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Study of the Effects of Anisotropy in

Self-Assembling Systems

Jason L. Haaga

Abstract

There are many things in the world that are not spheres. As a result, isotropic in-

teraction potentials can only serve as a crude approximation to complex molecules

such as proteins. In order to better understand the often harmful self-assembly phe-

nomena that proteins can undergo, study of how anisotropic features alter collective

behavior is required. Beyond the biological, these lessons can also guide rational

design of new materials in the area of colloidal science. This dissertation examines

the role of specific anisotropic features in coarse-grained representations of three

proteins that undergo self-assembly processes. The first, amelogenin, is the primary

protein involved in the formation of dental enamel; chapter 2 will explore the effect

of the charged hydrophilic tail on the phase diagram of this otherwise hydrophobic

protein. In chapter 3, the role of hinge angle between binding sites will be assessed

in a simplified model of human antibodies; this angle has dramatic effect on aggre-

gate morphology. Lastly, in chapter 4, the nucleation and growth mechanisms of

polyglutamine tracts of different lengths will be studied, relevant to the formation of

a class of neurodegenerative diseases, including Huntington’s Disease. This process

shows a strong dependence on repeat length, and at shorter lengths, variation due

to concentration.
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Chapter 1

Introduction

1.1 Background

Biological systems provide a wealth of test cases to probe many fascinating as-

pects of self-assembly. From the helpful, such as biomineralization, to the hamr-

ful, as in the case of diseases such as cataracts, sickle-cell anemia, or Alzheimer’s,

self-assembling systems are foundational to living matter. Self-assembly is ubiq-

uitous in the realm of biochemical production and pharmaceuticals; additionally,

new bioinspired materials are being created at a rapid pace. In protein science, the

morphology and phase behavior of proteins is also strongly affected by anisotropic

interactions. Proteins are inherently anisotropic in nature due to the differences

in the exposed surface amino acid groups and their individual contributions to

the overall interaction between proteins. There are thus hydrophobic, hydrophilic,

charged and other regions on the protein surface, and a full understand of pro-

tein phase diagrams requires taking such effects into account.55,80,115 These phase
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behaviors include gas-liquid coexistence, liquid-liquid phase separation,56 crystal-

lization,36,56,78,97,135 gelation,26,112,114,123 and aggregation.51,55,62,74,75,137 One field

in which protein interactions are especially important is protein crystallization. For

example, the growth of high-quality crystals is vital to the accurate determination

of protein structure through x-ray diffraction. Additionally, an understanding of

the kinetics of protein crystallization is important in biomedical applications. In

particular, the release rates of medications such as insulin18,76 are based on the dis-

solution rates of protein crystals; steadier doses over extended time periods can be

obtained by carefully controlling the nucleation of such crystals. Finally, numer-

ous diseases, such as cataracts and sickle cell anemia, result from undesired protein

condensation.55 Study of these systems offers an opportunity to identify crucial fea-

tures in the biology while simultaneously exploring the physics of anisotropys role

in self-assembly.

In colloidal science, developments in particle synthesis are beginning to provide

a set of experimental techniques to create colloidal particles with different shapes

and surface chemical compositions.39,109,136 As a consequence one can create colloids

with a desired number of solvophilic and solvophobic regions on the surface.52,84 This

allows one to provide valence to colloids52,53,124 and, hence, opens the new field of

supra-particle colloidal chemistry. These colloidal particles have been the subject

of recent experimental investigation58,60,100,105 as they exhibit strongly directional

interactions. These advances in our ability to synthesize such materials are also

permitting developments in photonic devices and biomaterials.16,105 As colloidal

particles of increasing complexity can be fabricated, such as Janus particles128 or

functionalized DNA-coated colloids,29 a more complete understanding of how surface
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inhomogeneity effects phase behavior is therefore highly desirable. Long term, by

building a “dictionary” of anisotropic features and their resulting effects, it could

be possible to tailor solutions to specific applications with a bottom-up approach.

Computational study of the collective behaviors of complex molecules, such as

proteins, is inherently limited by issues of scale. Proteins are comprised of hun-

dreds to tens of thousands of atoms, undergoing motions on time scales many or-

ders of magnitude smaller than the biological processes involved. To make such

problems tractable, the molecular interactions are typically approximated by pri-

marily isotropic potentials with smaller anisotropic perturbations. A number of

methods have been developed to reproduce the directional nature of protein-protein

interactions, such as patchy colloidal models,68 coarse grained bead representa-

tions,1,10,12,32,93 and polymer inspired tube approaches.6,59 These greatly reduce

the degrees of freedom present in the system, lessening computational requirements,

and accelerating dynamics. Such models can hopefully provide insight into both the

proteins of interest in addition to simpler systems they directly represent.

The work done here will utilize both Monte Carlo (MC) and Molecular Dynamics

(MD) simulations to examine both equilibrium and dynamical properties of models

inspired by proteins to better understand the assembly of the biological system and

colloidal analogs. This chapter presents an overview of the simulation techniques

used to study assembly in colloidal and protein systems. We then provide a brief

review of protein structure as well as coarse grained representations thereof.
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1.2 Simulation Methods

Computer simulation provides a powerful tool set to address problems in many-body

systems. Simulation allows for a direct “measurement” of properties potentially

unaccessable via physical experiment, since we know the positions and momenta

of all microscopic components. Conversely in silico models are limitted by both

our knowledge of the underlying physics and the number of calculations required to

evaluate the system at each simulation step. The techniques used in the simulation

of molecular systems typically fall into one of two major categories.

The first, molecular dynamics (MD)[find good citation for MD], involves numer-

ically solving the equations of motion of the system to obtain particle positions and

velocities at discretized time steps. Particle trajectories are followed until reaching

equilibrium, and time averaged measurements are then obtained for desired proper-

ties. In many respects, this is an in silico equivalent of an actual experiment. This

method has the advantage of allowing us to probe dynamical quantities as well as

follow the likely physical path of the system through phase space.

In the other, Monte Carlo simulation (MC),88 the dynamics of the system are

disregarded. System configurations are updated from one simulation step to the next

by a series of random trial moves. An individual move is accepted or rejected based

on an acceptance criteria that generates a valid statistical mechanical ensemble. As

a result, measurements performed over a series of MC steps generate an ensemble

average of the desired properties. The primary advantage of this technique is that

trial moves need not be physical, and the system is allowed to find shortcuts through

phase space to reach equilibrium with fewer calculations required.

In general, we will use MD when examining kinetic properties of the system and

5



MC when the equilibrium state is of interest. Within each category are a wealth of

specific techniques tailored to a variety of different problems. We will briefly review

those utilized within this thesis.

1.2.1 Molecular Dynamics

Molecular dynamics evolves a system by solving Newton’s equations of motion in

discretized time steps. Each step, the sum of the forces acting on each particle is

calculated and used to update their respective trajectories. The system is stepped

forward a small unit of time and the process repeated until measured quantities no

longer change with time. At its simplest, this method is the evaluation of the classic

~F = m~a repeated billions of times.

Velocity Verlet Integrator

While there are numerous techniques for numerically integrating these equations,

the most common in use today is the Velocity Verlet scheme.127 This method is a

combination of two Taylor expansions of position as a function of time; one taking

a step forward from t to t+ ∆t:

x(t+ ∆t) = x(t) +
dx(t)

dt
∆t+

1

2

d2x(t)

dt2
∆t2 +

1

3!

d3x(t)

dt3
+O(∆t4) (1.1)

and another in the reverse direction from t to t−∆t:

x(t−∆t) = x(t)− dx(t)

dt
∆t+

1

2

d2x(t)

dt2
∆t2 − 1

3!

d3x(t)

dt3
+O(∆t4) (1.2)
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Combining equations 1.1 and 1.2 cancels odd terms, resulting in:

x(t+ ∆t) = x(t) +
1

2

d2x(t)

dt2
∆t2 +O(∆t4) (1.3)

This algorithm is accurate to third order, and thus has a local error of order

O(∆t4), despite only containing a second order derivative. Additionally this method

does not require calculation of velocities in order to obtain changes in positions, only

the acceleration which is directly obtained through calculation of the net force on

a particle. As a result, the Velocity Verlet scheme provides an excellent balance of

accuracy and efficiency for most problems.

Statistical Ensemble and Solvent Effects

A typical MD simulation is done at fixed particle number (N) and system volume

(V). Energy is conserved when integrating Newtonian equations of motion, to within

a local error dependent on the integration method. This results in a simulation sam-

pling states in the NVE ensemble; experiments, however, are typically done under

constant temperature, rather than energy, conditions, resulting in an NVT ensem-

ble.133 Fortunately, there are multiple methods to ensure sampling of the proper

ensemble. In systems involving large macromolecules or colloidal particles in a bath

of much smaller solvent particles, it is often efficient to take a continuum approach

and model the effects of solvent implicitly. Such methods, known as Brownian Dy-

namics (BD) are based on integrating the Langevin Equation:99

mi ~̈xi(t) = −miΓi ~̇xi(t) + ~∇Ui + ~ξi(t) (1.4)
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Which is Newtons Second Law with the addition of a stochastic white noise term,

~ξ(t), and a viscous drag term, Γ. ~ξ(t) satisfies the following criteria:

〈ξi(t)〉 = 0 (1.5)

〈~ξi(t) · ~ξj(t)〉 = δij (1.6)

〈~ξ(t) · ~ξ(t′)〉 = 2Dδ(t− t′) (1.7)

ξ and Γ are related via the fluctuation-dissipation relation yielding the following

combined relationship:

〈 ~ξi(t) · ~ξj(t′)〉 = 6kBTΓδijδ(t− t′) (1.8)

Integrating these equations motion has been shown to yield trajectories sampling

from the canonical distribution.63

Alternatively the same sampling can be achieved through a stochastic coupling,

known as the Anderson thermostat.2 Particle velocities are randomly reassigned to

satisfy a Maxwell-Boltzmann distribution at the desired temperature. This simu-

lates the effect of collisions with the solvent bath, leading to an NVT ensemble.47

In cases where the solvent is explicitly modeled, a simple velocity rescaling ther-

mostat may be used. Under this scheme, system temperature is periodically cal-

culated, and all particle velocities proportionally rescaled to result in the desired

temperature.

In protein systems, solvent molecules typically outnumber protein molecules by

several orders of magnitude. As a result, explicit solvation requires considerably

more computational investment to calculate these interactions or a corresponding
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reduction in system size. Many aspects of the solvent can be successfully incorpo-

rated into implicit models, from simple screened electrostatics to mimic ion concen-

tration31 to complex hydrodynamic effects.3

1.2.2 Monte Carlo Simulation

From statistical mechanics, the expectation value of a quantity in a system with

Hamiltonian H is given by an integral over all potential particle positions and mo-

menta:

〈A〉 =

∫
A(qN , pN)exp[−H(qN ,pN )

kBT
]dqNdpN∫

exp[−H(qN ,pN )
kBT

]dqNdpN
(1.9)

For most systems, analytic solutions to this integral are impossible and the di-

mensionality is sufficiently high to rule out simple numeric quadrature approaches.

