 

determined by performing estimation for multiple-sample one-way ANOVA pairwise 

comparison based on piolet studies utilizing the standard sample size approximation of: 

𝑛𝑖𝑗 =
2(𝑧

𝑎

2𝜏
+𝑧𝛽)2𝜎2

𝜀𝑖𝑗
2 .  All statistical comparisons are run under assumptions of equal variance 

between groups.  This assumption is verified via the Levene’s Test where all p values must 

be greater than 0.05 in order to verify the equal variance assumption across groups.  All 

data sets presented in this work pass the Levene’s Test with p values greater than 0.05. 

4.3 Results and Discussion 

4.3.1 Microfluidic device fabrication 

Microfluidic devices were successfully produced using polydimethylsiloxane (PDMS) and 

polycarbonate semi-permeable membranes assembled into a bi-layer device as observed in 

Fig 4.1(A) with inlets and outlets for the apical and basal channels.  Successful sterilization 

of the devices via an autoclave allowed for cell culture as represented by the diagram in 

Fig 4.1(B).  The dimensions for the apical and basal channels of the microfluidic devices 

were 100 μm in height, 100 μm in width, and 25 mm in length.  

4.3.2 Characterization of nanoparticle morphology 

Three different shapes of polymer nanoparticles were achieved by self-assembly in NaCl-

water solution at different concentrations. The morphologies of the particles were 
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measured using transmission electron microscopy (TEM).  Solutions without NaCl result 

in the production of spherical nanoparticles having an average diameter of 45 nm, at 0.05 

M NaCl, short rod-like nanoparticles are obtained with an average diameter of ≈ 25 nm 

and average length of 150 nm and at 0.5 M NaCl, long rod-like nanoparticles are obtained 

with an average diameter of ≈ 25 nm and an average length of 400 nm, as seen in Fig 4.2.  

The formation of nanoparticles with varying shapes was accomplished through the 

introduction of various NaCl concentrations.  When the concentration of NaCl was less 

than 0.05M, the resulting micelles were spherical in shape.  When the concentration of 

NaCl reached 0.05M, the resulting micelles were rod-like in shape (short rod).  As the 

concentration of NaCl was increased, the nanoparticles were observed to elongate.  

Utilizing a concentration of NaCl equal to 0.1M, the resulting micelles were 600nm in 

length (long rod) where use of 0.05M resulted in a micelle length of 300nm [205].  In 

addition, the stability of the nanoparticles has been previous tested and were shown to be 

stable over the course of 120 hours when subjected to 0.9% physiological saline solution, 

showing very little degradation [205].  Lastly, in a previous study the nanoparticle micelles 

were shown to have very good cytocompatability over a range of concentrations from 25 

μg/mL to 500 μg/mL for 24 hour incubations [205]. 

 

Figure 4.2 The morphology of polymer nanoparticles via TEM scans. (A) Spherical. (B) 

Short rod-like. (C) Long rod-like. 
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4.3.3 Cell confluency measurements 

Cell confluency was measured utilizing a plasma membrane stain and fluorescence 

imaging.  From these imaging results, FIGI was utilized to calculate the area within the 

field of view which was occupied by cells and the area occupied by gaps between cells 

[206]. From the images collected, the degree of cell monolayer coverage, being the area 

covered by cells expressed as a percentage of the entire viewing area, was determined to 

be 99.7% when only BAOECs were cultured within the microfluidic devices.  However, 

when HCT116s were introduced and grown in the basal channel in order to alter the 

BOAEC monolayer permeability, the degree of the BAOEC monolayer confluency 

dropped to 65.2%.  This change in cell area coverage can be seen in Fig 4.3, where 

conditions with HCT116s show lower BAOEC coverage. 

 

 

 



100 
 

 

Figure 4.3 Normalized percentage of BAOEC monolayer permeability under various 

culturing conditions.  Data shown as sum of means ± S.D. (n=5 independent microfluidic 

devices).  Percentage of confluent BAOEC monolayer intact without HCT116s, with 

HCT116s, after treatment with Paclitaxel for 12hrs., after treatment with Paclitaxel for 

24hrs., after treatment with Paclitaxel for 48hrs., after treatment with Paclitaxel for 72hrs., 

after treatment with Paclitaxel for 96hrs., and after treatment with Paclitaxel for 120hrs., 

measured as a percentage of the entire imaging field, collected via standard fluorescent 

microscopy. One way ANOVA statistical analysis with Tukey equal variances assumed, 

along with tests of homogeneity of variance verified by Brown-Forsythe and Welch 

analyses. F7,32 = 108.86. Statistical significance indicated by * brackets in both plots at 

p≤0.05.  Sample collection was carried out from 5 independent devices (biological 

replicates).  All statistical tests have been justified as appropriate. 

Subsequent treatment of the permeabilized system with Paclitaxel shows slow recovery 

back to near confluent BAOEC conditions over the course of 120hrs.  Additional data 

collected for the area of coverage for the gaps between cells agrees well with the 

measurements taken of the area covered by cells, see Fig 4.4(A).  The total area measured 

independently from the two groups of experiments sum to values near 100%, which would 

indicate that both methods of data collection resulted in similar results.  Representative 

images of typical results experienced under the various conditions established within the 

devices can be seen in Fig 4.4(B-I). 
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Figure 4.4 Normalized percentage of BAOEC monolayer permeability under various 

culturing conditions.  Data shown as sum of means ± S.D. (n=5 independent microfluidic 

devices) & representative fluorescence images of BAOEC stained with CellMaskTM 

Orange plasma membrane stain.  BAOECs are grown within microfluidic device and 

subjected to various conditions. (A) Percentage of intercellular gap coverage without 

HCT116s, with HCT116s, after treatment with Paclitaxel for 12hrs., after treatment with 

Paclitaxel for 24hrs., after treatment with Paclitaxel for 48hrs., after treatment with 

Paclitaxel for 72hrs., after treatment with Paclitaxel for 96hrs., and after treatment with 

Paclitaxel for 120hrs., measured as a percentage of the entire imaging field, collected via 

w/o HCT  w/ HCT  12 Hrs.  24 Hrs.  48 Hrs.  72 Hrs.  96 Hrs.  120 Hrs.
0

5

10

15

20

25

30

35

40

Degree of Cell Monolayer Permeability

Testing Conditions

%
 o

f 
E

n
ti
re

 V
ie

w
in

g
 F

ie
ld

 O
c
c
u

p
ie

d
 b

y
 I

n
te

rc
e

llu
la

r 
G

a
p
s

A 

* 

B C D 

E F

A

A 

G

A

A 

H I 



102 
 

standard fluorescent microscopy. One way ANOVA statistical analysis with Tukey equal 

variances assumed, along with tests of homogeneity of variance verified by Brown-

Forsythe and Welch analyses. F7,32 = 661.92.  Statistical significance indicated by * 

brackets in both plots at p≤0.05.  Sample collection was carried out from 5 independent 

devices (biological replicates). All statistical tests have been justified as appropriate. (B) 

BAOECs grown in confluent monolayer.  (C) BAOEC monolayer after exposure to 

HCT116s present in basal channel.  (D) BAOEC monolayer after treatment of HCT116s 

with Paclitaxel for 12 hrs.  (E) BAOEC monolayer after treatment of HCT116s with 

Paclitaxel for 24 hrs.  (F) BAOEC monolayer after treatment of HCT116s with Paclitaxel 

for 48 hrs.  (G) BAOEC monolayer after treatment of HCT116s with Paclitaxel for 72 hrs.  

(H) BAOEC monolayer after treatment of HCT116s with Paclitaxel for 96 hrs.  (I) BAOEC 

monolayer after treatment of HCT116s with Paclitaxel for 120 hrs.  All scale bars are 50μm 

in length and direction of flow in all images is represented by blue arrow. 

 

4.3.4 Particle distribution 

In order to better understand where particles tend to concentrate in bulk fluid flow, and the 

effect which particle shape has on these zones of concentrated particles, confocal based 

scans were run on the spherical, short rod, and long rod particles.  A representative confocal 

3D reconstruction is presented in Fig 4.5(A).  From the confocal scans, the following data 

was observed for a range of shear rates and blood conditions within the devices.  The flow 

condition which resulted in a peak closest to the channel wall was the long rod particles 

flown at a shear of 1600 sec-1 with the presence of 25% RBCs in suspension.  The 

conditions resulting in the furthest peak from the channel wall was the spherical particles 

flown at a shear rate of 800 sec-1 without RBCs. 
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Figure 4.5 Representative image collected during particle flow tests & normalized particle 

concentration distributions under various shear rates and blood conditions.  Data shown as 

sum of means ± S.D. (n=5 independent microfluidic devices). (A) 3-Dimensional particle 

distribution confocal scan depicting traces of particle paths during flow and particle 

locations. Scale bar is 75μm and blue arrow indicates direction of flow.  (B) Spherical 

distribution at various shear without RBCs.  (C) Spherical distribution at various shear with 

25% RBCs.  (D) Short Rod distribution at various shear without RBCs.  (E) Short Rod 

distribution at various shear with 25% RBCs.  (F) Long Rod distribution at various shear 

without RBCs.  (G) Long Rod distribution at various shear with 25% RBCs. 

General trends observed in the data show that increases in shear rate, larger particle sizes, 

and conditions with 25% RBCs in suspension lead to concentration peaks closer to the 

channel walls.  Conditions using the two smaller particle shapes run at 200 sec-1 resulted 

in uniform distribution without any concentration peaks.  Fig 4.6(A) depicts an example 

plot of the fluorescence intensity distribution of the spherical particles without RRBCs 

under various shear rates.  From the figure, peak positions can be observed where the 

spherical particle concentration is greatest through the cross-section of the channel as flow 

occurs.  Figure 4b depicts the maximum concentration peak position distance from the wall 

of the channel for all of the conditions tested.  Fig 4.5(B-G) depicts the confocal 

fluorescence intensities of each particle shape throughout the depth of the 100 μm channel 

under various testing conditions.  
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Figure 4.6 Particle concentration peak positions under various flow conditions.  Data 

shown as sum of means ± S.D. (n=5 independent microfluidic devices).  (A) Example 

spherical particle fluorescence intensity distribution along channel cross-section measured 

via confocal microscope without RBCs under various shear rates.  (B)  Particle 

concentration peak position distances from the channel wall plotted for all particle shapes, 

blood conditions, and shear rates tested. 