Additionally, over most of phase space, the integrand is often zero. The Monte Carlo

method is an effective alternative in many such cases.

If the quantity of interest is not dependent on the kinetic portion of the Hamil-

tonian, we can reduce the expression to:

〈A〉 =

∫
A(qN)exp[−U(qN )

kBT
]dqN∫

exp[−U(qN )
kBT

]dqN
=

∫
A(qN)P (qN)dqN (1.10)

where P (qN) is a probability distribution of states corresponding to the statistical

ensemble. Sampling the quantity of interest at random points according to this
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distribution will converge to the desired average. In order to achieve this, a random

walk through the non-trivial portions of phase space is constructed. A trial move

is proposed to take the system from state o to a new state n and is accepted or

rejected such that P (qN) is reproduced.

At equilibrium, the net probability flow from state o to n must be equal to that

of n to o. This principle of detailed balance requires:

P (o)pacc(o→ n) = P (n)pacc(n→ o) (1.11)

pacc(o→ n)

pacc(n→ o)
=
P (n)

P (o)
= exp[

U(o)− U(n)

kBT
] (1.12)

This can be satisfied by a number of different choices, but the most commonly

used scheme, first proposed by Metropolis et al88 chooses:

pacc(o→ n) =


P (n)
P (o)

P (n) < P (o)

1 else

(1.13)

From this the basic MC algorithm emerges: trial moves are proposed, accepted

or rejected according to this criteria, and repeated sufficiently many times to ade-

quately sample phase space.

Canonical Ensemble

The Canonical Ensemble (NVT) is a common choice for determining equilibrium

configurations at a known density and temperature, sampling for the canonical

ensemble of statistical mechanics. These variables are usually easy to control in
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Figure 1.1: Examples of configurational Monte Carlo moves: translation (A), rotation
(B), reptation (C), pivot (D), and crankshaft (E). Pre-move positions shown
in grey. Post-move positions in black.

experimental study, and thus Canonical Monte Carlo provides an efficient means to

validate simplified in silico models against their in vitro/vivo counterparts.

The NVT scheme is also one of the simplest of the variants of MC typically used

in statistical physics. Trials moves used in this ensemble are typically only random

translations and rotations. In the case of isotropic particles, only translations are

required. For the case of chain-like polymer models, it is inefficient to rely only

on this simple trial moves, and thus a set of multiple particle moves are typically

implemented as well, such as reptation (a snake-like move forward or backward),

pivot (rotating an end segment about an internal point), and crankshaft (rotating

an internal section about the line connecting two pieces of the chain).

Regardless of the level of complexity, these moves only alter the configurational

portion of the systems partition function, and thus all obey the same acceptance
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criteria:

pacc(o→ n) = min[1, exp(−β(U(n)− U(o))] (1.14)

Here U is the potential energy of a given configuration, and β is the standard

1/kBT . We can justify the conditions of detailed balance as follows easily. The

probability of being in a specific state o is given by:

N(o) =
exp(−βU(o))

Q
(1.15)

With Q being the canonical partition function of the system. Our probability

of generating a configuration is constant, and so the net flow for a state o to n,

assuming n is higher in potential than o, is thus:

K(o→ n) =
exp(−βU(o))

Q
αexp(−β(U(n)− U(o)) (1.16)

And the reverse flow, again with n being higher in potential than o:

K(o→ n) =
exp(−βU(n))

Q
α(1) (1.17)

Which can easily be seen to be the same expression. There is no net flow between

states o and n, and thus detailed balance is enforced.

An important note is that only the portions of the system energy involving the

moved particles require recalculation in order to determine move acceptance. This
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results in a balance between the sophistication of the move (i.e. simple transla-

tion versus crankshaft) and the cost of calculation that should be examined when

approaching a new system.

Isobaric-Isothermal Ensemble

Another commonly used ensemble is the isobaric-isothermal (NPT). This ensem-

ble has particular importance in measuring the equation of state, even for highly

complex systems where analytic expressions or even reasonable expansions for the

pressure may be unobtainable. Additionally this ensemble will tend towards the

lowest Gibbs free energy state of the system, in contrast to NVT simulations which

may attempt (and likely fail due to insufficient system size) to phase separate in the

vicinity of a phase transition. This ensemble’s volume altering move is also vital

to equilibrating of dense phases in a reasonable time frame; periods of decreased

density allow for greater success rates of the standard configurational moves seen in

the NVT ensemble.

The NPT ensemble retains the configurational move set allowed by the NVT

ensemble, which retains its acceptance criteria (Eq 1.14); it may also make a trial

move to alter the system volume such that V ′ = V + ∆V . Particle positions are

uniformly scaled by a ratio V ′

V
. An important note is that in the case of molecular

systems, only the center of mass coordinates should be scaled in this manner; relative

positions and orientations of a molecule’s components should be maintained to avoid

almost guaranteed move rejection due to excessive stretching or twisting of bond

interactions. The acceptance criteria for a volume move is given by:
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Figure 1.2: Examples of volume Monte Carlo move. Inter-particle distances are all scaled
by the same ratio as the change in box length.

pacc(o→ n) = min[1, exp(−β[U(n)− U(o) + P (V ′ − V )− N

β
ln(

V ′

V
)])] (1.18)

Alternatively the volume change can be done via a change in individual box

length or in the logarithm of the volume if desired. While equally valid, such trial

moves require a subtly different acceptance criteria:

pacc(o→ n) = min[1, exp(−β[U(n)− U(o) + P (V ′ − V )− N + 1

β
ln(

V ′

V
)])] (1.19)

While configurational moves only require a recalculation of a subset of the total
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internal energy, the volume move requires a complete calculation of the internal

energy, with the exception of atomic systems with potentials that may be expressed

purely as linear combination of powers of inter-particle distances. As a result, they

should be used less frequently than configurational moves.

Grand Canonical Ensemble

The grand canonical ensemble (GCMC, fixed µVT) allows density to fluctuate by

inserting and deleting particles at constant volume. This method is the gold stan-

dard in obtaining phase coexistence between gas and liquid phases. At the chemical

potential corresponding to phase coexistence at a given temperature, the system will

oscillate between phases, sampling each for a time before swapping; from this a co-

existence curve may be constructed. For particle insertion, a random location in the

simulation box is chosen, and a new particle created with randomized orientation.

The acceptance criteria for this move is given by:

pacc(N → N + 1) = min[1,
V

N + 1
(
2πm

h2β
)
3
2 exp(β[µ− U(N + 1) + U(N)])] (1.20)

For deletion, a random particle is selected and destroyed. This move follow the

acceptance criteria of:

pacc(N → N − 11) = min[1,
N

V
(
h2β

2πm
)
3
2 exp(−β[µ+ U(N − 1)− U(N)])] (1.21)

This method encounters difficulties at high densities due to the low probability
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of success of either move. As such, it is impractical for coexistence with a solid

phase or highly extended molecules.

Gibbs Ensemble

The Gibbs Ensemble (GEMC) samples from the NVT ensemble, but is of special use

for simulations of phase equilibrium. Simulations of direct phase coexistence require

very large system sizes, as a large portion of particles will be involved in forming

the boundary between the two or more phases. This results in a significant amount

of wasted computation to determine the properties of the bulk. GEMC allows one

to equilibrate the pressure, temperature, and chemical potential of connected single

phase boxes without the expense of forming a boundary between them. This is done

by allowing these boxes to exchange particles and volume with each other, so that

while the density of any individual box is allowed to fluctuate, the total number of

particles and total volume are still conserved.

Within a given box, the standard set of NVT ensemble moves may be utilized

with the previously mentioned acceptance criteria (Eq 1.14). Additionally, a particle

may be exchanged with another box, or the volume of a box may be changed while

conserving total volume. The presence of these two moves allows for equilibration of

both pressure and chemical potential between the two boxes, which are both varying

over the course of the simulation. This is a tremendous advantage in that we do

not require having the often precise chemical potential or pressure needed for phase

coexistence in advance. By requiring detailed balance in both these moves, we can

derive acceptance rules without explicit knowledge of P or µ.

Beginning with particle exchange, if we remove a particle from box 1, originally
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containing n1 particles, and insert into box 2, originally containing n2 particles, the

ratio of the probabilities of these configurations is:

N(n)

N(o)
=
n1!n2!V

n1−1
1 V n2+1

2

n2V1
exp[−β(U(n)− U(o))] (1.22)

Requiring detailed balance K(o→ n) = K(n→ o) then gives:

pacc(o→ n) = min[1,
n1V2
n2V1

exp(−β(U(n)− U(o)))] (1.23)

In the case of a two box system, n2 is constrained to N − n1 and likewise V2 =

V − V1. The method, however, generalizes to any arbitrary number of boxes with

the above acceptance criteria.

For a volume change of size ∆V to box 1, such that V 1 = V1 + ∆V and V 2 =

V2∆V , we can again set up the ratio of the statistical weights of the configurations

before and after the trial move (o→ n).

N(n)

N(o)
=

(V1 + ∆V )n1(V2 −∆V )n2

V n1
1 V n2

2

exp[−β(U(n)− U(o))] (1.24)

Imposing detailed balance, we require:

pacc(o→ n) = min[1, (
V1 + ∆V

V1
)n1(

V2 −∆V

V2
)n2exp(−β(U(n)− U(o)))] (1.25)

Again, these expressions simplify to being a function purely of n1, V1 if only two

boxes are used but can be extended to an arbitrary number.
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While GEMC has obvious advantages in time compared to GCMC or NPT-

MC, it notably fails in systems involving strong, short-range potentials or in the

presence of very dense liquids or solids. This is largely due to the difficulty in

making both effectively a particle deletion and insertion successfully in these cases.

It is also often difficult to equilibrate even in the remote vicinity of a critical point;

large fluctuations can cause the boxes to swap phases too quickly to allow internal

equilibration.

Extended Ensembles

Often in Monte Carlo simulation, a system may prove excessively time consuming

to adequately sample phase space. In order to short cut around any potentially

large barriers between states, extended ensemble simulations may be used. This

process involves the running multiple replicas of the original configuration in one of

the previous MC ensembles, each using a different value for a particular thermody-

namic variable. Periodically a swap of system configurations is attempted between

neighboring replicas.

Most commonly temperature is used in this role (parallel tempering). Replicas

are assigned unique temperatures that range from the temperature of interest to

significantly higher temperatures. The lower temperature replicas will primarily

explore local minima, while the higher temperature replicas allow for more frequent

potential barrier crossing. Swaps of system configurations are attempted between

neighboring temperatures Ti and Tj with acceptance probability:
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pacc(i↔ j) = min[1, exp((βj − βi)(Ui − Uj))] (1.26)

The spacing between neighboring temperatures need not be constant for this

method; these spacings and the frequency of attempting swaps should be selected

such that low temperature replicas have limited but sufficient time to explore local

phase space before it is likely they are swapped to a higher temperature. Parallel

tempering may be employed in any ensemble to address large potential barriers

between states.