4.3.5 Particle binding 

Fluorescence intensities of bound particles within the channels were collected via confocal 

microscopy.  The initial scans show the greatest degree of binding for the spherical 

particles, followed by the short rod and long rod particles, respectively.  The initial scans 

can be seen in Fig 4.7(A) and Fig 4.7(B), where increases in shear rate lead to lower levels 

of particle binding and the presence of RBCs increases the observed binding.  However, it 

should be noted that the initial data do not reflect the differing volumes of each particle 

shape.   
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Figure 4.7 Normalized bound particle fluorescence intensities under various shear rates, 

blood conditions & particle volume considerations.  All data shown as sum of means ± 

S.D. (n=5 independent microfluidic devices). (A) Spherical, short rod, and long rod 

intensities at various shear without RBCs. F8,18 = 27.59.  (B) Spherical, short rod, and long 

rod intensities at various shear with 25% RBCs.  Data not normalized for particle volume. 

F8,18 = 50.16. (C) Spherical, short rod and long rod intensities under static conditions with 

data normalized for particle volume. One way ANOVA statistical analysis with Tukey 

equal variances assumed, along with tests of homogeneity of variance verified by Brown-

Forsythe and Welch analyses. F5,12 = 246.58.  Statistical significance indicated by * bracket 

at p≤0.05 for all plots. Sample collection was carried out from 5 independent devices 

(biological replicates).  All statistical tests have been justified as appropriate. 

Once normalized for particle volume, the degree of binding shows that the long rod 

particles are able to bind the greatest amount of therapeutic to the walls of the mimicked 

vessel, as seen in Fig 4.8(A) and Fig 4.8(B) for conditions with and without RBCs.  The 
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short rod and spherical particles had lower degrees of binding after particle volume 

normalization, respectively.  The same trends were observed after normalization for 

decreases in binding as shear rate increases, and increases in binding with the presence of 

RBCs. As a final comparison, the particle binding observed under static conditions showed 

that the presence of RBCs made no difference in the degree of binding.  Overall, the degree 

of static binding was substantially larger when compared to the flow based conditions and 

the long rod particles were determined to be able to bind the greatest amount of therapeutic 

after particle volume normalization.  See Fig 4.7(C) for static binding data normalized for 

particle volume.  
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Figure 4.8 Normalized bound particle fluorescence intensities under various shear rates, 

blood conditions & particle volume considerations coupled with schema.  All data shown 

as sum of means ± S.D. (n=5 independent microfluidic devices). (A) Normalized bound 

particle fluorescence intensities at various shear rates without RBCs. Data normalized for 

particle volume. F8,27 = 298.32. (B) Normalized bound particle fluorescence intensities at 

various shear rates with 25% RBCs. F8,27 = 69.31. Data normalized for particle volume. 

One way ANOVA statistical analysis with Tukey equal variances assumed, along with tests 

of homogeneity of variance verified by Brown-Forsythe and Welch analyses. Statistical 

significance indicated by * brackets in both plots at p≤0.05.  Sample collection was carried 

out from 5 independent devices (biological replicates).  All statistical tests have been 

justified as appropriate.  (C) Particle binding schema indicating larger contact area for long 

rod and short rod nanoparticles along with a larger magnitude shear stress placed on sphere 

nanoparticle. 
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After normalization for particle volume, the ideal nanoparticle shape for the binding of 

therapeutics to the inner wall of a vessel would be the long rod particles flown under 

conditions with RBCs at the lowest shear rate as seen in Fig 4.8.  Fig 4.8(C) depicts a 

schema of the differences in binding area and shear stress exposure for the three different 

nanoparticles tested. These differences depicted in Fig 4.8(C) influence the overall 

nanoparticle binding observed which is considered later in the conclusion for this section.  

4.3.6 Particle cross-vascular transport 

We turn to the final phase of therapeutic delivery which is the transport of particles from 

within the vasculature out into diseased tissues.  As mentioned previously, a bi-layer 

microfluidic setup was utilized to facilitate particle transport with all tests being carried out 

under conditions without RBCs and equal pressures across the membrane.  Fig 4.9(A) 

depicts the particle diffusion process from the apical channel into the basal channel which 

results in a particle concentration gradient.  The data presented in this section have been 

normalized for particle volume in order to determine the ideal particle shape for therapeutic 

delivery.  Fig 4.9(B) through Fig 4.9(D) depict the therapeutic transport achieved based on 

the condition established in the devices.  Under bare channel and diseased channel 

conditions, the long rod particles were capable of achieving the greatest amount of 

therapeutic transport for all equal pressure cases tested.  The short rods showed the greatest 

therapeutic delivery under healthy BAOEC monolayer conditions at the two lower equal 

pressure cases tested and the spherical particles showed improved delivery at the greatest 

equal pressure case under healthy conditions.  Reduction in therapeutic delivery with 

increased equal pressures during testing was observed for all device setups tested as seen 

in Fig 4.9(B-D). 
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Figure 4.9 Cross-sectional fluorescence image of particles flowing through bi-layer 

microfluidic device & normalized drug transport for various particle shapes and device 

conditions.  Data shown as sum of means ± S.D. (n=5 independent microfluidic devices).  

(A) Particle diffusion is observed from the apical into the basal channel via gradient of 

particle concentrations, indicated by image brightness.  Scale bar is 100 μm, blue arrows 

indicate flow directions in both apical and basal channels, and red dashed line indicates 

where the semi-permeable membrane is located in the cross-sectional view. (B) 

Normalized drug transport for particle shapes at various pressures in bare microfluidic 

devices. F8,18 = 413.70. (C) Normalized drug transport for particle shapes at various 

pressures in microfluidic devices containing confluent BAOEC monolayers. F8,18 = 632.71. 

(D) Normalized drug transport for particle shapes at various pressures in diseased state 

microfluidic devices with apical BAOECs and basal HCT116s. F8,18 = 5535.61. All data 

normalized for particle volumes. One way ANOVA statistical analysis with Tukey equal 

variances assumed, along with tests of homogeneity of variance verified by Brown-

Forsythe and Welch analyses.  Statistical significance between short rod/long rod and 

sphere (control) indicated by * at p≤0.05 & statistical significance between short rod and 
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long rod indicated by ** at p≤0.05.  Sample collection was carried out from 5 independent 

devices (biological replicates).  All statistical tests have been justified as appropriate. 

Taking the diseased state model one step further, the addition of Paclitaxel to the disease 

state showed recovery in the BAOEC monolayer.  The constant perfusion of Paclitaxel 

along with the particles was carried out over the course of 5 days as particle transport was 

monitored as seen in Fig 4.10.  At 12 hours of treatment, the amount of particle transport 

began to drop slightly as the HCT116s began to die off and the BAOECs began to recover 

their confluency.  After 24 hours, transport continued to drop, with a shift at 4832.4 Pa 

where the short rods began to perform noticeably better than the long rods and spherical 

particles.  After 48 hours, transport of all three particle shapes continued to drop, with a 

very marked drop in long rod transport at 632.8 Pa.  Also at 48 hours of treatment, the short 

rods perform the best at 4832.4 Pa.  At 72 hours, the long rod transport dropped even further 

performing worse than the short rods at 632.8 Pa and worse than both of the other particles 

at 4832.4 Pa and 17431.2 Pa.  After 96 hours of treatment, the transport data begins to 

resemble the trends observed in the BAOEC confluent devices.  The short rods perform 

the best at the two lower pressures and the spherical particles begin to show improved 

performance at the highest pressure.  The long rods across all pressures perform the worst 

after 96 hours of treatment as the pores in the BAOEC monolayer begin to drastically 

reduce in size and frequency.  Finally, after 120 hours of treatment, the transport data is 

indistinguishable from the data and trend observed for devices only containing confluent 

monolayer of BAOECs.  The time-course of particle transport during the Paclitaxel 

treatment can be observed in Fig 4.10 at the three equal pressure cases tested.  Breakdowns 

of each time interval throughout the whole time-course can be seen in Fig 4.11.  
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Figure 4.10 Normalized time-course plots of drug transport for various particle shapes and 

pressures during Paclitaxel treatment.  Data shown as sum of means ± S.D. (n=5 

independent microfluidic devices). (A) Normalized time-course drug transport for particle 

shapes over 120hrs. at 632.8Pa. F20,42 = 2479376.58. (B) Normalized time-course drug 

transport for particle shapes over 120hrs. at 4832.4Pa. F20,42 = 114.79. (C) Normalized 

time-course drug transport for particle shapes over 120hrs. at 17431.2Pa. F20,42 = 1.60. One 

way ANOVA statistical analysis with Tukey equal variances assumed, along with tests of 

homogeneity of variance verified by Brown-Forsythe and Welch analyses.  Statistical 

significance between short rod/long rod and sphere (control) indicated by * at p≤0.05 & 

statistical significance between short rod and long rod indicated by ** at p≤0.05.  Sample 

collection was carried out from 5 independent devices (biological replicates).  All statistical 

tests have been justified as appropriate.  Diagrams in (A-C) indicate the nanoparticle shape 

for maximum drug delivery across endothelial monolayer to diseased site. 
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Figure 4.11 Normalized drug transport for various particle shapes and pressures during 

Paclitaxel treatment time-course.  Data shown as sum of means ± S.D. (n=5 independent 

microfluidic devices). (A) Normalized drug transport for particle shapes 12hrs. into 
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treatment. F8,18 = 276.10. (B) Normalized drug transport for particle shapes 24hrs. into 

treatment. F8,18 = 1054.86. (C) Normalized drug transport for particle shapes 48hrs. into 

treatment. F8,18 = 2998.76. (D) Normalized drug transport for particle shapes 72hrs. into 

treatment. F8,18 = 84.36. (E) Normalized drug transport for particle shapes 96hrs. into 

treatment. F8,18 = 572.99. (F) Normalized drug transport for particle shapes 120hrs. into 

treatment. F8,18 = 494.04. All data normalized for particle volumes. One way ANOVA 

statistical analysis with Tukey equal variances assumed, along with tests of homogeneity 

of variance verified by Brown-Forsythe and Welch analyses. Statistical significance 

between short rod/long rod and sphere (control) indicated by * at p≤0.05 & statistical 

significance between short rod and long rod indicated by ** at p≤0.05.  Sample collection 

was carried out from 5 independent devices (biological replicates).  All statistical tests have 

been justified as appropriate. 

4.4 Conclusions 

The goal of this study was to provide insight into improving therapeutic delivery 

performance through the application of variously shaped particles.  