Similarly one can extend in pressure or chemical potential for NPT or GCMC

simulations respectively. This is extremely useful in the measurement of phase

coexistence. By selecting pressure or chemical potential values that favor different

density phases at their extremes, it is possible to efficiently sample both phases at

a single equilbrium value in between.

1.3 Protein Structure

In this section, we will give a physicists review of the basics of protein structure

and examine the models used to represent them. Proteins are an amazingly diverse

group of biomolecules, with sizes ranging over several orders of magnitude. They

are capable of a vast array of chemical interactions, large conformational changes

in response to environment, and combining into complex assemblies. The degree

to which different levels of the protein structure are important to a given problem

shapes the models we choose to address it.
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Primary Structure

At the most basic level, all proteins are polymer chains of amino acids, also referred

to as residues, of which there are 20 important to biological systems. Each amino

acid consists of a central carbon atom (C−α), a carboxyl group (COO−), an amino

group (NH3+), and a sidechain (specific to each amino acid). Amino acids are

linked via a peptide bond from carboxyl group of one to the amino group of the

next monomer. Sidechains, or R groups, vary dramatically across the amino acids,

from alanines simple four atom group to tryptophans aromatic rings. This sequence

of amino acids is referred to as primary structure, and is the information encoded

within DNA.

Secondary Structure

The next tier of this hierarchy is the three-dimensional conformation of the backbone

(carboxyl group, amino group, and C − α) of a protein, or its secondary structure.

There are numerous effects which may contribute to the resulting structure, but it

is dominated by hydrogen bonding between amino acids, which provides a powerful,

and highly directional, attractive interaction. These interactions are constrained

by steric restrictions, bond length and geometry, and even four body constraints

arising from the delocalization of electrons in the peptide bond. Even within these

constraints, there exists a world of potential conformations a protein may adopt.

One of the most common is the α-helix, in which amino acids are arranged into

a helical shape with 3.6 residues per turn. This is an extremely stable structure,

with each residue forming two hydrogen bonds. This stability makes it relatively

easy to predict from primary structure.
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Figure 1.3: Examples of common secondary motifs: cartoon representations of an α-
helix (left) and a three stranded β-sheet (right) overlaid on their underlying
atomistic composition.

Another common motif is the β-strand, an extended and highly linear conforma-

tion. β-strands can easily hydrogen bond between each other to form more complex

structure as shown in Figure 1.3. This type of structure is of importance to aggre-

gation in many neurological diseases, as the types of aggregates formed show high

amounts of β-sheet and -helix content under dye assays.

Frequently proteins may contain significant regions that lack a well defined sec-

ondary structure under physiological conditions. These intrinsically disordered pro-

teins may adopt a stable conformation under certain conditions (for example: in

the presence of binding partners or at a particular pH or temperature), oscillate
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between competing states, or simply contain large flexible sections that link ordered

regions. These proteins often pose a challenge to highly simplified models, as their

protein-protein interactions can be highly variable as a function of conformation.

Tertiary Structure

The most crucial element in protein structure for the purposes of function, however,

is the arrangement of sidechains in physical space, referred to as its tertiary struc-

ture. Hydrogen bonding, hydrophobic/hydrophilic effects, electrostatics, and van

der Waals interactions all contribute, while constrained by the limitations imposed

by the proteins secondary structure. As a result, predicting tertiary structure a

given primary structure will fold into is a potentially very difficult task. Hydropho-

bicity has a powerful impact on this folding; non-polar sidechains will tend to crowd

to the center of a protein, shielded by more hydrophilic or charged amino acids.

Some residues, such as glutamine, are capable of forming hydrogen bonds from

their sidechain in addition to those from the backbone of the molecule, which are

again very strong and highly anisotropic. Net electrostatic charge or dipole-dipole

interactions are longer ranged, and provide an avenue for pH response. Identifying

which of these interactions are important to a given system is vital to determin-

ing the types of models to employ, as explicitly calculating all of them is typically

infeasible beyond small systems without extensive computing hardware.

Quaternary Structure

Lastly, many protein molecules are comprised of several polypeptide chains that have

combined to form a larger macromolecule; this, when applicable, is their quaternary
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structure. For example, the immunoglobulin family of proteins (antibodies) has

variants that exist monomerically (ex: IgG), dimerically (ex: IgA), and even in

pentamer form (ex: IgM). Typically, the subunits of such a protein are arrange

symmetrically about an axis (rotations of 360o/n). Subunits need not inherently

be identical; for example, hemoglobin is a tetramer consisting of two pairs of two

different peptide strands.
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Chapter 2

Amelogenin: Effects of Coulomb

Repulsion on Phase Diagram

2.1 Abstract

In this chapter we explore the role of an anisotropic charge interaction on the phase

diagram of a colloidal model of the protein amelogenin. Amelogenin is the pri-

mary protein comprising the scaffolding in dental enamel upon which minerals are

deposited. This globular protein is chiefly hydrophobic with a 25-residue charged

C-terminus tail. Deletion of this tail has been shown to prevent the hierarchical as-

sembly process in vitro.37 Prior dynamics simulations have reproduced key features

of this process,77 representing the protein as a hydrophobic sphere with a tethered

point charge. The hydrophobic interaction is given by the Asakura-Oosawa (AO)

depletion potential, and the tethered charge represented by a screened Coulomb
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potential. We examine the effect of altering the strength and range of these inter-

actions on the phase diagram of the AO model in the range of values relevant to

amelogenin.

2.2 Introduction

One approach to describing anisotropic interactions in both colloidal and protein

systems is through so-called patchy models, introduced by Kern and Frenkel69 and

used by many groups since then, e.g. references.16,104,113 These models have had

reasonable success in predicting the overall features of phase diagrams. With suf-

ficiently short-ranged attractive interactions, the phase diagrams associated with

these models exhibit similar features as do those for proteins in aqueous solution:

namely, a solid-liquid coexistence curve that is subtended by a metastable liquid-

liquid curve. The region of metastability is of particular interest as the existence

of this liquid-liquid critical point has been demonstrated to enhance crystal nucle-

ation.122

An example of particular interest is the protein amelogenin, an important protein

involved in the formation of dental enamel. Amelogenin is primarily hydrophobic

with a 25-residue charged C-terminus tail. This protein undergoes a hierarchical as-

sembly process that is crucial to mineral deposition. Experimental work has demon-

strated that deletion of the C-terminus tail prevents this self-assembly.37 Previous

dynamics simulations77 have reproduced the key features of this assembly process,

utilizing a simplified model of amelogenin consisting of a hydrophobic sphere with

a tethered point charge on its surface. The hydrophobic interactions were chosen as
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the Asakura-Oosawa4 depletion attraction interaction. The pure Asakura-Oosawa

model has been of great utility in the statistical thermodynamics community, being

used to model interactions between colloidal particles as well as between protein

molecules, for example. In most cases the attractive interaction is produced, e.g.,

by the addition of non-adsorbing polymers to colloidal suspensions. The polymers

are treated in the AO model as ideal soft spheres, whose fugacity controls the con-

centration of the polymers. A recent review of the AO model was given by Binder,

Virnau and Statt.17 The amelogenin model was studied as a case of a generic bipolar

molecule for a variety of parameter choices in addition to those specific to amelo-

genin. It was found that aggregate morphology was highly sensitive to to the relative

strength and range of the interaction between point charges.74

In this chapter we examine the effect of these parameters on the phase diagram

of this model in the range of values relevant to the previous study. This allows us

to examine the impact of the point charge Coulomb repulsions between neighboring

amelogenin molecules on the phase diagram of the pure AO model, studied by Evans

et al.35 and by Lekkerkerker and collaborators.72 The phase diagram of the pure

AO model is of considerable interest in its own right since it displays a stable liquid-

liquid phase separation curve for some choices of parameter ξ (where ξ is defined as

ξ = σc/σp, where σp and σc are the diameters of the polymer and colloid or protein

particle, respectively), but transitions to a metastable phase diagram as the range

of the attractive interaction is reduced as the parameter ξ is reduced.
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2.3 Model and Method

As noted in the Introduction, our generic bipolar model consists of a spherical par-

ticle and a point charge located on its surface. Studies of amelogenin self-assembly

are typically done in the presence of salt and a precipitant, such as polyethylene gly-

col (PEG). While protein-PEG interactions are complicated, we model this effect

combined with hydrophobic interactions as a depletion interaction. In this chapter,

we use Monte Carlo simulations to investigate the phase diagram of such a bipolar

molecule. We study this model for a range of parameters, varying both the range

and magnitude of each interaction.

The spherical particle is depicted as a repulsive hard core and an additional

interaction, namely the well-known Asakura-Oosawa (AO) potential. The total

potential between two spheres separated by a center-to-center distance rcij is written

as, Uc(r
c
ij) = Uhc(r

c
ij) + UAO(rcij), where the hard core potential is given by

Uhc(r
c
ij)

kT
=


0 rcij > σ

∞ rcij < σ

(2.1)

and

UAO(rcij)

kT
=


0 rcij > 1 + ξ

φp(
1+ξ
ξ

)3[ 3r
2(1+ξ)

− 1
2
( r
1+ξ

)3 − 1]kT rcij ≤ 1 + ξ

(2.2)

where ξ is the ratio between a PEG chain and an amelogenin particle, which controls

the width of the attractive well, and φp is the volume fraction of PEG, which sets
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the strength of the AO interaction.4,129

The point charges on the spherical surfaces interact via a screened, due to the

presence of salt ions, Coulomb potential,

Up(r
p
ij) =

ε

rpij
exp

(
−
rpij
λ

)
, (2.3)

in which the magnitude is controlled by ε, a ratio of the strength of the Coulomb

interaction to kT , and the interaction range is controlled by the Debye screening

length λ. Parameters previously determined to be specific to amelogenin, and thus

of particular interest, are given by ξ = 0.1, λ = 0.4 and ε = 1.0.

To determine liquid-liquid coexistence, we first attempted Gibbs Ensemble Monte

Carlo simulations. Validating this method for the case of zero charge against pre-

vious determinations of the phase diagram of the AO model35 showed good agree-

ment in the high-density liquid phase but a consistent over-estimation of the low-

density phase. This discrepancy grew more pronounced with decreasing density of

the sparser phase, which indicates the AO potential, even at moderate interaction

lengths of ξ = 0.8 is too “sticky” for this method. Small clusters in the low-density

phase are unable to break apart, and equilibrium is not achieved between the two

phases.

In order to alleviate this, we instead employ grand-canonical Monte Carlo simu-

lations. Additionally, we use parallel-tempering46,49 to accelerate equilibration and

improve sampling, running 16 replicas simultaneously across a range of chemical

potential, µ. Within each replica, standard insertion/deletion, translation, and ro-

tation moves were attempted using standard MC acceptance criteria. Periodically,
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a replica was selected to attempt to swap with a neighbor with an acceptance prob-

ability

pacc(xi ↔ xi+1) = min[1, exp(−β∆µ∆N)] (2.4)

Periodic boundary conditions were used for a cubic cell of L = 10 σ. Simulations

were equilibrated for 106 MC steps and then sampled over an additional 107 MC

step production run.

For liquid-solid coexistence, a similar process was employed with parallel-tempered,

isobaric-isothermal (NPT) Monte Carlo simulations with 64 simultaneous replicas.

In each simulation the local structure was initialized in an FCC lattice with N = 256

particles. Standard MC translation, rotation, and volume change moves were at-

tempted, in addition to a periodic swap with neighboring replicas with a probability

given by:

pacc(xi ↔ xi+1) = min[1, exp(−β∆P∆V )], (2.5)

Simulations were equilibrated over 5 · 106 MC steps and then sampled over a

107 step production run. In order to examine the effect of the Coulomb charge on

the orientational ordering within the solid, a much larger range of parameters for

ε and λ than originally examined was required. Individual NPT-MC simulations

were begun from a close-packed FCC lattice of N=108 particles. Simulations were

allowed to equilibrate over 106 MC steps, with a 107 step production run.
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2.4 Results

2.4.1 Phase Diagrams

We first calculated the phase diagram for ξ = 0.8 for λ = 0.4 and varying ε using

the methodology outlined above, as shown in figure 2.1. We found that the stable

liquid-liquid coexistence region shifts upward in φp and narrows in volume fraction

of our model particle, φc, as repulsion is increased. A similar trend is seen in the

behavior of the metastable liquid-liquid region for ξ = 0.1, as shown in figure 2.2. For

this shorter AO interaction range, the effect of a small charge is significantly more

pronounced than in the case of ξ = 0.8. Additionally, this behavior is also observed

for changing λ at fixed ε (see figure 2.3). In a previous study of this model,77 it was

shown that variations in λ or ε produced differing aggregation morphologies. We find

that the phase behavior is largely insensitive to the difference between increasing

range versus strength, depending instead on their combined effect to control the

overall amount of repulsion present in the system. This shift in the coexistence

region is analogous to a lowering of Tc as overall attraction between particles is

reduced.

2.4.2 Structure and Correlation Measurements

Next, we calculated the radial distribution functions, g(r), for state points repre-

sentative of the two metastable liquids and a solid phase for ξ = 0.1 and φp = 0.4,

as shown in figures 2.4-2.6. The low-density liquid phase exhibits ideal gas-like be-

havior, due to the minimal amount of interaction at this concentration, whereas the

high-density liquid exhibits some minimal structure typical of an attractive liquid,
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Figure 2.1: Phase diagram in the φp − φc plane with ξ = 0.8 and the screening length
λ = 0.4 for various values of the screening strength, ε. φp and φc are the
volume fractions of PEG and the model particles, respectively.

Figure 2.2: Same as Fig. 1, except that ξ = 0.1 and λ = 0.4 for various values of ε.
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Figure 2.3: Same as Fig. 1, except that ξ = 0.8 and ε = 0.1 for various λ

with a small peak in g(r) near r = 2. The radial distribution function for the solid

phase shows clear crystalline peaks at values indicative of a close-packed FCC lat-

tice: r = 1,
√

2,
√

3, 2, etc. To verify the nature of the crystal structure, we also

calculated the bond-orientational q6 order parameter.8 We found average values of

q6 = 0.5745, consistent with a FCC structure. These findings are consistent across

varying values of the parameters ε and λ.

While the liquid-liquid coexistence curve shows a dramatic influence from the

Coulomb interaction, the solidus line sees little effect at high φp and short ξ. For

small λ and ε, the charge interaction represents a negligible fraction of the system

energy for the solid or low-density liquid phases. Thermal fluctuations easily destroy

any orientational ordering in the solid phase. At much larger values of these param-

eters, point charges align to minimize the repulsive interaction more readily. This

transition can be observed in the probability distribution of orientational correlation

32



Figure 2.4: Radial distribution function, g(r), for state point in the low density liquid
phase along φp = 0.4

shown in figure 2.7. For ε = 5.0, the orientation of point charges is uniformly dis-

tributed through the system. As the strength of the charge is increased, we observe

increased ordering across the solid. Representative snapshots of the solid phase for

these values of ε are shown in figure 2.8.

2.5 Conclusion

The phase diagram for our model bipolar molecule has been determined via Monte

Carlo simulation with parallel tempering. Our results for the ε = 0 (no Coulomb in-

teraction) case are in good agreement with a past study of the phase diagram of the
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Figure 2.5: Radial distribution function, g(r), for state point in the high density liquid
phase along φp = 0.4

AO potential.35 We find that the addition of a Coulomb charge to a particle inter-

acting with an Asakura-Oosawa potential strongly affects liquid-liquid coexistence.

The repulsive interaction reduces the density of the high-density phase and shifts the

coexistence region to higher values of φp (volume fraction of PEG). The same qual-

itative trend occurs in a stable liquid-liquid coexistence (ξ = 0.8) and a metastable

region (ξ = 0.1). In the low-density liquid and solid phases, the Coulomb repulsion

represents a negligible portion of the overall interaction, and therefore results in

little effect.

For the parameter case specific to amelogenin, we find that the previous dynamics

study and typical experimental conditions place the system near the low-density edge
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Figure 2.6: Radial distribution function, g(r), for state point in the solid phase along
φp = 0.4

Figure 2.7: Probability distribution of the orientational correlation for various values of
ε with ξ = 0.1 and λ = 2.5.
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Figure 2.8: Representative snapshots for ε = 5.0 (left), ε = 8.0 (center), and ε = 11.0
(right) after equilibration. Model protein particles shown as large blue
spheres with the point charge represented by a small red sphere on the
surface.

of the metastable region. In this area of high φp and low φc, the phase behavior is

largely insensitive to changes in the Coulomb interaction.

An important topic for future research is to study the dynamics and morphology

of self-assembly of amelogenin in vivo. The aforementioned experiment on amelo-

genin self-assembly37 was carried out in vitro, and it is known that the process of

self-assembly in vivo differs from that in in vitro.34 At the very least one would have

to take into account the effects of crowding due to the confinement of the molecules

in the cell.

More generally, cryoelectron microscopy studies of amelogenin aggregation have

shown that this system undergoes stepwise, hierarchichal self-assembly.43 Moreover,

it has been demonstrated that interactions between hydrophilic, C-terminus tails are

critical for the formation of, for example, oligomers. It would clearly be desirable,

then, to model the temporal dependence of the aggregation process to characterize

the morphologies of the aggregates and their distribution of sizes. In particular, at

late times in the aggregation process, it has been found that large nanospheroids

predominate; however, the particle morphology (i.e., spherical versus oblate) is still

an open question. It is expected that simulation will be useful in elucidating stable

36



particle morphologies and in highlighting their internal structure.
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Chapter 3

Immunoglobulin: Effect of Angle

Between Interaction Sites on

Kinetics and Morphology

3.1 Abstract

We study the kinetics of aggregation of a two bead model of interacting spherical

molecules. A given bead on one molecule can interact with one or more beads

on other neighboring molecules. The beads represent the result of a simple coarse

graining of a putative amino acid residue (or residues). We study the kinetics and

equilibrium morphology for a fixed angle between the two beads, and then study

the dependence of this process and morphology on this angle, which we study for

several angles between 30 and 150 degrees. In the model the beads interact via an

attractive Asakura-Oosawa potential and the molecules have the usual hard sphere
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repulsion interaction. We find a transition from a micelle like morphology at small

angles to a rod-like morphology at intermediate angles, to a gel like structures at

values of the angle greater than about ninety degrees. However, at 150 degrees, after

a long induction time during which there is no aggregation, we observe a nucleation

and growth process that leads to a final spherical-like aggregate.

3.2 Introduction

Immunoglobulin (Ig, better known as an antibody) is a large, Y-shaped protein

produced by the immune system to identify pathogens for removal. Ig binds to

specific surface motifs (antigens) on the foreign body and then subsequently to

receptors on specialized cells to kill or remove the bacteria or virus. The protein is

comprised of four peptide chains (two heavy, two light) bound together via disulfide

bonds. There are five classes of human Ig, determined by the composition of the

heavy chains, of which IgG is the most common. Each chain contains a constant

region, conserved among antibodies of the same class, and a variable region that

defines its antigen specificity.

IgG is comprised of three structural domains: two Fab (Fragment antigen bind-

ing) and an Fc (Fragment crystallizable, which binds to receptors on immune cells),

joined by a flexible hinge. These antibodies are typically monomeric in the body.

High concentration IgG solutions are used in the treatment of various illnesses, typ-

ically autoimmune or chronic inflammatory diseases. Such solutions are harvested

from blood plasma of thousands of individual donors. Unfortunately the likelihood

of an Fab region from one donor targeting that of another donor increases with

39



number of donors used.107,121 This causes an increase in dimerization, and a cor-

responding decrease in effectiveness of the treatment. At high concentrations, IgG

solutions show signs of gelation and even the formation of insoluble aggregates,

which can provoke a harmful immune response.25,30,57,79

In addition to the Fab-Fab interactions, the Fc regions and the hinge itself have

been shown to effect aggregation.95 Exposed hydrophobic residues are more con-

centrated in these regions than in the Fab domains. These areas have been exper-

imentally mutated to be more hydrophilic, resulting in less aggregation prone IgG

variants.23,24

In this chapter we study a greatly simplified model of Ig G, consisting of spher-

ical molecules with two interacting sites (“beads”) on each spherical molecule. A

given bead is meant to represent the result of a simple coarse graining of amino acid

residues. It can interact with other beads on neighboring molecules. In addition to

this bead-bead interaction, the molecules have the usual hard-core repulsive inter-

action. We study the situation in which we vary the hinge angle, the angle between

the two beads subtended by lines drawn from each site to the center of the molecule.

Our motivation in part is the case of immunoglobulin , which are flexible, so that

the “hinge” angle between the two arms of the molecule is variable.

In a previous model defined by Li et al,73 the authors studied of polymer-induced

phase separation and crystallization in immunoglobulin G, but kept the hinge re-

gion fixed. Their model yielded results that are similar to the experimental results

obtained subsequently by Wang et al.131 However, our model is not meant to be a

realistic model of such a protein, but rather a simple way to simulate qualitatively

the effect of varying the angle on the kinetics and morphology of the aggregation
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of the molecules. In our model the site-site interactions are taken to be of the

Asakura-Oosawa depletion form, which provides an attractive interaction between

the molecules. Our main result is that for case I the hinge angle plays a significant

role in the kinetics and morphology of aggregation. For small hinge angles of thirty

to sixty degrees, the aggregates are more micelle like (although becoming anisotropic

as the angle is increased). Then there is a transition window between sixty-five and

seventy degrees in which the morphology becomes more rod-like. As one increases

the angle even more, the aggregates form a more gel-like structure. Finally at one

hundred and fifty degrees we see no aggregation until after a long induction time we

observe a nucleation and growth aggregation process. One thing to note is that each

value of the hinge angle has its own particular phase diagram, so that in the case

of 150 degrees we have apparently quenched the system into a metastable region of

the diagram.