Enhanced conditions for distributing particles nearest to channel walls were achieved by 

using long rods with 25% RBCs at the shear rate of 1600 s-1.  These results were observed 

because the long rods have larger surface area exposure to the inertial lift force pushing 

towards the walls and a drag force pushing towards the channel core [206]–[208].  The 

distribution peaks follow the trends outlined by the theory of hydrodynamic lift and drag 

as predicted by the lift Equation 1 from Takemura & Magnaudet: 

𝑪𝑳 = (𝟖. 𝟗𝟒𝜷𝟐(𝑳𝑹𝒆)−𝟐.𝟎𝟗)((𝟏 + (𝟎. 𝟔𝑹𝒆
𝟏

𝟐) − (𝟎. 𝟓𝟓𝑹𝒆𝟎.𝟎𝟖))

𝟐

)((
𝑳

𝟏.𝟓
)

−𝟐 𝐭𝐚𝐧𝐡(𝟎.𝟎𝟏𝑹𝒆)

)        

(1) 

 along with the hydrodynamic drag Equation 2 from Vasseur & Cox: 

𝑪𝑫 =
𝟐𝟕

𝟒𝑳𝑹𝒆
+

𝟐𝟒

𝑹𝒆(𝟏+(
𝟑

𝟖
)𝑹𝒆)

               (2) 
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where CL is hydrodynamic lift, CD is hydrodynamic drag, β is a coefficient (0.50698 for 

this study), L is the distance away from the channel wall, and Re is the particle Reynolds 

number [206]–[210].  Beyond particle distribution, the long rod particles were shown to 

undergo improved binding to the channel walls.   

The binding section indicates that the best performer is the long rods at the lowest shear 

rate tested of 200s-1 with 25% RBCs.  The large volume of the long rod significantly 

outperforms the other shapes because adhesion of a single long rod is equivalent to more 

than 2 short rods and more than 4 spherical particles.  Therefore the long rod particles are 

best at binding therapeutic to the vessel lumen because of the large surface area over which 

non-specific binding can occur.  Additionally, long rods and short rods have less area 

exposed to shear flow within the channel reducing drag.  These factors result in greater 

particle binding for the long rods as depicted in the schema of Fig 4.8(C). 

Lastly, the transport portion of this study showed that short rods and spherical particles 

performed best due to their smaller size and small gaps in the EC monolayer for healthy 

vessels.  Diseased conditions showed improved performance with long rods due to large 

gaps in the EC monolayer.  However, treatment with Paclitaxel resulted in changes in 

transport as the BAOEC monolayers regained confluency as in Fig 4.3 with schema.  The 

long rods performed best under low pressures throughout the treatment time-course 

because the particles had longer to undergo diffusion transport.  However under medium 

pressure initial treatment with long rods followed by short rods after 12 hours performed 

best due to shorter particle diffusion times and reduced EC permeability as therapeutic 

treatment progressed.  Lastly, treatment under high pressures were best for short rods 

followed by spherical particles after 24 hours due to the very brief diffusion timeframe and 
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reduction in EC permeability with Paclitaxel treatment.  In addition, the improved 

performance of the smaller particle shapes at the higher pressures can be attributed to the 

improved particle focusing towards the channel walls.  In order for the particles to transport 

across the EC monolayer, they must first be near the edges of the channel and cell 

monolayer. At the lowest pressure, the sphere and short rod particles remain uniformly 

distributed throughout the channels cross-section and as such have a longer distance to 

diffuse in order to cross the EC monolayer.  Under the same low-pressure condition, the 

long rod particles are large enough to be influenced by the hydrodynamic lift force allowing 

the particles to be more heavily distributed closer to the channel walls and in turn have a 

shorter distance to diffuse in order to cross over the EC monolayer.  As the pressure is 

increased, the smaller particles are focused in higher concentrations closer to the channel 

wall, in turn reducing the distance for the particles to diffuse across the cell monolayer.  

This improved particle focusing closer to the channel wall coupled with the increased 

diffusion achieved by the two smaller particle shapes, allows the sphere and short rod 

particles to begin to outperform the long rod particle at the higher pressures tested.  The 

low pressure conclusions agree well with in vivo mice tumor studies by Zhou and 

colleagues (2012), with the long rods delivering the greatest amount of drug under 

pressures near the lower end of the range tested in this work [211]. 

One final consideration given to the process of therapeutic delivery via nanoparticle carries 

is the biodistribution of the carriers in vivo and the circulation times associated with various 

particle sizes and shapes.  It is well documented in literature that smaller particles tend to 

be more readily absorbed by the tissue of organs such as the liver, lungs and spleen.  In 

general, these three particular organs tend to have the greatest accumulation of 
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nanoparticles, either due to filtration functions within the body or large surface area for 

material absorption and exchange [185], [192], [193], [212].  When compared to the results 

obtained from our blood vessel model we found that our conclusions were in good 

agreement with the trend observed in vivo.  The spherical particles tended to most easily 

transport from the mimicked vessel over to the surrounding tissue.  Likewise, it is well 

accepted in literature that larger particles or particles with larger aspect ratios, such as long 

filaments, tend to have longer circulation times in vivo [185], [192], [193], [212].  The 

longer circulation lifetime of larger particles results from lower rates of binding with 

vascular walls and being taken up by surrounding tissue less easily due to their size [185], 

[192], [193], [212].  Again these trends were observed in our model system, where the long 

rod particles bound in the lowest quantity to the walls of the mimicked vessel, however, 

due to their larger therapeutic carrying capacity were able to outperform the smaller 

particles when considering the characteristic of drug delivery. 

Overall, the long rod filamentous nanoparticles have presented as the best option for the 

delivery of therapeutics from the three shapes studied in this work.  The biomimetic nature 

of the long rods leverages the same effect observed in vesicle, virion, and DNA 

transport/translocation to efficiently deliver large payloads in as few packages as possible 

[190], [191], [213]–[216].  Improving disease treatment also relies on the pressure or flow 

rate in the general zone of the disease, as well as the time-course over which treatment is 

administered.  The best option for patients may not be as simple as picking a single particle 

shape and treating over the entire duration of the disease.  Instead, consideration may be 

given to trying an initial combination of particle shapes, or changing particle shapes 

throughout treatment time-courses.  As a final improvement to the therapeutic screening 
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system, a method for producing 3D tumor spheroids is required in order to achieve a higher 

level of physiological relevance and to improve the predictive capabilities of the system as 

a whole.  Therefore, the next chapter introduces a bi-layer microfluidic device and 

accompanying method designed to produce tumor spheroids in an expedited manner using 

nutrient flow for use in therapeutic screening.  In addition, a computational model is 

developed to predict the growth of the tumor spheroids under flow conditions. 
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Chapter 5:  Bi-layer microfluidic 

platform for expedited tumor growth 

towards drug evaluation 

5.1 Introduction 

Throughout the world 14.1 million people suffer from cancers of various types as of 2012, 

with an estimated increase to around 21.3 million by 2030 [1]–[3].  The average survival 

rate after diagnosis varies based on cancer type and the stage at which the cancer is 

identified [2], [3].  Improving the likelihood of patient survival requires early diagnosis 

along with rapid development and implementation of treatment plans [2], [3]. 

Current in vitro growth of cancer models and therapeutic performance tests are run using 

two-dimensional monolayers or sheet cultures of cancer cells [217], [218].  While this 

approach reduces the time required to identify a viable candidate, it makes use of a model 

system which does not match what is experienced in vivo [217]–[222].  As such this method 

can result in the selection of a therapeutic treatment plan which is not ideal for use against 

the patient’s tumor mass due to misrepresentation of cell-cell interactions and differences 

in drug kinetics between 2D and 3D models [217]–[222].  In order to better identify viable 

therapeutic treatment options for patients a need exists for methods capable of generating 

three-dimensional tumor spheroids or masses in a short period of time [217]–[222].  

Current in vitro approaches such as liquid-overlay [223], hanging-drop [224], magnetic 

levitation [225], bioreactors [226] and others are capable of producing tumor spheroids 
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however suffer from issues of low spheroid quantities, inability to refresh culture media, 

difficulty with direct tumor imaging, difficulty with introduction of therapeutics for drug 

testing, high cost, large initial quantities of cancer cells required for growth and long 

periods of time as indicated in Table 5.1 [227]–[233].  Ideally, such in vitro growth systems 

should be capable of generating tumor models without such issues for testing [223]–[226], 

[234].  In addition, the tumor models should be produced quickly in order to reach an 

exponential growth phase, where treatment of in vivo tumors typically occurs [217], [218].   

Table 5.1 Advantages and improvements over existing methods.  Comparison of our 

microfluidic growth platform with traditional cancer growth techniques and platforms. 

 

Current 3D growth models require 1 week to 1 month in order to fully establish cancer 

spheroids before any drug screening can occur [217], [235].  Additionally, several hundreds 

to thousands of initial cancer cells are often required in order to form such 3D tumor models 

[227]–[233].  As an example, in vivo injection of cancer cells into animal models such as 

mice and rats often requires large populations (1Χ105 or more) of cancer cells for injection 

and can typically require a several weeks or more of growth before treatment testing can 

begin [236]–[238].  The acquisition of such a large population of cells from patient samples 
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can often be difficult due to the rarity of cells in certain cancer types where fewer than 50 

cells may be collected in biopsies [227]–[233].  Following the establishment of the tumor 

models, simultaneous therapeutic analysis is required in order to identify and viable 

therapeutic treatments [227]–[233].  As such, being able to perform tumor growth to a 

predetermined size in an expedited manner within a platform capable of facilitating tests 

with dozens of potential therapeutic options will aid to shorten the drug screening process 

[227]–[233].  However, performing multiple drug tests simultaneously increases the time 

required for data acquisition and analysis. 

The overall pool of potential therapeutics capable of being utilized as treatment options 

continues to grow as new drugs are approved by the FDA.  From the year 2013 to February 

of 2018, a total of nearly 160 new drugs for treatment of various cancers has been approved 

and released on the market [239].  For some specific cancers, such as leukemia, there exist 

multiple drug choices which could potentially serve as the best treatment option for 

patients, with BCR-ABLI T315I-positive cell leukemia alone having 11 potential options 

[240].  More substantial are the number of drug candidates which are made available to 

patients in clinical trials, where it is not uncommon to have upwards of 50 or more 

candidates available [228].  Such clinical trials typically pose more risk to patients as a full 

response profile has not been completely established and could serve to be a waste of 

patient’s time if the chosen treatment is not effective [228].  Current practices typically 

utilize trial dosages on patients to test drug candidate responses until an effective drug is 

found, which a time-consuming and painful process [241]–[243].   Such large quantities of 

potential therapeutic options is promising for patients, however, identifying which is best 

suited can serve to be an insurmountable challenge [228]–[233].  In order to better sample 
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a larger range of the total available clinical trial and marketed drug options, a system must 

be developed which is capable of running tens to hundreds of potential options 

simultaneously in order to facilitate the timely selection of a viable treatment [244], [245]. 