3.3 Model and Methodology

We assume in our models that there are two interaction sites per spherical molecule,

whose angular separation is varied in the study. There is the usual hard-core repul-

sion between the spheres(Uhc).There is also s an additional the two-body Asakura-

Oosawa5 attractive depletion potential (UAO) between the interaction sites on the

particles. Hence the overall interaction potential is U = UAO−sites+Uhc−spheres. The

Asakura-Oosawa depletion potential is given by

UAO = φp((1 + δ)/δ)3[3r/(2(1 + δ))− 1/2(r/(1 + δ))3 − 1]kT, r < 1 + δ, (3.1)
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and the hard core repulsion is taken to be

Uhc = r−αkT, (3.2)

with α = 36. For the depletion potential the δ value is set at 0.5 so that the range

of interaction is 1.5σ, where σ is the diameter of the sphere. The value of φp is

selected such that maximum depth of interaction is set at 6kT.

The interactions between the sites exert torques on the molecules and hence

produce a rotational motion of the molecules that is included in our Brownian

equations of motion. These are given as

m~̈ri = −~∇(U c
i + Up

i )− Γt~̇ri + ~Wi(t), (3.3)

I~̇ωi = ~τi − Γr~ωi + ~W ′
i (t), (3.4)

where m, I, ~ri, ~ωi, ~τi are the mass, moment of inertia, position vector, angular

velocity, and torque, respectively, of the ith molecule. The masses of the point

sites are ignored in this model. Γt = 6πηr (Γr = 8πηr3) is the translational (ro-

tational) friction coefficient, where r is the radius of the monomer (molecule) and

η is the dynamic viscosity. ~Wi and ~W ′
i are the random forces and torques act-

ing on the ith particle respectively, which satisfy fluctuation-dissipation relations

〈 ~Wi(t) · ~Wj(t
′)〉 = 6kTΓtδijδ(t− t′) and 〈 ~W ′

i (t) · ~W ′
j(t
′)〉 = 6kTΓrδijδ(t− t′).125

In our Brownian dynamics simulations, all length scales are measured in units of
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the monomer diameter σ. We choose Γt = 0.5, Γr = 0.167, and the time step

4t = 0.005 in reduced time units of σ(m/kT )1/2 with m = 1. For this choice of

Γt = 0.5, particle motion is purely diffusive for t � 1/Γt, i.e., t � 2 in our units.

In order to study the anisotropic effect brought by the sites on the self-assembly

process, we focus on a relatively dilute system, as described in the section below.

Periodic boundary conditions are enforced to minimize wall effects. All simulations

start from a random initial monomer configuration and the results for the kinetics

are averaged over several (5-10) runs.

3.4 Results

3.4.1 Rate of aggregation and size of aggregates

We studied the aggregation of the particles at two different volume fractions of

f = 0.0025 and f = 0.01. The rate of monomer loss is studied at the lower volume

fraction of f = 0.0025. The comparison of monomer loss is made at six different

angles between the interaction sites on the spherical particles. Our results show

that the rate of aggregation slows down as the angle between the interaction sites is

increased, as shown in fig.3.1. The monomer loss for the case of θ = 120 and θ = 135

degrees can be divided into three regions, as shown in fig.3.1. In the first region,

the rate of monomer loss is slow due to the large degree of dissociation of the aggre-

gates. In region 2, the dissociation of aggregates is negligible and the clusters grow

with the addition of monomers. In region 3, the cluster size growth is dominated by

the cluster-cluster aggregation and hence there is a slow addition of monomers to

the aggregates. Typical configurations for these three regions are shown in fig.3.1.
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Figure 3.1: Rate of monomer loss for different angles, for the volume fraction f = 0.0025.
As discussed in the text, there are three different regions for the cases of
θ = 120 and 135 degrees. Typical configurations for these three regions are
also shown.

At this concentration, no aggregation takes place for the angular separation of 150

degrees (i.e. θ = 150) on the time scale shown in this diagram. However, in three

other long runs (out of a total of ten), we observed a long induction time followed

by nucleation and growth into a final aggregate. We discuss this in more detail in

our discussion of the morphology of the aggregates.

Varying the angle between the interaction sites also affects the size of the aggregates.

We studied the dependence of the size of aggregates on the angle by two methods,

first by calculating the cumulative distribution function of the aggregate size and

second by studying the radius of gyration of the aggregates. In the first method

we compared the equilibrium size of the aggregates for five different values of θ, as
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Figure 3.2: Cumulative distribution function for different angles. The equilibrium size
of the aggregates increases as the angle between the patches is increased.

shown in fig.3.2. It can be seen that as the angle between the patches is increased,

the equilibrium size of the aggregates also increases.

We next analyzed the time dependence of the radius of gyration, which gives us

both a measure of the size as well as of the dynamics of aggregation for different

angles between interaction sites. Fig.3.3, shows the log-log plot of the average

radius of gyration Rg of the clusters as a function of time for f = 0.01. It can be

seen that for angles below 60 degrees, there is a very slow variation in the size of

the aggregates, which indicates the formation of approximately spherical, compact

aggregates. As the θ-value is increased further, there is a significant variation in

the radius of gyration of the aggregates, indicating the formation of non-spherical

larger size aggregates. It can be seen that for θ = 75 degrees, the growth kinetic

exponent compares well with the Diffusion Limited Cluster Growth (DLCA) kinetic
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Figure 3.3: Log-log plot of the radius of gyration, Rg. The aggregates form approxi-
mately spherical, compact aggregates below sixty degrees. As one increases
the angle further, the significant variation in Rg shown here indicates the
formation of larger, non-spherical aggregates. Typical final aggregates for
the angle θ equal to 60, 65, 75 and 90 degrees, respectively. For θ = 75
degrees, the growth kinetic exponent shown here is close to the DLCA ki-
netic exponent of 0.55, indicating that the aggregates are fractals, within
the accuracy of our simulation.

exponent of 0.55 indicating that the aggregates are fractal-like for θ = 75. Fig.3.3

also shows typical final aggregates for the angle θ equal to 60, 65, 75 and 90 degrees,

respectively.

3.4.2 Morphology

We now focus on the shape and morphology of the aggregates. First, we compare

and characterize the shape of the aggregates based on the cluster shape anisotropy

parameter. The cluster shape parameter (A13) is defined as the ratio of the squares

of the largest and smallest principle radii of gyration. From the cluster shape

anisotropy calculations, shown in fig.3.4, we can conclude that for the case of θ = 30

and 60 degrees, the clusters have an almost identical morphology and that this mor-

phology stays the same throughout the simulation time. A transition to a more
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Figure 3.4: Plot of the anisotropy vs time for several different angles. The anisotropy is
defined as the ratio of the square of the largest and smallest principle radii of
gyration. From this plot we conclude that the clusters have almost identical
morphologies for θ = 30 and 60 degrees and remains essentially constant
through the simulation. The large values of the anisotropy parameter shown
for the case of θ = 75 degrees indicates that the clusters are more irregular
in their shape.

rod-like morphology occurs around θ = 65 degrees. For θ = 75 degrees, the large

values of the anisotropy parameter indicate that more irregular shaped clusters are

formed. For θ = 90 degrees and larger, the aggregates are gel-like, with an inter-

connected structure. The typical equilibrium morphologies are shown in Figure3.5

through Figure 3.11. (The morphology for θ = 30 degrees is of a similar micelle

like shape as in fig.3.6.) The transition to rod-like behavior is evident in Figure 3.7,

while the gel-like behavior is shown in the figures with θ greater than or equal to

90 degrees ending at about 140 degrees. Beyond θ = 140 degrees, this extended

network collapses into distinct, compact clusters.

The case of θ = 150 degrees deserves special attention, because on the time scale

shown in figure 1, there is no aggregation. However, in three of ten long runs we

observed nucleation and growth events (at times longer than shown in figure 1).
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Figure 3.5: Morphology for θ = 30 degrees at time t=10,000.

Figures 3.12, 3.13 and 3.14 shows one such event. We also ran for very long times

at 180 degrees but were unable to see any aggregation, including any late stage

nucleation event.

In order to determine the nature of the nucleated droplet, we performed a sta-

tistical analysis of the quantity q6 for the cluster.7 We first define

qlm(i) =
1

Nb(i)
ΣYlm(r̂ij) (3.5)

where the Ylm(r̂ij) are the spherical harmonics evaluated for the normalized direction

vector r̂ij between the neighbors i and j. q6 is defined as

q6(i) =
4π

2l + 1
Σm=l
m=−l|q6m(i)|2)1/2 (3.6)
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Figure 3.6: Morphology for θ = 60 degrees at time t=10,000.

We found a rather broad distribution function for q6 , which had its maximum

around q = 0.45 with a width from 0.2 to 0.7. To obtain a more definitive test of

the nature of the droplet, we calculated the correlation function ~q6i) � ~q6j), which is

defined as

~q6(i) � ~q6(j) = Σm=6
m=−6q6m(i)q∗6m(j) (3.7)

where the asterisk denotes complex conjugate. This correlation function is shown

in fig.3.15. The fact that is strongly peaked in the neighborhood of zero is strong

evidence that the nucleated droplet is liquid-like.7

We further probed the structure of the aggregates by studying the radial dis-

tribution function of the aggregates for different θ values, The distribution of the
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Figure 3.7: Morphology for θ = 75 degrees, at t=10,000. The transition to the rod-like
behavior shown in this figure occurs around θ = 65 degrees .

nearest neighbors appear to be very similar for the different θ values, as indicated

by the distribution shown in fig.3.16. For the next neighbors (indicated by the 2nd

and 3rd maxima values), a variation in the structure can be observed. There is very

little difference between the radial distribution shown at θ = 120 degrees and those

for 135 and 150 degrees, so we do not display these latter two in this figure. A

similar remark holds for the structure function, which we discuss below.

Finally, we examine the structure factor, S(q,t) where q is the wavenumber; S(q,t)

is the Fourier transform of the pair correlation function. In fig.3.17 and fig.3.18, we

show the log-log plot of S(q,t) versus q at early and late times, respectively. A fit to

the data shows some interesting results. Fig.3.17 shows the structure factor results
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Figure 3.8: Morphology for θ = 90 degrees, at t=10,000, shows the beginning of an
interconnected gel-like structure.

at early times for various hinge angles. At early times there seems to be no structure

at large length scales whereas at short length scales, the aggregates are less compact

(the slope is approximately minus 3) and have very similar structure for all angular

variations. The slope of minus 3 indicates that the aggregates are semi-compact.

For spherical aggregates, a slope of minus 4 is required (Porod’s law). The structure

factor calculations of the late time aggregates for various hinge angles are shown in

fig.3.18. For θ = 75 and 90 degrees, inspection of the results at different length scales

appear to show two different structures of the aggregates. The late time analysis

shows that at small length scales, the aggregates seem to be compact whereas at

intermediate and large length scales, the aggregates appear to be more fractal-like

i.e. S(q) ∼ q−1.7, approaching to the DLCA value of 1.8. For small angle variations
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Figure 3.9: Morphology for θ = 120 degrees, at t=10,000.

(i.e. θ = 30 and 60 degrees), the aggregates are semi-compact. The results obtained

from analyzing the behavior of the structure factor are complementary to the results

we have obtained by other methods in this section.

3.5 Conclusion

In this chapter we have examined a particular type of anisotropic interaction be-

tween molecules, resulting from two sites being located asymmetrically on the sphere

representing the molecule. We studied in considerable detail the kinetics of aggrega-

tion and the dependence of the morphology of the resulting aggregate on the angular
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Figure 3.10: Morphology for θ = 135 degrees.

separation (“hinge angle”) between the two sites. We have found an interesting de-

pendence on the hinge angle on both the morphology and kinetics of the aggregation.

Although the rate of aggregation is different for different hinge angles, the initial

morphology is found to be very similar in all cases (i.e. a quasi-spherical,micelle-like

structure). As time progresses, we found that there was a strong dependence of the

morphology on the hinge angle and observed a transition from a micelle-like aggre-

gation for small angles to a more rod-like aggregations that occurs around θ = 65

degrees. As one increases the angle even further, one eventually finds a gel-like

aggregate. In one particular case(θ = 75 degrees), we found that the growth kinetic

exponent is close to the DLCA kinetic exponent of 0.55, indicating that the aggre-

gates are fractals, within the accuracy of our simulation. We did not find this to be
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Figure 3.11: Morphology for θ = 145 degrees at time t=10,000, which shows a signifi-
cantly more compact structure.

Figure 3.12: Nucleation occurring after a long induction time t=13,100, for θ = 150
degrees.
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Figure 3.13: Closer to equilibrium, at t=16,250.

Figure 3.14: Equilibrium aggregate, at t=20,000.
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Figure 3.15: The correlation function ~q6(i) � ~q6(j), defined in the text.

r

Figure 3.16: The radial distribution function, g(r), as a function of spatial separation r.

the case for the other angles studied. In addition, we characterized the nature of the

nucleating droplet that we observed in three long runs for the angular separation of

135 degrees by calculating the quantities q6 and the correlation function ~q6(i) �~q6(j).

In this latter case we provided evidence that the nucleating droplet is liquid-like
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Figure 3.17: log-lot plot of the structure factor at early times, t = 100. There appear to
be no structure at large length scales. At short length scales, the aggregates
are less compact and exhibit similar structures for all the angular variations.

Figure 3.18: log-log plot of the structure factor at late time, t = 10, 000. As discussed
in the text, the aggregates at 75 and 90 degree angles appear to be more
fractal like at large length scales, with the value of S(q) ∼ q−1.7, which is
close to the DLCA value of 1.8.
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even at the stable equilibrium state. This observation is in contrast to the case of

isotropic interactions, where the initial nucleating liquid-like structure leads to the

formation of more order structure at large, stable sizes.

There are several simulations that one could do next, including starting this

model at lower temperatures and at higher concentrations. In addition, it would be

of interest to calculate the phase diagram for this model, at least for a few charac-

teristic angles. Finally, it is possible that our results might be relevant to extending

current studies of immunoglobulin, for example. In that case it is known that for

IgG there is considerable variation in the flexible hinge angle of these Y shaped

molecules. One could perhaps study this effect this by modifying the model defined

by Li et al73 in their study of polymer-induced phase separation and crystallization

in immunoglobulin G to include a variable hinge angle. It would also be of interest to

see whether this modification led to any significant changes in their predicted phase

diagrams, in addition to extending their work to study the kinetics of aggregation

of the modified model.
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Chapter 4

Huntingtin: Effect of Repeat

Length on Early Stage

Aggregation

4.1 Abstract

In this chapter we study the early stages of aggregation of a model of polyglutamine

(polyQ) for different repeat lengths (number of glutamine amino acid groups in the

chain). We use the LAMMPS molecular dynamics simulator to study a generic

coarse grained model proposed by Bereau and Deserno. We focus on the primary

nucleation mechanism involved and find that our results for the initial self assem-

bly process are consistent with the two dimensional classical nucleation theory of

Kashchiev and Auer. In particular, we find that with decreasing supersaturation,

the oligomer fibril (protofibril) transforms from a one-dimensional β sheet to two-
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three- and higher layer β sheets, as the critical nucleus size increases. We also show

that the results are consistent with several predictions of their theory, including

the dependence of the critical nucleus size on the supersaturation. Our results for

the time dependence of the mass aggregation are in reasonable agreement with an

approximate analytical solution of the filament theory by Knowles and collabora-

tors that corresponds to an additional secondary nucleation arising from filament

fragmentation. Finally we study the dependence of the critical nucleus size on the

repeat length of polyQ. We find that for the larger length polyglutamine chain that

we study, the critical nucleus is a monomer, in agreement with experiment and in

contrast to the case for the smaller chain, for which the smallest critical nucleus size

is concentration dependent.

4.2 Introduction

It is widely accepted that a large number of proteins can change from normally

functioning, soluble species into insoluble aggregates that can potentially lead to

disease. The typical driving force in protein aggregation is believed to be a desta-

bilization of the native protein that yields a group of partially folded intermediates

which have a greater propensity for increased aggregation.50,106,110,116,134 In partic-

ular polyglutamine (polyQ) aggregate formation has been implicated as playing an

important role in a class of neurodegenerative diseases, such as Huntington’s dis-

ease.11,15,22,42,119 These are known as polyglutamine expansion diseases, since they

all seem to be related to the aggregation of proteins whose only common sequence

feature is the presence of long polyglutamine tracts, which result from the genetic
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expansion of of a disease protein’s polyQ sequence beyond repeat length thresholds

in the range65 of 35-50. Although these polyQ sequences can be of variable length,

there exists a fairly sharp threshold length beyond which the disease emerges.65 As

the length of the polyQ increases past the threshold length for a given disease pro-

tein, the disease age-of-onset decreases and the disease severity at onset increases

as well. These neurodegenerative diseases in humans are pathologically noteworthy

for amyloid-like neuronal polyQ aggregates, Thus gaining an understanding of the

biophysics of polyQ aggregation would seem of utmost importance.

It is generally accepted that amyloid fibrils (such as caused by polyQ) form by a nu-

cleation and growth mechanism (see, e.g.,66,67,71,71,81,90).A reasonable amount is al-

ready known about polyQ aggregation, in particular, through experimental studies.

Wetzel and collaborators have shown that relatively long polyQ peptides aggregate

by nucleated growth polymerization, with a monomeric critical nucleus.15,22,42,119

They subsequently showed that the size of the critical nucleus for aggregation in-

creases from monomeric to dimeric to tetrameric65 over a short repeat length range

from Q26 to Q23 (for K2Q26 to K2Q23K2). They also carried out detailed kinetics

studies of the aggregation of these polyQ containing sequences and showed that

the spontaneous aggregation of several disease-related, complex polyQ sequences

is controlled by monomeric nucleus formation,65 similar to simple polyQ peptides.

This suggests that results from polyQ model sequences are relevant to at least some

polyQ pathology. Most importantly, the modest differences in critical nucleus size

found in these studies by Wetzel et al65 project huge differences in the kinetics of

aggregation predicted for different repeat lengths at physiological concentrations. A
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more recent small-angle neutron scattering study101 (also see120) showed that the ag-

gregation pathway of NtQ22P10 is very different from that of NtQ42P10. The initial

steps of aggregation for the former peptide involve a monomer to 7-mer transition,

whereas the latter involves a transition from a monomer to dimer (i.e. critical nu-

cleus size of 7 and 1, respectively). Wetzel et al65 also note that although the repeat

length threshold found in their studies is 24-25, the thresholds for disease risk tend

to be in the 35-45 range. Their work provides new hope for better understanding

of the connections between the repeat length dependence of polyQ physical prop-

erties and the repeat length dependence of disease risk, but this remains a major

challenge. It is also important to note that the polyQ flanking sequences play an

important role in the nucleation and growth processes. Pappu and collaborators28

showed that for one important polyQ disease protein, the Huntingtin protein, the

N- and C-terminal flanking sequence modules from exon 1 of huntingtin act as gate-

keepers, whereby the N-terminal flanking sequence accelerates fibril formation while

destabilizing nonfibrillar species, whereas the C-terminal flanking sequence reduces

the overall driving force for aggregation. Although it was initially thought that in

these amyloid proteins the fibril network was responsible for the disease, it is now

believed that it might result from toxic oligomers40,130 formed during the nucleation

and growth process. Given these experimental advances, it is important to under-

stand theoretically the early stages of aggregation.
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Figure 4.1: Schematic representation of an amino acid in the PLUM model from Refer-
ence 12. Dashed lines represent beads from neighboring residues to illustrate
local geometry.

4.3 Model and Methodology

In this chapter we study the early stages of aggregation of a coarse grained model of

polyQ for different repeat lengths, focusing primarily on the nucleation mechanism,

using a generic coarse grained model proposed by Bereau and Deserno.12 This model

provides an intermediate level of resolution with four beads per amino acid and an

implicit solvent. It offers full sequence specificity and includes the important back-

bone hydrogen bonds. The Bereau-Deserno model (or PLUM model) has been used

by Luiken and Bolhuis82,83 to study the nucleation kinetics of three peptides.

This model is not biased towards a particular secondary structure, nor does it

include additional terms to the potential in order to force known structures. Both

solvent and electrostatics are treated implicitly in PLUM.

In order to accurate model local geometry necessary for secondary structure, two-

(length), three- (angle), and four-body (dihedral) bonded interactions are included.

The two- and three-body interactions both take the form of very stiff, harmonic

potentials, given by:
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Ubond(r) =
1

2
kbond(r − r0)2 (4.1)

Uangle(θ) =
1

2
kangle(θ − θ0)2 (4.2)

Dihedrals are written as a Fourier series in their respective rotation angle:

Udih(ϕ) = kn[1− cos(nϕ− ϕn,0)] (4.3)

For amino acids immediately preceding a proline residue, up to the n = 2 term

is used, yielding two minima. For all others, only the n = 1 term is kept, which has

a single minimum. Additionally, dipole-dipole interactions between peptide bonded

carbonyl and amide groups are folded into this potential by parameter tuning. Pa-

rameters for these interactions can be found in Table 4.1.

PLUM uses three unbonded interaction potentials. The first is a simple volume

exclusion given by Weeks-Chandler-Andersen potential (the repulsive portion of the

standard Lennard-Jones potential):

Ubb(r) =


4εbb[(

σij
r

)12 − (
σij
r

)6 + 1
4
] r < 2

1
6σij

0 r > 2
1
6σij

(4.4)

where σij is the arithmetic mean of the two involved beads’ diameters. This

potential applies to all backbone-backbone and backbone-side chain interactions.

Bead specific parameters can be found in Table 4.2.

For side chain-side chain interactions, a piece-wise Lennard-Jones function is
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Table 4.1: Bonded interaction parameters for the PLUM coarse grained protein model.