Previous microfluidic platforms have been developed to help address the issues faced in 

cancer therapeutic testing [246]–[248]. All of these systems involve the production of 

devices which have specialty chambers in which cancer cells can be grown and exposed to 

therapeutic agents [246]–[248].  However, most of the systems designed to handle three 

dimensional tumor spheroids require that the spheroids be pre-formed outside of the device 

and later introduced upon reaching a suitable size or that the spheroids be grown slowly 

within the device [246]–[250].  In both cases, the time required to produce the tumor 

spheroids is long, large initial quantities of cancer cells are required and there is the need 

for an additional handling step when spheroids are formed outside of the microfluidics 

[246]–[250].  The previous approaches which form spheroids directly within microfluidic 

systems often rely on the use of hydrogel or ECM materials to facilitate the three 

dimensional growth of the tumors [247], [249], [250].  While the use of hydrogels or ECM 

is beneficial in providing structural support to the growing tumors, their presence around 

the spheroids limits the ability to deliver nutrients to the tumor [247], [249], [250].  Such 

growth models require the nutrients to undergo diffusion through the hydrogel materials 

before reaching the spheroids [247]–[250].  As such, the rate of growth for the spheroids 

is limited when compared to a system where nutrient delivery to the periphery of the tumor 

occurs unhindered.  Therefore, when attempting to grow cancer spheroids as quickly as 

possible for use in therapeutic testing, the ability to avoid nutrient diffusion through 

hydrogels is important [246], [248].  We in turn have developed a system that is able to 
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actively deliver key growth nutrients to growing spheroids in a convectively driven manner 

that allows for fast growth directly within the microfluidic environment along with coupled 

therapeutic testing. 

Current methods for producing cancer cell populations for therapeutic testing require 

extended periods of time [244], [245], [251], [252].  Such delays typically experienced 

when growing cancer populations result in lost time when attempting to identify viable 

therapeutic treatments [244], [245], [251], [252].  In order to shorten the time delay 

experienced during cancer cell growth and drug screening from one or more weeks, down 

to just a few days requires a method of expedited growth.  In order to address these issues, 

a microfluidic system will be developed which is capable of generating tumor spheroids in 

an expedited fashion utilizing convection driven nutrient delivery.  The microfluidic 

system will be tested with adherent (spheroid forming) and non-adherent (suspension) 

cancer cell to verify performance across different cancer types.  In addition, a mathematical 

model will be utilized to verify and predict the growth of the cancer within the microfluidic 

system.  Application of mathematical model and direct imaging of the cancer populations 

will serve as a feedback loop to facilitate expedited cancer growth in an adaptive manner.  

Overall, outperforming current cancer growth techniques will serve to provide a platform 

better suited for therapeutic testing as shown in Table 5.1. 

5.2 Experimental 
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5.2.1 Materials 

The media used for HCT116 cells is Dulbecco’s Modified Eagle’s Medium (DMEM, Life 

Technology), with 10% fetal bovine serum (FBS, Invitrogen) and 1% Antibiotic & 

Antimycotic (ThermoFisher). The media used for Leukemia cells is Dulbecco’s Modified 

Eagle’s Medium + GlutaMAX (DMEM+GlutaMAX, Life Technology), with 10% heat 

inactivated fetal bovine serum (HI-FBS, Invitrogen) and 1% Antibiotic & Antimycotic 

(ThermoFisher).  CellTracker Red used to fluorescently label cells (ThermoFisher). 

Microfluidic molds digitally cut from printable gold foil sheet (Silhouette) with Silhouette 

SD digital cutter (Silhouette). Microfluidic devices produced from Sylgard 184 

polydimethylsiloxane (PDMS) (Dow Corning), Nuclepore polycarbonate semi-permeable 

membranes with 800nm pore diameter (Whatman), and microscope cover glass slides 

(FisherBrand). Syringe pump used for introduction of cancer cells into devices and 

continued culture media flow (Harvard Apparatus). Cancer cell growth monitored with 

combination of standard fluorescence microscopy (Olympus IX70, Hamamatsu C9300, 

Plan Fluor 10x & 20x, NA: 0.3, RI:1) and fluorescence confocal microscopy (Nikon C2+, 

Apo 4x).  All image processing performed in FIGI (ImageJ) software. All other reagents 

not mentioned were used directly without purifying. 

5.2.2 Microfluidic device fabrication 

Bi-layer microfluidic platforms were produced following similar techniques outlined in 

previous microfluidic works from the Liu group [56]–[58], [253], [254].  The devices 

produced for expedited tumor spheroid growth contained a semi-permeable polycarbonate 

membrane that functioned to separate the apical and basal halves of the microfluidics.  The 

circular chamber where the cancer cells were grown measured 3mm in diameter and 1.5mm 
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in height.  The straight sections of channel in the microfluidic devices measured 600μm in 

height and width. The use of the semi-permeable membrane within the system functioned 

to prevent the cancer cells introduced into the system from being washed downstream and 

out of the channel, which had an average pore diameter of 800nm.  A depiction of the 

microfluidic setup can be viewed in Fig 5.1. 

  

Figure 5.1 Microfluidic device schema depicting device structure and cancer cell capture 

function utilizing semi-permeable membrane.  Flow direction indicated by red arrows.  (A) 

Device schema cross-section.  (B) Device schema overview. (C) Image of sample 

microfluidic device utilized in experimental testing (white scale bar is 3mm long). 

In addition to the bi-layer device designed to facilitate the growth of single tumors, a larger 

format microfluidic device was developed in order to facilitate larger scale growth for high 

throughput screening applications.  The high throughput screening system was modeled 

after standard well plate systems designed for use in plate readers.  The microfluidic model 

relies on the use of channels integrated into the lid of the well plate system to facilitate 

fluid flow to the individual wells of the device.  Each well of the device is connected to 
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another well via a microfluidic channels that are mounted onto the bottom of the plate.  The 

size and geometry of the microfluidic channels are varied based on desired testing 

outcomes.  Fig 5.2 depicts a CAD version of the modeled prototype along with images of 

the 3D printed prototype used to validate the overall function of the system.  The validation 

of the prototype design involved flowing FITC dye through the device in the apical channel 

and measuring the fluorescence intensity of the dye that freely transported into the basal 

channel.  The testing was run at various concentrations of FITC dye and compared to equal 

concentrations of the dye present under static conditions in a standard well plate. 

Figure 5.2  High-throughput microfluidic well plate device. (A) Partial CAD prototype 

used to produce 3D printed device. (B) Image of 3D printed prototype used to validation 

testing in the plate reader. (C) Full CAD prototype. (D) Representative image of 3D printed 

prototype being used to scan FITC dye fluorescence intensity with a fluorescence 

microscope. (E) Representative image of 3D printed prototype being used to scan FITC 

dye fluorescence intensity with a plate reader. 
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5.2.3 Leukemia cell growth 

Leukemia cancer cells were flown into the system using a syringe pump (PHD 2000, 

Harvard Apparatus) with culture media (DMEM(1x) + GlutaMAX – I (gibco, life 

technologies), 10% HI-FBS (Sigma-Aldrich), 1% Penn/Strep Antibiotic(1X) (gibco, life 

technologies)).  Due to the small pores of the semi-permeable membrane, the cancer cells 

were captured by the membrane and all held in the same viewing plane within the devices.  

The initial count of cells introduced into all devices was held constant at 1Χ105, which 

corresponds to the lower end of the range of leukemia cells per milliliter typically drawn 

in patient samples [255]–[258].  Culture media was continuously flown within the devices 

for the flow based test cases.  Static test cases, only received an initial influx of culture 

media during the cell seeding process.  For flow based tests, specific flow rates of 

3.4Χ103μL/hr and 3.4Χ104μL/hr were generated in order to introduce a large quantity of 

nutrients into the growth system. 

5.2.4 HCT116 spheroid growth 

Tumors were grown using HCT116 human colorectal cancer cells.  All spheroids utilized 

in this work were grown from an initial suspensions of 30 cells which were pre-formed 

into loose tumor spheroids via an 8 hour incubation in a low adhesion round bottom well 

plate under static conditions.  The pre-formed spheroids were then collected and flown into 

their respective microfluidic devices.  Once inside the microfluidic devices, the semi-

permeable membrane functioned to capture the pre-spheroids and hold them in place over 

the duration of the experimentation.  The same process of an 8 hour incubation in a low 

adhesion well plate to pre-form spheroids was utilized for the static based tests.  After pre-

forming the initial static test case spheroids, Matrigel was added to the well plate in order 
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to further facilitate spheroid growth over the course of 120 hours.  Tumor spheroids grown 

under flow conditions were established as noted in the leukemia growth section at specific 

flow rates of 3.4Χ103μL/hr and 3.4Χ104μL/hr. 

5.2.5 Minimum cell growth requirements 

In order to determine the minimum number of HCT116 cells required to produce tumor 

spheroids, a range of initial cell counts were tested within the microfluidic device.  HCT116 

cells were pre-clustered for 8 hours in low-adhesion 96 well plates in order to form loosely 

associated pre-spheroids as described in the previous section.  The cells were maintained 

under standard culturing conditions coupled with slow swirling of the entire plate on a 

shaker for 4 hours followed by static culturing for the remaining 4 hours.  Once the pre-

spheroids were formed and stable enough to be transported out of the wells, a syringe was 

used to transfer the spheroids into the microfluidic devices as described above.  Further 

culturing of the spheroids occurred within the microfluidic devices following the protocol 

described above for the HCT116 cells.  The total range of initial cell counts tested was: 1, 

3, 5, 8, 10, 13, 15, 18, 20, 23, 25, 28, 30, and 33.  Three rounds of testing were performed 

with 8 replicates of each initial cell count run per round.  The frequency of successfully 

forming pre-spheroids for each initial cell count can be seen in Fig 5.3. 
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Figure 5.3 Relative frequency of HCT116 tumor spheroid formation based on the initial 

number of cancer cells introduced into the microfluidic device (n=24).  No spheroid 

formation is observed between 1 and 5 cells. The smaller number of cells required to form 

a spheroid is 8 cells with roughly a 12.5% likelihood of success. Consistent (100%) 

spheroid formation occurs when using 30 cells or higher. 

5.2.6 Cancer growth measurements 

Cancer growth was monitored daily over the course of five days with brightfield and 

fluorescence imaging.  All data collected from the leukemia growth studies was 

accomplished using CellTrackerTM Stain (10μM red, Thermo Fisher Scientific) and 

standard fluorescence imaging (Olympus IX70, Hamamatsu C9300, Plan Fluor 10x & 20x, 

NA: 0.3, RI: 1).  Data collection for spheroid growth was accomplished utilizing 

CellTrackerTM Stain (10μM red, Thermo Fisher Scientific) and confocal microscopy 

(Nikon C2+, Apo 4X).  Images of each cancer growth set-up were captured every 12 hours 

over the course of 5 days.  All images were processed with FIGI (ImageJ) in order to 

measure HCT116 tumor sizes and cell counts for leukemia tests. 
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5.2.7 Statistical analysis 

Statistical analysis of all obtained results were run utilizing IBM’s SPSS statistical software 

package (IBM Corp.).  All of the figures have significant differences indicated above 

elements within the plots.  One way ANOVA tests were run for each data set with 

confidence levels of 95% held throughout all plots.  All analyses were carried out under 

conditions of Tukey equal variances assumed, along with tests of homogeneity of variance 

further verified by both Brown-Forsythe and Welch analyses.  All line plots show 

statistically significant differences in means compared against the baseline tests for the 

statically grown cancer cells, indicated by “*”.  Significance between 3.4Χ103μL/hr and 

3.4Χ104μL/hr test data is indicated by “ ** “, noting that all differences are given at a 

confidence level of 95%.  Sample sizes for all experimental testing were determined by 

performing estimation for multiple-sample one-way ANOVA pairwise comparison based 

on pilot studies utilizing the standard sample size approximation of: 𝒏𝒊𝒋 =
𝟐(𝒛

𝒂

𝟐𝝉
+𝒛𝜷)𝟐𝝈𝟐

𝜺𝒊𝒋
𝟐 . 

5.3 Results and Discussion 

5.3.1 Microfluidic device fabrication 

A microfluidic platform has been developed which is capable of delivering a continuous 

nutrition supply to growing cells.  The microfluidic device channels are made of 

Polydimethylsiloxane (PDMS) through standard photolithography [56], [57], [254], [259].  

Both the upper and lower channels are comprised of a short straight section of channel 

which leads into a large circular portion.  The width of the straight sections for both 

channels are 600μm and the diameter of the circular portion is 3mm.  The height of the 



131 
 

both upper and lower channels is also 1.5mm over the entire length of the straight and 

circular channel regions of the device.  Fig 5.1 shows the overall design and layout of the 

microfluidic platform.  The upper and lower channels of the device are separated by a 

polycarbonate semi-permeable membrane that contains uniformly distributed pores with 

800nm diameters.  The presence of the semi-permeable membrane functions to retain 

cancer cells and tumor spheroids inside of the device and serves to keep all cells in the 

same viewing plane.  The pores in the semi-permeable membrane also allow transport of 

culture media and cellular waste products through and out of device.  Using the 

microfluidic system, non-adherent cancer cells and small preformed tumor spheroids can 

be grown and monitored over long time durations of a week or more. 

In addition to the microfluidic configuration shown in Fig 5.1, tumor growth was attempted 

in a reverse manner where the pre-spheroids and culture media were flown into the basal 

channel and pressed up against the bottom of the semi-permeable membrane.  This 

particular configuration functioned well when the tumor spheroids were small and could 

be suspended up against the bottom of the membrane (up to first 72 hours), however as the 

spheroids grew in size, they became too heavy for the fluid flow to support (72 hours and 

beyond).  As a result, the spheroids dropped to the bottom of the basal channel and were 

prone to move around within the channel as the culture media flow pushed them. 

Besides the reverse configuration, an approach was tested where the tumor spheroid were 

flown into channels with metal wire mesh running across the cross-section of the channel.  

This approach utilized mesh with a larger pore size compared to the semi-permeable 

membrane opted for in the final version.  The use of metal mesh resulted in issues with 

imaging because the mesh was not transparent and portions of the tumors were not visible.  
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Additionally, the larger pore size of the metal mesh allowed the tumor spheroids to grow 

around and engulf the mesh which is not ideal if the tumors need to be recovered from the 

devices and because the influence of the mesh on the growth of the tumors introduces 

additional variable to be considered.  Lastly, the fabrication of the devices  with a metal 

mesh screen running across the cross-section of the channel was difficult and frequently 

suffered from leaking which is not ideal for controlled flow assisted growth 

experimentation. 

As a result, the microfluidic device configuration shown in Fig 5.1 was chosen as the most 

suitable option to provide ease of use, ease of imaging, ability to recover tumor spheroids 

from the devices if needed for post-analysis, ease of production, and low cell adhesion 

properties of the semi-permeable membrane.  However, the designed used to grow tumors 

is only capable of facilitating the growth and drug screening of a single tumor.  In order to 

improve the throughput of the testing system, a high throughput prototype was developed 

to facilitate high throughput drug screening once tumors are grown. 

In order to achieve high throughput screening, multiple tumors must be grown 

simultaneously on a single device that facilitates nutrient and therapeutic flows.  As a result 

of the larger number of tumors being grown and tested simultaneously, faster methods of 

data collection are ideal to further expedite the screening process.  One common 

technology that facilitates faster data collection are plate readers which are capable of 

scanning a large number of wells automatically.  As such, a well plate inspired design was 

adopted for the high throughput screening prototype microfluidic system.  The design of 

the well plate microfluidic system in turn was informed by the size and geometry of 
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standard well plates to ensure a proper fit and alignment within the plate reader for data 

collection.  

In Fig 5.2 fluid inlets into the device can be observed, where needles and tubing are 

attached in order to facilitate flow through the system via syringe pump.  An alternative 

solution to facilitate fluid flow through the system would be the use of an air pressure 

driven system.  The air pressure driven system relies on the liquid stored within each well 

of the plate which in turn limits the overall run time achievable without needing to interrupt 

the system to refill the wells with liquid.  Despite this limitation, an air pressure driven 

system typically requires less space, as a single air pump can be used to generate the 

required pressure.  When considering the syringe pump driven system, the benefit is that 

larger volumes of media or therapeutics can be flown through the device based on the size 

of the syringe being used.  The ability to flow large volumes of liquid through the device 

without interruption is beneficial for long-term studies where growth or screening occur.  

The downside to this approach of establishing fluid flow is that the system is much larger 

as it requires a large number of syringes and syringe pumps that occupy additional space.  

However, despite the differences in establishing flow, the system can function using either 

approach and as such the method can be chosen based on the need of the particular 

experiment being run. 

The validation of the prototype model utilized syringe pumps to facilitate the flow of FITC 

dye through the device.  The fluorescence intensity of the FITC dye within the device was 

used to verify that readings from the microfluidic well plate system agreed well with 

standard well plates at varying concentrations.  Fig 5.4 depicts the fluorescence intensity 

of the FITC dye measured in the basal channel of the microfluidic well plate and a standard 
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well plate over the concentration range of 1μM to 250μM.  From the data shown in Fig 5.4, 

a good agreement between the two systems was observed indicating that the prototype 

design functions well to facilitate high throughput data collection with a plate reader. 

 

Figure 5.4 Normalized fluorescence intensities of FITC dye measured in the basal channel 

of the well plate microfluidic device at varying concentrations vs. the normalized 

fluorescence intensities of FITC dye in a standard well plate over the same concentration 

range. 

5.3.2 Cancer cell culturing and imaging  

Adherent cancer cells (HCT116) grown within the devices were first aggregated together 

under static culturing conditions within low adhesion well plates.  The cells were added to 

the wells and given 8 hours to adhere into loose spheroids before being introduced into the 

microfluidic devices.  Both leukemia and HCT116 cancer cells were successfully cultured 

within the microfluidic devices.  Fig 5.5(C) depicts representative images of leukemia cells 

grown within the devices when subjected to a flow rate of 3.4Χ104 μL/hr over the course 

of 120 hours.  Fig 5.6(C) depicts representative images of HCT116 cells grown when 

subjected to a flow rate of 3.4Χ104 μL/hr over the course of 120 hours.  Both representative 

figures show overall increases in cell counts as time progresses as is indicated by the 

presented growth data in Figs 5.5(A) and 5.6(A).  Additionally, control cancer populations 
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were grown under static conditions in well plates that can be seen in Fig 5.7 (leukemia) 

and Fig 5.8 (HCT116). 

 

Figure 5.5 Leukemia cell growth over time based on flow conditions (105 cell initial 

count). (A) Normalized leukemia cell count over time for various flow conditions and 

theoretical model predictions.  (B) Normalized leukemia nutrient availability within 

microfluidic system over time for various flow conditions.  Equilibrium point indicates 

when nutrient availability within the system can no longer satisfy the requirements of the 

entire cancer cell population.  Inset figure shows magnified view of the static test case 

crossing over equilibrium point.  (C) Representative fluorescence images of leukemia cell 

growth over the course of 120 hours under a flow rate of 3.4Χ104 μL/hr (stained with 

CellTracker RedTM) (scale bars are 150μm).  Statistical significance indicated by “*” 

between flow based tests and static conditions and “**” between flow based tests at p≤0.05.  
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Figure 5.6 HCT116 cell growth over time based on flow conditions (30 cell initial count). 

(A) Normalized HCT116 cell count over time for various flow conditions and theoretical 

model predictions.  (B) Normalized nutrient availability within microfluidic system over 

time for various flow conditions.  Equilibrium point indicates when nutrient availability 

within the system can no longer satisfy the requirements of the entire cancer cell 

population.  (C) Representative fluorescence images of HCT116 tumor spheroid growth 

over the course of 120 hours under a flow rate of 3.4Χ104 μL/hr  (scale bars are 60μm).  

Statistical significance indicated by “*” between flow based tests and static conditions and 

“**” between flow based tests at p≤0.05. 
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Figure 5.7 Representative fluorescent images of Leukemia cell static growth suspended in 

Matrigel stained with CellTrackerRedTM. (A) 0 hrs.  (B) 24 hrs.  (C) 48 hrs.  (D) 72 hrs.  

(E) 96 hrs.  (F) 120 hrs.  All white scale bars are 100μm in length. 

 

Figure 5.8 Representative brightfield images of HCT116 cell static growth suspended in 

Matrigel. (A) 0 hrs.  (B) 24 hrs.  (C) 48 hrs.  (D) 72 hrs.  (E) 96 hrs.  (F) 120 hrs.  All white 

scale bars are 100μm in length. 

(A) 0 hrs. (B) 24 hrs. (C) 48 hrs. 

(D) 72 hrs. (E) 96 hrs. (F) 120 hrs. 