Bond Lengths

NCα CαC
′ C ′N CαCβ

r0(Å) 1.455 1.510 1.325 1.530

kbond(ε/Å
2) 300 300 300 300

Bond Angles

NCαCβ CβCαC
′ NCαC

′ CαC
′N C ′NCα

θ0(deg) 108 113 111 116 122

kangle(ε/deg
2) 300 300 300 300 300

Dihedrals

φ ψ ω ωpro Improper

k(ε) -0.3 -0.3 67.0 3.0 17.0

n 1 1 1 2 1

ϕ0(deg) 0 0 180 0 ∓120

used to phenomenologically model hydrophobic, side chain hydrogen bonding, and

electrostatic interactions in one potential:

Uhp(r) =


4εhp[(

σCβ
r

)12 − (
σCβ
r

)6] + (εhp − εij) r < 2
1
6σCβ

4εhpεij[(
σCβ
r

)12 − (
σCβ
r

)6] 2
1
6σCβ < r < rhp,cut

0 r > rhp,cut

(4.5)

All side chain beads are taken to be the same size with the same interaction range

and cutoff (values given in Table 4.2). Amino acid specificity comes in through the
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Table 4.2: General unbonded interaction parameters for the PLUM coarse grained pro-
tein model.

Backbone Excluded Volume Interaction

σN(Å) σCα(Å) σC′(Å) εbb(ε)

2.9 3.7 3.5 0.02

Hydrophobic Interaction

σCβ(Å) εhp(ε) rhp,cut(Å)

5.0 4.5 10.0

Hydrogen Bonding Interaction

σhb(Å) εhb(ε) rhb,cut(Å)

4.11 6.0 8.0

term εij, which is the geometric mean of the individual residue parameters given in

Table 4.3, governing the strength of the side chain-side chain attractive interaction.

Lastly the hydrogen bonding potential is given by 12-10 Lennard-Jones combined

with an angular term:

Uhb(r, θN , θC) = εhb[5(
σhb
r

)12 − 6(
σhb
r

)10]×


cos2θNcos

2θC r < rhb,cut, |θN | < 90◦, and|θC | < 90◦

0 else

(4.6)

This form uses the inferred location of light atoms involved in the hydrogen bond

based on the local geometry of the backbone, requiring the positions of six beads,

as shown in Figure 4.2. This interaction exists between any pair of N and C ′ beads,

unless the N belongs to a proline residue.
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Table 4.3: Normalized amino acid specific hydrophobicity for the PLUM coarse grained
protein model.

Amino Acid εi(ε)

Lys / K 0.00

Glu / E 0.05

Asp / D 0.06

Asn / N 0.10

Ser / S 0.11

Arg / R 0.13

Gln / Q 0.13

Pro / P 0.14

Thr / T 0.16

Gly / G 0.17

His / H 0.25

Ala / A 0.26

Tyr / Y 0.49

Cys / C 0.54

Trp / W 0.64

Val / V 0.65

Met / M 0.67

Ile / I 0.84

Phe / F 0.97

Leu / L 1.00
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Figure 4.2: Schematic of the PLUM hydrogen bonding interaction from Reference 12.
Dashed beads are the implicit hydrogen and oxygen atom positions, calcu-
lated from the backbone heavy atom positions.

We use the LAMMPS molecular dynamics simulator103 and study a system of

1000 “monomers” (each representing a polyQ chain) primarily for two different re-

peat lengths, Q10 and Q30. Initial peptide conformations are selected from low

energy configurations obtained via dynamics simulation of a single chain of the de-

sired length, and placed with randomized position and orientation. Simulations are

run until a plateau in monomer concentration is reached. We take this value to be

an estimate of the equilibrium concentration and use this as a reference to define our

supersaturation value, s. However, the uncertainty in this equilibrium value could

lead to a systematic error in our determination of the supersaturation. We average

over 10 different starting configurations for each supersaturation examined, in order

to minimize finite size effects. We find that additional runs have a negligible effect

on quantities of interest. We study the nucleation mechanism involved in the initial

stages of growth namely, the early kinetic stages of oligomer aggregation. Finally,

we address the issue raised by the above referenced experimental studies: the de-

pendence of the critical nucleus size on repeat length.
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4.4 Results

4.4.1 Q10

4.4.1.1 Aggregate Mass Growth

We first examine the aggregation of Q10 at T = 300K. Figure 4.3 shows plots of the

fraction of mass aggregation as a function of time1, which demonstrate two different

pathways to aggregation. The first occurs at a relatively high supersaturation for

which there is no induction or lag time, i.e. there is no free energy barrier to growth

and hence no nucleation process is involved. This process has been termed “metanu-

cleation”.21The second plot indicates the pathway for aggregation that occurs at

smaller supersaturation, in which one finds a standard nucleation and growth curve.

To determine the nucleation mechanism involved in this process, we have visually

analyzed the critical nuclei at different supersaturations. We then estimate the crit-

ical nucleus size nc, by directly examining the relative rates of monomer addition

and dissociation for a cluster of size n peptides over time, averaging over all clusters

of size n in the simulation and across individual runs. We define any two peptide

chains as connected when their total pairwise interaction exceeds a minimum of 2ε

binding energy, where ε = kTr = k × 300K is the characteristic energy scale of the

PLUM model. Clusters are then built iteratively by tracing these connections. nc

is then given by the smallest cluster size that yields a net forward rate.

We have also tried to analyze the behavior of the mass aggregation curve shown

in Figure 4.3, whose behavior is a combination of nucleation and growth. There

1Time units are given in units of τ , the natural time unit of the PLUM model. For more details,
see reference.12
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Figure 4.3: Aggregate mass growth over time for two supersaturations of Q10. The
higher value of supersaturation, s=1.99, (red) demonstrates barrierless
growth. Its underlying cluster distribution shows stable clusters across a
range of sizes. At lower supersaturation, s=0.78, (blue), a lag period is fol-
lowed by the nucleation of a cluster with size above nc, and finally growth.
Such systems contain a large population of transient oligomers of size less
than nc with a gap in sizes before stable clusters emerge.

have been recent, significant developments in the theory of filament assembly71,89

that describes the type of sigmoidal nucleation and growth behavior we see in Figure

4.3, for which analytical solutions in certain cases have been obtained. The master

equation describing the filament growth includes the possibility of secondary nucle-

ation in addition to the primary nucleation we study here. (For a review, see90). We

have tried preliminary fits of the mass aggregation curve shown in Figure 4.3 using

the recent theory.71,90 Our best fit to the data using the approximate analytical

solution obtained by Knowles et al71 is shown in Figure 4.3. The solution we use
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for the mass aggregation curve is

M(t)

mtot

= 1− exp[−A(coshκt− 1)] (4.7)

with A =
knm

nc−1
tot

k−
and κ =

√
2k+k−mtot. We also find that the induction time

scales like τlag ∼ Cγ
1 , with γ = −0.57 ,where C1 is the monomer concentration,

shown in Figure 4.4. Our result is consistent with the recent theoretical prediction71

that γ − −0.5, and disagrees with the classical prediction γ = −(nc + 1)/2, in

which primary nucleation is a dominant mechanism determining the lag time. Our

result for the lag time scaling behavior is consistent with secondary nucleation, as

might arise from fragmentation of aggregates. Finally, we note that if we use a

result from filament theory that the coefficient of the early time t2 behavior of the

mass aggregation curve yields the critical nucleus size,44 we find values that are

consistently somewhat smaller than those we report here and have a more irregular

dependence on supersaturation than found in our determination. However, the

values obtained this way depend on the window of time that we use to estimate the

quadratic in time behavior.

4.4.1.2 Nucleation Mechanism

We now focus on the nucleation mechanism involved in this self-assembly process,

using an existing theory 2 of self assembly proposed by Kashchiev and Auer.66 In

2We first note that for peptide chains such as considered here, the combination of a non-
directional interaction, due to hydrophobic forces, and directional interactions such as hydrogen
bonding, in principle can lead to a complex non-standard nucleation behavior, depending on the
relative degree of anisotropy.21,67 In the non-standard case there is no well defined concept of a
critical nucleus, as the work of formation does not scale in a definite way with the nucleus size. In
such a case the size of the fibril nucleus does not have a unique value and nanofibrils of different
size and shape can act as nuclei. However, we find that, at least to a first approximation, the
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Figure 4.4: Scaling of lag phase with initial protein concentration disagrees with classical
nucleation theory. The best fit slope corresponding to γ = −0.57 is shown
in black. The slope corresponding to γ = −0.5, when primary nucleation is
not the dominating contribution to the lag phase, is shown in dashed red.

this theory nucleation is viewed as a two-dimensional process analogous to two

dimensional crystallization. The amyloid fibrils (protofilaments) are assumed to be

built up of successively layered β-sheets with fixed width and thickness. Each sheet

has fully extended rodlike peptides arranged parallel to each other and perpendicular

to the fibril elongation axis. The interaction between nearest neighbor peptide chains

in a β-sheet is dominated by hydrogen bonds, which lead to a specific surface tension

energy E. Interactions between nearest neighbor peptide chains in adjacent β-sheets

involve much weaker bonds, such as hydrophobic forces, that lead to a specific surface

anisotropy in our model is not sufficiently large as to produce this non-standard behavior and as a
consequence we attempt to analyze our results in terms of a classical theory described in the text.
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tension energy Eh. There are several relevant predictions of the classical nucleation

theory. The first is that fibrils begin as single β-sheets and develop a second β-sheet

only after reaching a supersaturation independent transition size nt given by nt =

E/Eh. We find that nt = 4 which fixes the ratio of the two surface tension energies

and that nc = 4; we find that as one decreases the supersaturation, additional β-

sheets are formed as predicted by the theory and that nt is indeed independent

of supersaturation. Figure 4.5 shows three different critical nuclei observed in our

study, ranging from the minimal size nc = 4, consisting of a single filled β sheet of

four peptide chains up to and including a critical nucleus nc = 12, consisting of three

filled β sheets. The latter was obtained using a seed to nucleate the system, as the

induction time was otherwise too long at that supersaturation. A second prediction

of the theory is that a filled single β sheet occurs at the largest supersaturation,

s1 = 2Eh/kT , before one passes into the barrierless regime. We estimate that

s1 = 1.13 which leads to the approximate value Eh = 0.6kT and from the relation

nt = E/Eh the estimate that E = 2.4kT . Finally, Kashchiev and Auer predict

that66 nc increases with decreasing supersaturation, with nc − 1 = A/s2 and A =

4EEh/(kT )2. Our data is consistent with this prediction for all s in the range studied

(within our estimated error bars for s), as shown in Figure 4.5, with A ≈ 6.28 as

obtained from the best fit. If we substitute the values of Eh = 0.6kT and E = 2.4kT

into their theoretical prediction for A, we find A = 5.8 so that our results seem

consistent with their predictions, within the accuracy of our data. We note that

one obvious limitation of the Kashchiev-Auer model, however, is that it does not

consider the full range of possible conformational changes in the peptides which

occur in proteins and in our model peptide chains. As a consequence, clusters

73



Figure 4.5: Critical nucleus size as a function of supersaturation, fit to s−2. Inset are
critical nuclei for S=0.47, 0.65, and 1.13, which feature 3, 2, and 1 layer
β-sheet conformations respectively, with peptides color coded to layer.

frequently form around a more disordered, larger than critical size, nucleus. These

clusters feature a larger number of hydrophobic contacts and fewer hydrogen bonds.