(A) 0 hrs. (B) 24 hrs. (C) 48 hrs. 

(D) 72 hrs. (E) 96 hrs.  (F) 120 hrs. 
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5.3.3 Cancer growth measurements and nutrient availability 

Successful culturing of both adherent and non-adherent cancer cell lines was accomplished, 

as demonstrated by the growth of human colorectal (HCT116) and human leukemia 

(AR230-r), respectively, in Fig 5.5(A) and 5.6(A).  Growth of the cancer populations 

within the devices was measured directly through confocal imaging with CellTrackerTM 

red stain.  Through the application of various flow rates within the microfluidic devices, 

the rate of growth for the cancer cell populations was controlled, as shown in Fig 5.5(B) 

and 5.6(B).  The use of convective flow allowed for a maximum of 1.27 to 4.76 times faster 

cancer cell growth when compared to the static growth cases for AR230-r and HCT116, 

respectively.  When compared to the static test cases, introducing 3.4Χ103μL/hr nutrient 

flow into the systems containing leukemia cells results in an overall increase in the cell 

population by a factor of 1.27 at the end of 120 hours.  Similarly, the normalized number 

of leukemia cells present after 120 hours of growth under flow conditions of 3.4Χ104μL/hr, 

was improved by a factor of 1.38.  More significant were the observed increases in HCT116 

growth with the 3.4Χ103μL/hr test case resulting in a 2.47 factor increase in the cell 

population.  Even more impressive was the observed increase in HCT116 growth when 

supplied with a nutrient flow of 3.4Χ104μL/hr, which resulted in a 4.76 factor increase in 

the cell population.  Representative images collected for static culturing conditions of both 

cell types can be seen in Fig 5.7 and Fig 5.8, respectively.  The observed growth of both 

cancer types had good agreement with the theoretical predications made based on the 

mathematical growth model developed based on the transport of nutrients throughout 

tumors, as shown below.  The model is a combination of equations for static cell growth 

that have been modified to include components of fluid transport in tissues specific for our 
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microfluidic model and cell types utilized [260]–[266].  First the growth of the cell lines 

was verified under static conditions.  The growth of either cell population is described by: 

𝑁𝑝 = 𝑁𝑜𝑒𝑟𝑜𝑡 (1) 

where Np is the number of cancer cells after a growth time t, No is the initial number of 

cells in the population, ro is the static growth rate constant for the particular cell type 

(Leuk=0.00330 & HCT=0.01937), and t is time.  As time increases, the population of cells 

increases based on a growth rate that is specific for each cell type.  Once the static growth 

estimations are verified to agree well with experimental results, the consumption of the 

entire population of cells under static conditions can be determined by: 

𝐶𝑝 = 𝐶𝑐𝑁𝑝 (2) 

where Cp is the nutrient consumption rate by the whole population of cells and Cc is the 

nutrient consumption rate of an individual cell based on type.  Using equations 1 and 2 

provide the ability to predict the growth and rate of nutrient consumption for static growth 

conditions however are not suitable for make predictions when convective nutrient 

transport is applied to the system.  In order to model growth in the system, the convective 

transport, diffusion and consumption of nutrients must be considered.  To start, the rate of 

nutrient convection to the cancer population is defined differently for adherent and non-

adherent cells.  In the case of non-adherent cells, the rate of nutrient convection (CTnad) 

simply takes the form: 

𝑐𝑇𝑛𝑎𝑑 = 𝑄𝑐ℎ × [𝑁𝑢𝑜] (3) 
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where [Nuo] is the stock media nutrient concentration and Qch is the flow rate established 

in the microfluidic channel.  However when considering adherent cells growing in a tumor 

spheroid, the model requires additional considerations.  Specifically, the influences of 

interstitial fluid pressure, channel flow rate, tumor surface area, tumor permeability, and 

nutrient concentration gradient within the tumor must be taken into consideration.  The 

flow rate of interstitial fluid out of the tumor is defined as: 

𝑄𝐼𝐹𝑃 = (
𝑝×𝑞𝑖𝑓×𝑎𝑇

3
) × 𝐴𝑇 (4) 

where QIFP is the flow rate out the tumor resulting from interstitial fluid pressure, p is the 

tumor density, qif is the net fluid loss from the tumor periphery, aT is the radius of the 

tumor, AT is the cross sectional area of the tumor (πa2).  The calculated flow rate of 

interstitial fluid leaving the tumor is subtracted from the flow rate in the channel to obtain 

the flow rate of nutrients interacting with the tumors surface as: 

𝑄𝑇 = 𝑄𝑐ℎ − 𝑄𝐼𝐹𝑃 (5) 

where QT is the flow rate interacting with the tumor.  We next determine the volume of 

culture media interacting with the tumor (vT) as: 

𝑣𝑇 = 𝑄𝑇 × 𝑡 (6) 

In order to determine the rate of nutrient convection into the tumor, the convective flux 

into the tumor is determined by: 

𝑆𝑉𝑇 =
𝑆𝐴𝑇

𝑉𝑇
 (7) 
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𝑐𝑓𝑙𝑢𝑥 = 𝑃 × 𝑆𝑉𝑇 × ([𝑁𝑢𝑜] − [𝑁𝑢𝑖]) (8) 

where SVT is the ratio of tumor surface area to tumor volume, SAT is the surface area of 

the tumor, VT is the volume of the tumor, cflux is the convective flux of nutrients into the 

tumor, P is the permeability of the tumor tissue, and [Nui] is the interstitial nutrient 

concentration.  Finally, the rate of nutrient convection into an adherent cell tumor (cTad) is 

determined by: 

𝑐𝑇𝑎𝑑 = 𝑐𝑓𝑙𝑢𝑥 × 𝑣𝑇 (9) 

Beyond convection in the growth system, the amount of nutrients within the tumor relies 

on diffusion of nutrients.  While the contribution of diffusion is relatively small when 

compared to convection, it is still important to consider in order to have a well developed 

model.  It should also be noted that diffusion of nutrients is only considered for the adherent 

tumor spheroids and not the leukemia cancer.  This is because there is no tissue for nutrient 

to diffuse through in the leukemia model and as such is disregarded.  For the tumor 

spheroids, the diffusion of nutrients is defined by the concentration gradient across the 

tumor, the rate of nutrient diffusion in the tumor tissue, the diffusive flux of nutrients within 

the tissue and the surface area of the tumor as follows: 

∇𝑁𝑢=
[𝑁𝑢𝑖]−[𝑁𝑢𝑜]

0−𝑎𝑇
 (10) 

𝐷𝑓𝑙𝑢𝑥 = 𝐷 × ∇𝑁𝑢 (11) 

𝐷𝑇 = 𝐷𝑓𝑙𝑢𝑥 × 𝑆𝐴𝑇 (12) 
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where ∇nu is the concentration gradient of nutrients within the tumor, Dflux is the diffusive 

flux of nutrients into the tumor, D is the diffusion coefficient of nutrients into the tumor, 

and DT is the rate of nutrient diffusion into the tumor.  Once the rates of nutrient convection 

and diffusion into the tumor have been determined, the change in nutrient availability 

within the tumor (∆Nu) at any given time point can be calculated as: 

∆𝑁𝑢= (𝐶𝑇 + 𝐷𝑇 − 𝐶𝑝) × 𝑡 (13) 

Then in order to determine an updated growth rate to use in the cell growth equation, the 

average nutrient availability (Nuavg) within the tumor is calculated over the entire duration 

of the flow-assisted growth (120 hours in our tests): 

𝑁𝑢𝑎𝑣𝑔 =
∑ ∆𝑁𝑢

𝑡
0

𝑡𝑛
 (14) 

where tn is the total number of time points during time-course t.  From the average nutrient 

availability within the tumors over the growth time-course, an updated growth rate can be 

determined based on the specific nutrient flow rate used within the device.  The equations 

governing the conversion of average nutrient availability to an updated growth rate are as 

follows: 

𝑟𝑁 =
(log𝑏(𝑁𝑢𝑎𝑣𝑔+𝑐)+𝑑)

𝑎
 (15) 

where a, b, c and d are constants determined based on a fit of the experimental growth rates 

observed and the average nutrient availability, which are cell type specific with 

HCT:(a=102.4, b=1000, c=0.0229, d=3.25) and Leuk:(a=1500, b=10, c=0.1046, d=8.4). rN 

is the adjusted growth rate constant for each cell type.  Lastly, the updated growth rate 
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constant that is determined can be used to predict the growth curve of the cancer cells using 

the following equation: 

𝑁𝑝 = 𝑁𝑜𝑒𝑟𝑁𝑡 (16) 

It should be noted that the growth model is exactly the same as the one for the static growth 

cases, with the exception of the updated growth rate to reflect the changes introduced as a 

result of nutrient flow within the system.  Values which were set based on literature values 

include: Cc=7.7Χ10-9 and 6.5Χ10-6 g/hr/cell for leukemia and HCT116 respectively, 

p=1.08 g/mL, qif=0.18mL/hr, P=57.34Χ10-7cm/sec), and D=2.57Χ10-8cm2/sec [260]–

[266].  All other values were determined experimentally or specifically chosen based on 

desired experimental testing conditions. 

The above set of equations were used to model the growth of both cell types under static 

and flow based conditions.  The method of generating updated growth rate values for the 

flow cases has been shown to produce predicted growth curves that closely match the 

experimental results for the slow and fast flow rates used on both cell types.  The close 

agreement of the models predictions and experimental results can be seen in Figs 5.5(A) 

and 5.6(A).  In addition to predicting cell growth, the same governing model was used to 

predict the time point at which the rate of nutrient delivery into the tumor balances with 

rate of nutrient consumption by cells within the system, referred to as an equilibrium point.  

The predicted timeframes in Figs 5.5(B) and 5.6(B) for these equilibrium points, 

corresponds to the timeframes when the cancer growth curves in Figs 5.5(A) and 5.5(B) 

fall behind the maximum growth curve (red curves).  As an example, the nutrient 

availability graph in Fig 5.6(B) for the HCT116 spheroids, predicts that the amount of 
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available nutrients in the tumor will drop below the total nutrient demand of the tumor for 

the 3.4Χ103μL/hr test case (blue curve) around hour 72.  This prediction of insufficient 

nutrient supply to feed the entire tumor around hour 72 corresponds well with the point in 

time when the 3.4Χ103μL/hr test case (blue curve) in Fig 5.6(A) drops away from the 

3.4Χ104μL/hr test case (red curve) which still has a sufficient supply of nutrients around 

hour 72. The ability to make such predicts along with the close predictions of both static 

and unrestricted nutrient supply (3.4Χ104μL/hr test case) cell growth for both cell types 

indicates that the model developed to describe the nutrient delivery within the microfluidic 

system closely mimics what occurs during experimental testing. 