4.4.1.3 Oligomer Growth

Next, we briefly provide a more quantitative description of the time evolution of

the oligomers. This can be seen in Figure 4.6, which is a plot of the average radius

of gyration, Rg vs time, showing its reaching a plateau value after a rapid initial

growth that is due to the initial monomer state. Larger supersaturations have

smaller average size (smaller Rg’s) reflecting the stability of clusters smaller than

the critical nucleus size of smaller supersaturation values, reflected in their respective
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Figure 4.6: Average radius of gyration of clusters over time for three supersaturations of
Q10. Higher supersaturations have smaller average size, reflecting the stabil-
ity of clusters smaller than the critical nucleus size of lower supersaturations.

cluster distribution functions (Figure 4.8). A better description of the anisotropic

morphology can be obtained from a plot of the ratio of λ1/λ3 where λ1 and λ3 are the

smallest and largest eigenvalues of the mass inertia tensor, respectively. This plot is

shown in Figure 4.7, for a few supersaturations, in which this ratio slowly decreases

with time after an initial rapid growth, which is also due to the initial starting point

being a collection of monomers. We note from the plot of the behavior of the mass

inertia tensor that the growth is not of the one dimensional nature found in the case

of extreme anisotropy.
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Figure 4.7: Average cluster anisotropy (ratio of largest to smallest moments of inertia)
over time for three supersaturations of Q10. Clusters formed are highly
anisotropic due to the typically extended conformation of Q10 monomers
within the cluster and the preferred direction imparted by hydrogen bonding.

Figure 4.8: Cluster distribution plot for Q10 aggregates. For S = 1.99 (left), clusters
exist across a wide range with no gaps. For the case of S = 0.72 (right),
there exist a large number of transient small clusters, followed by a gap in
the distribution, and finally a number of stable clusters above nc = 7.
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4.4.2 Q30

4.4.2.1 Aggregate Growth and Nucleation Mechanism

Next we examine the growth of Q30 aggregates at T = 300K. Plotting the fraction

of mass aggregation over time (Figure 4.9) consistently shows the presence of a lag

time. The duration of this lag phase scales well with the square of the average

separation distance between monomers at that concentration; this suggests that the

aggregation process is diffusion limited, rather than limited by a nucleation event.

This is further supported by examining the relative rates of monomer association

and disassociation for all clusters of a given size n. We find that there is net growth

for clusters of all sizes across the range of supersaturations examined (s = 0.78 to

s = 3.46). Fitting to the solution given by Equation 4.7, we find the parameters A

and κ to be consistent across all supersaturations. Due to the dependence of these

values on critical nucleus size, we can further confirm there is no change in nc as a

function of supersaturation and that nc = 1. This is in agreement with experimental

observations65,101 that the critical nucleus is repeat length dependent and that as

one increases the length, the critical nucleus becomes a monomer. In particular, it

agrees with the experimental result42 for Q30 that the critical nucleus is a monomer.

4.4.2.2 Oligomer Growth

We show in Figure 4.10 a typical small oligomer for the longer repeat length case.

Individual monomers in this arrangement have a much larger number of internal

hydrogen bonds than in the case of Q10, and tend towards a stacked helix arrange-

ment. This is again similar to experimental observations65,101 and computational
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Figure 4.9: Aggregate mass growth over time for three supersaturations of Q30. All show
the same qualitative behavior and consistent values of A and κ.

study.70,87,94,98

The average radius of gyration as a function of time is very similar for different

supersaturations, as shown in Figure 4.12, with the exception of the length of the

induction period. Unlike the case of Q10, all cluster sizes are viable at a given

supersaturation (Figure 4.11), resulting in each supersaturation having a similar

underlying distribution. As such, the typical size and anisotropy of clusters are

comparable. Figure 4.13 quantitatively shows the average anisotropy of clusters

as a function of time. Q30 clusters are considerably more anisotropic than Q10,

reflecting the tendency to arrange in proto-fibrilar configurations more readily. Also

in contrast to Q10, over time these clusters are not tending towards more spherical
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Figure 4.10: Typical Q30 tetramer forms from stacked helices in contrast to the sheet-
like Q10 clusters. Q30 monomers adopt a more helical conformation than
Q10, with significantly larger self-interactions.

oligomers, instead maintaining very linear structures.

4.4.3 Nucleation Barrier

Lastly we examine the presence of a barrier to nucleation as a function of repeat

length. We performed simulations across the range of temperatures 275 − 300K

at fixed concentration for polyQ constructs ranging from Q10 to Q30 in increments

of five repeats. The concentration for all lengths was chosen such that Q10 had a

critical nucleus size of 4 at T = 300K. We then repeat previous analysis to obtain

estimates of the nucleation rate, kn. Figure 4.14 shows a normalized plot of the
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Figure 4.11: Distribution of cluster sizes for Q30 aggregates at monomer plateau. Clus-
ters span the range of dimers to 16-mers with no gaps in the distribution.
Growth at this stage is being driven by cluster combination.

log of the nucleation rate versus inverse temperature for Q10 and Q30. Assuming

the nucleation rate, at least locally, scales like an Arrhenius process, the slope of

this curve gives the negative of the height of the nucleation barrier. In the case of

Q30, this slope is negligible, indicating the absence of a barrier to nucleation. In

contrast, Q10 shows a barrierless regime at low temperature, and clear evidence of

a substantial nucleation barrier at high temperatures.

Repeating this analysis for the intermediate cases (Figure 4.15), we find that this

model of polyQ rapidly shifts to barrierless behavior as repeat length increases. Both

Q20 and Q25 exhibit near zero slopes across the range of temperatures examined.
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Figure 4.12: Average radius of gyration of clusters over time for three supersaturations
of Q30 shows a quick increase during initial cluster formation followed by
a period of slow growth.

Q15 shows a small nucleation barrier only at the highest end of this temperature

range. This suggests there is a somewhat continuous, albeit rapid, transition from

the nucleation process seen in Q10 at smaller supersaturations to the ever present

metanucleation of Q30. This crossover from nucleation to metanucleation is at a

significantly smaller length than experimental work,65 however. The difference be-

tween a pure polyglutamine construct and the more complicated peptides may be

substantial in this area though, with flanking sequence playing a critical role.
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Figure 4.13: Average cluster anisotropy (ratio of largest to smallest moments of inertia)
over time for three supersaturations of Q30. Clusters maintain a very high
degree of anisotropy over time due to their stacked helix arrangement.

4.5 Conclusion

In conclusion, we have found that the nucleation mechanism for the PLUM model

polyglutamine is in reasonable agreement with the theory of Kashchiev and Auer66

for the case of Q10. In particular, we have found that the maximum number of

peptide chains in the one dimensional β sheet is independent of supersaturation

and in the case of Q10 is equal to 4 at T = 300K. We have also found that the

critical nucleus size is inversely proportional to the square of the supersaturation,

as predicted by Kashchiev and Auer, subject to the caveat about the uncertainty
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Figure 4.14: Arrhenius plot of the nucleation rates of Q10 and Q30. Q10 shows two
distinct regions, one with and without a nucleation barrier at high and
lower temperature respectively. Q30 shows good agreement to a zero-slope
linear fit, indicating the lack of a barrier to nucleation.

in our estimate of Ce. In addition, we have found that the critical nucleus is repeat

length dependent,65 equal to one peptide chain for our model for the case Q30, in

agreement with experiment,42 though we find this transition occurs at lower repeat

length than expected. Additionally, we see a change in oligomer composition as a

function of repeat length, with short constructs forming β sheets and Q30 adopting β

helix structures, in agreement with experimental observations.101 Finally, although

our focus in this chapter has been on the early stages of self-assembly, we have done

a few long runs and have seen the oligomers first form a few large clusters which

eventually form fibrils, shown in Figure 4.16, to verify the long time trajectory of
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Figure 4.15: Arrhenius plot of the nucleation rates of Q15, Q20, and Q25. Only Q15

shows a non-negligible slope in the high temperature regime, and for a
smaller range of temperatures than Q10.

this system.
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Figure 4.16: Snapshots of system progression to long time scales of Q10 at high supersat-
uration. Initially a large number of small clusters are formed (left), which
is followed by a period of consolidation into large, disordered oligomers
(center). Finally these clusters reorganize into characteristic fibril forms.
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Chapter 5

Conclusion

This chapter briefly examines ”What’s next?”, the near term direction of work

within the field of coarse grained protein simulation and colloidal science.

Coarse grained protein models come with a powerful advantage in their ability

to reach time scales unobtainable by atomistic models. This, however, comes at the

price of internal degrees of freedom, and as a result loss of realistic interactions with

smaller components of the environment (i.e. complex solvent interactions such as

retrograde solubility118 or the effects of macromolecular crowding14,91,92,138). These

shortcomings must be addressed to more faithfully model the cellular environment,41

in which the concentration of the peptide of interest is typically vastly lower than in

silico, yet the environment is more crowded than the usual coarse grained simulation.

Additionally, while models exist that combine both peptides and lipids,85 this is

typically done at a fairly high to moderate resolution. The role of membranes on

protein aggregation, particularly in the area of neurodegenerative diseases appears to

be of considerable importance.9,20,45,48,86,140 Many of these proteins are membrane
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bound or cleaved, and lipid membranes have been shown in induce aggregation in

previously stable solutionsand dramatically alter the free energy landscape of the

aggregation process.54,111 Combining single particle colloidal models of proteins with

highly coarse grained lipid models27,33,126 or network models of membranes19,96 has

great potential to provide insight into the aggregation process in these diseases as

it progresses in vivo.

On top of better incorporation of these more complex interactions, is the ever

continuing work of improving existing tools. More rigorous coarse graining tech-

niques,108 as well as refinements in the atomistic force fields to better capture in-

trinsically disordered proteins,61 represent important steps forward in this area. In

hardware, the relatively low cost of modern accelerators is pushing down the cost of

supercomputing, expanding access and increasing the number of ongoing projects.

At the other extreme, specialized hardware117,132 is pushing orders of magnitude

beyond what was possible even a short time ago, allowing simulations of tens of

millions of particles on the microsecond scale.102

Colloidal and bioinspired materials with anisotropic features have an astounding

number of potential uses as photonic materials, catalysts, electronic paper, and

biomedical probes and delivery mechanisms.64,139 Preparation of these particles

on a scale needed for application development, however, is still lacking. Existing

techniques are too time consuming per unit produced or too unreliable in quality.

Designer peptides that can reproduce specific features of more complex proteins and

be grown in bulk are likely to have more success in the immediate term.13,38

The next phase of research in these areas will hopefully see computational biology

continue to better reflect experiment and experimental colloidal work able to produce
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on a scale to sift through the great many predictions from simulation and theory

waiting to be tested.
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