Based on the observed results and predictions made by the developed mathematical model, 

the 3.4Χ104μL/hr test case for both cell types showed continuous expedited cell growth 

even at 120 hours, while the static and 3.4Χ103μL/hr test cases entered into conditions of 

insufficient nutrient supply for the entire cell populations prior to reaching the 120 hour 

time point.  Additionally for the 3.4Χ104μL/hr test cases, sufficient cancer cell populations 

were reached around hour 72, indicating that therapeutic screening could commence after 

72 hours of culturing within the device.  

In order to further verify the formation of spherical tumor clusters, representative confocal 

scans were periodically run.  Fig 5.9 depicts one of the representative confocal scans 

showing a typical spherical tumor cluster produced within the microfluidic system.  

Additionally, the expression of E-Cadherin under static and flow conditions were tested in 

2D and 3D cultures as shown in Fig 5.10.  The level of expression between all 4 groups 

tested were very similar indicating that no major changes in cell-cell junction protein 

expression were occurring as a result of the expedited 3D growth system.  Lastly, in order 
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to test the systems capability to grow tumor spheroid from limited amount of cells, a set of 

tumor spheroid growth experiments were run which utilized a range of initial cell numbers 

in the devices to grow tumors.  A process of pre-clustering the cells into loose spheroids 

was utilized which involved a slow swirling of the cancer cells in a low adhesion well plate 

for 4 hours followed by 4 hours of static culture, both under standard culturing conditions.  

The resulting loosely associated spheroids after 8 hours could be transferred into the 

microfluidic devices for further culturing. The results in Fig 5.3 indicate that a minimum 

of 8 cells are required for this growth technique with a likelihood of success around 12.5%.  

Further testing indicated that the initial use of 30 cells or more almost guaranteed the 

formation of tumor spheroids for growth within the device. 

 

Figure 5.9 HCT116 tumor spheroid grown in microfluidic device displaying high degree 

of sphericity.  White scale bar is 60μm in length. 
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Figure 5.10 Dot plot testing results for E-Cadherin screening.  Similar levels of E-Cadherin 

expression are observed for static and flow conditions for both two-dimensional and three 

dimensional cancer cell growth. 

5.4 Conclusions 

From this work, a platform for the expedited growth of cancers is offered which can 

function with both adherent and non-adherent cell lines.  The overall goal of the study was 

to demonstrate the influence of active convective flow on the growth rate of cancer cell 

populations within the microfluidic system.  The system has been shown to facilitate a 

range of culturing conditions from static up to flow rates of 3.4Χ104μL/hr which influence 

the rate at which cancer cells grow over the course of 120 hours.  The design of the device 

allows for direct observations and measurements of the HCT116 and leukemia cancer 

population to be made via brightfield and fluorescence microscopy over the entire time-

course of the study.  In addition, the prototype high throughput well plate device was shown 

to function well in a plate reader when measuring the fluorescence intensity of FITC dye 

at various concentrations.  The validation of the high throughput prototype design, allows 

for improvements in the fabrication process and material choices in order to facilitate the 
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growth of cells on the platform.  Because 3D printing was used to produce the current 

prototype, harsh chemicals exist within the device that do not facilitate cell growth of any 

kind.  Future work involving cell growth will act to further validate the functionality of the 

high throughput system.  However, in the meantime the individual microfluidic devices 

were used to validate the process of expedited tumor growth. 

The outcomes from this work indicate that the growth of both cell types are assisted by the 

active convective flow of nutrients through the devices.  The degree of growth 

improvement has been shown to be controlled by the type of cell being used and the flow 

rate at which nutrients are introduced into the devices.  Overall, the improved growth of 

the leukemia cells with the addition of nutrient flow was less than the improvement 

observed when flow was applied to the HCT116 cells.  This difference in growth 

improvement is attributed to a couple of factors.  The first is that the leukemia cells are 

non-adherent cells and as such, do not grow in a tightly associated spheroid.  The leukemia 

cells spread out, growing in the same plane of the device and as such nutrient transport to 

a given cell in the population is not hindered by any surrounding cells.  The HCT116 cells 

grow as a single mass making it difficult to deliver nutrients to cells within the tumor 

without the aid of convection.  Therefore when convection driven nutrient transport is 

applied, the HCT116 tumor mass receives more benefit when compared to the individually 

growing leukemia cells as nutrients are forced further into the core of the HCT116 

spheroids.  The second reason why a more significant improvement in HCT116 growth 

was observed when compared to the leukemia cells is because the HCT116 cells have a 

naturally faster growth rate even under static conditions.  The faster growth rate for the 

HCT116 cells allows the cells to turn over new generations of cells in a shorter period of 
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time, which then can go on to further take advantage of the excess nutrients supplied by 

the culture media flow.  When compared to the static test cases, introducing 3.4Χ103μL/hr 

nutrient flow into the systems containing leukemia cells results in an overall increase in the 

cell population by a factor of 1.27 at the end of 120 hours.  Similarly, the normalized 

number of leukemia cells present after 120 hours of growth under flow conditions of 

3.4Χ104μL/hr, was improved by a factor of 1.38.  More significant were the observed 

increases in HCT116 growth with the 3.4Χ103μL/hr test case resulting in a 2.47 factor 

increase in the cell population.  Even more impressive was the observed increase in 

HCT116 growth when supplied with a nutrient flow of 3.4Χ104μL/hr, which resulted in a 

4.76 factor increase in the cell population.   

The increased growth observed under flow conditions for both cancer types is attributed to 

the convective flow of nutrients to the cancer cells.  While static culturing conditions rely 

purely on diffusion of nutrients within the system, the application of convective flow 

provides a continuously refreshed source of nutrients while also removing cellular waste 

excreted by the cancer cells.  This two-fold effect in turn can be used to ensure that the 

cells growing in the population are never lacking nutrients.  The function of the convective 

nutrient flow for the spheroid based tests also facilitates deeper penetration of fresh 

nutrients into the core of the tumors because the flowing nutrients are forced between 

intercellular gaps in the tumor tissue.  When compared to static cultures, the nutrient 

transport through intercellular gaps can only occur via diffusion which requires long 

periods of time for transport over such long distances to reach the cores of the growing 

tumors.  As such, static culturing conditions often result in necrotic tumor spheroid cores 

as demonstrated heavily in literature [267]–[271]. 
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Besides simply observing expedited growth of cancer populations under such convective 

flows of nutrients, a mathematical model has been developed to describe and predict the 

outcomes of such flow experiments.  The mathematical model has been based on the active 

convection of nutrients resulting from flow, the passive diffusion of nutrients within the 

spheroids, and the consumption of nutrients by the cancer cell populations over time.  The 

developed model has been simplified for ease of use, with the major factors resulting in the 

growth of cancer populations being taken into consideration.  Despite the simplified nature 

of the model, good agreements with experimental testing have been achieved which 

indicates that the model can be used to predict the growth of cancer cells within the 

microfluidic system.  The application of the model in a predictive manner in conjunction 

with the microfluidic growth system can result in expedited cancer growth of adherent and 

non-adherent cancer cells for therapeutic screening or genetic analysis.  In addition, the 

models ability to predict nutrient availability within the growth system, allows for a control 

feedback loop to be established in order to vary the nutrient supply rate to maximized cell 

growth while limiting waste.  An example of such a feedback loop would involve the 

continuous monitoring of cell growth which in turn would be used to update the 

mathematical model.  The initial nutrient supply rate can be very low and slowly increased 

as the cell population grows over time.  By doing so, expensive reagents can be used 

sparingly while not limiting the total potential growth of the cancer cells.  As a final note, 

the predictive nature of the developed model shows good agreement with the timeframes 

when variations in experimental cell growth were expected.  By predicting the availability 

of nutrients within the system, it is possible to identify how long it will take before the cell 

population runs into a deficit of nutrients.  The predicted times to reach conditions of 
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nutrient deficit for each testing condition (static and two flow cases) correspond well with 

the time points in the experimental data where the static and slow flow rate growth curves 

fall behind the growth of the faster flow rate.  This correlation between the predicted and 

observed results indicates that the developed model is sufficient enough to represent the 

experimental conditions being tested. 

As a final analysis, the minimum number of required HCT116 cancer cells required to 

successfully form tumor spheroids was tested.  The conclusions indicate that at least 8 cells 

must be present in order to successfully form a spheroid with a success rate of around 

12.5%.  However, when 30 cells or more are used within the device to produce a spheroid, 

the successful formation of such a spheroid is almost guaranteed.  These results are 

important to understand if such a device is to be used in a clinical setting with very limited 

number of cells from patient samples.  The number of such cells collected from patient 

samples are typically very low and as such, having a method to successfully form spheroids 

for drug screening will need to function under such conditions.  It should be noted however 

that the cells used in this study were well established cell lines routinely grown in a 

laboratory setting.  Future work along these lines will include tests run with patient derived 

cancer cells in order to more fully validate the system for potential future use in the clinical 

space. 

Overall, the developed microfluidic system has been shown to facilitate the growth of 

adherent and non-adherent cancer cell types in an expedited fashion through the application 

of nutrient flow.  The improvement in cancer cell growth is attributed to the continuous 

convective delivery of fresh nutrients to the cells while also actively removing cellular 

waste.  The expression of cell-cell adhesion molecule E-Cadherin has also been examined 
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to show that the growth method does not interfere or influence the normal phenotypic 

expression of such cell-surface proteins.  The developed mathematical model has been 

shown to serve as a good predictor of cancer growth within the system and can be used as 

a feedback loop to adjust the rate at which nutrients are supplied to cancer cell populations.  

Lastly the minimum require number of HCT116 cells has been determined in order to 

successfully form tumor spheroids with the microfluidic system.  As a final overview of 

the entire dissertation, a summary and outlook for each individual work is noted in the 

following chapter. 

Chapter 6:  Summary and Outlook  

The dissertation described several techniques that may significantly benefit cancer 

therapeutic discovery and in vitro cancer model generation. The research of the 

dissertation was mainly geared around techniques and models designed to facilitate 

the analysis of cancer therapeutics and therapeutic carriers such as nanoparticles.  

First, a single layer microfluidic device was developed which facilitated cancer cell 

monolayer growth and was used to screen solid lipid nanoparticle formulations 

designed to target cancerous tissue using various anti-EpCAM and PEG surface 

coatings. Second, the microfluidic system was improved to a bi-layer setup that 

facilitated the introduction of a mimicked blood vessel and cancerous region in order 

to study the influence of vascular permeability on therapeutic transport from the 

vessel to the cancer monolayer.  Third, the same microfluidic setup was used to 

analyze the delivery of nanoparticles of various shapes as potential therapeutic 

carriers in order to improve delivery to cancerous microenvironments. Lastly, in 
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order to better realize a more physiologically relevant cancer microenvironment, a 

bi-layer microfluidic system was developed which was capable of producing tumor 

spheroids in an expedited fashion for therapeutic screening applications.  Next, brief 

summaries and future outlooks are discussed for each project. 

6.1 Assessment of PEGylated cancer targeting 

solid lipid nanoparticles in a microfluidic device 

Targeted treatment of disease conditions such as cancerous sites requires delivery of 

therapeutics directly to the diseased site with minimized therapeutic interaction with 

surrounding tissue.  The use of functionalized nanoparticles is one approach to achieve the 

goal of targeted delivery strictly to diseased tissue through the use of antibodies and 

polymer chain coatings.  This work uses a microfluidic platform capable of growing cancer 

cells in confluent monolayers to test various anti-epithelial cell adhesion molecule and 

polyethylene glycol surface coating densities on solid lipid nanoparticles with the goal of 

increasing targeted delivery while limiting non-specific adhesion.  The amount of non-

specific binding of bare solid lipid nanoparticles was shown to not change with the 

presence or absence of cancer cells within the microfluidic devices.  Total amounts of solid 

lipid nanoparticle binding were shown to decrease with increased shear rates and increased 

polyethylene glycol surface coating percentages.  A polyethylene glycol surface coating 

percentage of 37%  was observed to provide the greatest amount of cell bound solid lipid 

nanoparticles when compared to the total amount of solid lipid nanoparticle binding within 

the microfluidic devices.  Overall, a general trend has been observed where the percentage 

of cell specific binding compared to the total binding starts out very low when no 

polyethylene glycol is present on the surface of the solid lipid nanoparticles.  As the 



153 
 

polyethylene glycol coating percentage increases, an overall increase in the percentage of 

cell specific binding was observed up to a polyethylene glycol coating of 37%, after which 

the percentage of cell specific binding decreases when compared to the total binding.  From 

such findings, it is proposed that addition of polyethylene glycol onto the surface of the 

solid lipid nanoparticles assists in reducing non-specific binding to a certain point, after 

which further addition of polyethylene glycol over-crowds the surface of the solid lipid 

nanoparticles and begins to hinder the normal function of target specific antibodies such as 

anti-epithelial cell adhesion molecule.  As such, a careful balance exists where antibody 

derived targeted binding is enhanced through the addition of polyethylene glycol polymer 

chains which function to reduce non-specific adhesion without hindering the targeted 

function of the antibody.  Utilizing this knowledge, future testing is planned to use SLNPs 

with active therapeutic loads to confirm that the 37% PEG surface coating percentage 

produces the greatest amount of therapeutic impact for reducing cancer cell populations 

within the microfluidic devices.  In addition, future testing will also be conducted to see if 

linker molecules can be used to offset the location of the target antibodies further away 

from the surface of the SLNP to allow for higher PEG coating percentages to be used 

without interference.  Using such an approach may serve to better reduce the non-specific 

adhesion of such SLNPs while still providing a means of targeted delivery to sites of 

cancerous tissues. 
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6.2 Biomimetic microfluidic platform for the 

quantification of transient endothelial monolayer 

permeability and therapeutic transport under 

mimicked cancerous conditions 

Therapeutic delivery from microvasculature to cancerous sites is influenced by many 

factors including, endothelial permeability, vascular flow rates/pressures, cancer secretion 

of cytokines and permeabilizing agents, and characteristics of the chosen therapeutics.  

This work, uses bi-layer microfluidics capable of studying dye and therapeutic transport 

from a simulated vessel to a cancerous region while allowing for direct visualization and 

quantification of endothelial permeability.  2.5 to 13 times greater dye transport was 

observed when utilizing small dye sizes (FITC) when compared to larger molecules (FITC-

Dextran 4kDa and FITC-Dextran 70kDa), respectively.  The use of lower flow 

rates/pressures are shown to improve dye transport by factors ranging from 2.5 to 5 times, 

which result from increased dye diffusion times within the system.  Furthermore, 

subjecting confluent endothelial monolayers to cancerous cells resulted in increased levels 

of vascular permeability.  Situations of cancer induced increases in vascular permeability 

are shown to facilitate enhanced dye transport when compared to non-diseased endothelial 

monolayers.  Subsequent introduction of paclitaxel or doxorubicin into the system was 

shown to kill cancerous cells resulting in the recovery of endothelial confluency overtime.  

The response of endothelial cells to paclitaxel and doxorubicin are quantified to understand 

the direct influence of anti-cancer therapeutics on endothelial growth and permeability.  

Introduction of therapeutics into the system showed the recovery of endothelial confluency 

and dye transport back to conditions experienced prior to cancer cell introduction after 120 
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hours of continuous treatment.  Overall, the system has been utilized to show that 

therapeutic transport to cancerous sites depends on the size of the chosen therapeutic, the 

flow rate/pressure established within the vasculature, and the degree of cancer induced 

endothelial permeability.  In addition, treatment of the cancerous region has been 

demonstrated with anti-cancer therapeutics, which are shown to influence vascular 

permeability in direct (therapeutics themselves) and indirect (death of cancer cells) 

manners.  Lastly, the system presented in this work is believed to function as a versatile 

testing platform for future anti-cancer therapeutic testing and development. Future 

applications of this technology towards early stage testing of personalized therapeutic 

options has the potential of utilizing patient derived cells as a means of improving the 

delivery and effectiveness of therapeutic systems.  Future work for the system is being 

focused on improving functionality for improved testing.  Some specific improvements 

include the establishment of a more diversified set of applications for additional disease 

models (inflammation and gastrointestinal drug delivery), establishment of culturing 

procedures to provide a wider range of cell types to be used, and introduction of a 3D 

environment for growth of tumor spheroids as opposed to monolayers of cancer cells as 

utilized in the current work. 

6.3 The shape effect on polymer nanoparticle 

transport in a blood vessel 

Nanoparticle therapeutic delivery is influenced by many factors including physical, 

chemical, and biophysical properties along with local vascular conditions. In recent years, 

nanoparticles of various shapes have been fabricated and have shown significant impact on 

transport efficiency. Identification of which nanoparticle shape helps to improve the 
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therapeutic delivery process allows for enhanced therapeutic effect, yet is hard to be 

quantified in vivo due to the complex nature of the in vivo environment.  In this work, we 

turn to biological models as a guide for informing improved nanoparticle therapeutic 

delivery, and quantify the contribution of various factors on delivery efficiency.  Here we 

showed that with a mimetic blood vessel, improved therapeutic delivery was achieved 

using long filamentous rod nanoparticles under low-pressure conditions.  When 

considering medium pressure conditions, a combination of nanoparticle shapes presents 

improved therapeutic delivery over the treatment time-course starting with long 

filamentous rod nanoparticles, followed by short rod nanoparticles.  Conditions of high 

pressure required a combination of short rod nanoparticles, followed by spherical 

nanoparticles to achieve enhanced therapeutic delivery.  Overall, improvement of 

therapeutic delivery via nanoparticle carriers is likely to require a combination of 

nanoparticle shapes administered at different times over the treatment time-course, given 

patient specific conditions. Future work geared around additional nanoparticle shapes and 

shape-changing particles may offer carriers even better adapted for therapeutic delivery to 

diseased sites.  In addition, more diverse future studies of various disease conditions 

beyond tumor environments are possible which could utilize nanoparticles carrying 

therapeutic loads. 

6.4 Bi-layer microfluidic platform for expedited 

tumor growth towards drug evaluation 

Patient derived organoids have recently emerged as robust preclinical models.  Such 

organoid models have included ovarian and leukemia cancers, as progression of the disease 

in patients can occur quickly making it difficult to treat at later stages with 



157 
 

chemotherapeutics.  Current 2D culturing methods do not provide a physiological response 

when treated with therapeutics that leads to the potential of selecting inappropriate 

therapeutics for treatment in vivo.  New cancer models are being developed which are 

capable of culturing 3D tumors that more closely reproduce physiological responses 

observed in vivo.  Despite the advances made by such 3D culturing system, the 

experimental setup often requires long periods of time to grow tumors in in vitro or in vivo 

environments.  The duration of growth for such 3D models can take anywhere from a week 

to a month to fully establish before any therapeutic testing can occur.  Additionally, such 

growth system often require large initial populations for cells to facilitate the formation of 

tumors for therapeutic testing.  Due to the relative rarity of cancer cells for some cancer 

types, these 3D growth methods are often not feasible options for drug screening.  As a 

solution to these issues, a 3D culturing system has been developed which is capable of 

producing physiologically relevant tumors in an expedited fashion while only requiring a 

small number of initial cancer cells.  A bi-layer microfluidic system has been developed 

which is capable of facilitating active convective nutrient supply to populations of cancer 

cells.  The system has been shown to function well with adherent and non-adherent cell 

types by expediting cell growth by a factor ranging from 1.27 to 4.76 greater than growth 

under static conditions.  Utilizing such an approach has enable to formation of tumors ready 

for therapeutic screening within 3 days utilizing a method of dynamic nutrient supply.  A 

mathematical model has been developed which allows adjustments to be made to the 

dynamic delivery of nutrients in order to efficiently use culture media without excessive 

waste.  We believe this work to be the first attempt to grow cancers in an expedited fashion 

utilizing only a convective nutrient supply, which has the potential to offer improved drug 
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screening for patients in clinical settings. There exists many routes of future work along 

the lines of the developed cancer growth device.  Such future work will include the 

incorporation of therapeutic testing after the formation of spheroids by introducing 

therapeutic doped media into the flow of the system.  Such therapeutic based studies will 

function to further validate the response of spheroids within the system, while using in vivo 

clinical data for the tested therapeutics as benchmarks.  Further expediting the growth of 

cancer cell populations will also be tested through the introduction of growth factors into 

the nutrient flow.  However, changes in cell phenotype and protein expression will need to 

be closely monitored to ensure that the system is still representative of phenotypically 

normal conditions.  Lastly, further testing of additional cancer cell types, both established 

and patient derived, is needed to expand the scope of the model as a whole.  Tests run with 

patient derived cancer cells will also serve to identify the minimum number of cells 

required for successful formation of spheroids for potential clinical use in drug screening 

assays and genetic analyses. 
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